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COMPLEX FUNCTIONS 

Complex number 

For a complex number  z = x + iy, the number Re z = x is called the real part of z and the number 

Im z = y is said to be the its imaginary part. If x = 0, z is said to be a purely imaginary number.  

Definition : Let z = x + iy ∈ C. The complex number z = x − iy is called the complex conjugate 

of z  and  |z| = 
22 yx   is said to be the absolute value or  the modulus of the complex number 

z. 

Functions of a Complex Variable  : 

  Let D be a nonempty set in C. A single-valued complex function or, simply, a complex function 

f : D → C is a map that assigns to each complex argument z = x + iy in D a unique complex 

number w = u + iv. We write w = f(z).  

           The set D is called the domain of the function f and the set f(D) is the range or the image 

of f. So, a complex-valued function f of a complex variable z is a rule that assigns to each 

complex number z in a set D one and only one complex number w. We call w the image of z 

under f.  

          If z = x + iy ∈ D, we shall write f(z) = u(x, y) + iv(x, y) or f(z) = u(z) + iv(z). The real 

functions u and v are called the real and, respectively, the imaginary part of the complex function 

f. Therefore, we can describe a complex function with the aid of two real functions depending on 

two real variables. 

Example 1.The function f : C → C, defined by f(z) = z 3 , can be written as f(z) = u(x, y) + iv(x, 

y), with u, v : R 2 → R given by u(x, y) = x 3 − 3xy2 , v(x, y) = 3x 2 y − y 3.  

Example 2.For the function f : C → C, defined by f(z) = e z , we have u(x, y) = e x cos y, v(x, y) 

= e x sin y, for any (x, y) ∈ R 2 . 

Limits of Functions :   Let D ⊆ C, a ∈ D ′ and f : D → C. A number l ∈ C is called a limit of the 

function f at the point a if for any V ∈ V(l), there exists U ∈ V(a) such that, for any z ∈ U ∩ D \ 

{a}, it follows that f(z) ∈ V . We shall use the notation l = lim
0zz

 f(z).  

Remark : If a complex function f : D → C possesses a limit l at a given point a, then this limit is 

unique. 



Exercise 1: Prove that  
z

z
zz




lim

0

 does not exist. 

 Solution  : To prove that the above limit does not exist, we compute this limit as z → 0 on the 

real and on the imaginary axis, respectively. In the first situation, i.e. for z = x ∈ R, the value of 

the limit is 1. In the second situation, 

 i.e. for z = i y, with y ∈ R, the limit is −1. Thus, the limit depends on the direction from which 

we   approach  0, which implies that the limit does not exist.  

 

Differentiability of complex function : 

         Let w = f(z) be a given function defined for all z in a neighbourhood of z0.If  

z

zfzzf

z 





)()(
lim 00

0
 exists,the function f(z) is said to be derivable at z0 and the limit is 

denoted by )( 0

, zf  . )( 0

, zf  if exists is called the derivative of f(z) at z0. 

 

Exercise  : f(z)= 2z  is a function which is continuous at all z but not derivable at any z  0 

Solution:  Let  f(z)= 2z  = zz  

    Then f(z)= 00 zz  

We have to prove  that 
0

zz
lt


z=z0  and 0
0

zzlt
zz


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     Thus 
0
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
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f(z)=f(z0) 

The function is continuous at all z 

 f(z0+ )z = zzzzzzzzzzzz  00000 ))((  

Now 
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

 0000 )()(
 

Consider the limit as 0z  

Case 1:  let 0z along x-axis then xzyxx  0,  
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                            )1(  

Case 2: Let 0z  along y-axis then yizyyx  ,0  
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
          )2(  

Thus , from (1) and (2) for  f’(z0) to exists  

i.e., 002 0000  zzzz  

 f’(z) does not exists though f(z)= 2z  is continuous at all z. 

 polar form of Cauchy-Riemann equation: 

Theorem:  

If ),(),()()(  rivrurefzf i   and f(z) is derivable at 0

00

i
erz   then 

 

Proof: Let 
irez   Then ),(),()()(  rivrurefzf i   

Differentiating   it with respect to r partially, 
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Similarly differentiating partially with respect to  
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From (1) and (2) we have 
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Equating real and imaginary parts  ,we get 
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Analytic function: 

A complex function is said to be analytic on a region  R if it is complex differentiable at every 

point in R . The terms holomorphic function, differentiable function, and complex differentiable 

function are sometimes used interchangeably with "analytic function". Many mathematicians 

prefer the term "holomorphic function" (or "holomorphic map") to "analytic function" .  

If a complex function is analytic on a region R , it is infinitely differentiable in R. 

Singularities: 

A complex function may fail to be analytic at one or more points through the presence of 

singularities, or along lines or line segments through the presence of branch cuts.  

     Eg. f(z)=
z

1
 is analytic every where except at z=0. 

    At z=0  )(, zf   does not exist. 

    So z=0 is  an  isolated singular point. 

Entire function: 

A complex function that is analytic at all finite points of the complex plane is said to be entire. A 

single-valued function that is analytic in all but possibly a discrete subset of its domain, and at 

those singularities goes to infinity like a polynomial (i.e., these exceptional points must be poles 

and not essential singularities), is called a meromorphic function.  

Cauchy–Riemann equations: 

The Cauchy–Riemann equations on a pair of real-valued functions of two real variables u(x,y) 

and v(x,y) are the two equations: 

http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexDifferentiable.html
http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/Differentiable.html
http://mathworld.wolfram.com/Singularity.html
http://mathworld.wolfram.com/Singularity.html
http://mathworld.wolfram.com/BranchCut.html
http://mathworld.wolfram.com/EntireFunction.html
http://mathworld.wolfram.com/ComplexFunction.html
http://mathworld.wolfram.com/ComplexPlane.html
http://mathworld.wolfram.com/EntireFunction.html
http://mathworld.wolfram.com/Single-ValuedFunction.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/EssentialSingularity.html
http://mathworld.wolfram.com/MeromorphicFunction.html
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




                             

Typically u and v are taken to be the real and imaginary parts respectively of a complex-valued 

function of a single complex variable z = x + iy,  f(x + iy) = u(x,y) + iv(x,y) 
 

Relation with harmonic functions : 

 Analytic functions are intimately related to harmonic functions. We say that a real-valued 

function h(x, y) on the plane is harmonic if it obeys Laplace’s equation:  

                                                           0
2

2

2

2











y

h

x

h
. 

In fact, as we now show, the real and imaginary parts of an analytic function are harmonic. Let f 

= u + i v be analytic in some open set of the complex   plane.  

       Then, 
y

u

yx

u

xy

u

x

u




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





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
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                                   =  
x

u

yy

u

x 















                                 (using Cauchy–Riemann)  

                                   =
xy

u

yx

u








 22

    

                                          =0 

A similar calculation shows that v is also har monic. This result is important in applications 

because it shows that one can obtain solutions of a second order partial differential equation by 

solving a system of first order partial differential equations. It is particularly important in this 

case because we will be able to obtain solutions of the Cauchy–Riemann equations without really 

solving these equations.  

Given a harmonic function u we say that another harmonic function v is its harmonic conjugate if 

the complex-valued function f = u+i v is analytic. 

Conjugate harmonic function: 

If two harmonic functions  u and v satisfy  the Cauchy-Reimann equations in a domain D  and 

they are real and imaginary parts of an analytic function f in D  then v is said to be a  conjugate 

https://en.wikipedia.org/wiki/Real_part
https://en.wikipedia.org/wiki/Imaginary_part
https://en.wikipedia.org/wiki/Complex_number


harmonic function of  u in D.If f(z)=u+iv is an analytic function  and if u and v satisfy Laplace’s 

equation ,then u and  v are called   conjugate harmonic functions. 

Polar form of cauchys Riemann equations: 

The Cauchy-Riemann equations can be written in other coordinate systems. For instance, it is not 

difficult to see that in the system of coordinates given by the polar representation z = r e i  these 

equations take the following form:  

                                                               























u

rr

v

v

rr

u

1

1

 

Problem: Show that the function f : C → C, defined by f(z) = 


z  does not satisfy the Cauchy-

Riemann equations.  

Solution:  Indeed, since u(x, y) = x, v(x, y) = −y, it follows that ∂u /∂x = 1, while ∂v/ ∂y = −1. 

So, this function, despite the fact that it is continuous everywhere on C, it is R differentiable on 

C, is nowhere C-derivable. 

 

 

Problem: Show that the function 
zezf )(  satisfies the Cauchy-Riemann  equations. 

Solution: 

 since  (xz ee   cosy+i siny), 

 

Indeed     it follows that 

               u(x, y) =excosy,     v(x, y) =ex siny 

and      
x

u




= e xcosy = 

y

v




 ;     

y

u




= e xsiny = 

x

v




  ; 

 

Moreover,  ez  is complex derivable and  it follows immediately that its complex derivative is 

ez. 

 

 

Holomorphic functions: 

Holomorphic functions are complex functions, defined on an open subset of the complex plane, 

that are differentiable. In the context of complex analysis, the derivative of   f   at z0 is defined to 

be   
0

0
0

' )()(
lim)(

0 zz

zfzf
zf

zz 





, cz . 

https://en.wikipedia.org/wiki/Open_set
https://en.wikipedia.org/wiki/Differentiable_function


Construction of analytic function whose real or imaginary part is known: 

Suppose f(z)=u+iv is an analytic function ,whose real part u is known .We can find v, the 

imaginary part and also the function f(z). 

Problem: Showthat   0)('log
22

2 2
























zf

yx
where f(z) is an analytic function. 

Solution: Taking )(
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,
2
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And 



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Hence 4)('(log
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Since f(z) is analytic , f(z) is analytic, )(' zf  is also analytic and 0
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
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Problem: Show that   f(z)=




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


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           is not analytic  at z=0 although C-R 

equations satisified at origin. 



Solution:      
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    Limit value depends on  m i.e on the path of approach and its different  for the different paths 

Followed  and therefore limit does not exists. 

Hence f(z) is not differentiable at z=0.Thus f(z) is not analytic at z=0 

To prove that C-R conditions are satisified at origin 
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Then u(x,y)= 
)( 42

22

yx

yx


 and    v(x,y)= 
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Thus C-R equations  are satisified are satisified at the origin 

Hence f(z) is not analytic at z=0 even C-R equations are satisified at origin. 

Milne Thomson method: 

Problem :  Find the regular function whose imaginary part is yxyx 2)log( 22  . 

Solution:   Given v yxyx 2)log( 22   
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By Milne Thomson method ,f’(z) is expressed in terms of z by replacing x z and y by 0. 
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2
2)(  

                                          = cziziczziz  )2(log2)log2(2 . 

 

Problem: Show that the function 234  xxyu is harmonic .construct  the corresponding 

analytic  function  f(z)=u+iv in terms of z. 

Solution:  Given 234  xxyu (1) 

Differentiating (1) partially w.r.t .x, 34 



y

x

u
  



Again differentiating  0
2

2






x

u
 

Again differentiating (1)  partially w.r.t .y, x
x

u
4




 

Again differentiating  0
2

2






y

u
 







2

2

x

u
0

2

2






y

u
 

Hence u is Harmonic. 

Now )(' zf
x

u



 +i xiyzf
y

u
i

x

u

y

v
4.34)(' 














 

Using Milne Thomson method 

)(' zf zi43 (putting x=z and y=0) 

Integrating, czizzf  223)(  

 

Problem : Find the imaginary part of an analytic function whose real part is )sincos( yyyxe x 

. 

Solution:  Let ivuzf )(  where u= )sincos( yyyxex   

     )(' zf  
x

u




+i

x

v




   =   

x

u




-i

y

u




   (using  C-R equ) 

                  =   )]cossinsin([]cos)sincos([ yyyyxeiyeyyyxe xxx   

  By milne’s method )(' zf zzzz ezeieze  )0()(  

Integrating , We get 

    f(z)= czeceezcdzeze zzzzz  )1()(  

i.e., ivu   = ceiyx iyx  )(  



                   = ceeiyx iyx  .)(  

                   = cyiyiyxe x  )sin)(cos(  

                   = 
xe cyyyiyyixyx  )sincossincos(  

               =  xe cyyyxiyyyx  )]cossin()sincos[(  

EXCERCISE  PROBLEMS:    

u = 𝑒−2𝑥𝑦 sin(𝑥2 − 𝑦2)  is a 

harmonic function. Hence find its harmonic conjugate. 

2) Prove that the real part of analytic function f (z) where u = log|𝑧|2 is harmonic function. If 

so find the analytic function by Milne Thompson method. 

3)Obtain the regular function f (z) whose imaginary part of an analytic function is  
𝑥−𝑦

𝑥2+𝑦2 

4) Find an analytic function f (z) whose real part of an analytic function is u = 
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
 

by Milne-Thompson method. 

5) Find an analytic function f (z) = u +iv if the real part of an analytic function is u = a 

(1+cos𝜃) using Cauchy-Riemann equations in polar form. 

6) Prove that if 𝑢 =  𝑥2 − 𝑦2, 𝑣 = − 
𝑦

𝑥2+𝑦2  both u and v satisfy Laplace’s equation, but u + 

iv is not a regular (analytic ) function of z. 

      7)Show that the function f (z) = √|𝑥𝑦|   is not analytic at the origin although Cauchy –

Riemann equations are satisfied at origin. 

      8) If 𝑤 =  ∅ + 𝑖𝜑 represents the complex potential for an electric field where 𝜑 =  𝑥2 −

𝑦2 +
𝑥

𝑥2+𝑦2 then determine the function 𝜑.  

     9)State and Prove the necessary condition for f (z) to be an analytic function in Cartesian 

form. 

  10)If 𝑢 and 𝑣 are conjugate harmonic functions then show that  𝑢𝑣 is also a harmonic function. 

    11)Find the orthogonal trajectories of the family of curves 𝑟 2𝑐𝑜𝑠2𝜃 = c 

   12)Find an analytic function whose real part is u = 
𝑠𝑖𝑛2𝑥

𝑐𝑜𝑠ℎ2𝑦−𝑐𝑜𝑠2𝑥
 

        1)Show that the real part of an analytic function f (z) where  



  13)Find an analytic function whose imaginary part is v = 𝑒𝑥(𝑥𝑠𝑖𝑛𝑦 + 𝑦𝑐𝑜𝑠𝑦) 

  14)Find an analytic function whose real part is (i) u = 
𝑥

𝑥2+𝑦2 (ii) u = 
𝑦

𝑥2+𝑦2 

   15)Find an analytic function whose imaginary part is v =
2𝑠𝑖𝑛𝑥𝑠𝑖𝑛𝑦

𝑐𝑜𝑠ℎ2𝑥+𝑐𝑜𝑠ℎ2𝑦
 

  16)Find an analytic function f(z) = u +iv if u = a(1+cos𝜃) 

    17)Find the conjugate harmonic of u = 𝑒𝑥2−𝑦2
cos2xyand find f(z) in terms of z. 

   18)If f(z) is an analytic function of z and if u - v = 𝑒𝑥(𝑐𝑜𝑠𝑦 − 𝑠𝑖𝑛𝑦) find f(z) in terms of z. 

    19)If f(z) is an analytic function of z and if u - v = (x-y)(𝑥2 + 4𝑥𝑦 + 𝑦2)) find f(z) in terms of   

z. 

20) Find the orthogonal trajectories of the family of curves 𝑥3𝑦 − 𝑥𝑦3= C = constant 

 

 

 

 

 

 

 

 

 

 
 
 
 



 
 
 
 
 
 
 
 

UNIT-II 
COMPLEX INTEGRATION 

 

 

 



 

              LINE  INTEGRAL 

Defination:  In mathematics, a line integral is an integral where the function to be integrated is 

evaluated along a curve. The terms path integral, curve integral, and curvilinear integral are 

also used; contour integral as well, although that is typically reserved for line integrals in the 

complex plane. 

The function to be integrated may be a scalar field or a vector field. The value of the line integral 

is the sum of values of the field at all points on the curve, weighted by some scalar function on 

the curve (commonly arc length or, for a vector field, the scalar product of the vector field with a 

differential vector in the curve). This weighting distinguishes the line integral from simpler 

integrals defined on intervals. Many simple formulae in physics (for example, W = F · s) have 

natural continuous analogs in terms of line integrals (W = ∫C F · ds). The line integral finds the 

work done on an object moving through an atomic or gravitational field. 

In complex analysis, the line integral  is defined in terms of multiplication and addition of 

complex numbers.  

Let us consider F(t)= u(t)+i v(t) , bta  . Where  u and v  are real  valued continuous functions 

of t in [a,b].  

  we define  tdtvitdtutdtF

b

a

b

a

b

a

  )()()(  

Thus, tdtF

b

a

 )( is a complex number such that  real part of  tdtF

b

a

 )(  is tdtu

b

a

 )(  and imaginary 

part of tdtF

b

a

 )(  is tdtv

b

a

 )( . 

Problem: Evaluate dziyx
i

)(
1

0

2 


     along the  paths 1)y=x          2)y=x2 

Solution: 1)along the line y=x, dy= dx  so that  dz = dx+idx=(1+i) dx 

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Function_%28mathematics%29
https://en.wikipedia.org/wiki/Curve
https://en.wikipedia.org/wiki/Contour_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
https://en.wikipedia.org/wiki/Line_integral#Complex_line_integral
https://en.wikipedia.org/wiki/Scalar_field
https://en.wikipedia.org/wiki/Vector_field
https://en.wikipedia.org/wiki/Arc_length
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Differential_%28infinitesimal%29
https://en.wikipedia.org/wiki/Interval_%28mathematics%29
https://en.wikipedia.org/wiki/Mechanical_work
https://en.wikipedia.org/wiki/Mechanical_work
https://en.wikipedia.org/wiki/Complex_analysis
https://en.wikipedia.org/wiki/Complex_number#Multiplication_and_division
https://en.wikipedia.org/wiki/Complex_number#Addition_and_subtraction


   
,)1)(()(

1

0

2
1

0

2 dxiixxdziyx
i

 


       since y=x 

                         =(1+i) 









23

23
1

0

x
i

x
 

                                             =(1+i) 







 i

2

1

3

1
 

                            = i
6

1

6

5
  

                             

 

2) alongtheparabola y=x2,dy=2xdx sothatdz=dx+2ixdx 

                                                                      dz=(1+2ix)dx and xvaries from 0to1 

   

 

               dxixixxdziyx
i

)21)(()( 2

1

0

2
1

0

2  


 

 =(1-i) dxixx )21(
1

0

2   

 

                                     =(1-i) 







 i

2

1

3

1  

 =
6

)32)(1( ii   

 = i
6

1

6

5
    



Problem: Evaluate dzxyixyx
iz

z
))(2( 2

1

0

2 



 along  y=x2 

Solution:  Given f(z)=x2 dzxyixy ))(2 2   

                           Z=x+iy,dz=dx+idy 

           xdxdyxthecurvey 2,2     

dxixxidxdxdz )21(2        

f(z)=x2+2x(x2)+i(x4-x) 

      =x2+2x3  +i(x4-x) 

f(z)  dz=(x2  +2x3)+i(x4-x)(1+2ix))dx 

            =x2+2x3+i(x4-x)+2ix3+4ix4-2x5+2x2 

dzxyixyxdzzf
i

z
c

)(2)( 2
1

0

2  



 

         = dxxxxixxx ))25(232( 34325
1

0
 ) 

                  = 









225

5
(

23

4254
3

6
1

0

xxx
i

x
x

x
 

                 = 0
2

1

2

1

5

5

2

1
1

3

1





























 

              = ii 
6

7

5

5

6

7
 

              idzzf
c

 6

7
)(  

 

 

 



Cauchy-Goursat Theorem:  Let  f(z)  be analytic in a simply connected domain D.  If C is a 

simple closed contour that lies in D, then   

                                         

  Let us recall that    (where n is a positive integer) are all entire functions 

and have continuous derivatives.  The Cauchy-Goursat theorem implies that, for any simple 

closed contour, 

 

(a)                        ,   

 

(b)                        ,   and   

 

(c)  .   

                       Cauchy integral formula 

 STATEMENT :  let F(z)=u(x,y)+iv(x,y) be analytic on and within a simple closed contour (or 

curve ) ‘c’ and let f ‘(z)  be continuous there,then ∫ 𝑓(𝑧)𝑑𝑧 = 0 

Proof: f (z)=u(x,y)+iv(x,y) 

      And dz=dx+idy 

            f(z).dz = (u(x,y)+iv(x,y) )dx+idy 

          f(z).dz = u(x,y)dx+i u(x,y)dy+iv(x,y)dx+i2 v(x,y)dy 

          f(z).dz= u(x,y)dx- v(x,y)dy+i( u(x,y)dy+ v(x,y)dx 

Integrate both sides, we get 

∫ 𝑓(𝑧)𝑑𝑧 = ∫(udx −  vdy) + 𝑖( udy +  vdx) 

By greens theorem ,we have  

∫ 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = ∬
∂N

∂x
−  

∂M

∂Y
dxdy 

Now   ∫ 𝑓(𝑧)𝑑𝑧 = ∬(−
∂v

∂x
−  

∂u

∂Y
)dxdy + 𝑖(

∂u

∂x
−  

∂v

∂Y
)dxdy 

http://mathworld.wolfram.com/CauchyIntegralTheorem.html


Since f ‘(z)   is continuous &four partial derivatives   i.e  
∂u

∂x
,

∂u

∂Y
,  

∂v

∂x
,

∂v

∂Y
 are also continuous  in the 

region R enclosed by C, Hence we can apply Green’s Theorem. 

Using Green’s Theorem in plane ,assuming that R is the region bounded by C. 

It is given that  f (z)=u(x,y)+iv(x,y) is analytic on and within c. 

 Hence  
y

v

x

u









, 

x

v

y

u









 

Using this we have  

    
Rc R

dxdyidxdydzzf 000)(  

                                           Hence   the  theorem. 

Cauchy's integral formula: 

Cauchy's integral formula states that  

 

(1)  

where the integral is a contour integral along the contour enclosing the point .  

It can be derived by considering the contour integral  

 

(2)  

defining a path as an infinitesimal counterclockwise circle around the point , and defining 

the path as an arbitrary loop with a cut line (on which the forward and reverse contributions 

cancel each other out) so as to go around . The total path is then  

 

(3)  

so  

 

(4)  

http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Contour.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Circle.html


From the Cauchy integral theorem, the contour integral along any path not enclosing a pole is 0. 

Therefore, the first term in the above equation is 0 since does not enclose the pole, and we are 

left with  

 

(5)  

Now, let , so . Then  

 

 

 

(6)  

  

 

(7)  

But we are free to allow the radius to shrink to 0, so  

 

 

 

(8)  

  

 

(9)  

  

 

(10)  

   

(11)  

giving (1).  

If multiple loops are made around the point , then equation (11) becomes  

 

(12)  

where is the contour winding number.  

A similar formula holds for the derivatives of ,  

  

 

(13)  

http://mathworld.wolfram.com/CauchyIntegralTheorem.html
http://mathworld.wolfram.com/ContourIntegral.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/CauchyIntegralFormula.html#eqn11
http://mathworld.wolfram.com/ContourWindingNumber.html


  

 

(14)  

  

 

(15)  

  

 

(16)  

  

 

(17)  

Iterating again,  

 

(18)  

Continuing the process and adding the contour winding number ,  

 

Problem: Evaluate using cauchy’s integral formula  
c

z

dz
zz

e

)2)(1(

2

where c is the circle 3z  

Solution: Given   
c

z

dz
zz

e

)2)(1(

2

              ……………(1) 

Both the points z=1,z=2 line inside 3z  

Resolving   into partial  fractions 

)2)(1(

1

 zz
=

)1( z

A
+

)2( z

B
 

A=-1, B=1 

From(1) 

 

 
c

z

dz
zz

e

)2)(1(

2

=  



c

z

dz
z

e

)1(

2

+   
c

z

dz
z

e

)2(

2

             (by cauchy’s integral formula) 

http://mathworld.wolfram.com/ContourWindingNumber.html


                         =-2𝜋 ̎if(1)+2𝜋if(2) 

                          =-2𝜋ie2.1+2𝜋ie2.2 

                           =-2𝜋ie2+2𝜋𝑖e4=2𝜋𝑖(𝑒4-e2) 

 

Problem: Using cauchy’sintegralformula  to evaluate ,
)2)1(

cossin 22

dz
zz

zz

c

 

 
where c is the circle 

3z  

Solution:  dz
zz

zf

c

  )2)1(

)(
=( dz

z
c

  )2(

1
+ dz

z
c

  )1(

1
)f(z)dz 

                                   =     dz
z

zf

c

  )2(

)(
+ dz

z

zf

c

  )1(

)(
 

                                    =2Пif(2)- 2∏if(1) 

                                =2Пi(sin4П+cos4П)-(sinП+cosП)) 

                                =2Пi(1-(-1))=4Пi             

 

dz
zz

zz

c

 



)2)1(

cossin 22 
=4Пi 

 Problem: Evaluate dz
zz

z

c

 



)2()1(

)1(
2

  whrere    c is 2 iZ  

Solution: the singularities of
)2()1(

)1(
2 



zz

z
 are given by 

(z+1)2(z-2)=0 

  Z=-1 and z=2 

Z=-1 lies inside the  circle since 021  i  

Z=2 lies outside the  circle sinceI2-iI-2>0 022  i  

The given line integral can be written as 



dz
zz

z

c

 



)2()1(

)1(
2

=  





c
z

z

z

2)1(

)2(

)1(

----------------------------(1) 

The derivative of analytic function is given by 

  

           dz
az

zf

c

n  1)(

)(
=

2𝜋𝑖𝑓𝑛(𝑎)

𝑛!
-------------------------------------(2) 

        From (1) and (2) f(z)=
(𝑧−1)

(𝑧−2)
, a=-1,n=1 

22

1

)2(

1

)2(

)1(1)2(1
)(









zz

zz
zf  

9

1
)1(1


f  

Substituting in (2),we get 

 

dz
zz

z

c

 



)2()1(

)1(
2

= )
9

1
(

1

2


i
 

                          =
−2

9
Пi 

 

Problem: Evaluate dz
z

e

c

z

  4

2

)1(
 where c: 11 z  

Solution:  the singular points of  dz
z

e z

4

2

)1( 
 are givenby7 

               (z+1)4=0 1 z  

The singular point z=-1 lies insidethecirclec: 31 z  

Applying   cauchy’s integral formula for derivatives 

 



     dz
az

zf

c

n  1)(

)(
   =   dz

n

if

c

n




!

)1(2
--------------------------(1) 

f(z)=e2z,n=3,a=-1 

f(z)=2e2z 

f1(z)=4e2z 

f11(z)=8e2z 

f111)z)=16e2z 

f111(-1)=16e-2 

substituting in(1) 

 

    dz
z

e

c

z

  4

2

)1(
= 



c
n

if

!

)1(2 111
 

                      =
!2

162 2ei
 

                               =16Пie-2 

 

 

Problem: Use cauchy’s  integral formula to evaluate  dz
z

e

c

z

 



3

2

)1(
     

with c: 2z

 

Solution:  

Given 

dz
z

e

c

z

 



3

2

)1(
 

       f(z)=e-2z 

the singular poin  z=-1 lies inside the given circle 2z  

apply Cauchy’s integral formula for derivatives 



=
!2

)1(2 1 if
           











c

aif

az

zf

!2

)(2

)(

)( 1

3


  

Where f(z)=e-2z 

              f1(z)=-2 e-2z 

             f11(z)=4 e-2z 

             f11(-1)= 4 e2 

 dz
z

e

c

z

 



3

2

)1(
=

2
2

4
2

42
ie

ei





 

Problem: Evaluate  dz
zz

dz

c

  )4(8

        

withc: 2z

     

 

Solution:  

The singularities of 

dz
zz

dz

c

  )4(8

   are given by  

 

-4z0,z   0=4)+(zZ8 

The point z=0  lie  inside and the z=-4 lies outside the circle 

2z

 

By the derivative of analytic function. 

 Problem: Evaluate using integral formula  c

z

zz

dze

)2)(1(

2

 where  c is the circle 3z

  

 

Solution:  Let (z)= ez which is analytic within  the circle c: 3z  and the two singular points  

a=1,a=2 lie inside  c. 

 c

z

zz

dze

)2)(1(

2

=

dz
z

e
dz

z

e

dz
zz

e

c

z

c

z

z
























12

1

1

2

1

22

2

 

Now using   cauchy’s integral formula ,we obtain  

dz
z

e

c

z

 



3

2

)1(



 c
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zz
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= 24 22 ieie    

                       = )(2 24 eei   

 c
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= )(2 24 eei   

Problem : Evaluate dz
z
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c 


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3
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2

 where cisthe circle 11 z  

Solution:  Given f(z)= 3z2+z 

Z=a=+1or -1 

The circle 11 z  has centre at z=1 and radius  1 and includes the point z=1,f(z)=3z2+z  is an 

analytic function 
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Since z=1 lies inside c,we have by cauchy’s integralformula 

=2 )(iif  

                  =  2 4*i         

    Bycauchy’sintegral theorem ,since z=-1 lies out side c,we have 
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From equation(1) we have 
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EXCERCISE   PROBLEMS:    

1) Evaluate 
0

dz

z z  where c: 0z z = r                                                           

      2) Evaluate  
(2,2)

(1,1)
( ) ( )x y dx y x dy    along the parabola  2y x            

       3)Evaluate 
2

2

4

1
c

z
dz

z



   where C: 2z   using Cauchy’s Integral formula 

       4)Evaluate 
2

( 1)( 2)

z

c

e
dz

z z   where C: 4z   using Cauchy’s integral formula     

       5) Evaluate 
3

3( 2)
c

z z

z



  where : 3C z   using Cauchy’s integral formula     

       6) Expand f(z) = 
2

3( 1)

z

c

e

z   at a point  z=1          

       7) Expand  f(z)= 
2

1

4 3
c

z z   for   31  z   

       8)Evaluate 2 2 2 2 2 2( ) ( ) ( )y z dx z x dy x y dz      from (0,0,0) to (1,1,1) , where 

      C is the curve 2 3, ,x t x t x t                                                                      

       9) Evaluate 

(1,1)

2 2

(0,0)

(3 4 )x xy ix dz   along  2y x                                                       

      10) Evaluate )(

1

0

2






i

ixyx dz 

(i)  along the straight  from z  = 0 to z = 1+i . 

(ii) along the real axis from z = 0 to z = 1 and then along a line parallel to real axis from z = 

1 to z = 1+i 

(iii) along the imaginary axis from z = 0 to z = I  and then along a line parallel to real axis z = 

i to z = 1+ i . 



11) Evaluate )12(

2

1








i

i

iyx dz along (1-i) to (2+i)  

12) Evaluate  
c

dyxyxdxxyy )2()2( 22
where c is boundary of the region y=x 2 and x=y 2  

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 

UNIT-III 
POWER SERIES EXPANSION OF 

COMPLEX FUNCTION 
 

 

 

 

 

 

 

 

 

 

 

 



Power series: 

A series expansion is a representation of a particular function as a sum of powers in one of its 

variables, or by a sum of powers of another (usually elementary) function f(z). 

A power series in a variable is an infinite sum of the form  

 i

iza  

   A series of the form  n

nza is called as power series.  

       That is  ...............2

21  n

n

n

n zazazaza   

Taylor's series: 

Taylor's theorem states that any function satisfying certain conditions may be represented by a 

Taylor series. 

The Taylor series is an  infinite series, whereas a Taylor  polynomial is a polynomial of degree n 

and has a finite number  of terms. The form of a Taylor polynomial of degree n for a function  

f (z) at x = a is 
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Maclaurin series: 

   A Maclaurin series  is a Taylor series expansion of a function about  x=0,  
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This series is called as maclurins series expansion of f(z). 

Some important result: 

   

   

    

          

http://mathworld.wolfram.com/Sum.html
http://mathworld.wolfram.com/OftheForm.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/TaylorSeries.html


      
Problems 

 
Problem:  Determine the first four terms of the power series for sin 2x using Maclaurin’s series. 

Solution: 

 Let 

 f(x) = sin 2x            f(0) = sin 0 = 0 

f′(x)= 2 cos 2x              f′(0) = 2 cos 0 = 2 

f′′(x)= –4 sin 2x           f′′(0) = –4 sin 0 = 0  

f′′′(x) = –8 cos 2x         f′′′(0) = –8 cos 0 = –8 

 fiv(x)= 16 sin 2x           fiv(0)= 16 sin 0 = 0  

fv (x)= 32 cos 2x(0)       fv (0)= 32 cos 0 = 32 

fvi (x)= –64 sin 2x          fvi (0)= –64 sin 0 = 0 

fvi i(x )= –128 cos 2x      fvii (0)= –128 cos 0 = –128 

  f(x )= sin2x = 0+2 x+0 x2+(-8) 
!3

3x
+0.x4 +32 

!5

5x
 

                      = 2x - 
3

4 3x
+

15

4 5x
 

Problem :  Find  the Taylor series about z = -1 for f (x) = 1/z. Express your  answer in sigma     

                  notation. 

Solution: 

 

        Let f (z) = z -1               f(-1) = -1  

                 f ' = - z -2              f’(-1) = -1  

                 f '' = 2z-3              f '' (-1) = -2 

                 f ''' = -6z -4           f ''' (-1) = -6 

                 f '''' = 24z-5            f '''' (-1) = -24 

   f(z)  =  -1-1(z+1) - .........)1(
!4

24
)1(

!3

6
)1(

!2

2 432  zzz  
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Problem :  Find the Maclaurin series for f (z) = z e z Express your answer in  sigma notation. 

Solution: 

Let   f (z) = z e z                                           f (0) = 0 

         f ' = e z+ z e z                                       f '(0) = 1 + 0 = 1 

         f '' = e z+ e z+ z e z                               f ''(0) = 1 + 1 + 0 = 2 

         f ''' = e z+ e z+ e z+ z ez                        f '''(0) = 1 + 1 + 1 + 0 = 3 

        f '''' = e z+ e z+ e z+ ez+ z e z                 f ''''(0) = 1 + 1 + 1 + 1 + 0 = 4 

      .............
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3
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2
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               = .............
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1 432  zzzz  
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Problem: Expand   log z   by taylor’s  series about z=1. 

Solution: 

       Let f(z) = log z 

     Put    z-1= w 

             z= 1+w    

            log z = log (1+w) 

           f(z)=log z = log (1+w) 

                 =   1.........;
!
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                f(z) = 11.........;
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Laurent series: 

 

In mathematics, the Laurent series of a complex function  f(z) is a representation of that 

function as a power series which includes terms of negative degree. It may be used to express 

complex functions in cases where a Taylor series expansion cannot be applied. 

The Laurent series for a complex function f(z) about a point c is given by: 

   





n

n

n azazf )()(  

           






 


10 )(

1
)()(

n
nn

n

n

n
az

bazazf  

where the an and a are constants. 

Laurent polynomials: 

A Laurent polynomial is a Laurent series in which only finitely many coefficients are non-zero. 

Laurent polynomials differ from ordinary polynomials in that they may have terms of negative 

degree. 

Principal part: 

The principal part of a Laurent series is the series of terms with negative degree, that is 







1

)()(
K

K

K azazf  

https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Power_series
https://en.wikipedia.org/wiki/Taylor_series
https://en.wikipedia.org/wiki/Polynomial


If the principal part of f is a finite sum, then f has a pole at c of order equal to (negative) the 

degree of the highest term; on the other hand, if f has an essential singularity at c, the principal 

part is an infinite sum (meaning it has infinitely many non-zero terms). 

Two Laurent series with only finitely many negative terms can be multiplied: algebraically, the 

sums are all finite; geometrically, these have poles at c, and inner radius of convergence 0, so 

they both converge on an overlapping annulus. 

Thus when defining formal Laurent series, one requires Laurent series with only finitely many 

negative terms. 

Similarly, the sum of two convergent Laurent series need not converge, though it is always 

defined formally, but the sum of two bounded below Laurent series (or any Laurent series on a 

punctured disk) has a non-empty annulus of convergence. 

 

Zero’s of an analytic function: 

      A zero of an analytic function f(z) is a value of z such that f(z)=0 .Particularly a point  a is  

called a zero of an analytic function  f (z)  if f(a) = 0. 

   Eg:  
22

2
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        Now, 0)1( 2 z   

                    Z = -1, z = -1 are zero’s of an analytic function. 

Zero’s of mth order: 

 

If an analytic function f(z) can be expressed in the form  )()()( zazzf m  where )(z   is 

analytic function  and 0)(  a   then z=a is called zero of  mth order  of the function f(z). 

 A  simple  zero is a zero of order 1. 

Eg:  1.   3)1()(  zzf  

                   0)1( 3 z  

                    z=1 is a zero of  order 3 of the function f(z). 

       2. 
z

zf



1

1
)(  

         i.e z  is a simple zero of f(z). 

       3.  zzf sin)(   

         i.e  ,......3,2,1,0 nnz   are simple zero’s of  f(z). 

 

 

Problems 

 
Problem: Find the first four terms of the Taylor’s series expansion of the complex function  

        
)4)(3(

1
)(






zz

z
zf  about z =2.Find the region of convergence. 

Solution:       

https://en.wikipedia.org/wiki/Pole_%28complex_analysis%29
https://en.wikipedia.org/wiki/Essential_singularity
https://en.wikipedia.org/wiki/Formal_power_series#Formal_Laurent_series


     The   singularities of the function 
)4)(3(

1
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zf  are z = 3 and z = 4 

      Draw   a circle   with centre at z=2 and radius 1 .Then the distance of singularities from the 

centre are 1 and 2. 

  Hence within the circle 12 z   ,the  given function is analytic .Hence ,it can be extended in 

Taylor’s series within the circle 12 z . 

  Hence 12 z
 
is the circle of convergence. 

Now  
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Taylor’s series expansion for f(z) at z=a is  
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Problem:  ObtainLaurent series for  
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about z = 1. 

Solution:       

      Given 
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    Put   z-1= w    so that    z = w+1 
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 Since   points 01 z will be singular points. 

Singular point   of an analytic function:  A point at which an analytic function f(z) is not 

analytic, i.e. at which f '(z) fails to exist, is called a singular point or singularity of the 

function.                                         

There are different types of singular points:   

Isolated and non-isolated singular points: A singular point z0 is called an isolated singular 

point of an analytic function f(z) if there exists a deleted ε-spherical neighborhood of z0 that 

contains no singularity. If no such neighborhood can be found, z0 is called a non-isolated 

singular point. Thus an isolated singular point is a singular point that stands completely by itself, 

embedded in regular points. In fig 1a  where z1, z2 and z3 are isolated singular points. Most 

singular points are isolated singular points. A non-isolated singular point is a singular point such 

that every deleted ε-spherical neighborhood of it contains singular points. See Fig. 1b where z0 is 

the limit point of a set of singular points. Isolated singular points include poles, removable 

singularities, essential singularities and branch points.  



 
Types of isolated singular points: 

Pole: An isolated singular point z0 such that f(z) can be represented by an expression that is of 

the form 

 

              

 

Where  n is a positive integer, (z) is analytic at z0, and (z0) ≠ 0. The integer n is called the 

order of the pole. If n = 1, z0 is called a simple pole. 

 

Example: 1.The function 

    



           has  a  pole of order 3 at z = 2 and simple poles at z = -3 and z = 2. 

1. A point z is a pole for f if f blows up at z (f goes to infinity as you approach z). An 

example of a pole is z=0 for f(z) = 1/z. 

Simple   pole :  A pole of order 1 is called a simple pole whilst a pole of order 2 is called a 

double pole.  

If the principal part of the Laurent series has an infinite number of terms then z = z0 is called 

an isolated essential singularity of f(z). The function f(z) = i/ z(z − i) ≡ 1/( z – i) – (1/ z)  has 

a simple pole at z = 0 and another simple pole at z = i. 

The function 2

1

ze has an isolated essential singularity at z = 2. Some complex functions have 

non-isolated singularities called branch points. An example of such a function is √z. 

 

   Removable singular point: An isolated singular point z0 such that f can be defined, or 

redefined, at z0 in such a way as to be analytic at z0. A singular point z0 is removable if  

)(lim
0

zf
zz

 exist. 

 

Example: 1.The singular point z = 0 is a removable singularity of f(z) = (sin z)/z since      

1
sin

lim
0


 z

z

z
 

A point z is a removable singularity for f if f is defined in a neighborhood of the point z, but 

not at z, but f can be defined at z so that f is a continuous function which includes z. Here is 

an example of this: if f(z) = z is defined in the punctured disk, the disk minus 0, then f is not 

defined at z=0, but it can certainly be extended continuously to 0 by defining f(0) = 0. This 

means at z=0 is a removable singularity. 

 

 Essential singular point: A singular point that is not a pole or removable singularity is called 

an essential singular point.  

 

Example: 1. f(z) = e 1/(z-3) has an essential singularity at z = 3. 



2. A point z is an essential singularity if the limit as f approaches z takes on different values 

as you approach z from different directions. An example of this is exp(1/z) at z=0. As z 

approaches 0 from the right, exp(1/z) blows up and as z approaches 0 from the left, 

exp(1/z) goes to 0. 

Singular points at infinity: The type of singularity of f(z) at z = ∞ is the same as that of  f(1/w) 

at w = 0. Consult the following example. 

Example:  The function f(z) = z2 has a pole of order 2 at z = ∞, since f(1/w) has a pole of order 2 

at w = 0. 

Using the transformation w = 1/z the point z = 0 (i.e. the origin) is mapped into w = ∞, called the 

point at infinity in the w plane. Similarly, we call z = ∞ the point at infinity in the z plane. To 

consider the behavior of f(z) at z = ∞, we let z = 1/w and examine the behavior of f(1/w) at w = 

0. 

Residues: 

The constant a-1   in  the Laurent series  

n
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n zzazf )()( 0 
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

 (1)  

of about a point z0 is called the residue of f(z). If is analytic at z0,   its residue is zero, but the 

converse is not always true (for example, 
2

1

z
has residue of 0 at z=0  but is not analytic at z=0 . 

The residue of a function f at a point z0 may be denoted  )(Re
0

zfs
ZZ

.  

Residue:  Let f(z) have a nonremovable isolated singularity at the point z0.  Then f(z) has 

the Laurent series representation for all z in some disk given by   
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                                                                                                   (1) 

 

The coefficient   a-1   of  
0

1

zz 
  is called the residue of f(z) at z0  and we use the notation   

 

              Res[f, z0]= a-1    

Example : If  zezf

2

)(  ,  then the Laurent series of f about the point z0 =0 has the form    

 

http://mathworld.wolfram.com/LaurentSeries.html
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            ,  and 

 

              Res[f, 0] = a-1  =2 

The residue of a function f around a point z0 is also defined by 
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1
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where C  is counterclockwise simple closed contour, small enough to avoid any other poles of . 

In fact, any counterclockwise path with contour winding number 1 which does not contain any 

other poles gives the same result by the Cauchy integral formula. The above diagram shows a 

suitable contour for which to define the residue of function, where the poles are indicated as 

black dots. 

It is more natural to consider the residue of a meromorphic one-form because it is independent of 

the choice of coordinate. On a Riemann surface, the residue is defined for a meromorphic one-

form  at a point  by writing  in a coordinate  around . Then 

 

(3) 

The sum of the residues of  is zero on the Riemann sphere. More generally, the sum of the 

residues of a meromorphic one-form on a compact Riemann surface must be zero. 

The residues of a function  may be found without explicitly expanding into a Laurent 

series as follows. If  has a pole of order  at , then  for  and . 

Therefore, 

 

(4) 

  

 

(5) 

 

 

 

(6) 

  

 

(7) 
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Iterating, 

 

(12) 

So 

 

 

 

(13) 

   

(14) 

and the residue is 

 

(15) 

The residues of a holomorphic function at its poles characterize a great deal of the structure of a 

function, appearing for example in the amazing residue theorem of contour integration. 

 If f(z) has a removable singularity at z0  then  a-1 

=0   for  n=1,2,…….  Therefore,  Res[f, z0]=0. 

  

Residues at Poles: 
 

http://mathworld.wolfram.com/HolomorphicFunction.html
http://mathworld.wolfram.com/Pole.html
http://mathworld.wolfram.com/ResidueTheorem.html
http://mathworld.wolfram.com/ContourIntegration.html


(i)      If f(z) has a simple pole at z0 ,  then    )()(lim],[Re 00
0
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(ii)     If f(z) has a pole of order 2 at  z0   ,  then    )()(lim],[Re 2

00
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d
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(iii)     If f(z) has a pole of order 3 at z0 ,  then  ))()((lim
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1
],[Re 3
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(v)     If f(z) has a pole of order k at  z0 ,  then  ))()((lim
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Cauch’s   Residue Theorem: 

An analytic function f(z) whose Laurent series is given by )()(lim)( 0
0

zfzzzf
ZZ


                    (1)

 

can be integrated term by term using a closed contour C encircling z0,
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The Cauchy integral theorem requires that the first and last terms vanish, so we have 
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where a-1 is the complex residue. Using the contour   z=c(t)=eit +z 0  gives 
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so we have 
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If the contour C encloses multiple poles, then the theorem gives the general result 
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Where   A  is the set of poles contained inside the contour. This amazing theorem therefore says 

that the value of a contour integral for any contour in the complex plane depends only on the 

properties of a few very special points inside the contour. 

Residue at infinity: 

The residue at infinity is given by: 
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C

Z dzzf
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Where f is an analytic function except at finite number of singular points and C is a closed 

countour so all singular points lie inside it. 

Problem:  Determine the poles  of the function 
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2
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z
zf and the residue at each 

pole. 

Solution:      The poles of  f(z) are given by (z+1)2(z-2)=0 

  Here z=2 is a simple pole and z= -1 is a pole of order 2 . 

Residue at z=2 is 
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Residue at z=-1  is 
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Problem:  Find the residue of the function  
4

21
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z
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z
 at the poles. 

Solution:      Let
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z

e
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        z =0 is a pole of order 4 

Residue of  f(z) at z=0 is  
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Problem:  Find the residue of the function  )
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  The   poles of f(z) are z (z-1)(z-2)=0 

                                    z=0, z= 1, z=2 

These poles are simple poles. 

The   poles z=0 and z=1 lie within the circle c: 
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Problem: Evaluate   
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The poles of f(z) are z=-i/2 and z=-2i 

The pole z=-i/2 lies inside the unit circle . 
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By cauchy’s residue theorem 
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Problem: Prove that ),0,0(
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Solution:   To evaluate the given integral, consider   
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Where c is the contour  consisting of the semi circle 
RC of radius R together with the real part of 

the real axis from –R to R. 
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By Cauchy’s Residue theorem  ,we have  
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EXCERCISE   PROBLEMS:    

1)Evaluate  
2

0 cos

d

a b

 

  where  C: 1z 
                                

 2)Prove that 
2 2

dx

a x a







        

 3)Show that 
3-

dx 3

(x+1) 8




     

4)Prove that   
2 2 2 2( )( ) ( )

dx

x a x b ab a b






                                    

 5)Evaluate 
2 2 2 2 2 2( ) ( ) ( )y z dx z x dy x y dz      from (0,0,0) to (1,1,1) , where   C is the 

curve 2 3, ,x t x t x t                                                                      

6) Evaluate 
(1,1)

2 2

(0,0)

(3 4 )x xy ix dz   along  2y x                                                

7)Obtain the Taylor series expansion of f(z)  =  
z

1
 about the point  z = 1 

8)Obtain the Taylor series expansion of f(z)  =  
ze   about the point  z = 1 

9)Expand f(z) = 
1

1





z

z
 in Taylor’s series about the point (i)  z = 0 (ii) z = 1  

10)Expand f(z) = 
2

1

z
 in Taylor’s series  in powers of z +1   

11)Obtain Laurent’s series expansion of f(z) = 
2

2

4

5 4

z

z z



 
 valid in   1< z < 2 

  12)Give two Laurent’s series expansions in powers of Z for f(z) = 
)1(

1
2 zz   

   13)Expand f(z )= 
)2)(1(

1

 zz    

   14)Maclaurin’s series expansion of f(z) 

   15)Laurent’s series expansion in the annulus region in  

a) 
21  z

 

    16)Find the residue  of the function 
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 zat
z

z
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17) Find the residue of 
14
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z

z
 at these singular points which lie inside the circle |𝑧|=2 

18) Find the residue  of the function 
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UNIT  - IV 
SINGLE RANDOM VARIABLE 

 

 

 

 

 

 

 

 

 

 

 



 

 

Probability 

Trial and Event: Consider an experiment, which though repeated under essential and identical 

conditions, does not give a unique result but may result in any one of the several possible outcomes. The 

experiment is known as Trial and the outcome is called Event 

E.g. (1) Throwing a dice experiment getting the no’s 1,2,3,4,5,6 (event) 

(2) Tossing a coin experiment and getting head or tail (event) 

 

Exhaustive Events: 

The total no. of possible outcomes in any trial is called exhaustive event. 

E.g.: (1) In tossing of a coin experiment there are two exhaustive events. 

      (2) In throwing an n-dice experiment, there are 
n6  exhaustive events. 

 

Favorable event: 

The no of cases favorable to an event in a trial is the no of outcomes which entities the happening of the 

event. 

 

E.g. (1) In tossing a coin, there is one and only one favorable case to get either head or tail. 

 

Mutually exclusive Event: If two or more of them cannot happen simultaneously in the same trial then 

the event are called mutually exclusive event. 

E.g. In throwing a dice experiment, the events 1,2,3,------6 are M.E. events 

 

Equally likely Events: Outcomes of events are said to be equally likely if there is no reason for one to be 

preferred over other. E.g. tossing a coin. Chance of getting 1,2,3,4,5,6 is equally likely. 

 



Independent Event: 

Several events are said to be independent if the happening or the non-happening of the event is not 

affected by the concerning of the occurrence of any one of the remaining events. 

An event that always happen is called Certain event,  it is denoted by  ‘S’.  

An event that never happens is called Impossible event, it is denoted by  ‘ ’.  

Eg: In tossing a coin and throwing a die, getting head or tail is independent of getting no’s 1 or 2 or 3 or 4 

or 5 or 6. 

 

Definition: probability (Mathematical Definition) 

If a trial results in n-exhaustive mutually exclusive, and equally likely cases and m of them are favorable 

to the happening of an event E then the probability of an event E is denoted by P(E) and is defined as 

P(E)   =  
casesexaustiveofnoTotal

eventtocasesfavourableofno
 =

n

m
 

 

 

Sample Space: 

 

 The set of all possible outcomes of a random experiment is called Sample Space .The elements of this set 

are called sample points. Sample Space is denoted by S. 

Eg. (1) In throwing two dies experiment, Sample S contains 36 Sample points. 

  S = {(1,1) ,(1,2) ,----------(1,6), --------(6,1),(6,2),--------(6,6)} 

 Eg. (2) In tossing two coins experiment ,     S = {HH ,HT,TH,TT} 

A sample space is called discrete if it contains only finitely or infinitely many points which can be 

arranged into a simple sequence w1,w2,……. .while a sample space containing non denumerable no. of 

points is called a continuous sample space. 

 Statistical or Empirical Probability: 

  If a trial is repeated a no. of times under essential homogenous and identical conditions, then the limiting 

value of the ratio of the no. of times the event happens to the total no. of trials, as the number of trials 

become indefinitely large, is called the probability of happening of the event.( It is assumed the limit is 

finite and unique) 



  Symbolically, if in  ‘n’ trials and events E happens ‘m’ times , then the probability ‘p’ of the happening 

of E is given by    p = P(E) = 
n

m

n 
lim . 

 An event E is called elementary event if it consists only one element. 

An event, which is not elementary, is called compound event. 

 

Random Variables 

 

 A random variable X on a sample space S is a function X : S  R from  S onto the set of real 

numbers R, which assigns a real number X (s) to each sample point  ‘s’ of S. 

 Random variables (r.v.) bare denoted by the capital letters X,Y,Z,etc.. 

 Random variable is a single valued function. 

 Sum, difference, product of two random variables is also a random variable .Finite linear 

combination of r.v is also a r.v .Scalar multiple of a random variable is also random variable. 

 A random variable, which takes at most a countable number of values, it is called a discrete r.v. In 
other words, a real valued function defined on a discrete sample space is called discrete r.v. 

 A random variable X is said to be continuous if it can take all possible values between certain 

limits .In other words, a r.v is said to be continuous when it’s different values cannot be put in 1-1 

correspondence with a set of positive integers. 

 A continuous r.v is a r.v that can be measured to any desired degree of accuracy. Ex : age , height, 
weight etc.. 

 Discrete Probability distribution: Each event in a sample has a certain probability of occurrence . 

A formula representing all these probabilities which a discrete r.v. assumes is known as the 

discrete probability distribution. 

 The probability function or probability mass function (p.m.f) of a discrete random variable X is 
the function f(x) satisfying the following conditions. 

          i)  f(x)0  

          ii)  
x

xf )(  = 1  

        iii) P(X =x) = f(x) 

 Cumulative distribution or simply distribution of a discrete r.v. X is F(x) defined by F(x) = P(X  

x) = 
xt

tf )(  for  x  

 

 
 

 

 



 If X takes on only a finite no. of values x1,x2,……xn then the distribution function is given by  

                              F(x) =                              0                    - < x < x1 

                                                                     f(x1)                   x1x<x2 

                                                               f(x1)+f(x2)          x2x<x3 

                                                                                                        ……… 

                                                                                                        f(x1)+f(x2)+…..+f(xn)         xn x <  

              F(-) = 0 ,  F()=1, 0F(x)1, F(x)F(y) if x<y 

     P(xk)= P(X= xk)=F(xk) – F(xk-1) 

 For a continuous r.v. X, the function f(x) satisfying the following is known as the probability 

density function(p.d.f.) or simply density function: 

i) f(x)  0 ,- <x < 

ii) 




 1)( dxxf  

iii) P(a<X<b)= 
b

a

dxxf )( = Area under f(x)  between ordinates x=a and x=b 

 P(a<X<b) = P(ax<b)=P(a<Xb)=P(aXb) 

     (i.e) In case of continuous it does not  matter weather we include the end  

    points of the interval from a to b.This result in general is not true for  

   discrete r.v. 

 Probability at a point P(X=a) = 




xa

xa

dxxf )(
 

 Cumulative distribution for a continuous r.v. X with p.d.f. f(x), the cumulative distribution F(x) is 

defined as  

F(x)= P(Xx)= 




dttf )(    -<x< 

It follows that F(-) = 0 ,  F()=1, 0F(x)1 for -<x< 



f(x)= d/dx(F(x))= F1(x)0 and P(a < x < b)= F(b)-F(a) 

 In case of discrete  r.v. the probability at a point i.e., P(x=c) is not zero for some fixed c however 

in case of continuous random variables the probability at appoint is always zero. I.e., P(x=c) = 0 

for all possible values of c. 

 P(E) = 0 does not imply that the event E is null or impossible event. 

 If X and Y are two discrete random variables the joint probability function of X and Y is given by  

P(X=x,Y=y) = f(x,y) and satisfies   

(i)     f(x,y)  0      (ii)
x y

yxf ),(  = 1 

The joint probability function for X and Y can be reperesented by a joint probability table.  

Table 

X          Y 

 

      y1       y2 ……     yn Totals 

     x1    f(x1,y1) f(x1,y2) …….. f(x1,yn)   f1(x1) 

=P(X=x1) 

     x2   F(x2,y1) f(x2,y2) …….. f(x2,yn)   f1(x2) 

=P(X=x2) 

    …….. ……. ……… ……… ……… …….. 

    xm f(xm,y1) f(xm,y2) ……. f(xm,yn)   f1(xm) 

=P(X=xm) 

Totals f2(y1) 

=P(Y=y1) 

f2(y2) 

=P(Y=y2) 

…….. f2(yn) 

=P(Y=yn) 

      1 

 

 

 



 

The probability ofX = xj is obtained by adding all entries in arrow corresponding to X = xj 

Similarly the probability of Y = yk is obtained by all entries in the column corresponding to Y 

=yk 

f1(x) and f2(y) are called marginal probability functions of X and Y respectively. 

The  joint distribution function of X and Y is defined by F(x,y)= P(Xx,Yy)= 
 xu yv

vuf ),(  

 If X and Y are two continuous r.v.’s the joint probability function for the r.v.’s X and Y is defined 

by 

(i)   f(x,y)  0           (ii)  








dxdyyxf ),( =1 

  P(a < X < b, c< Y < d) =  
 

b

ax

d

cy

dxdyyxf ),(  

 The joint distribution function of X and Y is  F(x,y) = P( X  x,Y  y)=  






u v

dudvvuf ),(  

 ),(
2

yxf
yx

F





 

 The Marginal distribution function of X and Y are given by P( X  x) = F1(x)= 

 






u v

dudvvuf ),(    and P(Y  y) = F2(y) =  






u v

dudvvuf ),(  

 The marginal density function of X and Y are  given by 

f1(x) =   


v

dvvxf ),(  and  f2(y) =   


u

duyuf ),(  

  Two discrete random variables X and Y are independent iff    

     P(X = x,Y = y) = P(X = x)P(Y = y)  x,y   (or) 

      f(x,y)  =  f1(x)f2(y)     x, y 



 Two continuous random variables X and Y are independent iff 

             P(X  x,Y  y) = P(X  x)P(Y  y)  x,y   (or) 

            f(x,y)  =  f1(x)f2(y)     x, y 

If X and Y are two discrete r.v. with joint probability function f(x,y) then  

 P(Y = y|X=x) =
)(

),(

1 xf

yxf
 = f(y|x) 

Similarly,  P(X = x|Y=y) =
)(

),(

2 yf

yxf
 = f(x|y)  

If X and Y are continuous r.v. with joint density function f(x,y) then 
)(

),(

1 xf

yxf
 = f(y|x) and 

)(

),(

2 yf

yxf
 = 

f(x|y) 

 

 Expectation or mean or Expected value : The mathematical expectation or expected value of r.v. X is 

denoted by E(x) or  and is defined as 

 E(X)=     ContinuousisXdxxxf

discreteisXxfx
i

ii

















)(

)(

         

 

 If X is a r.v. then   E[g(X)] =              
)()( xfxg

x


             FOR  Discrete 

                                                                       dxxfxg )()(




               For Continuous 

 If X, Y are r.v.’s with joint probability function f(x,y) then  



   E[g(X,Y)] =           
x y

yxfyxg ),(),(   for  discrete r.v.’s 

                               








dxdyyxfyxg ),(),(   for continuous r.v.’s 

    If X and Y are two continuous r.v.’s the joint density function f(x,y) the conditional expectation or the 

conditional mean of Y given X is E(Y |X = x) = 




dyxyyf )|(  

Similarly, conditional mean of X given Y is E(X |Y = y) = 




dxyxxf )|(  

 Median is the point, which divides the entire distribution into two equal parts. In case of 

continuous distribution median is the point, which divides the total area into two equal parts. 

Thus, if M is the median then 


M

dxxf )( = 


M

dxxf )( =1/2. Thus, solving any one of the 

equations for M we get the value of median. Median is unique 

 Mode: Mode is the value for f(x) or P(xi) at attains its maximum 

                 For continuous r.v. X mode is the solution of f1(x) = 0 and f11(x) <0   

                provided it lies in the given interval. Mode may or may not be unique. 

 Variance:  Variance characterizes the variability  in the distributions with same mean can still 

have different dispersion of data about their means  

                Variance of r.v.  X denoted by  Var(X) and is defined as  

                Var(X) = E    )   - (X 2   =                 
)()( 2 xfx

x

  
        for discrete 

                                                                              dxxfx )()( 2





                for continuous 

                  where  = E(X) 

 If c is any constant then E(cX) = c E(X) 



 If X and Y are two r.v.’s then E(X+Y) = E(X)+E(Y) 

 IF X,Y are two independent r.v.’s then E(XY) = E(X)E(Y) 

 If  X1,X2,-------,Xn are  random variables then E(c1X1 +c2X2+------+cnXn) = c1E(X1)+c2E(X2)+-----

+cnE(Xn) for any scalars c1,c2,------,cn  If all expectations exists 

 If X1,X2,-------,Xn are independent r.v’s then E 















 n

i

i

n

i

i XEX

11

)(  if all expectations exists. 

 Var (X) = E (X2) –[E (X)]2 

 If ‘c’ is any constant then var (cX) = c2var(X) 

 The quantity E[(X-a)2] is minimum when a == E(X) 

 If X and Y are independent r.v.’s then Var(X  Y) = Var(X)  Var(Y) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

UNIT - V 

PROBABILITY DISTRIBUTIONS 

 

 
 

 

 

 



Binomial Distribution 

   A random variable X is said to follow binomial distribution if it assumes only non-negative values and 

its probability mass function is given by 

P(X = x)  =  P(x) =          
xnxqp

x

n 








    where   x = 0,1,2,3,….n    q = 1-p 

                                         0 other wise 

  where n, p are known as parameters, n- number of independent trials p- probability of success in each 

trial, q- probability of failure. 

 Binomial distribution is a discrete distribution. 

 The notation X ~ B(n,p) is the random variable X which follows the binomial distribution with 

parameters n and p 

 If n trials constitute an experiment and the experiment is repeated N times the frequency function of the 

binomial distribution is given by f(x)  = NP(x). The  expected frequencies of 0,1,2,….. n successes are 

the successive terms of the binomial expansion N(p+q)n 

 The mean and variance of Binomial distribution are np , npq respectively. 

 Mode of the Binomial distribution: Mode of B.D. Depending upon the values of (n+1)p 

(i) If (n+1)p is not an integer then there exists a unique modal value for binomial distribution and it is 

‘m’= integral part of (n+1)p 

(ii) If (n+1)p is an integer say m then the distribution is Bi-Modal and the two modal values are m and 
m-1 

 Moment generating function of Binomial distribution: If  X ~ B(n,p)then MX(t)=(q+pet) n 

 The sum of two independent binomial variates is not a binomial varaite. In other words, Binomial 

distribution does not posses the additive or reproductive property.  

 For B.D. 1= 1 = 
npq

p21
    2= 2 –3 = 

npq

pq61
 

 If X1~ B(n1,p) and  X2~ B(n2,p) then X1+X2 ~ B(n1+n2,p).Thus the B.D. Possesses the additive or 

reproductive property if p1=p2 

Poisson Distribution  

 Poisson Distribution is a limiting case of the Binomial distribution under the following conditions: 

(i) n, the number of trials is infinitely large. 



(ii) P, the constant probability of success for each trial is indefinitely small. 

(iii) np= , is finite where  is a positive real number. 

 A random variable X is said to follow a Poisson distribution if it assumes only non-negative values and its 

p.m.f. is given by    

    P(x,)= P(X= x) =           
!x

e x
:      x=  0,1,2,3,……  > 0 

0   Other wise 

Here  is known as the parameter of the distribution. 

 We shall use the notation X~ P() to denote that X is a Poisson variate with parameter  

 Mean and variance of Poisson distribution are equal to . 

 The coefficient of skewness and kurtosis of the poisson distribution are 1 = 1= 1/ and 2= 2-

3=1/. Hence the poisson distribution is always a skewed distribution. Proceeding to limit as  tends to 

infinity we get 1 = 0 and 2=3 

 Mode of Poisson Distribution: Mode of P.D. Depending upon the value of  

(i) when  is not an integer the distribution is uni- modal and integral part of  is the unique modal 
value. 

(ii) When  = k is an integer the distribution is bi-modal and the two modals are k-1 and k. 

 Sum of independent poisson variates is also poisson variate. 

 The difference of two independent poisson variates is not a poisson variate. 

 Moment generating function of the P.D. 

     If X~ P() then MX(t) =  
)1( tee  

 Recurrence formula for the probabilities of P.D. ( Fitting of P.D.)    

P(x+1) = )(
1

xp
x 


 

 Recurrence relation for the probabilities of B.D. (Fitting of B.D.) 

     P(x+1) = )(.
1

xp
q

p

x

xn












 



     Normal Distribution 

 A random variable X is said to have a normal distribution with parameters  called mean and 2 called 

variance if its density function is given by the probability law 

f(x; , ) =    
 2

1
exp





















 

2

2

1



x
  ,    - < x < , - <  < ,  > 0 

 A r.v. X with mean  and variance 2 follows the normal distribution is denoted by  

        X~ N(, 2) 

 If X~ N(, 2) then Z = 


X
 is a standard normal variate with E(Z) = 0 and var(Z)=0 and we write 

Z~ N(0,1) 

 The p.d.f. of standard normal variate Z is given by f(Z) = 
2/2

2

1 ze


 , - < Z<  

 The distribution function F(Z) = P(Z  z) = 



z

t dte 2/2

2

1


 

 F(-z)  = 1 – F(z) 

 P(a < z  b) = P( a  z < b)= P(a <z < b)= P(a  z  b)= F(b) – F(a) 

 If X~ N(, 2) then Z = 


X
 then P(a  X  b) = 







 








 







 a
F

b
F  

 N.D. is another limiting form of the B.D. under the following conditions: 

i) n , the number of trials is infinitely large. 

ii) Neither p nor q is very small 

   Chief Characteristics of the normal distribution and normal probability curve: 

i) The curve is bell shaped and symmetrical about the line x =  

ii) Mean median and mode of the distribution coincide. 

iii) As x increases numerically f(x) decreases rapidly. 

iv) The maximum probability occurring at the point x=  and is given by 

      [P(x)]max = 1/2 



v) 1 = 0 and 2 = 3 

vi) 2r+1 = 0 ( r = 0,1,2……) and 2r = 1.3.5….(2r-1)2r 

vii) Since f(x) being the probability can never be negative no portion of the curve lies below x- axis. 

viii) Linear combination of independent normal variate is also a normal variate. 

ix) X- axis is an asymptote to the curve. 

x) The points of inflexion of the curve are given by x =      , f(x) = 
2/1

2

1 e


 

xi) Q.D. : M.D.:  S.D. :: 
3

2
: 

5

4
:  :: 

3

2
: 

5

4
: 1   Or   Q.D. : M.D.:  S.D. ::10:12:15 

xii) Area property:      P(-  < X <  + )   = 0.6826  = P(-1 < Z < 1) 

                                     P(- 2 < X <  + 2) = 0.9544 = P(-2 < Z < 2) 

                                     P(- 3 < X <  +3 ) = 0.9973 = P(-3 < Z < 3) 

                                     P( |Z| > 3) = 0.0027 

    m.g.f. of N.D.   If X~ N(, 2) then MX(t) =    e t +t22/2 

          If Z~ N(0,1) then   MZ(t) = 
2/2te     

Continuity Correction: 

 The N.D. applies to continuous random variables. It is often used to approximate distributions of 

discrete r.v. Provided that we make the continuity correction. 

 If we want to approximate its distribution with a N.D. we must spread its values over a continuous 

scale. We do this by representing each integer k by the interval from k-1/2 to k+1/2 and at least k is 
represented by the interval to the right of k-1/2 to at most k is represented by the interval to the left of 

k+1/2. 

 Normal approximation to the B.D: 

      X~ B(n, p) and if Z = 
)1( pnp

npX




 then Z ~ N(0,1) as n tends to infinity and F(Z) =   

            F(Z)= P(Z  z) = 



z

t dte 2/2

2

1


 - < Z <  



  Use the normal approximation to the B.D. only when (i) np and n(1-p) are both greater than 15  (ii) n is 

small and  p is close to ½ 

 Poisson process: Poisson process is a random process in which the number of events (successes) x 
occurring in a time interval of length T is counted. It is continuous parameter, discrete stable 

process. By dividing T into n equal parts of length t we have T = n . T. Assuming that  (i) P  

T or  P =  t   (ii) The occurrence of events are independent  (iii) The probability of more than 

one substance during a small time interval t is negligible. 

As n  , the probability of x success during a time interval T follows the P.D. with parameter  = 

np = T  where  is the average(mean) number of successes for unit time. 

 

 

                   

 

 

 

 

PROBLEMS: 

Find  (i) k (ii) P(x<6) (iii) P( x>6) 

Solution: 

(i) since the total probability is unity, we have 



n

x

xp
0

1)(  

i.e., 0 + k  +2k+  2k+  3k+     k2+     7k2+k=1 

i.e., 8k2+    9k -1=0 

k=1,-1/8 

 (ii)       P(x<6)= 0 + k  +2k+  2k + 3k    

                                 =1+2+2+3=8 

1:A random variable x has the following probability function: 

                    x       0  1  3    4    5      6         7 

                  P(x)    0  k  2k  2k  3k     k2     7k2+k 



iii) P( x>6)= k2    + 7k2+k 
                   =9 

 

 2. Let X denotes the minimum of the two numbers that appear when a pair of fair dice is thrown once. 

Determine (i) Discrete probability distribution (ii) Expectation (iii) Variance 

Solution: 

When two dice are thrown, total number of outcomes is 6x6-36 

In this case, sample space S=

       
      
      
      
      
      6,65,64,63,62,61,6

6,55,54,53,52,51,5

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1

 

If the random variable X assigns the minimum of its number in S, then the sample space S=































654321

554321

444321

333321

222221

111111

  

 

The minimum number could be 1,2,3,4,5,6 

For minimum 1, the favorable cases are 11 

Therefore, P(x=1)=11/36 

P(x=2)=9/36, P(x=3)=7/36, P(x=4)=5/36, P(x=5)=3/36, P(x=6)=1/36 

The probability distribution is  

X 1 2 3 4 5 6 

P(x) 11/36 9/36 7/36 5/36 3/36 1/36 

 



(ii)Expectation mean =
ii xp  

36

1
6

36

3
5

36

5
4

36

7
3

36

9
2

36

11
1)( xE

 

Or   5278.2
36

9
6152021811

36

1
  

(ii) variance = 22  ii xp  

 2
5278.236

36

1
25

36

3
16

36

5
9

36

7
4

36

9
1

36

11
)( xE

 

=1.9713 

 

 Determine (i) k (ii) Mean (iii) Variance 

Solution: 

(i) since the total probability is unity, we have   1




dxxf  

10
0

0

 






dxkxedx x
 

i.e., 1
0




 dxkxe x
 

2

0

2
1 



























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








kor
ee

xk
xx

 

(ii) mean of the distribution  dxxxf




  









0

2

0

0 dxekxdx x
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




















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







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




0
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
 xxx ee
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3: A continuous random variable has the probability density function  

, 0, 0
( )

0,

   
 


xkxe for x
f x

otherwise
    



=


2
 

Variance of the distribution   222   




dxxfx
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dxxfx
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
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4:

 

  

Out of 800 families with 5 children each, how many would you expect to have (i)3 boys 

(ii)5girls (iii)either 2 or 3 boys ? Assume equal probabilities for boys and girls 

 

 

Solution(i) 

P(3boys)=P(r=3)=P(3)=
16

5

2

1
3

5

5
C per family 

Thus for 800 families the probability of number of families having 3 boys=   250800
16

5


families 

(iii)  

P(5 girls)=P(no boys)=P(r=0)= 
32

1

2

1
0

5

5
C per family 

Thus for 800 families the probability of number of families having 5girls=   25800
32

1


families 

(iv) P(either 2 or 3 boys =P(r=2)+P(r=3)=P(2)+P(3) 

3

5

52

5

5 2

1

2

1
CC  =5/8 per family 

Expected number of families with 2 or 3 boys =   500800
8

5
 families. 

 

5: Average number of accidents on any day on a national highway is 1.8. Determine the                        

probability that the number of accidents is (i) at least one (ii) at most one 



         Solution: 

Mean= 8.1  

We have P(X=x)=p(x)
𝑒−𝜆𝜆𝑥

𝑥!
 =

𝑒−1.81.8𝑥

𝑥!
 

(i)P (at least one) =P( x≥1)=1-P(x=0) 

=1-0.1653 

=0.8347 

P (at most one) =P (x≤1) 

=P(x=0)+P(x=1) 

= 0.4628 

6: The mean weight of 800 male students at a certain college is 140kg and the standard deviation is 10kg 

assuming that the weights are normally distributed find how many students weigh I) Between 130 and 

148kg ii) more than 152kg 

Solution: 

Let   be the mean and   be the standard deviation.  Then  =140kg and  =10pounds 

(i) When x= 138, 12.0
10

140138
z

x
z 










 

 

 

When x= 138, 28.0
10

140148
z

x
z 










  

P(138≤x≤148)=P(-0.2≤z≤0.8) 

       =A(
2z )+A(

1z ) 

=A(0.8)+A(0.2)=0.2881+0.0793=0.3674 

Hence the number of students whose weights are between 138kg and 140kg 

=0.3674x800=294 

(ii) When x=152,
𝑥−𝜇

𝜎
=

152−140

10
= 1.2=z1  

   Therefore P(x>152)=P(z>z1)=0.5-A(z1) 

   =0.5-0.3849=0.1151 

  Therefore number of students whose weights are more than 152kg =800x0.1151=92. 

 



 

 

 

 

Exercise Problems: 

1. Two coins are tossed simultaneously. Let X denotes the number of heads then find  i) E(X)  ii) 

E(X2)  iii)E(X3)  iv) V(X) 

2. If f(x)=k
x

e


 is probability density function in the interval,  x , then find i) k  ii) 

Mean   iii) Variance   iv) P(0<x<4) 

3. Out of 20 tape recorders 5 are defective. Find the standard deviation of defective in the sample 

of 10 randomly chosen tape recorders. Find (i) P(X=0) (ii) P(X=1) (iii) P(X=2) (iv) P (1<X<4). 

Fit the expected frequencies. 

5.If X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that  i) 

P(26  X40)     ii) P( X  45) 

6. The marks obtained in Statistics in a certain examination found to be normally distributed. If 

15% of the students greater than or equal to 60 marks, 40% less than 30 marks. Find the mean 

and standard deviation. 

7.If a Poisson distribution is such that
3

( 1) ( 3)
2

  P X P X  then find (i) ( 1)P X  (ii)  

( 3)P X  (iii) (2 5) P X . 

Then find (i) k (ii) mean (iii) variance (iv) P(0 < x < 3) 

 

 

 

4. In 1000 sets of trials per an event of small probability the frequencies f of the number of x of 

successes are 

f 0 1 2 3 4 5 6 7 Total 

x 305 365 210 80 28 9 2 1 1000 

8. A random variable X has the following probability function: 

X -2 -1 0 1 2 3 

P(x) 0.
1 

K 0.2 2K 0.3 K 
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