

(Autonomous)

Dundigal, Hyderabad - 500 043

## ELECTRONICS AND COMMUNICATION ENGINEERING

#### **TUTORIAL QUESTION BANK**

| Course Title      | ANTENNAS AND PROPAGATION                                                    |           |         |           |        |         |
|-------------------|-----------------------------------------------------------------------------|-----------|---------|-----------|--------|---------|
| Course Code       | AEC011                                                                      |           |         | 0         |        |         |
| Programme         | B.Tech                                                                      | JU        |         |           |        |         |
| Semester          | V ECH                                                                       | 3         |         |           |        |         |
| Course Type       | Core                                                                        |           |         |           |        |         |
| Regulation        | IARE - R16                                                                  |           |         |           |        |         |
|                   | Theory                                                                      |           |         | Practical |        |         |
| Course Structure  | Lectures                                                                    | Tutorials | Credits | Labo      | ratory | Credits |
|                   | 3                                                                           | 1         | 4       |           | -      | -       |
| Chief Coordinator | Mrs. A.Usharani, Assistant Professor                                        |           |         |           |        |         |
| Course Faculty    | Dr. V.Sivanagaraju, Professor<br>Mrs. K.C.Koteswaramma, Assistant Professor |           |         |           |        |         |

### **COURSE OBJECTIVES:**

#### The course should enable the students to:

| Ι   | Understand the radiation phenomena associated with various types of antennas along with emphasis on |
|-----|-----------------------------------------------------------------------------------------------------|
|     | their applications.                                                                                 |
| II  | Analyze the basic antennas theory and apply them for radiation of electromagnetic fields.           |
| III | Explain the radiation mechanism to design different types of antennas.                              |
| IV  | Demonstrate the concepts of radio wave propagation in the atmosphere.                               |

ON

# **COURSE OUTCOMES:**

| CO 1 | Discuss about the radiation mechanism in wire antennas and Analyze the concept of antenna properties |
|------|------------------------------------------------------------------------------------------------------|
|      | based on reciprocity theorem.                                                                        |
| CO 2 | Understanding the significance of loop antennas uniform linear arrays and helical antennas.          |
| CO 3 | Desribe the various types of microwave antennas and their applicatons.                               |
| CO 4 | Analyze the reflector antennas with their applications, measure the different antenna parameters.    |
| CO 5 | Analyze the structure of atmosphere for the wave propagation.                                        |

### **COURSE LEARNING OUTCOMES:**

| AEC011.01 | Discuss about the radiation mechanism in single wire, double wire antennas and the current        |
|-----------|---------------------------------------------------------------------------------------------------|
|           | distribution of thin wire antenna.                                                                |
| AEC011.02 | Discuss the different parameters of an antenna like radiation patterns, radiation intensity, beam |
|           | efficiency, directivity and gain etc,.                                                            |

| AEC011.03  | Analyze the concept of antenna properties based on reciprocity theorem, evaluate the field                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|            | components of quarter wave monopole and half wave dipole.                                                                                 |
| AEC011.04  | Understand the significance of loop antennas in high frequency range and its types; derive their radiation registerness and directivities |
| AEC011.05  | Taulation resistances and directivities.                                                                                                  |
| AEC011.05  | Discuss the uniform linear arrays such as broadside array and end fire array, derive their characteristics.                               |
| AEC011.06  | Analyze the practical design considerations for monofilar helical antenna in axial and normal                                             |
|            | modes.                                                                                                                                    |
| AEC011.07  | Discuss the various types of Microwave antennas and analyze the design consideration of                                                   |
|            | pyramidal horn.                                                                                                                           |
| AEC011.08  | Analyze the concept of complementary in slot antennas using Babinet's principle and understand                                            |
|            | the impedance of slot antennas.                                                                                                           |
| AEC011.09  | Understand the significance, features and characteristics of micro strip patch antennas, analyze the                                      |
|            | impact of different parameters on characteristics.                                                                                        |
| AEC011.10  | Understand and analyze the reflectors are widely used to modify the radiation pattern as a                                                |
|            | radiating element, its types.                                                                                                             |
| AEC011.11  | Discuss various concepts related to antennas such as feed methods like front feed, rear feed, offset                                      |
|            | feed and aperture blockage.                                                                                                               |
| AEC011.12  | Discuss various methods and techniques for experimental measurements of antennas such as                                                  |
|            | pattern measurement, directivity measurement, gain measurement etc.                                                                       |
| AEC011.13  | Understand the wave propagation through the complete study of the wave by the nature and                                                  |
|            | characteristics of media during the wave travels.                                                                                         |
| AEC011 14  | Understand the space wave propagation focusing on field strength variation with distance and                                              |
| ALCOII.14  | bright affect of earth's surveture, absorption and super refraction                                                                       |
| AE CO11.15 | And the direct of early studie, absorption and super refraction.                                                                          |
| AEC011.15  | Analyze the structure of tonosphere and understand the sky wave propagation through refraction                                            |
|            | and reflection by ionosphere.                                                                                                             |
| AEC011.16  | Apply the concept of antennas and propagation to understand and analyze real time applications.                                           |
| AEC011.17  | Acquire the knowledge and develop capability to succeed national and international level                                                  |
|            | competitive examinations.                                                                                                                 |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            | C'                                                                                                                                        |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |
|            |                                                                                                                                           |

| S.  | Question                                                        | Blooms<br>Taxonomy | Course<br>Outcomes | Course<br>learning |
|-----|-----------------------------------------------------------------|--------------------|--------------------|--------------------|
| 110 |                                                                 | Level              |                    | Outcome            |
|     | UNIT-1<br>A NITENNIA, BASICS & THIN I INFAD WI                  | DE ANTENNA         | S                  |                    |
|     | ANTENNA BASICS&THIN LINEAK WI                                   |                    | 19                 |                    |
|     | PART-A (SHORT ANSWER QUE                                        | STIONS)            | GO 1               | 1.5.0011.00        |
| 1   | Describe the meant by radiation pattern?                        | Remember           |                    | AEC011.02          |
| 2   | Define Radiation intensity?                                     | Understand         |                    | AEC011.02          |
| 3   | Define Beam efficiency?                                         | Understand         | <u>CO I</u>        | AEC011.02          |
| 4   | Describe the different types of aperture?                       | Remember           |                    | AEC011.02          |
| 5   | Define Aperture efficiency?                                     | Understand         |                    | AEC011.02          |
| 0   | Define an antenna?                                              | Kemember           |                    | AEC011.02          |
| /   | Describe the meant by effective height?                         | Damamhar           | C0 1               | AEC011.02          |
| 8   | Define radian and standian                                      | Remember           | CO 1               | AEC011.02          |
| 9   | Define radian and steradian                                     | Damamhar           | CO 1               | AEC011.02          |
| 10  | Describe the EDUS transmission formula and evaluation its       | Understand         |                    | AEC011.02          |
| 11  | significance?                                                   | Understand         |                    | AEC011.01          |
| 12  | Describe the meant by antenna beam width?                       | Remember           | CO 1               | AEC011.02          |
| 13  | Describe the radiation resistance?                              | Understand         | CO 1               | AEC011.03          |
| 14  | Describe the meant by isotropic radiator?                       | Remember           | CO 1               | AEC011.01          |
| 15  | Describe the field zones?                                       | Remember           | CO 1               | AEC011.01          |
| 16  | Define Antenna <mark>bandwidth.</mark>                          | Understand         | CO 1               | AEC011.02          |
| 17  | Define First-Null beamwidth                                     | Remember           | CO 1               | AEC011.02          |
| 18  | Define power pattern in dB.                                     | Understand         | CO 1               | AEC011.02          |
| 19  | Define Radiation intensity.                                     | Remember           | CO 1               | AEC011.02          |
| 20  | Define directional antenna.                                     | Understand         | CO 1               | AEC011.02          |
|     | PART-R (LONG ANSWER OUES                                        | TIONS)             | 001                | 1120011102         |
| 1   | With the help of neat diagrams explain the principle of         | Understand         | CO 1               | AEC011.01          |
| -   | radiation mechanism in antennas.                                | Chaerstand         | 001                | ILLCOIT.OI         |
| 2   | Explain the following terms:                                    | Remember           | CO 1               | AEC011.02          |
|     | (i) HPBW                                                        |                    |                    |                    |
|     | (ii) BWFN                                                       |                    | -                  |                    |
|     | (iii) Directivity                                               |                    |                    |                    |
|     | (iv) Aperture efficiency                                        |                    | 10 million         |                    |
| 3   | Demonstrate the way in which an oscillating dipole throws out   | Understand         | CO 1               | AEC011.01          |
|     | its radiation.                                                  |                    | 1 mar 1            |                    |
| 4   | Show that the radiation resistance of a half wave dipole is     | Remember           | CO 1               | AEC011.01          |
|     | 73Ohms?                                                         | 0. Y               |                    |                    |
| 5   | Draw the equivalent circuit of an antenna? Explain the          | Understand         | CO 1               | AEC011.03          |
|     | theorems which are used in antennas?                            |                    |                    |                    |
| 6   | Derive FRIIS transmission formula and explain its significance? | Remember           | CO 1               | AEC011.01          |
| 7   | Describe the current distribution on a thin wire antenna with   | Remember           | CO 1               | AEC011.01          |
|     | neat diagrams                                                   |                    |                    |                    |
| 8   | Derive the relation between directivity and beam solid angle?   | Understand         | CO 1               | AEC011.02          |
| 9   | Explain the following terms:                                    | Remember           | CO 1               | AEC011.02          |
|     | (i)Gain and Resolution                                          |                    |                    |                    |
|     | (ii)Antenna Apertures                                           |                    |                    |                    |
|     | (iii)Antenna front to back ratio                                |                    |                    |                    |
| 10  | Discuss the fields and patterns of Thin Linear Center-fed       | Understand         | CO 1               | AEC011.01          |
|     | Antennas of different lengths with neat diagrams.               |                    |                    |                    |
| 11  | As related to antennas explain the following terms:             | Remember           | CO 1               | AEC011.02          |
|     | (i) Radiation Pattern                                           |                    |                    |                    |

## TUTORIAL QUESTION BANK

| S.<br>No | Question                                                                                                                                                                              | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
|          | <ul><li>(ii) Beam efficiency</li><li>(iii) Effective length</li></ul>                                                                                                                 |                             |                    |                               |
| 12       | Derive reciprocity theorem for antennas. Show that the transmitting and receiving patterns of an antenna are equal.                                                                   | Understand                  | CO 1               | AEC011.02                     |
| 13       | Briefly explain about effective length of an antenna                                                                                                                                  | Remember                    | CO 1               | AEC011.02                     |
| 14       | Derive the expression for the radiation pattern of a centre fed dipole antenna for variable wavelengths.                                                                              | Remember                    | CO 1               | AEC011.01                     |
| 15       | Derive the expression for E and H field components of a radiating element.                                                                                                            | Remember                    | CO 1               | AEC011.01                     |
| 16       | Determine the radiation resistance of elementary dipole with linear current distribution.                                                                                             | Remember                    | CO 1               | AEC011.02                     |
| 17       | Describe the near field and far field region?why is the condition $2D^2/\lambda$ chosen for far field region.                                                                         | Remember                    | CO 1               | AEC011.01                     |
| 18       | Derive the relationship between effective aperture area and gain of antenna                                                                                                           | Remember                    | CO 1               | AEC011.02                     |
| 19       | Explain the following terms:<br>(i) field pattern<br>(ii) power pattern<br>(iii) power pattern in dB<br>(iv) major lobe, minor lobe.                                                  | Remember                    | CO 1               | AEC011.02                     |
| 20       | Explain the following terms:<br>a)Isotropic antenna<br>b)Omnidirectional antenna<br>c)Effective area<br>d)polarisation                                                                | Remember                    | CO 1               | AEC011.02                     |
|          | PART-C (PROBLEM SOLVING AND CRITICAL                                                                                                                                                  | <b>THINKING Q</b>           | UESTIONS)          |                               |
| 1        | The radial component of the radiated power density of an infinitesimal linear dipole is given by Wav= $A_0 \sin^2\theta/r^2$ ar W/m <sup>2</sup> . Find its maximum directivity       | Remember                    | CO 1               | AEC011.01                     |
| 2        | Derive the expressions for field components of an alternating current element located at the origin?                                                                                  | Understand                  | CO 1               | AEC011.01                     |
| 3        | Explain the concept of Retarded Potentials.                                                                                                                                           | Remember                    | CO 1               | AEC011.01                     |
| 4        | Derive an expression for the radiation resistance of a short electric dipole element.                                                                                                 | Remember                    | CO 1               | AEC011.01                     |
| 5        | Derive the field equations (E&M fields) of a $\lambda/4$ Mono pole antenna.                                                                                                           | Understand                  | CO 1               | AEC011.01                     |
| 6        | Derive the radiation resistance of a Short dipole of length $\lambda/15$ , $\lambda/30$ .                                                                                             | Understand                  | CO 1               | AEC011.01                     |
| 7        | Prove the reciprocity theorem as applicable to antennas and<br>hence show the equality of directional pattern for transmission<br>and reception by same antenna.                      | Remember                    | CO 1               | AEC011.03                     |
| 8        | A Transmitting Antenna Having An Effective Height of 100 meters has a current at the base 100A at the Frequency of 300KHz, Calculate the Field Strength at a distance of 100km,Rr,Pr. | Remember                    | CO 1               | AEC011.02                     |
| 9        | Find the directivity, efficiency and effective area of an antenna if its $R_r=80\Omega$ , $R_L=10\Omega$ . The power gain is 10 dB and antenna operates at a frequency 100MHz.        | Understand                  | CO 1               | AEC011.02                     |
| 10       | An antenna has a radiation resistance of 72 $\Omega$ , a loss resistance<br>of 8 $\Omega$ and a power gain of 12 dB. Determine the antenna<br>efficiency                              | Understand                  | CO 1               | AEC011.02                     |

| S.<br>No | Question                                                                                                                    | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
|          | UNIT-II                                                                                                                     | 2000                        | I                  | C are child                   |
|          | LOOP ANTENNAS& ANTENNA                                                                                                      | ARRAYS                      |                    |                               |
|          | PART-A(SHORT ANSWER QUE                                                                                                     | STIONS)                     |                    |                               |
| 1        | Classify the different types of loop antennas                                                                               | Remember                    | CO 2               | AEC011.04                     |
| 2        | Write the value of ' $\theta$ ' in accordance with the directivity of a                                                     | Understand                  | CO 2               | AEC011.04                     |
|          | small loop to achieve the maximum value of radiation intensity                                                              |                             |                    |                               |
|          | (U <sub>max</sub> )?                                                                                                        |                             |                    |                               |
| 3        | Write the far-field component of loop antenna.                                                                              | Remember                    | CO 2               | AEC011.04                     |
| 4        | List the applications of helical antenna?                                                                                   | Remember                    | CO 2               | AEC011.06                     |
| 5        | Describe the a normal mode of helix antenna                                                                                 | Understand                  | <u>CO 2</u>        | AEC011.06                     |
| 6        | Describe the a axial mode of helix antenna                                                                                  | Remember                    | <u>CO 2</u>        | AEC011.06                     |
| 7        | Discriminate the axial mode with Normal Mode                                                                                | Understand                  | CO 2               | AEC011.06                     |
| 8        | Describe the parameters to be considered for the design of a                                                                | Understand                  | CO 2               | AEC011.06                     |
| 0        | helical antenna.                                                                                                            | Demension                   | <b>CO 1</b>        | AEC011.05                     |
| 9        | Describe the Advantages of folded dipole?                                                                                   | Kemember                    | CO 2               | AEC011.05                     |
| 10       | Describe the Application of folded dipole?                                                                                  | Understand                  |                    | AEC011.05                     |
| 11       | Compare half wave dipole & folded dipole?                                                                                   | Remember                    | C02                | AEC011.05                     |
| 12       | Describe the mean by basic yagi antenna                                                                                     | Remember                    | $CO_2$             | AEC011.05                     |
| 14       | Describe the characteristics of Yagi uda antenna?                                                                           | Understand                  | $CO_2$             | AEC011.05                     |
| 15       | List out the types of array                                                                                                 | Remember                    | CO 2               | AEC011.05                     |
| 16       | What is a driven array?                                                                                                     | Remember                    | CO 2               | AEC011.05                     |
| 17       | What is a colinear array?                                                                                                   | Understand                  | CO 2               | AEC011.05                     |
| 18       | What is a phased array?                                                                                                     | Understand                  | CO 2               | AEC011.05                     |
| 19       | What is a conformal array?                                                                                                  | Remember                    | CO 2               | AEC011.05                     |
| 20       | What is an adaptive array?                                                                                                  | Remember                    | CO 2               | AEC011.05                     |
|          | PART-B (LONG ANSWER QUES                                                                                                    | STIONS)                     |                    |                               |
| 1        | Draw the radiation pattern of 8 - isotropic elements fed in                                                                 | Remember                    | CO 2               | AEC011.05                     |
|          | phase, spaced $\lambda/2$ apart with the principle of pattern                                                               |                             | -                  |                               |
|          | multiplication.                                                                                                             |                             |                    |                               |
| 2        | Explain the working of helical antenna in axial mode?                                                                       | Remember                    | CO 2               | AEC011.06                     |
| 3        | With a neat sketch explain the operation of Yagi-Uda array.                                                                 | Understand                  | CO 2               | AEC011.05                     |
| 4        | Explain in detail about Broadside arrays.                                                                                   | Understand                  | CO 2               | AEC011.05                     |
| 2        | Compare far fields of small loop antenna and short dipole                                                                   | Remember                    | 02                 | AEC011.04                     |
| 6        | antenna.<br>Describe in detail about End fire arrays                                                                        | Understand                  | CO 2               | AEC011.05                     |
| 7        | With the suitable diagram describe the construction and                                                                     | Remember                    | $CO_2$             | AEC011.05                     |
| /        | operation of helical antenna under normal mode.                                                                             | Remember                    | 0.02               | ALCOII.00                     |
| 8        | Write a brief notes on Parasitic elements.                                                                                  | Understand                  | CO 2               | AEC011.05                     |
| 9        | Derive the expression for far field components of a small loop                                                              | Remember                    | CO 2               | AEC011.04                     |
|          | antenna.                                                                                                                    |                             |                    |                               |
| 10       | Explain the design considerations for monofilar helical                                                                     | Remember                    | CO 2               | AEC011.06                     |
|          | antennas in different modes.                                                                                                |                             |                    |                               |
| 11       | Comment on binomial arrays and describe how side levels are                                                                 | Understand                  | CO 2               | AEC011.05                     |
|          | reduced by non-uniform amplitude distribution in broadside                                                                  |                             |                    |                               |
| 10       | array.<br>With past diagram applain how on array of 2 isotronic mainte                                                      | Understand                  | <u> </u>           | AEC011.05                     |
| 12       | with near diagram explain now an array of 2 isotropic point sources can produce different radiation patterns by varying the | Understand                  |                    | AECUII.05                     |
|          | phase excitation                                                                                                            |                             |                    |                               |
| 13       | Explain the characteristics and constructional details of Yagi-                                                             | Understand                  | CO 2               | AEC011.05                     |
|          | Uda antenna.                                                                                                                |                             |                    |                               |
|          |                                                                                                                             |                             |                    |                               |

| S.<br>No      | Question                                                                                                                                                                                                                       | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
| 14            | Explain about the linear array, compare broad side array and end fire array?                                                                                                                                                   | Understand                  | CO 2               | AEC011.05                     |
| 15            | Derive the expression for radiation resistance of a loop antenna.                                                                                                                                                              | Remember                    | CO 2               | AEC011.04                     |
| 16            | Describe the principle of pattern multiplication, explain with an example.                                                                                                                                                     | Understand                  | CO 2               | AEC011.05                     |
| 17            | Briefly explain about various antenna arrays and its applications                                                                                                                                                              | Understand                  | CO 2               | AEC011.05                     |
| 18            | Describe arrays of two point sources under the following condition with equal amplitude and phase                                                                                                                              | Understand                  | CO 2               | AEC011.05                     |
| 19            | Describe arrays of two point sources under the following<br>condition with equal amplitude and opposite phase                                                                                                                  | Understand                  | CO 2               | AEC011.05                     |
| 20            | Describe arrays of two point sources under the following<br>condition with unequal amplitude and any opposite phase                                                                                                            | Understand                  | CO 2               | AEC011.05                     |
|               | PART-C (PROBLEM SOLVING AND CRITICAL                                                                                                                                                                                           | THINKING Q                  | UESTIONS)          |                               |
| 1             | Derive the expression for pitch angle to get circularly polarized<br>radiation pattern for a helical antenna, operating in broadside<br>mode and sketch its pattern.                                                           | Understand                  | CO 2               | AEC011.06                     |
| 2             | Describe the broadside array and derive the expression for angles of nulls, maxima and half power points?                                                                                                                      | Remember                    | CO 2               | AEC011.05                     |
| 3             | Deduce an expression for the radiation pattern of an end-fire array with N vertical dipoles                                                                                                                                    | Understand                  | CO 2               | AEC011.05                     |
| 4             | Find the directivity of 10 turn helix antenna having pitch angle $10^{0}$ , circumference C equal to $\lambda$ and draw the helical antenna with geometry                                                                      | Understand                  | CO 2               | AEC011.06                     |
| 5             | Calculate the radiation resistance of a single-turn small circular loop having mean radius of $\lambda/20$ and radiating in free space.                                                                                        | Remember                    | CO 2               | AEC011.04                     |
| 6             | A broadside array operating at 100 cm wavelength consists of<br>four half wave dipoles spaced 50 cm. Each element carries<br>radio frequency current in the same phase and magnitude 0.5<br>Amp. Calculate the radiated power. | Remember                    | CO 2               | AEC011.05                     |
| 7             | Derive an expression for the radiation pattern of a Broadside uniform linear array of 4-elements with $\lambda/2$ spacing and obtain its radiation pattern                                                                     | Remember                    | CO 2               | AEC011.05                     |
| 8             | For a 6-element Yagi array for operation of 500 MHz with a folded dipole, find the length of reflector element and driven element and Draw the 6-element Yagi array.                                                           | Understand                  | CO 2               | AEC011.05                     |
| 9             | An end fire array consisting of several half wave length long<br>isotropic radiators having directive gain of 30. Find the length<br>of array for broad side antenna?                                                          | Understand                  | CO 2               | AEC011.05                     |
| 10            | The mean radius of a small circular loop of constant current is $\lambda/10$ . Find the physical area of the loop                                                                                                              | Understand                  | CO 2               | AEC011.04                     |
|               | UNIT-III                                                                                                                                                                                                                       |                             |                    |                               |
|               | VHF,UHF AND MICROWAVE AN                                                                                                                                                                                                       | TENNAS                      |                    |                               |
| -             | PART-A(SHORT ANSWER QUES                                                                                                                                                                                                       | STIONS)                     | <u> </u>           |                               |
|               | List out all the Microwave Antennas                                                                                                                                                                                            | Remember                    |                    | AEC011.07                     |
| 2             | write the principle of Horn antenna.                                                                                                                                                                                           | Lindorstand                 | $CO_3$             | AEC011.07                     |
| <u>з</u><br>Л | Describe the mean by fermat's principle                                                                                                                                                                                        | Understand                  |                    | AEC011.07                     |
| 5             | Describe the different types of horn antennas used in practical applications                                                                                                                                                   | Remember                    | CO 3               | AEC011.07                     |
| 6             | Describe the advantages horn antennas                                                                                                                                                                                          | Understand                  | CO 3               | AEC011.07                     |

| S.  | Question                                                                                                              | Blooms<br>Taxonomy | Course<br>Outcomes | Course<br>learning |
|-----|-----------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|
| INU |                                                                                                                       | Level              |                    | Outcome            |
| 7   | Describe the drawbacks of lens antenna?                                                                               | Remember           | CO 3               | AEC011.08          |
| 8   | Relate thickness and frequency of Lens antenna.                                                                       | Remember           | CO 3               | AEC011.08          |
| 9   | Mention different types of Lens antennas                                                                              | Understand         | CO 3               | AEC011.08          |
| 10  | Reproduce the expression for flare angle of Horn antenna.                                                             | Remember           | CO 3               | AEC011.07          |
| 11  | Discriminate Delay lens with Metal plate lens                                                                         | Remember           | CO 3               | AEC011.08          |
| 12  | List the applications of Lens antenna                                                                                 | Understand         | CO 3               | AEC011.08          |
| 13  | List the applications of Horn antenna                                                                                 | Understand         | CO 3               | AEC011.07          |
| 14  | Recall the expression for Axial length of Horn antenna.                                                               | Remember           | CO 3               | AEC011.07          |
| 15  | State the advantages of Zoning?                                                                                       | Understand         | CO 3               | AEC011.08          |
| 16  | Describe the features of slot antennas                                                                                | Understand         | CO 3               | AEC011.08          |
| 17  | Describe the limitations of strip antennas                                                                            | Remember           | CO 3               | AEC011.09          |
| 18  | Describe the advantages of slot antennas                                                                              | Understand         | CO 3               | AEC011.08          |
| 19  | List out the Feed Methods of Patch Antenna                                                                            | Remember           | CO 3               | AEC011.09          |
| 20  | List Out the advantages of strip antennas                                                                             | Remember           | CO 3               | AEC011.09          |
| 21  | Describe the features of Patch antennas                                                                               | Understand         | CO 3               | AEC011.09          |
| 22  | Write Design Considerations of Low profile Antennas                                                                   | Remember           | CO 3               | AEC011.09          |
| 23  | Describe the use of stocked MSA                                                                                       | Remember           | CO 3               | AEC011.09          |
| 24  | Write the Performance Parameters of Micro Strip antennas?                                                             | Understand         | CO 3               | AEC011.09          |
| 25  | Describe the mean by tuning in MSA                                                                                    | Understand         | CO 3               | AEC011.09          |
| 26  | Discuss the effect of Substrate on the radiation of Patch<br>antenna                                                  | Understand         | CO 3               | AEC011.09          |
| 27  | Write the formula for centre frequency of patch antenna                                                               | Remember           | CO 3               | AEC011.09          |
| 28  | Write Babinet's principle                                                                                             | Remember           | CO 3               | AEC011.08          |
| 29  | Draw the Radiation pattern of slot antenna                                                                            | Understand         | CO 3               | AEC011.08          |
| 30  | Give examples of secondary antennas.                                                                                  | Remember           | CO 3               | AEC011.08          |
|     | PART-B(LONG ANSWER QUES                                                                                               | TIONS)             |                    |                    |
| 1   | With necessary diagrams explain the principle of operation of                                                         | Remember           | CO 3               | AEC011.08          |
| 2   | Discuss different types of horn antennas with next sketches                                                           | Understand         | CO 3               | AEC011.07          |
| 3   | Describe the advantages, disadvantages and applications of                                                            | Remember           | CO 3               | AEC011.07          |
|     | lens antenna<br>Describe des rediction extrem and fields on the onio of on E                                          | Dement             | CO 2               | AEC011.07          |
| 4   | plane and H-plane sectoral horns                                                                                      | Remember           | 03                 | AEC011.07          |
| 5   | Describe the concepts of zoning and tolerances                                                                        | Understand         | CO 3               | AEC011.08          |
| 6   | Explain the features and radiation properties of rectangular patch antennas.                                          | Understand         | CO 3               | AEC011.09          |
| 7   | With necessary diagrams explain the principle of operation of Slot antennas                                           | Understand         | CO 3               | AEC011.08          |
| 8   | Mention the types of feeding structures used for a microstrip                                                         | Understand         | CO 3               | AEC011.09          |
| 9   | Explain the impact of different parameters on characteristics of micro strip antennas                                 | Remember           | CO 3               | AEC011.09          |
| 10  | State Babinet's principle and how does it give rise to the concept of complementary antenna                           | Remember           | CO 3               | AEC011.08          |
| 11  | Comment on fringing effect, describe the design considerations and how microstrip antenna radiates with neat diagram. | Understand         | CO 3               | AEC011.09          |
| 12  | Discuss in detail about the pyramidal horn antenna and write down its merits and demerits?                            | Understand         | CO 3               | AEC011.07          |
| 13  | Describe the electromagnetic horn antenna and describe their practical applications?                                  | Understand         | CO 3               | AEC011.07          |

| S.<br>No | Question                                                                                                                                                                                                                                                         | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
| 14       | What are different types of antennas used at VHF. Discuss the advantages of a slot antenna.                                                                                                                                                                      | Understand                  | CO 3               | AEC011.08                     |
| 15       | What are different types of antennas used at UHF. Give the list of antennas used for broadband communication.                                                                                                                                                    | Remember                    | CO 3               | AEC011.08                     |
| 16       | What are different types of antennas used at microwave frequencies. Give the list of antennas used for satellite communication.                                                                                                                                  | Remember                    | CO 3               | AEC011.08                     |
| 17       | Explain the working of a rectangular patch antenna and mention its applications.                                                                                                                                                                                 | Understand                  | CO 3               | AEC011.09                     |
| 18       | Give the expressions for impedance, bandwidth and directivity of rectangular patch antenna.                                                                                                                                                                      | Understand                  | CO 3               | AEC011.09                     |
| 19       | Describe a horn antenna. How is this antenna fed and what are its applications?                                                                                                                                                                                  | Understand                  | CO 3               | AEC011.07                     |
| 20       | Explain in detail about parasitic antenna ,broadband antenna<br>And microstrip antenna                                                                                                                                                                           | Understand                  | CO 3               | AEC011.09                     |
|          | PART-C (PROBLEM SOLVING AND CRITICAL                                                                                                                                                                                                                             | THINKING O                  | UESTIONS)          |                               |
| 1        | Find out the length, width & flare angles of $\theta_E & \theta_H$ of pyramidal horn antenna for which the mouth height is 10 $\lambda$                                                                                                                          | Remember                    | CO 3               | AEC011.07                     |
| 2        | A pyramidal horn antenna having aperture dimensions of $a = 5.2$ cm and $b = 3.8$ cm is used at a frequency of 10GHz.<br>Calculate its gain and HPBW.                                                                                                            | Understand                  | CO 3               | AEC011.07                     |
| 3        | Design an optimum horn antenna with mouth height h=20 $\lambda$ and path difference $\delta = 0.20 \lambda$ . Find L and $\theta$ .                                                                                                                              | Understand                  | CO 3               | AEC011.07                     |
| 4        | The aperture dimensions of a pyramidal horn are 12 X 6 cm, operating at a frequency of 10GHz. Generate the beam width and directivity for the given specifications.                                                                                              | Remember                    | CO 3               | AEC011.07                     |
| 5        | A pyramidal horn antenna has an aperture of 20 X 15 cm.<br>Assuming the field distribution to be uniform over the<br>aperture. Estimate the maximum directivity and the beam<br>width of the antenna                                                             | Understand                  | CO 3               | AEC011.07                     |
| 6        | Design a pyramidal horn with dimensions $a=2.286$ cm and $b=1.016$ cm, operating at frequency 11GHz and gain is 22.6dB                                                                                                                                           | Remember                    | CO 3               | AEC011.07                     |
| 7        | Find the required aperture area for an optimum rectangular<br>horn antenna operating at 2GHz with 12 dBi gain.                                                                                                                                                   | Remember                    | CO 3               | AEC011.07                     |
| 8        | Two identical horn antennas are separated by a distance of 100 m. both antennas have directive gains of 15 dB in the direction of transmission and their dimensions are 12cm X 6cm. the transmitting antenna sends out 5W at 3GHz, determine the received power. | Understand                  | CO 3               | AEC011.07                     |
| 9        | Frequency is 12 GHz. A pyramidal horn with aperture dimensions $a1=20$ cm, $b1=15$ cm is attached to a rectangular waveguide (size: $a = 19$ mm, $b = 9.5$ mm). What is the gain of this horn antenna, if the length of the horn L is a) L = 25 cm b) L = 50 cm  | Understand                  | CO 3               | AEC011.07                     |
| 10       | Design a plano- convex dielectric lens for 5GHz with a diameter of $10\lambda$ . The lens material is to be paraffin and the F number is to be unity.                                                                                                            | Remember                    | CO 3               | AEC011.08                     |
|          | UNIT-IV<br>REFLECTOR ANTENNAS& ANTENNA M                                                                                                                                                                                                                         | IEASUREMEN                  | NTS                |                               |
|          | PART-A (SHORT ANSWER QUE                                                                                                                                                                                                                                         | STIONS)                     |                    |                               |
| 1        | Describe the different types of reflector antennas                                                                                                                                                                                                               | Remember                    | CO 4               | AEC011.10                     |
| 2        | Describe the mean by spill over?                                                                                                                                                                                                                                 | Understand                  | CO 4               | AEC011.11                     |
| 3        | Define F/D ratio?                                                                                                                                                                                                                                                | Remember                    | CO 4               | AEC011.11                     |

| S.<br>No | Question                                                                                                                      | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
| 4        | Describe the advantages of parabolic reflector antenna                                                                        | Understand                  | CO 4               | AEC011.11                     |
| 5        | Describe the drawbacks of parabolic reflector antenna                                                                         | Understand                  | CO 4               | AEC011.11                     |
| 6        | Describe the drawbacks of corner and flat sheet reflector antennas                                                            | Remember                    | CO 4               | AEC011.10                     |
| 7        | List the Applications of reflector antennas                                                                                   | Understand                  | CO 4               | AEC011.10                     |
| 9        | Sketch the Paraboloidal Reflector antenna along with its radiation pattern.                                                   | Understand                  | CO 4               | AEC011.11                     |
| 10       | Define capture area ?                                                                                                         | Remember                    | CO 4               | AEC011.11                     |
| 11       | List the various types of feed system for a parabolic reflector                                                               | Remember                    | CO 4               | AEC011.11                     |
| 12       | Recall the applications of Parabolic dish antenna                                                                             | Understand                  | CO 4               | AEC011.11                     |
| 13       | Reproduce the figure of Cassegrain feed.                                                                                      | Remember                    | CO 4               | AEC011.11                     |
| 14       | Describe the need for Antenna Measurement                                                                                     | Understand                  | CO 4               | AEC011.12                     |
| 15       | Describe the Sources of Error in brief                                                                                        | Understand                  | CO 4               | AEC011.12                     |
| 16       | What are feed systems of parabolid reflector                                                                                  | Understand                  | CO 4               | AEC011.11                     |
| 17       | What are the applications of plane reflector?                                                                                 | Understand                  | CO 4               | AEC011.11                     |
| 18       | What are the applications of corner reflector                                                                                 | Understand                  | CO 4               | AEC011.11                     |
| 19       | What are the advantages of corner reflector                                                                                   | Remember                    | CO 4               | AEC011.11                     |
| 20       | What are the applications of slot antennas                                                                                    | Understand                  | CO 4               | AEC011.10                     |
|          | PART-B (LONG ANSWER OUES                                                                                                      | TIONS)                      |                    | 1                             |
| 1        | List out the differences between active and passive corner reflectors.                                                        | Understand                  | CO 4               | AEC011.10                     |
| 2        | Briefly explain about Flat Sheet Reflectors.                                                                                  | Remember                    | CO 4               | AEC011.10                     |
| 3        | Explain the important design parameters of parabolic reflector antenna                                                        | Understand                  | CO 4               | AEC011.11                     |
| 4        | With a neat sketch explain the procedure of radiation pattern measurement.                                                    | Remember                    | CO 4               | AEC011.12                     |
| 5        | Briefly explain about Corner Reflectors.                                                                                      | Understand                  | CO 4               | AEC011.10                     |
| 6        | Explain different feed methods used for parabolic reflector antennas.                                                         | Understand                  | CO 4               | AEC011.11                     |
| 7        | With a neat sketch explain the procedure of gain measurement using 3antennas.                                                 | Remember                    | CO 4               | AEC011.12                     |
| 8        | Describe the Sources of Error while doing the Measurement.                                                                    | Remember                    | CO 4               | AEC011.12                     |
| 9        | Describe the Gain Measurement by Comparison Method with Neat Sketch.                                                          | Remember                    | CO 4               | AEC011.12                     |
| 10       | Explain the geometry of paraboloidal reflector with neat diagram.                                                             | Understand                  | CO 4               | AEC011.11                     |
| 11       | Describe the cassegrain method of feeding a parabolic reflector?                                                              | Understand                  | CO 4               | AEC011.11                     |
| 12       | Describe the methods for measuring<br>a)directivity<br>b)power gain                                                           | Remember                    | CO 4               | AEC011.12                     |
| 13       | Describe the absolute and three antenna methods for gain measurement.                                                         | Remember                    | CO 4               | AEC011.12                     |
| 14       | Explain how a parabolodial antenna gives a highly directional pattern.what are the practical applications of such an antenna. | Understand                  | CO 4               | AEC011.11                     |
| 15       | Describe the comparison method for gain measurement.                                                                          | Remember                    | CO 4               | AEC011.12                     |
| 16       | Describe the near field and far field region with respect to antenna measurements.                                            | Remember                    | CO 4               | AEC011.12                     |
| 17       | Describe the methods of feeding a paraboloid reflector in which the primary antenna is located at the focal point.            | Understand                  | CO 4               | AEC011.11                     |
| 18.      | Compare the flat sheet reflectors with corner reflectors.                                                                     | Remember                    | CO 4               | AEC011.10                     |

| S.<br>No | Question                                                                                                                                                                                                                                                                                     | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
| 19       | Describe the corner reflector antennas with its practical applications                                                                                                                                                                                                                       | Remember                    | CO 4               | AEC011.10                     |
| 20       | Compare UHE VHF and microwave antennas.                                                                                                                                                                                                                                                      | Remember                    | CO 4               | AEC011.10                     |
|          | PART-C (PROBLEM SOLVING AND CRITICAL )                                                                                                                                                                                                                                                       | HINKING OI                  | JESTIONS)          | 120011110                     |
| 1        | A paraboloid reflector of circular cross-sectional area 8000 sq.cm is uniformly excited at 5GHz. Calculate the HPBW and the gain.                                                                                                                                                            | Remember                    | CO 4               | AEC011.11                     |
| 2        | A parabolic dish antenna provides a gain of 75dB at a frequency of 15GHz. Calculate the capture area, HPBW and FNBW                                                                                                                                                                          | Remember                    | CO 4               | AEC011.11                     |
| 3        | Analyze the different types of feed used in a reflector antenna.<br>Also explain the principle of reflector antenna.                                                                                                                                                                         | Understand                  | CO 4               | AEC011.10                     |
| 4        | Find the diameter of the reflector antenna that has a 0.5 deg<br>HPBW at a frequency of 8.2 GHz. Assume an efficiency<br>constant = 0.6. Calculate the antenna gain and effective<br>aperture.                                                                                               | Understand                  | CO 4               | AEC011.10                     |
| 5        | The diameter of a parabolic reflector is 2m. For operation at 6 GHz, find the beam width between first nulls and the gain                                                                                                                                                                    | Remember                    | CO 4               | AEC011.11                     |
| 6        | A parabolic reflector antenna with diameter 20 m, is designed<br>to operate at frequency of 6GHz and illumination efficiency of<br>0.54. Calculate antenna gain.                                                                                                                             | Understand                  | CO 4               | AEC011.11                     |
| 7        | A parabolic antenna having circular mouth is to have a power gain of 1000 at $\lambda$ =10 cm. Estimate the diameter of the mouth and half power beam width of the antenna.                                                                                                                  | Remember                    | CO 4               | AEC011.11                     |
| 8        | Find the beam width between the first nulls of a 2.5m paraboloid reflector used at 6GHz. Calculate its gain.                                                                                                                                                                                 | Remember                    | CO 4               | AEC011.11                     |
| 9        | A paraboloid reflector antenna is designed for operation at 3000MHz. Its largest aperture dimension is 20ft. For measurement of radiation pattern, what should be minimum                                                                                                                    | Remember                    | CO 4               | AEC011.11                     |
| 10       | distance between primary and secondary antenna.<br>A paraboloid reflector antenna is designed for operation at 5GHz at $\lambda$ =10 cm Its largest aperture dimension is 30ft. For measurement of radiation pattern, what should be minimum distance between primary and secondary antenna. | Remember                    | CO 4               | AEC011.12                     |
|          | UNIT-V<br>RADIO WAVE PROPAGATI                                                                                                                                                                                                                                                               | ION                         |                    |                               |
|          | PART-A(SHORT ANSWER QUES                                                                                                                                                                                                                                                                     | STIONS)                     | - CC -             |                               |
|          | Define Ground wave?                                                                                                                                                                                                                                                                          | Understand                  | CO 5               | AEC011.13                     |
| 2        | Describe the types of Ground waves                                                                                                                                                                                                                                                           | Understand                  | CO 5               | AEC011.13                     |
| 5        | Describe the Space Wave in detail                                                                                                                                                                                                                                                            | Demomber                    |                    | AEC011.14                     |
| 4        | Describe Surface wave in detail                                                                                                                                                                                                                                                              | Remember                    | CO 5               | AEC011.14                     |
| 5        | Explain Skip Distance?                                                                                                                                                                                                                                                                       | Understand                  |                    | AEC011.14                     |
| 7        | Describe the Scattering Deepomene                                                                                                                                                                                                                                                            | Remember                    | CO 5               | ΔEC011.14                     |
| 8        | Define Lowest Usable Frequency                                                                                                                                                                                                                                                               | Understand                  | CO 5               | AEC011.14                     |
| 9        | Describe maximum Usable Frequency                                                                                                                                                                                                                                                            | Understand                  | CO 5               | AEC011 15                     |
| 10       | Describe The concept of Virtual Height                                                                                                                                                                                                                                                       | Remember                    | CO 5               | AEC011.15                     |
| 11       | Define Optimum frequency?                                                                                                                                                                                                                                                                    | Remember                    | CO 5               | AEC011.15                     |
| 12       | Explain the Structure of Atmosphere?                                                                                                                                                                                                                                                         | Understand                  | CO 5               | AEC011.13                     |
| 13       | Describe the various layers of Ionosphere?                                                                                                                                                                                                                                                   | Understand                  | CO 5               | AEC011.15                     |
| 14       | Describe the Absorption                                                                                                                                                                                                                                                                      | Remember                    | CO 5               | AEC011.15                     |
| 15       | Draw the Structure of Ionosphere                                                                                                                                                                                                                                                             | Understand                  | CO 5               | AEC011.15                     |

| S.       | Question                                                                                                          | Blooms<br>Taxonomy | Course<br>Outcomes | Course<br>learning |
|----------|-------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|
| No       | Question                                                                                                          | Level              | outcomes           | Outcome            |
| 16       | Define guided waves                                                                                               | Understand         | CO 5               | AEC011.13          |
| 17       | Define unguided waves                                                                                             | Understand         | CO 5               | AEC011.15          |
| 18       | Define ground wave or surface wave propagation                                                                    | Remember           | CO 5               | AEC011.13          |
| 19       | Define sky wave or ionospheric wave propagation                                                                   | Understand         | CO 5               | AEC011.15          |
| 20       | Define space wave propagation                                                                                     | Understand         | CO 5               | AEC011.14          |
|          | PART-B(LONG ANSWER QUES)                                                                                          | ΓIONS)             |                    |                    |
| 1        | Describe briefly the salient features of ground wave propagation.                                                 | Remember           | CO 5               | AEC011.13          |
| 2        | Explain the term" wave tilt of surface waves"                                                                     | Remember           | CO 5               | AEC011.14          |
| 3        | Explain the following terms:                                                                                      | Understand         | CO 5               | AEC011.14          |
|          | <ul><li>(i) Critical frequency</li><li>(ii) MUF</li><li>(iii) Skip Distance</li><li>(iv) Virtual height</li></ul> |                    |                    |                    |
| 4        | Write short notes on i) Super refraction ii) Tropospheric scattering                                              | Remember           | CO 5               | AEC011.14          |
| 5        | Derive the Curved Earth Reflections in Ground Wave<br>Propagation                                                 | Understand         | CO 5               | AEC011.13          |
| 6        | Sketch and Explain the Field Strength Variation of Space wave with Antenna Height                                 | Understand         | CO 5               | AEC011.14          |
| 7        | Explain the Concept of Refraction and Reflection of Sky<br>Waves by Ionosphere                                    | Understand         | CO 5               | AEC011.15          |
| 8        | Explain the phenomenon of ducting? What are the conditions required for manifestation of this phenomenon          | Remember           | CO 5               | AEC011.15          |
| 9        | Deduce an expression for the critical frequency of an ionized region in terms of its Maximum ionization density.  | Understand         | CO 5               | AEC011.15          |
| 10       | Write short notes on:                                                                                             | Remember           | CO 5               | AEC011.14          |
|          | a) Line of sight propagation                                                                                      |                    |                    |                    |
|          | b) Effect of earth's curvature                                                                                    |                    |                    |                    |
| 11       | Describe the mechanism of space wave propagation over ideal                                                       | Understand         | CO 5               | AEC011.14          |
|          | flat earth with a neat sketch?                                                                                    |                    |                    |                    |
| 12       | Review the effect of Earth's magnetic field on ground wave propagation                                            | Understand         | CO 5               | AEC011.13          |
| 13       | Summarize the structure of the atmosphere and explain each layer in detail.                                       | Understand         | CO 5               | AEC011.13          |
| 14       | The receiver and the transmitter are located at the LOS on the                                                    | Understand         | CO 5               | AEC011.14          |
|          | earth. For such a case, solve and find the distance between                                                       |                    | 100                |                    |
|          | these two points on the earth.                                                                                    |                    | here and           |                    |
| 15       | Derive the expression for the MUF for flat earth and curved                                                       | Understand         | CO 5               | AEC011.15          |
|          | earth.                                                                                                            | ~~~                |                    |                    |
| 16       | Evaluate the field strength of a space wave neglecting the                                                        | Understand         | CO 5               | AEC011.14          |
| 17       | curvature of the earth.                                                                                           | Understand         | CO 5               | AEC011.12          |
| 1/       | Lapran the now the ENI waves are propagated in troposphere                                                        | Understand         | 0.05               | AECUII.13          |
| 18       | Derive the expression for the MUE for flat earth and curved                                                       | Understand         | CO 5               | AEC011.15          |
| 10       | earth.                                                                                                            | Understand         | 05                 | ALCOIT.15          |
| 19       | Briefly explain the mechanism of ionospheric propagation with neat diagram?                                       | Understand         | CO 5               | AEC011.15          |
| 20       | Point out Critical frequency and maximum usable frequency in                                                      | Understand         | CO 5               | AEC011.15          |
| <u> </u> | wave propagation.                                                                                                 |                    | TESTIONS           | I                  |
| 1        | Derive the field strength equation at a distance in space wave                                                    | Remember           | $\frac{1000}{100}$ | AFC011 14          |
| 1.       | propagation                                                                                                       | Remember           |                    | 112011.14          |
| 2.       | Derive the relation for dielectric constant of ionosphere layer                                                   | Understand         | CO 5               | AEC011.15          |
|          | in terms of plasma frequency.                                                                                     |                    |                    |                    |

| S.<br>No | Question                                                                                                                                                                                                                                       | Blooms<br>Taxonomy<br>Level | Course<br>Outcomes | Course<br>learning<br>Outcome |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------------|
| 3.       | Derive the relation between Maximum usable frequency (MUF) and skip distance.                                                                                                                                                                  | Understand                  | CO 5               | AEC011.15                     |
| 4.       | Discuss the effects of Earth's magnetic field on ionosphere radio wave propagation?                                                                                                                                                            | Understand                  | CO 5               | AEC011.15                     |
| 5.       | With a neat sketch explain the mechanism of space wave propagation over ideal flat earth.                                                                                                                                                      | Understand                  | CO 5               | AEC011.14                     |
| 6.       | Derive an expression for refractive index of an ionospheric layer                                                                                                                                                                              | Understand                  | CO 5               | AEC011.15                     |
| 7.       | Calculate the critical frequency for the F1, F2 and E layers for which the maximum ionic densities are $2.3 \times 10^6$ , $3.5 \times 10^6$ and $1.7 \times 10^6$ electrons per c.c respectively?                                             | Understand                  | CO 5               | AEC011.15                     |
| 8.       | Assume that reflection takes place at a height of 400km and that the maximum density in the ionosphere corresponds to 0.9 refractive index at10MHz. what will be the range ( assume flat earth condition) for which the MUF is 10MHz?          | Understand                  | CO 5               | AEC011.15                     |
| 9.       | Prove that the refractive index of a layer of the ionosphere is given by<br>$n = \sqrt{1 - \frac{81N}{f^2}}$                                                                                                                                   | Understand                  | CO 5               | AEC011.15                     |
| 10.      | Calculate the value of operating frequency of ionosphere layer<br>specified by refractive index of 0.85 and electron density<br>of $5 \times 10^5$ electrons/m <sup>3</sup> .<br>Calculate the critical frequency and MUF with $\phi_i = 30^0$ | Remember                    | CO 5               | AEC011.15                     |

LIBER

## Prepared by

Mrs. A Usharani, Assistant Professor

CATON F

HOD, ECE