INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRCIAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ELEC	ELECTRICAL MACHINES-I					
Course Code	AEEB	AEEB11					
Programme	B.Tech	B.Tech					
Semester	ш	EEI	E				
Course Type	Core						
Regulation	IARE - R18						
	Theory Practical					l	
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	2	
Chief Coordinator	Mr. K Devender Reddy, Assistant Professor						
Course Faculty	Dr. P S Mr. K	Sridha Devei	r, Professor nder Reddy, Ass	istant Professo	r		

COURSE OBJECTIVES

2000

This course examines the basic theory, construction, operation, performance characteristics and application of electromechanical energy conversion devices such as DC generators and motors. It also gives an in-depth knowledge on the operation of single phase and three phase transformers and it's testing. It also focus on the auto transformers, on-load, off-load tap changers which are widely used in real time applications.

COURSE OBJECTIVES:

The cour	se should enable the students to:
Ι	Understand the concepts of magnetic circuits and illustrate the theory of electromechanical energy conversion and the concept of co-energy.
II	Understand the operation of dc machines.
III	Analyze the differences in operation of different dc machine configurations
IV	Analyze single phase and three phase transformers circuits

COURSE OUTCOMES (COs):

CO1	Describe the basic concepts of electro-mechanical energy conversion, energy balance, energy stored in magnetic field, co-energy, single and multi excited systems.
CO2	Discuss the working principle, losses, efficiency, characteristics and various tests of DC generator.
CO3	Analyze the working principle, losses, efficiency, characteristics and various tests of DC motor.
CO4	Describe the working principle, EMF equation, phasor diagram, losses, efficiency, regulation,
	characteristics and various tests of single phase transformer.
CO5	Analyze the working principle, various connections of three phase transformer. Auto transformer,
	Scott connection, on load and off load tap changing transformer, cooling methods.

COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the ability to do the following:

S. No	Description
AEEB11.01	Solve simple and complex problems related to electromagnetic circuits.
AEEB11.02	Describe the basic electromagnetic energy conversion process, energy storage and energy balance.
AEEB11.03	Derive the force and torque produced in singly excited, multi excited magnetic systems.
AEEB11.04	Outline the construction, operation and the windings used in DC machines
AEEB11.05	Illustrate the concept of armature reaction and study characteristics and applications of DC generators.
AEEB11.06	Examine the parallel operation of DC generators, importance of equalizer bars and load sharing.
AEEB11.07	Study the significance of back EMF, torque-speed characteristics and speed control of DC motors
AEEB11.08	Classify the different types of losses occurred in DC machines.
AEEB11.09	Determine the efficiency of DC machines by conducting direct and indirect tests.
AEEB11.10	Discuss the principles of operation, construction and EMF equation of single phase transformers.
AEEB11.11	Explain the operation of single phase transformer under no-load and on-load along with its phasor diagrams.
AEEB11.12	Calculate the efficiency and regulation of single phase transformers by conducting different tests.
AEEB11.13	Examine the parallel operation of single phase transformers and analyze the load sharing.
AEEB11.14	Summarize the different types of connections of three phase transformers.
AEEB11.15	Demonstrate the operation of open delta connection and Scott connection with two single phase transformers.
AEEB11.16	Explain the functioning of autotransformers, tap changing transformers and off-load, on-load tap changers.

TUTORIAL QUESTION BANK

MODULE-I				
	MAGNETIC FIELDS AND MAGNETIC	CIRCUITS		
	Part –A (Short Answer Ouestion	ns)		
S. No	Question	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes(CLOs)
1	Define magnetic flux and magnetic flux density.	Remember	CO 1	AEEB11.01
2	State Fleming's left hand rule.	Remember	CO 1	AEEB11.01
3	State Fleming's right hand rule.	Remember	CO 1	AEEB11.01
4	Write energy balance equation for motor.	Understand	CO 1	AEEB11.03
5	Give the expression for energy density of magnetic field.	Remember	CO 1	AEEB11.03
6	Give the examples of singly excited and doubly excited electromechanical energy conversion devices.	Remember	CO 1	AEEB11.04
7	Give an expression for energy density in an electric field.	Remember	CO 1	AEEB11.03
8	Draw a diagram indicating flow of energy in motor.	Remember	CO 1	AEEB11.03
9	Draw a diagram indicating flow of energy in generator.	Understand	CO 1	AEEB11.03
10	Define energy and co energy.	Remember	CO 1	AEEB11.02
11	Define the principle of energy conversion.	Understand	CO 1	AEEB11.02
12	Draw the general representation of electro-mechanical conversion device.	Understand	CLO 1	AEEB11.02
13	Describe why energy storing capacity of magnetic field is much larger than that of electric field.	Understand	CO 1	AEEB11.03
14	Give the expression for energy density in an electric field.	Remember	CO 1	AEEB11.03
15	Write the expression for torque produced in doubly excited magnetic field system	Remember	CO 1	AEEB11.04
	Part – B (Long Answer Question	ns)		1
1	Explain the principle of energy conversion. Draw the general representation of electromechanical conversion device.	Understand	CO 1	AEEB11.02
2	Define and explain the concept of transformer EMF and motional EMF in DC machines.	Remember	CO 1	AEEB11.01
3	Derive the relation for the magnetic stored energy in terms of reluctance in a singly excited magnetic system	Understand	CO 1	AEEB11.03
4	Describe the concept of energy stored in singly excited and multiply excited magnetic field systems	Understand	CO 1	AEEB11.03
5	Discuss and write an energy balance equation for a motor based on the principle of energy conversion	Remember	CO 1	AEEB11.03
6	Discuss and write an energy balance equation for a generator based on the principle of energy conversion.	Understand	CO 1	AEEB11.03
7	Derive the expression for energy stored in singly excited magnetic field system using the concept of co energy.	Remember	CO 1	AEEB11.04

8	Derive the expression for energy stored in singly excited magnetic field system by energy method.	Remember	CLO 1	AEEB11.04
9	Explain the concept of energy flow in electromechanical devices and draw the energy flow diagram for motor and generator	Understand	CO 1	AEEB11.03
10	Derive the expression for magnetic force for a singly excited magnetic field system	Remember	CO 1	AEEB11.04
11	Derive the expression of torque developed in doubly excited magnetic field system?	Understand	CO 1	AEEB11.04
12	Explain how electromotive force (EMF) is induced in a coil	Understand	CO 1	AEEB11.01
13	Derive the expression for energy stored in a doubly excited magnetic field system?	Remember	CO 1	AEEB11.04
14	Derive the expression of magnetic force developed in doubly excited magnetic field system?	Understand	CO 1	AEEB11.04
15	Derive the expression of magnetic force developed in doubly excited magnetic field system using the concept of co energy?	Remember	CO 1	AEEB11.04
	Part – C (Analytical Questions			
1	The magnetic flux density on the surface of an iron face is $1 \in T$	Understand	CO 1	ΔFFR11 04
1	which is a typical saturation level value for ferromagnetic material. Find the force density on the iron face.	Understand	001	ALLD11.04
2	In an electromagnetic relay excited from a voltage source, the	Understand	CO 1	AEEB11.04
	current and flux linkages are related as $i = \lambda^2 + 2\lambda(1-x)^2$; x<1.			
	Find the force on the armature as a function of λ .			
3	Find the torque developed in a doubly excited magnetic field	Analyze	CO 1	AEEB11.04
	system, the current in stator winding is $i_1=1A$, and current in rotor			
	winding is $i_2 = 0.02A$. the various inductances of the system are			
	$L_{11} = (4 + \cos 2\theta) \text{ mH}$			
	$L_{12} = (0.15 \cos\theta) H$			
	$L_{22} = (20+5\cos 2\theta) H$			
4	Two coupled coils have self inductance and mutual inductance of	Understand	CO 1	AEEB11.04
	$L_{11} = 2 + \frac{1}{2r}$; $L_{22} = 1 + \frac{1}{2r}$; $L_{12} = L_{21} = \frac{1}{2r}$ on a certain range of			
	linear displacement x. The first coil is excited by a constant current			
	of 20A and second by a constant current of -10A. Determine the			
	mechanical work done and energy supplied by each source, if x			
	changes from 0.5 to 1 m.			
5	The field winding of a DC electromagnet is wound with 960 turns	Analyze	CO 1	AEEB11.03
	and has resistance of 50 ohms. The exciting voltage is 230V and			
	the magnetic flux linking the coil is 5mWb. Find the self			
	inductance of the coil and energy stored in the magnetic field.			
6	A coil is wound on an iron core to form a solenoid. A certain	Understand	CO 1	AEEB11.03
	current is passed through the coil which is producing a flux of			
	40μ Wb. The length of the magnetic circuit is 75 cm. while it's			
	cross sectional area is 3 sq.cm. Calculate energy stored per unit			
	volume of the circuit and the total energy stored in the circuit.		GO 1	
1	The various inductances of a doubly excited magnetic system are	Analyze	COT	AEEB11.04
	given as $I = (4 + \cos 2\theta)$ mH			
	$L_{11} = (4 + \cos 2\theta) \text{ IIII}$			
	$L_{12} = (0.15 \cos \theta) \Pi$ $L_{22} = (20\pm 5\cos 2\theta) \Pi$			
	$L_{22} = (20+3)\cos(2\theta)$ If Determine the torque developed for a current flowing in the stator			
	winding as 1A, and current flowing in the rotor winding as 0.01A			
8	An iron ring of mean diameter 15cm and cross sectional area of 10	Understand	CO 1	AEEB11.03
0	sa.cm is wound with 200 turns of wire. There is an air gap of 2mm	Chaoistand	001	111105
	cut in the ring. For a flux density of 1Wb/m^2 and relative			
	permeability of 500, determine the exciting current, inductance and			
	the stored energy in the magnetic field.			

9	A coil of 500 ohm resistance is lying in a magnetic field of 1.5 Wb. Find the EMF induced in the coil and the current in the coil if the coil is moved from the given field to a field of 0.5mWb in 0.25 sec.	Understand	CO 1	AEEB11.01
	the number of turns of the coil are 500.			
10	The inductance of a coil is 0.15H and the coil has 100 turns. Calculate the (i) total magnetic flux through the coil when the current is 4A. (ii) energy stored in the magnetic field	Analyze	CO 1	AEEB11.03
	(111) Voltage induced in the coil when current is reduced to zero in			
11	An iron ring of 20cm mean diameter having cross sectional area of 100 sq.cm. is wound with 400 turns of wire. Calculate the exciting current require to establish a flux density of 1 Wb/m ² , if the relative permeability of iron is 1000. Calculate the value of energy stored in the magnetic field.	Understand	CO 1	AEEB11.03
12	A coil of 100 turns is wound on a torroidal magnetic core having a reluctance of 10^4 AT/Wb. When the coil current is 5A and is increasing at a rate of 200A/sec, determine the energy stored in the magnetic field and voltage applied across a coil. Assume coil resistance as zero.	Understand	CO 1	AEEB11.03
13	A solenoid has 1200 turns and carries a current of 2A. The iron core has a length of 0.4m, cross sectional area of 80 sq.cm and relative permeability of 1000. Calculate the self induced EMF in the solenoid, if the current is switched off in 0.001sec.	Analyze	CO 1	AEEB11.01
14	A coil of 300 turns wound on a core of non magnetic material has an inductance of 10mH. Calculate the (i) flux produced by a current of 5A, and (ii) the average value of EMF induced when a current of 5A is reversed in 8milli seconds.	Understand	CO 1	AEEB11.01
15	Find the inductance of the coil in which (i) current of 0.1 yields energy storage of 0.05J and (ii) a current of 0.1 A increasing at a rate of 0.5A/sec represents a power flow of 0.5 watt.	Understand	CO 1	AEEB11.03
	MODULE-II			
	DC GENERATORS			
	Part– A (Short Answer Question	ns)		
1	State the principle of DC generator.	Remember	CO 2	AEEB11.05
2	Describe the functioning of Yoke, commutator and brushes in DC machine.	Understand	CO 2	AEEB11.05
3	List out the rotating parts and stationary parts in DC machine.	Remember	CO 2	AEEB11.05
4	Explain why electro magnets are preferred over permanent magnets in large DC machines?	Understand	CO 2	AEEB11.05
5	Explain why the armature core of a DC machine is laminated.	Remember	CO 2	AEEB11.05
6	List out the different types of armature winding used in DC machines.	Remember	CO 2	AEEB11.06
7	Differentiate between lap winding and wave winding.	Understand	CO 2	AEEB11.06
8	List out the different types of DC generators and write its applications.	Remember	CO 2	AEEB11.05
9	Write the EMF equation of a DC generator.	Remember	CO 2	AEEB11.05
10	Define commutation and commutation period.	Understand	CO 2	AEEB11.05
11	Classify the different types of DC generators.	Remember	CO 2	AEEB11.05

12	Define armature reaction in DC generators.	Understand	CO 2	AEEB11.05
13	Define the terms critical field resistance and critical speed in DC generators.	Understand	CO 2	AEEB11.05
14	List out the methods for improving the commutation in DC generators.	Remember	CO 2	AEEB11.05
15	List the advantages of operating the DC generators in parallel.	Remember	CO 2	AEEB11.07
	Part – B (Long Answer Question	ns)		
1	Describe the principle of operation and constructional details of a DC machine with neat sketch.	Understand	CO 2	AEEB11.05
2	Explain why a commutator and brush arrangement is necessary for the operation of a DC machine.	Understand	CO 2	AEEB11.05
3	Define the principle of operation and derive the equation of EMF induced in a DC generator.	Remember	CO 2	AEEB11.05
4	Classify and explain the different types of DC generators with neat circuit diagrams.	Remember	CO 2	AEEB11.05
5	Explain the process of voltage build up in self excited DC generators and state the conditions for self excitation.	Understand	CO 2	AEEB11.05
6	Sketch the magnetization characteristics of a DC shunt generator and from the characteristics give the expression for determining the critical resistance.	Understand	CO 2	AEEB11.05
7	Classify and explain the different types of characteristics for a DC shunt generator.	Remember	CO 2	AEEB11.05
8	Classify and explain the different types of characteristics for a DC series generator.	Understand	CO 2	AEEB11.05
9	Describe the causes for the failure of voltage build up in self excited DC generator and suggest the remedies to overcome this problem.	Remember	CO 2	AEEB11.05
10	Explain armature reaction in DC generator with neat diagrams and show how cross magnetizing and demagnetizing MMF 's are produced.	Understand	CO 2	AEEB11.05
11	Describe the effects of armature reaction and the remedies employed for decreasing the effects of armature reaction.	Understand	CO 2	AEEB11.05
12	Derive the expressions for determination of demagnetizing and cross magnetizing ampere turns per pole in DC generators.	Remember	CO 2	AEEB11.05
13	Describe the process of commutation in DC generators with neat sketches and illustrate the methods for improving commutation.	Understand	CO 2	AEEB11.05
14	Explain the following: i) Ideal commutation i) Period of commutation ii) Reactance voltage during commutation	Remember	CO 2	AEEB11.05
15	Explain the parallel operation of DC shunt and series generators and load sharing.	Understand	CO 2	AEEB11.07
16	Explain the working of equalizer bar in parallel operation of DC series generators.	Understand	CO 2	AEEB11.07
	Part – C (Analytical Questions)		
1	A 250V lap wound DC generator has full load armature current of 100A. The armature resistance is 0.2Ω and the number of armature conductors is 272. The contact drop for the two brushes is 2V and flux per pole is 0.05Wb. Determine the generated EMF and speed.	Understand	CO 2	AEEB11.05
2	A 4 pole DC shunt generator with wave connected armature has 41 slots and 12 conductors per slot. Ra = 0.5Ω , Rsh = 200Ω and flux per pole is 125Wb. When the generator is driven at a speed of 1000 rpm, calculate the voltage across 10 Ω load resistance connected across the armature terminals.	Analyze	CO 2	AEEB11.05

3	A 4 pole DC generator having wave wound armature has 50 slots and 25 conductors per slot. Find the generated EMF. if it is driven at 25rpm and useful flux per pole in the machine is 0.03 Wb	Understand	CO 2	AEEB11.05
4	A 4 pole lap wound 750 rpm DC shunt generator has an armature resistance of 0.4 ohms and field resistance of 200 ohms. The armature has 720 conductors and the flux per pole is 30 mWb. If the load resistance is 10 Ω , determine the terminal voltage.	Analyze	CO 2	AEEB11.05
5	A 250 KW, 400 V, 6 pole lap connected armature has 720 conductors and it is given a brush lead of 2.5 degrees mechanical from its GNA. Calculate demagnetizing and cross magnetizing AT/pole. Neglect shunt field current.	Understand	CO 2	AEEB11.05
6	A 4pole generator has wave wound armature with 722 conductors, and it delivers 100A on full load. If the brush lead is 8 degrees, calculate the armature demagnetizing and cross magnetizing ampere turns per pole.	Understand	CO 2	AEEB11.05
7	The brushes of a certain lap connected 400 KW, 6 pole generator is given a lead of 18 degrees (electrical). calculate i) the demagnetizing ampere turns ii) the cross magnetizing ampere turns iii) series turns required to balance the demagnetizing component The full load current is 750 A, total numbers of conductors are 900 and the leakage coefficient is 1.4.	Analyze	CO 2	AEEB11.05
8	4 pole lap wound DC generator supplies a current of 143A. It has 492 armature conductors. When delivering full load, brushes are given an actual lead of 10 degrees. Calculate the demagnetizing ampere turns per pole. The field winding is shunt connected and takes 10A, calculate the number of extra shunt field turns required to neutralize the demagnetization.	Understand	CO 2	AEEB11.05
9	A 4 pole wave wound dc machine has an armature of 25cm diameter and runs at a speed of 1200rpm. If the armature current is 160A, thickness of brush is 12mm and the self inductance of each armature coil is 0.14mH. Calculate the average EMF induced in each coil during commutation.	Analyze	CO 2	AEEB11.05
10	Calculate the reactance voltage for a machine having the following particulars. Number of commutator segments = 55; Revolutions per minute = 900; Brush width in commutator segments = 1.74 ; Coefficient of self inductance = 153×10^{-6} H; Current per coil = $27A$	Understand	CO 2	AEEB11.05
11	A 440 V, 4 pole, 25KW dc generator has a wave connected armature winding with 846 conductors. The mean flux density in the air gap under the interpoles is 0.5 Wb/m^2 on full load and the radial gap length is 0.4cm. Calculate the number of turns required on each interpole.	Understand	CO 2	AEEB11.05
12	Two DC generators having Rectilinear external characteristics operate in parallel. One machine has the terminal voltage of 270V on no load and 220Vat the load current of 30A. The other has a voltage of 280V at no load and 220 V at a load current of 30A. calculate the output current and the bus voltage of ach machine when the i) total load current is 50A and ii) load resistance is 10 Ω .	Analyze	CO 2	AEEB11.07
13	Two shunt generators with straight line characteristics are operated in parallel. Their no load voltages being 240 V and 245 V respectively. The ratings of the above generators are 500 KW at 230 V and 250 KW at 220 V. If he total load supplied is 650 KW, calculate the i) the terminal voltage, and ii) Power supplied by each	Understand	CO 2	AEEB11.07

	machine in KW.			
14	The terminal voltage of DC shunt generator G1 falls from 500V at no load to 470V when delivering a current of 600A. For a second generator G2, the figures are 505V at no load and 470V at 400A. When connected in parallel generators supply a total load of 400KW. Assuming that the voltage/power characteristics are linear, determine the common bus voltage and the current delivered by each machine.	Understand	CO 2	CAEEB11.07
15	Two shunt wound generators running in parallel have each an armature resistance of 0.02 ohms and field resistance of 50 ohms. The combined external load current is 5000A. The fields are excited so that the EMF induced in one machine is 600V and in the second machine is 610V. Calculate the bus bar voltage and the output of the each machine.	Analyze	CO 2	AEEB11.07
	MODULE-III	7		
	DC MOTORS AND TESTING	rs)		
1	Differentiate DC motor from a DC generator.	Understand	CO3	AEEB11.08
2	Describe is the function of commutator in DC motor.	Remember	CO3	AEEB11.08
3	Define the principle of operation of DC motor.	Remember	CO3	AEEB11.08
4	Explain why the EMF generated in the armature of a DC motor is called the back EMF?	Remember	CO3	AEEB11.08
5	Write the expression for torque produced in DC motor.	Remember	CO 3	AEEB11.08
6	Describe how the direction of rotation of DC motor will be reversed?	Understand	CO3	AEEB11.08
7	Illustrate how the direction of rotation of DC motor is determined?	Remember	CO 3	AEEB11.08
8	List out the different types of DC motors.	Remember	CO 3	AEEB11.08
9	State the condition for maximum power developed in DC motor.	Understand	CO 3	AEEB11.08
10	Describe why a series motor should not be run without load.	Understand	CO 3	AEEB11.08
11	State the significance of back emf in DC motors?	Remember	CO 3	AEEB11.08
12	Illustrate the necessity of starter in DC motors.	Remember	CO 3	AEEB11.08
13	List the different types of starters used in starting of DC motor	understand	CO 3	AEEB11.08
14	List the different methods of speed control of DC shunt motor.	Remember	CO 3	AEEB11.08
15	List the different methods of speed control of DC series motor.	Remember	CO 3	AEEB11.08
1	List out the different types of losses occurred in DC motors.	Understand	CO 3	AEEB11.09
2	Define hysteresis and eddy current losses.	Understand	CO 3	AEEB11.09
3	List the factors on which hysteresis and eddy current losses will depend.	Remember	CO 3	AEEB11.09
4	Describe how the eddy current and hysteresis losses be minimized.	Remember	CO 3	AEEB11.09

5	How do various losses occurred in a DC machine vary with load?	Understand	CO 3	AEEB11.09
6	Describe about core losses and copper losses in DC machines.	Understand	CO 3	AEEB11.09
7	Define efficiency and give the condition for getting maximum efficiency in DC motor.	Remember	CO 3	AEEB11.09
8	Define the speed regulation for a DC motor.	Remember	CO 3	AEEB11.09
9	List the different types of tests which can be made for different types of DC motors.	Remember	CO 3	AEEB11.10
10	Write the merits and demerits of Brake test and Swinburne's test.	Remember	CO 3	AEEB11.10
11	Explain why Swinburne's test cannot be performed on DC series motor.	Understand	CO 3	AEEB11.10
12	Illustrate the drawbacks of Swinburne's test?	Remember	CO 3	AEEB11.10
13	Field's test is performed on which type of DC machines? List any two disadvantages of field's test.	Remember	CO 3	AEEB11.10
14	Explain why Hopkinson's test is also called as back to back test.	Understand	CO 3	AEEB11.10
15	Write the advantages and disadvantages of Regenerative test.	Remember	CO 3	AEEB11.10
	Part – B (Long Answer Questio	ns)	1	I
1	Explain the principle of operation of DC motors.	Understand	CO 3	AEEB11.08
2	Derive the torque equation of a DC motor.	Remember	CO 3	AEEB11.08
3	Explain the different types of motors with equivalent circuits.	Understand	CO 3	AEEB11.08
4	Explain the armature reaction in DC motor indicating few remedies to its adverse effects.	Understand	CO 3	AEEB11.08
5	Explain the different characteristics of DC motors with neat sketches.	Understand	CO 3	AEEB11.08
6	List the applications of DC series, DC shunt and DC compound motors.	Remember	CO 3	AEEB11.08
7	What are the factors that affect the speed of a DC motor? Explain.	Understand	CO 3	AEEB11.08
8	Explain how the speed can be controlled above and below the normal speed in case of a DC shunt motor.	Understand	CO 3	AEEB11.08
9	Describe different methods of speed control of DC series motors with relevant circuit diagrams.	Remember	CO 3	AEEB11.08
10	Explain the necessity of starter in DC motors and list the different types of starters used in DC motors.	Understand	CO 3	AEEB11.08
11	Explain the operation of a three point starter with neat sketch.	Understand	CO 3	AEEB11.08
12	Make a neat sketch showing the internal wiring of a four point starter and explain the functioning of each part of the starter.	Remember	CO 3	AEEB11.08
13	Explain the Ward Leonard method of speed control of DC motors.	Understand	CO 3	AEEB11.08
		l	<u> </u>	l
14	Explain the different losses in a DC machine. Derive the condition for maximum efficiency of a DC machine.	Understand	CO 3	AEEB11.09
15	Explain how the efficiency of a DC machine is calculated from Swinburne's test.	Understand	CO 3	AEEB11.10
16	Explain with diagram how Hopkinson's test is performed in DC machines.	Remember	CO 3	AEEB11.10

17	Explain how brake test is conducted on DC machine to determine the efficiency.	Understand	CO 3	AEEB11.10
18	Explain how Field's test is conducted on DC series machines.	Understand	CO 3	AEEB11.10
19	Explain briefly the Retardation test conducted on DC machines.	Understand	CO 3	AEEB11.10
20	Explain how the losses in a DC machine are separated from total losses.	Understand	CO 3	AEEB11.10
	Part – C (Analytical Questions)		
1	A 25KW, 250V DC shunt generator has armature and field	Understand	CO 3	AEEB11.08
	resistances of 0.060hms and 1000hms respectively. Determine the total armature power delivered when working (i) as generator delivering 25KW output and (ii) as motor taking 25KW input.	Chadistana		
2	A 230V series motor is taking 50A. Resistances of armature and series field windings are 0.20hms and 0.10hms respectively. Calculate i) Brush voltage ii) Back EMF iii) Power wasted in armature and mechanical power developed.	Understand	CO 3	AEEB11.08
3	 A 250V shunt motor has armature and field resistances of 10hm and 1250hms respectively. When running light, it takes a current of 5A and the speed is 1500rpm. i) Find the motor speed at full load, the input current being 25A. ii) Find also the speed at this load if a resistance of 2.50hms is inserted in the armature circuit. 	Analyze	CO 3	AEEB11.08
4	A DC series motor runs at 500 rpm on 220 V supply drawing a current of 50 A. The total resistance of the machine is 0.15Ω , calculate the value of extra resistance to be connected in series with the motor circuit that will reduce the speed to 300 rpm. The load torque being then half of the previous value. Assume flux proportional to the current.	Understand	CO 3	AEEB11.08
5	A 220V, 4 pole shunt motor has 540 lap wound conductors. It takes 32A from the supply mains and develops output power of 5.595KW. The field winding takes 1A. The armature resistance is 0.9 ohms and the flux per pole is 30 mWb. Calculate i) the speed and ii) the torque developed in Newton meters.	Understand	CO 3	AEEB11.08
6	A 20KW, 250V dc shunt motor has full load armature current of 85A at 1100 rpm. the armature resistance is 0.18 ohms. Determine i) the internal torque developed ii) the internal torque if the field current is suddenly reduced to 80% of its original value. iii) the steady motor speed in part (ii) assuming the load torque remaining constant.	Analyze	CO 3	AEEB11.08
7	A 220V dc shunt motor runs at 760rpm and takes armature current of 48A. find the resistance to be added to the field circuit to increase the speed to 950 rpm at an armature current of 78A. Assume flux is proportional to field current. Armature resistance and field resistances are 0.150hm and 2500hm respectively.	Understand	CO 3	AEEB11.08
8	A 220V shunt motor with an armature resistance of 0.5ohm is excited to give constant main field. At full load the motor runs at 500rpm and takes an armature current of 30A. If a resistance of 1ohm is placed in the armature circuit find the speed at (a) full load torque and (b) double full load torque.	Understand	CO 3	AEEB11.08
9	A dc series motor with unsaturated magnetic circuit and negligible resistance, when running at a certain speed on a given load takes 50A at 500V. if the load torque varies as the cube of the speed, find the resistance to be inserted to reduce the speed by 50%.	Analyze	CO 3	AEEB11.08

10	A shunt generator delivers 195A at terminal voltage of 250V, the armature resistance and shunt field resistance are 0.020hms and 500hms respectively. The iron and friction losses equals to 950W. Find (a) emf generated (b) copper losses (c) output of the prime mover (d) commercial, mechanical and electrical efficiencies.	Understand	CO 3	AEEB11.09
11	A 440 V Dc shunt motor takes a no load current of 2.5A. The resistance of shunt field and the armature are 550 Ω and 1.2 Ω respectively. The full load line current is 32 A. Find the full load output and the efficiency of the motor.	Understand	CO 3	AEEB11.09
12	In a brake test on dc shunt motor, the load on one side of the brake band was 35Kg and the other side 5Kg. the motor was running at 1300 rpm: its input being 70A at 420V dc. The pulley diameter is 1m. Determine the torque, output of the motor and efficiency of the motor.	Understand	CO 3	AEEB11.10
13	The results of Hopkinson's test on two similar DC machines are as follows: Line voltage 220V, motor armature current 23A, generator armature current 20A, generator field current 0.4A, and motor armature current 0.3A. armature resistance of each machine 0.5ohm. Calculate the efficiency of each machine.	Analyze	CO 3	AEEB11.10
14	A Field's test on two mechanically coupled series motors (with their field windings connected in series) gave the following test data; Motor: armature current-50A, armature voltage 500V, field wining voltage drop-38V Generator: armature current-38A, armature voltage 400V, field wining voltage drop-36V Resistance of each armature is 0.2 ohms. Calculate the efficiency of each machine at this load	Understand	CO 3	AEEB11.10
15	The hysteresis and eddy current losses in a dc machine running at 100rpm are 250W and 100W respectively. If the flux remains constant, at what speed will the total iron losses be halved?	Analyze	CO 3	AEEB11.10
	MODULE-IV			
	SINGLE PHASE TRANSFORM	ERS		
	Part – A (Short Answer Question	ns)		
1	State the principle of a transformer.	Remember	CO 4	AEEB11.11
2	Can we give the dc supply to a transformer? Explain.	Understand	CO 4	AEEB11.11
3	Classify the different types of losses in a transformer.	Remember	CO 4	AEEB11.11
4	Define the voltage regulation of a transformer and write its expression.	Remember	CO 4	AEEB11.11
5	Define efficiency of a transformer and write its expression.	Remember	CO 4	AEEB11.12
6	Give is the condition to get maximum efficiency of a transformer.	Remember	CO 4	AEEB11.12
7	Define eddy current loss and hysteresis loss.	Understand	CO 4	AEEB11.12
8	Describe an ideal transformer.	Remember	CO 4	AEEB11.11
9	Give the EMF equation of a transformer.	Remember	CO 4	AEEB11.11
10	Define transformation ratio.	Remember	CO 4	AEEB11.11

11	Draw the circuit symbol of a transformer and list the main components in it.	Remember	CO 4	AEEB11.11	
12	Define step up and step down transformer.	Remember	CO 4	AEEB11.11	
13	How to minimize the hysteresis and eddy current losses in a transformer.	Understand	CO 4	AEEB11.12	
14	Define all day efficiency of a transformer.	Remember	CO 4	AEEB11.12	
15	Explain why a transformer is rated in KVA.	Understand	CO 4	AEEB11.11	
16	Draw the equivalent circuit of a transformer referred to primary side.	Remember	CO 4	AEEB11.11	
	Part – B (Long Answer Question	ns)			
1	Define a transformer Explain the principle of operation of a	Understand	CO 4	AEEB11 11	
1	transformer.	Onderstand	004		
2	Distinguish between core type and shell type transformer. Why the low voltage winding is placed near the core? Why the core of a transformer is laminated?	Remember	CO 4	AEEB11.11	
3	Derive an expression for EMF induced in a transformer.	Remember	CO 4	AEEB11.11	
4	What is an ideal transformer? Draw and explain the phasor diagram of an ideal transformer.	Understand	CO 4	AEEB11.11	
5	Draw and explain the phasor diagram of a single phase transformer under zero lagging power factor	Understand	CO 4	AEEB11.11	
6	Define voltage regulation of a transformer. Derive an expression for voltage regulation under lagging p.f. load.	Remember	CO 4	AEEB11.11	
7	Derive the condition for zero voltage regulation and condition for maximum voltage regulation of a transformer.	Understand	CO 4	AEEB11.11	
8	What are the objectives of testing a transformer? Discuss how polarity of a transformer is determined from polarity test.	Remember	CO 4	AEEB11.12	
9	Explain why Sumpner's test is also called as back to back test.	Understand	CO 4	AEEB11.12	
10	What are the conditions for parallel operation of transformers?	Remember	CO 4	AEEB11.13	
11	What are the advantages of parallel operation of transformers?	Remember	CO 4	AEEB11.13	
12	Discuss the procedure for conducting OC and SC tests on a single phase transformer. How can the equivalent circuit parameters are calculated from these tests.	Understand	CO 4	AEEB11.12	
13	State the various losses which take place in a transformer. On what factors do they depend? Explain the steps taken to minimize these losses.	Remember	CO 4	AEEB11.12	
14	Describe how the back-to-back test is conducted on two identical transformers.	Understand	CO 4	AEEB11.12	
15	Briefly explain heat run test on a single phase transformer.	Understand	CO 4	AEEB11.12	
Part – C (Analytical Questions)					
1	Find the cross sectional area of the core of a 10 turns transformer for a voltage of 50 V at 50 Hz. The flux density is 0.9 wb/m^2 .	Understand	CO 4	AEEB11.11	
2	The EMF per turn of a single phase 440/220 V, 50 Hz transformer is approximately 15 V, find	Analyze	CO 4	AEEB11.11	
	 i) The number of primary and secondary turns ii) The net cross sectional area of the core for a maximum flux density of 1 wb/m² 				
3	A 300 KVA transformer having primary voltage of 3000 V at 50 Hz has 300 primary and 50 secondary turns. Calculate i) the full load primary and secondary currents	Understand	CO 4	AEEB11.11	

	ii) The no load secondary induced EMF			
	iii) The maximum flux in the core (neglecting all losses).			
4	A 1000 KVA transformer has primary and secondary turns of 4000	Understand	CO 4	AEEB11.11
	and 1000 respectively and induced voltage in secondary is 1000 V.			
	find			
	1) the primary volt			
	11) the primary and secondary full load current			
	111) the secondary current when 100 KW load at 0.8 p.t. 1s			
-	connected at the output.	TTo do not on d	<u> </u>	
5	a 200/400 V, 50 Hz transformer has peak flux density of 1.1 wb/ m^2 in the same and not super of super section of the same is 0.02	Understand	CO 4	AEEBI1.11
	In the core and her area of cross section of the core is 0.02			
	conductor diameter of primary coil is 3 mm determine the KVA			
	rating of the transformer and the number of primary and secondary			
	turns			
6	A 17.5 KVA 460/115 V single phase 50 Hz transformer has	Analyze	CO 4	AEEB11 11
Ū	primary and secondary resistances of 0.36 ohms and 0.02 ohms	i murj20	001	
	respectively, and leakage reactance of these windings are 0.82			
	ohms and 0.06 ohms respectively. Determine the voltage to be			
	applied to the primary to obtain full load current with the			
	secondary winding short circuited. Neglect the magnetizing			
	current.			
7	A transformer has 4% reactance and 6% reactance drop. Find the	Understand	CO 4	AEEB11.12
	voltage regulation at full load (a) 0.8 p.f. lagging, (b) 0.8 p.f.			
	leading, and (c) unity p.f.			
8	A 40 KVA, 2500/500 V single phase transformer has the following	Understand	CO 4	AEEB11.12
	parameters: $R_1=8$ ohms, $R_2=0.5$ ohms, $X_1=20$ ohms, $X_2=0.8$ ohms.			
	Find the voltage regulation and secondary terminal voltage at full			
	load for a p.f. of 0.8 lagging. The primary voltage is held constant			
0	at 2500 V.		00.4	
9	The a 20 KVA, 2000/200 V single phase transformer has a	Analyze	CO 4	AEEBI1.12
	primary resistance of 2.1 ohms and secondary resistance of			
	0.026 ohms. If the total iron loss is 200 W, find the			
	efficiency on (a) full load and at a p.f. of 0.5 lagging, (b)half			
-	load and a p.f. of 0.8 leading.			
10	A 4 KVA, 200/400 V, 50 Hz single phase transformer has	Understand	CO 4	AEEB11.12
	equivalent resistance referred to primary as 0.15Ω . Calculate			
	i) The total copper losses on full load.			
	11) The efficiency while supplying full load at 0.9 p.f. lagging.			
	111) The efficiency while supplying half load at 0.8 p.f. leading.			
11	Assume total from losses equal to 00 W.	Analyza	CO 4	AEED11 17
11	are 340 and 410 watts respectively.	Anaryze	004	AEEDII.12
	(a) Calculate the efficiency α_{11} n f at full load and half load			
	(b) Determine the load for maximum efficiency and the iron and			
	copper losses in this case.			
12	A single phase 200/400 V, 6 KVA, 50 Hz transformer gave the	Understand	CO 4	AEEB11.12
	following results.			
	OC test(lv side) : 200 V, 0.8 A, 80 W			
	SC test(hv side) : 25 V, 10 A, 90 W			
	Determine			
	(i) the circuit constants referred to L.V side.			
	(ii) the efficiency at full load with 0.8 lagging p.f.			
13	A 5 KVA, 500/250 V, 50 Hz, single phase transformer gave the	Understand	CO 4	AEEB11.12
	following results.			
	O.C. Test : 500 V, 1 A, 50 W (L.V. side open)			
	S.C. Test : 25 V, 10 A, 60 W(L.V. side shorted)			

		1		
	Draw the equivalent circuit referred to primary and insert all values in it. Also find the efficiency on full load 0.8 lagging p f			
14	Two transformers P and Q are connected in parallel and supply a common load, open circuit emf of P and Q are 6000 V and 5800 V respectively. Equivalent impedance in terms of secondary of P and Q are $(0.4+j4) \Omega$ and $(0.2+j2)\Omega$. The load impedance is $(20+j4)\Omega$.	Understand	CO 4	AEEB11.13
	Find the current supplied by each transformer.			
15	Two single phase transformers with equal turns have the impedances of $(0.5+j3)$ ohms and $(0.6+j10)$ ohms with respect to the secondary. If they operate in parallel, determine how they will share the load of 100 KW at p.f. 0.8 lagging?	Analyze	CO 4	AEEB11.13
16	In a 400 V, 50Hz transformer the total iron loss is 2500 watts. When the supply voltage and frequency reduced to 200 V and 25 Hz respectively the corresponding loss is 850 watts. Calculate the eddy current loss at normal voltage and frequency.	Understand	CO 4	AEEB11.12
	MODULE-V			
	THREE PHASE TRANSFORME	ERS		
	Part – A (Short Answer Question	ns)		
1	What is the advantage of the star connection over delta connection?	Understand	CO 5	AEEB11.14
2	What is the advantage of delta connection of three single phase transformers?	Understand	CO 5	AEEB11.14
3	List he advantages and disadvantages of star-star connection.	Remember	CO 5	AEEB11.14
4	List he advantages and disadvantages of delta-delta connection.	Remember	CO 5	AEEB11.14
5	Calculate the turns ratio of an 11,000/415 Volt, delta/star connected three phase transformer.	Understand	CO 5	AEEB11.14
6	Draw the physical connection and phasor diagrams of star/star and star/delta connection.	Remember	CO 5	AEEB11.14
7	Draw the physical connection and phasor diagrams of delta/star and delta/delta connection.	Remember	CO 5	AEEB11.14
8	List the different schemes employed for three phase to six phase conversion.	Remember	CO 5	AEEB11.14
9	List the advantages of three phase transformers over single phase transformers.	Understand	CO 5	AEEB11.14
10	What is meant by vector group of transformers?	Remember	CO 5	AEEB11.14
11	Give the applications of open delta connection.	Remember	CO 5	AEEB11.15
12	List out the conditions of parallel connection of three phase transformers.	Understand	CO 5	AEEB11.14
13	Give the applications of scott connection.	Remember	CO 5	AEEB11.15
14	Define an autotransformer and mention its applications.	Understand	CO 5	AEEB11.16
15	Why tapings are generally provided on the high voltage side of a transformer?	Understand	CO 5	AEEB11.16
Part – B (Long Answer Questions)				
1	Discuss the star - delta, delta –delta connections of 3-phase transformers with relevant relations among the voltages and currents.	Understand	CO 5	AEEB11.14
2	Discuss the delta - star, star – star connections of 3-phase transformers with relevant relations among the voltages and currents.	Understand	CO 5	AEEB11.14

			0	
3	Explain the different schemes of three-phase to six-phase conversion with neat diagrams.	Remember	CO 5	AEEB11.14
4	Explain the open-delta connection with a suitable diagram and list the advantages of this connection?	Understand	CO 5	AEEB11.15
5	Explain with neat circuit diagram how a Scott connection is used to	Remember	CO 5	AEEB11.15
	obtain two-phase supply from three-phase supply.			
6	Why are tapings provided in transformers? Give the reasons for	Understand	CO 5	AEEB11.16
	tapings being generally provided on the high-voltage side of the			
7	transformer.	Understand	CO 5	AEED11 16
,	help of connection diagram	Understand	05	ALLEDI1.10
8	Define an auto transformer. State its merits and demerits over a	Remember	CO 5	AEEB11.16
	two-winding transformer. What are the applications of an auto			
	transformer?			
9	In an auto transformer, the power transferred from primary to	Understand	CO 5	AEEB11.16
	secondary circuit is partly by conduction and partly by induction.			
10	Explain.	Lin donaton d	CO 5	AEED11.16
10	fraction of the rating of a two winding transformer when the auto	Understand	05	AEEBI1.10
	transformer has a transformation ratio of α .			
	Part – C (Analytical Questions))		
1	A three-phase step-down transformer is connected to 6600 V on	Understand	CO 5	AEEB11.14
	the primary side. The ratio of turns per phase is 12 and the line			
	current drawn from the mains is 20A. find the secondary line			
	voltage, line current and output if the transformer is			
	1) $Y - Y$ \vdots $Y - D$			
	$\begin{array}{c} 11) 1-D \\ iii) D-V \end{array}$			
	iv) D-D			
2	A 3-phase step down transformer is connected to 6.6 KV mains	Understand	CO 5	AEEB11.14
	and takes 10 Å. Calculate the secondary line voltage, line current			
	and output for the following connections:			
	i) Δ/Δ			
	$\begin{array}{c} 11) Y/Y \\ \vdots \vdots \rangle A/V \end{array}$			
	$\frac{111}{10} \frac{\Delta}{1}$			
3	A three phase transformer is assembled by connecting three 1000	Analyze	CO 5	AEEB11 14
0	VA, 330/110 V single phase transformers. Determine the nominal	1 1101 / 20	000	
	voltage and power rating of the three phase transformer for Y/Y,			
	$\Delta/\Delta, Y/\Delta, \Delta/Y.$			
4	Two T-connected transformers are used to supply a 440V, 88 KVA	Understand	CO 5	AEEB11.14
	balanced load to form a balanced three phase supply of 8.8 KV.			
	a) Voltage and current rating of each coil			
	b) KVA rating of the main and teaser transformers.			
5	Three 1100/110 V transformers connected in Δ/Δ supply a lighting	Analyze	CO 5	AEEB11.14
	load of 100 KW. One of these transformers is damaged and hence	-		
	removed for repairs. What currents will be flowing in each			
	transformer when			
	1) The transformers are in service.			
6	I) The two transformers are connected in open data and supply a	Understand	CO 5	Δ FFR 11 1 <i>4</i>
0	balanced three phase load of 240 KW at 400 V and a p f of 0.866	Understand	05	ALLDII.14
	determine			
	i) The secondary line current			
	ii) The KVA load on each transformer			
	iii) The power delivered by the individual transformers.			

7	A balanced three phase, 100 W load at 400 V and 0.8 p.f. lagging	Analyze	CO 5	AEEB11.14
	is to be obtained from a balanced two phase 1100 V lines.			
	Determine the KVA rating of each unit of the Scott connected			
	transformer.			
8	A three phase 1000 KVA, 6000/600 V, Y-Y, 50Hz transformer has	Understand	CO 5	AEEB11.14
	an iron loss of 1000 W. the maximum efficiency occurs			
	a) The efficiency of transformer at full load and 0.85 p.f.			
	b) The maximum efficiency at unity p.t.	TT 1 / 1	<u> </u>	
9	A 20KVA, 200/500 V, 50 Hz single phase transformer is	Understand	05	AEEB11.16
	connected as autotransformer, where $v_1=200$ v and $v_2=700$ v.			
	distribution when it delivers the rated KVA to load			
10	The primary and secondary voltages of an autotransformer are 600	Analyze	CO 5	AFFR11 16
10	V and 300 V respectively. With the help of the diagram, show the	7 maryze	005	ALLDII.IO
	current distribution in the winding. When the secondary current is			
	100 A, also find the percentage savings in conductor material.			
11	A 2200/220 V transformer is Rated at 10 KVA as a two winding	Understand	CO 5	AEEB11.16
	transformer. It is connected as an auto transformer with low			
	voltage winding connected additively in series with high voltage			
	winding. The autotransformer is excited from a 2500 V source. The			
	auto transformer is loaded so that the rated currents of the windings			
	are not exceeded. Find			
	i) current distribution in the windings			
	11) KVA output			
	111) KVA transferred conductively and inductively from input to			
	output			
	transformer of same VA rating			
12	An auto transformer supplies a load of 5 KW at 125 V and at unity	Understand	CO 5	AEEB11 16
12	power factor. If the primary voltage is 250 V, determine	enderstand	005	TILLDII
	i) transformation ratio			
	ii) primary and secondary currents			
	iii) Number of turns across secondary if total number of turns is			
	250.			
	iv) power transformed.			
13	Two single phase Scott connected transformers supply a 3-phase 4-	Understand	CO 5	AEEB11.15
	wire 50Hz distribution system with 400V between lines. The HV			
	windings are connected to a 2-phase 6000V (per phase) system.			
	The core area is 250 sq.cm. while the maximum allowable flux			
	density is 1.2 T. determine the number of turns on each winding			
	and the point of to be tapped for the neutral wire on the 3-phase			
14	Siut. A balanced 3 phase 100 KW load at 400V and 0.8 p floading is to	Understand	CO 5	AEEP11 15
14	he obtained from a balanced two phase 1100V lines. Determine the	Understand	05	ALLDII.13
	KVA rating of each unit of the Scott connected transformer			
15	Two transformers connected in open delta supply a 400 KVA	Understand	CO 5	AEEB11 15
15	balanced load operating at 0.866 n f lagging The load voltage is	Chaerstand	005	
	440V. Calculate the KVA supplied by each transformer and KW			
	supplied by each transformer.			

Prepared by:

Mr. K Devender Reddy, Assistant Professor, EEE