

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous) Dundigal, Hyderabad-500043

### **AEROSPACE ENGINEERING**

# **TUTORIAL QUESTION BANK**

| Course Title      | ADVAN    | CED COMPUTA        | ATIONAL AER | ODYNAMICS  |         |
|-------------------|----------|--------------------|-------------|------------|---------|
| Course Code       | BAEB05   |                    |             |            |         |
| Programme         | M.Tech   |                    |             |            |         |
| Semester          | I        | AE                 |             |            |         |
| Course Type       | Elective |                    |             |            |         |
| Regulation        | IARE - R | 18                 |             |            |         |
|                   |          | Theory             |             | Practi     | cal     |
| Course Structure  | Lecture  | es Tutorials       | Credits     | Laboratory | Credits |
|                   | 3        | -                  | 3           |            |         |
| Chief Coordinator | Ms. D An | itha, Assistant Pi | ofessor     |            |         |
| Course Faculty    | Ms. D An | itha, Assistant Pi | rofessor    |            |         |

#### **COURSE OBJECTIVES:**

| The course | The course should enable the students to:                                                         |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Ι          | Explain the concept of panel methods, analyze various boundary conditions applied and             |  |  |  |  |  |  |
|            | demonstrate several searching and sorting algorithms.                                             |  |  |  |  |  |  |
| II         | Describe the initial methods applied in the process of CFD tools development their advantages and |  |  |  |  |  |  |
|            | disadvantages over modern developed methods.                                                      |  |  |  |  |  |  |
| III        | Demonstrate different methods evolved in analyzing numerical stability of solutions and evaluate  |  |  |  |  |  |  |
|            | the parameters over which the stability depends and their range of values.                        |  |  |  |  |  |  |
| IV         | Understand advanced techniques and methods in time marching steps and identify different          |  |  |  |  |  |  |
|            | boundary conditions for different cases in CFD techniques.                                        |  |  |  |  |  |  |

### **COURSE OUTCOMES (COs):**

| CO 1 | Understand the solution methodology and numerical solutions for the boundary layer.                 |
|------|-----------------------------------------------------------------------------------------------------|
| CO 2 | Summarize various types of equations, their solution techniques including their stability.          |
| CO 3 | Demonstrate to write and solve implicit and explicit equations including stability of the solution. |
| CO 4 | Illustrate the concepts of method of characteristics and its applications in nozzle designs.        |
| CO 5 | Describe basic formulation techniques and boundary condition for panel methods.                     |

#### COURSE LEARNING OUTCOMES (CLOs):

| uation. |
|---------|
| ty of   |
|         |
|         |
|         |
|         |
|         |
|         |
|         |
|         |

# TUTORIAL QUESTION BANK

|                                  | UNIT – I                                                                                                                                                                                                                                             |                             |                    |                                |  |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|--------------------------------|--|--|
|                                  | NUMERICAL SOLUTIONS                                                                                                                                                                                                                                  |                             |                    |                                |  |  |
| Part - A(Short Answer Questions) |                                                                                                                                                                                                                                                      |                             |                    |                                |  |  |
| S.NO                             | QUESTIONS                                                                                                                                                                                                                                            | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>Learning<br>Outcomes |  |  |
| 1                                | What do you understand by conservative?                                                                                                                                                                                                              | Remember                    | CO 1               | BAEB05.01                      |  |  |
| 2                                | Define conservative numerical fluxes.                                                                                                                                                                                                                | Remember                    | CO 1               | BAEB05.01                      |  |  |
| 3                                | Sketch the stencil diagram.                                                                                                                                                                                                                          | Remember                    | CO 1               | BAEB05.01                      |  |  |
| 4                                | Define stencil width.                                                                                                                                                                                                                                | Remember                    | CO 1               | BAEB05.02                      |  |  |
| 5                                | When is a conservative approximation consistent?                                                                                                                                                                                                     | Remember                    | CO 1               | BAEB05.02                      |  |  |
| 6                                | Define temporal evolution.                                                                                                                                                                                                                           | Remember                    | CO 1               | BAEB05.02                      |  |  |
| 7                                | What is the fundamental property for the conservative numerical methods?                                                                                                                                                                             | Remember                    | CO 1               | BAEB05.02                      |  |  |
| 8                                | Differentiate the conservative and non-conservative methods.                                                                                                                                                                                         | Understand                  | CO 1               | BAEB05.02                      |  |  |
| 9                                | List the Forward Time Methods.                                                                                                                                                                                                                       | Understand                  | CO 1               | BAEB05.02                      |  |  |
| 10                               | Define spatial Reconstruction.                                                                                                                                                                                                                       | Remember                    | CO 1               | BAEB05.03                      |  |  |
| 11                               | What is the CFL condition for the Lax-Wendroff method?                                                                                                                                                                                               | Remember                    | CO 1               | BAEB05.03                      |  |  |
| 12                               | Define small user –adjustable parameter                                                                                                                                                                                                              | Understand                  | CO 1               | BAEB05.02                      |  |  |
| 13                               | What are the upwind schemes?                                                                                                                                                                                                                         | Understand                  | CO 1               | BAEB05.02                      |  |  |
|                                  | Part - B (Long Answer Questions)                                                                                                                                                                                                                     |                             |                    |                                |  |  |
| 1                                | Briefly explain the basic principles involved in the upwind schemes by the steady state solutions.                                                                                                                                                   | Understand                  | CO 1               | BAEB05.03                      |  |  |
| 2                                | Derive the expressions for the forward time methods with the help of neat sketch?                                                                                                                                                                    | Understand                  | CO 1               | BAEB05.03                      |  |  |
| 3                                | Find a first-order reconstruction – evolution method for the linear advection equation. Use piecewise-constant reconstruction and exact evolution.                                                                                                   | Understand                  | CO 1               | BAEB05.03                      |  |  |
| 4                                | Rederive the first-order reconstruction–evolution method. Use a reconstruction – evolution, in which step approximates $u(x, tn+1)$ rather than $u(xi+1/2, t)$ . Form the cell- integral averages of $u(x, tn+1)$ to approximate $\bar{u}_i^{n+1}$ . | Remember                    | CO 1               | BAEB05.02                      |  |  |
| 5                                | Consider the Lax - Wendroff method. What are the advantages and disadvantages of increasing its coefficient of artificial viscosity by a constant amount?                                                                                            | Remember                    | CO 1               | BAEB05.03                      |  |  |
| 6                                | Find the conservative numerical flux $f_{I+2}^n$ of Godunov's and Roe's first-order upwind method.                                                                                                                                                   | Remember                    | CO 1               | BAEB05.03                      |  |  |
| 7                                | Define flux approach and list the flux approach methods for Euler equations.                                                                                                                                                                         | Understand                  | CO 1               | BAEB05.02                      |  |  |
| 8                                | By considering the inviscid Burgers equation and a finite volume<br>approximation with a control volume for Lax method derives the expression<br>for control volume interface.                                                                       | Understand                  | CO 1               | BAEB05.02                      |  |  |
| 9                                | Define the expansion shock and explain the expansion shock using Roe's scheme for first order upwind.                                                                                                                                                | Understand                  | CO 1               | BAEB05.03                      |  |  |
| 10                               | Compare the expansion shock using Roe's scheme for first order upwind with and without entropy correction.                                                                                                                                           | Understand                  | CO 1               | BAEB05.02                      |  |  |
|                                  | Part - C (Analytical Questions)                                                                                                                                                                                                                      |                             |                    |                                |  |  |
| 1                                | Derive an expression for the Lax – Wendroff Methods for scalar conservation laws by Euler Equations.                                                                                                                                                 | Understand                  | CO 1               | BAEB05.01                      |  |  |

| 2  | A solution of the two dimensional heat equation                                                                                                                             | Understand | CO 1 | BAEB05.01 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
|    | $\partial u  \partial^2 u  \partial^2 u$                                                                                                                                    |            |      |           |
|    | $\frac{\partial \mathbf{u}}{\partial \mathbf{t}} = \alpha \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \alpha \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2}$ |            |      |           |
|    | is desired using the simple explicit scheme. What is the stability requirement                                                                                              |            |      |           |
|    | for the method?                                                                                                                                                             |            |      |           |
| 3  | Derive an expression for the Steger-Warming Flux vector splitting and write                                                                                                 | Remember   | CO 1 | BAEB05.03 |
| 5  | the expression for the entropy in sonic conditions?                                                                                                                         | rtemenioer | 001  | DIED05.05 |
| 4  | Derive an expression for the Van Leer Flux vector splitting and write the how                                                                                               | Remember   | CO 1 | BAEB05.02 |
| •  | the Mach number varies with momentum flux in sonic conditions?                                                                                                              | rtemenioer | 001  | DIED05.02 |
| 5  | Explain the flux difference splitting method and derive the expression.                                                                                                     | Understand | CO 1 | BAEB05.02 |
| -  | Compare flux difference splitting with flux vector splitting.                                                                                                               |            |      |           |
| 6  | Write down the Riemann problem for the Godonov's equation for the cases                                                                                                     | Remember   | CO 1 | BAEB05.03 |
| -  | shock wave and expansion waves.                                                                                                                                             |            |      |           |
| 7  | Describe how the Godonov's method solves a local Riemann problem at each                                                                                                    | Understand | CO 1 | BAEB05.03 |
|    | cell interface to obtain a value of the flux.                                                                                                                               |            |      |           |
| 8  | Discuss the Flux Vector splitting for the Euler equations in the scalar                                                                                                     | Remember   | CO 1 | BAEB05.02 |
|    | conservation laws explain them in detail.                                                                                                                                   |            |      |           |
| 9  | Sketch the wave diagram for Roe scheme applied to Burger's equation and                                                                                                     | Remember   | CO 1 | BAEB05.02 |
|    | explain them in detail.                                                                                                                                                     |            |      |           |
| 10 | Differentiate the Godonav's and Roe first order upwind method with the                                                                                                      | Understand | CO 1 | BAEB05.02 |
|    | suitable diagram applicable to Burger's equation.                                                                                                                           |            |      |           |
|    | UNIT II                                                                                                                                                                     |            |      |           |
|    | TIME DEPENDENT METHODS                                                                                                                                                      |            |      |           |
|    | Part – A (Short Answer Questions)                                                                                                                                           |            |      |           |
| 1  | What is the need of stability of solution?                                                                                                                                  | Remember   | CO 2 | BAEB05.04 |
| 2  | Define amplification factor.                                                                                                                                                | Remember   | CO 2 | BAEB05.04 |
| 3  | List out the various explicit methods.                                                                                                                                      | Remember   | CO 2 | BAEB05.04 |
| 4  | Explain the importance of forward-time forward space method.                                                                                                                | Remember   | CO 2 | BAEB05.04 |
| 5  | Summarize the use of predictor-corrector method.                                                                                                                            | Understand | CO 2 | BAEB05.04 |
| 6  | What is the importance of forward-time backward space method?                                                                                                               | Understand | CO 2 | BAEB05.04 |
| 7  | List the different time split methods.                                                                                                                                      | Understand | CO 2 | BAEB05.04 |
| 8  | What is the importance of Crank-Nicolson method?                                                                                                                            | Understand | CO 2 | BAEB05.04 |
| 0  | List difference between forward-time central space method and forward-time                                                                                                  |            | 00.0 |           |
| 9  | backward space method.                                                                                                                                                      | Understand | CO 2 | BAEB05.05 |
| 10 | What are the criteria required to establish Crank Nicolson method.                                                                                                          | Understand | CO 2 | BAEB05.04 |
| 11 | Explain the approach of Lax-Wendroff scheme.                                                                                                                                | Remember   | CO 2 | BAEB05.05 |
| 12 | Show that FTCS is not positive?                                                                                                                                             | Remember   | CO 2 | BAEB05.05 |
|    | Part - B (Long Answer Questions)                                                                                                                                            |            |      |           |
| 1  | Define stability. Derive the expressions for the forward time methods with the                                                                                              | Remember   | CO 2 | BAEB05.04 |
|    | help of neat sketch?                                                                                                                                                        |            |      |           |
| 2  | Mention the various explicit methods in time marching solutions.                                                                                                            | Remember   | CO 2 | BAEB05.04 |
| 3  | Derive the amplification factor for the leap frog method applied to the wave                                                                                                | Understand | CO 2 | BAEB05.04 |
|    | equation and determine the stability restriction for this scheme.                                                                                                           |            |      |           |
| 4  | Briefly explain the criteria and requirement for stability of solution. List out the                                                                                        | Remember   | CO 2 | BAEB05.05 |
|    | various explicit methods that can be used in CFD tools.                                                                                                                     |            |      |           |
| 5  | Do the steady state solutions of two step MacCormack's predictor corrector                                                                                                  | Remember   | CO 2 | BAEB05.05 |
|    | method depend on $\Delta t$ ?                                                                                                                                               |            |      |           |
| 6  | Discuss the forward-time forward space method, forward-time central space                                                                                                   | Understand | CO 2 | BAEB05.04 |
|    | method and forward-time backward space method.                                                                                                                              |            |      |           |
| 7  | Compare the forward-time forward space method and forward-time central                                                                                                      | Remember   | CO 2 | BAEB05.04 |
|    | space method.                                                                                                                                                               |            |      |           |
| 8  | Discuss Euler's forward-time central space method and its importance. List out                                                                                              | Remember   | CO 2 | BAEB05.04 |
|    | various implicit methods and their importance in CFD tools.                                                                                                                 |            |      |           |
|    |                                                                                                                                                                             |            |      |           |

| 9  | Derive the modified equation for the Lax method applied to the wave equation retain terms up to and including Uxxxx.                                                                                         | Understand | CO 2 | BAEB05.06 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 10 | Determine the errors in amplitude and phase for $\beta = 900$ if the Lax method is applied to the wave equation for 10 time steps with $v = 0.5$ .                                                           | Understand | CO 2 | BAEB05.06 |
| 11 | Explain the leap-frog method which is second accurate in both time and space in detail with example.                                                                                                         | Remember   | CO 2 | BAEB05.04 |
| 12 | Design a first – order upwind method for the linear advection equation that chooses between FTBS and FTFS.                                                                                                   | Understand | CO 2 | BAEB05.06 |
|    | Part - C (Analytical Questions)                                                                                                                                                                              |            |      |           |
| 1  | Consider the following linear advection problem on a periodic domain [-1,1]:<br>$\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$                                                          | Remember   | CO 2 | BAEB05.04 |
|    | $U(x,0) = \begin{cases} 1  x  \le 1/3, \\ 0  x  > 1/3. \end{cases}$                                                                                                                                          |            |      |           |
|    | Approximate u(x,2) using FTFS,FTBS and FTCS with 20 cells and<br>$\lambda = \frac{\Delta t}{\Delta x} = 0.8.$ Suppose the upstream differencing scheme is used to solve wave equation                        |            |      |           |
| 2  | Suppose the upstream differencing scheme is used to solve wave equation $(c=0.75)$ with the initial condition $u(x,0) = \sin(6\Pi x) \ 0 \le x \le 1$                                                        | Remember   | CO 2 | BAEB05.04 |
|    | and periodic boundary conditions. Determine the amplitude and phase errors after ten steps if $\Delta t = 0.02$ and $\Delta x = 0.02$ .                                                                      |            |      |           |
| 3  | Discuss Cranck - Nikolson method as implicit approach by the numerical calculation.                                                                                                                          | Remember   | CO 2 | BAEB05.04 |
| 4  | Consider FTCS in the following non - conservation form:<br>$\bar{u}_{i}^{n+1} = \bar{u}_{i}^{n} - \frac{\lambda}{2} (f(\bar{u}_{i+1}^{n}) - (\bar{u}_{i-1}^{n})).$                                           | Understand | CO 2 | BAEB05.05 |
|    | Rewrite FTCS in conservation form.                                                                                                                                                                           |            |      |           |
| 5  | Derive the following finite- difference method:<br>$u_i^{n+1} = u_i^n - \frac{\lambda}{2}(-f(u_{i+2}^n) + 4f(u_{i+1}^n) - 3f(u_i^n))$                                                                        | Understand | CO 2 | BAEB05.05 |
|    | Write the method in conservation form.                                                                                                                                                                       |            |      |           |
| 6  | Write FTFS and FTBS is artificial viscosity form for both vector and scalar conservation laws. Discuss the relationship between stability and sign of the coefficient of artificial viscosity.               | Remember   | CO 2 | BAEB05.05 |
| 7  | Suppose the simple explicit method is used to solve the heat equation ( $\alpha = 0.05$ ) with the initial condition.                                                                                        | Remember   | CO 2 | BAEB05.05 |
|    | $U(x,0) = \sin(2\Pi x) \ 0 \le x \le 1$<br>and periodic boundary conditions. Determine the amplitude error after ten steps<br>if $\Delta t = 0.1$ and $\Delta x = 0.1$ .                                     |            |      |           |
| 8  | Derive an expression for the conservative numerical flux of the two step<br>MacCormack's predictor corrector method. Discuss approximate factorization<br>schemes.                                           | Understand | CO 2 | BAEB05.06 |
| 9  | Write the solution of FTCS for the linear advection equation in terms of Fourier series coefficients $c_m^n$ . Use these expressions to show that FTCS for the linear advection equation "blows up" in time. | Remember   | CO 2 | BAEB05.05 |
| 10 | Derive an expression for the conservative numerical flux of the crank Nicolson method.                                                                                                                       | Understand | CO 2 | BAEB05.05 |
|    | UNIT –III<br>BOUNDARY CONDITIONS                                                                                                                                                                             |            | l    |           |
|    | Part – A (Short Answer Questions)                                                                                                                                                                            |            |      |           |
|    |                                                                                                                                                                                                              |            | 1    |           |
| 1  | Define discretization.                                                                                                                                                                                       | Remember   | CO 3 | BAEB05.08 |

| 5         Differentiate the structured and unstructured grids.         Understand         CO 3         BAEB05.0           6         Define illposed condition.         Remember         CO 3         BAEB05.0           7         Illustrate the number of flow quantities required at far-field boundaries.         Remember         CO 3         BAEB05.0           8         Define implicit operator.         Understand         CO 3         BAEB05.0           10         What is Geometric conservation law?         Remember         CO 3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of<br>the Euler equation and the Navier - Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define dummy cells.         Understand         CO 3         BAEB05.0           14         Descript viscous flow and its importance.         Remember         CO 3         BAEB05.0           15         Mention the importance of solid wall in viscous flows.         Remember         CO 3         BAEB05.0           16         Descript viscous flow and its importance.         Understand         CO 3         BAEB05.0           17         Write down the expression for modifi                                                                                                                                                                                     | 3  | Define method of lines.                                                        | Understand | CO 3 | BAEB05.08 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------|------------|------|-----------|
| 6         Define illposed condition.         Remember         CO 3         BAEB05.0           7         Illustrate the number of flow quantities required at far-field boundaries.         Remember         CO 3         BAEB05.0           8         Define implicit operator.         Understand         CO 3         BAEB05.0           9         Define Prandtl number, Reynolds number and Eckert number.         Understand         CO 3         BAEB05.0           10         What is Geometric conservation law?         Remember         CO 3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of the Euler squation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Remember         CO 3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO 3         BAEB05.0           15         Mention the importance of solid wallin viscous flows.         Remember         CO 3         BAEB05.0           16         Define farifield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           17                                                                                                                                                                                           | 4  | What do you understand by density based?                                       | Remember   | CO 3 | BAEB05.08 |
| 7         Illustrate the number of flow quantities required at far-field boundaries.         Remember         CO 3         BAEB05.0           8         Define implicit operator.         Understand         CO 3         BAEB05.0           9         Define implicit operator.         Understand         CO 3         BAEB05.0           10         What is Geometric conservation law?         Remember         CO 3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of the Euler equation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO 3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           16         Define rafteid. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           10         Differentiate the transitional and roticational periodicity.         Remember         CO 3         BAEB05.0           20 </td <td>5</td> <td>Differentiate the structured and unstructured grids.</td> <td>Understand</td> <td>CO 3</td> <td>BAEB05.08</td>                                              | 5  | Differentiate the structured and unstructured grids.                           | Understand | CO 3 | BAEB05.08 |
| 8         Define implicit operator.         Understand         CO 3         BAEB05.0           9         Define Prandh number, Reynolds number and Eckert number.         Understand         CO 3         BAEB05.0           10         What is Geometric conservation law?         Remember         CO 3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of<br>the Euler equation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO 3         BAEB05.0           15         Mention the importance of solid wall in viscous flows.         Remember         CO 3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           17         Write down the expression for modified free stream pressure?         Remember         CO 3         BAEB05.0           18         Differentiate the translational and rotational periodicity.         Remember         CO 3         BAEB05.0           19         What is injection boundary?         Understand         CO 3         BAEB05.0      <                                                                                                                                                                | 6  | Define illposed condition.                                                     | Remember   | CO 3 | BAEB05.08 |
| 9         Define Prandl number, Reynolds number and Eckert number.         Understand         CO3         BAEB05.0           10         What is Geometric conservation law?         Remember         CO3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of<br>the Euler equation and the Navier- Stokes equations.         Understand         CO3         BAEB05.0           12         Define durony cells.         Understand         CO3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO3         BAEB05.0           15         Mention the importance of symmetry plane.         Understand         CO3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO3         BAEB05.0           17         Write down the expression for modified frex stream pressure?         Remember         CO3         BAEB05.0           18         Differentiate the translational and rotational periodicity.         Remember         CO3         BAEB05.0           19         What is decoordinate system for axisymmetric thin-shear-layer equations and sketch.         Retmember         CO3                                                                                                                                                           | 7  | Illustrate the number of flow quantities required at far-field boundaries.     | Remember   | CO 3 | BAEB05.07 |
| 10         What is Geometric conservation law?         Remember         CO 3         BAEB05.0           11         List the types of Boundary conditions encountered in the numerical solution of<br>the Euler equation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO 3         BAEB05.0           15         Mention the importance of solid wall in viscous flows.         Remember         CO 3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           18         Differentiate the translational and rotational periodicity.         Remember         CO 3         BAEB05.0           20         Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.         Understand         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations and<br>sketch.         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations on a<br>uniforma                                                                                                                 | 8  | Define implicit operator.                                                      | Understand | CO 3 | BAEB05.08 |
| 11         List the types of Boundary conditions encountered in the numerical solution of<br>the Euler equation and the Navier- Stokes equations.         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance.         Remember         CO 3         BAEB05.0           15         Mention the importance of solid wall in viscous flows.         Remember         CO 3         BAEB05.0           16         Define farfield. Meniton the importance of symmetry plane.         Understand         CO 3         BAEB05.0           17         Write down the expression for modified free stream pressure?         Remember         CO 3         BAEB05.0           20         Differentiate the translational and rotational periodicity.         Remember         CO 3         BAEB05.0           21         Derive the boundary layer equations for compressible flow with the neat         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations and<br>carresian coordinates, appliciable to a compressible turbulent flow in the y<br>direction normal to the wall.         Remember         CO 3         BAEB05.0           3 <td< td=""><td>9</td><td></td><td>Understand</td><td>CO 3</td><td>BAEB05.08</td></td<>                         | 9  |                                                                                | Understand | CO 3 | BAEB05.08 |
| the Euler equation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance of symmetry plane.         Remember         CO 3         BAEB05.0           15         Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           19         What is injection boundary?         Understand         CO 3         BAEB05.0           20         Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.         Understand         CO 3         BAEB05.0           10         Derive the boundary layer equations for compressible flow with the neat sketch.         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.         GO 3         BAEB05.0           3         Write down the expressions for 3D unsteady boundary-layer equations on a uniformly spaced c                                                                                                        | 10 | What is Geometric conservation law?                                            | Remember   | CO 3 | BAEB05.08 |
| the Euler equation and the Navier- Stokes equations.         Understand         CO 3         BAEB05.0           12         Define dummy cells.         Understand         CO 3         BAEB05.0           13         Define the concept of periodic boundaries.         Understand         CO 3         BAEB05.0           14         Describe viscous flow and its importance of symmetry plane.         Remember         CO 3         BAEB05.0           15         Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           16         Define farfield. Mention the importance of symmetry plane.         Understand         CO 3         BAEB05.0           19         What is injection boundary?         Understand         CO 3         BAEB05.0           20         Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.         Understand         CO 3         BAEB05.0           1         Derive the boundary layer equations for compressible flow with the neat sketch.         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.         GO 3         BAEB05.0           3         Write down the expressions for 3D unsteady boundary-layer equations on a kemember                                                                                                                   |    |                                                                                |            |      |           |
| 13       Define the concept of periodic boundaries.       Understand       CO 3       BAEB05.0         14       Describe viscous flow and its importance.       Remember       CO 3       BAEB05.0         15       Mention the importance of solid wall in viscous flows.       Remember       CO 3       BAEB05.0         16       Define farfield. Mention the importance of symmetry plane.       Understand       CO 3       BAEB05.0         17       Write down the expression for modified free stream pressure?       Remember       CO 3       BAEB05.0         18       Differentiate the translational and rotational periodicity.       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       List the coordinate system for axisymmetric thin-shear-layer equations an sketch.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations on a sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations on a uniformly spaced computational grid       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       CO 3                                                                                                                                        | 11 |                                                                                | Understand | CO 3 | BAEB05.08 |
| 14       Describe viscous flow and its importance.       Remember       CO 3       BAEB05.0         15       Mention the importance of solid wall in viscous flows.       Remember       CO 3       BAEB05.0         16       Define farfield. Mention the importance of symmetry plane.       Understand       CO 3       BAEB05.0         17       Write down the expression for modified free stream pressure?       Remember       CO 3       BAEB05.0         19       What is injection boundary?       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       Derive the boundary layer equations for compressible flow with the neat sketch them.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         3       Write down the subsoft ransformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         4       Describe the general transformation 2 for a 2 D boundary layer type of probl                                                                                                                                  | 12 | Define dummy cells.                                                            | Understand | CO 3 | BAEB05.08 |
| 15       Mention the importance of solid wall in viscous flows.       Remember       CO 3       BAEB05.0         16       Define farfield. Mention the importance of symmetry plane.       Understand       CO 3       BAEB05.0         17       Write down the expression for modified free stream pressure?       Remember       CO 3       BAEB05.0         18       Differentiate the translational and rotational periodicity.       Remember       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         22       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         23       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation 2 for a 2 D boundary layer type of problem uniformly spaced computational grid       Secribe the general transformation 3 for a 2 D boundary layer type of problem near an interior point.       CO 3       BAEB05.0         5       Explain the suitable transformation 3 for a                                                                    | 13 | Define the concept of periodic boundaries.                                     | Understand | CO 3 | BAEB05.09 |
| 16       Define farfield. Mention the importance of symmetry plane.       Understand       CO 3       BAEB05.0         17       Write down the expression for modified free stream pressure?       Remember       CO 3       BAEB05.0         18       Differentiate the translational and rotational periodicity.       Remember       CO 3       BAEB05.0         19       What is injection boundary?       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       List the coordinate system for axisymmetric thin-shear-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         2       List the coordinate system for a 2 D boundary-layer equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         4       Describe the general transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3                                                                                           |    | Describe viscous flow and its importance.                                      | Remember   |      | BAEB05.09 |
| 17       Write down the expression for modified free stream pressure?       Remember       CO 3       BAEB05.0         18       Differentiate the translational and rotational periodicity.       Remember       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       Derive the boundary layer equations for compressible flow with the neat sketch.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 3 for a 2 D boundary layer type of problem louderstand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near a matritrior point.                                                                       |    |                                                                                |            |      | BAEB05.09 |
| 18         Differentiate the translational and rotational periodicity.         Remember         CO 3         BAEB05.0           19         What is injection boundary?         Understand         CO 3         BAEB05.0           20         Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.         Understand         CO 3         BAEB05.0           20         Derive the boundary layer equations for compressible flow with the neat sketch.         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.         Remember         CO 3         BAEB05.0           3         Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.         CO 3         BAEB05.0           4         Describe the general transformation to solve the governing equations on a uniformly spaced computational grid         CO 3         BAEB05.0           5         Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.         Remember         CO 3         BAEB05.0           6         Differentiate the physical plane and computational plane for grid clustering near an interior point.         CO 3         BAEB05.0           7         Explain the suitable transformation 3 for a 2 D boundary layer type                                 | 16 | Define farfield. Mention the importance of symmetry plane.                     | Understand |      | BAEB05.09 |
| 19       What is injection boundary?       Understand       CO 3       BAEB05.0         20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.       Understand       CO 3       BAEB05.0         21       Derive the boundary layer equations for compressible flow with the neat ketch.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering near a interior point.       Remember       CO 3       BAEB05.0         9       How the governi                                                                    |    |                                                                                |            |      | BAEB05.09 |
| 20       Differentiate the subsonic inflow and subsonic outflow in the farfield boundary. Understand       CO 3       BAEB05.0         Part - B (Long Answer Questions)         1       Derive the boundary layer equations for compressible flow with the neat sketch.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem       Understand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem       Remember       CO 3       BAEB05.0         9       How the governing fluid dynamic equations.       S       S       CO 3       BAEB05.0         9       How the governing fluid dynamic equations.                                                                                                                 |    |                                                                                |            |      | BAEB05.08 |
| Part – B (Long Answer Questions)           1         Derive the boundary layer equations for compressible flow with the neat sketch.         Remember         CO 3         BAEB05.0           2         List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.         Remember         CO 3         BAEB05.0           3         Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.         Remember         CO 3         BAEB05.0           4         Describe the general transformation to solve the governing equations on a uniformly spaced computational grid         Remember         CO 3         BAEB05.0           5         Explain the suitable transformation 2 for a 2 D boundary layer type of problem but governing fluid dynamic equations.         Understand         CO 3         BAEB05.0           6         Differentiate the physical plane and computational plane for grid clustering near an interior point.         Remember         CO 3         BAEB05.0           7         Explain the suitable transformation 3 for a 2 D boundary layer type of problem hear a wall.         Remember         CO 3         BAEB05.0           9         How the governing equations can be transformed from a Cartesian coordinate Remember         CO 3         BAEB05.0           9         How the governing equations can be transformed from a Cartesian coordinate Re               |    |                                                                                |            |      | BAEB05.09 |
| 1       Derive the boundary layer equations for compressible flow with the neat sketch.       Remember       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Understand       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near a interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem hear a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system to any general non orthogonal coordinate system?       CO 3       BAEB05.0         2       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         9       How the go                                                  | 20 |                                                                                | Understand | CO 3 | BAEB05.09 |
| sketch.       CO 3       BAEB05.0         2       List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem understand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near an interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system to any general non orthogonal coordinate system?       Remember       CO 3       BAEB05.0         1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       B                                                  |    |                                                                                |            |      |           |
| sketch them.       Remember       CO 3       BAEB05.0         3       Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Understand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near an interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system?       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       Remember       CO 3       BAEB05.0         3       Discuss the s                                                           | 1  | sketch.                                                                        | Remember   | CO 3 | BAEB05.08 |
| Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.       Remember       CO 3       BAEB05.0         4       Describe the general transformation to solve the governing equations on a uniformly spaced computational grid       Remember       CO 3       BAEB05.0         5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Understand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering near an interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system?       Remember       CO 3       BAEB05.0         1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       Statebot dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0                                        | 2  |                                                                                | Remember   | CO 3 | BAEB05.08 |
| uniformly spaced computational gridCO 3BAEB05.05Explain the suitable transformation 2 for a 2 D boundary layer type of problem<br>by the governing fluid dynamic equations.CO 3BAEB05.06Differentiate the physical plane and computational plane for grid clustering<br>near an interior point.RememberCO 3BAEB05.07Explain the suitable transformation 3 for a 2 D boundary layer type of problem<br>by the governing fluid dynamic equations.RememberCO 3BAEB05.08Differentiate the physical plane and computational plane for grid clustering<br>near a wall.RememberCO 3BAEB05.09How the governing equations can be transformed from a Cartesian coordinate<br>system to any general non orthogonal coordinate system?RememberCO 3BAEB05.01Sketch the two layers of dummy cells and explain them in detail<br>surface with no friction force.RememberCO 3BAEB05.03Discuss the solid wall boundary condition for the cell-centered scheme when<br>the dummy cells are denoted as 0 and 1 for inviscid flow.RememberCO 3BAEB05.04Explain the solid wall boundary condition for the structured cell-vertex dual<br>control-volume scheme for inviscid flow with the neat sketch.CO 3BAEB05.05What do you understand by periodic boundaries and explain the types of<br>periodic boundariesRememberCO 3BAEB05.0                                                                                                                                                                                                                                                             | 3  | Cartesian coordinates, applicable to a compressible turbulent flow in the y    | Remember   | CO 3 | BAEB05.07 |
| 5       Explain the suitable transformation 2 for a 2 D boundary layer type of problem<br>by the governing fluid dynamic equations.       Understand       CO 3       BAEB05.0         6       Differentiate the physical plane and computational plane for grid clustering<br>near an interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem<br>by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering<br>near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate<br>system to any general non orthogonal coordinate system?       Remember       CO 3       BAEB05.0         1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the<br>surface with no friction force.       Remember       CO 3       BAEB05.0         3       Discuss the solid wall boundary condition for the cell-centered scheme when<br>the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual<br>control-volume scheme for inviscid flow with the neat sketch.       CO 3 | 4  |                                                                                | Remember   | CO 3 | BAEB05.08 |
| 6       Differentiate the physical plane and computational plane for grid clustering near an interior point.       Remember       CO 3       BAEB05.0         7       Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.       Remember       CO 3       BAEB05.0         8       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system?       Remember       CO 3       BAEB05.0         1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       State boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                              | 5  | Explain the suitable transformation 2 for a 2 D boundary layer type of problem | Understand | CO 3 | BAEB05.09 |
| 7Explain the suitable transformation 3 for a 2 D boundary layer type of problem<br>by the governing fluid dynamic equations.RememberCO 3BAEB05.08Differentiate the physical plane and computational plane for grid clustering<br>near a wall.RememberCO 3BAEB05.09How the governing equations can be transformed from a Cartesian coordinate<br>system to any general non orthogonal coordinate system?RememberCO 3BAEB05.02Mention the importance of solid wall in inviscid flows, the fluid slips over the<br>surface with no friction force.RememberCO 3BAEB05.03Discuss the solid wall boundary condition for the cell-centered scheme when<br>the dummy cells are denoted as 0 and 1 for inviscid flow.RememberCO 3BAEB05.04Explain the solid wall boundary condition for the structured cell-vertex dual<br>control-volume scheme for inviscid flow with the neat sketch.UnderstandCO 3BAEB05.05What do you understand by periodic boundaries and explain the types of<br>periodic boundariesRememberCO 3BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6  | Differentiate the physical plane and computational plane for grid clustering   | Remember   | CO 3 | BAEB05.08 |
| 8       Differentiate the physical plane and computational plane for grid clustering near a wall.       Remember       CO 3       BAEB05.0         9       How the governing equations can be transformed from a Cartesian coordinate system to any general non orthogonal coordinate system?       Remember       CO 3       BAEB05.0         1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       CO 3       BAEB05.0         3       Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                       | 7  | Explain the suitable transformation 3 for a 2 D boundary layer type of problem | Remember   | CO 3 | BAEB05.08 |
| 9How the governing equations can be transformed from a Cartesian coordinate<br>system to any general non orthogonal coordinate system?RememberCO 3BAEB05.01Sketch the two layers of dummy cells and explain them in detailRememberCO 3BAEB05.02Mention the importance of solid wall in inviscid flows, the fluid slips over the<br>surface with no friction force.RememberCO 3BAEB05.03Discuss the solid wall boundary condition for the cell-centered scheme when<br>the dummy cells are denoted as 0 and 1 for inviscid flow.RememberCO 3BAEB05.04Explain the solid wall boundary condition for the structured cell-vertex dual<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8  | Differentiate the physical plane and computational plane for grid clustering   | Remember   | CO 3 | BAEB05.07 |
| 1       Sketch the two layers of dummy cells and explain them in detail       Remember       CO 3       BAEB05.0         2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       Remember       CO 3       BAEB05.0         3       Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9  | How the governing equations can be transformed from a Cartesian coordinate     | Remember   | CO 3 | BAEB05.09 |
| 2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       Remember       CO 3       BAEB05.0         3       Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | system to any general non orthogonal coordinate system?                        |            |      |           |
| 2       Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.       Remember       CO 3       BAEB05.0         3       Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                                                                |            |      |           |
| surface with no friction force.       3       Surface with no friction force.       3         3       Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.       Remember       CO 3       BAEB05.0         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |                                                                                |            |      | BAEB05.08 |
| the dummy cells are denoted as 0 and 1 for inviscid flow.       Image: CO 3 and 1 for inviscid flow.         4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3 BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3 BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  | surface with no friction force.                                                | Remember   | CO 3 | BAEB05.08 |
| 4       Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.       Understand       CO 3       BAEB05.0         5       What do you understand by periodic boundaries and explain the types of periodic boundaries       Remember       CO 3       BAEB05.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3  |                                                                                | Remember   | CO 3 | BAEB05.09 |
| 5 What do you understand by periodic boundaries and explain the types of Remember CO 3 BAEB05.0 periodic boundaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4  | Explain the solid wall boundary condition for the structured cell-vertex dual  | Understand | CO 3 | BAEB05.09 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5  | What do you understand by periodic boundaries and explain the types of         | Remember   | CO 3 | BAEB05.09 |
| 1 0 1 Discuss the solid wall boundary condition for the con-centered scheme when 1 Kentenber 1 CO 5 1 DAED03.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6  | Discuss the solid wall boundary condition for the cell-centered scheme when    | Remember   | CO 3 | BAEB05.08 |

|    | the dummy cells are denoted as 0 and 1 for viscous flow.                                                                                                                                                                                |            |      |           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 7  | Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for viscous flow with the neat sketch.                                                                                              | Remember   | CO 3 | BAEB05.08 |
| 8  | Derive the expression for the vortex correction in 3 D for modification of lifting bodies.                                                                                                                                              | Remember   | CO 3 | BAEB05.09 |
| 9  | Differentiate the subsonic inlet and outlet for the implementation for boundary conditions and derive the expression for the subsonic inlet.                                                                                            | Understand | CO 3 | BAEB05.09 |
| 10 | Describe the rotational periodicity which is based on the rotation of the coordinate system with the neat sketch.                                                                                                                       | Remember   | CO 3 | BAEB05.09 |
|    | Part - C (Analytical Questions)                                                                                                                                                                                                         |            | •    |           |
| 1  | Obtain the basic explicit time integration scheme by setting $\beta = 0$ and $\omega = 0$ in nonlinear scheme where we can approximate by a forward difference.                                                                         | Remember   | CO 3 | BAEB05.08 |
| 2  | Derive the generalized transformation to the compressible Navier - stokes equation in the vector form.                                                                                                                                  | Understand | CO 3 | BAEB05.07 |
| 3  | Explain the suitable transformation 1 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.                                                                                                                | Remember   | CO 3 | BAEB05.08 |
| 4  | Define implicit residual smoothing and Jacobi preconditioning. Differentiate the upwind implicit residual smoothing and implicit - explicit residual smoothing.                                                                         | Understand | CO 3 | BAEB05.07 |
| 5  | Explain the Notation and coordinate system for a boundary layer on a flat plate<br>by assuming the thickness of the viscous and thermal boundary layers are small<br>relative to a characteristic length in the primary flow direction. | Remember   | CO 3 | BAEB05.08 |
| 6  | Explain the suitable transformation 4 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.                                                                                                                | Understand | CO 3 | BAEB05.09 |
| 7  | Compare the periodic boundaries in the case of 2 D unstructured and structured Cell- Centered schemes and utilization of dummy cells for periodic boundaries with the neat sketch.                                                      | Understand | CO 3 | BAEB05.07 |
| 8  | Mention the importance of symmetry plane with the reference of cell centered scheme and cell - Vertex scheme.                                                                                                                           | Remember   | CO 3 | BAEB05.08 |
| 9  | Explain the coordinate cut for the boundary condition whether it is suitable for structured or unstructured case with the help of neat sketch.                                                                                          | Understand | CO 3 | BAEB05.09 |
| 10 | Derive the expression to obtain the boundary layer approximations to the Navier-Stokes and Reynolds equations for steady 2D incompressible constant-property flow along an isothermal surface at temperature $T_w$ .                    | Understand | CO 3 | BAEB05.09 |
| 1  | Differentiate the unstructured cell- centered and Meridian – Dual scheme for the solid wall boundary condition for inviscid flow                                                                                                        | Remember   | CO 3 | BAEB05.08 |
| 2  | Compare and contrast the solid wall boundary condition for the 2D unstructured, Dual –control volume mixed-grid scheme and 3D unstructured, mixed – grid scheme for inviscid flow                                                       | Remember   | CO 3 | BAEB05.08 |
| 3  | Differentiate the cell-centered scheme and structured cell-vertex dual control-<br>volume scheme for the solid wall boundary condition.                                                                                                 | Remember   | CO 3 | BAEB05.08 |
| 4  | Summarize the concept of characteristic variables and list the different types of far field boundary conditions.                                                                                                                        | Understand | CO 3 | BAEB05.09 |
| 5  | Differentiate the supersonic inflow and supersonic outflow in the farfield boundary with the help of neat sketch                                                                                                                        | Understand | CO 3 | BAEB05.09 |
| 6  | Derive the expression for the vortex correction in 2 D for modification of lifting bodies by understanding the effects of distance to the farfield boundary and of single vortex on the lift coefficient                                | Remember   | CO 3 | BAEB05.08 |
| 7  | Compare the periodic boundaries in the case of 2 D unstructured and structured cell - Vertex schemes with dual control volumes and utilization of dummy cells for periodic boundaries with the neat sketch.                             | Understand | CO 3 | BAEB05.09 |
| 8  | To generate a single grid inside a geometrically complex domain Briefly<br>explain the basic implementation issues of the multi block approach for the<br>interface between grid blocks.                                                | Understand | CO 3 | BAEB05.09 |

|    | UNIT -IV                                                                                                                                                                                         |            |      |           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
|    | METHOD OF CHARACTERISTICS                                                                                                                                                                        |            |      |           |
|    | Part – A (Short Answer Questions)                                                                                                                                                                |            |      |           |
| 1  | Define compatibility equation.                                                                                                                                                                   | Remember   | CO 4 | BAEB05.11 |
| 2  | What do you understand by Mach lines?                                                                                                                                                            | Remember   | CO 4 | BAEB05.11 |
| 3  | DefineMach angle and write the expression for the Mach angle.                                                                                                                                    | Remember   | CO 4 | BAEB05.11 |
| 4  | What is full velocity potential?                                                                                                                                                                 | Remember   | CO 4 | BAEB05.11 |
| 5  | Differentiate the non-simple region and simple region.                                                                                                                                           | Remember   | CO 4 | BAEB05.11 |
| 6  | What do you understand by unit processes?                                                                                                                                                        | Remember   | CO 4 | BAEB05.11 |
| 7  | Define hyperbolic partial differential equation.                                                                                                                                                 | Understand | CO 4 | BAEB05.11 |
| 8  | List the steps for solving the flow field.                                                                                                                                                       | Remember   | CO 4 | BAEB05.11 |
| 9  | Define initial data line in method of characteristics.                                                                                                                                           | Remember   | CO 4 | BAEB05.11 |
| 10 | Define parabolic partial differential equation.                                                                                                                                                  | Understand | CO 4 | BAEB05.11 |
|    | Part – B (Long Answer Questions)                                                                                                                                                                 |            |      |           |
| 1  | Derive the characteristic line for two dimensional irrotational flows.                                                                                                                           | Remember   | CO 4 | BAEB05.10 |
| 2  | Explain the importance of characteristic lines and its effect in fluiddynamics.                                                                                                                  | Remember   | CO 4 | BAEB05.12 |
| 3  | Summarize the philosophy of method of characteristics with the help of neat sketch.                                                                                                              | Remember   | CO 4 | BAEB05.11 |
| 4  | Explain the relationship of characteristics in unsteady one dimensional flow with the help of neat sketch.                                                                                       | Remember   | CO 4 | BAEB05.12 |
| 5  | Discuss how to produce the method of unit process for the conditions at wall, internal flow and shock wave.                                                                                      | Remember   | CO 4 | BAEB05.12 |
| 6  | Illustrate the left - running characteristics and right - running characteristic lines with the suitable diagram.                                                                                | Remember   | CO 4 | BAEB05.12 |
| 7  | Discuss the design of the supersonic wind tunnel nozzle by using the method of characteristics.                                                                                                  | Understand | CO 4 | BAEB05.11 |
| 8  | Determine the compatibility equation which describes the variation of flow properties along the characteristic lines.                                                                            | Remember   | CO 4 | BAEB05.12 |
| 9  | Illustration of the characteristic line and explain the relationship of characteristics in unsteady one-dimensional flow.                                                                        | Remember   | CO 4 | BAEB05.11 |
| 10 | Discuss the concept of characteristic variable in farfield for the method of characteristics.                                                                                                    | Understand | CO 4 | BAEB05.11 |
|    | Part – C (Analytical Questions)                                                                                                                                                                  |            |      |           |
| 1  | Determine the characteristic lines by consider steady, adiabatic, two dimensional, irrotational supersonic flow?                                                                                 | Remember   | CO 4 | BAEB05.11 |
| 2  | Briefly explain the Internal flow of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.                                                             | Understand | CO 4 | BAEB05.11 |
| 3  | Derive an expression for the steady, two dimensional supersonic and the illustration of the characteristic lines                                                                                 | Remember   | CO 4 | BAEB05.11 |
| 4  | Briefly explain the wall point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.                                                                | Remember   | CO 4 | BAEB05.11 |
| 5  | Differentiate the wall point and shock point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.                                                  | Understand | CO 4 | BAEB05.11 |
| 6  | Briefly explain the shock point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.                                                               | Remember   | CO 4 | BAEB05.11 |
| 7  | Differentiate the regions of influence and domain of dependence to understand<br>the propagation of disturbances in a steady supersonic flow.                                                    | Understand | CO 4 | BAEB05.11 |
| 8  | Explain the Method of characteristics how it will be helpful to design the contour of a supersonic nozzle for shock free and isentropic flow.                                                    | Remember   | CO 4 | BAEB05.10 |
| 9  | Prove the for a minimum- length nozzle the expansion angle of the wall<br>downstream of the throat is equal to the one- half of the Prandtl - Meyer<br>function for the design exit Mach number. | Remember   | CO 4 | BAEB05.11 |

| 10       | Using the Method of characteristics, compute and graph the contour of a two                                          | Understand      | CO 4             | BAEB05.1  |
|----------|----------------------------------------------------------------------------------------------------------------------|-----------------|------------------|-----------|
| 10       | dimensional minimum- length nozzle for the expansion of air to a design exit                                         | Onderstand      | 0.0.4            | DILLD03.1 |
|          | Mach number of 2.4.                                                                                                  |                 |                  |           |
|          | UNIT – V                                                                                                             |                 |                  |           |
|          | PANELMETHODS                                                                                                         |                 |                  |           |
|          | Part - A (Short Answer Questions)                                                                                    |                 |                  |           |
| 1        | Define influence coefficients?                                                                                       | Remember        | CO 5             | BAEB05.1  |
| 2        | Explain what you mean by discretization in computational fluid dynamics.                                             | Remember        | CO 5             | BAEB05.1  |
| 3        | Define the Mixed boundary condition problem.                                                                         | Remember        | CO 5             | BAEB05.1  |
| 4        | What are the singularity distribution strengths?                                                                     | Remember        | CO 5             | BAEB05.1  |
| 5        | Define collocation points which can be selected on the body surface.                                                 | Remember        | CO 5             | BAEB05.1  |
| 6        | Differentiate the wake strength and wake shape.                                                                      | Remember        | CO 5             | BAEB05.1  |
| 7        | What are the additional conditions to design a wake model?                                                           | Understand      | CO 5             | BAEB05.1  |
| 8        | Define local velocity vector.                                                                                        | Understand      | CO 5             | BAEB05.1  |
| <u> </u> | Define compressibility factor                                                                                        | Understand      | CO 5             | BAEB05.1  |
| 9        | What is Prandtl – Glauert rule?                                                                                      | Understand      | CO 5             | BAEB05.1  |
| 10       |                                                                                                                      | Understand      | 05               | DAEDU3.   |
| 1        | Part - B (Long Answer Questions)                                                                                     | The desired and | CO 5             |           |
| 1        | Explain briefly about the steps toward constructing a numerical solution for the                                     | Understand      | CO 5             | BAEB05.1  |
| 2        | panel methods?                                                                                                       | TT 1 / 1        | CO 7             | DAEDOS 1  |
| 2        | Derive the expression to set the wake strength at the trailing edge by the                                           | Understand      | CO 5             | BAEB05.1  |
| 2        | implementation of the Kutta condition when using surface doublet distribution.                                       | D               | CO 5             |           |
| 3        | For developing the three dimensional panel code what is the effect of                                                | Remember        | CO 5             | BAEB05.1  |
| 4        | compressibility in the case of incompressible potential flow?                                                        | D               | CO 5             |           |
| 4        | Differentiate the possible conditions that can be applied at cusp and finite                                         | Remember        | CO 5             | BAEB05.1  |
| ~        | trailing edges with the help of neat sketch.                                                                         | TT. 1           | CO 5             |           |
| 5        | Define the wake shape. Explain the effect of prescribed wake geometry on the                                         | Understand      | CO 5             | BAEB05.1  |
| 6        | aerodynamics of an AR = 1.5 wing.<br>Explain which type of singularity that will be used, type of boundary condition | Damarahan       | CO 5             |           |
| 6        | and wake model is prior to establish a numerical solution.                                                           | Remember        | CO 5             | BAEB05.1  |
| 7        | Discuss how the method of discretizing surface and singularity distributions is                                      | Remember        | CO 5             | BAEB05.1  |
| /        | prior to establish a numerical solution.                                                                             | Kemenneen       | 05               | DAED03.1  |
| 8        | Explain how the considerations of numerical efficiency are important to                                              | Understand      | CO 5             | BAEB05.1  |
| 0        | establish a numerical solution.                                                                                      | Understand      | 05               | DAEDUJ.I  |
| 9        | Discuss the selection of singularity element for constructing a numerical                                            | Remember        | Remember CO 5 BA | BAEB05.1  |
| 9        | solution.                                                                                                            | Kemenneen       | 05               | DAED03.1  |
| 10       | Briefly explain the discretization of geometry and grid generation for                                               | Understand      | CO 5             | BAEB05.1  |
| 10       | constructing a numerical solution.                                                                                   | Understand      | 05               | DAED03.1  |
| 11       | Define influence coefficients and explain them in detail generation for                                              | Remember        | CO 5             | BAEB05.1  |
| 11       | constructing a numerical solution.                                                                                   | Kemeniber       | 0.0              | DAED03.1  |
| 12       | Derive the expression to set the wake strength at the trailing edge by the                                           | Remember        | CO 5             | BAEB05.1  |
| 12       | implementation of the Kutta condition when using vortex ring elements.                                               | Kemeniber       | 0.0              | DAED03.1  |
| 13       | Discuss the Models for Wake roll up, Jets and Flow separations for the effect                                        | Understand      | CO 5             | BAEB05.1  |
| 15       | of compressibility and viscosity.                                                                                    | Onderstand      | 005              | DALD03.1  |
| 14       | Describe the effect of compressibility and viscosity that to be accounted for                                        | Understand      | CO 5             | BAEB05.1  |
| 14       | thin airfoil theory.                                                                                                 | Onderstand      | 005              | DALD05.1  |
|          | Part - C (Analytical Questions)                                                                                      |                 |                  |           |
| 1        | Explain the preliminary considerations prior to establishing the numerical                                           | Remember        | CO 5             | BAEB05.1  |
| 1        | solution?                                                                                                            | Kemennber       |                  | DALDUJ.I  |
| 2        | Differentiate the discretization of the geometry of a thin airfoil by using the                                      | Understand      | CO 5             | BAEB05.1  |
| 2        | lumped vortex element and a three dimensional body using constant – strength                                         | Understand      | 0.05             | DAEDUJ.I  |
|          | surface doublets and sources.                                                                                        |                 |                  |           |
|          | surrace usualets and sources.                                                                                        |                 |                  |           |
| 3        | Briefly explain the typical flow chart for the numerical solution of the surface                                     | Remember        | CO 5             | BAEB05.1  |
| 5        | singularity distribution problem.                                                                                    | KUIIUUU         | 0.05             | DALDUS.I  |

| 4  | Explain the concept of reduction of a problem to a set of linear algebraic equations?                                                                 | Understand | CO 5 | BAEB05.14 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------|
| 5  | Briefly explain about the secondary computation or about aerodynamics loads and how are they calculated?                                              | Remember   | CO 5 | BAEB05.13 |
| 6  | Consider the solution for symmetric, thin airfoil with Lumped – Vortex element; explain how the selection of singularity element takes place.         | Understand | CO 5 | BAEB05.14 |
| 7  | Explain the nomenclature and flowchart for the influence of a panel element at a point P for the thin airfoil with Lumped – Vortex element.           | Remember   | CO 5 | BAEB05.13 |
| 8  | Discuss the influence coefficients for the thin airfoil with Lumped – Vortex element.                                                                 | Remember   | CO 5 | BAEB05.13 |
| 9  | Describe the discretization of geometry and grid generation for the thin airfoil with Lumped – Vortex element.                                        | Understand | CO 5 | BAEB05.13 |
| 10 | Illustrate the establishment of RHS and linear set of equations to solve for the thin airfoil with Lumped – Vortex element.                           | Remember   | CO 5 | BAEB05.13 |
| 11 | Derive the secondary computations such as pressure and loads for the thin airfoil with Lumped – Vortex element.                                       | Understand | CO 5 | BAEB05.13 |
| 12 | Explain the methods for combining the displacement thickness and friction drag solution by using boundary layer.                                      | Understand | CO 5 | BAEB05.14 |
| 13 | For developing the three dimensional panel code what is the effect of thin boundary layers in the account of viscosity in the case of potential flow? | Remember   | CO 5 | BAEB05.13 |
| 14 | Explain about the effects of flow compressibility and viscosity in the computational fluid dynamics.                                                  | Understand | CO 5 | BAEB05.15 |

### Prepared by:

Ms. D. Anitha, Assistant Professor

HOD, AE