

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	FINIT	FINITE ELEMENT MODELLING				
Course Code	AMEO	AME014				
Programme	B. Tec	B. Tech				
Semester	VI	ME				
Course Type	Core					
Regulation	IARE - R16					
		Theory		Pra	ctical	
Course Structure	Lectu	res Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Chief Coordinator	Ms. V. Prasanna, Assistant Professor, Mechanical Engineering					
Course Faculty	Mr. B.D.Y. Sunil, Associate Professor, Mechanical Engineering					

COURSE OBJECTIVES:

The course should enable the students to:

	Description
Ι	Select and apply numerical methods to solve engineering problems
II	Discretize the given continuum and problem formulation using constitutive relations.
III	Apply FEM techniques to solve engineering problems (both vector and scalar) involving various fields for design,
IV	Understand to refine the approximate solution by spending more computational effort by using higher order interpolation continuities.

COURSE OUTCOMES (COs):

COs	Course Outcome
CO 1	Understand characteristic features of robots and usage of different grippers for industrial applications.

CO 2	Understand direct and inverse kinematics of robot structure.
CO 3	Illustrate Differential Kinematics of planar and spherical manipulators.
CO 4	Understand classification of robot actuators and trajectory planning.
CO 5	Remember material handling and applications in manufacturing.

COURSE LEARNING OUTCOMES (CLOs) Students, who complete the course, will be able to demonstrate the ability to do the following:

AME014.01	Understand the numerical methods and development of mathematical models for physical system
AME014.02	Identify mathematical model for solution of common engineering problems in the field of
	aeronautical, mechanical and civil
AME014.03	Understand the concepts of shape functions for one dimensional and quadratic elements, stiffness matrix and boundary conditions
AME014.04	Remember the steps involved in finite element methods while solving the model of physical problem
AME014.05	Apply numerical methods for solving one dimensional bar problems
AME014.06	Identify the mathematical models for two-dimensional, three-dimensional truss and beam elements.
AME014.07	Solve the equations of truss and beam elements
AME014.08	Calculate stress strain and strain energy for common engineering problems
AME014.09	Derive element matrix by different methods by applying basic laws in mechanics and integration by parts
AME014.10	Demonstrate the ability to evaluate and interpret FEA analysis results for design and development purposes
AME014.11	Formulate simple and complex problems into finite elements and solve structural and thermal problems
AME014.12	Derive the element stiffness matrices for triangular elements and axi- symmetric solids and estimate the load vector and stresses.
AME014.13	Understand the concepts of steady state heat transfer analysis for one dimensional slab, fin and thin plate.
AME014.14	Understand the concepts of mass and spring system and derive the equations for various structural problems
AME014.15	Calculate the mass matrices; Eigen values Eigen vectors and natural frequency for dynamic problems.
AME014.16	Model multi-dimensional structural and heat transfer problems by using automatic and fully automatic software such as ANSYS, NISA, NASTRAN.

UNIT - I				
INTRODUCTION TO FEM				
PART - A (SHORT ANSWER QUE	STIONS)			
QUESTIONS Blooms Course Cou				
	taxonomy	Outcomes	Learning	
	level		Outcomes	
Explain finite element methods	Remember	CO 1	AME014.01	
What is degree of freedom and boundary conditions	Understand	CO 1	AME014.02	

S No

1

3	Give the expression for shape functions of a linear element.	Understand	CO 1	AME014.03
4	Specify some applications of finite element methods	Remember	CO 1	AME014.01
5	Name the different methods used for solving problems in FEM	Remember	CO 1	AME014.01
6	Draw the shape functions of quadratic element and linear element	Understand	CO 1	AME014.03
7	What is the element stiffness matrix for a quadratic element	Understand	CO 1	AME014.03
8	Write the expressions for stress strain relationship for 2D elastic problems	Understand	CO 1	AME014.02
9	What is the stiffness matrix for one dimensional element?	Remember	CO 1	AME014.05
10	Discuss different types of elements	Remember	CO 1	AME014.05
	PART - B (LONG ANSWER QUES	STIONS)		
1	Explain the concept of FEM briefly and outline the steps involved in FEM	Remember	CO 1	AME014.01
2	What is the difference between the plane stress and plane strain condition?	Understand	CO 1	AME014.04
3	Define principle of virtual work. Describe the FEM formulation for 1D bar element.	Remember	CO 1	AME014.02
4	Derive element stiffness matrix and load vector for linear element using potential energy approach.	Understand	CO 1	AME014.03
5	Describe the penalty approach for multipoint constraint with an example.	Understand	CO 1	AME014.02
6	Derive element stiffness matrix and load vector for quadratic element	Remember	CO 1	AME014.03
7	Derive element stiffness matrix and load vector for quadratic element using potential energy approach.	Remember	CO 1	AME014.03
8	Explain the equilibrium state of the system, when the system is subjected to different types of loads and explain the stress and equilibrium relations	Understand	CO 1	AME014.05
9	Derive stress strain relationships for 2D elastic problems.	Remember	CO 1	AME014.02
10	What are the advantages disadvantages and applications of FEM	Remember	CO 1	AME014.01
	PART - C (PROBLEM SOLVING AND CRIT	TICAL THIN	KING QU	JESTIONS)
1	Consider the following figure. An axial load P=200 KN is applied as shown a) Determine the nodal displacements.	Understand	CO 1	AME014.05
	b) Determine the stress in each material.c) Determine the reaction forces.			

	200mm ²			
	/100mm*			
	300KN 600KN			
	2mm+ +			
	400mm → 200mm			
5	A bar is subjected to an axial force is divided into a number of	Understand	CO 1	AME014.05
	quadratic elements. For a particular element the nodes 1, 3, 2 are			
	the axial displacements of the three nodes are given by			
	$u_1=0.00015$ mm, $u_3=0.0033$ and $u_2=0.00024$ mm. Determine the			
	following			
	a) shape function b) variation of the displacement $u(x)$ in the element			
	c) axial stain in the element			
	, ,			
6	Consider the following fig. An axial load P=200 KN is	Understand	CO 1	AME014.05
	applied as shown. Using an elimination approach, do the			
	following			
	a) Determine the nodal displacements.b) Determine the stress in each material			
	b) Determine the stress in each material.			
	<300 mm → <400 mm →	14		
	8			
	P	der .		
		$\rightarrow X$		
		L'ANDER D		
		in the second second		
	Aluminum Steel			
	$A_1 = 2400 \text{ mm}^2$ $A_2 = 600 \text{ mm}^2$			
	$F_{r} = 70 \times 10^9 \mathrm{N/m^2}$ $F_{r} = 200 \times 10^9 \mathrm{N/m^2}$			
		ALL AND DECK		
7	Consider the structure shown in Fig. A rigid bar of negligible	Understand	CO 1	AME014.05
	mass, pinned at one end, is supported by a steel rod and an			
	aluminum rod. A load $P = 30$ kN. N is applied as shown.			
	Assemble stiffness matrix, determine nodal displacement.			
	Steel ///// Aluminum			
	$A = 1200 \text{ mm}^2$ 3 4400 mm^2 $A = 900 \text{ mm}^2$			
	$E = 200 \times 10^{3} \text{ N/mm}^{2}$ (1) $E = 70 \times 10^{3} \text{ N/mm}^{2}$			
	$\ell = 4.5 \text{ m}$			
	$\psi_2 Q_5$			
	xt tp			
8	An axial load P=300X10 ³ N is applied at 20 ⁰ C to the rod as	Remember	CO 1	AME014.08
_	shown in Figure below. The temperature is the raised to 60° C.			
	a) Assemble the K and F matrices.			
	b) Determine the nodal displacements and stresses.			

	$P=24 \text{ KN/m} P=50 \text{ KN}$ $x \rightarrow$ $2m \rightarrow 1m 1m$ $x \rightarrow$			
7	A beam fixed at one end and supported by a roller at the other end, has a 20kN concentrated load applied at the centre of the span (Figure below). Calculate the deflection under the load and construct the shear force and bending moment diagrams for the beam. $20000 \text{ N} \qquad \left\{ E = 20(10^6) \text{ N/cm}^2 \\ I = 2500 \text{ cm}^4 \\ \hline 9000 \text{ support}^4 \\ \hline 9000 \text{ support}^$	Understand	CO 2	AME014.11
8	Determine the nodal displacements and slopes at the position of ne-fourth distance from the support of shaft: Take E=200 GP _a , I=6 x 10^4 mm ⁴ . The shaft is simply supported at A and B. 5KN (1) (2) (2) (2) (2) (2) (2) (2) (2	Understand	CO 2	AME014.11
9	A beam fixed at one end and supported by a roller at the end, has a 20KN concentrated load applied at the centre of the span, as shown in fig. calculate the deflection under the load and construct shear force and bending moment diagram for the beam. Take E = 20 x 10 ⁶ N/c, ² I=2500 cm ⁴ .	Understand	CO 2	AME014.11
10	Calculate the deflection under load, shear force and bending moment at mid span and reactions at supports for the beam shown in figure. Take E=200 GPa and I= 24×10^{-6} m ⁴ .	Understand	CO 2	AME014.08
	UNIT-III			
	2-D ANALYS			
1	PART - A (SHORT ANSWE	R QUESTIO	$(0)^2$	AME014 12
1	Vina is a CST element with example?	Remember	$\frac{003}{002}$	AME014.12
	Represent the node numbering of Constant strain triangle	Remember	<u> </u>	AME014.09
3	element.	Remember	005	11012017.00
4	What is LST element with example?	Remember	CO 3	AME014.10

5	What is the condition for number of unknown polynomial	Understand	CO 3	AME014.12
	coefficients of a 2-D element			
6	Define plane stress and plane strain	Understand	CO 3	AME014.08
7	Write the expression of traction force for four node quadrilateral element.	Understand	CO 3	AME014.12
8	Represent the node numbering of Linear strain triangle element.	Understand	CO 3	AME014.12
9	What is meant by axisymmetric solid?	Understand	CO 3	AME014.08
10	Differentiate between linear and nonlinear elements.	Understand	CO 3	AME014.09
11	What is isoparametric representation	Understand	CO 3	AME014.10
	PART – B (LONG ANSWER	QUESTION	S)	•
1	Derive the strain displacement matrix for triangular element	Understand	CO 3	AME014.12
2	Derive the Jacobian of transformation	Understand	CO 3	AME014.12
3	Derive force terms for constant strain triangle.	Remember	CO 3	AME014.08
4	Apply the element stiffness matrix for the triangular element shown in figure under plane strain condition. Assume the following values. E=200 GP _a , μ =0.25, t=1 mm. (3,5) (0,0) (6,0) Determine the nodal displacements and element stresses for the	Understand	CO 3	AME014.12 AME014.10
	two-dimensional loaded plate as shown in figure. Assume plane stress conditions. Body force may be neglected in comparison to the external forces. Take E=210 GPa, μ =0.25; thickness = 10mm.			
6	Determine the shape functions for a 8 node quadratic	Understand	CO 3	AME01/ 12
	quadrilateral element (boundary noded).			11112017.12
7	Derive the shape function and strain displacement matrices for	Understand	CO 3	AME014.09
	triangular element of revolving body			
8	Derive the element stiffness matrix for four noded quadrilateral element	Remember	CO 3	AME014.08
9	Evaluate the integral I=∫	Understand	CO 3	AME014.10
10	Evaluate the axisymmetric stiffness matrix K of the triangular element shown in the figure. Consider the coordinates of nodes as 1 (2, 1), 2 (4, 0), and 3 (3, 2). Also assume $E = 2.6$ GPa and v = 0.2.	Understand	CO 3	AME014.12

	r r_3 r_3 r_4 r_1 r_2 r_2			
11	Derive the shape functions, strain-displacement matrix, stiffness matrix and nodal load vectors for a constant strain triangular	Understand	CO 3	AME014.09
12	Derive the strain-displacement matrix, stiffness matrix and nodal load vectors for a linear strain triangular element.	Remember	CO 3	AME014.08
	PART – C (PROBLEM SOLVING AN	D CRITICAL	THINKIN	G)
1	For the point P located inside the triangle, the shape functions N ₁ and N ₂ are 0.15 and 0.25, respectively. Determine the x and y coordinate of P $y = \frac{3(3,5)}{1(1,1)} + \frac{3(2,2)}{1(1,1)} + \frac{3(3,5)}{1(1,1)} + \frac{3(3,5)}$	Understand	CO 3	AME014.10
2	For the triangular element shown in fig, obtain strain- displacement relation matrix B and determine the strains ε_{x} , ε_{y} and γ_{xy} . $q_{1} = 0.001 \qquad q_{2} = -0.004 \qquad q_{3} = 0.002 \qquad q_{4} = 0.002 \qquad q_{5} = -0.002 \qquad q_{6} = 0.005 \qquad q_{6} = 0.005 \qquad q_{1} = 0.002 \qquad q_{1} = 0.002 \qquad q_{2} = -0.002 \qquad q_{1} = 0.002 \qquad q_{2} = -0.002 \qquad q_{2} = -0.002 \qquad q_{3} = 0.005 \qquad q_{4} = 0.002 \qquad q_{5} = -0.002 \qquad q_{6} = 0.005 \qquad q_{6} = 0.005 \qquad q_{1} = 0.002 \qquad q_{2} = -0.002 \qquad q_{4} = 0.005 \qquad q_{5} = -0.002 \qquad q_{6} = 0.005 \qquad q_{7} = 0.002 \qquad q_{$	Understand	CO 3	AME014.12
3	Determine the Jacobian for the $(x, y) - (\xi, \eta)$ transformation for the element shown in fig, also find the area of the triangle.	Understand	CO 3	AME014.09

	as q= $[0.002, 0.001, 0.004, -0.003, 0.007]^{T}$. Determine the			
	element strains			
8	Apply the integral I= $\int (3x^3 + 2xy + 7y^3) dx dy$ in the limits	Understand	CO 3	AME014.09
	of -1 to +1 using gauss quadrature numerical integration and			
	verify with exact solution			
9	A four noded rectangular element is shown in figure.	Understand	CO 3	AME014.12
	Determine Jacobian matrix, Strain displacement matrix and			
	element stresses. Take $E=2\times10^5$ N/mm ² , $\mu=0.5$, $u=[0, 0, 0]$			
	$0.005, 0.008, 0.008, 0,0]^{T}, \epsilon = 0, \eta = 0$			
	4(0,1) 3(2,1)			
	1(0,0) 2(2,0)			
10	The Cartesian global coordinates of the corner nodes of an	Understand	CO 3	AME014.12
	isoparametric quadrilateral element are given by (1,0), (2,0),			
	(2.5, 1.5) and (1.5,1). Find its Jacobian matrix.			
	UNIT-IV			
	STEADY STATE HEAT TRAN	NSFER ANAL	AYSIS	
	PART – A (SHORT ANSWE	R QUESTIO	NS)	
1	Define steady state heat transfer	Understand	CO 4	AME014.13
2	Define fins or extended surfaces	Understand	CO 4	AME014.10
3	Write the basic equation of heat transfer.	Understand	CO 4	AME014.11
4	Specify the applications of heat transfer problems.	Understand	CO 4	AME014.10
5	What is conduction of heat transfer?	Remember	CO 4	AME014.13
6	What is Newton's law of cooling?	Understand	CO 4	AME014.10
7	Differentiate between convection and radiation heat transfer.	Remember	CO 4	AME014.10
8	Narrate the laws of heat transfer.	Understand	CO 4	AME014.10
9	Define the terms thermal conductivity and convection heat	Understand	CO 4	AME014.13
	transfer coefficient.			
10	Analyze the heat transfer characteristics of fins.	Remember	CO 4	AME014.10
	PART – B (LONG ANSWE	R QUESTIC	DNS)	
1	Derive thermal stiffness matrix for one dimensional heat	Remember	CO 4	AME014.11
	conduction with lateral surface convection and with internal			
2	near generation.	Understand	<u> </u>	AME014 10
2	What are different types of houndary conditions for 1D heat	Understand	CO 4	AME014.10
5	conduction problems?	Understand	CU 4	AWL014.15
4	Consider a brick wall of thickness $I = 30 \text{ cm}$ k=0.7 W/m ⁰ C. The	Understand	CO 4	AME014 11
	inner surface is at 28° C and the outer surface is exposed to cold	Chaorbailt	201	
	air at -15° C. The heat transfer coefficient associated with the			
	outside surface is $h=40 \text{ W/m}^{20}\text{C}$. Determine the steady state			
	temperature distribution within the wall and also the heat flux			
	through the wall.			
5	Derive the finite element equation for straight fin.	Understand	CO 4	AME014.13
1				

6	Refer to figure the outside of a heating tape is insulated while the inside is attached to one face of a 2 cm thick stainless steel	Understand	CO 4	AME014.10
	plate ($k=16.6 \text{ W/m}^{\circ}\text{C}$). The other face of the plate is exposed			
	to the surroundings which are at a temperature of 20°C. Heat is			
	supplied at a rate of 500W/m ² . Determine the temperature of			
	the face to which the temperature tape is attached.	The demotent of	CO 4	AME014.12
/	Calculate the temperature distribution in the stainless steel fin	Understand	CO 4	AME014.13
	of circular cross section length 10 cm shown in figure. The			
	Discretize the fin into 5 elements			
	Discretize the fin into 5 elements.			
	$h = 0.0025 \text{ W/cm}^{20}\text{C}, T_{\infty}=25^{0}\text{C}$			
	$T_0 = 170^{\circ}C$ $K = 0.17 \text{ W/cm}^{\circ}C$ $q = 0.0625 \text{ W/cm}^2$			
8	A furnace wall is made up of three layers, inside layer with	Understand	CO 4	AME014.11
	thermal conductivity 8.5 W/mK, the middle layer with			
	conductivity 0.25 W/mK the outer layer with conductivity			
	0.08 W/mK. The respective thicknesses of the inner, middle			
	and outer layer are 25 cm, 5 cm and 3 cm respectively. The			
	inside temperature of the wall is 600°C and the outside of the			
	wall is exposed to atmospheric air at 30°C with heat transfer			
	coefficient of 45 W/m ² K. Determine the nodal temperatures.			
9	Explain the methodology for the treatment of all three	Remember	CO 4	AME014.11
10	boundary conditions in a 1-D heat transfer element?	TT 1 . 1	<u> </u>	
10	Derive one dimensional steady state heat conduction equation	Understand	CO 4	AME014.13
1	PART – C (PROBLEM SOL VING AN			
1	wall shown in figure, when convection heat loss occurs on the	Understand	CO 4	AME014.10
	left surface. Assume unit area. Assume wall thickness			
	$t_1 = 4$ cm, $t_2 = 2$ cm, $k_1 = 0.5$ w/cm ⁰ c, $k_2 = 0.05$ w/cm ⁰ c, h=			
	$0.1 \text{w/cm}^{20} \text{c}$ and $T_{\alpha} = -5^{0} \text{c}$.			
	$T\alpha \wedge \wedge$			
	h \mathbf{K}_1 \mathbf{K}_2 $\mathbf{T}_0 = 20^0 \mathrm{C}$			
	$t_1 \longrightarrow t_2 \longrightarrow t_2$			
2	The plane well shown in fig. The thermal conductivity $K = \frac{1}{2}$	Domombor	CO 4	AME01/ 13
2	25W/m ⁰ c and there is a uniform generation of heat in the wall of	Kennember	04	AMEU14.15
	Q = 400W/m ³ . Determine the temperature distribution at five			
	nodes (include two sides of the walls) in equal distances through			
	the wall thickness.			
	2002 c			
3	Determine the nodal temperature in a composite wall, the wall is	Understand	CO 4	AME014.10
	inamianed at 100 deg c at the left face and convection mode of heat transfer occurs between the right face and existing fluid			
L	new autorer occurs occured in the right face and existing fiuld			

	.take $k_1=0.06$ w/cm deg c and $k_2=0.2$ w/cm deg c. convection co efficient of heat transfer between walls and fluid h=0.1 w/cm ² ⁰ C and T \approx =25 ⁰ C. Consider unit area=1 cm ² perpendicular to the direction of heat flow.			
4	A metallic fin with thermal conductivity $K=360W/m^{0}c$, 1mm thick and100mm long extends from a plane wall whose temperature is $235^{0}c$. Determine the distribution and amount of heat transferred from the fin to air at $20^{0}c$ with $h=9W/m^{20}c$ take width of the fin is 1000 mm. Assume tip is insulted.	Remember	CO 4	AME014.13
	$\begin{array}{c c} 1 & 2 & 3 \\ \hline 1 & 2 & 3 & 4 \\ \hline & 33.33 \times 3 = 100 \text{ mm} \end{array}$			
5	Calculate the temperature distribution in a one-dimensional fin with the physical properties $k = 3 \text{ W/ cm}^{0}\text{C}$, $h = 0.1 \text{ W/cm}^{2}$ ^{0}C , $T_{\infty} = 20^{0}\text{C}$. the fin is rectangular in shape and is 8 cm long, 4 cm wide and 1 cm thick. Assume that convection heat loss occurs from the end of the fin.	Remember	CO 4	AME014.10
6	A metallic fin 0.15 cm thick and 12 cm long is attached to a furnace whose wall temperature is 2200C. If the thermal conductivity of the material of the fin is $350 \text{ W/m}^{0}\text{C}$ and convection coefficient is $9 \text{ W/m}^{20}\text{C}$, determine the temperature distribution if the width of the fin is 2 cm. Assume that the tip of the fin is open to the atmosphere and that the ambient temperature is 25°C .	Understand	CO 4	AME014.13
7	Derive the conductivity matrix and thermal load vector for the one-dimensional finite element for the three boundary conditions.	Understand	CO 4	AME014.10
8	Heat is entering into a large plate at the rate of $q_0 = -300$ W/m ² . The plate is 25 mm thick. The outside surface of the plate is maintained at a temperature of 10 ^o C. Using two finite elements solve for the vector of nodal temperatures T. Thermal conductivity k = 1.0 W/m ⁰ C.	Remember	CO 4	AME014.1 3
9	Find the temperature at a point P (1,1.5) inside the triangular element shown with the nodal temperatures given as $T_i = 40^0$ C, $T_j = 34^0$ C and $T_k = 46^0$ C. Also determine the location of the 42°C contour line for the triangular element. K (1,3)	Remember	CO 4	AME014.10

10	A composite wall consists of three materials as shown in figure. The outer temperature is $T_0 = 200$ C. Convection heat transfer takes place on the inner surface of the wall with $T_{\infty} = 8000$ C and h= 25 W/m ² °C. Determine the temperature distribution in the wall. <i>h</i> , T_{∞} \uparrow \uparrow \downarrow \downarrow \downarrow k_2 k_3 $T_0 = 20$ °C $k_1 = 20$ W/m°C $k_2 = 30$ W/m°C $k_3 = 50$ W/m°C h = 25 W/m°C	Understand	CO 4	AME014.13
	0.15 m 0.15 m			
11	A bar of length 10 cm with rectangular section of width 3 cm and depth 2 cm is experiencing a temperature of 90 ^o C at its left end. Assuming convection over the length of bar obtain the temperature distribution along the length. Use two 1D elements with nodes at its ends and the following data $k = 5$ W/ cm ^o C, $h = 0.2$ W/ cm ² ^o C, $T_{\infty} = 25^{\circ}$ C	Understand	CO 4	AME014.13
	UNIT-V			
	DYNAMIC ANAI	LYSIS		
	PART - A (SHORT ANSWE	ER QUESTI	ONS)	
1	PART - A (SHORT ANSWE What is lumped mass matrix?	CR QUESTI Understand	ONS) CO 5	AME014.14
1 2	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix?	CR QUESTIC Understand Understand	ONS) CO 5 CO 5	AME014.14 AME014.15
1 2 3	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element?	CR QUESTIC Understand Understand Understand	ONS) CO 5 CO 5 CO 5	AME014.14 AME014.15 AME014.15
$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency.	CR QUESTIC Understand Understand Understand Remember	ONS) CO 5 CO 5 CO 5 CO 5	AME014.14 AME014.15 AME014.15 AME014.14
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5 \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element?	CR QUESTIC Understand Understand Understand Remember Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15
$ \begin{array}{r} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling?	CR QUESTIC Understand Understand Remember Understand Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15 AME014.16
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements.	ER QUESTIC Understand Understand Understand Understand Understand Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15 AME014.16 AME014.14
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements. Give some practical problems associated with finite element modelling.	CR QUESTIC Understand Understand Understand Understand Understand Understand Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15 AME014.16 AME014.14 AME014.14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements. Give some practical problems associated with finite element modelling. Write the expression for element mass matrix for a CST element?	CR QUESTIC Understand Understand Understand Understand Understand Understand Understand Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements. Give some practical problems associated with finite element modelling. Write the expression for element mass matrix for a CST element? List out factors influencing the accuracy of the results	CR QUESTIC Understand Understand Understand Understand Understand Understand Understand Understand Understand	CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ \hline 10 \\ \hline $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements. Give some practical problems associated with finite element modelling. Write the expression for element mass matrix for a CST element? List out factors influencing the accuracy of the results PART - B (LONG ANSWE	CR QUESTIC Understand Understand Understand Remember Understand Understand	ONS) CO 5 ONS)	AME014.14 AME014.15 AME014.15 AME014.14 AME014.15 AME014.16 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 1 \end{array} $	PART - A (SHORT ANSWE What is lumped mass matrix? What is consistent mass matrix? Write the expression for element mass matrix for a bar element? Define the terms vibration and natural frequency. Write the expression for element mass matrix for a truss element? What are the convergence requirements in finite element modeling? Write the expression for modal analysis of bar and beam elements. Give some practical problems associated with finite element modelling. Write the expression for element mass matrix for a CST element? List out factors influencing the accuracy of the results PART - B (LONG ANSWE Derive element mass matrix for one dimensional bar element	CR QUESTIO Understand Understand Understand Remember Understand Remember	CO 5 CO 5	AME014.14 AME014.15 AME014.15 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14 AME014.14

	¥≯			
3	Distinguish between consistent mass matrix and lumped mass matrices	Understand	CO 5	AME014.14
4	Derive the elemental mass matrix for 1-D bar element and 1-D plane truss element.	Understand	CO 5	AME014.14
5	State the properties of Eigen Values. Determine the eigen values and the associated Eigen vectors of the matrix [A] given by $A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$	Remember	CO 5	AME014.15
6	Explain Lumped parameter model and Continuous system model with examples.	Understand	CO 5	AME014.14
7	Determine the mass matrix for truss element with an example.	Understand	CO 5	AME014.14
8	Obtain the natural frequency of flexural vibration of a fixed beam of uniform cross-section. Use two element idealization.	Understand	CO 5	AME014.15
	Ε, Α, ρ			
0	Davalon the equation of motion using Lagrange equation	Understand	<u> </u>	AME014 14
10	Determine the first natural frequency of longitudinal vibration	Remember	CO 5	AME014.14 AME014.14
	of a bar fixed at one end using two linear elements.			
	PART – C (PROBLEM SOLVING AN	D CRITICA	L THINK	ING)
1	Consider axial vibration of the steel bar shown in figure below. Develop the global stiffness mass matrix and determine the natural frequencies and mode shapes using the characteristic polynomial technique. $A_1=1500 \text{ mm}^2 A_2=1200 \text{ mm}^2 X$	Understand	CO 5	AME014.14
	있 ~ 200m-Ħ~ 300m위			
2	Evaluate the lowest Eigen value and the corresponding Eigen mode for the beam shown in Figure below $\begin{bmatrix} 1 & 2 & 3\\ p & = 7840 \text{ kg/m}^3\\ I & = 200 \text{ GPa}\\ p & = 7840 \text{ kg/m}^3\\ I & = 200 \text{ mm}^4\\ A & = 240 \text{ mm}^2 \end{bmatrix}$	Remember	CO 5	AME014.15
3	Determine the Eigen values and Eigen vectors for the stepped bar shown in Figure below.	Understand	CO 5	AME014.14

	$A_1 = 1 \text{ in.}^2$ $A_2 = 0.5 \text{ in.}^2$ Q_1 Q_2 Q_3 L_1 L_2 L_2 L_3 $E = 30 \times 10^6 \text{ psi}$ Specific weight $f = 0.283 \text{ lb/in.}^3$			
4	Consider axial vibration of the Aluminium bar shown in Figure below, develop the global stiffness and determine the nodal displacements and stresses using elimination approach and with help of linear and quadratic shape function concept. Assume Young's Modulus E = 70Gpa. $A_1=1200 \text{ mm}^2$ $A_2=900 \text{ mm}^2$ $F=5 \text{ KN}$	Understand	CO 5	AME014.14
5	Find the natural frequencies in the vibration of two element simply supported beam having the parameters as length L= 2m, area of cross section A = 30 cm ² , moment of inertia I=400 mm ⁴ density ρ = 7800 kg/m ³ and Young's modulus E = 200 GPa.	Remember	CO 5	AME014.14
6	Consider the axial vibrations of a steel bar shown in the figure a) Develop global stiffness and mass matrices, b) Determine the natural frequencies? $E = 2 \times 10^5 \text{ N/mm}^2$ 1200 mm^2 900 mm^2 900 mm^2 0.3 m 0.4 m	Understand	CO 5	AME014.15
7	Determine the first two natural frequencies of longitudinal vibration of the stepped bar shown in figure and plot the mode shapes. All the dimensions are in mm E = 200 GPa and $\rho = 0.78$ kg/cc. what will be the effect on natural frequencies if a concentrated mass of 100 kg is added to the tip of bar?	Understand	CO 5	AME014.15

8	Consider a simply supported beam which is discretized into 2 elements as shown in figure. Obtain the natural frequencies. The following data for beam is length=2m, area of cross section A=30 cm ² , moment of inertia I = 400mm ⁴ , mass density ρ = 7800 kg/m ³ .	Understand	CO 5	AME014.15
9	Determine the natural frequencies of the system in figure. Consider at least two elements. $E_{z} A_{z} \rho \qquad K=AE/2L$	Understand	CO 5	AME014.14
10	Find the natural frequencies of longitudinal vibration of the unconstrained stepped bar shown in figure $A2=A$ $A_{1}=2A$ $L/2$ $L/2$	Remember	CO 5	AME014.14

Prepared by:

V. Prasanna, Assistant Professor

HOD, ME