INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TUTORIAL QUESTION BANK

Course Title	COMPLEX ANALYSIS AND SPECIAL FUNCTIONS						
Course Code	AHSB05	AHSB05					
Program	B. Tech						
Semester	THREE	THREE					
Course Type	Foundation						
Regulation	IARE - R18						
		Theory		Practi	ical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits		
	3	1	3	-	-		
Course Coordinator	Ms. L Indira, Assistant Professor						

COURSE OBJECTIVES:

Studen	Students will try to learn:					
Ι	The applications of complex variable and conformal mapping in two dimensional					
	complex potential theories.					
II	The fundamental calculus theorems and criteria for the independent path on contour integral used					
	in problems of engineering					
III	The concepts of special functions and its application for solving the partial differential					
	equation in mathematical physics and engineering.					
IV	The Mathematics of combinatorial enumeration by using generating functions and					
	Complex analysis for understanding the numerical growth rates.					

COURSE OUTCOMES:

At the end of the course the students should be able to:

	Course Outcomes	Knowledge Level (Bloom's Taxonomy)
CO 1	Identify the fundamental concepts of analyticity and differentiability	Remember
	for calculus of complex functions and their role in applied context.	
CO 2	Utilize the concepts of analyticity for finding complex conjugates and	Apply
	their role in applied contexts.	
CO 3	Make use of the conformal mapping technique for transferring	Apply

	geometric structure of complex functions with much more convenient	
	geometry.	
CO 4	Apply integral theorems of complex analysis and its consequences for	Apply
	the analytic function having derivatives of all orders in simple	
	connected region.	
CO 5	Extend the Taylor and Laurent series for expressing the function in	Understand
	terms of complex power series.	
CO 6	Classify Singularities and Poles of Complex functions for evaluating	Understand
	definite and indefinite Complex integrals.	
CO 7	Apply Residue theorem for computing definite integrals of real and	Apply
	complex analytic functions over closed curves.	
CO 8	Relate the concept of improper integral and second order differential	Understand
	equations of special functions for formulating real world problems	
	with futuristic approach.	
CO 9	Determine the characteristics of special functions generalization on	Apply
	elementary factorial function for the proper and improper integrals.	
CO 10	Choose an appropriate special function on physical phenomena arising	Apply
	in engineering problems and quantum physics.	
CO 11	Analyze the role of Bessel functions in the process of obtaining the	Analyze
	series solutions for second order differential equation.	

MAPPING OF EACH CO WITH PO(s), PSO(s):

Course Outcomes	Program Outcomes								Program Specific Outcomes						
Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 4	3	1	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 5	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 6	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 7	3	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO 8	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 9	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 10	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 11	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
TOTAL	33	6	-	2	-	-	-	-	-	-	-	-	-	-	-
AVERAGE	3	1	-	1	-	-	-	-	-	-	-	-	-	-	-

TUTORIAL QUESTION BANK

MODULE-I

COMPLEX FUNCTIONS AND DIFFERENTIATION

	PART – A (SHO	ORT ANSWE	R QUESTIONS)	
S No	QUESTIONS	Blooms Taxonomy Level	How does this subsume the level below	Course Outcomes
1	Define the term Analyticity of a complex variable function f (z).	Remember		CO 1,CO 2
2	Define the term Continuity of a complex variable function f (z).	Remember		CO 1,CO 2
3	Define the term Differentiability of a complex variable function f (z).	Remember		CO 1,CO 2
4	Show that complex variable function $f(z) = z^3$ to analyticity for all values of z in Cartesian form.	Understand	Learner to recall the concept of harmonic function and Understand how to prove that it is part of analytic function	CO 1,CO 2
5	Show that the function $v = x^3y - xy^3 + xy + x + y$ can be imaginary part of an analytic function $f(z)$ where $z = x + iy$.	Understand	Learner to recall the concept of harmonic function and Understand how to prove that it is part of analytic function.	CO 1,CO 2
6	Show that the function $f(z) = z ^2$ does not satisfy Cauchy-Riemann equations in Cartesian form.	Understand	Learner to recall the Cauchy- Riemann equations and understand how to prove the analytic nature	CO 1,CO 2
7	Show that the complex variable function $f(z) = \frac{x-iy}{x^2+y^2}$ for analyticity in Cartesian form.	Understand	Learner to recall the Cauchy- Riemann equations and understand how to prove the analytic nature	CO 1,CO 2
8	Show that the function $f(z) = sinx siny - i cosx cosy$ is not analytic function.	Understand	Learner to recall the Cauchy- Riemann equations and understand how to prove the analytic nature	CO 1,CO 2
9	Find the value of k such that $f(x, y) = x^3 + 3kxy^2$ may be harmonic function.	Remember		CO 1,CO 2
10	Find the analytic function $f(z)$ whose real part of the analytic function is $u = x^2 - y^2 - x$.	Remember		CO 1,CO 2
11	Find the analytic function f (z) whose imaginary part of the analytic function is $v = e^{x}(xsiny + ycosy)$.	Remember		CO 1,CO 2
12	Show that the real part of an analytic function $f(z)$ where $u = 2log (x^2 + y^2)$ is harmonic.	Understand	Learner to recall the concept of harmonic function and then prove that it is analytic	CO 1,CO 2
13	Show that the function $f(z) = z ^2$ is continuous at all points of z but not differentiable at any $z \neq 0$.	Understand	Learner to recall the concept of continuous function and understand the prove for differentiability.	CO 1,CO 2
14	List all the values of k such that $f(z) = e^{x}(cosky + isinky)$ is an analytic function.	Remember		CO 1,CO 2

15	Find the values of a, b, c such that $f(z) = x + ay - i(ax+by)$ is differentiable function at	Remember		CO 1,CO 2
16	every point. Show that every differentiable function is continuous or not. Give a valid example.	Understand	Learner to recall the concept of continuous function and understand the concept of differentiability with illustration.	CO 1,CO 2
17	Find the Bilinear transformation whose fixed points are <i>i</i> , <i>-i</i> .	Remember		CO 3
18	Find the Bilinear transformation which maps the points $(0, -i, -1)$ into the points $(i, 1, 0)$	Remember		CO 3
19	Find the points at which $w = coshz$ is not conformal.	Remember		CO 3
20	List the fixed points of the transformation $w = \frac{2i - 6z}{iz - 3}$	Understand	Learner to recall the definition of fixed points and understand the procedure to find them.	CO 3
	PART - B (LON	G ANSWER (QUESTIONS)	
1	Show that the real part of an analytic function f (z) where $u = e^{-2xy} sin(x^2 - y^2)$ is a harmonic function. Hence find its harmonic conjugate.	Understand	Learner to recall the concept of harmonic function and understand the procedure to find harmonic conjugate.	CO 1,CO 2
2	Show that the real part of analytic function f (z) where $u = log z ^2$ is harmonic function. If so find the analytic function by Milne Thompson method.	Understand	Learners recall Cauchy- Riemann equations and understand Milne Thompson's method of finding analytic functions.	CO 1,CO 2
3	Use Milne Thompson's method to find the imaginary part of an analytic function $f(z)$ whose real part of an analytic function is $e^x(xcosy - ysiny)$.	Apply	Learners recall the Cauchy- Riemann equations and understanding the method to find imaginary part.	CO 1,CO 2
4	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Realf(z) ^2 = 2 f'(z) ^2$ where $w = f(z)$ is an analytic function.	Understand	Learner to recall Cauchy- Riemann equations and understand the concept of analytic functions.	CO 1,CO 2
5	Find an analytic function $f(z)$ whose real part of an analytic function is $u = \frac{sin2x}{cosh2y-cos2x}$ by Milne-Thompson method.	Remember		CO 1,CO 2
6	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$ If $f(z)$ is a regular function of z	Understand	Learner to recall Cauchy- Riemann equations and understanding Milne Thompson's method.	CO 1,CO 2
7	Show that the function defined by $f(z) = \begin{cases} \frac{xy^2 (x+iy)}{x^2+y^4}, z \neq 0\\ 0, z = 0 \end{cases}$ is not analytic function even though Cauchy Riemann equations are satisfied at origin.	Understand	Learner to recall Cauchy- Riemann equations and understand the concept of regular functions through Cauchy Riemann equations.	CO 1,CO 2
8	Show that real part $u = x^3 - 3xy^2$ of an analytic function $f(z)$ is harmonic. Hence find the conjugate harmonic function and the analytic function.	Understand	Learner to recall the concept of harmonic function and understand the concept of finding harmonic conjugate.	CO 1,CO 2

9Find an analytic function $f(z) = u + i i$ if the real part of an analytic function is $u = a$ $(1 + cos \theta)$ using Cauchy-Riemann equations in polar form of an analytic function $f(z)$.Remember u CO 1.CO 210Construct the Cauchy-Riemann equations in polar form of an analytic function $f(z)$.Apply Learner to recall polar form of complex function and understanding Cauchy's Riemann equations in polar form.CO 1.CO 211Show that the real and imaginary parts of an analytic function $f(z)$ are harmonic.Understand understand how to prove that analytic function $f(z)$ whose imaginary part of an analytic function $is^2 cos 2\theta + rsin \theta$ by Cauchy Riemann equations in polar form.CO 1.CO 213Show that the real part of an analytic differentiable.Understand understand how to prove that analytic function and understand hem for proving that it is not differentiable.CO 1.CO 214Show that the real part of an analytic function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.Understand the concept of harmonic function and understand them for proving that it is not differentiable.CO 1.CO 215Show that an analytic function $f(z)$ with constant real part is always constant.Understand understand Learner to recall the concept of harmonic function and understand the concept of handytic functions.CO 1.CO 215Show that an analytic function $f(z)$ with constant real part is always constant.Apply understand Learner to recall the concept of handytic functions.CO 1.CO 216Show that an analytic function $f(z)$ with constant real part is			1	· · · · · · · · · · · · · · · · · · ·	
polar form of an analytic function $f(z)$.complex function and understanding Cauchy's Riemann equations in Cartesian form and apply them to find Cauchy Riemann conditions in polar form.11Show that the real and imaginary parts of an analytic function $f(z)$ are harmonic.Understand understand how to prove that analytic function $f(z)$ are harmonic.CO 1,CO 2 of harmonic function and understand how to prove that analytic function $f(z)$ are harmonic.CO 1,CO 212Find the analytic function $f(z)$ whose imaginary part of an analytic function isr ² cos20 + rsin0 by Cauchy Riemann cquations in polar form.Remember13Show that the function $f(z) = z $ is continuous everywhere but nowhere differentiable.Understand understand them for proving that it is not differentiable.CO 1,CO 214Show that the real part of an analytic function $f(z)$ where u = $e^{-x}(xsiny - ycosy)$ is a harmonic function $f(z)$ with constant real part is always constant.Understand understand the for proving that it is analytic functions and understand the concept of analytic functionsCO 1,CO 216Show that an analytic function $f(z)$ with constant modulus is always constant.Understand understand the concept of analytic functionsCO 1,CO 217Show that tan analytic functions $f(x)$ with maps the points $(I-2i, 2+i, 2+3i)$ into the points $(2, i, 2)$.Apply Learner to recall the cross ratio method to find transformation and understand the concept of analytic functionsCO 1,CO 218Construct the Bilinear transformation that maps the points $(I, i, I-I)$ into the points $(2, i, 2)$. <td>9</td> <td>$(1+\cos\theta)$ using Cauchy-Riemann equations in polar form.</td> <td>Remember</td> <td></td> <td>CO 1,CO 2</td>	9	$(1+\cos\theta)$ using Cauchy-Riemann equations in polar form.	Remember		CO 1,CO 2
analytic function $f(z)$ are harmonic.of harmonic function and understand how to prove that analytic functions are harmonic.12Find the analytic function $f(z)$ whose imaginary part of an analytic function isr ² cos20 + rsin0 by Cauchy Riemann equations in polar form.Remember13Show that the function $f(z) = z $ is continuous verywhere but nowhere differentiable.UnderstandLearner to recall the concept of continuous function and understand them for proving that it is not differentiable.CO 1,CO 214Show that the real part of an analytic function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.UnderstandLearner to recall the concept of harmonic function and understand them for proving that it is analyticCO 1,CO 215Show that an analytic function $f(z)$ with constant real part is always constant.UnderstandLearner to recall Cauchy- Riemann equations and understand the concept of nanalytic functionsCO 1,CO 216Show that an analytic function $f(z)$ with constant modulus is always constant.understand the concept of analytic functionsCO 1,CO 217Show that uv is a harmonic functions if u and v is conjugate harmonic functions.Remember analytic functionsCO 1,CO 218Construct the Bilinear transformation that maps the points $(1, i, -1)$ into the points $(2, i, -2)$.Remember analytic functions and understand the bilinear transformation hat maps the points $(x, i, 0)$ into the points $(0, i, \infty)$.Apply Learner to recall the cross ratio method to find transformation and understand the bilinear transformati	10	• •	Apply	complex function and understanding Cauchy's Riemann equations in Cartesian form and apply them to find Cauchy Riemann	CO 1,CO 2
imaginary part of an analytic function isr ² cos20 + rsin0 by Cauchy Riemann equations in polar form.UnderstandLearner to recall the concept of continuous surprised in some of continuous function and understand them for proving that it is not differentiable.CO 1, CO 213Show that the function $f(z) = z $ is continuous everywhere but nowhere differentiable.UnderstandLearner to recall the concept of continuous function and understand them for proving that it is not differentiable.CO 1, CO 214Show that the real part of an analytic function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic 	11	analytic function $f(z)$ are harmonic.	Understand	of harmonic function and understand how to prove that analytic functions are	
continuous everywhere but nowhere differentiable.of continuous function and understand them for proving that it is not differentiable.14Show that the real part of an analytic function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.UnderstandLearner to recall the concept 	12	imaginary part of an analytic function is $r^2 cos 2\theta + rsin\theta$ by Cauchy Riemann	Remember		CO 1,CO 2
function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.of harmonic function and understand them for proving 	13	Show that the function $f(z) = z $ is continuous everywhere but nowhere	Understand	of continuous function and understand them for proving	CO 1,CO 2
constant real part is always constant.Riemann equations and understand the concept of analytic functions16Show that an analytic function $f(z)$ with constant modulus is always constant.understandLearner to recall the concept 	14	function $f(z)$ where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.	Understand	of harmonic function and understand them for proving	
16Show that an analytic function $f(z)$ with constant modulus is always constant.understandLearner to recall the concept of harmonic function and understand the concept of analytic functionsCO 1,CO 217Show that uv is a harmonic functions if u and v is conjugate harmonic functions.Remember $$ $$ CO 1,CO 218Construct the Bilinear transformation that maps the points $(1-2i, 2+i, 2+3i)$ into the points $(2+i, 1+3i, 4)$.ApplyLearner to recall the cross ratio method to find 	15		Understand	Riemann equations and understand the concept of	CO 1,CO 2
17Show that uv is a harmonic functions if u and v is conjugate harmonic functions.RememberCO 1,CO 218Construct the Bilinear transformation that maps the points $(1-2i, 2+i, 2+3i)$ into the points $(2+i, 1+3i, 4)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation between two points.CO 319Construct the Bilinear transformation that maps the points $(1, i, -1)$ into the points $(2, i, -2)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation between two points.CO 320Construct the Bilinear transformation that maps the points $(\infty, i, 0)$ into the points $(0, i, \infty)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation between two points.CO 320Construct the Bilinear transformation that maps the points $(\infty, i, 0)$ into the points $(0, i, \infty)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation the bilinear transformation that maps the points $(\infty, i, 0)$ into the points $(0, i, \infty)$.CO 3	16	•	understand	Learner to recall the concept of harmonic function and understand the concept of	CO 1,CO 2
18Construct the Bilinear transformation that maps the points $(1-2i, 2+i, 2+3i)$ into the points $(2+i, 1+3i, 4)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation between two points.CO 319Construct the Bilinear transformation that 	17		Remember		CO 1,CO 2
maps the points $(1, i, -1)$ into the points $(2, i, -2)$.ratio ratio transformation and understand the bilinear transformation between two points.20Construct the Bilinear transformation that maps the points $(\infty, i, 0)$ into the points $(0, i, \infty)$.ApplyLearner to recall the cross ratio method to find transformation and understand the bilinear transformation		Construct the Bilinear transformation that maps the points (1-2i, 2+i, 2+3i) into the points $(2+i, 1+3i, 4)$.		ratio method to find transformation and understand the bilinear transformation between two points.	
maps the points $(\infty, i, 0)$ into the points $(0, i, \infty)$.ratio ratio method to find transformation and understand the bilinear transformation	19	maps the points $(1, i, -1)$ into the points $(2, i, -2)$.	Apply	ratio method to find transformation and understand the bilinear transformation between two points.	
	20	maps the points	Apply	ratio method to find transformation and understand the bilinear transformation	CO 3

1	Construct the analytic function $f(z)$ in terms	Apply	Learner to recall Cauchy-	CO 1,CO 2
	of z if $f(z)$ is an analytic function of z such		Riemann equations and	
	that $u + v = \frac{\sin 2x}{\cosh 2y - \cos 2x}$.		understand the concept of	
2		Understand	analytic functions. Learner to recall condition for	CO 1,CO 2
-	Show that if $u = x^2 - y^2$, $v = -\frac{y}{x^2 + y^2}$	Onderstand	function to be Laplace	01,002
	both u and v satisfy Laplace's equation, but u		equations and understand the	
	+ iv is not a regular (analytic) function of z.		concept of regular functions.	
3	Construct the analytic function $f(z)$ given u -	Apply	Learner to recall condition for	CO 1,CO 2
	$v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - e^{y} - e^{-y}}$ and $f(z)$ is subjected to the		function to be Laplace	
	condition $f(\frac{\pi}{2}) = 0$.		equations and understand the	
	· · · · · · · · · · · · · · · · · · ·		concept of regular functions and make use of Cauchy	
			Riemann equations.	
1	Construct the analytic function f(z) whose	Apply	Learner to recall condition for	CO 1,CO 2
	real part of it is		function to be Laplace	
	$u = e^x[(x^2 - y^2)cosy - 2xysiny)].$		equations and understand the	
			concept of regular functions	
			and make use of Cauchy Riemann equations.	
5	$(\partial^2 - \partial^2)$	Understand	Learner to recall condition for	CO 1,CO 2
)	Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) log f'(z) = 0$ where	Onderstand	function to be Laplace	001,002
	w = f(z) is an analytic function.		equations and understand the	
			concept of analytic functions.	
5	Construct the analytic function $f(z) =$	Apply	Learner to recall condition for	CO 1,CO 2
	$u(r, \theta) + iv(r, \theta)$ such that $v(r, \theta) =$		function to be Laplace	
	$\left(r-\frac{1}{r}\right)sin\theta$, $r\neq 0$ using Cauchy-Riemann		equations and understand the concept of regular functions	
	equations in polar form.		and make use of Cauchy	
			Riemann equations.	
7	Construct an analytic function $f(z)$ such that	Apply	Learner to recall condition for	CO 1,CO 2
	$\operatorname{Re}[f'(z)] = 3x^2 - 4y - 3y^2$ and		function to be Laplace	
	f(1+i) = 0.		equations and understand the	
			concept of regular functions and make use of Cauchy	
			Riemann equations.	
3	Show that the function $f(z) = \sqrt{ xy }$ is not	Understand	Learner to recall condition for	CO 1,CO 2
	analytic at the origin although Cauchy–		function to be Laplace	,
	Riemann equations are satisfied at origin.		equations and understand the	
			concept of regular functions.	00100
9	Utilize the complex potential for an electric field $w = 0$ + isolated where $w = w^2 + w^2$	Apply	Learner to recall the concept	CO 1,CO 2
	field $w = \emptyset + i\varphi$ d where $\varphi = x^2 - y^2 + x^2$		of analytic function and understand the potential	
	$\frac{x}{x^2+y^2}$ and determine the function \emptyset .		theory and apply it to find	
_			function.	
0	Construct the Bilinear transformation that	Apply	Learners to recall the cross	CO 3
	maps the points (∞ , i, 0) in the z-plane into		ratio method understand how	
	the points $(0, i, \infty)$ in the w-plane.		to find transformation and	
			apply the bilinear transformation between two	
			points.	
			F	

MODULE-II

COMPLEX INTEGRATION

2] 3] 4] 5] 6]	PART – A (SHOR Define the Cauchy's integral formula. Define the Cauchy's General integral formula. Define the term Radius of convergence. Define the term Power series expansions of complex functions. Define the term Line Integral of complex	Remember Remember Remember Remember	QUESTIONS)	CO1, CO 4 CO1, CO 4
2] 3] 4] 5] 6]	Define the Cauchy's General integral formula. Define the term Radius of convergence. Define the term Power series expansions of complex functions.	Remember Remember		
3 1 4 5 6 1	formula. Define the term Radius of convergence. Define the term Power series expansions of complex functions.	Remember		CO1, CO 4
4 5 5 6	Define the term Power series expansions of complex functions.			
5] 6]	complex functions.	Remember		CO 5
6	Define the term Line Integral of complex			CO 5
	variable function $w = f(z)$.	Remember		CO 5
	Define the term Contour Integration of a given curve in complex function.	Remember		CO 5
	Define Cauchy's integral theorem for multiple connected region.	Remember		CO 1, CO 4
8]	Find the value of $\int_0^{1+i} z^2 dz$.	Remember		CO1, CO 4
	Find the value of $\int_{c} \frac{3z^2 + 7z + 1}{(z+1)} dz$ with	Remember		CO 1, CO 4
10	C: $ z + i = 1$ by Cauchy integral formulae. Find the value of line integral to $\int_0^{2+i} z^2 dz$ along the real axis to 2 and then vertically to $(2+i)$.	Remember		CO 1, CO 4
11	Find the value of line integral to $\int_0^{3+i} z^2 dz$ along the straight line $y = x/3$.	Remember		CO 1, CO 4
12	Compare Cauchy integral formula with $\int_{C} e^{-z} dz$ and find the integral $C: z-1 = 1$ by	Understand	Learner to recall Cauchy integral formula and understand how to find solution by comparison.	CO 1, CO 4
	Solve line integral to $\int_0^{2+i} (x - y^2 + ix^3) dz$ along the real axis from $z=0$ to $z=1$.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
	Solve the line integral $\int_{C}^{-z} dz$ from $z = o$ to $2i$ and then from $2i$ to $z = 4+2i$.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
	Find the radius of convergence of an infinite series $f(z) = sinz$.	Remember		CO 5
16	Find the radius of convergence of an infinite series $f(z) = \frac{1}{1-z}$.	Remember		CO 5
17	Find the radius of convergence of an infinite series $1+2^{2}z+3^{2}z^{2}+4^{2}z^{3}+$	Remember		CO 5

18 19 20	Solve the value of line integral $\int_{0}^{1+i} (x^2 - iy) dz$ along the path $y = x$. Solve the value of $\int_{C} \frac{1}{z-2} dz$ around the circle $ z - 1 = 5$ by Cauchy integral formulae. Show that by using line integral, $\int_{C} \frac{1}{(z-a)} dz = 2\pi i$ where <i>c</i> is the curve	Apply Apply Understand	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts. Learner to recall Cauchy integral formula and understand how to find solution by comparison by applying integral concepts. Learner to recall the method of finding line integral in real analysis and understand the variable value along the line	CO 1, CO 4 CO 1, CO 4 CO 1, CO 4
	z-a =r		and apply integral concepts.	
	PART - B (LON	G ANSWER (QUESTIONS)	
1	Utilize the Cauchy's integral formula and find value of $\int_{c} \frac{z^3 - \sin 3z}{(z - \pi/2)^3} dz$ where c is the circle $ z = 2$.	Apply	Learner to recall Cauchy integral formula and understand how to find solution by comparison by applying integral concepts.	CO 1, CO 4
2	Make use of vertices -1 , 1 , $1+i$, $-1+i$ and verify Cauchy's theorem for the integral of z^3 taken over the boundary of the rectangle formed.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
3	Solve the value of line integral to $\int_{c} \frac{e^{2z}}{(z-1)(z-2)} dz$ where c is the circle $ z = 3$ using Cauchy's integral formula.	Apply	Learner to recall Cauchy integral formula and understand how to find solution by comparison by applying integral concepts.	CO 1, CO 4
4	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^{3}e^{-z}}{(z-1)^{3}} dz$ where c is $ z-1 = \frac{1}{2}$ and find the value of integral.	Understand	Learner to recall Cauchy integral formula and understand how to find solution by comparison.	CO 1, CO 4
5	Solve the value of line integral to $\int_{c} \frac{5z^2 - 3z + 2}{(z-1)^3} dz$ where c is any simple closed curve enclosing $ z = 1$ using Cauchy's integral formula.	Apply	Learner to recall Cauchy integral formula and understand how to find solution by comparison by applying integral concepts.	CO 4
6	Solve the value of line integral to $\int_{z=0}^{z=1+i} [x^2 + 2xy + i(y^2 - x)] dz \text{ along the}$ curvey = x^2 .	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 4
7	Solve the integral $\int_{c} (3z^2 + 2z - 4)dz$ around the square with vertices <i>at</i> (0,0), (1,0), (1,1) <i>and</i> (0,1).	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 4

	Utilize the function $f(z) = 5 \sin 2z$ and write Couche's theorem for a is the sequence	Apply	Learner to recall the method	CO 4
	verify Cauchy's theorem for c is the square with vertices at $1 \pm i$ and $-1 \pm i$.		of finding line integral in real analysis and understand the	
			variable value along the line	
			and apply integral concepts.	
	Compare Cauchy's integral formula with line	Understand	Learner to recall Cauchy	CO 4
i	integral to $\int_{C} \frac{(\sin z)^6}{\left(z - \frac{\pi}{6}\right)^3} dz$ around the unit		integral formula and understand how to find	
-	$\int_{C} \int_{C} \pi^{3} dx$ means are the		solution by comparison.	
	$\left(2-\frac{1}{6}\right)$		solution by comparison.	
(circle and find the integral.			
10	Solve the value of the e^{2z} , e^{2z}	Apply	Learner to recall the method	CO1, CO4
2	Solve the value of to $\int_{a} \frac{e^{2z}}{(z+1)^4} dz$ where c		of finding line integral in real	
			analysis and understand the variable value along the line	
	is $ z-1 = 3$ using Cauchy's general integral		and apply integral concepts.	
	formulae.	A		<u> </u>
	Make use of Cauchy's integral formula and	Apply	Learner to recall the method of finding line integral in real	CO 1, CO 4
¢	evaluate $\int \frac{z+1}{z^2+2z+4} dz$ Where		analysis and understand the	
	$\int_{c} z^{2} + 2z + 4$		variable value along the line	
	c: z+1+i = 2.		and apply integral concepts.	
12 \$	Solve the value of line integral to	Apply	Learner to recall the method	CO 1, CO 4
	$\int (y^{2} + z^{2}) dx + (z^{2} + x^{2}) dy + (x^{2} + y^{2}) dz$		of finding line integral in real	
	L L		analysis and understand the	
f	from $(0, 0, 0)$ to $(1, 1, 1)$ where C is the curve		variable value along the line	
	$x = t$, $y = t^2$, $z = t^3$ in the parametric form.	Understand	and apply integral concepts. Learner to recall Cauchy	CO 1, CO 4
	Compare Cauchy general integral formula	Understand	integral formula and	01,004
7	with $\int_{C} \frac{e^{z}}{z^{2}(z+1)^{3}} dz$ and estimate the value of		understand how to find	
	c		solution by comparison.	
i	integral with $C: z = 2$.	** •		<u> </u>
	Show that if $f(z)$ is analytic function then	Understand	Learner to recall condition for	CO1 , CO 4
	$\int_{A}^{B} f(z) dz$ is independent of path followed.		function to be analytic function and understand the	
			concept of regular functions.	
15	Solve the value of line integral to $\int_0^{3+i} z^2 dz$	Apply	Learner to recall the method	CO 1, CO 4
	along the parabola $x=3y^2$.	-	of finding line integral in real	
	6 F 2 / .		analysis and understand the	
			variable value along the line and apply integral concepts.	
16 (Compare Cauchy general integral formula	Understand	L learner to recall Cauchy	CO 1, CO 4
		Chaoistana	general integral formula and	001,007
\ \	with $\int_{C} \frac{1}{e^{z}(z-1)^{3}} dz$ and estimate the value of		understand how to find	
			solution by comparison.	
17	integral with $C: z = 2$.	Apply	Learner to recall Cauchy	CO 1, CO 4
	Solve the value of $\int_{C} \frac{e^z \sin 2z - 1}{z^2 (z+2)^2} dz$ where <i>c</i> is	, thu	integral formula and	001,007
	$\int_{C} z^{2} (z+2)^{2}$		understand how to find	
	$ z = \frac{1}{2}$ using Cauchy integral formulae.		solution by comparison by	
	2	TT 1	applying integral concepts.	
	Compare Cauchy's integral formula with line	Understand	Learner to recall Cauchy	CO 1, CO 4
;	integral to $\int_{0}^{1} \left[\frac{e^{z}}{z^{3}} + \frac{z^{4}}{(z-i)^{2}} \right] dz$, $c: z = 2$		general integral formula and understand how to find	
	$\int_{c} z^{3} (z-i)^{2} \int_{c} z^{3} (z-i)^{2} z^{3} z^$		solution by comparison.	
I I.	and find the integral.			

19	Find the value of line integral to $\int (z^2 + 3z) dz$	Remember		CO 1, CO 4
	along the straight line from $(2,0)$ to $(2,2)$ and then from $(2,2)$ to $(0,2)$.			
20	Solve the value of line integral to $\int_C \frac{\cos hz}{z^4} dz$ if	Apply	Learner to recall the method of finding line integral in real analysis and understand the	CO 1, CO 4
	C denote the boundary of a square whose sides lie along the lines $x = \pm 2$ and $y = \pm 2$ where C is described in positive sense.		variable value along the line and apply integral concepts.	
	PART - C (PROBLEM SOLVING	AND CRITIC	CAL THINKING QUESTIONS	5)
1	Solve the value of line integral to $\int_{c} \frac{z}{(z-1)(z-2)^2} dz$ where <i>c</i> is the circle z-2 = 1/2 using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
2	Solve the value of line integral to $\int_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} dz$ where c is the ellipse $9x^{2}+4y^{2}=36$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
3	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^4 - 3z^2 + 6}{(z+1)^3} dz$ where c is the circle $ z = 2$ and find the integral.	Understand	Learner to recall Cauchy general integral formula and understand how to find solution by comparison.	CO 1, CO 4
4	Compare Cauchy's integral formula with line integral to $\int_{c} \frac{z^2 - 2z - 2}{(z^2 + 1)^2} dz$ where <i>c</i> is the circle $ z - i = 1/2$ and find integral.	Understand	Learner to recall Cauchy general integral formula and understand how to find solution by comparison.	CO 1, CO 4
5	Solve the value of line integral to $\int_{c} \frac{e^{z}}{(z^{2} + \pi^{2})^{2}} dz \text{ where } c \text{ is } z = 4 \text{ using}$ Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
6	Solve the value of line integral to $\int_{c} \frac{\cos \pi z^{2}}{(z-1)(z-2)^{3}} dz$ where c is the circle $ z = 3$ using Cauchy's integral formula.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4
7	Solve the value of line integral to $\int_{0}^{1+i} (x - y + ix^{2}) dz$ i) Along the straight line from $z = 0$ to $z = 1 + i$. ii) Along the real axis from $z = 0$ to $z = 1$ and then along a line parallel to imaginary axis from $z = 1$ to $z = 1 + i$. iii) Along the imaginary axis from $z = 0$ to $z = i$ and then along a line parallel to real axis $z = i$ to $z = 1 + i$.	Apply	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts.	CO 1, CO 4

8 9 10	 and verify Cauchy's theorem for the integral of 3z² + iz - 4 taken over the boundary of the square . Derive the Cauchy general integral formulae of an analytic function f(z) within a closed contour c. 	Apply Remember Understand	Learner to recall the method of finding line integral in real analysis and understand the variable value along the line and apply integral concepts. - Learner to recall Cauchy general integral formula and understand how to find solution by comparison.	CO 1, CO 4 CO 1, CO 4 CO 1, CO 4
	Μ	ODULE-III		
	POWER SERIES EXPAN	SION OF CO	OMPLEX FUNCTION	
	PART – A (SHOR	T ANSWER	QUESTIONS)	
1	What is Taylor's theorem of complex power series?	Remember		CO 5
2	What is Laurent's theorem of complex power series?	Remember		CO 5
3	Define the term pole of order m of an analytic function $f(z)$.	Remember		CO 6
4	Define the terms Essential and Removable singularity of an analytic function $f(z)$.	Remember		CO 6
5	Extend $f(z) = \frac{1}{z^2}$ in powers of $z+1$ as a Taylor's series.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
6	Extend $f(z) = e^z$ as Taylor's series about $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
7	Find the Poles of $\frac{1}{z^2 - 1}$.	Remember		CO 6
8	Extend the Taylor series expansion of $f(z) = e^{z}$ about the point $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
9	Find the Poles of the function $f(z) = \frac{ze^{z}}{(z+2)^{4}(z-1)}.$	Remember		CO 6
10	Define the Isolated singularity of an analytic function $f(z)$.	Remember		CO 6
11	Define Cauchy's Residue theorem of an analytic function $f(z)$ within and on the closed curve.	Remember		CO 6,CO 7
12	Find the Residue by Laurent's expansion to	Remember		CO 6,CO 7

	e^{z}			
	$f(z) = \frac{e^z}{(z-1)^2} \text{about } z = l.$			
13	Compare Laurent's expansion and find the Residues of the function $f(z) = \frac{1}{(z - \sin z)}$ about $z = 0$.	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 6,CO 7
14	Find the Residues of the function	Remember		CO 6,CO 7
	$f(z) = \frac{z}{(z+1)(z+2)}$ as a Laurent's series about $z = -2$.			
15	Solve the value of $\oint_C \frac{1-2z}{z(z-1)(z-2)} dz$ where c is circle $ z = \frac{1}{2}$ by Cauchy's Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem and apply those formula to find integral.	CO 6,CO 7
16	State Residue formulae for simple pole.	Remember		CO 6,CO 7
17	Explain the types of evaluation of integrals by Cauchy's Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem and classify the types to find integral.	CO 6,CO 7
18	Find the Residues of the function	Remember		CO 6,CO 7
	$f(z) = \frac{z}{(z-1)(z-2)}$ as a Laurent's series about $z = -1$.			
19	Define the radius and region of convergence of a power series.	Remember		CO 5
20	Define the residue of a function by Laurent series expansion	Remember		CO 3
	PART - B (LON	G ANSWER (QUESTIONS)	
1	Extend $f(z) = \frac{z-1}{z+1}$ in Taylor's series about the point $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
2	Extend $f(z) = \frac{z-1}{z^2}$ in Taylor's series in powers of <i>z</i> -1. Also determine the region of convergence about the point $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
	Extend Laurent's series expansion to the function $f(z) = \frac{z^2 - 4}{z^2 + 5z + 4}$ valid in $1 < z < 4$.	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 5
4	Extend $f(z) = \frac{e^{2z}}{(z-1)^3}$ about $z = 1$ as Laurent's series. Also find the region of convergence about $z = 1$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point	CO 5
5	Extend $f(z) = \frac{7z-2}{z(z+1)(z-2)}$ about $z=-1$ in the region $1 < z+1 < 3$ as Laurent's series.	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 5

6	Extend $f(z) = \frac{2z^3 + 1}{z(z+1)}$ in Taylor's series about the point $z = 1$	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
7	Find Taylor's expansion of $f(z) = \frac{z+1}{(z-3)(z-4)}$ about the point z=2.Determine the region of convergence.	Remember		CO 5
8	Extend $f(z) = \cos z$ in Taylor's series about $z = \pi i$.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
	Extend the Laurent's series expansion of $f(z) = \frac{e^z}{z(1-3z)}$ about $z = 1$.	Understand	Learner to recall the Laurent's expansion formula and understanding how to find residues of given analytic function.	CO 5
10	Develop $f(z) = \frac{1+2z}{z^2+z^3}$ in a series of positive and negative powers of z.	apply	Learner to recall the Taylor's and Laurent's expansion formula and understanding how to find residues of given analytic function.	CO 5
11	Solve the value of $\int_{c} \frac{2z-1}{z(2z+1)(z+2)} dz$ where c is the circle $ z = 1$.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	CO 6,CO 7
12	= 2.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	CO 6,CO 7
13	Solve the integral $\oint_c \frac{dz}{(z^2+4)^2}$ where c is $ z-i = 2$.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	CO 6,CO 7
14	Solve the integral $\oint_c \frac{\coth z}{z-i} dz$ where c is $ z = 2$.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral	CO 6,CO 7
15	Solve the integral $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the	CO 6,CO 7

			formula to find integral.	
16	Solve the integral $\int_{0}^{\pi} \frac{d\theta}{(a+b\cos\theta)}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	CO 6,CO 7
17	Solve the integral of $\frac{\sin z}{z \cos z} dz$ where c is circle $ z = \pi$.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral	CO 6,CO 7
18	Find the value of $\oint_c \frac{1}{\sinh z} dz$ where c is circle $ z = 4$ using Residue theorem.	Remember		CO 6,CO 7
19	Find the value of $\oint_{c} \frac{2e^{z}}{z(z-3)} dz$ where c is circle $ z = 2$ using Residue theorem.	Remember		CO 6,CO 7
20	Solve the integral $\int_{-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^2}$ using Residue theorem.	Apply	Learner to recall Cauchy's Residue theorem and understand where the integrand is valid over the given region and apply the formula to find integral.	CO 6,CO 7
	PART - C (PROBLEM SOLVING	AND CRITIC	CAL THINKING QUESTIONS)
	Extend the Laurent expansion of $f(z) =$ $\frac{1}{z^2 - 4z + 3} \text{ for } 1 < z < 3 (ii) z < 1 (iii)$ $ z > 3$	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 6,CO 7
	z > 3. Extend the Laurent expansion $f(z) =$ $\frac{(z-2)(z+2)}{(z+1)(z+4)}$ in the region where $(i) z < 1$ $(ii)1< z < 4.$	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 6,CO 7
3	$\begin{aligned} (ii) z &< 4 \\ \text{Extend} \frac{1}{z^2(z-3)^2} \text{ as Laurent's series in the region} \\ (i) z &< 1 \\ (ii) z &> 3. \end{aligned}$	Understand	Learner to recall the Laurent's expansion formula and understanding how to residues of given analytic function.	CO 5
4	Extend $f(z) = \frac{2}{(2z+1)^3}$ in Taylor's series about z=0 and z=2.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
5	Extend $f(z) = \frac{e^z}{z(z+1)}$ in Taylor's series about z=2.	Understand	Learner to recall the Taylor series expansion formula and understand how to expand the given function about the given point.	CO 5
6	Solve the integral $\oint \frac{z-3}{(z^2+2z+5)} dz$ where c is	Apply	Learner to recall Cauchy's Residue theorem and understand where the	CO 6,CO 7

	starts let 1		internend is valid over the	
	circle $ \mathbf{z} = 1$.		integrand is valid over the given region and apply the	
			formula to find integral.	
7	2π = -	Apply	Learner to recall Cauchy's	CO 6,CO 7
/	Solve the integral $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$ using Residue	Apply	Residue theorem and	000,007
	solve the integral $\int_{0}^{0} a + b\cos\theta$ using Kesidue		understand where the	
	theorem.		integrand is valid over the	
			given region and apply the	
			formula to find integral.	
8	× •	Apply	Learner to recall Cauchy's	CO 6,CO 7
0	Solve the integral $\int_{0}^{\infty} \frac{dx}{(x^6+1)}$ using Residue	rippiy	Residue theorem and	000,007
	solve the integral $\int_{0}^{0} (x^6 + 1)$ using residue		understand where the	
	theorem.		integrand is valid over the	
	theorem.		given region and apply the	
			formula to find integral.	
9	on 2 -	Apply	Learner to recall Cauchy's	CO 6,CO 7
2	Solve the integral $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)}$ using	Аррту	Residue theorem and	000,007
	$\int (x^2 + a^2)(x^2 + b^2)$		understand where the	
	Residue theorem ($a \ge 0$, $b \ge 0$ and $a \ne b$)		integrand is valid over the	
	Residue incorem $(a > 0, b > 0 and a + b)$		given region and apply the	
			formula to find integral.	
10	2	Apply	Learner to recall Cauchy's	CO 6,CO 7
10	Solve the integral $\int_{0}^{2\pi} \frac{\cos 2\theta d\theta}{5 + 4\cos\theta}$ using Residue	Apply	Residue theorem and	00,007
	Solve the integral $\int \frac{1}{5+4\cos\theta}$ using Residue			
	0		understand where the integrand	
	theorem		is valid over the given region	
			and apply the formula to find	
			integral.	
	Μ	IODULE-IV		
	SPECIA	AL FUNCTIO	NS-I	
	SPECIA PART - A(SHOR			
1	PART - A(SHOR	T ANSWER		CO 8,CO 9
1		T ANSWER	QUESTIONS)	CO 8,CO 9
1	PART - A(SHOR	T ANSWER	QUESTIONS) Leaner to recall the gamma	CO 8,CO 9
1	PART - A(SHOR	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the	CO 8,CO 9
	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$.	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals.	CO 8,CO 9 CO 8,CO 9
	PART - A(SHOR	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals.	
	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$.	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma	
	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$.	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the	
	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$.	T ANSWER	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper	
2	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$. State the value of $\gamma(-7/2)$.	T ANSWER Understand Understand	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals.	CO 8,CO 9
2 3 4	PART - A(SHOR Show that the value of $\gamma(1/2) = \sqrt{\pi}$. State the value of $\gamma(-7/2)$. Find the value of $\gamma(11/2)$. Define Gamma function	T ANSWER Understand Understand Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals. 	CO 8,CO 9 CO 8,CO 9 CO 8
2 3 4 5	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$.State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta function	T ANSWER Understand Understand Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals. 	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8
2 3 4 5 6	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionState relation between Beta and Gamma function	T ANSWER Understand Understand Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals. 	CO 8,CO 9 CO 8,CO 9 CO 8
2 3 4 5 6	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionState relation between Beta and Gamma function	T ANSWER Understand Understand Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals. 	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8
2 3 4 5 6	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$.State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionDefine Beta functionState relation between Beta and Gamma functionFind the value of $\int_0^{\infty} e^{x^2} dx$ using gamma	T ANSWER Understand Understand Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionState relation between Beta and Gamma function	T ANSWER Understand Understand Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8 CO 8 CO 8 CO 8
2 3 4 5 6 7	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionState relation between Beta and Gamma functionFind the value of $\int_0^\infty e^{x^2} dx$ using gamma function	T ANSWER Understand Understand Remember Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8,CO 9, CO 10
2 3 4 5 6 7	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionDefine Beta functionState relation between Beta and Gamma functionFind the value of $\int_0^{\infty} e^{-x^2} dx$ using gammaFind the value of $\int_0^{\infty} e^{-x^2} dx$ using gamma	T ANSWER Understand Understand Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8 CO 8 CO 8 CO 8 CO 8,CO 9, CO 10
2 3 4 5 6 7	PART - A(SHORShow that the value of $\gamma(1/2) = \sqrt{\pi}$ State the value of $\gamma(-7/2)$.Find the value of $\gamma(11/2)$.Define Gamma functionDefine Beta functionState relation between Beta and Gamma functionFind the value of $\int_0^\infty e^{x^2} dx$ using gamma function	T ANSWER Understand Understand Remember Remember Remember Remember Remember	QUESTIONS) Leaner to recall the gamma function and understand the concept of solving improper integrals. Leaner to recall the gamma function and understand the concept of solving improper integrals	CO 8,CO 9 CO 8,CO 9 CO 8 CO 8 CO 8 CO 8 CO 8,CO 9, CO 10

8	Find the value of $\int_0^\infty e^{-x^3} dx$ using Gamma function	Remember		CO 8,CO 9, CO10
9	Find the value of $\int_{-\infty}^{\infty} \Box^{-\Box^2} \Box$ using Gamma function	Remember		CO 8,CO 9, CO10
10	Solve the integral $\int_0^\infty x^2 e^{-x^2} dx$ using Gamma function	Apply	Leaner to recall the gamma function and understand the concept of solving improper integrals to apply for given integral.	CO 8,CO 9
11	What kind of Eulerian integral is Gamma function?	Remember		CO 8
12	What kind of Eulerian integral of Beta function?	Remember		CO 8
13	What are the convergent values of Gamma function?	Remember		CO 8
14	Find the value of integral $\int_0^\infty \frac{\Box^2}{\sqrt{I - \Box^5}} \Box \Box$ in terms of Beta function	Remember		CO 8,CO 9, CO10
15	Find the value of integral $\int_0^\infty \Box^4 \Box^{-\Box^2} \Box \Box$ using Gamma function	Remember		CO 8,CO 9, CO10
16	Find the value of integral $\int_0^\infty \Box^4 \left(\Box \Box \Box \frac{l}{\Box} \right)^3 \Box \Box$ using Beta-Gamma function.	Remember		CO 8,CO 9, CO10
17	Find the value of integral $\int_0^{\frac{\pi}{2}} \sqrt{Tan\theta} d\theta$ in terms of Gamma function	Remember		CO 8,CO 9, CO10
18	Find the value of integral $\int_0^{\frac{\pi}{2}} \sqrt{Sec\theta} d\theta$ in terms of Gamma function	Remember		CO 8,CO 9, CO10
19	State any three properties of Beta function	Remember		CO 8
20	Show that $\int_0^1 \frac{x}{\sqrt{1-x^5}} dx = \beta(\frac{2}{5}, \frac{1}{2})$	Understand	Leaner to recall the gamma function and understand the concept of solving improper integrals.	CO 8,CO 9, CO10
	PART - B (LONG	G ANSWER (QUESTIONS)	
1	Show that $\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n+1)}{n} = \frac{\beta(m,n)}{m+n}$	Understand	Leaner to recall the beta function and understand the different standard form of beta function.	CO 8,CO 9, CO10
2	Show that $\beta(m, n) = \beta(m + 1.n) + \beta(m, n + 1)$	Understand	Leaner to recall the beta function and understand the different standard form of beta function.	CO 8,CO 9, CO10
3	Prove that $\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{\sin\theta}} \int_0^{\frac{\pi}{2}} \sqrt{\sin\theta} d\theta = \pi$	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10

4		A 1	Y , 11 ,1 1 ,	
4	Solve the integral $\int_0^a x^4 \sqrt{a^2 - x^2} dx$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
5	Solve the integral $\int_0^1 (x \log x)^4 dx$ using Gamma function	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation	CO 8,CO 9, CO10
6	Solve the integral $\int_0^1 x^{-3/2} (1 - e^{-x}) dx$ using Gamma function	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
7	Solve the integral $\int_0^\infty \sqrt{x} e^{-x/3} dx$ using Gamma function	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
8	Show that $-n = \int_0^1 (\log \frac{1}{x})^{n-1} dx$	Understand	Leaner to recall the beta- gamma relation and apply them for solving improper integrals	CO 8,CO 9, CO10
9	Show that $\beta(n,n) = \frac{\sqrt{\pi} - (n)}{2^{2n-1} - (n + \frac{1}{2})}$	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them.	CO 8,CO 9, CO10
10	Solve the integral $\int_0^l \frac{x^{\delta}(l-x^{\delta})}{(l+x)^{24}} dx$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation	CO 8,CO 9, CO10
	Show that $\int_0^\infty x^m e^{-ax^n} dx = \frac{1}{na^{\frac{m+1}{n}}} - (\frac{1+m}{n})$ where m and n are positive constants	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
12	Show that $\neg (n)$. $\neg (1 - n) \dots \dots = \frac{\pi}{sinn\pi}$	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them.	CO 8,CO 9, CO10
13	Solve the integral $\int_0^{\frac{\pi}{2}} (\sqrt{Tan\theta} + \sqrt{Sec\theta}) d\theta$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
14	Solve the integral $\int_0^\infty 3^{-4x^2}$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find	CO 8,CO 9, CO10

			improper integrals by applying beta-gamma	
15	function $\int_0^{10} \sqrt{(-\log x)} dx dx$	Apply	relation. Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
16	Show that $\int_0^\infty e^{-y^{1/m}} dy = m - (m)$	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
17	Solve the integral $\int_0^2 (8 - x^3)^{1/3} dx$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
18	Solve the integral $\int_0^2 (8 - x^3)^{-1/3} dx$ using Beta-Gamma functions	Apply	Leaner to recall the beta- gamma relation and understand how to find improper integrals by applying beta-gamma relation.	CO 8,CO 9, CO10
19	State and prove the symmetry property of Beta function	Remember		CO 8
20	State and prove any two other forms of Beta function	Remember		CO 8
	PART - C (PROBLEM SOLVING	AND CRITIC	CAL THINKING QUESTIONS	5)
1	Show that $\beta(m,n) = \int_0^l \frac{x^{m-l} + x^{n-l}}{(l+x)^{m+n}} dx$	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
2	Find the value of $\int_0^1 \frac{dx}{\sqrt{1-x^n}}$ in terms of gamma	Remember		CO 8,CO 9,
	function			CO10
3	Find the value of $\int_{a}^{b} (a-x)^{m} (x-b)^{n} dx$, $b >$	Remember		
3	Find the value of $\int_{a}^{b} (a-x)^{m} (x-b)^{n} dx$, $b > a$ using Beta-Gamma functions Find the value of $\int_{0}^{\infty} \frac{dx}{1+x^{4}}$ using Beta-Gamma	Remember Remember		CO10 CO 8,CO 9,
4	Find the value of $\int_{a}^{b} (a-x)^{m} (x-b)^{n} dx$, $b > a$ using Beta-Gamma functions	Remember		CO10 CO 8,CO 9, CO10 CO 8,CO 9,
4	Find the value of $\int_{a}^{b} (a-x)^{m} (x-b)^{n} dx$, $b > a$ using Beta-Gamma functions Find the value of $\int_{0}^{\infty} \frac{dx}{1+x^{4}}$ using Beta-Gamma functions	Remember	 Leaner to recall the beta- gamma relation and understand the concept to find different relation between	CO10 CO 8,CO 9, CO10 CO 8,CO 9, CO10 CO 8,CO 9,

	and Gamma functions			CO10
8	State that $\beta\left(m + \frac{1}{2}, m + \frac{1}{2}\right) = \frac{\pi}{m \cdot 2^{4m-1}} \cdot \frac{1}{\beta(m,m)}$	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
9	Show that $\int_0^1 x^m (\log x)^n dx = \frac{(-1)^m n!}{(m+1)^{n+1}}$ where <i>n</i> is a positive integer	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
10	Show that $\int_0^1 y^{q-1} (\log \frac{1}{y})^{p-1} dx = \frac{-(p)}{(q)^p}$ where <i>p</i> , <i>q</i> are positive integers	Understand	Leaner to recall the beta- gamma relation and understand the concept to find different relation between them	CO 8,CO 9, CO10
	N	IODULE-V		
	SPECIA	L FUNCTIO	NS-II	
	PART - A(SHOR	T ANSWER	QUESTIONS)	
1	State the expansion of $J_n(x)$	Remember		CO 10,CO 11
2	State the expansion of $J_n(-x)$	Remember		CO 10,CO 11
3	State Bessel differential equation.	Remember		CO 10,CO 11
4	State the most general solution of Bessel differential equation	Remember		CO 10,CO 11
5	State the expansion of $J_0(x)$	Remember	Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 10,CO 11
6	Relate $J_2(x)$ interms of $J_0(x)$ and $J_1(x)$	Understand	Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 10,CO 11
7	Relate $J_3(x)$ interms of $J_0(x)$ and $J_1(x)$	Understand		CO 5
8	Relate $J_4(x)$ interms of $J_0(x)$ and $J_1(x)$	Understand	Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 10,CO 11
9	State the relationship between $J_n(x), J_{n-1}(x)$ and $J_{n+1}(x)$	Remember		CO 10,CO 11
	State the relationship between $J_n'(x), J_{n-1}(x)$ and $J_{n+1}(x)$	Remember	Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO 5
11	Show that $\begin{bmatrix} J_{\frac{1}{2}} \end{bmatrix}^2 + \begin{bmatrix} J_{-\frac{1}{2}} \end{bmatrix}^2 = \frac{2}{\pi x}$	Understand	Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO10,CO 11

—				~~~~~
12	Show that $J_n(x) = 0$ has no repeated roots except at x=0.	Understand	Leaner to recall the Bessel recurrence relation and understand them to prove	CO10,CO 11
13	Show that $\frac{d}{dx}(J_1(x)) = -J_1(x)$ where $J_1(x)$ is the Bessel's function.	Understand	different relation. Leaner to recall the Bessel recurrence relation and understand them to prove different relation.	CO10,CO 11
14	State the trigonometric expansion of $cos(xsin\theta)$	Remember		CO10,CO 11
15	State the trigonometric expansion of $sin(xsin\theta)$	Remember		CO10,CO 11
16	State Orthogonality Property of Bessel's functions	Remember		CO 11
17	State the property of Generating function of Bessel's functions	Remember	Leaner to recall the Bessel recurrence relation and understand them finding trigonometric functions in term of Bessel functions	CO 11
18	Relate $J_{3/2}(x)$ in terms of sine and cosine trigonometric ratios	Understand	Leaner to recall the Bessel recurrence relation and understand them finding trigonometric functions in term of Bessel functions	CO10,CO 11
19	Relate $J_{5/2}(x)$ in terms of sine and cosine trigonometric ratios	Understand	Leaner to recall the Bessel recurrence relation and apply them finding trigonometric functions in term of Bessel functions	CO10,CO 11
20	Show that $J_{-1/2}(x) = J_{1/2}(x)$. <i>cotx</i>	Apply		CO10,CO 11
	PART - B (LONG	G ANSWER (QUESTIONS)	
1	Show that $\int_0^x x^n J_{n-1}(x) dx = x^n J_n(x)$ where $J_n(x)$ is Bessel's function.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
2	Show that $\int_0^x x^{n+1} J_n(x) dx = x^{n+1} J_{n+1}(x)$ where $J_n(x)$ is Bessel's function.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
3	Show that $[J_n^2 + J_{n+1}^2] = \frac{2}{x} [nJ_n^2 - (n+1)J_{n+1}^2]$ where $J_n(x)$ is Bessel's function.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
4	Show that $\frac{d}{dx} [xJ_n(x)J_{n+1}(x)] = x [J_n^2(x) - J_{n+1}^2(x)] \text{ where}$ $J_n(x) \text{ is Bessel's function.}$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
5	Show that $J_n(x)$ is an even function when n is even and odd function when n is odd function.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
6	Show that $\int J_3(x)dx = -J_2(x) - \frac{2}{x}J_1(x)$ using Bessel's Recurrence relation.	Apply	Leaner to recall the Bessel recurrence relation and apply	CO10,CO 11

			them to prove different	
			relation	
7	Make use of generating function show that $\cos(x\sin\theta) = J_0 + 2(J_2\cos2\theta + J_4\cos4\theta +$	Analyse)	Leaner to recall the Bessel recurrence relation and apply them finding trigonometric relations in term of Bessel functions	CO10,CO 11
8	Make use of generating function show that $\sin(x\sin\theta) = 2(J_1\sin\theta + J_3\sin3\theta + J_5\sin5\theta$.	Analyse)	Leaner to recall the Bessel recurrence relation and apply those finding trigonometric relations in term of Bessel functions.	CO10,CO 11
9	Show that $J_n(-x) = (-1)^n J_n(x)$ where n is a positive or negative integer.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
	Show the Bessel's recurrence relation $xJ'_n(x) = nJ_n(x) - x J_{n+1}(x)$.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
	Show the Bessel's recurrence relation $xJ'_n(x) = -nJ_n(x) + x J_{n-1}(x)$.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
12	Show that $J_{\frac{3}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{1}{x}\sin x - \cos x\right)$	Apply	Leaner to recall the Bessel recurrence relation and apply those finding trigonometric functions in term of Bessel functions.	CO10,CO 11
13	Relate $J_5(x)$ interms of $J_0(x)$ and $J_1(x)$	Understand	Leaner to recall the Bessel recurrence relation and apply them find different functional values.	CO10,CO 11
14	Show that $\int x J_0^2(x) dx = \frac{1}{2} x^2 [J_0^2(x) + J_1^2(x)]$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
15	Show that $\frac{n}{x}J_n(x) + J_n'(x) = J_{n-1}(x)$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
	Show that $J_0^2 + 2(J_1^2 + J_2^2 + J_3^2 + \dots) = 1$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
17	Show that $2nJ_n(x) = x[J_{n+1} + J_{n-1}]$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
18	Show the Bessel's recurrence relation $J'_n(x) = \frac{1}{2}[J_{n-1}(x) - J_{n+1}(x)].$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
19	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11

20	Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
PART - C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)				
1	Show that $J_{-n}(x) = (-1)^n J_n(x)$ where n is a positive integer.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
2	Show that $J_n(x) = \frac{1}{\pi} \int_0^{\pi} \cos(n\theta - x\sin\theta) d\theta$ where $J_n(x)$ is Bessel's function, n being a integer.	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
3	Show that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0, & \text{if } \alpha = \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2}, & \text{if } \alpha \neq \beta \end{cases}$	Analyse	Leaner to recall the Bessel recurrence relation and apply recurrence relations analyse them in different cases for finding orthogonal function to Bessel	CO 11
4	State and prove Generating function of Bessel's functions	Analyse	Leaner to recall the Bessel recurrence relation and apply recurrence relations analyse them in different cases that generates Bessel function.	CO 11
5	Show that $\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
6	Show that $\frac{d}{dx}[x^{-n}J_n(x)] = -x^{-n}J_{n+1}(x)$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
7	Show that $\int J_3(x) + J_2(x) + \frac{2}{x}J_1(x) = 0$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
8	Show that $cosx = J_0 - 2J_2 + 2J_4 - \cdots$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
9	Show that $sinx = 2(J_1 - J_3 + J_5 - \cdots)$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11
10	Show that $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left(\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right).$	Apply	Leaner to recall the Bessel recurrence relation and apply them to prove different relation	CO10,CO 11