

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

CIVIL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ADVANCED STRUCTURAL ANALYSIS						
Course Code	BSTB0	1					
Programme	M.Tech	1					
Semester	Ι	STE	l				
Course Type	Core						
Regulation	IARE ·	- R18	8				
	Theory				Practical		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	3		-	3	-	-	
Chief Coordinator	Dr. Venu M, Professor						
Course Faculty	Dr. Ver	nu M	, Professor				

COURSE OBJECTIVES:

The course should enable the students to:				
Ι	Analyze the skeleton structures using stiffness analysis code.			
II	Use direct stiffness method understanding its limitations.			

COURSE OUTCOMES (COs):

CO 1	Know the physical significance, effects of settlements, temperature change and lack of fit, member
	approach and structure approach.
CO 2	Understand the force method and displacement method, degree of freedom, local coordinates and
	global coordinates.
CO 3	Understand the stiffness matrix in global coordinates, boundary conditions, solution of stiffness
	matrix equations, calculation of reactions and member forces for beams, plane trusses, plane rigid
	jointed frames and grids by structure approach and member approach.
CO 4	Know the boundary value problems: approximate solution of boundary value problems, modified
	galerkin method for one-dimensional BVP, matrix formulation of the modified galerkin method.
CO 5	Understand the shape functions linear element, solution for poisson's equation, general one
	dimensional equilibrium problem.

COURSE LEARNING OUTCOMES (CLOs):

BSTB01.01	Understand the physical significance of stiffness influence coefficients.
BSTB01.02	Understand the effects of settlements of stiffness influence coefficients.
BSTB01.03	Solve the problems on temperature change and lack of fit.
BSTB01.04	Know the member approach and structure approach.
BSTB01.05	Understand the force method.
BSTB01.06	Understand the displacement method.
BSTB01.07	Know concept of degree of freedom.
BSTB01.08	Understand the concept of local coordinates.
BSTB01.09	Understand the concept of global coordinates.
BSTB01.10	Develop the stiffness matrix for global coordinates and know the boundary conditions.
BSTB01.11	concepts on solution of stiffness matrix equations.
BSTB01.12	Know the calculation of reactions and member forces.
BSTB01.13	Understand the stiffness method for beams, plane trusses and plane rigid jointed frames.
BSTB01.14	Understand the formulation of grid structures.
BSTB01.15	Concept of structure and member approach.
BSTB01.16	Understand the solutions for boundary value problems.
BSTB01.17	Know the modified galerkin method.
BSTB01.18	Understand the modified galerkin method for one-dimensional BVP.
BSTB01.19	Understand the matrix formulation of the modified galerkin method.
BSTB01.20	Know the shape functions for linear elements.
BSTB01.21	Understand the solution for poisson's equation.
BSTB01.22	Formulation of general one dimensional equilibrium problem.
BSTB01.23	Solution of general one dimensional equilibrium problem.

TUTORIAL QUESTION BANK

	UNIT- I					
	INFLUENCE COEFFICIENTS					
G	Part - A (Short Answer Questions)	DI	C	C		
5. No.	QUESTIONS	Blooms Taxonomy Level	Outcomes	Learning Outcomes (CLOs)		
1	Distinguish between static and kinematic indeterminacy.	Remember	CO 1	BSTB01.01		
2	Differentiate between determinate and indeterminate structures.	Understand	CO 1	BSTB01.01		
3	Define stiffness.	Remember	CO 1	BSTB01.01		
4	Define internal and external indeterminacies.	Remember	CO 1	BSTB01.01		
5	Distinguish between plane truss and space truss.	Remember	CO 1	BSTB01.02		
6	What is transformation matrix?	Remember	CO 1	BSTB01.02		
7	Find the degree of redundancy for a propped cantilever beam and a fixed beam.	Remember	CO 1	BSTB01.02		
8	State the conditions of equilibrium.	Remember	CO 1	BSTB01.02		
9	Find the static indeterminacy of beam shown below.	Remember	CO 1	BSTB01.02		
10	Find the kinematic indeterminacy of beam shown below.	Remember	CO 1	BSTB01.02		
	Part - B (Long Answer Questions)	•				
1	Derive the stiffness influence coefficients of prismatic member AB by giving a unit displacement i.e. slope at A and B.	Understand	CO 1	BSTB01.01		
2	Derive the stiffness influence coefficients of prismatic member AB by giving a unit displacement i.e. deflection at A and B.	Understand	CO 1	BSTB01.01		
3	Derive the stiffness influence coefficients of prismatic member AB by giving a unit axial displacement at A and B.	Understand	CO 1	BSTB01.01		
4	Determine the degree of redundancy for the following structures: (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Understand	CO 1	BSTB01.02		
5	Formulate the stiffness matrices for a cantilever beam and fixed beam.	Understand	CO 1	BSTB01.02		
6	What is the degree of kinematic indeterminacy for a simply supported beam? If the effects of axial deformations are neglected, what is the degree of kinematic indeterminacy?	Understand	CO 1	BSTB01.02		

7	Determine the degree of static and kinematic indeterminacy for the	Understand	CO 1	BSTB01.01
	following structures:			
8	Which of the beams are statically determinate? For these beam	Understand	CO 1	BSTB01.03
	calculate the degrees of redundancy.			
	(b)			
9	Determine the degree of static indeterminacy for the following	Understand	CO 1	BSTB01.03
10	Two steel bars AB and BC, each having a ross sectional are of 20mm2, are connected in series as shown in figure. Develop the flexibility and stiffness matrices with reference to coordinates 1 and 2 shown in the figure. Verify that the two matrices are the inverse of each other. Take $E = 200$ kN/mm2.	Understand	CO 1	BSTB01.04
	$A = \begin{bmatrix} B \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			
1	Part - C (Problem Solving and Critical Thinking C Develop the stiffness matrices for a beam AB with reference to the coordinates	uestions) Understand	CO 1	BSTB01.03
	shown in figure. (2) (4) $A = \frac{10 \text{ m}}{E/ \text{ Constant}}$			251201.05
2	Analyze the continuous beam shown in figure using stiffness method	Analyze	CO 1	BSTB01.03

	40 kN 12 kN/m 15 kN $A = \frac{1}{777} + 1$			
3	Develop the stiffness matrix for portal frame ABCD with reference to the coordinates shown in figure. $ \begin{array}{c} $	Analyze	CO 1	BSTB01.04
4	Analyze the continuous beam shown in figure using stiffness method. 40 kN/m $A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow B \downarrow 20 kN/m$ $A \downarrow \downarrow \downarrow \downarrow \downarrow B \downarrow C \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow D$ 7777 777 7777 7777 7777 77777 77777 7777	Analyze	CO 1	BSTB01.03
5	Analyze the continuous beam shown in figure using stiffness method. A $\downarrow \downarrow \downarrow$	Analyze	CO 1	BSTB01.03
6	Analyze the continuous beam shown in figure using stiffness method. Analyze the continuous beam shown in figure using stiffness method. 4 + + + + + + + + + + + + + + + + + + +	Analyze	CO 1	BSTB01.04
7	Analyze the continuous beam shown in figure using stiffness method. A 4 B C B C B C B C B C	Analyze	CO 1	BSTB01.04
8	Analyze the continuous beam shown in figure using stiffness method, if the downward settlement of supports B and C in kN-m units are 2000/EI and 1000/EI respectively.	Analyze	CO 1	BSTB01.04

4	Develop the stiffness matrix for a prismatic member AB with reference to the	Understand	CO 2	BSTB01.05
	coordinates shown in figure with hinged support at A and roller support at B.			
	$A \longrightarrow B$			
5	Develop the stiffness matrix for a prismatic member AB with reference to the coordinates shown in figure with fixed supports at A and B.	Understand	CO 2	BSTB01.05
	0			
	Ĭø			
	A			
	3m, 6m			
	El Constant			
(Develop the stiffence metric for a minute in month of AD with reference to the	The denotes a d	CO 2	DCTD01.05
0	coordinates shown in figure with fixed support at A and roller support at B.	Understand	02	BS1B01.05
	(2)			
	Ĭø			
	A			
	3m, 6m			
	<i>El</i> Constant			
- 7		TTo do not on d	<u> </u>	
/	method.	Understand	02	B21B01.00
8	What is relationship between stiffness matrix and flexibility matrix?	Understand	CO 2	BSTB01.07
9	A two span continuous beam ABCD is fixed at A and hinged at support B and C span of AB – Span of BC – $0m$ Arrange the stiffness influence on officient	Understand	CO 2	BSTB01.08
	C. span of AB = span of BC = 9m. Arrange the surfness influence co-efficient matrix assuming vertical reaction at B and C as redundant.			
10	Explain the procedure of analysis using force and displacement method.	Understand	CO 2	BSTB01.05
	Part - C (Problem Solving and Critical Thinking Q	uestions)		
1	Analyze the two-span continuous beam shown in Figure by any matrix method	Analyze	CO 2	BSTB01.06
	(stiffness method) and draw the bending moment diagram. Assume $EI = 27000$ kNm ² .			
	100 I-N			
	30 kN/m $\Rightarrow -3m \rightarrow 50 \text{ kNm}$			
	$2I \longrightarrow C $			
	K→→→→ 8m→→→ 6m→→→			
2	Analyze the continuous beam by direct stiffness method	Analuze	CO^{2}	BSTB01.05
<i>2</i>	maryze the continuous ocam by uncer summess inculou.	FilaryZC		D51D01.05

	240 kN 120 kN			
	5m V 5m Sm V 5m			
	El const			
3	A two span continuous beam ABC is fixed at A and simply supported over the	Analyze	CO 2	BSTB01.06
	supports B and C. $AB=6m$ and $BC = 4m$. Moment of inertia is constant			
	throughout. A uniformly distributed load of 2 Ton/m acts over AB and a single			
	concentrated load of 6 tons acts on BC. Estimate BM by stiffness matrix			
4	method.	TT. 1	<u> </u>	DCTD01.07
4	write down the step by step procedure for the direct stiffness method of	Understand	0.2	B21B01.07
5	analysis for trusses.	Understand	CO 2	DCTD01.07
3	member	Understand	02	DS1D01.07
6	Explain the assembly of global and local coordinates for formulation of	Understand	CO 2	BSTB01.08
0	transformation force and displacement matrices.	Chaerstand	002	DD1D0 1.00
7	A portal frame ABCD with A and D are fixed at same level carries a uniformly	Understand	CO 2	BSTB01.09
	distributed load of 2 tons /meters. EI is constant throughout. Assess the final			
	forces by stiffness matrix method.			
8	Explain the procedure of obtaining overall stiffness matrix for stable structure	Understand	CO 2	BSTB01.08
	by the direct stiffness method.			
9	Why is it necessary to transform the element stiffness matrix to global	Understand	CO 2	BSTB01.09
	coordinates?			
10	Analyze the continuous beam using stiffness method.	Analyze	CO 2	BSTB01.09
	100 kN 25 kN/m			
	$A \xrightarrow{\Psi} B \xrightarrow{C_{\psi}} D$			
	7777 777 7 777 7 777 7			
	4 m 6 m 10 m 10 m ≺ ≯ < -> <> <> 			
	El Constant			
	UNIT-III			
	STIFFNESS MATRIX ASSEMBLY OF STRUCTURES AND APPLICAT	TIONS TO SIM	IPLE PROB	BLEMS
	Part - A (Short Answer Questions)	I		I
1	What is meant by indeterminate structures?	Remember	CO 3	BSTB01.10
2	What are the conditions of equilibrium?	Remember	CO 3	BSTB01.11
3	Differentiate between determinate and indeterminate structures.	Understand	CO 3	BSTB01.10
4	Define degree of indeterminacy.	Remember	CO 3	BSTB01.11
5	Define internal and external indeterminacies.	Remember	CO 3	BSTB01.12
6	What are the different methods of analysis of indeterminate structures?	Understand	CO 2	PSTP01 11
7	Briefly mention the two types of metrix methods of analysis of indeterminete	Understand	CO_3	BSTBULLI BSTR01 10
/	structures	Understand	05	031001.10
8	Define a primary structure	Remember	CO 3	BSTR01 10
9	Briefly explain the two types of DOF	Understand	CO 3	BSTB01.10
10	Define compatibility in force method of analysis	Understand	CO 3	BSTB01.12 BSTB01.12
10	Part – B (Long Answer Onestions)	Chiefstand	005	001001.12
1	Develop the stiffness matrix for the beam as shown in figure.	Understand	CO 3	BSTB01.10
-		Charlound	233	221201110

	100kN 60kN/m 60kN/m 1.5m 1.5m 4m			
2	Analyze the portal frame using stiffness method (constant EI). 50 KN 3m -4c 3m -2c -2	Understand	CO 3	BSTB01.11
3	Analyze and draw BMD for portal frame as shown in figure using stiffness matrix method. 12kN $3m$ $2m$ $2m$ $2m$ $2m$ m $3m$ $3m$ $3m$ $3m$ $3m$ $3m$ $4m$ $2m$ $2m$ $2m$ $4m$ $3m$ $3m$ $3m$ $3m$ $3m$ $3m$ $3m$ 3	Understand	CO 3	BSTB01.12
4	A two span continuous beam ABC is fixed at A and simply supported over the supports at B and C. $AB = 6m BC = 4m$. A uniformly distributed load of 2kN/m acts over AB and a single concentrated central load 6kN acts on BC. Analyze by stiffness matrix method.	Understand	CO 3	BSTB01.12
5	Analyze the continuous beam shown in figure .Assume EI as uniform. Use Matrix stiffness method. 100 km $3m$ $50 km$	Understand	CO 3	BSTB01.12
6	Analyze the beam shown by Stiffness Method (EI is Constant)	Understand	CO 3	BSTB01.13
7	Write a note on a) Force Method of structural analysis	Understand	CO 3	BSTB01.14

	b) Displacement Method of structural analysis			
8	Explain the steps to develop stiffness matrix for indeterminate structure.	Understand	CO 3	BSTB01.14
9	Analysis the continuous beam in figure by stiffness method.	Understand	CO 3	BSTB01.15
	190KN			
	20kn/m			
	from 8m 8m			
	AA TB CY			
	6m 6m			
10	Analyze the frame shown in figure by stiffness method.	Understand	CO 3	BSTB01.15
	- 30KN/M			
	montem			
	1 2I 1			
	1 ^m			
	V and			
	21			
	tin			
<u> </u>	Part – C (Problem Solving and Critical Think	ing)	L	
1	Analyze the continuous beam ABC shown in figure below by stiffness matrix	Analyze	CO 3	BSTB01.14
	method and draw the bending moment diagram.)		
	24 KN 12 KN			
	в			
	5m 5m 5m 5m			
	EI = Constant			
2		Analyze	CO 3	BSTB01.14
	Examine the moment of the continuous beam shown in figure below by			
	stiffness method.			
	40 kN 30 kN 12 kN/m			
	A 2m 2m 2m 2m			
	В (31)			
3	Analyze the continuous beam using stiffness method.	Analyze	CO 3	BSTB01.15
	60 KN 120 KN			
	$A \downarrow B \downarrow \models c$			
	1111 7777			
	1 m 1 m 1.5 m 1.5 m .			
	El Constant			
4	Analyze the frame using displacement method.	Analyze	CO 3	BSTB01.14
	20 kN	-		
	B FC			
	40 kN →			
	2 m 2 m			
	<i>El</i> Constant			

5	Analyze the continuous beam using stiffness method.	Analyze	CO 3	BSTB01.14
	120 kN			
	$ \longleftrightarrow \longleftrightarrow \longleftrightarrow $			
06	Analyze the continuous beam using stiffness method	Analyze	CO 3	BSTB01 14
00	200 kN	1	000	20120111
	20 kN/m			
	$ A \downarrow \downarrow \downarrow \downarrow \downarrow B \downarrow C $			
	10 m , 5 m , 5 m ,			
07	Analyze the continuous beam using stiffness method.	Analyze	CO 3	BSTB01.15
	100 KN			
	10 kWm			
	່ 3 m ຸ 3 m ຸ 5 m ຸ			
	 			
08	Analyze the continuous beam using stiffness method.	Analyze	CO 3	BSTB01.15
	50 kN/m 200 kN	5		
	ມ 8 m _ 15 m _ 15 m _ 1			
	El Constant			
09	Analyze the frame using displacement method.	Analyze	CO 3	BSTB01.15
	30 kN/m 1			
	4 m,4/ 100 kN + 2 100 kN + 2 3 m,7 4 m,4/			
	$1 \rightarrow 1 \rightarrow$			
	\downarrow \downarrow A			
	$\frac{10 \text{ m}}{4 \text{ m}}$			
10	Analyze the frame using displacement method.	Analyze	CO 3	BSTB01.15
10	25 kN	1	000	201201110
	4 m / /			
	1 m 3 m • ↓•			
	UNIT-IV		I	
BOUNDARY VALUE PROBLEMS (BVP)				
1	Part – A (Short Answer Questions)			
	w nat is meant by Finite Element Analysis?	Remember	CO 4	BSIBULI6
3	Distinguish between essential boundary condition and natural boundary	Remember	CO 4	BSTB01.10 BSTB01.17
	condition.	Remember		DS1D01 .17
4	What are the general constituents of finite element software?	Remember	<u>CO</u> 4	BSTB01.16
5	What are the merits and demerits of finite element methods?	Understand	CO 4	BSTB01.16
6	What is the principle of finite element method?	Remember	CO 4	BSTB01.16
7	List and briefly describe the general steps of the finite element method.	Understand	CO 4	BSTB01.16

8	What are the properties of shape functions?	Understand	CO 4	BSTB01.17
9	Write down the shape functions for four noded rectangular elements?	Understand	CO 4	BSTB01.17
10	Write down the expression for stiffness matrix for 1D bar element.	Understand	CO 4	BSTB01.17
	Part – B (Long Answer Questions)			
1	What are the different types of elements explain with neat sketches.	Understand	CO 4	BSTB01.16
2	What are the different coordinate systems explain with neat sketches.	Understand	CO 4	BSTB01.17
3	Determine the displacements and slopes at the nodes for the beam shown in	Understand	CO 4	BSTB01.18
	figure. Find the moment at the midpoint of element 1.			
	P=3 kN			
	A Mat			
	$0 12 2 0^{3}$			
	2 m 2 m			
	1			
4	For the stepped har shown in the figure below, determine the nodal	Understand	CO 4	BSTB01 19
	displacements, element stress and support reactions. Take $P = 500 \text{ kN}$, $E = 210$	enderstand	001	Dorbonny
	GPa, a1 = 200 mm2, a2 = 300 mm2 and a3 = 500 mm2.			
5	Derive the stress-strain relationship matrix (D) for the axisymmetric triangular	Understand	CO 4	BSTB01.16
	element.			
6	Derive the element stiffness matrix for a four noded isoparametric plan stress	Understand	CO 4	BSTB01.16
7	element.	The densities of	00.4	
/	Derive the shape functions for two noded one dimensional element using	Understand	CO 4	BS1B01.16
8	Explain the concept of EEM briefly and outline the procedure	Understand	CO 4	BSTB01 17
9	Discuss the advantages and disadvantages of FFM over	Understand	CO 4	BSTB01.17
	(i) Classical method	Chaerstand	004	DSTD01.10
	(ii) Finite difference method.			
10	Clearly point out the situations in which FEM is preferred over other methods.		CO 4	BSTB01.18
	Part – C (Problem Solving and Critical Think	king)		
1	Analyze the continuous beam using stiffness method.	Analyze	CO 4	BSTB01.18
	A_{1}^{2}			
	← 2 m→			
	l≪6 m 4 m>l			
2	Analyze the continuous beam using stiffness method.	Analyze	CO 4	BSTB01.18
	45 kN 30 kN			
	40 kN/m			
	1 to the top to			
	$ \begin{array}{c} 1 \\ (1) \\ (2) \\ (3) \\ $			
	H +2 m→1			
	∢ 6 m4 m> ∢ ∠ m→			

9	Analyze the frame using stiffness method.	Analyze	CO 4	BSTB01.18
	90 kN			
	$B \qquad (2I_v, 1.5A_v, E) \qquad \ddagger C$			
	3 m $4 m$ $4 m$			
	$45 \text{ kN} \xrightarrow{\bullet} (I_o, A_o, E)$			
	2 m			
10	Analyze the continuous been using stiffness method	Analyza	CO 4	BSTR 01 10
10	Anaryze the continuous beam using surmess method.	Anaryze	0.4	D31D01.19
	20 kN/m			
	←2 m→			
	4 — 4 m — 4 m — 6 m — 6 m — 6 m			
	UNIT -V			
	LINEAR ELEMENT			
1	Part - A (Short Answer Questions)	TTo 1. and a m 1	CO 5	
1	What is meant by degrees of freedom?	Demonstand	CO 5	BS1B01.20
2	What is Aspect ratio?	Remember	CO 5	BS1B01.20
3	What is the difference between static and dynamic analysis?	Understand	CO 5	BS1B01.20
4	Name any four FEA software.	Remember	CO 5	BS1B01.21
5	Differentiate between global and local axes.	Remember	CO 5	BS1B01.21
0	Write down the general finite element equation	Understand	CO 5	BS1B01.22
/	What is discretization?	Understand	CO 5	BS1B01.20
0	What is discretization:	Understand	CO 5	DS1D01.20
9	What are the characteristic of change function?	Understand	CO 5	DS1D01.22
10	Port B (Long Answer Questions)	Understand	05	D31D01.22
1	When there are several FEM neckages are evolutions is there need to study this	Understand	CO 5	BSTR01 20
1	method? Discuss	Onderstand	005	D3 1 D 01.20
2	Draw a typical three dimensional element and indicate state of stress in their	Analyze	CO 5	BSTB01 20
2	positive senses.	7 mary 20	005	D51D01.20
3	State and explain generalized Hooke's law.	Understand	CO 5	BSTB01.20
4	Give constitutive laws for three dimensional problems of	Analyze	CO 5	BSTB01.21
	(i) orthotropic materials.	······ <i>J</i> 20		
	(ii) isotropic materials.			
5	State and explain generalized Hooke's law.	Analyze	CO 5	BSTB01.21
6	Explain the Local coordinates, global coordinates, natural coordinates and area	Analyze	CO 5	BSTB01.20
	coordinates.	2		
7	Explain the higher order elements and lower order elements.	Analyze	CO 5	BSTB01.22
8	Explain the nodes, primary nodes, secondary nodes and internal nodes.	Analyze	CO 5	BSTB01.22
9	Explain the Constant strain triangle (CST).	Analyze	CO 5	BSTB01.23
10	Explain the Linear strain triangle(LST).	Analyze	CO 5	BSTB01.23
	Part – C (Problem Solving and Critical Think	ing)		
1	Consider the bar shown in Figure. An axial load $P = 200$ kN is applied as	Analyze	CO 5	BSTB01.22
	shown			
	Using the penalty approach for handling boundary conditions do the			
	following:			
	(a) Determine the nodal displacements.			
	(b) Determine the stress in each material.			
L				

	(c) Determine the reaction forces.			
	<300 mm→< <400 mm→			
	Aluminum Steel $4_{1} = 2400 \text{ mm}^2$ $A_{2} = 600 \text{ mm}^2$			
	$E_1 = 70 \times 10^9 \text{ N/m}^2$ $E_2 = 200 \times 10^9 \text{ N/m}^2$			
2	In figure, a load $P = 60$ kN is applied as shown. Determine the displacement	Analyze	CO 5	BSTB01.22
	field,			
	stress, and support reactions in the body. Take $E = 20 \times 10^{\circ} \text{ N/mm}^2$.			
	1.2 mm			
	250 mm^2			
	Wall			
	← 150 mm → ← 150 mm →			
3	Consider the bar in figure loaded as shown. Determine the nodal	Analyze	CO 5	BSTB01 23
5	displacements, element stresses, and support reactions.	T mary 20	000	D 51 D 01.25
	300 mm^2 400 mm^2			
	P = 200 kN			
	200 mm 200 mm			
	\leftarrow 250 mm \leftarrow 250 mm \rightarrow			
	$E = 123 \times 10^3 \mathrm{N/mm^2}$			
	(1 kN = 1000 N)			
4	Consider the her shown in figure. Determine the nodel displacements element	Analyza	CO 5	DSTD01 22
4	stresses and support reactions	Anaryze	05	DS1D01.25
	450 mm^2			
	$\xrightarrow{2} 300 \text{ kN} \qquad \qquad$			
	150 mm 150 mm 200 mm 200 mm 1			
	+ + + + 3.5 mm			
	$E = 200 \times 10^9 \mathrm{N/m^2}$			
5	Determine the nodal displacements and element stresses by finite element formulation for the following figure $Lice P=200 \text{ kN} + A = 0.5 \text{ m}^2$, $A = 1 \text{ m}^2$.	Analyze	CO 5	BSTB01.23
	$F=200 \text{ GP}_{2}$			
	k			
	300 kN $($			
	$A_2 = 1 \text{ m}^2$			
	E = 200 GPa			
	↓ 1m − 1m − 2m − 2			
		A 1	<u> </u>	
6	An axial load P=200x10 [°] N is applied on a bar as shown. Using the penalty	Analyze	CO 5	BSTB01.23
	stress in each material and reaction forces.			

	$1 \rightarrow P 2 \qquad 1 \qquad 1 \rightarrow A_{1} = 2400 \text{ mm}^{2}; E_{1} = 70 \times 10^{9} \text{ N/m}^{2} \\ 2 - A_{2} - 600 \text{ mm}^{2}; E_{2} - 200 \times 10^{9} \text{ N/m}^{2} $			
7	Consider the truss element with the coordinates I (10,10) and 2 (50,40). If the displacement vector is $q=[15 \ 10 \ 21 \ 43]^T$ mm, then determine (i) the vector q' (ii) stress in the element and (iii) stiffness matrix if E=70 GPa and A=200 mm ² .	Analyze	CO 5	BSTB01.23

Prepared by:

Dr. Venu M, Professor

HOD, CE