INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad-500043
CIVIL ENGINEERING
TUTORIAL QUESTION BANK

Course Title	ENGINEERING MECHANICS				
Course Code	AMEB03				
Programme	B.Tech				
Semester	II AE	AE			
	III CE\|	CE\| ME			
Course Type	Foundation				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Chief Coordinator	Dr. Ch.Sandeep, Associate Professor				
Course Faculty	Dr. Ch.Sandeep, Associate Professor Dr. U Vamsi Mohan, Professor				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Ability to work comfortably with basic engineering mechanics concepts required for analyzing static structures.
II	Identify an appropriate structural system to studying a given problem and isolate it from its environment, model the problem using good free-body diagrams and accurate equilibrium equations.
III	Identify and model various types of loading and support conditions that act on structural systems, apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem.
IV	Understand the meaning of centre of gravity (mass)/centroid and moment of Inertia using integration methods and method of moments

COURSE OUTCOMES (COs):

CO 1	Develop the ability to work comfortably with basic engineering mechanics concepts required for analysing rigid bodies and structures. Identify an appropriate structural system for studying a given problem and isolate it from its environment, model the problem using free body diagrams and accurate equilibrium equations.
CO 2	Understand laws of friction and advantages of friction. Can be able to use this knowledge for various engineering applications. Can be able to analyse simple pin-jointed frames under different load conditions.
CO 3	Can be able to locate the centroids and calculate the moments of inertia for various simple cross- sections such as I section, T-scetion, Channel section etc., and composite sections. Mass moments of inertia can also be determined. Can apply principle of virtual work for the analysis of structures.

CO 4	Understand the principles (Laws of rigid body motion, Work-energy principle and Impulse- momentum principle etc.,), for analysing the problems related to the motion of rigid bodies with and without considering the forces which causes motion.
CO 5	Understands the concepts related to the free and forced vibrations and can be able to apply the same to real world problems. Also understands the simple harmonic motion of simple pendulum.

COURSE LEARNING OUTCOMES (CLOs):

AMEB03.01	A basic understanding of the laws and principle of mechanics.
AMEB03.02	The ability to solve simple force system problems in mechanics
AMEB03.03	Determine the resultant and apply conditions of static equilibrium to a plane force system
AMEB03.04	Can be able to apply the knowledge of forces and force systems in the analysis of more complex problems.
AMEB03.05	Understands the concepts of static and dynamic friction, advantages and disadvantages of friction.
AMEB03.06	Solve the problems of simple systems with friction effect. Calculate the linear moving bodies ingeneral plane motion and applications of friction.
AMEB03.07	Analyze planar and spatial systems to determine the force in the members of truss and frames.
AMEB03.08	Sol
AMEB03.09	Obtain the centroid, center of gravity and centre of mass for simple and composite objects.
AMEB03.10	Understand the concept of moment of inertia and can calculate second moment of area for simple and composite sections..
AMEB03.11	Can apply the knowledge of first and second moments of area in the analysis and design of complex structures.
AMEB03.12	Understand the concept of virtual work and an ability to solve practical problems using the principle of virtual work.
AMEB03.13	Understand the concepts of kinematics of the particles and rectilinear motion.
AMEB03.14	Explore knowledge \& ability to solve various particle motion problems.
AMEB03.15	Derive the D' Alembert's principle and apply it to various field problems of kinetic motion.
AMEB03.16	Determine the impact, impulse and impulsive forces occurring in the system and able to solve the problems.
AMEB03.17	Understands the concepts of vibration and explain the relation between simple harmonic motion and the equilibrium systems.
AMEB03.18	Derive the expressions for the concepts of simple, compound and torsional pendulums.
AMEB03.19	Applies the knowledge of vibrations in the analysis and design of various machine foundations.
AMEB03.20	Explore the use of modern engineering tools, software and equipment to prepare for competitive exams, higher studies etc

TUTORIAL QUESTION BANK

MODULE- I

INTRODUCTION TO ENGINEERING MECHANICS
Part - A (Short Answer Questions)

S No	QUESTIONS	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	State Varignon's theorem	Remember	CO 1	AMEB03.01
2	What is a couple?	Understand	CO 1	AMEB03.01
3	Define principle of transmissibility.	Remember	CO 1	AMEB03.02
4	State the triangular law of forces?	Remember	CO 1	AMEB03.02
5	What is a moment of a couple?	Remember	CO 1	AMEB03.01
6	State Newton's three laws of motion?	Remember	CO 1	AMEB03.02
7	State and explain Newton's law of gravitation	Remember	CO 1	AMEB03.01
8	Define the term resultant and equilibrant	Remember	CO 1	AMEB03.03
9	What is a rigid body?	Remember	CO 1	AMEB03.01
10	What is a couple? State its characteristics	Remember	CO 1	AMEB03.01
11	Explain coplanar force system with sketch.	Remember	CO 1	AMEB03.03
12	Explain concurrent force system with sketch.	Remember	CO 1	AMEB03.02
13	Define the resultant of a force system.	Understand	CO 1	AMEB03.03
14	Explain the resultant of two like parallel forces.	Understand	CO 1	AMEB03.03
15	Define momentum of a force.	Remember	CO 1	AMEB03.04
16	Resultant of concurrent forces.	Understand	CO 1	AMEB03.03
17	Define Static Indeterminacy.	Understand	CO 1	AMEB03.04
18	Explain the resultant of two unlike parallel forces.	Remember	CO 1	AMEB03.03
19	Define spatial force system.	Understand	CO 1	AMEB03.04
20	List out the equilibrium equations for spatial force system	Remember	CO 1	AMEB03.04
Part - B (Long Answer Questions)				
1	State and prove Lami's theorem with a neat sketch?	Remember	CO 1	AMEB03.02
2	State and prove the Parallelogram law of forces?	Understand	CO 1	AMEB03.02
3	Explain free body diagram with neat sketches.	Remember	CO 1	AMEB03.03
4	What differences exist between Kinetics and Kinematics	Remember	CO 1	AMEB03.01
5	Compare 'Resultant' and 'Equilibrant'	Remember	CO 1	AMEB03.03
6	Distinguish between couple and moment.	Understand	CO 1	AMEB03.01
7	Explain briefly about various types of supports.	Understand	CO 1	AMEB03.04
8	Explain the procedure to find the resultant of several forces acting at a point	Understand	CO 1	AMEB03.03
9	Determine the magnitude and the direction of the resultant of two forces 7 N and 8 N acting at a point with an included angle of 60° with between them. The force of 7N being horizontal	Understand	CO 1	AMEB03.03
10	Two coplanar forces act towards a point with an angle of 45° between them. If their resultant is 100 kN and one of the forces is 20 kN calculate the other force	Understand	CO 1	AMEB03.03
11	Two forces act at an angle of 120°. The bigger forces is 60 N and the resultant is perpendicular to the smaller one. Find the smaller force.	Understand	CO 1	AMEB03.03

12	Two homogeneous spherical balls rest between two vertical walls as shown in figure. The radius of smaller ball is 16 cm and its weight is 1.15 kN . The radius of the larger ball is 24 cm and weight is 3.45 kN . The distance between the walls is 72 cm . Assuming the contact surfaces to be smooth, Determine the reactions at A, B and C .	Understand	CO 1	AMEB03.04
13	A traffic signal of mass 50 kg is hung with the help of two strings, as shown in figure. Find the forces induced in the strings.	Apply	CO 1	AMEB03.03
14	Two spheres are kept in a conical channel, as shown in figure. All contact surfaces are smooth. Determine the reactions at all the contact surfaces. Sizes of spheres are same but with different weight.	Understand	CO 1	AMEB03.04
15	An electric light fixture is held with the arrangement shown in figure. If the weight of the fixture is 20 kg and the hinge is an ideal one, determine the axial forces in the bar and the string.	Understand	CO 1	AMEB03.03

16	Two weights are suspended as shown in figure. Determine the tension in String PQ. Pulley is assumed smooth.	Understand	CO 1	AMEB03.03
17	In the arrangement shown in figure, all pulleys are assumed to be smooth and frictionless. Determine the angle ' α ' and the reactive force on the ball from the floor.	Understand	CO 1	AMEB03.04
18	A ladder of weight 30 kg is supported at wall and floor as shown in figure. A man of weight 72 kg rides on a rung 8 m above the floor level. Considering all contact surfaces smooth, determine the reactions at P and Q .	Understand	CO 1	AMEB03.04
19	A 75 kg man stands on the middle rung of ladder AB of weight 25 kg , which is supported on smooth wall and smooth floor. A string OC holds the ladder in position preventing from slipping. Determine the tension in the string and the reactions at the supports.	Understand	CO 1	AMEB03.04
20	Neglecting the thickness and mass of the beam, determine the support reactions for the beam loaded as shown in figure.	Understand	CO 1	AMEB03.04

Part - C (Problem Solving and Critical Thinking Questions)				
1	A force P is applied at ' O ' to the string AOB as shown in figure. If the tension in each part of string is 50 N , Find the direction and magnitude of force P for equilibrium conditions.	Remember	CO 1	AMEB03.03
2	Determine the resultant of system of forces acting as shown in figure.	Remember	CO 1	AMEB03.03
3	A heavy cylinder of mass 280 kg is to be pulled over a curb of height 5 cm by a horizontal force F applied by means of a rope wound around the cylinder as shown in figure. Determine the magnitude of pull for impending motion over the curb, while the radius of the cylinder is 13 cm ..	Remember	CO 1	AMEB03.03
4	Two forces are applied to an eye bolt fastened to a beam. Determine the magnitude and direction of their resultant.	Remember	CO 1	AMEB03.03
5	Find the magnitude of two forces such that if they act at right angle, their resultant is $\sqrt{ } 10$, but they act at 600 their resultant is $\sqrt{ } 13$	Remember	CO 1	AMEB03.03
6	The five forces $20 \mathrm{~N}, 30 \mathrm{~N}, 40 \mathrm{~N}, 50 \mathrm{~N}$ and 60 N are acting at one of the angular points of a regular hexagon, towards the other five angular points taken in order. Find the direction and magnitude of the resultant force	Understand	CO 1	AMEB03.03
7	The following forces act at a point a. 30 kN inclined at 35° towards North to East. b. 22 kN towards North c. 30 kN inclined at 30° towards North to West d. 35 kN inclined at 25^{0} towards South to West. Find the magnitude and direction of the resultant force.	Understand	CO 1	AMEB03.03
8	Determine the horizontal force P to be applied to a block of weight of 1800 N to hold it in position on a smooth inclined plane, which makes an angle 30° with horizontal reference line.	Understand	CO 1	AMEB03.04
9	A uniform plank ABC of weight of 30 N and 2 m long is supported one end A and at a point B 1.4 m from A . find the maximum weight W that can be placed at C , so that the plank does not topple	Understand	CO 1	AMEB03.04

10	The force of magnitudes $10 \mathrm{KN}, 20 \mathrm{KN}, 25 \mathrm{KN}$ \& 40 KN are concurrent in space and are directed through the points $\mathrm{A}(3,2,5), \mathrm{B}(1,7,4), \mathrm{C}(4,-2,4) \& \mathrm{D}(-2,4,-3)$ respectively. Determine the resultant of the force system of forces. Given that system of forces are concurrent at the origin.	Understand	CO 1	AMEB03.03
MODULE-II				
FRICTION AND BASIC STRUCTURAL ANALYSIS				
Part - A (Short Answer Questions)				
1	Explain the types of friction with examples?	Understand	CO 2	AMEB03.05
2	Define Friction	Understand	CO 2	AMEB03.05
3	Define the following (i)Angle of Repose (ii)Coefficient of frictions	Understand	CO 2	AMEB03.05
4	Differentiate between static and dynamic friction?	Understand	CO 2	AMEB03.05
5	State laws of solid friction.	Understand	CO2	AMEB03.05
6	What do you understand by the limiting friction?.	Remember	CO 2	AMEB03.06
7	What is the principle of a screw jack?	Remember	CO 2	AMEB03.06
8	Define a beam? And explain different types of beams with neat sketches.	Remember	CO 2	AMEB03.08
9	Explain the classification of friction.	Understand	CO2	AMEB03.05
10	Differentiate between beam and column.	Remember	CO2	AMEB03.08
11	Explain types of friction.	Understand	CO 2	AMEB03.05
12	Explain rolling friction.	Understand	CO 2	AMEB03.06
13	Under what conditions can a cylinder roll down and under what conditions can it slide down an inclined plane.	Understand	CO2	AMEB03.06
14	Differentiate between angle of repose and angle of friction.	Understand	CO 2	AMEB03.05
Part - B (Long Answer Questions)				
1	Derive an expression for the minimum effort required along the inclined plane to keep a body in equilibrium position when it is at point of sliding downwards on a inclined plane.	Remember	CO 2	AMEB03.06
2	Solve reactions at points A \& B	Understand	CO2	AMEB03.08
3	Explain the difference between coefficient of friction and angle of friction	Remember	CO 2	AMEB03.05
4	Derive an expression for the maximum force required along the horizontal plane to keep a body in equilibrium position when it is at point of sliding downwards on a inclined plane.	Remember	CO2	AMEB03.06
5	Two 6^{0} of wedges are used to push a block horizontally as shown in figure. Calculate the minimum force required to push the block of weight 10 kN . Take coefficient of friction as 0.25 for all contact surfaces.	Remember	CO2	AMEB03.06
6	A body of weight 300 N is lying on a rough horizontal surface having coefficient of friction as 0.3 . Find the magnitude of force, which can move the body, while acting at an angle 25° with the horizontal.	Remember	CO 2	AMEB03.06
7	A body resting on a rough horizontal plane, required a pull of 180 N inclined at 30° to the plane just to move it. It is found that a push of 220 N inclined at 30° to the plane just to move the body. Determine the weight of the body and coefficient of friction.	Remember	CO 2	AMEB03.06
8	A object of weight 100 N is kept in position on a inclined 30° to the horizontal by a horizontal applied force. If the coefficient of friction of the surface of the inclined plane is 0.25 . determine the minimum magnitude of force.	Remember	CO 2	AMEB03.06

9	Find the force and its nature in member AD and BC for given cantilever truss loaded by 40 KN as shown figure.	Remember	CO 2	AMEB03.07
10	Find the forces in the members DF, DE, CE, and EF by method of joints for the pin-jointed frame as shown in figure.	Understand	CO 2	AMEB03.07
11	A beam AB is supported and loaded as shown in fig.1. Find the reactions at the supports.	Understand	CO2	AMEB03.08
12	Explain the Coulomb's laws of friction.	Remember	CO2	AMEB03.05
13	Explain Cone of friction.	Remember	CO2	AMEB03.05
14	Explain wedge friction.	Remember	CO2	AMEB03.06
15	Find the forces in the members AB and BD by method of sections.	Understand	CO 2	AMEB03.07
16	Find the forces in the members AB and BD by method of sections.	Understand	CO2	AMEB03.07
17	A screw thread of a screw jack has a mean diameter of 10 cm and a pitch of 1.25 cm . The coefficient of friction between the screw and its nut housing is 0.25 . Determine the force F that must be applied at the end of a 50 cm lever arm to raise a mass of 5000 kg . Is the device self-locking? Also determine its efficiency.	Understand	CO 2	AMEB03.06

18	A horizontal force F is applied to a block which rests on an inclined plane, as shown in figure. Find the force required to initiate motion up the plane.	Understand	CO 2	AMEB03.06
19	Find the minimum weight W of the triangular block such that it remains in equilibrium under the action of the force 1 kN applied to it as shown in figure. Take $\mu=0.25$.	Understand	CO 2	AMEB03.06
20	Two rectangular blocks of weights W_{1} aand W_{2} connected by a flexible cord resting upon a horizontal plane and an incline are shown in figure. In a particular case when $W_{1}=W_{2}$ and coefficient of static friction being same for all contiguous surfaces, find the angle of inclination of the incline at which motion of the system will impend.	Understand	CO 2	AMEB03.06
Part - C (Problem Solving and Critical Thinking Questions)				
1	A ladder 6 m long and with 300 N weight is resting against a wall at an angle of 600 to the ground. A man weighing 750N climbs the ladder. At what position along the ladder from bottom does he induce slipping? The coefficient of friction for both wall and the ground with ladder is 0.2 .	Understand	CO 2	AMEB03.06
2	A uniform ladder of length of 3.25 m \& weight of 250 N is placed against a smooth wall with its lower end 1.25 M from the wall. Coefficient of friction between the ladder and floor is 0.3 . what is the frictional force acting on the ladder at the point of contact between the ladder and the floor? Show that the ladder will remain in equilibrium in this position.	Understand	CO 2	AMEB03.06
3	A block of mass 150 kg is raised by a 100wedge weight 50 kg under it and by applying a horizontal force at its end. Taking coefficient of friction between all surfaces of contact as 0.3 , find minimum force that should be applied to raise the block.	Remember	CO 2	AMEB03.06

4	A ladder of 7 m length rests against a vertical wall with which it makes an angle of 450 . The coefficient of friction for wall and the floor are 0.33 and 0.50 respectively. If a man whose weight is one half of that of the ladder. How far he will be able to climb the ladder.	Remember	CO 2	AMEB03.06
5	A screw jack has mean diameter of 50 mm and pitch 10 mm . if the coefficient of friction between its screw and nut is 0.15 , find the effort required at the end of the 700 mm long handle to raise a load of 10 KN	Remember	CO 2	AMEB03.06
6	A screw press is used to compress books. The thread is a double thread (square head) with a pitch of 4 mm and a mean diameter of 25 mm . the coefficient of friction for the contact surface of the thread is 0.3 . Find the torque for a pressure of 500 N .	Understand	CO 2	AMEB03.06
7	A screw jack with single start square threads has outside and inside diameters of the thread 68 mm and 52 mm respectively. The coefficient of friction is 0.1 for all the pairs of surfaces in contact. If the length of lever is 0.5 M , find the force required to lift the load of 2 KN .	Understand	CO 2	AMEB03.06
8	A mean radius of the screw of a square threaded screw jack is 25 mm . the pitch of thread is 7.5 mm . if the coefficient of the friction is 0.12 , what effort applied at the end of the lever 60 cm length is needed to raise a weight of 2 KN	Understand	CO 2	AMEB03.06
9	A differential screw jack has a pitch of $12 \mathrm{~mm}, 10 \mathrm{~mm}$ and 300 mm arm length. What will be the efficiency of the machine, if it can lift a load of 7.5 KN by an effort of 30 N .	Understand	CO 2	AMEB03.06
10	In a differential screw jack has pitch of 10 mm and 7 mm . if the efficiency of machine is 28%. Find the effort required at the end of the arm 360 mm long to lift a load of 5 KN .	Understand	CO 2	AMEB03.06
MODULE -III				
CENTROID AND CENTRE OF GRAVITY AND VITUAL WORK AND ENERGY METHOD				
Part - A (Short Answer Questions)				
1	Distinguish between centroid and centre of gravity	Understand	CO 3	AMEB03.09
2	Define polar moment of inertia	Remember	CO 3	AMEB03.10
3	Define Radius of gyration	Remember	CO 3	AMEB03.10
4	State the parallel axis theorem	Remember	CO 3	AMEB03.10
5	State the perpendicular axis theorem	Remember	CO 3	AMEB03.10
6	State Pappus - Guildinus theorem.	Remember	CO 3	AMEB03.09
7	Determine the moment of inertia of rectangular lamina about base using parallel axis theorem.	Understand	CO 3	AMEB03.10
8	Determine the polar moment of inertia of circular lamina about centroidal axis.	Understand	CO 3	AMEB03.10
9	Describe the various methods of finding the centre of gravity of a body	Understand	CO 3	AMEB03.09
10	List out the solid of revolution.	Remember	CO 3	AMEB03.09
11	Give the location of centroids of rectangle, right angled triangle, parabola, semicircle, quarter circle.	Remember	CO 3	AMEB03.09
12	Determine the volume and surface area of cylinder of height ' h ' and radius ' r ' using Pappus - Guildinus theorems.	Understand	CO 3	AMEB03.09
13	Define mass moment of inertia	Remember	CO 3	AMEB03.10
14	Determine the moment of inertia of a square lamina about its diagonal.	Understand	CO 3	AMEB03.10
15	Determine the moment of inertia of Triangular lamina, using parallel axis theorem.	Understand	CO 3	AMEB03.10
16	Define the term power	Remember	CO 3	AMEB03.12
17	State the principle of conservation of energy	Understand	CO 3	AMEB03.12
18	Explain the term work done by friction force	Understand	CO 3	AMEB03.12
19	Explain the term work done by spring force	Understand	CO 3	AMEB03.12
20	State the principle of virtual work.	Remember	CO 3	AMEB03.12
Part - B (Long Answer Questions)				
1	State and prove the parallel axis theorem.	Remember	CO 3	AMEB03.10
2	State and prove the perpendicular axis theorem	Remember	CO 3	AMEB03.10
3	State and prove the Pappus guildlinus theorem for area and volume	Remember	CO 3	AMEB03.09

4	Determine the coordinates of centroid of the shaded area shown in figure.	Remember	CO 3	AMEB03.09
5	Determine the Moment of Inertia about the centroidal coordinate axes of plane area shown in fig. Also find Polar Moment of Inertia.	Remember	CO 3	AMEB03.11
6	Derive an expression for centroid of semi-circle.	Remember	CO 3	AMEB03.09
7	Derive an expression for MI for a rectangle section.	Remember	CO 3	AMEB03.11
8	State and explain Pappus-Guldinus theorems for surface of revolution and Volume of revolution.	Understand	CO 3	AMEB03.09
9	Locate the centroid of the composite area shown in figure.	Understand	CO 3	AMEB03.09
10	Locate the centroid of the composite area shown in figure.	Understand	CO 3	AMEB03.09

11	In a rectangular plate of $100 \times 120 \mathrm{~mm}$ and of negligible thickness, a rectangular cut of dimensions $30 \times 40 \mathrm{~mm}$ is made as shown in figure. Determine the position of centroid of the remaining part of the plate.	Understand	CO 3	AMEB03.09
12	A block of mass 50 kg slides down a 35° incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is $1 \mathrm{~N} / \mathrm{cm}$, Solve the coefficient of kinetic friction between the block and the plane.	Remember	CO 3	AMEB03.12
13	State and prove work energy principle	Remember	CO 3	AMEB03.12
14	Explain the following terms 1. Work done by weight force 2. Work done by friction force and 3. Work done by spring force	Remember	CO 3	AMEB03.12
15	A force of 500 N is acting at 30° to the horizontal on a block of mass 50 kg resting on a horizontal surface. Determine the velocity after the block has travelled a distance of 10 m . Coefficient of kinetic friction is 0.5 .	Understand	CO 3	AMEB03.12
16	A pump lifts $40 \mathrm{~m}^{3}$ of water to a height of 50 m and delivers it with a velocity of $5 \mathrm{~m} / \mathrm{s}$. what is the amount of energy spent during the process? If the job is done in half an hour, what is the input power of the pump which has an overall efficiency of 70%.	Understand	CO 3	AMEB03.12
17	Locate the centroid of the dam cross section shown in figure with respect to its base and vertical face.	Understand	CO 3	AMEB03.09
18	A block of mass 50 kg slides down a 35° incline and strikes a spring 1.5 m away from it as shown in Fig. The maximum compression of the spring is 300 mm when the block comes to rest. If the spring constant is $1 \mathrm{~N} / \mathrm{cm}$, Solve the coefficient of kinetic friction between the block and the plane.	Understand	CO 3	AMEB03.12

19	A ladder of length 4.4 m and weight 250 N is placed at one end on wall and other end on floor. To prevent slipping of the ladder, a rope PC is tied with the wall. Using the method of virtual work, determine the tension of the rope.	Understand	CO 3	AMEB03.12
20	Determine the centroid of the shaded area ABDEFG shown in figure.	Understand	CO 3	AMEB03.09
Part - C (Problem Solving and Critical Thinking)				
1	Find the centre of gravity of the "T "lamina as shown in figure. All dimensions are in mm .	Remember	CO 3	AMEB03.09
2	Find the centroid of the plane lamina shown in Figure	Remember	CO 3	AMEB03.09

3	Uniform lamina shown in fig consists of rectangle, a semi-circle and a triangle. Find the centre of gravity.	Remember	CO 3	AMEB03.09
4	Derive an expression for centroid of triangular area	Remember	CO3	AMEB03.09
5	Derive an expression for centroid of circle.	Remember	CO 3	AMEB03.09
6	Derive an expression for centroid of rectangle area.	Understand	CO 3	AMEB03.09
7	Determine the distance in which a car moving at 90 kmph can come to rest after the power switched off if coefficient of friction is 0.8 on road and tyres.	Understand	CO 3	AMEB03.12
8	Derive the expression for range along an inclined plane. What is the necessary condition for obtaining maximum range along an inclined plane?	Remember	CO 3	AMEB03.12
9	Two blocks are placed on two smooth inclined planes as shown in figure. The string connecting the blocks passing over a smooth pulley is inextensible. $\mathrm{W}_{1}=75 \mathrm{~N}, \mathrm{~W}_{2}=65 \mathrm{~N}$ and $\alpha=37^{0}$ determine using the method of virtual work, the angle θ.	Understand	CO 3	AMEB03.12
10	Using the method of virtual work, determine the reaction at supports A and B of the transversely loaded beam shown in figure.	Remember	CO 3	AMEB03.12
MODULE -IV				
PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS				
Part - A (Short Answer Questions)				
1	Define the terms velocity and acceleration	Understand	CO 4	AMEB03.13
2	Define angular displacement, angular velocity and angular acceleration	Understand	CO 4	AMEB03.13
3	Define the terms Kinetics and kinematics.	Understand	CO 4	AMEB03.13
4	Define the term rigid body	Remember	CO 4	AMEB03.13
5	State D'Alembert's principle..	Remember	CO 4	AMEB03.15
6	Compare Newton's second law with D'Alembert's principle	Remember	CO 4	AMEB03.05
7	Define the term momentum of a body with units	Remember	CO 4	AMEB03.16
8	Distinguish between mass and weight.	Remember	CO 4	AMEB03.16
9	Write governing equations of velocity and acceleration of fixed axis rotation	Remember	CO 4	AMEB03.14
10	Define instantaneous centre of velocity	Remember	CO 4	AMEB03.13
11	State the assumptions necessary for the analysis of a plane projectile motion.	Remember	CO4	AMEB03.13
Part - B (Long Answer Questions)				
1	Derive an expression $\mathrm{F}=\mathrm{ma}$	Understand	CO 4	AMEB03.14
2	The rectilinear motion of a particle is defined by the displacement time equation as $\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+(1 / 2) \mathrm{at}^{2}$. Find the displacement and velocity at time $\mathrm{t}=2 \mathrm{~s}$ while $\mathrm{x}_{0}=250 \mathrm{~mm}, \mathrm{v}_{0}=125 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{a}=0.5 \mathrm{~mm} / \mathrm{s}^{2}$.	Remember	CO 4	AMEB03.13

3	A particle starts from rest and moves along a straight line with constant acceleration a. If it acquires a velocity $v=3 \mathrm{~mm} / \mathrm{s}^{2}$, after having travelled a distance $S=7.5 \mathrm{~m}$, find the magnitude of the acceleration.	Remember	CO 4	AMEB03.14
4	A flywheel of diameter 50 cm starts from rest with constant angular acceleration of $2 \mathrm{rad} / \mathrm{s} 2$. Determine the tangential and the normal components of acceleration of a point on its rim 3 s after the motion began	Understand	CO 4	AMEB03.14
5	Derive the expression for range along an inclined plane. What is the necessary condition for obtaining maximum range along an inclined plane?	Understand	CO 4	AMEB03.14
6	A car of mass 1000 kg descends a hill of $\sin -1(1 / 6)$. The frictional resistance to motion is 200 N . Calculate using work energy method, the average braking effort to bring the car to rest from 48 kmph in 30 m .	Understand	CO 4	AMEB03.16
7	A hammer of mass 400 kg falls through a height of 3 m on a pile of negligible mass. If it drives the pile 1 m into the ground, find the average resistance of the ground for penetration	Apply	CO 4	AMEB03.14
8	A mass of 5 kg is dropped from a height of 2 metres upon a spring whose stiffness is $10 \mathrm{~N} / \mathrm{mm}$. Calculate the speed of the mass when a spring is compressed through a distance of 100 mm .	Understand	CO 4	AMEB03.14
9	For the system of connected bodies as shown in the figure given below, calculate the force F required to make the motion impending to the left. Use the method of virtual work and take coefficient of friction for all contiguous surfaces except pulleys as 0.25 .	Understand	CO 4	AMEB03.15
10	A pulley whose axis passes through the centre ' O ' carries a load as shown in figure given below. Neglect the inertia of pulley and assuming that the cord is inextensible; determine the acceleration of the block A . How much weight should be added to or taken away from the block A if the acceleration of the block A is required to be $\mathrm{g} / 3$ downwards?	Understand	CO 4	AMEB03.15
11	A rope AB is attached to a small block of negligible dimensions at B and passes over a pulley C so that its free end A hangs 1.5 m above ground when the block rests on the floor. The end A of the rope is moved horizontally in a straight line by a man walking with a uniform velocity $\mathrm{v}_{0}=3 \mathrm{~m} / \mathrm{s}$. Deduce the generalised expression for velocity. Also find the time required for the block to reach the pulley if $h=4.5 \mathrm{~m}$ and the pulley is negligibly small.	Understand	CO 4	AMEB03.14

12	The position of a particle moving along a straight line is defined by the relation $x=t^{3}-9 t^{2}+15 t+18$ where x is expressed in metres m and t in seconds. Determine the time, position and acceleration of the particle when its velocity becomes zero.	Understand	CO 4	AMEB03.13
13	The velocity of a body moving along a straight line follows the law $\mathrm{v}=1.25 \mathrm{t}-0.125 \mathrm{t}^{2}$ where the velocity is expressed in m / s and time in seconds. Determine the (i) maximum acceleration and the (ii) distance traversed in 10 s .	Understand	CO 4	AMEB03.13
14	A ball is thrown vertically upwards at $20 \mathrm{~m} / \mathrm{s}$ from a window 50 m above the ground. Determine the (i) maximum rise of the ball from ground and (ii) time and velocity of the ball hitting the ground.	Understand	CO 4	AMEB03.13
15	Two masses are inter-connected with a pulley system, as shown in figure. Neglecting inertial and frictional effect of pulleys and cord, determine the acceleration of the mass m_{2}. Take $\mathrm{m}_{1}=40 \mathrm{~kg}, \mathrm{~m}_{2}=30 \mathrm{~kg}$.	Understand	CO 4	AMEB03.14
16	Neglecting the inertial and frictional effects of two pulleys P and Q as shown in figure, determine the acceleration of mass m_{2}. Assume $m_{1}=m_{2}$.	Understand	CO 4	AMEB03.14
17	Two blocks, as shown in figure, slide down a 27° incline. If the coefficient of friction at all contiguous surfaces are 0.17 , determine the pressure between the blocks. Take $\mathrm{m}_{\mathrm{A}}=20 \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{B}}=30 \mathrm{~kg}$.	Understand	CO 4	AMEB03.15
18	The acceleration of a particle along a straight line is given by the equation $a=\left(4-t^{2} / 9\right)$. If the particle starts with zero velocity from a position $x=0$, find (i) its velocity after 6 s and (ii) distance travelled in 6 s .	Understand	CO 4	AMEB03.13
19	An automobile starting from rest increases its speed from 0 to v with a constant acceleration α, runs at this speed for a time t_{1} and finally comes to rest with a constant retardation β. If the total distance travelled is S, find the total time t required.	Understand	CO 4	AMEB03.13
20	A body A is projected vertically upwards from the top of a tower with a velocity of $40 \mathrm{~m} / \mathrm{s}$, the tower being 180 m high. After t seconds, another body B is allowed to fall from the same point. Both the bodies reach the ground simultaneously. Calculate t and the velocities of A and B on reaching the ground.	Understand	CO 4	AMEB03.14

Part - C (Problem Solving and Critical Thinking)				
1	An aeroplane is flying in horizontal direction of $540 \mathrm{~km} / \mathrm{hr}$ and at a height of 2200 m as shown in figure. When it is vertically above the point A on the ground, a body is dropped from it. The body strike the ground at point B. Calculate the distance $A B$ ignoring air resistance. Also find velocity at B and time taken to reach B.	Understand	CO 4	AMEB03.14
2	A particle starts moving along a straight line with initial velocity of $25 \mathrm{~m} / \mathrm{s}$, from O under a uniform acceleration of $-2.5 \mathrm{~m} / \mathrm{s} 2$. Determine (i) Velocity, displacement and the distance travelled at $\mathrm{t}=5 \mathrm{sec}$ (ii) How long the particle moves in the same direction? What is its velocity, displacement and the distance covered then? iii) The instantaneous velocity, displacement and the distance covered at $\mathrm{t}=15$ sec (iv) The time required to come back to O , velocity, displacement and distance covered then (v) Instantaneous velocity, displacement and distance covered at $\mathrm{t}=25 \mathrm{~s}$	Remember	CO 4	AMEB03.13
3	A stone is dropped from the top of a tower. When it has travelled a distance of 10 m , another stone is dropped from a point 38 m below the top of the tower. If both the stones reach the ground at the same time, calculate (i) The height of the tower and (ii) The velocity of the stone when they reach the ground	Understand	CO 4	AMEB03.13
4	Two blocks A and B are connected by an inextensible string moving over a frictionless pulley as shown in the figure given below. If the blocks are released from rest, determine the velocity of the system after the travel of 4 s . Take the masses of blocks A and B as 20 and 60 kg respectively and coefficient of friction for all the contiguous surfaces as 0.3	Understand	CO 4	AMEB03.15
5	A body A is projected vertically upwards from the top of a tower with a velocity of $40 \mathrm{~m} / \mathrm{s}$, the tower being 180 m high. After t seconds, another body B is allowed to fall from the same point. Both the bodies reach the ground simultaneously. Calculate t and the velocities of A and B on reaching the ground.	Understand	CO 4	AMEB03.14
6	Two cars A and B travelling in the same direction get stopped at a traffic signal. When the signal turns green, car A accelerates at $0.75 \mathrm{~m} / \mathrm{s} 2.1 .75$ seconds later, car B starts and accelerates at $1.1 \mathrm{~m} / \mathrm{s} 2$. Determine i) when and where B will overtake A and ii) The speed of each car at that time.	Understand	CO 4	AMEB03.14

7	A system of weights connected by string passing over pulleys A and B is shown in figure given below. Find the acceleration of three weights assuming weightless strings and ideal conditions for pulleys.	Apply	CO 4	AMEB03.15
8	Two blocks A and B are connected with inextensible string as shown in figure given below. If the system is released from rest, determine the velocity of block A after if has moved 1.5 m . Assume the coefficient of friction between block A and the plane is 0.25 . Masses of block A and B are 200 kg and 300 kg respectively.	Understand	CO 4	AMEB03.15
9	A block of mass 5 kg resting a 30° inclined plane is released. The block after travelling a distance of 0.5 m along inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$ as shown in figure given below. Find the maximum compression of spring. Assume coefficient of friction between block and the inclined plane as 0.2 .	Understand	CO 4	AMEB03.14
10	Two blocks of A (200N) and B (240N) are connected as shown in figure given below. When the motion begins, the block B is 1 m above the floor. Assuming the pulley to be frictionless and weightless, determine (i) The velocity of block A when the block B touches the floor (ii) How far the block A will move up the plane?	Understand	CO 4	AMEB03.15

MODULE -V

MECHANICAL VIBRATIONS
Part - A (Short Answer Questions)

1	Define simple harmonic motion. Give examples	Remember	CO 5	AMEB03.17
2	Define the terms Amplitude and Oscillations	Understand	CO 5	AMEB03.17
3	Define the terms periodic time and frequency and give their units.	Remember	CO 5	AMEB03.17
4	Write the equation of simple harmonic motion with notations	Understand	CO 5	AMEB03.17
5	Draw the graphical representation for displacement, velocity and acceleration equations of SHM	Remember	CO 5	AMEB03.17
6	Discuss the different types of vibrations?	Understand	CO 5	AMEB03.18
7	Write the expression for time period of a simple pendulum	Understand	CO 5	AMEB03.18
8	Write the expression for time period of a compound pendulum	Understand	CO 5	AMEB03.18
9	Write the expression for time period of a torsional pendulum	Understand	CO 5	AMEB03.18
10	Write the expression for time period of a conical pendulum	Remember	CO 5	AMEB03.18
11	Define the term free vibration.	Understand	CO 5	AMEB03.19
12	A point describes simple harmonic motion in a 0.6 m long. Find the maximum velocity if the time period is 0.3 s	Understand	CO 5	AMEB03.17
13	If a displacement of a particle in simple harmonic motion is $x=0.3 \sin (0.4 t)$ metre, find its displacement and velocity when $t=10 \mathrm{~s}$.	Remember	CO 5	AMEB03.17
14	Write the expression for equivalent stiffness of a spring system when springs are arranged in series	Remember	CO 5	AMEB03.19
15	Write the expression for equivalent stiffness of a spring system when springs are arranged in parallel.	Understand	CO 5	AMEB03.19
16	Find the length of second pendulum assuming the value of g as $9.81 \mathrm{~m} / \mathrm{s}^{2}$	Understand	CO 5	AMEB03.18
17	Define the term free vibration	Remember	CO 5	AMEB03.19
18	Calculate the length of a simple pendulum to make one complete oscillation per second	Remember	CO 5	AMEB03.18
Part - B (Long Answer Questions)				
1	Derive an expression for the time period of a simple pendulum.	Remember	CO 5	AMEB03.18
2	Derive an expression for the time period of a compound pendulum	Remember	CO 5	AMEB03.18
3	Derive an expression for the time period of a torsional pendulum	Remember	CO 5	AMEB03.18
4	A body performing simple harmonic motion has a velocity $12 \mathrm{~m} / \mathrm{s}$ when the displacement is 50 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 100 mm , the displacement measured from the midpoint. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 75 mm .	Remember	CO 5	AMEB03.17
5	A body moving with SHM has amplitude of 1 m and period of oscillation of 2 seconds. What will be its velocity and acceleration at 0.4 s after passing an extreme position?	Remember	CO 5	AMEB03.17
6	A body moving with SHM has amplitude of 30 cm and the period of one complete oscillation is 2 s . What will be the speed and acceleration of the body $2 / 5$ of a second after passing the mid position	Remember	CO 5	AMEB03.17
7	A vertical shaft 5 mm in diameter and 1.2 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 30 N . The modulus of rigidity for the material of the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system	Remember	CO 5	AMEB03.19
8	Derive an expression for the time period for a spring mass system subjected to free vibration.	Understand	CO 5	AMEB03.19
9	A weight of 10 N attached to a spring oscillates at a frequency of 60 oscillations per minute. If the maximum amplitude is 30 mm , find the tension induced in the spring. Also find the spring constant and the maximum velocity in the spring.	Understand	CO 5	AMEB03.19
10	A pendulum having a time period of 1 s is installed in a lift. Determine its time period when a The lift is moving upwards with an acceleration of $g / 10 \mathrm{~m} / \mathrm{s} 2$ b The lift is moving downwards with an acceleration of $\mathrm{g} / 10 \mathrm{~m} / \mathrm{s} 2$	Remember	CO 5	AMEB03.18
11	A conical pendulum rotates at $100 \mathrm{rev} / \mathrm{min}$. The cord is 150 mm long and the mass of bob1.35Kg. Find (a) The amount of which the bob rises above its lowest position (b) The period (c) The tension in the cord	Remember	CO 5	AMEB03.18

12	A vertical shaft 5 mm in diameter and 1.2 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 30 N . The modulus of rigidity for the material of the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system	Remember	CO 5	AMEB03.19
13	Derive an expression for the time period for a spring mass system subjected to free vibration.	Understand	CO 5	AMEB03.19
14	A weight of 10 N attached to a spring oscillates at a frequency of 60 oscillations per minute. If the maximum amplitude is 30 mm , find the tension induced in the spring. Also find the spring constant and the maximum velocity in the spring	Remember	CO 5	AMEB03.19
15	A simple pendulum swings 5 oscillations in the same time as another 0.48 m longer swings 3 oscillations. Determine their lengths.	Remember	CO 5	AMEB03.18
16	A spring of stiffness $10 \mathrm{~N} / \mathrm{m}$ is cut into two halves and fixed with a mass M , so that the system can vibrate, as shown in figure. If the cyclic frequency of the system is 7 cps , determine the magnitude of M .	Understand	CO 5	AMEB03.19
Part - C (Problem Solving and Critical Thinking)				
1	In a mechanism, a cross head moves in straight guide with simple harmonic motion. At distance of 125 mm and 200 mm from its mean position, it has velocities of $6 \mathrm{~m} / \mathrm{s} 3 \mathrm{~m} / \mathrm{s}$ respectively. Find the amplitude, maximum velocity and period of vibration. If the cross head weighs 2 N , calculate the maximum force on it in the direction of motion.	Remember	CO 5	AMEB03.19
2	A clock with compound pendulum is running correct time at a place where the acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s} 2$. Find the length of the pendulum. This clock is taken at a place where the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s} 2$. Find how much the clock will lose or gain in a day at this place?	Remember	CO 5	AMEB03.18
3	A load is suspended from a vertical spring. At rest it deflects the spring 12 mm . Calculate the time period. lift is displaced further 25 mm below the ret position and then released.	Remember	CO 5	AMEB03.19
4	The frequency of free vibrations of a weight W with spring constant k is 12 cycles/s. When the extra weight of 20 N is coupled with weight W , the frequency reduced to 10 cycles/s. Find the weight W and stiffness k of the spring.	Remember	CO 5	AMEB03.19
5	Determine the period of vibration of a weight P attached to springs of stiffness k 1 and k 2 in two different cases as shown in figure given below. (a) (b)	Understand	CO 5	AMEB03.19
6	A particle is moving with its acceleration directed to and proportional to its distance from a fixed point. When the distance of the particle from equilibrium position has values of 1.3 m and 1.8 m , the corresponding velocities are $5 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$. Determine a Amplitude and time period of oscillations b Maximum velocity and maximum acceleration	Understand	CO 5	AMEB03.19
7	A vertical shaft 5 mm in diameter and 1 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 200 mm and weight 20 N . The modulus of rigidity for the rotor is $0.85 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibration for the system.	Remember	CO 5	AMEB03.19
8	A vertical shaft 7 mm in diameter and 1.7 m in length has its upper end fixed to the ceiling. At the lower end it carries a rotor of diameter 180 mm and weight 50 N . The modulus of rigidity for the material of the rotor is $0.95 \times 105 \mathrm{~N} / \mathrm{mm} 2$. Calculate the frequency of torsional vibrations for the system.	Understand	CO 5	AMEB03.19

9	A body moving with SHM has amplitude of 50 cm and the period of one complete oscillation is 3s. What will be the speed and acceleration of the body $1 / 5$ of a second after passing the mid position	CO 5	AMEB03.17
10	A body performing simple harmonic motion has a velocity $20 \mathrm{~m} / \mathrm{s}$ when the displacement is 40 mm and $3 \mathrm{~m} / \mathrm{s}$ when the displacement is 120 mm , the displacement measured from the midpoint. Calculate the frequency and amplitude of the motion. What is the acceleration when the displacement is 85 mm.	CO 5	AMEB03.17

Prepared by:

Dr.U.Vamsi Mohan, Professor

