

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal,Hyderabad-500043

ELECTRONICS AND ELECTRICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MATHEMATICAL TRANSFORM TECHNIQUES									
Course Code	AHSB11	AHSB11								
Programme	B.Tech	B.Tech								
Semester	II	II								
Course Type	Core	Core								
Regulation	IARE - R18	IARE - R18								
Course Structure	Lectures	Tutorials	Practical	Credits						
	3	1	-	4						
Course Coordinator	Dr. S Jagadha, Assoc	ciate Professor								
Course Faculty	Dr. P. Srilatha, Associate Professor Ms. L Indira, Assistant Professor Ms. C Rachana, Assistant Professor Ms. P Rajani, Assistant Professor Ms. B. Praveena, Assistant Professor									

COURSE OBJECTIVES (COs):

The	course should enable the students to:
т	Enrich the knowledge solving algebra and transcendental equations and understanding Laplace
1	transforms.
II	Determine the unknown values of a function by interpolation and applying inverse Laplace transforms
III	Fitting of a curve and determining the Fourier transform of a function
IV	Solving the ordinary differential equations by numerical techniques
V	Formulate to solve Partial differential equation

COURSE OUTCOMES (COs):

CO 1	Analyzing real roots of algebraic and transcendental equations by Bisection method, False
	position and Newton -Raphson method. Applying Laplace transform and evaluating given
	functions using shifting theorems, derivatives, multiplications of a variable and periodic
	function.
CO 2	Understanding symbolic relationship between operators using finite differences. Applyiing
	Newton's forward, Backward, Gauss forward and backward for equal intervals and Lagrange's
	method for unequal interval to obtain the unknown value. Evaluating inverse Laplace transform
	using derivatives, integrals, convolution method. Finding solution to linear differential equation
CO 3	Applying linear and nonlinear curves by method of least squares. Understanding Fourier
	integral, Fourier transform, sine and cosine Fourier transforms, finite and infinite and inverse of
	above said transforms.
CO 4	Using Numericals methods such as Taylors, Eulers, Modified Eulers and Runge-Kutta methods
	to solve ordinary differential equations.
CO 5	Analyzing order and degree of partial differential equation, formation of PDE by eliminating
	arbitrary constants and functions, evaluating linear equation b Lagrange's method. Applying the
	heat equation and wave equation in subject to boundary conditions.

COURSE LEARNING OUTCOMES (CLOs): Students, who complete the course, will have demonstrated the asking to do the following:

AHSB11.01	Evaluate the real roots of algebraic and transcendental equations by Bisection method, False position and Newton -Raphson method.
AHSB11.02	Apply the nature of properties to Laplace transform and inverse Laplace transform of the given function.
AHSB11.03	Solving Laplace transforms of a given function using shifting theorems.
AHSB11.04	Evaluate Laplace transforms using derivatives of a given function.
AHSB11.05	Evaluate Laplace transforms using multiplication of a variable to a given function.
AHSB11.06	Apply Laplace transforms to periodic functions.
AHSB11.07	Apply the symbolic relationship between the operators using finite differences.
AHSB11.08	Apply the Newtons forward and Backward, Gauss forward and backward Interpolation method to determine the desired values of the given data at equal intervals, also unequal intervals.
AHSB11.09	Solving Laplace transforms and inverse Laplace transform using derivatives and integrals.
AHSB11.10	Evaluate inverse of Laplace transforms and inverse Laplace transform by the method of convolution.
AHSB11.11	Solving the linear differential equations using Laplace transform.
AHSB11.12	Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems
AHSB11.13	Ability to curve fit data using several linear and non linear curves by method of least squares.
AHSB11.14	Understand the nature of the Fourier integral.
AHSB11.15	Ability to compute the Fourier transforms of the given function.
AHSB11.16	Ability to compute the Fourier sine and cosine transforms of the function
AHSB11.17	Evaluate the inverse Fourier transform, Fourier sine and cosine transform of the given function.
AHSB11.18	Evaluate finite and infinite Fourier transforms
AHSB11.19	Understand the concept of Fourier transforms to the real-world problems of circuit analysis, control system design
AHSB11.20	Apply numerical methods to obtain approximate solutions to Taylors, Eulers, Modified Eulers
AHSB11.21	Runge-Kutta methods of ordinary differential equations.
AHSB11.22	Understand the concept of order and degree with reference to partial differential equation
AHSB11.23	Formulate and solve partial differential equations by elimination of arbitrary constants and functions
AHSB11.24	Understand partial differential equation for solving linear equations by Lagrange method.
AHSB11.25	Learning method of separation of variables.
AHSB11.26	Apply solving the heat equation and wave equation in subject to boundary conditions
AHSB11.27	Understand the concept of partial differential equations to the real-world problems of electromagnetic and fluid dynamics

S. No	QUESTIONS	Blooms Taxonomy	Course Outcomes	Course Learning
		level	(COs)	Outcomes (CLOs
	MODULE - I		DMC	
	Part - A (Short Answer Questions)	A IKANSFU	KINIS	
1	Define an Algebraic equation.	Remember	CO 1	AHSB11.01
2	Define an Transcendental equation .	Remember	CO 1	AHSB11.01
3	Write the Bisection formulae to find the real root of algebraic equation in an interval.	Remember	CO 1	AHSB11.01
4	Write the Regula-Falsi formula to find the real root of algebraic equation in an interval.	Remember	CO 1	AHSB11.01
5	Write the Newton-Raphson formulae to find the real root of algebraic equation in an interval.	Remember	CO 1	AHSB11.01
6	By using Regula-Falsi method, find an approximate root of the equation $x^4 - x - 10 = 0$ that lies between 1.8 and 2. Carry out two	Remember	CO 1	AHSB11.01
7	Apply Newton –Raphson method to find an approximate root of the equation $x^3 - 3x - 5 = 0$, which lies near x=2 carry out two	Understand	CO 1	AHSB11.01
8	approximations. Find a real root of the transcendental equation $xe^x = 2$ using method of False Position carry out three approximations	Understand	CO 1	AHSB11.01
9	Explain bisection method.	Understand	CO 1	AHSB11.01
10	Find a real root of the transcendental equation xe^{x} -cosx = 0 using Newton	Understand	CO 1	AHSB11.01
	-Raphson method carry out three approximations.			
11	Define Laplace Transform and write the sufficient conditions for the	Remember	CO 1	AHSB11.02
	existence of Laplace Transform.	Remember		1115011.02
12	Find the Laplace transform of $(\sin t - \cos t)^3$	Remember	CO 1	AHSB11.02
13	Verify whether the function $f(t)=t^3$ is exponential order and find its transform.	Understand	CO 1	AHSB11.02
14	Find the Laplace transform of Dirac delta function	Remember	CO 1	AHSB11.02
15	Find the Laplace transform of $ \sin \omega t , t \ge 0$	Understand	CO 1	AHSB11.02
16	State and prove Linearity property of Laplace transform.	Understand	CO 1	AHSB11.02
17	Find $L\{g(t)\}$ where $g(t) = \begin{cases} \cos(t - \frac{2\pi}{3}), & \text{if } t > \frac{2\pi}{3} \\ 0, & \text{if } t < \frac{2\pi}{3} \end{cases}$	Understand	CO 1	AHSB11.02
18	Find the Laplace transform of Sinht	Remember	CO 1	AHSB11.02
19	Verify the initial and final value theorem for $e^{-t}(t+1)^2$	Remember	CO 1	AHSB11.03
20	State and prove change of scale property of Laplace Transforms	Understånde:	rstan & O 1 AH	SBHIS091103
1	Part - B (Long Answer Questions)	Romember	CO 1	AUSP11.01
1	Find the positive root of $x^3 - x - 1 = 0$ using Bisection method.	Kemeniber	01	AIISD11.01
2	Find a real root of the transcendental equation $e^x \sin x = 1$ by using False position method correct up to three decimals.	Remember	CO 1	AHSB11.01
3	Solve transcendental equation $2x = \cos x + 3$ by Newton-Raphson method correct up to three decimals.	Remember	CO 1	AHSB11.01

4	Find a real root of transcendental equation $\log x = \cos x$ using method	Remember	CO 1	AHSB11.01
	of False position correct up to four decimals.			
5	Find a real root of transcendental equation 3x- cosx -1=0 using Newton Ranhson method correct up to four decimals	Remember	CO 1	AHSB11.01
6	Find a real root of the transcendental equation xtanx+1=0 by	Remember	CO 1	AHSB11.01
7	Find the real root algebraic equation x^3 - x- 4=0 by Bisection method	Apply	CO 1	AHSB11.01
8	correct up to four decimals. Find the real root of algebraic equation $3x = e^x$ by Bisection method	Remember	CO 1	AHSB11.01
9	correct up to two decimals. Find the square root of 26 up to 4 decimal places by using	Remember	CO 1	AHSB11.01
10	Newton-Raphson method.	Domombor	CO 1	AUSD11.01
10	$xe^x - 3 = 0$ carry out three approximations.	Kennennber	COT	AU2011.01
		-		
11	Find the Laplace transform of $f(t) = (t+3)^2 e^t$	Remember	CO 1	AHSB11.03
12	Find $L\left\{\frac{\cos 4t \sin 2t}{t}\right\}$	Remember	CO 1	AHSB11.05
13	Using Laplace transform evaluate $\int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$	Understand	CO 1	AHSB11.04
14	Find $L \{\cosh at \sin bt\}$	Understand	CO 1	AHSB11.01
15	Find $L\left\{e^{-3t}\sinh 3t\right\}$	Understand	CO 1	AHSB11.05
16	Find $L\{t\sin 3t\cos 2t\}$	Understand	CO 1	AHSB11.05
17	Find the Laplace transform of $\frac{\cos 2t - \cos 3t}{t}$	Understand	CO 1	AHSB11.05
18	Find the Laplace transform of $te^{2t} \sin 3t$	Remember	CO 1	AHSB11.05
19	Find the Laplace transform of $\left\{\frac{1-\cos a t}{t}\right\}$	Remember	CO 1	AHSB11.06
20	Find the Laplace transform of $\cos t \cos 2t \cos 3t$	Remember	CO 1	AHSB11.06
	Part - C (Problem Solving and Critical Thinking Que	estions)		
1	Derive a formula to find a cube root of N using Newton-Raphson method and hence find cube root of 15.	Understand	CO 1	AHSB11.01
2	Find reciprocal of real number 18 using Newton-Raphson method.	Remember	CO 1	AHSB11.01
3	Find a root of the equation $4\sin x = e^x$ using Bisection method correct up to four decimals.	Remember	CO 1	AHSB11.01
4	Find a root of the equation $2x-\log x=7$ using the False Position method	Remember	CO 1	AHSB11.01
5	Find a root of the equation $x+\log_{10} x=3.375$ using Newton-Raphson	Remember	CO 1	AHSB11.01
	method.		l	
		Life damating 4		TALICE 1104
6	Using the theorem on transforms of derivatives, find the Laplace Transform	n omderstande	rstanta O I AH	SRHDRI1104
	the following functions (a) e ^{at} (b) cosat (c) t sin at			
7	Find the Laplace transform of (a) $e^{-3t} \cosh 4t \sin 3t$ (b) $(t+1)^2 e^t$	Understand	CO 1	AHSB11.04
8	Find the Laplace transform of (a) $t^2 e^t \sin 4t$ (b) $t \cos^2 t$	Understand	CO 1	AHSB11.04
9	Find the Laplace transform of $\int_{0}^{t} \frac{e^{t} \sin t}{t} dt$	Apply	CO 1	AHSB11.05
	1	1		

10	$\sin t$, $\sin t$, $-5t$, $\sin t$	Understand	CO 1	AHSB11.04								
	Find the L{f(t)} and L{t'(t)} for the function (a) $-$ (b) $e^{-t} \sin t$											
	MODULE-II											
	INTERPOLATION AND INVERSE LAPLACE TRAN	NSFORMS										
	Part – A (Short Answer Questions)											
1	Define the term Interpolation.	Remember	CO 2	AHSB11.07								
2	State Newton's forward interpolation formula for equal length of intervals.	Remember	CO 2	AHSB11.08								
3	State Newton's backward interpolation formula for equal length of intervals.	Remember	CO 2	AHSB11.08								
4	State Gauss forward interpolation formula for equal length of intervals and state Lagrange's Interpolation formulae for unequal intervals	Remember	CO 2	AHSB11.08								
5	Define average operator and shift operator.	Remember	CO 2	AHSB11.07								
6	Prove the relationship between forward difference operator and shift operator.	Remember	CO 2	AHSB11.07								
7	Prove the relationship between backward difference operator and shift operator.	Remember	CO 2	AHSB11.07								
8	Prove the relationship between forward and backward difference operator	Remember	CO 2	AHSB11.07								
9	Construct a forward difference table for $f(x)=x^3+5x-7$ if $x=-1,0,1,2,3,4,5$	Understand	CO 2	AHSB11.07								
10	For what values of p the Gauss forward and backward interpolation formula is used to interpolate?	Understand	CO 2	AHSB11.08								
		· ·										
11	Find the inverse Laplace transform of $\frac{s}{s^2 - a^2}$	Understand	CO 2	AHSB11.09								
12	Find the inverse Laplace transform of $\frac{1}{s} \cos \frac{1}{s}$	Understand	CO 2	AHSB11.09								
13	Find the inverse Laplace transform of $\left\{ \frac{2s-5}{4s^2+25} + \frac{4s-18}{9-s^2} \right\}$	Understand	CO 2	AHSB11.09								
14	Find the inverse Laplace transform of $\frac{e^{-2s}}{(s+4)^3}$	Remember	CO 2	AHSB11.09								
15	Find $L^{-1}\left\{\frac{3s+7}{s^2-2s-3}\right\}$	Understand	CO 2	AHSB11.09								
16	Find $L^{-1}\left\{\frac{s}{(s+1)^2(s^2+1)}\right\}$	Understand	CO 2	AHSB11.09								
17	Find the inverse Laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$	Understand	CO 2	AHSB11.09								
18	Find the inverse Laplace transform $\frac{s}{(s^2+1)(s^2+9)(s^2+25)}$	Understand	CO 2	AHSB11.09								
19	Find the inverse Laplace transform of $\log\left(\frac{s^2+4}{s^2+9}\right)$	Understand	CO 2	AHSB11.09								
20	Find the inverse Laplace transform $\frac{e^{-2s}}{s^2 + 4s + 5}$	Understand	CO 2	AHSB11.09								
L	Part - B (Long Answer Questions)		00.0									
	Find y(2.8) for the following data using Newton's forward interpolation formula.	Apply	CO 2	AHSB11.08								
	x 2.4 3.2 4.0 4.8 5.6											
	f(x) 22 17.8 14.2 38.3 51.7											

2	Find f(42) from the following data using Newton's Backward	Apply	CO 2	AHSB11.08
	interpolation formula.			
	x 20 25 30 35 40 45			
	y 354 332 291 260 231 204			
3	The population of a town in the decimal census was given below.	Apply	CO 2	AHSB11.08
5	Estimate the population for the year 1895		002	1
	Year (x) 1891 1901 1911 1921 1931			
	Population (y) 46 66 81 93 101			
4	Find y(25) given that $y(20)=24$, $y(24)=32$, $y(28)=35$, $y(32)=40$ using Gauss forward interpolation formula.	Remember	CO 2	AHSB11.08
5	Find by Gauss's backward interpolating formula the value of y at	Remember	CO 2	AHSB11.08
	x = 1936 using the following table			
	X 1901 1911 1921 1931 1941 1931			
	y 12 15 20 27 39 52			
6	Find by Gauss's backward interpolating formula the value of y at $x = 14$	Remember	CO 2	AHSB11.08
	using the following table			
	x 0 5 10 15 20 25			
	y 7 11 14 18 24 32			
7	Find f (1.6) using Lagrange's formula from the following table.	Apply	CO 2	AHSB11.08
	x 1.2 2.0 2.5 3.0			
	f(x) 1.36 0.58 0.34 0.20			
8	Find $y(5)$ given that $y(0)=1$, $y(1)=3$, $y(3)=13$ and $y(8)=123$ using	Remember	CO 2	AHSB11.08
9	Lagrange's interpolation formula. Find $y(10)$ given that $y(5)=12$, $y(6)=13$, $y(9)=14$, $y(11)=16$ using	Remember	CO 2	AHSB11.08
	Lagrange's interpolation formula.	Remember	002	THISD11.00
10	Fit a curve which passes through the points (0, 18), (1, 10), (3,-18) and	Remember	CO 2	AHSB11.08
	(6, 90) using Lagrange's formula.			
11		Understand	CO 2	AUSD11.00
11	Find the inverse Laplace transform of $\frac{2S^2 - 6S + 5}{2S^2 - 6S + 5}$	Understand	02	Ansb11.09
	$S^3 - 6S^2 + 11S - 6$			
12	Find the inverse Laplace transform $\frac{1}{4}$	Understand	CO 2	AHSB11.09
	$(s^3+1)s^3$			
13	$(s+1)e^{-\pi s}$	Understand	CO 2	AHSB11.09
	Find the inverse Laplace transform $\frac{1}{s^2 + s + 1}$			
14	q(a) = q(s)	Understand	CO 2	AHSB11.09
	Find the inverse Laplace transform of $\tan^{-1}\left(\frac{a}{s}\right) + \cot^{-1}\left(\frac{b}{h}\right)$			
15		Understand	CO 2	AHSB11.09
15	Find the inverse Laplace transform $\frac{s^2 + 2s - 4}{s^2 + 2s - 4}$	Chacistana	002	1115211.09
	$(s^2 + 9)(s-5)$			
16	Solve the following initial value problem by using Laplace transform	Apply	CO 2	AHSB11.11
	$(D^2 + 2D + 5)y = e^{-t} \sin t - y(0) = 0 - y'(0) = 1$			
	$(D + 2D + 5)y - e^{-1} \sin t, y(0) = 0, y(0) = 1$			
17	Solve the following initial value problem by using Laplace transform	Understand	CO 2	AHSB11.11
	$y'' + 9y = \cos 2t, y(0) = 1, y(\frac{\pi}{2}) = -1$			
	L L			

18	Solve the	followin	g init	ial value	problem	n by using La	place	trans	form	Understand	CO 2	AHSB11.11
	y''' - 2y'' + 5y' = 0, y(0) = 1, y'(0) = 0, y''(0) = 1											
19	Solve the following initial value problem by using Laplace transform									Apply	CO 2	AHSB11.11
	$(D^3 - D)$	$^{2} + 4D$	-4)	y = 68e	$e^x \sin 2x$	$x, y=1, \ I$	Dy =	-19,				
	$D^2 y = -37 \ at \ x = 0$											
20	Solve the	followin	g init	ial value	problem	ı by using La	place	trans	form	Understand	CO 2	AHSB11.11
	$\frac{dy}{dt} + 2y + \int_{0}^{t} y dt = \sin t, \ y(0) = 1$											
			Part	t – C (P	g)							
1	Evaluate f Lagrange'	(10) giv s interpo	en f(z latio	x)=168, n formul	192, 336 a.	5 at x=1, 7, 1	5 resp	pectiv	ely using	Remember	CO 2	AHSB11.08
2	Prove that	$\Delta[\mathbf{x}(\mathbf{x}+$	1)(x-	+2)(x+3)]=4(x+1))(x+2)(x+3)	by tak	cing o	lifference	Apply	CO 2	AHSB11.07
3	Find y(1.6) from the	ne fol	lowing o	lata usin	g Newton's f	òrwar	d inte	erpolation	Remember	CO 2	AHSB11.08
	x 1	1	.4	1.8	2.2]						
	y 3.	49 4	.82	5.96	6.5							
4	Using Gau table	iss back	ward	differer	ice form	ula find y(24) from	n the	following	Remember	CO 2	AHSB11.08
	X	0		5	10	15	20)	25			
	у	7		11	14	18	24	4	32			
5	Compute f	f(0.3) for	the o	data usin	g Lagrar	nge's interpol	ation	form	ıla.	Apply	CO 2	AHSB11.08
	y x		1		3	49						
	T											
6	Find the ir	iverse L	aplac	e transfo	rm $\frac{1}{s^2}$	$\frac{s+3}{-10s+29}$				Understand	CO 2	AHSB11.09
7	Find the ir	warea tr	nsfo	rm of	<i>s</i> +2					Understand	CO 2	AHSB11.09
	i ma me n	iverse u	111510	s s	$^{2}-4s+$	13						
0		-			S	$^{2} + s - 2$				Understand	CO 2	AHSB11.09
0	Find the ir	iverse L	aplac	e transfo	$rm \frac{1}{s(s)}$	+3)(s-2)						
9	Apply con	volution	thee	nom to o	valuata	T -1	s^2		Ì	Apply	CO 2	AHSB11.10
	Apply con	voiutioi	theo	ieni to e	valuate	$\sum_{n=1}^{\infty} \frac{1}{(s^2+a)}$	a^2)(s	$k^{2} + k$	(p^2)			
10						-1 [1)			Apply	CO 2	AHSB11.10
	Apply con	volution	theo	rem to e	valuate 1	$L^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$	$\overline{4)^2}$					
	l 					MODULE-		TD	NCEOD	MC		
			UK	<u>EFII</u> Par	$\frac{1110}{1 - \Delta}$	hort Answe	r Ou	IK/	ns)	IVIS		
1	State the	normal e	quati	ons of th	e straigh	t line $y = a +$	bx	0540		Understand	CO 3	AHSB11.13
2	State the I	normal e	quati	ons of th	e second	l degree equa	tion			Understand	CO 3	AHSB11.13
	y = a + bx	$x + cx^2$										

	State the normal equations to fit the exponential curve of the form	Remember	CO 3	AHSB11.13
	$y = a^{bx}$			
	y - uc	<u> </u>		AUGD 11 12
4	State the normal equations to fit the power curve of the form $y = ab^{n}$	Remember	$\frac{003}{003}$	AHSBII.13
3	b If $y = a + -is$ a curve then write normal equations to find the constants	Remember	05	Апзытть
	X			
	a and b.			
6	If $y = a_0 + a_1 x + a_2 x^2$ then what is the third normal equation of $\sum x_i^2 y_i$	Remember	CO 3	AHSB11.13
	by least squares method?	<u> </u>		
7	If $y = ax^{b}$, then what is the first normal equation of $\sum \log y_{i}$?	Remember	CO 3	AHSB11.13
8	Fit a curve of the form $y = ax^b$ by the method of least squares to the	Understand	CO 3	AHSB11.13
	following data.			
	x 1 2 3			
	<u> </u>			
	y 2.98 4.20 5.21	TT. 1	<u> </u>	AUCD1112
9	Fit a straight line to the form $y = a + bx$ by the method of least squares	Understand	03	АПЗВ11.13
	for the following data			
	x 0 5 10			
	y 12 15 17			
10		A	<u> </u>	AUCD1112
10	Fit a curve $y = ae^{ix}$ to the data	Арріу	03	AHSB11.15
	x 0 2 4			
	y 5.1 10 31.1			
11	White the Dermine size internel and accine internel	Domonthan	<u> </u>	AUCD11.14
11	write the Fourier sine integral and cosine integral.	Understand	$\frac{003}{003}$	AHSB11.14
12	Find the Fourier sine transform of xe^{-ax}	Understand	CO 3	AHSB11.13
13	Write the infinite Fourier transform of $f(x)$.	Remember	<u>CO 3</u>	AHSB11.18
14	Write the properties of Fourier transform of $f(x)$	Remember	$\frac{\text{CO} 3}{\text{CO} 3}$	AHSBII.15
15	Find the Fourier sine transform of $I(x) = x$	Understand	$\frac{003}{003}$	AHSD11.14
1 16	Nigle Bourier Inteorgi Theorem	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
16	Define Fourier transform	Remember	$\frac{003}{003}$	AHSB11.15 AHSB11.18
16 17 18	Define Fourier transform. Find the finite Fourier cosine, transform of $f(x)=1$ in $0 < x < \pi$	Remember Understand	CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18
16 17 18 19	Define Fourier transform. Find the finite Fourier cosine transform of $f(x)=1$ in $0 < x < \pi$	UnderstandUnderstandUnderstand	$\begin{array}{r} \text{CO 3} \\ \hline \text{CO 3} \\ \hline \text{CO 3} \\ \hline \text{CO 3} \end{array}$	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18
16 17 18 19	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{2\pi}$	OnderstandRememberUnderstandUnderstand	CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18
16 17 18 19	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$	Remember Understand Understand	CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18
16 17 18 19 20	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.	Remember Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15
$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \end{array} $	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms. Part – B (Long Answer Questions)	Onderstand Remember Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18
16 17 18 19 20 1	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1-\cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms. Part – B (Long Answer Questions) By the method of least squares find the straight line that best fits the	Onderstand Remember Understand Understand Understand Apply	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.13
16 17 18 19 20 1	Define Fourier transform. Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms. Part – B (Long Answer Questions) By the method of least squares find the straight line that best fits the following data:	Onderstand Remember Understand Understand Understand Apply	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.13
16 17 18 19 20 1	State Fourier Integrat theorem. Define Fourier transform. Find the finite Fourier cosine transform $f(x) = 1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms. Part – B (Long Answer Questions) By the method of least squares find the straight line that best fits the following data: x 1 3 5 7 9	Onderstand Remember Understand Understand Understand Apply	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.13
16 17 18 19 20 1	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1-\cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part - B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: $\overline{x \ 1 \ 3 \ 5 \ 7 \ 9}$ $y \ 1.5 \ 2.8 \ 4.0 \ 4.7 \ 6$	Onderstand Remember Understand Understand Understand Apply	CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.13
16 17 18 19 20 1 20 2	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1-\cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part - B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data:	Onderstand Remember Understand Understand Understand Apply Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.15 AHSB11.13
$ \begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \hline 1 \\ 2 \end{array} $	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x) = 1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data:The squares find the straight line that best fits the following data:	Onderstand Remember Understand Understand Understand Apply Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.13 AHSB11.13
16 17 18 19 20 1 2	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x) = 1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 12345 x 1234514274055	Childerstand Remember Understand Understand Understand Apply Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.13 AHSB11.13
16 17 18 19 20 1 1 2	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)=1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1-\cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 1234 y 1427405568Effect to be the base of the full of the base of	Onderstand Remember Understand Understand Understand Apply Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.15 AHSB11.13 AHSB11.13
$ \begin{array}{r} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \hline 1 \\ 2 \\ 3 \\ 3 \end{array} $	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part - B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 1234 y 1427405568Fit a straight line $y=ax+b$ for the following data by method of least squares in the straight line $y=ax+b$ for the following data by method of least squares in the straight line $y=ax+b$ for the following data by method of least squares in the straight line $y=ax+b$ for the following data by method of least squares in the straight line $y=ax+b$ for the following data by method of least squares in the squares in	Onderstand Remember Understand Understand Understand Apply Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.17 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13
$ \begin{array}{c} 16 \\ \overline{17} \\ 18 \\ 19 \\ \hline 20 \\ \hline 1 \\ \hline 2 \\ \hline 3 \\ \end{array} $	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579y1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 1234 y 1427405568Fit a straight line $y=ax+b$ for the following data by method of least squares:	Onderstand Remember Understand Understand Understand Apply Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13
$ \begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \hline 1 \\ 2 \\ 3 \\ \end{array} $	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x) = 1$ in $0 < x < \pi$ Find the inverse finite sine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579 y 1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 1234 y 1427405568Fit a straight line $y=ax+b$ for the following data by method of least squares: x 01234 y 1118345	Onderstand Remember Understand Understand Understand Apply Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13
$ \begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \hline 1 \\ 2 \\ 3 \\ \end{array} $	State Fourier Integratitieorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: \overline{x} 13579 \overline{y} 1.52.84.04.76By the method of least squares find the straight line that best fits the following data: \overline{x} 1234 \overline{y} 1427405568Fit a straight line $y=ax+b$ for the following data by method of least squares: \overline{x} 01234 \overline{y} 11.83.34.56.3	Onderstand Remember Understand Understand Understand Apply Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13 AHSB11.13
$ \begin{array}{c} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ \hline 1 \\ 2 \\ 3 \\ 3 \end{array} $	State Fourier Integrat theorem.Define Fourier transform.Find the finite Fourier cosine transform $f(x)$ if $F_s(n) = \frac{1 - \cos n\pi}{n^2 \pi^2}$ State the Modulation property of Fourier transforms.Part – B (Long Answer Questions)By the method of least squares find the straight line that best fits the following data: x 13579y1.52.84.04.76By the method of least squares find the straight line that best fits the following data: x 1234 y 1427405568Fit a straight line $y=ax+b$ for the following data by method of least squares: x 01234 y 11.83.34.56.3	Onderstand Remember Understand Understand Understand Apply Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AHSB11.15 AHSB11.18 AHSB11.18 AHSB11.18 AHSB11.15 AHSB11.15 AHSB11.13 AHSB11.13 AHSB11.13

4	Fit a straight line to the form y=a+bx for the following data by method of least squares:								Understand	CO 3	AHSB11.13
	v	0	5	10	15	20	25				
	N V	12	15	10	22	20	30				
5	Dr: tha m		flagstag			d dagmaa	nolunor	mial	Understand	CO 2	AUSD11 12
5	y=a+bx	$+cx^{2}$ to t	the follow	ving data.	i secon	u uegree	porynor	IIIai	Understand	05	Апзотт.
	x	2	4	6	8	10)				
	у	3.07	12.85	31.47	57.3	8 91.2	29				
6	Fit a sec	cond deg	gree curv	e y=a+bx	+cx ² fo	or the foll	lowing c	lata by method	Understand	CO 3	AHSB11.13
	of least s	square.	2	3	4						
	y y	6	11	18	27						
7	Using th v=ae ^{bx} f	e metho	d of least	t squares f data:	ind the	constant	is a and t	o such that	Apply	CO 3	AHSB11.13
	x	0	0.5	1	1.5	2	2.5				
	у	0.10	0.45	2.15	9.15	40.35	180.75	5			
8	Obtain a	relation	n of the f	°orm y=ab	^x for th	e follow	ing data	by the method	Understand	CO 3	AHSB11.13
	of least s	squares.									
	Х	2	3	4	5	6					
	у	8.3	15.4	33.1	65.2	127.4					
9	Fit a sec	ond deg	ree curve	$\frac{y=a+bx+}{3}$	cx² by	method of 4	of least s	quares	Understand	CO 3	AHSB11.13
	y	23	5.2	9.7		16.5	2	9.4			
10	Obtain a least sou	relation	n of the f	form y=ae	^{ox} for t	he follov	ving data	a by method of	Understand	CO 3	AHSB11.13
	X	2	3	4		5	6				
	у	8.3	15.4	4 33.	1	65.2	127.4				
11	Find th	e Fourie	r transfo	rm of f(x)	define	d by			Understand	CO 3	AHSB11.15
		[1	$ \mathbf{r} < a$								
	f(x)	$= \begin{cases} 1, \\ 0, \end{cases}$	x > a	nd henc	e eva	luate					
		(°,									
	ſ	$\frac{\sin p}{d}$	p.and	$\sin ap$	$\cos p$	$\frac{x}{-dp}$					
	J ()	p	J		D	-					
12	Find the	e Fourie	r transfor	m of f(x)	lefined	by $f(f)$	$x) = \begin{cases} 1 - x \\ - x \end{cases}$	$-x^2$, $ x \le 1$ 0, $ x > 1$	Apply	CO 3	AHSB11.15
	Hence evaluate										
	(i) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx$ (ii) $\int_0^\infty \frac{x \cos x - \sin x}{x^3} dx$										

13	Find the Fourier Transform of $f(x)$ defined by	Understand	CO 3	AHSB11.15
	$-x^2$			
	$f(x) = e^{-\frac{1}{2}}, -\infty < x < \infty$ or, Show that the Fourier Transform of			
	$\frac{-x^2}{2}$			
	e^{-2} is reciprocal.			
14	Find the Fourier sine Transform of $e^{- x }$ and hence evaluate	Understand	CO 3	AHSB11.17
	$\infty x \sin mx$			
	$\int_0 \frac{1}{1+x^2} dx$			
15	Find the Fourier speins transform of	Apply	CO 3	AUSD11 17
15	Find the Fourier cosine transform of $(x) = \frac{-\alpha x}{\alpha}$ size as	Арргу	05	Ansbii.i/
	$(a) e^{-1}\cos ax (b) e^{-1}\sin ax$			
16	Using Fourier integral show that	Apply	CO 3	AHSB11.14
	$2(b^2-a^2)$ and $2\sin 4x$			
	$e^{-ax} - e^{-bx} = \frac{2(b^{-ax})}{b^{-ax}} \int_{0}^{\infty} \frac{\lambda \sin \lambda x}{(x^{2} - x^{2})(x^{2} - x^{2})} d\lambda, a > 0, b > 0$			
	π $J_0\left(\lambda^2 + a^2\right)\left(\lambda^2 + b^2\right)$			
17	Using Fourier Integral show that	Understand	CO 3	AHSB11 14
17	$\int \pi$	Charlotana	000	
	$\int_{-\infty}^{\infty} \frac{1 - \cos \lambda \pi}{\sin \lambda r} \sin \lambda r d\lambda = \int_{-\infty}^{\infty} \frac{i}{2} i f 0 < x < \pi$			
	$\int_0^{\infty} \frac{\lambda}{\lambda} = \int_0^{\infty} $			
	$(0, lf \ x > \pi)$			
18	Find the finite Fourier sine and cosine transforms of $f(x) = \sin ax$ in	Understand	CO 3	AHSB11.1
	$(0,\pi)$.			7
19	Find the inverse Fourier cosine transform $f(x)$ of $F_c(p) = p^n e^{-ap}$	Apply	CO 3	AHSB11.17
	n			
	and inverse Fourier sine transform $f(x)$ of $F_s(p) = \frac{p}{1+p^2}$			
2.0	1+p	XX 1 1	<u> </u>	
20	Find the finite Fourier sine and cosine transform of $f(x)$, defined by	Understand	CO 3	AHSB11.17
	$\left(\begin{array}{c}x\end{array}\right)^{2}$			
	$f(x) = \left 1 - \frac{\pi}{\pi} \right $, where $0 < x < \pi$			
	(λ)			
	Part - C (Problem Solving and Critical Thinking Que	estions)		
1	Describe the concept of method of least squares to fit a curve for the	Understand	CO 3	AHSB11.13
2	given data. Derive the Normal equations of a straight line by method of least squares	Understand	CO 3	AHSR11 13
3	Derive the Normal equations of a stranger time by method of least squares.	Understand	CO 3	AHSB11.13
	squares.			
4	If $y = ax+b$ is a straight line that fits the following data by the method of	Understand	CO 3	AHSB11.13
	least squares find a and b.			
	X 1 2 3			
	y 0 -1 4			
5	Fit a straight line to the form $y = ax^2 + bx + c$ for the following data by	Understand	CO 3	AHSB11.13
	method of least squares:			
	x 0 5 10 15 20 25			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

6	Find the Fourier cosine transform of the function $f(x)$ defined by	Understand	CO 3	AHSB11.16
	$\int \cos r 0 < r < a$			
	$f(x) = \begin{cases} \cos x, & 0 < x < u \\ 0 & 1 \end{cases}$			
	$(0, x \ge a)$			
7	Find the Fourier sine transform of f(x) defined by	Understand	CO 3	AHSB11.16
	$\int \sin x 0 < x < a$			
	$f(x) = \begin{cases} 0 & x \\ 0 & x \end{cases}$			
	$(0, x \ge a)$			
8	Find the Fourier sine and cosine transform of	Understand	CO 3	AHSB11.16
	$\left(\begin{array}{cc} x, & for 0 < x < 1 \end{array}\right)$			
	$f(x) = \begin{cases} 2-x, & \text{for } 1 < x < 2 \end{cases}$			
	0, for x > 2			
9	Find the finite Fourier sine and cosine transforms of	Understand	CO 3	AHSB1116
	f(x) = $x(\pi - x)$ in (0, π).	Onderstand	005	
10	State and prove the properties of Fourier transforms	Understand	CO 3	AHSB11.15
	MODULE-IV		1	
	NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTI	AL EQUAT	IONS	
	Part – A (Short Answer Questions)			
1	State the Taylor series formula to find the numerical solution of ordinary differential equation	Remember	CO 4	AHSB11.20
2	State the Euler formula to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
	differential equation.			
3	State the modified Euler formula to find the numerical solution of	Remember	CO 4	AHSB11.20
4	What is the difference between Euler and modified Euler formula to find	Remember	CO 4	AHSB11.20
	the numerical solution of ordinary differential equation	1000000		
5	What are single step methods to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
6	What are multistep methods to find the numerical solution of ordinary	Remember	CO 4	AHSB11.20
Ŭ	differential equation?	remember	001	11100111.20
7	Using Taylor's series method find an approximate value of y at $x = 0.1$	Remember	CO 4	AHSB11.20
	given y(0)=1 for the differential equation $y' = 3x + y^2$			
8	Using Euler's method, solve $y' = y^2 + x \cdot y(0) = 1$ to find $y(0,1)$ and	Apply	CO 4	AHSB11.20
	y(0.2)			
9	Using Taylors series, method solve $v' = v^2 + x$, $v(0) = 1$ to find $v(0,1)$	Apply	CO 4	AHSB11.20
	and y (0.2)			
10	Using Euler's method, solve the differential equation from $\frac{dy}{dy} = 3x^2 \pm 1$	Apply	CO 4	AHSB11.20
	dx = -3x + 1, dx			
	for $x = 2$, $y(1) = 2$, taking step size $h = 0.5$.			
11	State the second order Runge- Kutta method to find the numerical	Remember	CO 4	AHSB11 21
11	solution of ordinary differential equation.	Remember		1110011.21
12	State the third order Runge- Kutta method to find the numerical solution	Remember	CO 4	AHSB11.21
12	of ordinary differential equation.	D 1		ALIOD 11 01
13	State the fourth order Runge- Kutta method to find the numerical solution of ordinary differential equation.	Kemember	04	АНЗВ11.21
14	What is the advantage of Runge- Kutta method over Taylors series	Remember	CO 4	AHSB11.21
	method			

15	State the merits of Runge-Kutta method	Remember	CO 4	AHSB11.21
16	State the demerits of Runge- Kutta method	Remember	CO 4	AHSB11.21
17	Using Runge-Kutta method of second order, find y(0.2) where	Remember	CO 4	AHSB11.21
	y' = y - x, $y(0)=2$, $h = 0.2$			
18	Using Runge-Kutta method of third order, find y(0.2) where	Remember	CO 4	AHSB11.21
	$10y' = y^2 + x^2$, y(0)=1, h = 0.1			
19	Using Runge-Kutta method find $y(0,2)$ where $y' - yr$, $y(0) - 1$, $h = 0,2$	Remember	CO 4	AHSB11.21
20	Using Rule Rula method, find $y(0,2)$ where $y' = y_X$, $y(0) = 1$, $n = 0.2$	Domomhor	<u> </u>	AUCD11.21
20	Using Runge-Kutta method, find $y(0.2)$ where $y' = y + x$, $y(0) = 1$,	Remember	CO 4	АПЗВ11.21
	h = 0.2			
	Part – B (Long Answer Questions)		7 2.1	
1	Using Taylor's series method find an approximate value of y at $x = 0.2$	Apply	CO 4	AHSB11.20
	for the differential equation $y' - 2y = 3e^x$, y(0)=0.			
2	Solve by Euler's method $v' + v = 0$ given $v(0) = 1$ and find $v(0.04)$	Understand	CO 4	AHSB11.20
	taking step size $h = 0.01$			
3	Solve by Fuler's method $\mathbf{v}' = \mathbf{v} + \mathbf{v} \cdot \mathbf{v}(0) = 1$ and find the value of $\mathbf{v}(0,3)$	Remember	CO 4	AHSB11.20
5	Solve by Euler's method $y' = x + y$, $y(0) = 1$ and find the value of $y(0.5)$	rtemenioer		1112211120
	taking step size $n = 0.1$. compare the result obtained by this method with the result obtained by analytical methods			
4	Solve $y' = y^2$, $y(0) = 1$, using Taylor's series method and compute	Remember	CO 4	AHSB11 20
-	Solve $y = x - y$, $y(0) = 1$, using Taylor's series method and compute	Remember	004	THISD11.20
5	y(0.1), $y(0.2)$, $y(0.3)$ and $y(0.4)$ (correct to 4 decimal places).	Domomhor	CO 4	AUSD11.20
5	Using Euler's method solve the differential equation from $\frac{dy}{dt} = xy$.	Kemember	CO 4	Ansb11.20
	dx			
	for $x = 0.5$, $y(0) = 1$, taking step size $h = 0.1$.			
6	Using modified Euler's method, find the approximate value of x when	Apply	CO 4	AHSB11.20
	dy			
	$x = 0.5$ given differential equation $\frac{dx}{dx} = x + y$ and $y(0) = 1$.			
7	State the merits of Taylors series method	Remember	CO 4	AHSB11.20
8	State the demerits of Taylors series method	Apply	CO 4	AHSB11.20
9	Using modified Euler's method, find the approximate value of y when	Remember	CO 4	AHSB11.20
	dv _			
	$x = 0.25$ given differential equation $\frac{dy}{dx} = 2xy$ and y (0) = 1.			
10	$\frac{dx}{dx}$	Apply	CO 4	AUSD11 20
10	Solve by Euler's method $y' = \frac{1}{x}$ given $y(1) = 2$ and find $y(2)$	Арргу	04	AIISB11.20
			ac i	
11	Using Runge-Kutta method of fourth order, find $y(0.2)$ where	Remember	CO 4	AHSB11.21
	y' = 3x + 0.5y, y(0) = 1, h = 0.1.			
12	Apply the 4 th order Runge-Kutta method to find an approximate value of	Apply	CO 4	AHSB11.21
	y when x=1.2 in steps of 0.1, given that $y' = x^2 + y^2$, y(1)=1.5			
13	Using Dungo Kutta mathed of accord order find $u(25)$ at the	Remember	CO 4	AHSB11.21
	Using Kunge-Kuna memod of second order, find $y(2.3)$ given the			
	dy x+y			
	differential equation $\frac{1}{dx} = \frac{1}{x}$, $y(2) = 2$, $n = 0.25$.			
14	Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of 4 th order for the	Apply	CO 4	AHSB11.21
	differential equation $\mathbf{v}' = \mathbf{r}\mathbf{v} + \mathbf{v}^2 \mathbf{v}(0) - 1$	11 2		
1.5	$\frac{1}{1} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{j} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}$	A 1	CO 4	
15	Using Kunge-Kutta method of fourth order, find $y(0.2)$ given the	Арріу	CU 4	AHSB11.21
	differential equation $\frac{dy}{dt} = \frac{y-x}{y(0)} = 1$ h = 0.2			
	dx y+x			

16	Compute $y(0.1), y(0.2)$ by Runge-Kutta method of 4 th order for the	Apply	CO 4	AHSB11.21
	differential equation $y' = x + x^2 y$, $y(0) = 1$			
17	Using Runge-Kutta method of fourth order, given the differential equation	Apply	CO 4	AHSB11.21
	$\frac{dy}{dx} = x^2 + 0.25y^2$, y(0) = -1 on [0,0.5], h = 0.1.			
18	Compute $y at x = (0.2), (0.4), (0.6)$ by Runge-Kutta method for the	Apply	CO 4	AHSB11.21
	differential equation $y' = \frac{1}{1+x}$, $y(0) = 0$			
19	Compute $y(0.3)$ by Runge-Kutta method of 4 th order for the	Apply	CO 4	AHSB11.21
	differential equation $y' + y + y^2 x = 0$, $y(0) = 1$			
20	Using Runge-Kutta method of fourth order, find y when $x = 1.1$,	Apply	CO 4	AHSB11.21
	given the differential equation $\frac{dy}{dx} = 3x + y^2$, $y(1) = 1.2$.			
	Part – C (Problem Solving and Critical Thinkin	g)		
1	Using modified Euler's method find y (0.2) and y (0.4) given differential equation $y' = y + e^x$, $y(0) = 0$.	Understand	CO 4	AHSB11.20
2	Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in	Remember	CO 4	AHSB11.20
2	steps of 0.1, using modified Euler's method.			
3	Solve the first order differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ and	Apply	CO 4	AHSB11.20
	estimate y(0.1) using Euler's method(5 steps).			
4	Given $\frac{dy}{dx} = -y$ and $y(0) = 1$. Determine the values of y at	Remember	CO 4	AHSB11.20
	x = (0.01), (0.02), (0.03), (0.04) by Eulers method.			
5	Find y(4.4) by modified Eulers method given that $\frac{dy}{dx} = \frac{2-y^2}{5x}$, y=1 when x=1.	Remember	CO 4	AHSB11.20
			<u> </u>	
6	Using Runge-Kutta method find $y(0.2)$ for the differential equation	Remember	CO 4	AHSB11.21
	$\frac{dy}{dx} = y - x$,y(0)=1,take h=0.2.			
7	Apply the 4 th order Runge-Kutta method to find an approximate value of y when $y = 1.2$ in stone of $h = 0.1$ given the differential equation	Understand	CO 4	AHSB11.21
	$y' = x^2 + y^2$, $y(1)=1.5$			
8	Using Runge-Kutta method find to solve $10\frac{dy}{dy} = x^2 + y^2$	Understand	CO 4	AHSB11.21
	$y(0)=1$ for the interval $0 \le x \le 0.4$ with $h=0.1$			
9	$\int \frac{dy}{dy} = \frac{dy}{dy} = \frac{1}{2}$	Understand	CO 4	AHSB11.21
	Find $y(0.5), y(1), y(1.5), y(2)$ taking $h = 0.5$, given that $\frac{dx}{dx} = \frac{dy}{y+1}$,			
10	y(0) = 1 Using Runge-Kutta method find $y(0.8)$ for the differential equation	Understand	CO 4	AHSB11.21
10	dy	Choorstand		1110011.21
	$\frac{1}{dx} = \sqrt{x + y}, y(0.4) = 0.41.$			
1				1

	MODULE-V			
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS				
1	Part - A (Short Answer Questions)	Damamhan	CO 5	AUGD11.22
1	Define order and degree with reference to partial differential equation	Remember	05	AH5B11.22
2	Form the partial differential equation by eliminate the arbitrary constants	Understand	CO 5	AHSB11.22
	from $z = ax^3 + by^3$			
3	Form the partial differential equation by eliminating arbitrary function	Understand	CO 5	AHSB11.22
	$z=f(x^2+y^2)$			
4	Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$	Understand	CO 5	AHSB11.23
5	Form the partial differential equation by eliminating a and b from	Understand	CO 5	AHSB11.22
	$\log(az-1) = x + ay + b$			
6	Form the partial differential equation by eliminating the constants from	Apply	CO 5	AHSB11.22
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.			
7	Eliminate the arbitrary constants from $z=(x^2+a)(y^2+b)$	Understand	CO 5	AHSB11.22
8	Solve the partial differential equation $x(y-z)p+y(z-x)q=z(x-y)$.	Apply	CO 5	AHSB11.23
9	Solve $p+q=z$	Remember	CO 5	AHSB11.23
10	Solve $zp + yq = x$	Remember	CO 5	AHSB11.23
11	Define non-linear partial differential equation.	Remember	CO 5	AHSB11.22
12	Solve $xp + yq = 3z$	Remember	CO 5	AHSB11.23
13	Solve $px + qy = z$	Remember	CO 5	AHSB11.23
14	Solve $p+3q=5z+\tan(y-3x)$	Understand	CO 5	AHSB11.23
15	Solve $2p + 3q = 1$	Understand	CO 5	AHSB11.23
16	Solve $(x^2 + y^2 + z^2)p - 2xyq = -2xz$	Understand	CO 5	AHSB11.23
17	Solve $(1+y)p + (1+x)q = z$	Understand	CO 5	AHSB11.23
18	Solve $y^2 p - xyq = x(z - 2y)$	Understand	CO 5	AHSB11.23
19	Write the wave one dimension equation	Remember	CO 5	AHSB11.26
20	Write the heat one dimension equation	Remember	CO 5	AHSB11.26
	Part - B (Long Answer Questions)	* * 1		
1	Form the partial differential equation by eliminating arbitrary function from $f(x^2 + y^2 + z^2 - 2xy) = 0$	Understand	05	AHSB11.23
2	Form a partial differential equation by eliminating a, b, c from	Apply	CO 5	AHSB11.23
	$\frac{x^2}{2} + \frac{y^2}{L^2} + \frac{z^2}{2} = 1.$			
2	a b c Solve the partial differential equation	Understand	CO 5	AUSP11 24
5	$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$	Onderstand	005	Alisbii.24
4	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.$			
5	Solve the partial differential equation	Understand	CO 5	AHSB11.24
	(mz-ny)p+(nx-lz)q=(ly-mx).			
6	Find the differential equation of all spheres whose centres lie on z-axis	Understand	CO 5	AHSB11.22
	with a given radius r.			
7	Solve the partial differential equation	Apply	CO 5	AHSB11.24
	$(x^{2} - y^{2} - yz)p + (x^{2} - y^{2} - zx)q = z(x - y).$			

8	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Understand	CO 5	AHSB11.24
9	Solve the partial differential equation $z(z^2 + xy)(px - qy) = x^4$	Understand	CO 5	AHSB11.24
10	Solve the partial differential equation $px - qy = y^2 - x^2$	Understand	CO 5	AHSB11.24
11	Solve the partial differential equation $pr^2 + qr^2 = q(r + y)$	Understand	CO 5	AHSB11.24
12	Solve the partial differential equation $px + qy = z(x + y)$ Solve by the method of separation of variables $2xz = -3yz = 0$	Understand	CO 5	AHSB11.25
13	Solve the partial differential equation $y^2 z p + y^2 z a - yy^2$	Understand	CO 5	AHSB11.20
13	Solve the partial differential equation $y \ zp + x \ zq - xy$ Solve the partial differential equation $p \ tan \ x + q \ tan \ y = tan \ z$	Understand	CO 5	AHSB11.24 AHSB11.22
15	Solve the partial differential equation $(x-a)p + (y-b)a + (c-z) = 0$	Understand	CO 5	AHSB11.24
16	Solve the partial differential equation $(t - t)p + (t - t)q + (t - t)q$	Understand	CO 5	AHSB11.24
	$x(y^{2}-z^{2})p - y(z^{2}+x^{2})q = z(x^{2}+y^{2})=z$			
17	Solve the partial differential equation $(x+y)(p-q)=z$	Understand	CO 5	AHSB11.24
18	Solve by the method of separation of variables $4u_x + u_y = 3u$ and	Understand	CO 5	AHSB11.25
	$u(o, y) = e^{-5y}$			
19	Solve by the method of separation of variables $3u_x + 2u_y = 0$ with	Understand	CO 5	AHSB11.25
	$u(x,0) = 4e^{-x}$			
20	Solve $(x-y)p+(y-x-z)q = z$	Understand	CO 5	AHSB11.24
	Part – C (Problem Solving and Critical Thinkin	g)		
1	Form the partial differential equation by eliminating arbitrary function $lx + my + nz = \emptyset(x^2 + y^2 + z^2)$	Understand	CO 5	AHSB11.22
2	Form the partial differential equation by eliminating arbitrary function $xy + yz + zx = f(\frac{z}{x+y})$	Understand	CO 5	AHSB11.22
3	Solve the partial differential equation $z(x - y) = px^2 - qy^2$	Understand	CO 5	AHSB11.22
4	Solve the partial differential equation $(z^2 - 2yz - y^2)p + (xy + xz)q = xy - zx.$	Understand	CO 5	AHSB11.24
5	Solve the partial differential equation $(x^2 + y^2 + yz)p + (x^2 + y^2 - zx)q = z(x + y).$	Understand	CO 5	AHSB11.24
		<u> </u>	<u>I</u>	
6	Solve $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$ by the method	Understand	CO 5	AHSB11.25
7	a^2	Understand	CO 5	AHSB11.25
,	Solve $\frac{\partial u}{\partial x \partial t} = e^{-t} \cos x$ given that u=0 when t = 0 and $\frac{\partial u}{\partial t} = 0$ When			
8	$x = 0$ snow also that as t tends to ∞ , u tends to sin x.	Apply	CO 5	AHSB11.26
0	A tightly stretched string with fixed end points $x=0$ and $x=t$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\Delta x(1-x)$ find the displacement of the string at any	rippiy	005	7115011.20
	distance x from one end at any time t			
9	Write the boundary conditions for a rectangular plate is bounded by the line x=0, y=0, x=a, and y=b its surface are insulated the temperature along x=0 and y=0 are kept at 0^{0} C and the other are kept at 100^{0} C.	Understand	CO 5	AHSB11.26

10	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in	Apply	CO 5	AHSB11.26
	a position given by $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement(x,t).			

Prepared by Dr. S. Jagadha, Professor

HOD, EEE