INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad-500043

AEROSPACE ENGINEERING
TUTORIAL QUESTION BANK

Course Title	ADVANCED COMPUTATIONAL AERODYNAMICS				
Course Code	BAEB05				
Programme	M.Tech				
Semester	I $\quad \mathrm{AE}$				
Course Type	Elective				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	--	--
Chief Coordinator	Ms. D Anitha, Assistant Professor				
Course Faculty	Ms. D Anitha, Assistant Professor				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Explain the concept of panel methods, analyze various boundary conditions applied and demonstrate several searching and sorting algorithms.
II	Describe the initial methods applied in the process of CFD tools development their advantages and disadvantages over modern developed methods.
III	Demonstrate different methods evolved in analyzing numerical stability of solutions and evaluate the parameters over which the stability depends and their range of values.
IV	Understand advanced techniques and methods in time marching steps and identify different boundary conditions for different cases in CFD techniques.

COURSE OUTCOMES (COs):

CO 1	Understand the solution methodology and numerical solutions for the boundary layer.
CO 2	Summarize various types of equations, their solution techniques including their stability.
CO 3	Demonstrate to write and solve implicit and explicit equations including stability of the solution.
CO 4	Illustrate the concepts of method of characteristics and its applications in nozzle designs.
CO 5	Describe basic formulation techniques and boundary condition for panel methods.

COURSE LEARNING OUTCOMES (CLOs):

BAEB05.01	Understand the concept of flux approach and its formulations.
BAEB05.02	Explain the Euler equations for the aerodynamic solutions computationally.
BAEB05.03	Emphasize on basic schemes to solve the differential equations.
BAEB05.04	Understand the stability of the solution by time dependent methods.
BAEB05.05	Explain the implicit methods for the time dependent methods to solve computationally.
BAEB05.06	Develop the approximate factorization schemes for time dependent methods.
BAEB05.07	Illustrate to apply concepts of discretization and its application for implicit difference equation.
BAEB05.08	Distinguish implicit and explicit discretization and differentiation equations for the stability of solution.
BAEB05.09	Explain the flow gradients at boundaries of unstructured grids.
BAEB05.10	Understand the concept of philosophy of method of characteristics.
BAEB05.11	Explain supersonic nozzle design using method of characteristics.
BAEB05.12	Differentiate the domain of dependence and range of influence.
BAEB05.13	Understand the basic formulation and boundary conditions.
BAEB05.14	Explain the reduction of a problem to a set of linear algebraic equations.
BAEB05.15	Discuss the preliminary considerations prior to establishing numerical solution.

TUTORIAL QUESTION BANK

UNIT - I

NUMERICAL SOLUTIONS

UNIT - I				
NUMERICAL SOLUTIONS				
Part - A(Short Answer Questions)				
S.NO	QUESTIONS	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$	Course Outcomes	Course Learning Outcomes
1	What do you understand by conservative?	Remember	CO 1	BAEB05.01
2	Define conservative numerical fluxes.	Remember	CO 1	BAEB05.01
3	Sketch the stencil diagram.	Remember	CO 1	BAEB05.01
4	Define stencil width.	Remember	CO 1	BAEB05.02
5	When is a conservative approximation consistent?	Remember	CO 1	BAEB05.02
6	Define temporal evolution.	Remember	CO 1	BAEB05.02
7	What is the fundamental property for the conservative numerical methods?	Remember	CO 1	BAEB05.02
8	Differentiate the conservative and non-conservative methods.	Understand	CO 1	BAEB05.02
9	List the Forward Time Methods.	Understand	CO 1	BAEB05.02
10	Define spatial Reconstruction.	Remember	CO 1	BAEB05.03
11	What is the CFL condition for the Lax-Wendroff method?	Remember	CO 1	BAEB05.03
12	Define small user -adjustable parameter	Understand	CO 1	BAEB05.02
13	What are the upwind schemes?	Understand	CO 1	BAEB05.02
Part - B (Long Answer Questions)				
1	Briefly explain the basic principles involved in the upwind schemes by the steady state solutions.	Understand	CO 1	BAEB05.03
2	Derive the expressions for the forward time methods with the help of neat sketch?	Understand	CO 1	BAEB05.03
3	Find a first-order reconstruction - evolution method for the linear advection equation. Use piecewise-constant reconstruction and exact evolution.	Understand	CO 1	BAEB05.03
4	Rederive the first-order reconstruction-evolution method. Use a reconstruction evolution, in which step approximates $\mathrm{u}(\mathrm{x}, \mathrm{tn}+1)$ rather than $\mathrm{u}(\mathrm{x}+1 / 2, \mathrm{t})$. Form the cell- integral averages of $\mathrm{u}(\mathrm{x}, \mathrm{tn}+1)$ to approximate \bar{u}_{i}^{n+1}.	Remember	CO 1	BAEB05.02
5	Consider the Lax - Wendroff method. What are the advantages and disadvantages of increasing its coefficient of artificial viscosity by a constant amount?	Remember	CO 1	BAEB05.03
6	Find the conservative numerical flux f_{1+2}^{n} of Godunov's and Roe's first- order upwind method.	Remember	CO 1	BAEB05.03
7	Define flux approach and list the flux approach methods for Euler equations.	Understand	CO 1	BAEB05.02
8	By considering the inviscid Burgers equation and a finite volume approximation with a control volume for Lax method derives the expression for control volume interface.	Understand	CO 1	BAEB05.02
9	Define the expansion shock and explain the expansion shock using Roe's scheme for first order upwind.	Understand	CO 1	BAEB05.03
10	Compare the expansion shock using Roe's scheme for first order upwind with and without entropy correction.	Understand	CO 1	BAEB05.02
Part - C (Analytical Questions)				
1	Derive an expression for the Lax - Wendroff Methods for scalar conservation laws by Euler Equations.	Understand	CO 1	BAEB05.01

2	A solution of the two dimensional heat equation $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\alpha \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}+\alpha \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}$ is desired using the simple explicit scheme. What is the stability requirement for the method?	Understand	CO 1	BAEB05.01
3	Derive an expression for the Steger-Warming Flux vector splitting and write the expression for the entropy in sonic conditions?	Remember	CO 1	BAEB05.03
4	Derive an expression for the Van Leer Flux vector splitting and write the how the Mach number varies with momentum flux in sonic conditions?	Remember	CO 1	BAEB05.02
5	Explain the flux difference splitting method and derive the expression. Compare flux difference splitting with flux vector splitting.	Understand	CO 1	BAEB05.02
6	Write down the Riemann problem for the Godonov's equation for the cases shock wave and expansion waves.	Remember	CO 1	BAEB05.03
7	Describe how the Godonov's method solves a local Riemann problem at each cell interface to obtain a value of the flux.	Understand	CO 1	BAEB05.03
8	Discuss the Flux Vector splitting for the Euler equations in the scalar conservation laws explain them in detail.	Remember	CO 1	BAEB05.02
9	Sketch the wave diagram for Roe scheme applied to Burger's equation and explain them in detail.	Remember	CO 1	BAEB05.02
10	Differentiate the Godonav's and Roe first order upwind method with the suitable diagram applicable to Burger's equation.	Understand	CO 1	BAEB05.02
UNIT II				
TIME DEPENDENT METHODS				
Part - A (Short Answer Questions)				
1	What is the need of stability of solution?	Remember	CO 2	BAEB05.04
2	Define amplification factor.	Remember	CO 2	BAEB05.04
3	List out the various explicit methods.	Remember	CO 2	BAEB05.04
4	Explain the importance of forward-time forward space method.	Remember	CO 2	BAEB05.04
5	Summarize the use of predictor-corrector method.	Understand	CO 2	BAEB05.04
6	What is the importance of forward-time backward space method?	Understand	CO 2	BAEB05.04
7	List the different time split methods.	Understand	CO 2	BAEB05.04
8	What is the importance of Crank-Nicolson method?	Understand	CO 2	BAEB05.04
9	List difference between forward-time central space method and forward-time backward space method.	Understand	CO 2	BAEB05.05
10	What are the criteria required to establish Crank Nicolson method.	Understand	CO 2	BAEB05.04
11	Explain the approach of Lax-Wendroff scheme.	Remember	CO 2	BAEB05.05
12	Show that FTCS is not positive?	Remember	CO 2	BAEB05.05
Part - B (Long Answer Questions)				
1	Define stability. Derive the expressions for the forward time methods with the help of neat sketch?	Remember	CO 2	BAEB05.04
2	Mention the various explicit methods in time marching solutions.	Remember	CO 2	BAEB05.04
3	Derive the amplification factor for the leap frog method applied to the wave equation and determine the stability restriction for this scheme.	Understand	CO 2	BAEB05.04
4	Briefly explain the criteria and requirement for stability of solution. List out the various explicit methods that can be used in CFD tools.	Remember	CO 2	BAEB05.05
5	Do the steady state solutions of two step MacCormack's predictor corrector method depend on $\Delta \mathrm{t}$?	Remember	CO 2	BAEB05.05
6	Discuss the forward-time forward space method, forward-time central space method and forward-time backward space method.	Understand	CO 2	BAEB05.04
7	Compare the forward-time forward space method and forward-time central space method.	Remember	CO 2	BAEB05.04
8	Discuss Euler's forward-time central space method and its importance. List out various implicit methods and their importance in CFD tools.	Remember	CO 2	BAEB05.04

9	Derive the modified equation for the Lax method applied to the wave equation retain terms up to and including Uxxxx.	Understand	CO 2	BAEB05.06
10	Determine the errors in amplitude and phase for $\beta=900$ if the Lax method is applied to the wave equation for 10 time steps with $v=0.5$.	Understand	CO 2	BAEB05.06
11	Explain the leap-frog method which is second accurate in both time and space in detail with example.	Remember	CO 2	BAEB05.04
12	Design a first - order upwind method for the linear advection equation that chooses between FTBS and FTFS.	Understand	CO 2	BAEB05.06
Part - C (Analytical Questions)				
1	Consider the following linear advection problem on a periodic domain [-1,1]: $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}+\frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0$ $U(x, 0)=\left\{\begin{array}{l} 1\|x\| \leq 1 / 3 \\ 0\|x\|>1 / 3 \end{array}\right.$ Approximate $u(x, 2)$ using FTFS,FTBS and FTCS with 20 cells and $\lambda=\frac{\Delta t}{\Delta x}=0.8$	Remember	CO 2	BAEB05.04
2	Suppose the upstream differencing scheme is used to solve wave equation ($c=0.75$) with the initial condition $u(x, 0)=\sin (6 \Pi x) 0 \leq x \leq 1$ and periodic boundary conditions. Determine the amplitude and phase errors after ten steps if $\Delta t=0.02$ and $\Delta x=0.02$.	Remember	CO 2	BAEB05.04
3	Discuss Cranck - Nikolson method as implicit approach by the numerical calculation.	Remember	CO 2	BAEB05.04
4	Consider FTCS in the following non - conservation form: $\overline{\mathrm{u}}_{\mathrm{i}}^{\mathrm{n}+1}=\overline{\mathrm{u}}_{\mathrm{i}}^{\mathrm{n}}-\frac{\lambda}{2}\left(\mathrm{f}\left(\overline{\mathrm{u}}_{\mathrm{i}+1}^{\mathrm{n}}\right)-\left(\overline{\mathrm{u}}_{\mathrm{i}-1}^{\mathrm{n}}\right)\right)$ Rewrite FTCS in conservation form.	Understand	CO 2	BAEB05.05
5	Derive the following finite- difference method: $\mathrm{u}_{\mathrm{i}}^{\mathrm{n}+1}=\mathrm{u}_{\mathrm{i}}^{\mathrm{n}}-\frac{\lambda}{2}\left(-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+2}^{\mathrm{n}}\right)+4 \mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}^{\mathrm{n}}\right)-3 \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\mathrm{n}}\right)\right)$ Write the method in conservation form.	Understand	CO 2	BAEB05.05
6	Write FTFS and FTBS is artificial viscosity form for both vector and scalar conservation laws. Discuss the relationship between stability and sign of the coefficient of artificial viscosity.	Remember	CO 2	BAEB05.05
7	Suppose the simple explicit method is used to solve the heat equation $(\alpha=0.05)$ with the initial condition. $U(x, 0)=\sin (2 \Pi x) 0 \leq x \leq 1$ and periodic boundary conditions. Determine the amplitude error after ten steps if $\Delta t=0.1$ and $\Delta x=0.1$.	Remember	CO 2	BAEB05.05
8	Derive an expression for the conservative numerical flux of the two step MacCormack's predictor corrector method. Discuss approximate factorization schemes.	Understand	CO 2	BAEB05.06
9	Write the solution of FTCS for the linear advection equation in terms of Fourier series coefficients $\mathrm{c}_{\mathrm{m}}^{\mathrm{n}}$. Use these expressions to show that FTCS for the linear advection equation "blows up" in time.	Remember	CO 2	BAEB05.05
10	Derive an expression for the conservative numerical flux of the crank Nicolson method.	Understand	CO 2	BAEB05.05
UNIT -III				
BOUNDARY CONDITIONS				
Part - A (Short Answer Questions)				
1	Define discretization.	Remember	CO 3	BAEB05.08
2	What do you understand by pressure based?	Understand	CO 3	BAEB05.08

3	Define method of lines.	Understand	CO 3	BAEB05.08
4	What do you understand by density based?	Remember	CO 3	BAEB05.08
5	Differentiate the structured and unstructured grids.	Understand	CO 3	BAEB05.08
6	Define illposed condition.	Remember	CO 3	BAEB05.08
7	Illustrate the number of flow quantities required at far-field boundaries.	Remember	CO 3	BAEB05.07
8	Define implicit operator.	Understand	CO 3	BAEB05.08
9	Define Prandtl number, Reynolds number and Eckert number.	Understand	CO 3	BAEB05.08
10	What is Geometric conservation law?	Remember	CO 3	BAEB05.08
11	List the types of Boundary conditions encountered in the numerical solution of the Euler equation and the Navier- Stokes equations.	Understand	CO 3	BAEB05.08
12	Define dummy cells.	Understand	CO 3	BAEB05.08
13	Define the concept of periodic boundaries.	Understand	CO 3	BAEB05.09
14	Describe viscous flow and its importance.	Remember	CO 3	BAEB05.09
15	Mention the importance of solid wall in viscous flows.	Remember	CO 3	BAEB05.09
16	Define farfield. Mention the importance of symmetry plane.	Understand	CO 3	BAEB05.09
17	Write down the expression for modified free stream pressure?	Remember	CO 3	BAEB05.09
18	Differentiate the translational and rotational periodicity.	Remember	CO 3	BAEB05.08
19	What is injection boundary?	Understand	CO 3	BAEB05.09
20	Differentiate the subsonic inflow and subsonic outflow in the farfield boundary.	Understand	CO 3	BAEB05.09
Part - B (Long Answer Questions)				
1	Derive the boundary layer equations for compressible flow with the neat sketch.	Remember	CO 3	BAEB05.08
2	List the coordinate system for axisymmetric thin-shear-layer equations and sketch them.	Remember	CO 3	BAEB05.08
3	Write down the expressions for 3D unsteady boundary-layer equations in Cartesian coordinates, applicable to a compressible turbulent flow in the y direction normal to the wall.	Remember	CO 3	BAEB05.07
4	Describe the general transformation to solve the governing equations on a uniformly spaced computational grid	Remember	CO 3	BAEB05.08
5	Explain the suitable transformation 2 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.	Understand	CO 3	BAEB05.09
6	Differentiate the physical plane and computational plane for grid clustering near an interior point.	Remember	CO 3	BAEB05.08
7	Explain the suitable transformation 3 for a 2 D boundary layer type of problem by the governing fluid dynamic equations.	Remember	CO 3	BAEB05.08
8	Differentiate the physical plane and computational plane for grid clustering near a wall.	Remember	CO 3	BAEB05.07
9	How the governing equations can be transformed from a Cartesian coordinate system to any general non orthogonal coordinate system?	Remember	CO 3	BAEB05.09
1	Sketch the two layers of dummy cells and explain them in detail	Remember	CO 3	BAEB05.08
2	Mention the importance of solid wall in inviscid flows, the fluid slips over the surface with no friction force.	Remember	CO 3	BAEB05.08
3	Discuss the solid wall boundary condition for the cell-centered scheme when the dummy cells are denoted as 0 and 1 for inviscid flow.	Remember	CO 3	BAEB05.09
4	Explain the solid wall boundary condition for the structured cell-vertex dual control-volume scheme for inviscid flow with the neat sketch.	Understand	CO 3	BAEB05.09
5	What do you understand by periodic boundaries and explain the types of periodic boundaries	Remember	CO 3	BAEB05.09
6	Discuss the solid wall boundary condition for the cell-centered scheme when	Remember	CO 3	BAEB05.08

UNIT -IV
METHOD OF CHARACTERISTICS
Part - A (Short Answer Questions)

1	Define compatibility equation.	Remember	CO 4	BAEB05.11
2	What do you understand by Mach lines?	Remember	CO 4	BAEB05.11
3	DefineMach angle and write the expression for the Mach angle.	Remember	CO 4	BAEB05.11
4	What is full velocity potential?	Remember	CO 4	BAEB05.11
5	Differentiate the non-simple region and simple region.	Remember	CO 4	BAEB05.11
6	What do you understand by unit processes?	Remember	CO 4	BAEB05.11
7	Define hyperbolic partial differential equation.	Understand	CO 4	BAEB05.11
8	List the steps for solving the flow field.	Remember	CO 4	BAEB05.11
9	Define initial data line in method of characteristics.	Remember	CO 4	BAEB05.11
10	Define parabolic partial differential equation.	Understand	CO 4	BAEB05.11
Part - B (Long Answer Questions)				
1	Derive the characteristic line for two dimensional irrotational flows.	Remember	CO 4	BAEB05.10
2	Explain the importance of characteristic lines and its effect in fluiddynamics.	Remember	CO 4	BAEB05.12
3	Summarize the philosophy of method of characteristics with the help of neat sketch.	Remember	CO 4	BAEB05.11
4	Explain the relationship of characteristics in unsteady one dimensional flow with the help of neat sketch.	Remember	CO 4	BAEB05.12
5	Discuss how to produce the method of unit process for the conditions at wall, internal flow and shock wave.	Remember	CO 4	BAEB05.12
6	Illustrate the left - running characteristics and right - running characteristic lines with the suitable diagram.	Remember	CO 4	BAEB05.12
7	Discuss the design of the supersonic wind tunnel nozzle by using the method of characteristics.	Understand	CO 4	BAEB05.11
8	Determine the compatibility equation which describes the variation of flow properties along the characteristic lines.	Remember	CO 4	BAEB05.12
9	Illustration of the characteristic line and explain the relationship of characteristics in unsteady one-dimensional flow.	Remember	CO 4	BAEB05.11
10	Discuss the concept of characteristic variable in farfield for the method of characteristics.	Understand	CO 4	BAEB05.11
Part - C (Analytical Questions)				
1	Determine the characteristic lines by consider steady, adiabatic, two dimensional, irrotational supersonic flow?	Remember	CO 4	BAEB05.11
2	Briefly explain the Internal flow of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.	Understand	CO 4	BAEB05.11
3	Derive an expression for the steady, two dimensional supersonic and the illustration of the characteristic lines	Remember	CO 4	BAEB05.11
4	Briefly explain the wall point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.	Remember	CO 4	BAEB05.11
5	Differentiate the wall point and shock point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.	Understand	CO 4	BAEB05.11
6	Briefly explain the shock point of the unit processes for the steady flow, two dimensional irrotational Method of characteristics.	Remember	CO 4	BAEB05.11
7	Differentiate the regions of influence and domain of dependence to understand the propagation of disturbances in a steady supersonic flow.	Understand	CO 4	BAEB05.11
8	Explain the Method of characteristics how it will be helpful to design the contour of a supersonic nozzle for shock free and isentropic flow.	Remember	CO 4	BAEB05.10
9	Prove the for a minimum- length nozzle the expansion angle of the wall downstream of the throat is equal to the one- half of the Prandtl - Meyer function for the design exit Mach number.	Remember	CO 4	BAEB05.11

10	Using the Method of characteristics, compute and graph the contour of a two dimensional minimum- length nozzle for the expansion of air to a design exit Mach number of 2.4.	Understand	CO 4	BAEB05.12
UNIT - V				
PANELMETHODS				
Part - A (Short Answer Questions)				
1	Define influence coefficients?	Remember	CO 5	BAEB05.13
2	Explain what you mean by discretization in computational fluid dynamics.	Remember	CO 5	BAEB05.13
3	Define the Mixed boundary condition problem.	Remember	CO 5	BAEB05.13
4	What are the singularity distribution strengths?	Remember	CO 5	BAEB05.14
5	Define collocation points which can be selected on the body surface.	Remember	CO 5	BAEB05.13
6	Differentiate the wake strength and wake shape.	Remember	CO 5	BAEB05.15
7	What are the additional conditions to design a wake model?	Understand	CO 5	BAEB05.15
8	Define local velocity vector.	Understand	CO 5	BAEB05.13
9	Define compressibility factor	Understand	CO 5	BAEB05.14
10	What is Prandtl - Glauert rule?	Understand	CO 5	BAEB05.15
Part - B (Long Answer Questions)				
1	Explain briefly about the steps toward constructing a numerical solution for the panel methods?	Understand	CO 5	BAEB05.13
2	Derive the expression to set the wake strength at the trailing edge by the implementation of the Kutta condition when using surface doublet distribution.	Understand	CO 5	BAEB05.13
3	For developing the three dimensional panel code what is the effect of compressibility in the case of incompressible potential flow?	Remember	CO 5	BAEB05.14
4	Differentiate the possible conditions that can be applied at cusp and finite trailing edges with the help of neat sketch.	Remember	CO 5	BAEB05.14
5	Define the wake shape. Explain the effect of prescribed wake geometry on the aerodynamics of an $\mathrm{AR}=1.5$ wing.	Understand	CO 5	BAEB05.15
6	Explain which type of singularity that will be used, type of boundary condition and wake model is prior to establish a numerical solution.	Remember	CO 5	BAEB05.15
7	Discuss how the method of discretizing surface and singularity distributions is prior to establish a numerical solution.	Remember	CO 5	BAEB05.15
8	Explain how the considerations of numerical efficiency are important to establish a numerical solution.	Understand	CO 5	BAEB05.15
9	Discuss the selection of singularity element for constructing a numerical solution.	Remember	CO 5	BAEB05.14
10	Briefly explain the discretization of geometry and grid generation for constructing a numerical solution.	Understand	CO 5	BAEB05.13
11	Define influence coefficients and explain them in detail generation for constructing a numerical solution.	Remember	CO 5	BAEB05.14
12	Derive the expression to set the wake strength at the trailing edge by the implementation of the Kutta condition when using vortex ring elements.	Remember	CO 5	BAEB05.14
13	Discuss the Models for Wake roll up, Jets and Flow separations foe the effect of compressibility and viscosity.	Understand	CO 5	BAEB05.15
14	Describe the effect of compressibility and viscosity that to be accounted for thin airfoil theory.	Understand	CO 5	BAEB05.15
Part - C (Analytical Questions)				
1	Explain the preliminary considerations prior to establishing the numerical solution?	Remember	CO 5	BAEB05.13
2	Differentiate the discretization of the geometry of a thin airfoil by using the lumped vortex element and a three dimensional body using constant - strength surface doublets and sources.	Understand	CO 5	BAEB05.13
3	Briefly explain the typical flow chart for the numerical solution of the surface singularity distribution problem.	Remember	CO 5	BAEB05.13

4	Explain the concept of reduction of a problem to a set of linear algebraic equations?	Understand	CO 5	BAEB05.14
5	Briefly explain about the secondary computation or about aerodynamics loads and how are they calculated?	Remember	CO 5	BAEB05.13
6	Consider the solution for symmetric, thin airfoil with Lumped - Vortex element; explain how the selection of singularity element takes place.	Understand	CO 5	BAEB05.14
7	Explain the nomenclature and flowchart for the influence of a panel element at a point P for the thin airfoil with Lumped - Vortex element.	Remember	CO 5	BAEB05.13
8	Discuss the influence coefficients for the thin airfoil with Lumped - Vortex element.	Remember	CO 5	BAEB05.13
9	Describe the discretization of geometry and grid generation for the thin airfoil with Lumped - Vortex element.	Understand	CO 5	BAEB05.13
10	Illustrate the establishment of RHS and linear set of equations to solve for the thin airfoil with Lumped - Vortex element.	Remember	CO 5	BAEB05.13
11	Derive the secondary computations such as pressure and loads for the thin airfoil with Lumped - Vortex element.	Understand	CO 5	BAEB05.13
12	Explain the methods for combining the displacement thickness and friction drag solution by using boundary layer.	Understand	CO 5	BAEB05.14
13	For developing the three dimensional panel code what is the effect of thin boundary layers in the account of viscosity in the case of potential flow?	Remember	CO 5	BAEB05.13
14	Explain about the effects of flow compressibility and viscosity in the computational fluid dynamics.	Understand	CO 5	BAEB05.15

Prepared by:

Ms. D. Anitha, Assistant Professor
HOD, AE

