INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal,Hyderabad-500043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MATHEMATICAL	MATHEMATICAL TRANSFORM TECHNIQUES								
Course Code	AHSB11	AHSB11								
Programme	B.Tech	B.Tech								
Semester	II	П								
Course Type	Core	Core								
Regulation	IARE - R18									
Course Structure	Lectures	Tutorials	Practical	Credits						
	3	1	-	4						
Course Coordinator	Dr. S Jagadha, Assoc	ciate Professor								
Course Faculty	Dr. P. Srilatha, Assoc Ms. L Indira, Assista Ms. C Rachana, Assi Ms. P Rajani, Assista Ms. B. Praveena, Ass	nt Professor istant Professor ant Professor								

COURSE OBJECTIVES (COs):

2 0 0 0

The	course should enable the students to:
т	Enrich the knowledge solving algebra and transcendental equations and understanding Laplace
1	transforms.
Π	Determine the unknown values of a function by interpolation and applying inverse Laplace transforms
III	Fitting of a curve and determining the Fourier transform of a function
IV	Solving the ordinary differential equations by numerical techniques
V	Formulate to solve Partial differential equation

COURSE OUTCOMES (COs):

CO 1	Analyzing real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method. Applying Laplace transform and evaluating given functions using shifting theorems, derivatives, multiplications of a variable and periodic function.
CO 2	Understanding symbolic relationship between operators using finite differences. Applying Newton's forward, Backward, Gauss forward and backward for equal intervals and Lagrange's method for unequal interval to obtain the unknown value. Evaluating inverse Laplace transform using derivatives, integrals, convolution method. Finding solution to linear differential equation
CO 3	Applying linear and nonlinear curves by method of least squares. Understanding Fourier integral, Fourier transform, sine and cosine Fourier transforms, finite and infinite and inverse of above said transforms.
CO 4	Using Numericals methods such as Taylors, Eulers, Modified Eulers and Runge-Kutta methods to solve ordinary differential equations.
CO 5	Analyzing order and degree of partial differential equation, formation of PDE by eliminating arbitrary constants and functions, evaluating linear equation b Lagrange's method. Applying the heat equation and wave equation in subject to boundary conditions.

COURSE LEARNING OUTCOMES (CLOs): Students, who complete the course, will have demonstrated the asking to do the following:

,	
AHSB11.01	Evaluate the real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method.
AHSB11.02	Apply the nature of properties to Laplace transform and inverse Laplace transform of the given function.
AHSB11.03	Solving Laplace transforms of a given function using shifting theorems.
AHSB11.04	Evaluate Laplace transforms using derivatives of a given function.
AHSB11.05	Evaluate Laplace transforms using multiplication of a variable to a given function.
AHSB11.06	Apply Laplace transforms to periodic functions.
AHSB11.07	Apply the symbolic relationship between the operators using finite differences.
AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.
AHSB11.09	Solving Laplace transforms and inverse Laplace transform using derivatives and integrals.
AHSB11.10	Evaluate inverse of Laplace transforms and inverse Laplace transform by the method of convolution.
AHSB11.11	Solving the linear differential equations using Laplace transform.
AHSB11.12	Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems
AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.
AHSB11.14	Understand the nature of the Fourier integral.
AHSB11.15	Ability to compute the Fourier transforms of the given function.
AHSB11.16	Ability to compute the Fourier sine and cosine transforms of the function
AHSB11.17	Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given function.
AHSB11.18	Evaluate finite and infinite Fourier transforms
AHSB11.19	Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design
AHSB11.20	Apply numerical methods to obtain approximate solutions to Taylors, Eulers, Modified Eulers
AHSB11.21	Runge-Kutta methods of ordinary differential equations.
AHSB11.22	Understand the concept of order and degree with reference to partial differential equation
AHSB11.23	Formulate and solve partial differential equations by elimination of arbitrary constants and functions
AHSB11.24	Understand partial differential equation for solving linear equations by Lagrange method.
AHSB11.25	Learning method of separation of variables.
AHSB11.26	Apply solving the heat equation and wave equation in subject to boundary conditions
AHSB11.27	Understand the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics

S. No	QUESTIONS	Blooms Taxonomy level	Course Outcomes (COs)	Course Learning Outcomes (CLOs							
	MODULE - I ROOT FINDING TECHNIQUES AND LAPLACE TRANSFORMS										
	Part - A (Short Answer Questions)		<u> </u>	AUGD 11 01							
$\frac{1}{2}$	Define an Algebraic equation. Define an Transcendental equation .	Remember Remember	CO 1 CO 1	AHSB11.01 AHSB11.01							
3	Write the Bisection formulae to find the real root of algebraic equation in an interval .	Remember	CO 1	AHSB11.01 AHSB11.01							
4	Write the Regula-Falsi formula to find the real root of algebraic equation in an interval .	Remember	CO 1	AHSB11.01							
5	Write the Newton-Raphson formulae to find the real root of algebraic equation in an interval .	Remember	CO 1	AHSB11.01							
6	By using Regula-Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out two approximations	Remember	CO 1	AHSB11.01							
7	Apply Newton –Raphson method to find an approximate root of the equation $x^3 - 3x - 5 = 0$, which lies near x=2 carry out two approximations.	Understand	CO 1	AHSB11.01							
8	Find a real root of the transcendental equation $xe^x = 2$ using method of False Position carry out three approximations.	Understand	CO 1	AHSB11.01							
9	Explain bisection method.	Understand	CO 1	AHSB11.01							
10	Find a real root of the transcendental equation xe^{x} - $cosx = 0$ using Newton –Raphson method carry out three approximations.	Understand	CO 1	AHSB11.01							
		1									
11	Define Laplace Transform, and write the sufficient conditions for the existence of Laplace Transform.	Remember	CO 1	AHSB11.02							
12	Find the Laplace transform of $(\sin t - \cos t)^3$	Remember	CO 1	AHSB11.02							
13	Verify whether the function $f(t)=t^3$ is exponential order and find its transform.	Understand	CO 1	AHSB11.02							
14	Find the Laplace transform of Dirac delta function	Remember	CO 1	AHSB11.02							
15	Find the Laplace transform of $ \sin \omega t , t \ge 0$	Understand	CO 1	AHSB11.02							
16	State and prove Linearity property of Laplace transform.	Understand	CO 1	AHSB11.02							
17	Find $L\{g(t)\}$ where $g(t) = \begin{cases} \cos(t - \frac{2\pi}{3}), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$	Understand	CO 1	AHSB11.02							
18	Find the Laplace transform of Sinht	Remember	CO 1	AHSB11.02							
19	Verify the initial and final value theorem for $e^{-t}(t+1)^2$	Remember	CO 1	AHSB11.03							
20	State and prove change of scale property of Laplace Transforms	Understånde:	rstan & O 1 AH	SBHIS0911.03							
1	Part - B (Long Answer Questions)Find the positive root of $x^3 - x - 1 = 0$ using Bisection method.	Remember	CO 1	AHSB11.01							
2	Find a real root of the transcendental equation $e^x \sin x = 1$ by using False position method correct up to three decimals.	Remember	CO 1	AHSB11.01							
	Solve transcendental equation $2x = \cos x + 3$ by Newton-Raphson method	Remember	CO 1	AHSB11.01							

4	Find a real root of transcendental equation $\log x = \cos x$ using method	Remember	CO 1	AHSB11.01
	of False position correct up to four decimals.			
5	Find a real root of transcendental equation $3x - \cos x - 1 = 0$ using Newton Raphson method correct up to four decimals.	Remember	CO 1	AHSB11.01
6	Find a real root of the transcendental equation xtanx+1=0 by	Remember	CO 1	AHSB11.01
7	Newton- Raphson method correct up to four decimals. Find the real root algebraic equation x^3 - x- 4=0 by Bisection method	Apply	CO 1	AHSB11.01
8	correct up to four decimals. Find the real root of algebraic equation $3x = e^x$ by Bisection method	Remember	CO 1	AHSB11.01
9	correct up to two decimals. Find the square root of 26 up to 4 decimal places by using	Remember	CO 1	AHSB11.01
	Newton-Raphson method.	Remember	CO 1	AHSB11.01
10	Find by using Bisection method the real root of the equation $xe^x - 3 = 0$ carry out three approximations.	Kennennber	COT	AU2D11.01
11	Find the Laplace transform of $f(t) = (t+3)^2 e^t$	Remember	CO 1	AHSB11.03
12	Find $L\left\{\frac{\cos 4t \sin 2t}{t}\right\}$	Remember	CO 1	AHSB11.05
13	Using Laplace transform evaluate $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$	Understand	CO 1	AHSB11.04
14	Find $L \{\cosh at \sin bt\}$	Understand	CO 1	AHSB11.01
15	Find $L\left\{e^{-3t}\sinh 3t\right\}$	Understand	CO 1	AHSB11.05
16	Find $L\{t\sin 3t\cos 2t\}$	Understand	CO 1	AHSB11.05
17	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$	Understand	CO 1	AHSB11.05
18	Find the Laplace transform of $te^{2t} \sin 3t$	Remember	CO 1	AHSB11.05
19	Find the Laplace transform of $\left\{\frac{1-\cos a t}{t}\right\}$	Remember	CO 1	AHSB11.06
20	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	Remember	CO 1	AHSB11.06
	Part - C (Problem Solving and Critical Thinking Que	estions)		
1	Derive a formula to find a cube root of N using Newton-Raphson method and hence find cube root of 15.	Understand	CO 1	AHSB11.01
2	Find reciprocal of real number 18 using Newton-Raphson method.	Remember	CO 1	AHSB11.01
3	Find a root of the equation $4\sin x = e^x$ using Bisection method correct up to four decimals.	Remember	CO 1	AHSB11.01
4	Find a root of the equation $2x-\log x=7$ using the False Position method	Remember	CO 1	AHSB11.01
5	correct up to three decimals.Find a root of the equation $x+log_{10}$ $x=3.375$ using Newton-Raphson	Remember	CO 1	AHSB11.01
	method.		l	
-		The 1 rest		
6	Using the theorem on transforms of derivatives, find the Laplace Transform	h binderstande	rstant O 1 AH	SBHISBI104
	the following functions (a) e ^{at} (b) cosat (c) t sin at			
7	Find the Laplace transform of (a) $e^{-3t} \cosh 4t \sin 3t$ (b) $(t+1)^2 e^t$	Understand	CO 1	AHSB11.04
8	Find the Laplace transform of (a) $t^2 e^t \sin 4t$ (b) $t \cos^2 t$	Understand	CO 1	AHSB11.04
9	Find the Laplace transform of $\int_{0}^{t} \frac{e^{t} \sin t}{t} dt$	Apply	CO 1	AHSB11.05
	$\int_{0}^{\infty} t$			

10	Find the L{f(t)} and L{f'(t)} for the function (a) $\frac{\sin t}{t}$ (b) $e^{-5t} \sin t$	Understand	CO 1	AHSB11.04
	MODULE-II	<u> </u>		
	INTERPOLATION AND INVERSE LAPLACE TRAN	SFORMS		
	Part – A (Short Answer Questions)			
1	Define the term Interpolation.	Remember	CO 2	AHSB11.07
2	State Newton's forward interpolation formula for equal length of intervals.	Remember	CO 2	AHSB11.08
3	State Newton's backward interpolation formula for equal length of intervals.	Remember	CO 2	AHSB11.08
4	State Gauss forward interpolation formula for equal length of intervals and state Lagrange's Interpolation formulae for unequal intervals	Remember	CO 2	AHSB11.08
5	Define average operator and shift operator.	Remember	CO 2	AHSB11.07
6	Prove the relationship between forward difference operator and shift operator.	Remember	CO 2	AHSB11.07
7	Prove the relationship between backward difference operator and shift operator.	Remember	CO 2	AHSB11.07
8	Prove the relationship between forward and backward difference operator.	Remember	CO 2	AHSB11.07
9	Construct a forward difference table for $f(x)=x^3+5x-7$ if $x=-1,0,1,2,3,4,5$	Understand	CO 2	AHSB11.07
10	For what values of p the Gauss forward and backward interpolation formula is used to interpolate?	Understand	CO 2	AHSB11.08
11	Find the inverse Laplace transform of $\frac{s}{s^2 - a^2}$	Understand	CO 2	AHSB11.09
12	Find the inverse Laplace transform of $\frac{1}{s} \cos \frac{1}{s}$	Understand	CO 2	AHSB11.09
13	Find the inverse Laplace transform of $\left\{\frac{2s-5}{4s^2+25} + \frac{4s-18}{9-s^2}\right\}$	Understand	CO 2	AHSB11.09
14	Find the inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	Remember	CO 2	AHSB11.09
15	Find $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$	Understand	CO 2	AHSB11.09
16	Find $L^{-1}\left\{\frac{s}{(s+1)^2(s^2+1)}\right\}$	Understand	CO 2	AHSB11.09
17	Find the inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$	Understand	CO 2	AHSB11.09
18	Find the inverse Laplace transform $\frac{s}{(s^2+1)(s^2+9)(s^2+25)}$	Understand	CO 2	AHSB11.09
19	Find the inverse Laplace transform of $\log\left(\frac{s^2+4}{s^2+9}\right)$	Understand	CO 2	AHSB11.09
20	Find the inverse Laplace transform $\frac{e^{-2s}}{s^2 + 4s + 5}$	Understand	CO 2	AHSB11.09
	Part - B (Long Answer Questions)	•I		
1	Find y(2.8) for the following data using Newton's forward interpolation formula.	Apply	CO 2	AHSB11.08
	x 2.4 3.2 4.0 4.8 5.6 f(x) 22 17.8 14.2 38.3 51.7			

2	Find f(42) from the following data using Newton's Backward interpolation formula.							Apply	CO 2	AHSB11.08
	-			25	10		-			
	x 20 y 354	25 332	30 291	35	40	45 204	_			
	~			260	231	-				
3	The populat Estimate the						was given below.	Apply	CO 2	AHSB11.08
	Year (x)		1891	19	01	1911	1921 1931			
	Population	n (y)	46	6	6	81	93 101			
4	Gauss forw	ard inte	erpolatio	on form	ula.	•)=35, y(32)=40 using	Remember	CO 2	AHSB11.08
5						formu	a the value of y at	Remember	CO 2	AHSB11.08
	x = 1936 u					1	051			
	x 1901	1911	1921	1931	1941	1	951			
	y 12	15	20	27	39	5	2			
6	Find by Ga using the fo			l interpo	olating	formu	la the value of y at $x =$	14 Remember	CO 2	AHSB11.08
	x 0	5	10	15	20		25			
	y 7	11	14	18	24	4	32			
7	Find f (1.6)	using I	Lagrange	e's forn	nula fro	m the	following table.	Apply	CO 2	AHSB11.08
	Х	1.2		2.0	2.5	5	3.0			
	f(x)	1.36		0.58	0.3		0.20			
8					3, y(3):	=13 aı	ad $y(8) = 123$ using	Remember	CO 2	AHSB11.08
9	Lagrange's Find y(10), Lagrange's	given tl	hat y(5)	=12, y(5)=13,	y(9)=	4, y(11)=16 using	Remember	CO 2	AHSB11.08
10		which p	asses th	rough t		nts (0,	18), (1, 10), (3,-18) an	d Remember	CO 2	AHSB11.08
	1							1		
11	Find the inv	verse La	place tr	ansforn	n of $\frac{1}{S^2}$	$\frac{2S^2}{3-6S}$	$\frac{-6S+5}{2^2+11S-6}$	Understand	CO 2	AHSB11.09
12	Find the inv				, ,	$\frac{1}{1 \cdot 1 \cdot s^3}$		Understand	CO 2	AHSB11.09
13	Find the inv	verse La	place tr	ansforn	· · ·	$1)e^{-\pi s}$ + $s + 1$		Understand	CO 2	AHSB11.09
14	Find the inv	verse La	place tr	ansforn			$+\cot^{-1}\left(\frac{s}{b}\right)$	Understand	CO 2	AHSB11.09
15	Find the inv	verse La	aplace tr	ansform	$\frac{s^2}{(s^2)}$	+2s	-4 (-5)	Understand	CO 2	AHSB11.09
16	Solve the fo	$(3^{+}+9)(8^{-}3)$ Solve the following initial value problem by using Laplace transform							CO 2	AHSB11.11
	(D^2+2D)	<i>,</i>								
17			-		_	•	ing Laplace transform	Understand	CO 2	AHSB11.11
	y'' + 9y =	$\cos 2t$, y(0) =	$=1, y(\frac{2}{2})$	$(\frac{\tau}{2}) = -$	1				

18	Solve t	he follo	wing ini	tial value	e problem	n by using La	place trans	sform	Understand	CO 2	AHSB11.11
	y‴-2	2y'' + 5	y' = 0, 1	y(0) = 1	, y'(0) =	=0, y''(0) =	1				
19	Solve t	he follo	wing ini	tial value	e problem	n by using La	place trans	sform	Apply	CO 2	AHSB11.11
	$(D^3 - D^2 + 4D - 4)y = 68e^x \sin 2x, y = 1, Dy = -19,$										
		=-37				·	-				
20	Solve t	he follo	wing ini	tial value	e problem	n by using La	place trans	sform	Understand	CO 2	AHSB11.11
	$\frac{dy}{dt} + 2$	$2y + \int_{0}^{t} y$	ydt = si	n <i>t</i> , y(0)=1						
			Par	t – C (F	Problem	Solving an	d Critica	l Thinkin	g)		
1			given f(192, 336	5 at x=1, 7, 1			Remember	CO 2	AHSB11.08
2		that ∆[x)(x+2)(x+3)	by taking	difference	Apply	CO 2	AHSB11.07
3		1.6) from	m the fo	llowing	data using	g Newton's f	forward in	terpolation	Remember	CO 2	AHSB11.08
	x	1	1.4	1.8	2.2]					
	у	3.49	4.82	5.96	6.5	-					
4	Using Gauss back ward difference formula find y(24) from the following table								Remember	CO 2	AHSB11.08
	X		0	5	10	15	20	25			
	у		7	11	14	18	24	32			
5				data usir	ng Lagran	nge's interpol	ation form	nula.	Apply	CO 2	AHSB11.08
	2	y S	0 1		3	<u>3</u> 49					
									The location of	CO 2	
6	Find th	e invers	e Laplac	e transfo	orm $\frac{1}{s^2}$	$\frac{s+3}{-10s+29}$			Understand	CO 2	AHSB11.09
7	Find th	e invers	e transfo	orm of –	s+2	12			Understand	CO 2	AHSB11.09
				S	$^{2}-4s+$					~~~	
8				e transfo	orm $\frac{s}{s(s)}$	$\frac{s^2+s-2}{s+3(s-2)}$			Understand	CO 2	AHSB11.09
9	Apply	convolu	tion theo	orem to e	evaluate	$\frac{(s^2+3)(s-2)}{L^{-1}}$	$\frac{s^2}{a^2}(s^2+a^2)(s^2+a^2$	$\left \frac{b^2}{b^2} \right $	Apply	CO 2	AHSB11.10
10						()	<i>'</i>)	Apply	CO 2	AHSB11.10
1 10	1					r_{-1} 1	l			202	
10	Apply	convolu	tion theo	orem to e	evaluate I	$L^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$	$\overline{4)^2} \int$				
10	Apply	convolu			Ν	MODULE-	III	ANSEOR	MS		
	Apply	convolu		VE FIT	N TTING A		III RIER TR		MS		
10 1 1 2	State the	he norm	CUR al equati	VE FIT Par ions of th	N TING A rt - A (S) ne straigh	MODULE- AND FOUR	III RIER TR er Questie bx		MS Understand Understand	CO 3 CO 3	AHSB11.13 AHSB11.13

3	State the normal equations to fit the exponential curve of the form $y = ae^{bx}$.	Remember	CO 3	AHSB11.13
	$\frac{y - uc}{c}$		00.1	
4 5	State the normal equations to fit the power curve of the form $y = ab^x$	Remember	CO 3 CO 3	AHSB11.13 AHSB11.13
3	If $y = a + \frac{b}{x}$ is a curve then write normal equations to find the constants a and b.	Remember	05	АПЗВ11.13
6	If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$	Remember	CO 3	AHSB11.13
	by least squares method?			
7	If $y = ax^{b}$, then what is the first normal equation of $\sum \log y_{i}$?	Remember	CO 3	AHSB11.13
8	Fit a curve of the form $y = ax^b$ by the method of least squares to the	Understand	CO 3	AHSB11.13
	following data.			
	x 1 2 3			
	y 2.98 4.26 5.21			
9	Fit a straight line to the form $y = a + bx$ by the method of least squares	Understand	CO 3	AHSB11.13
	for the following data			
	x 0 5 10			
10	Fit a curve $y = ae^{bx}$ to the data	Apply	CO 3	AHSB11.13
	x 0 2 4			
	y 5.1 10 31.1			
1.1		D 1	00.1	
11 12	Write the Fourier sine integral and cosine integral.	Remember Understand	CO 3 CO 3	AHSB11.14 AHSB11.15
	Find the Fourier sine transform of xe^{-ax}			
13	Write the infinite Fourier transform of $f(x)$.	Remember	CO 3 CO 3	AHSB11.18
14 15	Write the properties of Fourier transform of $f(x)$ Find the Fourier sine transform of $f(x) = x$	Remember Understand	CO 3	AHSB11.15 AHSB11.14
16	State Fourier integral theorem. $f(x) = x$	Understand	CO 3	AHSB11.14 AHSB11.15
17	Define Fourier transform.	Remember	CO 3	AHSB11.18
18	Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	Understand	CO 3	AHSB11.18
19	Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$	Understand	CO 3	AHSB11.18
20	State the Modulation property of Fourier transforms. $n^2 \pi^2$	Understand	CO 3	AHSB11.15
20		Understand	003	АПЗВ11.13
1	Part – B (Long Answer Questions)	A	CO 3	
1	By the method of least squares find the straight line that best fits the following data:	Apply	003	AHSB11.13
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	y 1.5 2.8 4.0 4.7 6			
2	By the method of least squares find the straight line that best fits the following data:	Understand	CO 3	AHSB11.13
	x 1 2 3 4 5			
	y 14 27 40 55 68			
		Understand	CO 3	AHSB11.13
3	Fit a straight line y=ax+b for the following data by method of least squares:	Chaeistana		
3	Fit a straight line $y=ax+b$ for the following data by method of least squares: x 0 1 2 3 4	Chaelstand		
3	squares:	Childerstand		

	Fit a stra least squ	-	e to the fo	orm y=a+	bx for 1	the follow	ving data	by method of	Understand	CO 3	AHSB11.13
	x	0	5	10	15	20	25				
	у	12	15	17	22	24	30				
5	By the n	nethod c	of least so	uares fit	a secor	d degree	polynomi	a1	Understand	CO 3	AHSB11.13
5				ving data.		lu ucgree	porynomi	ai	Understand	05	AIISDII.15
		2	4	6	8	10					
	X	3.07	4 12.85	31.47	57.3						
6	y Fit a say							ta by method	Understand	CO 3	AHSB11.13
0	of least		giee cuiv	$e_{y=a+bx}$			lowing ua	ta by method	Understand	05	AIISDII.15
	х	1	2	3	4						
	У	6	11	18	27					~~~	
7	Using th $v - ae^{bx} f$	e metho	d of least ollowing	t squares f data:	find the	constant	s a and b s	such that	Apply	CO 3	AHSB11.13
	x	0	0.5	1	1.5	2	2.5	1			
	y y	0.10	0.45		9.15	40.35	180.75	-			
8								y the method	Understand	CO 3	AHSB11.13
0	of least			orni y–at) 101 U	le lollow	ing data b	y the method	Understand	05	Alisbii.is
	 	-		4							
	X	2	3	4	5	6					
	У	8.3	15.4	33.1	65.2	127.4			XX 1 . 1	<u> </u>	
9	Fit a sec	ond deg	ree curve	y=a+bx+	-cx ² by	method of 4	of least squ	lares	Understand	CO 3	AHSB11.13
	y	23	5.2	9.7		16.5	29.4	4			
10			n of the f	form y=ae	e ^{bx} for t	the follow	ving data	by method of	Understand	CO 3	AHSB11.13
	least squ	ares.									
1			2	4		5	6				
	X V	2	3	4 4 33.		5 65.2	6				
	x y		3			5 65.2	6 127.4				
11	у	2 8.3	15.4		1	65.2			Understand	CO 3	AHSB11.15
11	y Find th	2 8.3 e Fourie	15.4 er transfo	4 33. rm of f(x)	1 define	65.2 d by			Understand	CO 3	AHSB11.15
11	y Find th	2 8.3 e Fourie	15.4 er transfo	4 33. rm of f(x)	1 define	65.2 d by			Understand	CO 3	AHSB11.15
11	y Find th	2 8.3 e Fourie	15.4 er transfo	4 33.	1 define	65.2 d by			Understand	CO 3	AHSB11.15
11	Find th $f(x)$:	$=\begin{cases} 2\\ 8.3 \end{cases}$ $=\begin{cases} 1,\\ 0, \end{cases}$	15.4 er transfo $ x < a$ $ x > a$	4 33. rm of f(x) and heno	1 define	65.2 d by eluate			Understand	CO 3	AHSB11.15
11	Find th $f(x)$:	$=\begin{cases} 2\\ 8.3 \end{cases}$ $=\begin{cases} 1,\\ 0, \end{cases}$	15.4 er transfo $ x < a$ $ x > a$	4 33. rm of f(x)	1 define	65.2 d by eluate			Understand	CO 3	AHSB11.15
	y Find th $f(x) = \int_0^\infty$	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= Fourie$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$	15.4 er transfo $ x < a$ $ x > a^{a}$ $ p.and \int$	$\begin{array}{c c} 4 & 33, \\ \hline rm of f(x) \\ \hline und hence \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	1 define ce eva .cos p p	65.2 d by <i>lluate</i> <i>px</i> <i>dp</i>	127.4	2			
11	y Find th $f(x) = \int_0^\infty$	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= Fourie$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$	15.4 er transfo $ x < a$ $ x > a^{a}$ $ p.and \int$	$\begin{array}{c c} 4 & 33, \\ \hline rm of f(x) \\ \hline und hence \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	1 define ce eva .cos p p	65.2 d by <i>lluate</i> <i>px</i> <i>dp</i>	127.4	$x^2, x \le 1$ x > 1		CO 3 CO 3	
	y Find th $f(x) = \int_0^\infty$ Find the	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= Fourie$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$	15.4 er transfo $ x < a$ $ x > a$ $ p.and \int$ r transfor	$\begin{array}{c c} 4 & 33, \\ \hline rm of f(x) \\ \hline und hence \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	1 define ce eva .cos p p	65.2 d by <i>lluate</i> <i>px</i> <i>dp</i>	127.4	$ x^{2}, x \le 1$ x > 1			
	y Find th $f(x) = \int_0^\infty$ Find the	$= \begin{cases} 2 \\ 8.3 \end{cases}$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$ $= Fourie$ nce eval	15.4 er transfo $ x < a$ $ x > a$ $ p.and \int$ r transfor uate	$\frac{4}{1} \qquad 33.$ $rm of f(x)$ $m of f(x)$ $m of f(x)$	define ce eva .cos p p defined	$\frac{65.2}{d \text{ by}}$ $\frac{d \text{ luate}}{dp}$ $\frac{dp}{dp}$	127.4				AHSB11.15 AHSB11.15
	y Find th $f(x) = \int_0^\infty$ Find the	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$ $= Fourie$ nce eval	15.4 er transfo $ x < a$ $ x > a$ $ p.and \int$ r transfor uate	$\frac{4}{1} \qquad 33.$ $rm of f(x)$ $m of f(x)$ $m of f(x)$	define ce eva .cos p p defined	$\frac{65.2}{d \text{ by}}$ $\frac{d \text{ luate}}{dp}$ $\frac{dp}{dp}$	$\frac{127.4}{x} = \begin{cases} 1 - \frac{1}{2} \\ 0 \end{cases}$				
	y Find th $f(x) = \int_0^\infty$ Find the	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$ $= Fourie$ nce eval	15.4 er transfo $ x < a$ $ x > a$ $ p.and \int$ r transfor uate	$\frac{4}{1} \qquad 33.$ $rm of f(x)$ $m of f(x)$ $m of f(x)$	define ce eva .cos p p defined	$\frac{65.2}{d \text{ by}}$ $\frac{d \text{ luate}}{dp}$ $\frac{dp}{dp}$	$\frac{127.4}{x} = \begin{cases} 1 - \frac{1}{2} \\ 0 \end{cases}$				
	y Find th $f(x) = \int_0^\infty$ Find the	$= \begin{cases} 2\\ 8.3 \end{cases}$ $= \begin{cases} 1, \\ 0, \\ \frac{\sin p}{p} \end{cases}$ $= Fourie$ nce eval	15.4 er transfo $ x < a$ $ x > a$ $ p.and \int$ r transfor uate	$\frac{4}{1} \qquad 33.$ $rm of f(x)$ $m of f(x)$ $m of f(x)$	define ce eva .cos p p defined	$\frac{65.2}{d \text{ by}}$ $\frac{d \text{ luate}}{dp}$ $\frac{dp}{dp}$	$\frac{127.4}{x} = \begin{cases} 1 - \frac{1}{2} \\ 0 \end{cases}$				

13 Find the Fourier Transform of f(x) defined by	Understand	CO 3	AHSB11.15
$f(x) = e^{\frac{-x^2}{2}}, -\infty < x < \infty$ or, Show that the Fourier Transform	n of		
$e^{\frac{-x^2}{2}}$ is reciprocal.			
	Understand	CO 3	AHSB11.17
¹⁴ Find the Fourier sine Transform of $e^{- x }$ and hence evaluate	Childerstand	05	Alisbii.i/
$\int_0^\infty \frac{x \sin mx}{1+x^2} dx$			
$J_0 = 1 + x^2$			
15 Find the Fourier cosine transform	of Apply	CO 3	AHSB11.17
(a) $e^{-ax}\cos ax$ (b) $e^{-ax}\sin ax$			
¹⁶ Using Fourier integral show that	Apply	CO 3	AHSB11.14
$e^{-ax} - e^{-bx} = \frac{2(b^2 - a^2)}{\pi} \int_0^\infty \frac{\lambda \sin \lambda x}{(\lambda^2 + a^2)(\lambda^2 + b^2)} d\lambda, a > 0,$	<i>b</i> > 0		
$\pi \qquad \mathbf{J}_0 \left(\lambda^2 + a^2\right) \left(\lambda^2 + b^2\right)$			
17 Using Fourier Integral, show that	Understand	CO 3	AHSB11.14
$\pi_{if} 0 < x < \pi$			
$\int_{0}^{\infty} \frac{1 - \cos \lambda \pi}{\lambda} \cdot \sin \lambda x d\lambda = \begin{cases} \frac{\pi}{2} if 0 < x < \pi \\ 0, if x > \pi \end{cases}$			
$\begin{bmatrix} 20 & \lambda \\ 0, if x > \pi \end{bmatrix}$			
18 Find the finite Fourier sine and cosine transforms of $f(x) = \sin x$	ax in Understand	CO 3	AHSB11.1
$(0, \pi)$.			7
¹⁹ Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) =$	$p^n e^{-ap}$ Apply	CO 3	AHSB11.17
p			
and inverse Fourier sine transform f(x) of $F_s(p) = \frac{p}{1+p^2}$			
20 Find the finite Fourier sine and cosine transform of $f(x)$, defined by	by Understand	CO 3	AHSB11.17
$(-r)^2$			
$f(x) = \left(1 - \frac{x}{\pi}\right)^2$, where $0 < x < \pi$			
Part - C (Problem Solving and Critical Think		CO 3	AHSB11.13
1 Describe the concept of method of least squares to fit a curve given data.	- ioi the Understand	05	AII3D11.13
2 Derive the Normal equations of a straight line by method of least	1	CO 3	AHSB11.13
3 Derive the Normal equations of a second degree parabola method squares.	d of least Understand	CO 3	AHSB11.13
4 If $y = ax+b$ is a straight line that fits the following data by the m	nethod of Understand	CO 3	AHSB11.13
least squares find a and b.			
x 1 2 3			
y 0 -1 4			
5 Fit a straight line to the form $y=ax^2+bx+c$ for the following method of least squares:	data by Understand	CO 3	AHSB11.13
method of least squares:			
x 0 5 10 15 20 25			
y 12 15 17 22 24 30			

6	Find the Fourier cosine transform of the function $f(x)$ defined by	Understand	CO 3	AHSB11.16
	$f(x) = \begin{cases} \cos x, & 0 < x < a \\ 0, & x \ge a \end{cases}$			
	$\int (x) = \begin{bmatrix} 0, & x \ge a \end{bmatrix}$			
7	Find the Fourier sine transform of f(x) defined by	Understand	CO 3	AHSB11.16
	$f(x) = \begin{cases} \sin x, & 0 < x < a \\ 0, & x \ge a \end{cases}$			
	$(0, x \ge a)$			
8	Find the Fourier sine and cosine transform of	Understand	CO 3	AHSB11.16
	$\begin{cases} x, & for 0 < x < 1 \end{cases}$			
	$f(x) = \begin{cases} 2-x, & \text{for } 1 < x < 2 \end{cases}$			
	$f(x) = \begin{cases} x, & for 0 < x < 1\\ 2 - x, & for 1 < x < 2\\ 0, & for x > 2 \end{cases}$			
9	Find the finite Fourier sine and cosine transforms of	Understand	CO 3	AHSB11.16
	$f(x) = x(\pi - x)$ in (0, π).			
10	State and prove the properties of Fourier transforms	Understand	CO 3	AHSB11.15
	MODULE-IV			
	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTI	AL EQUAT	IONS	
1	Part – A (Short Answer Questions) State the Taylor series formula to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
1	differential equation.	Remember	601	1115011.20
2	State the Euler formula to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.20
3	State the modified Euler formula to find the numerical solution of	Remember	CO 4	AHSB11.20
4	ordinary differential equation. What is the difference between Euler and modified Euler formula to find	Remember	CO 4	AHSB11.20
-	the numerical solution of ordinary differential equation	Remember	004	7115011.20
5	What are single step methods to find the numerical solution of ordinary differential equation?	Remember	CO 4	AHSB11.20
6	What are multistep methods to find the numerical solution of ordinary differential equation?	Remember	CO 4	AHSB11.20
7	Using Taylor's series method find an approximate value of y at $x = 0.1$	Remember	CO 4	AHSB11.20
	given y(0)=1 for the differential equation $y' = 3x + y^2$			
8	Using Euler's method, solve $y' = y^2 + x$, $y(0)=1$ to find $y(0.1)$ and	Apply	CO 4	AHSB11.20
9	y(0.2)	Apply	CO 4	AHSB11.20
,	Using Taylors series, method solve $y' = y^2 + x$, $y(0) = 1$ to find $y(0.1)$ and $y(0.2)$	rippiy	001	71115071.20
10	7	Apply	CO 4	AHSB11.20
10	Using Euler's method, solve the differential equation from $\frac{dy}{dx} = 3x^2 + 1$,	Арріу	CO 4	Апзыт.20
	for $x = 2$, $y(1) = 2$, taking step size $h = 0.5$.			
11	State the second order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Remember	CO 4	AHSB11.21
12	State the third order Runge- Kutta method to find the numerical solution	Remember	CO 4	AHSB11.21
12	of ordinary differential equation.	Domember	CO 4	AHSB11.21
13	State the fourth order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Remember	04	АПЗВ11.21

14	What is the advantage of Runge-Kutta method over Taylors series method	Remember	CO 4	AHSB11.21
15	State the merits of Runge- Kutta method	Remember	CO 4	AHSB11.21
16	State the demerits of Runge- Kutta method	Remember	CO 4	AHSB11.21
17	Using Runge-Kutta method of second order, find y(0.2) where $y' = y - x$, y(0)=2, h = 0.2	Remember	CO 4	AHSB11.21
18	Using Runge-Kutta method of third order, find y(0.2) where $10y' = y^2 + x^2$, y(0)=1, h = 0.1	Remember	CO 4	AHSB11.21
19	Using Runge-Kutta method, find y(0.2) where $y' = yx$, y(0) =1, h = 0.2	Remember	CO 4	AHSB11.21
20	Using Runge-Kutta method, find y(0.2) where $y' = y + x$, y(0) = 1, h = 0.2	Remember	CO 4	AHSB11.21
	Part – B (Long Answer Questions)			
1	Using Taylor's series method find an approximate value of y at $x = 0.2$	Apply	CO 4	AHSB11.20
	for the differential equation $y' - 2y = 3e^x$, y(0)=0.	TT J		
2	Solve by Euler's method $y' + y = 0$ given $y(0) = 1$ and find $y(0.04)$ taking step size $h = 0.01$.	Understand	CO 4	AHSB11.20
3	Solve by Euler's method $y' = x + y$, $y(0) = 1$ and find the value of $y(0.3)$ taking step size $h = 0.1$. compare the result obtained by this method with the result obtained by analytical methods	Remember	CO 4	AHSB11.20
4	Solve $y' = x^2 - y$, $y(0) = 1$, using Taylor's series method and compute $y(0.1)$, $y(0.2)$, $y(0.3)$ and $y(0.4)$ (correct to 4 decimal places).	Remember	CO 4	AHSB11.20
5	Using Euler's method, solve the differential equation from $\frac{dy}{dx} = xy$,	Remember	CO 4	AHSB11.20
6	for x = 0.5, y(0) = 1, taking step size h = 0.1. Using modified Euler's method, find the approximate value of x when $x = 0.3$ given differential equation $\frac{dy}{dx} = x + y$ and y(0) = 1.	Apply	CO 4	AHSB11.20
7	State the merits of Taylors series method	Remember	CO 4	AHSB11.20
8	State the demerits of Taylors series method	Apply	CO 4	AHSB11.20
9	Using modified Euler's method, find the approximate value of y when $x = 0.25$ given differential equation $\frac{dy}{dx} = 2xy$ and y (0) = 1.	Remember	CO 4	AHSB11.20
10	Solve by Euler's method $y' = \frac{2y}{x}$ given $y(1) = 2$ and find $y(2)$	Apply	CO 4	AHSB11.20
			<u> </u>	
11	Using Runge-Kutta method of fourth order, find $y(0.2)$ where $y' = 3x + 0.5y$, $y(0) = 1$, $h = 0.1$.	Remember	CO 4	AHSB11.21
12	Apply the 4 th order Runge-Kutta method to find an approximate value of y when x=1.2 in steps of 0.1, given that $y' = x^2 + y^2$, y(1)=1.5	Apply	CO 4	AHSB11.21
13	Using Runge-Kutta method of second order, find $y(2.5)$ given the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$, $y(2) = 2$, $h = 0.25$. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of 4 th order for the		CO 4	AHSB11.21
14	Find y(0.1) and y(0.2) by Runge-Kutta method of 4 th order for the differential equation $y' = xy + y^2$, y(0) =1	Apply	CO 4	AHSB11.21
15	Using Runge-Kutta method of fourth order, find y (0.2) given the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1, h = 0.2.	Apply	CO 4	AHSB11.21

16	Compute $y(0.1), y(0.2)$ by Runge-Kutta method of 4 th order for the differential equation $y' = x + x^2 y$, $y(0) = 1$	Apply	CO 4	AHSB11.21
17	Using Runge-Kutta method of fourth order, given the differential equation $\frac{dy}{dx} = x^2 + 0.25y^2, y(0) = -1 \text{ on } [0,0.5], h = 0.1.$	Apply	CO 4	AHSB11.21
18	Compute <i>y</i> at <i>x</i> = (0.2), (0.4), (0.6) by Runge-Kutta method for the differential equation $y' = \frac{1}{1+x}$, y(0) =0	Apply	CO 4	AHSB11.21
19	Compute $y(0.3)$ by Runge-Kutta method of 4 th order for the differential equation $y' + y + y^2 x = 0$, $y(0) = 1$	Apply	CO 4	AHSB11.21
20	Using Runge-Kutta method of fourth order, find y when x= 1.1, given the differential equation $\frac{dy}{dx} = 3x + y^2$, y(1) = 1.2.	Apply	CO 4	AHSB11.21
	Part – C (Problem Solving and Critical Thinkin	g)		
1	Using modified Euler's method find y (0.2) and y (0.4) given differential equation $y' = y + e^x$, y(0) = 0.	Understand	CO 4	AHSB11.20
2	Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Computey(0.2) in steps of 0.1, using modified Euler's method.	Remember	CO 4	AHSB11.20
3	Solve the first order differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ and	Apply	CO 4	AHSB11.20
4	estimate y(0.1) using Euler's method(5 steps). Given $\frac{dy}{dx} = -y$ and y(0) = 1. Determine the values of y at x = (0.01),(0.02),(0.03),(0.04) by Eulers method.	Remember	CO 4	AHSB11.20
5	Find y(4.4) by modified Eulers method given that $\frac{dy}{dx} = \frac{2-y^2}{5x}$, y=1 when x=1.	Remember	CO 4	AHSB11.20
6	Using Runge-Kutta method find y(0.2) for the differential equation $\frac{dy}{dx} = y - x, y(0) = 1, \text{take h} = 0.2.$	Remember	CO 4	AHSB11.21
7	Apply the 4 th order Runge-Kutta method to find an approximate value of y when $x = 1.2$ in steps of $h = 0.1$ given the differential equation $y' = x^2 + y^2$, $y(1)=1.5$	Understand	CO 4	AHSB11.21
8	Using Runge-Kutta method find to solve $10\frac{dy}{dx} = x^2 + y^2$, $y(0)=1$ for the interval $0 \le x \le 0.4$ with $h=0.1$	Understand	CO 4	AHSB11.21
9	Find $y(0.5), y(1), y(1.5), y(2)$ taking $h = 0.5$, given that $\frac{dy}{dx} = \frac{1}{y+1}$, y(0) = 1	Understand	CO 4	AHSB11.21
10	Using Runge-Kutta method find y(0.8) for the differential equation $\frac{dy}{dx} = \sqrt{x+y}, y(0.4) = 0.41.$	Understand	CO 4	AHSB11.21

MODULE-V				
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS				
1	Part - A (Short Answer Questions) Define order and degree with reference to partial differential equation	Remember	CO 5	AHSB11.22
		Remember		
2	Form the partial differential equation by eliminate the arbitrary constants	Understand	CO 5	AHSB11.22
	from $z = ax^3 + by^3$			
3	Form the partial differential equation by eliminating arbitrary function	Understand	CO 5	AHSB11.22
4	$z=f(x^2+y^2)$	Understand	CO 5	AHSB11.23
4	Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$	Understand	05	АПЗБ11.25
5	Form the partial differential equation by eliminating a and b from $log(az-1) = x + ay + b$	Understand	CO 5	AHSB11.22
6	Form the partial differential equation by eliminating the constants from	Apply	CO 5	AHSB11.22
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.			
7	Eliminate the arbitrary constants from $z=(x^2+a)(y^2+b)$	Understand	CO 5	AHSB11.22
8	Solve the partial differential equation $x(y-z)p+y(z-x)q=z(x-y)$.	Apply	CO 5	AHSB11.23
9	Solve $p+q=z$	Remember	CO 5	AHSB11.23
10	Solve $zp + yq = x$	Remember	CO 5	AHSB11.23
11	Define non-linear partial differential equation.	Remember	CO 5	AHSB11.22
12	Solve $xp + yq = 3z$	Remember	CO 5	AHSB11.23
13	Solve $px + qy = z$	Remember	CO 5	AHSB11.23
14	Solve $p+3q=5z+\tan(y-3x)$	Understand	CO 5	AHSB11.23
15	Solve $2p + 3q = 1$	Understand	CO 5	AHSB11.23
16	Solve $(x^2 + y^2 + z^2)p - 2xyq = -2xz$	Understand	CO 5	AHSB11.23
17	Solve $(1+y)p + (1+x)q = z$	Understand	CO 5	AHSB11.23
18	Solve $y^2 p - xyq = x(z-2y)$	Understand	CO 5	AHSB11.23
19	Write the wave one dimension equation	Remember	CO 5	AHSB11.26
20	Write the heat one dimension equation	Remember	CO 5	AHSB11.26
	Part - B (Long Answer Questions)		~~~~	
1	Form the partial differential equation by eliminating arbitrary function from $f(x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{3}^{2$	Understand	CO 5	AHSB11.23
2	$f(x^2+y^2+z^2, z^2-2xy)=0$ Form a partial differential equation by eliminating a, b, c from	Apply	CO 5	AHSB11.23
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ Solve the partial differential equation	TT J		
3	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	$(x^{2} - yz)p + (y^{2} - zx)q = z^{2} - xy$			
4	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	$\frac{(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.}{\text{Solve the partial differential equation}}$			
5	Solve the partial differential equation (mz - ny) p + (nx - lz)q = (ly - mx).	Understand	CO 5	AHSB11.24
6	Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.	Understand	CO 5	AHSB11.22
7	Solve the partial differential equation	Apply	CO 5	AHSB11.24
	(x2 - y2 - yz)p + (x2 - y2 - zx)q = z(x - y).			
8	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Understand	CO 5	AHSB11.24

9	Solve the partial differential equation $z(z^2 + xy)(px - qy) = x^4$	Understand	CO 5	AHSB11.24
10	Solve the partial differential equation $px - qy = y^2 - x^2$	Understand	CO 5	AHSB11.24
11	Solve the partial differential equation $px^2 + qy^2 = z(x + y)$	Understand	CO 5	AHSB11.24
12	Solve by the method of separation of variables $2xz_x - 3yz_y = 0$	Understand	CO 5	AHSB11.25
13	Solve the partial differential equation $y^2zp + x^2zq = xy^2$	Understand	CO 5	AHSB11.24
14	Solve the partial differential equation $p \tan x + q \tan y = \tan z$	Understand	CO 5	AHSB11.22
15	Solve the partial differential equation $(x-a)p+(y-b)q+(c-z)=0$	Understand	CO 5	AHSB11.24
16	Solve the partial differential equation $x(y^2 - z^2)p - y(z^2 + x^2)q = z(x^2 + y^2) = z$	Understand	CO 5	AHSB11.24
17	Solve the partial differential equation $(x+y)(p-q)=z$	Understand	CO 5	AHSB11.24
18	Solve by the method of separation of variables $4u_x + u_y = 3u$ and	Understand	CO 5	AHSB11.25
10	$u(o, y) = e^{-5y}$	TT 1 4 1	00 r	AUGD11.25
19	Solve by the method of separation of variables $3u_x + 2u_y = 0$ with	Understand	CO 5	AHSB11.25
	$u(x,0) = 4e^{-x}$			
20	Solve $(x-y)p+(y-x-z)q=z$	Understand	CO 5	AHSB11.24
	Part – C (Problem Solving and Critical Thinkin	g)		
1	Form the partial differential equation by eliminating arbitrary function $lx + my + nz = \emptyset(x^2 + y^2 + z^2)$	Understand	CO 5	AHSB11.22
2	Form the partial differential equation by eliminating arbitrary function $xy + yz + zx = f(\frac{z}{x+y})$	Understand	CO 5	AHSB11.22
3	Solve the partial differential equation $z(x - y) = px^2 - qy^2$	Understand	CO 5	AHSB11.22
4		Understand	CO 5	AHSB11.24
5	(z2-2yz-y2)p + (xy+xz)q = xy - zx. Solve the partial differential equation (x2 + y2 + yz)p + (x2 + y2 - zx)q = z(x + y).	Understand	CO 5	AHSB11.24
		<u> </u>		
6	Solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ by the method of separation of variables.	Understand	CO 5	AHSB11.25
7	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that u=0 when t = 0 and $\frac{\partial u}{\partial t} = 0$ When x = 0 show also that as t tends to ∞ , u tends to sin x.	Understand	CO 5	AHSB11.25
8	A tightly stretched string with fixed end points x=0 and x= l is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t.	Apply	CO 5	AHSB11.26
9	Write the boundary conditions for a rectangular plate is bounded by the line x=0, y=0, x=a, and y=b its surface are insulated the temperature along x=0 and y=0 are kept at 0^{0} C and the other are kept at 100^{0} C.	Understand	CO 5	AHSB11.26

10	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in	Apply	CO 5	AHSB11.26
	a position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement(x,t).			

Prepared by Dr. S. Jagadha, Professor

HOD, ECE