INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad-500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	FUNDAMENTALS OF DATABASE MANAGEMENT SYSTEMS					
Course Code	ACS55	53				
Programme	B.Tech					
Semester	VII EEE MECH					
Course Type	Core					
Regulation	IARE - R16					
	Theory				Practical	
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits
	3		-	3	-	-
Chief Coordinator	Ms. K. Radhika, Assistant Professor,					
Course Faculty	Ms. P Navya, Assistant Professor					

COURSE OBJECTIVES:

2 0 0 0

The cou	The course should enable the students to:				
I.	Discuss the basic database concepts, applications, data models, schemas and instances.				
II.	Design Entity Relationship model for a database.				
III.	Demonstrate the use of constraints and relational algebra operations.				
IV.	Describe the basics of SQL and construct queries using SQL.				
V.	Understand the importance of normalization in databases.				

COURSE OUTCOMES (COs):

CO 1	Apply relational calculus to solve broad range of query problems.
CO 2	Gain knowledge on transaction processing to maintain consistency and integrity of data in database systems.
CO 3	Describe concurrency control techniques to implement data integrity in database systems.
CO 4	Illustrate various backup and recovery techniques for database systems.
CO 5	Analyze transaction processing, concurrency control, Database recovery techniques

COURSE LEARNING OUTCOMES (CLOs):

ACS553.01	Define the terminology, features, and characteristics of database system.
ACS553.02	Differentiate database systems from file systems.
AC\$553.03	Describe Data Models, Schemas, Instances, Three Schema Architecture and DBMS Component Modules.
ACS553.04	Analyze an information storage problem and derive an information model expressed in the form of an entity relation diagram.
ACS553.05	Model the real world database systems using Entity Relationship Diagrams (ERD) from the requirements specification.
ACS553.06	Describe basics of the relational data model.
ACS553.07	Transform an information model into a relational database schema and implement schema using data definition language and/or utilities.
ACS553.08	Formulate solutions to a broad range of query problems using relational algebra.
ACS553.09	Apply relational calculus to solve broad range of query problems.
ACS553.10	Illustrate the Functional Dependencies, Inference Rules, Minimal Sets of FDs.
ACS553.11	Understand normalization theory and improve the design by normalization.
ACS553.12	Understand the properties of transaction (ACID).
ACS553.13	Demonstrate serializability by taking various schedules.
AC\$553.14	Gain knowledge on transaction processing to maintain consistency and integrity of data in database systems.
ACS553.15	Describe concurrency control techniques to implement data integrity in database systems.
ACS553.16	Illustrate various backup and recovery techniques for database systems.
ACS553.17	Analyze transaction processing, concurrency control, Database recovery techniques.
ACS553.18	Illustrate various lock based protocols.
ACS553.19	Analyze various time stamp based protocols.
ACS553.20	Understand the concepts of update and shadow paging.

TUTORIAL QUESTION BANK

	UNIT- I			
	CONCEPTUAL MODELI	NG		
	Part - A (Short Answer Ques	tions)		
S No	QUESTIONS	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	List the advantages of DBMS	Understand	CO 1	AC\$553.01
2	List the database Applications	Remember	CO 1	AC\$553.01
3	Define instances and schemas of database.	Remember	CO 1	AC\$553.03
4	Discuss Data Independence.	Understand	CO 1	AC\$553.02
5	How application programs access data base?	Remember	CO 1	AC\$553.01
6	Define (i) Database (ii) DBMS.	Remember	CO 1	AC\$553.03
7	What are main components of Database storage structure?	Understand	CO 1	ACS553.03
8	What are the main responsibilities of Transaction management component?	Understand	CO 1	ACS553.03
9	Outline main functions of Query Processor.	Remember	CO 1	ACS553.03
10	Define (i) Entity (ii) Attribute	Remember	CO 1	ACS553.04
11	Define Relationship and Relationship set.	Remember	CO 1	ACS553.04
12	Discuss about Data Definition language.	Understand	CO 1	ACS553.02
13	Discuss about Data Manipulation language.	Remember	CO 1	ACS553.02
14	List responsibilities of a DBA.	Remember	CO 1	ACS553.02
15	Outline the History of Data base Systems.	Understand	CO 1	ACS553.01
16	Discuss how can you change the data in the table.	Understand	CO 1	ACS553.02
17	List various types of attributes.	Remember	CO 1	ACS553.04
18	Discuss How can you alter and destroy tables?	Remember	CO 1	ACS553.02
19	Define a data model? List the types of data model used.	Understand	CO 1	ACS553.03
20	List the levels of data abstraction.	Understand	CO 1	ACS553.02
	Part - B (Long Answer Ques	tions)		
1	Compare and Contrast file Systems with database systems.	Understand	CO 1	ACS553.02
2	Define Data Abstraction and discuss levels of Abstraction.	Remember	CO 1	ACS553.03
3	Discuss about different types of Data models.	Remember	CO 1	ACS553.03
4	Describe the Structure of DBMS.	Understand	CO 1	ACS553.02
5	Discuss additional features of the ER-Models.	Remember	CO 1	ACS553.04
6	Discuss about the Concept Design with the ER Model.	Remember	CO 1	ACS553.05
7	examples.	Understand	CO 1	AC\$553.03
8	Explain different types of database users and write the functions of DBA.	Understand	CO 1	AC\$553.02
9	Explain about different types of integrity constraints.	Remember	CO 1	ACS553.07
10	Discuss about Different keys used in data base design with examples.	Remember	CO 1	ACS553.06
11	Distinguish strong entity set with weak entity set? Draw an ER diagram to illustrate weak entity set.	Understand	CO 1	ACS553.03
12	Differentiate relation schema and relational instance. Define the terms arity and degree of relation? What are domain constraints?	Understand	CO 1	ACS553.06
13	List and explain the design issues of entity relationship.	Remember	CO 1	ACS553.04
14	Develop ER-Diagram for a hospital with a set of patients and a	Remember	CO 1	ACS553.05
	set of medical doctors. Associated with each patient a log of the			
	various tests and examinations conducted.			
15	Discuss about Basic Concepts of ER Model in DBMS	Remember	CO 1	ACS553.04
16	Explain ER Model? With its Entity and Entity Set?	Remember	CO 1	ACS553.04
17	Discuss about ER Model and its Relationships?	Remember	CO 1	ACS553.04

18	Discuss about generalization with a neat diagram?	Remember	CO 1	ACS553.04
19	Explain specialization with a neat diagram?	Remember	CO 1	AC\$553.04
20	Discuss about aggregation with a neat diagram?	Remember	CO 1	ACS553.04
20	Part - C (Problem Solving and Critical T	hinking Questions		1100000101
1	Design an E-R diagram for keeping track of the exploits of your	Remember	CO 1	AC\$553.05
-	favorite sports team. You should store the matches played, the	rtememoer	001	1100000.000
	scores in each match, the players in each match and individual			
	player statistics for each match. Summary statistics should be			
	modeled as derived attributes.			
	Let E1 and E2 be two entities in an E/R diagram with simple	Understand	CO 1	AC\$553.05
2	single-valued attributes. R1 and R2 are two relationships between			
	E1 and E2, where R1 is one-to- many and R2 is many-to-many.			
	R1 and R2 do not have any attributes of their own. Calculate the			
	minimum number of tables required to represent this situation in			
	the relational model.			
	Analyze and find whether modifications made at conceptual level	Remember	CO 1	ACS553.05
3	makes application programs written by users at view level to be			
	modified in a database. Analyze your answer with illustration.			
4	We can convert any weak entity set to strong entity set by simply	Understand	CO 1	ACS553.04
	adding appropriate attributes. Analyze why, then, do we have			
	weak entity sets?			
5	What are the responsibilities of a DBA? If we assume that the	Remember	CO 1	ACS553.02
	DBA is never interested in running his or her own queries, does			
	the DBA still need to understand query optimization? Why?			
	Describe the structure of a DBMS. If your operating system is	Remember	CO 1	ACS553.03
6	upgraded to support some new functions on OS files (e.g., the			
	ability to force some sequence of bytes to disk), which layer(s) of			
	the DBMS would you have to rewrite to take advantage of these			
_	new functions.			4 00 5 50 00
1	Why relational model became more popular comparing with other	Understand	CO 1	AC\$553.03
0	Pecord based models?	Domomhon	CO 1	AC\$552.05
0	Describe the process to convert EK model into relation schema.	Understand	CO 1	AC\$5553.05
9	how these disadvantages or nucided in DPMS?	Understand	COT	AC\$5555.02
10	Design a relational database for a university registrar's office the	Pomomhor	CO 1	AC\$553.05
10	office maintain data about each class including the instructor, the	Kemennen	COT	AC3555.05
	number of students enrolled and time and place of the class			
	meetings. For each student - class pair, a grade is recorded			
	INIT - II			
	RELATIONAL APPROA	СН		
	Part – A (Short Answer Ques	stions)		
1	Define relational database query.	Remember	CO 2	ACS553.08
2	State the purpose of SELECT operation in Relational algebra.	Understand	CO 2	ACS553.09
3	State the purpose of PROJECT operation in Relational algebra.	Understand	CO 2	ACS553.09
4	Define a relational calculus.	Understand	CO 2	ACS553.10
5	Discuss the use of rename operation.	Remember	CO 2	ACS553.09
6	Illustrate division operation.	Remember	CO 2	ACS553.09
7	Discuss about expressive power of algebra and calculus.	Understand	CO 2	ACS553.10
8	Define a tuple relational calculus.	Remember	CO 2	ACS553.10
9	Illustrate union operation and intersection operation.	Understand	CO 2	ACS553.09
10	Illustrate cross-product operation.	Remember	CO 2	ACS553.09
11	List set operators in relational algebra.	Understand	CO 2	ACS553.09
12	List aggregate functions used in Relational Algebra.	Remember	CO 2	ACS553.09
13	List out types of joins.	Remember	CO 2	ACS553.09
14	Illustrate set difference operation.	Understand	CO 2	ACS553.09
15	Define a domain relational calculus.	Understand	CO 2	ACS553.10

16	What is Cartesian product	Understand	CO 2	ACS553.10
17	What is joins operations?	Understand	CO 2	ACS553.10
18	What is renaming operations?	Understand	CO 2	ACS553.10
19	What are natural join operations?	Understand	CO 2	ACS553.10
20	What are division operations?	Understand	CO 2	ACS553.10
	Part - B (Long Answer Ques	tions)		
1	Illustrate different set operations in Relational algebra with an	Understand	CO 2	ACS553.09
	example.			
2	Define Join, Explain different types of joins in relational algebra.	Remember	CO 2	AC\$553.09
3	Discuss about Tuple Relational calculus in detail.	Remember	CO 2	AC\$553.10
4	Discuss the difference between Relational Algebra and Relational	Remember	CO 2	ACS553 10
	Calculus	Remember	002	1105555.10
5	Illustrate Extended relational operations with examples	Understand	CO 2	AC\$553.09
6	Discuss about procedural langauge in SOL	Remember	CO_2	AC\$553.06
7	Discuss structure of query in TRC with example	Understand	CO_2	AC\$553.05
8	Write a query in TRC to find the names of sailors who have	Remember	CO 2	AC\$553.00
0	reserved both a red and green boat?	Kemember	02	AC5555.10
	Write a query in TRC to find the names of sailors who have			
	reserved all boats?			
9	Write a query in TRC to find the names of sailors who have	Remember	CO^2	AC\$553.10
,	reserved a red boat?	Kemember	02	AC55555.10
	Write a query in TRC to find the names of sailors who have not			
	reserved a red hoat?			
10	Write a TRC query to find the names of sailors who have	Remember	CO^2	AC\$553.10
10	reserved hoat 103?	Remember	002	AC5555.10
11	Let $R^{-}(ABC)$ and $S^{-}(DEE)$ let $r(R)$ and $s(S)$ both relations on	Remember	CO 2	AC\$553.10
11	schema R and S Give an expression in the Tuple relational	Remember	002	AC5555.10
	calculus that is equivalent to each of the following			
	$\sigma B=19(r)$			
	$\prod A F(\sigma C=D(r \times s))$			
	$r \cap s$			
12	Consider the following schema instructor (ID name dept name)	Remember	CO 2	AC\$553.10
12	teaches (ID, course id, sec id, semester, year), section	rtemenioer	002	11000000110
	(course id, sec id, semester, year), student (ID, name,			
	dept name).			
	takes (ID, course id, sec id, semester, year, grade)			
	1. Write the following query in RA,TRC and DRC			
	2. Find the names of the instructors not teaching any			
	course.			
13	Find the names of sailors who have reserved a green boat	Remember	CO 2	ACS553.10
14	Find sid's of sailors who've reserved a red and a green boat	Remember	CO 2	ACS553.10
	Find sid's of all sailors who've reserved red boat but not green			
	boat.			
15	Find sid's of all sailors who have a rating of 10 or reserved boat	Remember	CO 2	ACS553.10
	104			
	Find sailors whose rating is better than every sailor called			
	Horatio.			
16	Find the sailors with the highest rating	Remember	CO 2	ACS553.10
	Find the names of all branches in the loan relation.			
17	Write about set operations with syntax and examples	Remember	CO 2	ACS553.10
18	Write about Division operation in relational algebra with example	Remember	CO 2	ACS553.10
19	Write about join operations with syntax and examples	Remember	CO 2	ACS553.10
20	Differentiate natural join and inner join operations with examples	Remember	CO 2	ACS553.10
-	5 5 <u>F</u>		-	

	Part - C (Problem Solving and Critical Tl	ninking Questions	5)	
1	For the following relational database, give the expressions in RA.	Understand	CO 2	AC\$553.07
	student(stuno, stuname, major,level,age)			
	Class(Classname, meets at, Room, fid) Faculty(fid,fname,deptid)			
	1. Find the names of all uniors (level $=$ JR) Who are			
	enrolled in a class taught by I.Teach.			
	2. Find the age of the oldest student who is either a history			
	major or is enrolled in a course taught by I.Tech?			
	3. Find the names of all classes that either meet in room			
	R128 or have five or more students enrolled?			
	Given the relations	Remember	CO 2	ACS553.09
2	employee(name,salary,deptno) department (deptno, deptname,			
	address)			
	Solve which query cannot be expressed using the basic relational			
	algebra operations.			
3	Write Query in relational algebra to find second highest salary of	Understand	CO 2	ACS553.09
	Employee from Employee relation.			
4	Consider the following schema given. The primary keys are	Remember	CO 2	ACS553.09
	underlined. Sailors(sailor-id, sailor-name, sailor-rating, sailor-			
	age)			
	Boats(boat-id, boat-name, boat-color) Reserves(sailor-id, boat-id,			
	day) Write queries in Relational Algebra.			
	1. Find the names of sailors who have reserved boat			
	number 120			
	2. Find the names of sailors who have reserved a green			
	boat			
	3. Find the names of sailors who have not reserved a green			
	boat			
5	4. Find the names of sallors with the highest rating	I la denotera d	<u> </u>	AC0552 10
5	consider the following database. Employee (employee-name,	Understand	02	AC\$5555.10
	Sileei, city) Works (amployee name, company name, salary)			
	Company (company name, city)			
	Manager (employee_name, manager_name)			
	1 Give an expression in the relational algebra the tunle			
	relational calculus for the following query			
	2 Find the names of all employees who work for estate			
	hank			
6	Write the RA expression for the following Oueries Sailor	Understand	CO 2	ACS553.09
	Schema (sailor id, Sailorname, Rating Age) Reserves (Sailor id.	Chaerbuild	232	1100000.00
	Boat id, Day)			
	Boat Schema (Boat id, Boatname.color)			
	1. Find the names of sailors who have reserved boat name			
	103;			
	2. Find the sailor id of sailors who have reserved a red			
	boat;			
	3. Find the colors of boats reserved by the sailor rubber.			
	4. Find the names of sailors who have reserved a red boat.			
7	For the following relational database, give the expressions in RA.	Remember	CO 2	ACS553.09
	student(stuno, stuname, major,level,age)			
	Class(Classname, meets at, Room, fid) Faculty(fid,fname,deptid)			
	1. Find the names of all uniors (level = JR) Who are			
	enrolled in a class taught by I.Teach.			
	2. Find the age of the oldest student who is either a history			
1	mator or is enrolled in a course taught by I. Tech?			1

8	Sailor Schema (sailor id, Sailorname, Rating.Age) Reserves	Remember	CO 2	ACS553.09
	(Sailor id, Boat id, Day)Boat Schema (boat id, Boatname, color)			
	1. Find the age of the youngest sailor for each rating level?			
	2. Find the age of the youngest sailor who is eligible to			
	vote for each rating level with at lead two such sailors?			
	3. Find the No.of reservations for each red boat?			
	4. Find the average age of sailor for each rating level that at			
	least 2 sailors.			
9	How the statement "the sids of suppliers who supply some red or	Remember	CO 2	ACS553.09
	green part" can be represented in the form of relational algebra			
	and tuple relational calculus from the above relations.			
	Suppliers scheme:			
	Suppliers(sid: INTEGER, sname: STRING, address: STRING)			
	Parts(pid: INTEGER, pname: STRING, color: STRING)			
	Catalog(sid: INTEGER, pid: INTEGER, cost: REAL)			
10	Given the relations	Remember	CO 2	ACS553.09
	employee(name,salary,deptno) department (deptno, deptname,			
	address) Solve which query cannot be expressed using the basic			
	sql operations.			
	UNIT - III			J
	BASIC SQL QUERY AND NORMA	ALIZATION		
	Part - A (Short Answer Ques	tions)		
1	Illustrate Create statement with example.	Remember	CO 3	ACS553.07
2	Demonstrate DML statements in SQL Give an example.	Remember	CO 3	ACS553.07
3	Discuss various Aggregate functions used in SQL.	Understand	CO 3	ACS553.07
4	Define primary key.	Remember	CO 3	ACS553.07
5	State the syntax of foreign key constraint.	Remember	CO 3	ACS553.07
6	What are the data types in SQL?	Understand	CO 3	ACS553.07
7	Write a SQL statement to find employees whose commission is	Understand	CO 3	ACS553.07
0	greater than their salaries.	TT 1 1		1 00 5 5 2 0 5
8	Write a SQL statement to find the employees who are not clerks,	Understand	CO 3	AC\$553.07
0	analysis of salesmen.	Undonatond	CO 2	AC8552.07
9	and position where the string 'A P' accurs in the name	Understand	05	AC\$555.07
10	List out all classes in select statement	Remember	CO 3	AC\$553.07
10	List out an classes in select statement.	Kemember	0.05	AC5555.07
11	Define redundancy and its problems	Remember	CO 3	ACS553.10
12	Define functional dependency. Why are some functional	Remember	CO 3	ACS553.10
	dependencies trivial?			
13	Discuss normalization.	Understand	CO 3	ACS553.10
14	Differentiate between trivial and nontrivial dependencies.	Remember	CO 3	ACS553.10
15	If relation R consists of only simple candidate keys then R should	Understand	CO 3	ACS553.10
1.5	be in which normal form?	.		
16	Define First Normal Form.	Understand	<u>CO 3</u>	AC\$553.11
17	Define Second Normal Form.	Remember	<u>CO 3</u>	AC\$553.11
18	Define Third Normal Form.	Remember	<u>CO 3</u>	AC\$553.11
19	Define Fourth Normal Form.	Understand	CO 3	AC\$553.11
20	R(ABCD) FD : $\{A \rightarrow B, B \rightarrow C\}$	Understand	03	AC\$5553.11
	Part – B (Long Answer Ques	tions)		
1	Define a View in SQL. Write about updates on views.	Remember	CO 3	ACS553.07
2	Illustrate Group by and Having clauses with examples.	Understand	CO 3	ACS553.07
3	Discuss about Complex integrity constraints in SQL.	Remember	CO 3	ACS553.07

4	Write a nested query to find the names of sailors who have	Remember	CO 3	ACS553.07
	reserved both a red and green boat.			
	Write a nested query to find the names of sailors who have			
5	Discuss various DML statements in SOL and explain with	Pemember	CO 3	AC\$553.07
5	examples	Kemenibei	05	AC5555.07
6	Explain referential integrity constraint, unique key. Is unique	Remember	CO 3	AC\$553.07
-	+not null is same as primary key			
7	What are nested queries? What is correlation in nested queries?	Remember	CO 3	AC\$553.07
	Explain.			
8	Consider the following schema instructor (ID, name, dept_name),	Remember	CO 3	ACS553.07
	teaches (ID, course_id, sec_id, semester, year), section			
	(course_id, sec_id, semester, year), student (ID, name,			
	dept_name),			
	takes (ID, course_id, sec_id, semester, year, grade)			
	Write the following queries in SQL			
	1. Find the names of the students not registered in any			
	Section 2 Find the total number of courses taught department wise			
	2. Find the total number of courses registered department			
	s. That the total humber of courses registered department wise			
	1110			
9	Define decomposition and how does it address redundancy?	Remember	CO 3	AC\$553.11
	Discuss the problems that may be caused by the use of	Remember	005	AC5555.11
	decompositions.			
10	Define functional dependencies. How are primary keys related to	Understand	CO 3	AC\$553.11
10	FD's?	Chieffaulte	000	
11	Define normalization? Explain 1NF, 2NF, 3NF Normal forms.	Remember	CO 3	ACS553.11
12	Describe properties of decompositions.	Remember	CO 3	ACS553.11
13	Explain about Schema refinement in Database design.	Understand	CO 3	ACS553.11
14	Illustrate multivalued dependencies and Fourth normal form with	Remember	CO 3	ACS553.11
	example.			
15	Compute the closer of the following set of functional	Remember	CO 3	ACS553.11
	dependencies for a relation scheme.			
	$R(A,B,C,D,E) F = \{ A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A \}$			
1.5	List out the candidate keys of R.			
16	Write a note on INSERT, DELETE, UPDATE commands in SQL	Remember	<u>CO 3</u>	AC\$553.07
17	R(ABCD) is relation with FD set $\{C \rightarrow D, C \rightarrow A, B \rightarrow C\}$. Find	Remember	CO 3	AC\$553.11
	1. Candidate Key			
	iii Decompose in BCNE relations			
10	Europein the loss constraints Drimony loss and Earoign loss with	Damamhar	CO 2	AC\$552.07
18	explain the key constraints Primary key and Poreign key with	Keinember	003	AC\$555.07
10	Find pairs of side such that the supplier with the first sid charges	Pomombor	CO 3	AC\$553.07
19	more for some part than the supplier with the second sid	Kemenibei	05	AC5555.07
20	Find the sids of suppliers who supply some red part and some	Remember	CO 3	AC\$553.07
	green part	remember	000	1100000101
	Part – C (Problem Solving and Criti	cal Thinking)		<u>ı</u>
1	Write the SQL expression for the following Queries. Sailor	Understand	CO 3	ACS553.07
	Schema (sailor id, Sailorname, Rating.Age)			
	Reserves (Sailor id, Boat id, Day)			
	Boat Schema (Boat id, Boatname.color)			
	1. Find the names of sailors who have reserved boat name			
	103;			
	2. Find the sailor id of sailors who have reserved a red			
1	boat.			

	3. Find the colors of boats reserved by the sailor rubber?4. Find the names of sailors who have reserved a red boat?			
2	 For the following relational database, give the expressions in SQL. student(stuno, stuname, major,level,age) Class(Classname, meets at, Room, fid) Faculty(fid,fname,deptid) 1. Find the names of all uniors (level = JR) Who are enrolled in a class taught by I.Teach? 2. Find the age of the oldest student who is either a history major or is enrolled in a course taught by I.Tech? 3. Find the names of all classes that either meet in room R128 or have five or more students enrolled? 	Remember	CO 3	ACS553.07
3	 Write the SQL expressions for the following relational database. sailor schema (sailor id, Boat id, Sailorname, rating, age) Recerves (Sailor id, Boat id, Day) Boat Schema (boat id, Boatname, color) Find the age of the youngest sailor for each rating level? Find the age of the youngest sailor who is eligible to vote for each rating level with at lead two such sailors? Find the No.of reservations for each red boat? 	Understand	CO 3	ACS553.07
4	 Consider the following schema: Suppliers(sid: integer, sname: string, address: string) Parts(pid: integer, pname: string, color: string) Catalog(sid: integer, pid: integer, cost: real) The Catalog relation lists the prices charged for parts by Suppliers. Answer the following questions: Give an example of an updatable view involving one relation. 1. Give an example of an updatable view involving two relations. 2. Give an example of an insertable-into view that is updatable. 3. Give an example of an insertable-into view that is not updatable. 	Remember	CO 3	ACS553.07
5	 Consider following relations in DB and solve the queries: Student (GR_NO, name, gender, address, city, class) Marks (GR_NO, sub1, sub2, sub3, total, per) 1. Display the student of 'FYBCA' and 'TYBCA'. (2 mark each) 2. Display the marks of student whose gr_no>100. 3. Count the no of girls in FYBCA. 4. count the no: of first class students in TYBCA. 	Remember	CO 3	ACS553.07
6	Consider a relation scheme $R = (A, B, C, D, E, H)$ on which the following functional dependencies hold: {A->B, BC-> D, E->C, D->A}. Write the candidate keys of R.	Remember	CO 3	AC\$553.07
7	Consider the following relational schemes for a library database: Book (Title, Author, Catalog_no, Publisher, Year, Price) Collection (Title, Author, Catalog_no) the following are functional dependencies: Title Author> Catalog_no Catalog_no> Title Author Publisher Year Publisher Title Year> Price Assume {Author, Title} is the key for both schemes. Apply the appropriate normal form for Book Cancellation.	Remember	CO 3	ACS553.07
8	Consider a schema R (A, B, C, D) and functional dependencies A -> B and C ->D.Solve and find whether the decomposition of R into R1 (A, B) and R2(C, D) belongs to which one or both (dependency preserving and loss less join)?	Understand	CO 3	ACS553.11

9	Show that: if $\alpha \to \beta$	Remember	CO 3	ACS553.11
-	and $\alpha \rightarrow \gamma$			
	then $\alpha \rightarrow \beta \gamma$			
10	Consider the relation $R(A B C D F F)$ and FDs	Understand	CO 3	AC\$553.11
10	$A \rightarrow BC F \rightarrow A C \rightarrow AD \rightarrow F F \rightarrow D AD $ is the	Onderstand	005	1105555.11
	decomposition of R into R1(A C D) R2 (B C D) and R3 (E F D)			
	loss less? Explain the requirement of Lossless decomposition			
11	Define BCNF How does BCNF differ from 3NF? Explain with	Remember	CO 3	AC\$553.11
	an example.	remember	005	11000000111
	Suppose the schema R(A.B.C.D.E) is decomposed into (A.B.C)	Understand	CO 3	ACS553.11
12	and (A.D.E)show that the decomposition is not a dependency			
	preserving decomposition if the following set of FD hold $A \rightarrow$			
	BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A.			
13	What is the need of Normalization in relational Database design?	Remember	CO 3	ACS553.11
	Explain "Dependency Preservation" in Database design?			
14	Suppose that we have the following three tuples in a legal	Understand	CO 3	ACS553.11
	instance of a relation schema S with three attributes ABC (listed			
	in order): $(1,2,3)$, $(4,2,3)$, and $(5,3,3)$. Which of the following			
	dependencies can you infer does not hold over schema S?			
	(a) $A \rightarrow B$, (b) $BC \rightarrow A$, (c) $B \rightarrow C$			
	UNIT - IV			
	TRANSACTION MANAGEN	MENT		
	Part – A (Short Answer Ques	stions)		
1	Define a Transaction. List the properties of transaction?	Remember	CO 4	ACS553.12
2	Discuss different phases of transaction?	Remember	CO 4	ACS553.13
3	Discuss recoverable schedules?	Remember	CO 4	ACS553.12
4	Discuss cascade less schedules?	Understand	CO 4	ACS553.12
5	Define Two Phase Commit protocol?	Remember	CO 4	ACS553.12
6	Demonstrate the implementation of Isolation?	Remember	CO 4	ACS553.12
7	Discuss the Procedure to test Serializability?	Understand	CO 4	ACS553.13
8	List different types of locks and write about compatibility among	Remember	CO 4	ACS553.12
	them?			
9	Discuss about Failure Classification?	Remember	CO 4	ACS553.13
10	Define a checkpoint?	Understand	CO 4	ACS553.12
11	Discuss the failures that can occur with loss of Non-volatile	Remember	CO 4	ACS553.12
	storage?			
12	Demonstrate Conflict Serializability?	Understand	CO 4	ACS553.13
13	Discuss View Serializability?	Remember	CO 4	ACS553.14
14	Explain the distinction between serial schedule and serializable	Understand	CO 4	ACS553.12
	schedule with examples?			
15	How Consistency of a transaction preserved?	Understand	CO 4	ACS553.13
16	When two instructions are conflict to each other?	Understand	CO 4	ACS553.14
17	Indicate the importance of Isolation property of a Transaction?	Understand	CO 4	ACS553.12
18	State the property atomicity of a Transaction?	Understand	CO 4	ACS553.13
19	Explain about transaction states with a neat diagram?	Understand	CO 4	ACS553.12
20	Discuss about Schedule and Recoverability?	Understand	CO 4	ACS553.13
L	Part – B (Long Answer Ques	tions)		
1	Explain ACID properties and Illustrate them through examples?	Remember	CO 4	ACS553.12
2	Discuss How do you implement Atomicity and Durability?	Understand	CO 4	ACS553.13
3	Illustrate Concurrent execution of transaction with examples?	Remember	CO 4	ACS553.12
4	Discuss Serializability in detail with an example?	Remember	CO 4	ACS553.13
5	Discuss two phase locking protocol and strict two phase locking	Understand	CO 4	ACS553.14
	protocols?			
6	Describe Timestamp based locking protocols?	Remember	CO 4	ACS553.12
7	Describe Validation-based locking protocols?	Remember	CO 4	ACS553.13

8	Discuss in detail Multiple Granularity?	Understand	CO 4	ACS553.14
9	Explain in detail Storage structure?	Remember	CO 4	ACS553.12
10	Discuss Deferred database modification and Immediate database	Remember	CO 4	ACS553.13
	modification?			
11	Discuss how you recover from Concurrent transactions?	Remember	CO 4	ACS553.13
12	Explain Buffer Management with a neat diagram?	Understand	CO 4	ACS553.12
13	Explain different types of Advanced Recovery Techniques.	Remember	CO 4	ACS553.13
14	Write in detail about Remote Backup systems?	Understand	CO 4	ACS553.12
15	Explain the Check point log based recovery scheme for recovering the database.	Remember	CO 4	AC\$553.12
16	When a transaction is rolled back under timestamp ordering, it is assigned a new timestamp. Why can it not simply keep its old timestamp?	Remember	CO 4	AC\$553.13
17	Consider the following schedule S1. S1= $r3(y)$, $r3(z)$, $r1(x)$, $w1(x)$, $w3(y)$, $w3(z)$, $r2(z)$, $r1(y)$, $w1(y)$, $r2(y)$, $w2(y)$, $r2(x)$, $w2(x)$ Check whether S1 is serializable or not. If it is serializable, write its equivalent serial schedule.	Remember	CO 4	AC\$553.13
18	With a neat diagram explain NO-UNDO/NO-REDO recovery mechanism in transaction processing?	Remember	CO 4	ACS553.13
19	Explain the serializable and non serializable schedule?	Remember	CO 4	AC\$553.13
20	Suppose that there is a database system that never fails. Analyze	Remember	CO 4	ACS553.12
	whether a recovery manager required for this system.			
	Part – C (Problem Solving and Criti	cal Thinking)		•
	Consider the following transactions with data items P and Q initialized to zero: T1: read(P); read(Q); If P=0 then Q:=Q+1; write(Q); T2: read(Q); read(P); If Q=0 then P:=P+1; write(P); Solve and find any non-serial interleaving of T1 and T2 for	Understand	CO 4	AC\$553.14
	concurrent execution leads to a serializable schedule or non			
	serializable schedule. Explain.			
2	Analyze which of the following concurrency control protocols ensure both conflict serializability and freedom from deadlock?	Remember	CO 4	ACS553.14
3	Suppose that we have only two types of transactions, T1 and T2. Transactions preserve database consistency when run individually. We have defined several integrity constraints such that the DBMS never executes any SQL statement that brings the database into an inconsistent state. Assume that the DBMS does not perform any concurrency control. Give an example schedule of two transactions T 1 and T 2 that satisfies all these conditions, yet produces a database instance that is not the result of any serial execution of T 1 and T 2.	Understand	CO 4	ACS553.14
4	Suppose that there is a database system that never fails Analyze	Remember	CO 4	ACS553.14
	whether a recovery manager required for this system.			

6	Consider the following actions taken by transaction T1 on	Remember	CO 4	ACS553.12
	database objects X and Y			
	: R(X), W(X), R(Y), W(Y)			
	Give an example of another transaction T 2 that, if run			
	concurrently to transaction T without some form of concurrency			
	control, could interfere with T 1.			
	1. Explain how the use of Strict 2PL would prevent			
	interference between the two transactions.			
	2. Strict 2PL is used in many database systems. Give two			
	reasons for its popularity.			
7	Suppliers(sid: integer, sname: string, address: string) Parts(pid:	Understand	CO 4	AC\$553.13
	integer pname string color string) Catalog(sid integer pid	Chieffstand		1105000110
	integer, cost real)			
	The Catalog relation lists the prices charged for parts by			
	Suppliers			
	For each of the following transactions state the SOL isolation			
	level that you would use and explain why you chose it			
	1 A transaction that adds a new part to a supplier's catalog			
	$2 \Delta \text{transaction that increases the price that a supplier}$			
	charges for a part			
8	Answer each of the following questions briefly.	Remember	CO 4	ACS553.14
	The questions are based on the following relational schema:			
	Emp(eid: integer, ename: string, age: integer, salary: real, did:			
	integer) Dept(did: integer, dname: string, floor: integer)			
	and on the following update command: replace (salary = $1.1 *$			
	EMP.salary) where EMP.ename = 'Santa'			
	1. Give an example of a query that would conflict with this			
	command (in a concurrency control sense) if both were			
	run at the same time.			
	2. Explain what could go wrong, and how locking tuples			
	would solve the problem.			
	3. Give an example of a query or a command that would			
	conflict with this command, such that the conflict could			
	not be resolved by just locking individual tuples or pages			
	but requires index locking.			
9	Suppose that we have only two types of transactions, T 1 and T 2.	Understand	CO 4	AC\$553.12
-	Transactions preserve database consistency when run			
	individually. We have defined several integrity constraints such			
	that the DBMS never executes any SOL statement that brings the			
	database into an inconsistent state. Assume that the DBMS does			
	not perform any concurrency control. Give an example schedule			
	of two transactions T 1 and T 2 that satisfies all these conditions.			
	vet produces a database instance that is not			
	the result of any serial execution of T 1 and T 2			
10	What are the roles of the Analysis Dada, and Unda phases in	Understand	<u> </u>	AC9552 12
10	what are the roles of the Analysis, Kedo, and Undo phases in	Understand	CU 4	AC\$333.13
		201		
	Part - A (Short Answer Ques	tions		
1	State the functions of Growing Phase in two phase locking	Understand	CO4	ACS553 18
1	protocol	Onderstand	CO 7	100000.10
2	State the functions of Shrinking Phase in two phase locking	Understand	CO 4	AC\$553.18
2	protocol	Understallu	0.0+	AC\$333.10
3	Identify when a Transaction system is in dead lock state?	Understand	CO 4	AC\$553.18
1	What is Immediate modification?	Understand	CO4	AC\$553.10
5	What is arowing phase?	Understand		AC\$552.16
	What is growing bliase:	Understand	0.04	AC0000.10

6	What is shrinking phase?	Understand	CO 4	ACS553.18
7	What is granularity?	Understand	CO 4	ACS553.18
8	What is intention-shared (IS)?	Understand	CO 4	AC\$553.18
9	What is intention-exclusive (IX)?	Understand	CO 4	AC\$553.18
10	What is shared & intention-exclusive (SIX)?	Understand	CO 4	AC\$553.18
11	What is timestamp?	Understand	CO 4	AC\$553.18
12	Define Timestamp Ordering Protocol?	Understand	CO 4	ACS553.19
13	What is log?	Understand	CO 4	ACS553.19
14	What is deferred modification?	Understand	CO 4	ACS553.16
15	What is blind write?	Understand	CO 4	ACS553.16
16	Describe immediate database modification	Understand	CO 4	ACS553.16
17	Describe deferred database modification.	Understand	CO 4	ACS553.16
18	What is transaction failure?	Understand	CO 4	ACS553.15
19	Identify when a Transaction system is in dead lock state?	Understand	CO 4	ACS553.15
20	What is locking protocol?	Understand	CO 4	ACS553.18
	Part - B (Long Answer Ques	tions)		
1	Why do you need concurrency in Transactions?	Understand	CO 4	ACS553.15
2	Discuss States of Transactions With a neat diagram?	Understand	CO 4	ACS553.15
3	What is Concurrency Control? Potential problems of	Understand	CO 4	AC\$553.15
	Concurrency		~~ .	
4	Why use Concurrency method with an example?	Understand	<u>CO 4</u>	AC\$553.17
5	Discuss Concurrency Control Protocols with an example?	Understand	<u>CO 4</u>	AC\$553.17
6	Discuss Lock-based Protocols with an example?	Understand	<u>CO 4</u>	AC\$553.18
/	Discuss I wo Phase Locking (2PL) Protocol with an example?	Understand	<u>CO 4</u>	AC\$553.18
8	Write about Strict Two-Phase Locking Method?	Understand	<u>CO 4</u>	AC\$553.18
9	Discuss Timestamp-based Protocols with an example?	Understand	CO 4	AC\$553.19
10	Write about Characteristics of Good Concurrency Protocol?	Understand	<u> </u>	AC\$553.19
11	Discuss Timestamp Ordering Protocol?	Understand	<u> </u>	AC\$553.19
12	Discuss Crash Recovery with an example?	Understand	<u> </u>	AC\$553.10
15	Discuss Log-based Recovery with an example?	Understand	CO 4	AC\$553.10
14	Write shout the Need for Concurrency Control	Understand	CO 4	AC\$5553.17
15	What is the Need for Decovery of date?	Understand	<u> </u>	AC\$553.17
10	Write shout Pacovery Facilities with an example	Understand	CO 4	AC\$553.10
17	Write about Complete Schedules with an example	Understand	CO 4	AC\$553.10
10	Discuss the relation between various types of schedules?	Understand	CO 4	AC\$553.15
20	Write about shadow paging with a neat diagram?	Understand	CO 4	AC\$553.10
20	Part – C (Problem Solving and Criti	cal Thinking)	004	1105555.20
1	Write about conflict operations with an example?	Understand	CO 5	ACS553 15
2	Discuss Conflict serializable schedule with an example?	Understand	<u> </u>	AC\$553.14
3	Discuss View serializable schedule with an example?	Understand	CO 5	AC\$553.15
4	Write about Recoverable schedule with an example?	Understand	CO 5	AC\$553.16
5	Discuss Cascadless schedule with an example?	Understand	CO 5	AC\$553.16
6	How Should Lock be Used?	Understand	CO 5	AC\$553.17
7	How should timestamps be used?	Understand	CO 5	AC\$553.18
8	How to test if two schedules are View Equal or not?	Understand	CO 5	AC\$553.17
9	Explain the time stamp ordering concurrency control technique	Understand	CO 5	ACS553.17
	with an example.			
	Consider the following schedule:	Understand	CO 5	AC\$553.17
10	S:R1(A), W2(A), Commit2, W1(A), W3(A), Commit3, Commit1			
	The find Schedule is serializable schedule and is not strict			
	recoverable schedule.			