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UNIT-I




Solution of algebraic and Transcendental equations and Interpolation

Solutions of Algebraic and Transcendental equations:

1) Polynomial function: A function f (x) is said to be a polynomial function

if f(x) isapolynomial in x.
ie, f(x)=apx"+ax" 1+ tax+a,
wherea, = 0, the co-efficients a . a,........... a, are real constants and nis a

non-negative integer.
2)  Algebraic function: A function which is a sum (or) difference (or) product of

two polynomials is called an algebraic function. Otherwise, the function is called a
transcendental (or) non-algebraic function.

Eg: f(x)=ce*+ce™=0

3
X
f(x)=esx—?+3=0

3) Root of an equation: A number « is called a root of an equation f (x) =0 if

f () =0.We also say that « is a zero of the function.
Note: The roots of an equation are the abscissae of the points where the graph
y = f (x) cuts the x-axis.

Methods to find the roots of f (x) =0

Direct method:

We know the solution of the polynomial equations such as linear equation

ax + b =0, and quadratic equation ax? + bx + ¢ = o ,using direct methods or
analytical methods. Analytical methods for the solution of cubic and quadratic
equations are also available.

1) Bisection method: Bisection method is a simple iteration method to solve
an equation. This method is also known as Bolzono method of successive
bisection. Some times it is referred to as half-interval method. Suppose we

know an equation of the form f (x) = 0 has exactly one real root between

two real numbers x, x, .The number is choosen such that f (x,) and f (x,)
will have opposite sign. Let us bisect the interval [x,, x,] into two half

intervals and find the mid point x, = >~ _ If f (x,) =0 then x, is a root.
2

If f(x,)and f (x,) have same sign then the root lies between x, and X..

The
interval is taken as[xy, x,]. Otherwise the root lies in the interval [x,, x,] .




PROBLEMS
1). Find a root of the equation x* - sx +1 = o using the bisection method in 5 — stages

Sol

_ 3 f)>0
Let f(x) = x> — 5x + 1. We note thatf(l) <0 and

- One root lies between 0 and 1

Consider x, =0 and x, =1

By Bisection method the next approximation is

Xy =

X —X°+X1—io 1)=0.5
2 2 _2(+)_'

= f(xz): f(0:5):—l.375<0 and f(O)>O
We have the root lies between 0 and 0.5

0+0.5
Now x, = =0.25

2

We find f (x,)=-0.234375<0 and f(0)>0

Since f (0)> 0, we conclude that root lies between x, and «x

3

The third approximation of the root is

xo+x3

%5 = %(0 +0.25) = 0.125

We have f (x,)=0.37495>0

Since f(x,)>0 and f(x,)<0,the root lies between
X, =0.125 and x, =0.25

Considering the 4™ approximation of the roots

Xg + X, 1
Xg = =—(0.125+O.25)=0.1875
2 2

f(x,)=0.06910>0,SinCe f(x,)>0 and f(x,)<0 theroot must lie between

x5 = 0.18758 and x3 = 0.25
Here the fifth approximation of the root is

We are asked to do up to 5 stages

We stop here 0.21875 is taken as an approximate value of the root and it
lies between 0 and 1




2) Find a root of the equation x* - 4x - 9 = 0 using bisection method in four stages
Sol  Let f(x)=x"-4x-9
We note that f (2) <o and f(3)>0

. One root lies between 2 and 3

Consider x, =2 and x, =3

By Bisection method x, = RSP
2

Calculating f (x,)= f(2.5)=-3.375<0

. The root lies between x, and x;

2.5+3 =275
2

The second approximation is x3; = %(x1 +x;) =

Now £ (x3) = £(2.75) = 0.7969 > 0

- The root lies between x, and x

3

Thus the third approximation to the root is

X, =

(x, +x,)=2.625

N |-

Again f (x,)= f(2.625)=-1.421<0

- The root lies between x, and x

4

Fourth approximation isxs = %(x3 +x4) = %(2.75 + 2.625) = 2.6875

False Position Method ( Requla — Falsi Method)

In the false position method we will find the root of the equation f (x) =0 Consider two

initial approximate values x, and x, near the required root so that f (x,) and f (x,) have

different signs. This implies that a root lies betweenx, and x,. The curve f (x) Crosses x-
axis only once at the

Point x, lying between the points x, andx;. Consider the point A = (x,, f (x,)) and

B = (Xl' f (Xl))
on the graph and suppose they are connected by a straight line. Suppose this line cuts x-axis
atx,. We calculate the value of f (x,) atthe point. If f (x,) and f(x,) are of opposite

signs, then the root lies between x, and x, and value x, is replaced by «x,

Otherwise the root lies between x, and x, and the value of x, is replaced byx,.

Another line is drawn by connecting the newly obtained pair of values.
Again the point here cuts the x-axis is a closer approximation to the root. This process is

repeated as many times as required to obtain the desired accuracy. It can be observed that the

pointsx,, x,. x, ,...obtained converge to the expected root of the equation y = f (x)




y A
(x] ’ f(xl ))
(Xo,f(xo))
xO X2
x2 O o
(x1, £ (%)) (x0,/(xg))

To Obtain the equation to find the next approximation to the root

Let A =(x,. f(x,))and B=(x,f(x)) bethepointsonthecurve y= f(x) Then

y—f(xo) _ fx1)—f(x0)

X—X0 X1—X0

the equation to the chord AB is

At the point C where the line AB crosses the x — axis, where f(x) = 0ie, y =0

From (1), we get x = x, - % 0 P — ()

X is given by (2) serves as an approximated value of the root, when the interval in which it lies is
small. If the new value of x is taken as x, then (2) becomes

Ay

A (,Y.‘( J‘f (x()))

./‘(-‘?1)
X s
O *o0 x e
f(‘f])
(x1./(x))
BNy =/(x)
X, — X
X, =Xy~ ( - 0) f(Xo)

Now we decide whether the root lies between

X, and x, (or)x2 and x,




We name that interval as (x,x,) The line joining(xq,y;), (x5, y,) meets x — axis at x, is

le (Xz)_xzf (Xl)

f(xz)_ f (X1)

This will in general, be nearest to the exact root. We continue this procedure till the root

given by x, -

is found to the desired accuracy
The iteration process based on (3) is known as the method of false position

The successive intervals where the root lies, in the above procedure are named as
(X %)+ (X%, ), (%, %, ) €tC
Where x; < x;,1 andf(x,), f(x;+1) are of opposite signs.

Xi—lf (Xi)_xif (Xi—l)

f(Xi)— f (Xi—l)

Also x, , =

1

PROBLEMS:

1. By using Regula - Falsi method, find an approximate root of the equation x* - x —10=o0
that lies between 1.8 and 2. Carry out three approximations

Sol.Letustake f (x)=x"-x-10 and x, =1.8,x, =2
Then f(x,)= f(1.8)=-1.3<0 and f(x,)=f(2)=4>0

Since f (x,) and f (x,)are of opposite signs,the equation f (x)=0 has a root between

X, and x,
The first order approximation of this root is
X, = X, — %~ % f(x,)
‘ ’ f (Xl)_ f (Xo) ’
2-1.
=1.8- 8><(—1.3)
4+1.3

=1.849
We find that f (x,)=-0.161 so that f(x,) and f (x,) are of opposite signs. Hence the

root lies between x, and x, and the second order approximation of the root is

X, — X, —:

f(xl)_ f (XZ)J

[2-1.849]
~1.8490 - | ———— x(-0.159)
| 0159 |

r
Xy = X, —| f(xz)
L

=1.8548

We find that f (x,)= f (1.8548)

=-0.019




So that f(x,)and f(x,) are of the same sign. Hence, the root does not lie between

x, and x,.BUt f(x,) and f(x, ) are of opposite signs. So the root lies between x, and x,

2

and the third order approximate value of the root is x, = x5 — [f (xxg ;ix )] f(x3)
1 3

_ 18548 _ 2188 (—0.019)
o 4+ 0.019 '

= 1.8557
This gives the approximate value of x.

2. Find out the roots of the equation x* - x — 4 = 0 using False position method

Sol.  Let f(x)=x"-x-4=0
Then f (0)=-4,f(1)=-4,f(2)=2
Since f (1) and f (2) have opposite signs the root lies between 1 and 2

Xof (Xl)_xlf (Xo)
f(Xl)_ f (Xo)

By False position method x_ =

f(1.666)=(1.666) —1.666 4
=-1.042
Now, the root lies between 1.666 and 2

1.666x2—2x(-1.042) .
X. = =1.7
’ 2-(-1.042)

f (1.780) = (1.780) -1.780 - 4

=-0.1402

Now, the root lies between 1.780 and 2

1.780x 2 - 2x (~0.1402) .
X, = ~1.794
) 2-(-0.1402)

f(1.794) = (1.794) -1.794 -4

=-0.0201
Now, the root lies between 1.794 and 2

1.794x2-2x(-0.0201)
X, = =1.
’ 2-(-0.0201)

f(1.796) = (1.796) -1.796 — 4 = —0.0027




Now, the root lies between 1.796 and 2

1.796x2 - 2x(-0.0027)
B 2-(-0.0027) B

X 1.796

6

The root is 1.796

Newton- Raphson Method:-

The Newton- Raphson method is a powerful and elegant method to find the root of an

equation. This method is generally used to improve the results obtained by the previous

methods.

Let x, be an approximate root of f (x)=o0 and let x, = x, + h be the correct root which

implies that f (x,) = 0. We use Taylor’s theorem and expand f (x,)

= f(x,)+ hfl(xo):O

Substituting this in x, ,we get

X, =X, +h

- x, Is a better approximation than x,
Successive approximations are given by

X2, X3 e vne v X1 Where Xiy1 = X; —

A y=f(x

/(x])

f(xz)

=f(x,+h)=0




Problems:

1. Apply Newton — Rapson method to find an approximate root, correct to three decimal
places, of the equation x* - 3x — 5 = 0, which lies near x = 2

Sol:- Here f(x)=x"-3x-5=0 and f'(x)=3(x"-1)

- The Newton — Raphson iterative formula

xi3—3xi—5 2xi3+5

X, = X 3(xi2—1) 3(Xi2_1),i:0,1,2....(1)

To find the root near x = 2, we take x, = 2 then (1) gives

2x,”+5  16+5 21

X, = = = — =12.3333
3(x,-1) 3(4-1) 9

2x'+5 2x(2.3333) 45
X, = _ - 2.2806

Co3(x 1) 3[(2.3333)2 —1}

_ 2x3+5 2x(2.2806)°+5
BT363 -1 3[(22806)2 — 1]

2 (22790)% + 5
X4 = 3[(2.2790)% — 1]

Since x, and «x, are identical up to 3 places of decimal, we take x, = 2.279 as the

= 2.2790

= 2.2790

required root, correct to three places of the decimal
2. Using Newton — Raphson method
a) Find square root of a number
b) Find reciprocal of a number
Sol.  a) Square root:-
Let f(x)=x"-N =0, where N is the number whose square root is to be found.
The solution to f (x) isthen x = VN
Here f'(x)=2x
By Newton-Raphson technique

1l N 1

= X = T X+
2 X ]
Using the above iteration formula the square root of any number N can be found to any
desired accuracy. For example, we will find the square root of N = 24 ..

Let the initial approximation be x, = 4.8

2

(g, 2A\_12304424\ 4704
x1—2<- 4.8) ( 48 )‘ 96




1(24.01+24) 48.01
4.9+ — == = =4.898
J 2 4.9 J 9.8

24 ) 1(23.9904+24) 47.9904
4.898 + == = =4.898
4.898J 2L 4.898 J 9.796

Since x, = x,, therefore the solution to f (x)=x"-24 =0 is 4.898 . That means,

The square root of 24 is 4.898

b) Reciprocal:-

Let f(x)= 2 _ N =0 where N is the number whose reciprocal is to be found
X

. . 1 1 -1
The solutionto f (x)isthen x = —. Also, t(x)=—

To find the solution for f (x) = 0, apply Newton — Raphson method

1
(M)
—1/x?
For example, the calculation of reciprocal of 22 is as follows

Assume the initial approximation be x, = 0.045

Xiy1 = X — = x;(2 — x;N)

X, =0.045(2-0.045x22)
=0.045(2-0.99)
=0.0454(1.01) = 0.0454

X, =0.0454(2-0.0454x22)

(
=0.0454(2-0.9988)
= 0.0454(1.0012) = 0.04545
5

X, = 0.04545(2 - 0.04545x 22)
=0.04545(1.0001) = 0.04545
x4 = 0.04545(2 — 0.04545 x 22)
= 0.04545(2 — 0.99998)
= 0.04545(1.00002)
= 0.0454509
- The reciprocal of 22 is 0.04545

3. Find by Newton’s method, the real root of the equation xe* —2 = 0 correct to
three decimal places.

Sol.  Let f(x)=xe"-2— (1)
Then f(0)=-2 and f(1)=e-2=0.7183
So root of f (x) lies between 0 and 1

Itis near to 1. So we take x, =1 and f'(x)=xe"+e" and f'(1)=e+e=5.4366




- By Newton’s Rule

. . . f(x
First approximation x = x, - 1( )
F(x,)
0.7183
=1- =0.8679
5.4366

. f(x)=0.0672  f'(x,)=4.4491

. . f(x
The second approximation x, = x - 1( )
F (%)
0.0672
=0.8679 -
4.4491
=0.8528

- Required root is 0.853 correct to 3 decimal places.

Interpolation

Introduction:-

If we consider the statement y = f (x)x, < x < x, we understand that we can find
the value of y, corresponding to every value of x in the range x, < x < x_ . If the function f (x)

is single valued and continuous and is known explicitly then the values of f (x) for certain

values of x like x,,x,,......... x, can be calculated. The problem now is if we are given the set of

tabular values

yiy, Y, Ygnnns Y,
Satisfying the relation y = f (x) and the explicit definition of f (x) is not
known, then it is possible to find a simple function say f (x) suchthat f (x) and ¢ (x) agree at
the set of tabulated points. This process to finding ¢ (x) is called interpolation. If 4 (x) is a

polynomial then the process is called polynomial interpolation and ¢ (x) is called interpolating

polynomial. In our study we are concerned with polynomial interpolation

Errors in Polynomial Interpolation:-

Suppose the function y(x) which is defined at the points (x,,y,)i=0,1,2,3--—--n s

continuous and differentiable (n+1) times let ¢ _(x) be polynomial of degree not exceeding n




such thatg (x,)=vy,i=12---n- (1) be the approximation of y(x) using this ¢ (x) for

other value of x, not defined by (1) the error is to be determined

Since y(x)-¢, (x)=0 for Xx—X,, X, ... X Wwe put

y(x)= ¢, (x) = Lz, ()
Where 7, (x)=(X=X;).coen. (x-x,)— (3) and L to be determined such that the equation (2)

holds for any intermediate value of x such as x = x*, x, < x* < x,
yi(X
Clearly L = ——————~= - (4)

We construct a function F (x) such thatr (x)=F (x,)=F (x"). Then F (x) vanishes (n+2)
times in the interval[x,,x,]. Then by repeated application of Rolle’s theorem. F*(x)Must be
zero (n+1) times, F''(x) must be zero n times........ in the interval[x,,x,]. Also F""(x)=0

once in this interval. Suppose this pointis x = ¢, x, < ¢ < x, differentiate (5) (n+1) times with

respect to x and putting x = ¢ , we get

yn+1(g)

(n+1)!

y""(e)-L(n+1)r=0 Which implies that L =

Comparing (4) and (6) , we get

1 1y _ yn“(g) Xl
y() =40 (x) = Ty e ()
Which can be written as y (x)-¢, (x) = %ﬁ;?y””(‘s)

This given the required expression x, < ¢ < x, for error

Finite Differences:-

1. Introduction:-

In this chapter, we introduce what are called the forward, backward and central
differences of a functiony = f (x). These differences and three standard examples of finite

differences and play a fundamental role in the study of differential calculus, which is an
essential part of numerical applied mathematics

2. Forward Differences:-

Consider a function y = f (x) of an independent variable x. let y .y, y,....y, be

the values of y corresponding to the values x_, x,, x,....x, of X respectively. Then the differences




A A are called the first forward differences of y, and we denote them by
AY, AY, . that is

AYo =Y = Yo AY, = Y, = Y AY, = Y= Yy
Ingeneral ay, =y, -y, . r=012--——-

Here, the symbol a is called the forward difference operator
The first forward differences of the first forward differences are called second forward

differences and are denoted by a*y_ ,a%y,...... thatis

Ay, = Ay, - Ay,
Ay, = Ay, - Ay

1

Ingeneral A%y, = Ay, —Ay, r=0,1,2....... similarly, the n™ forward differences are defined by

r+1 r

the formula.

A"y, =A"y,  -A"Ty, r=0,1,2.......
While wusing this formula for n-=1, use the notation A°y -y and we have
A"y, =0VYn=1,2.... and r=0,2,......... the symbol A" is referred as the n™ forward difference

operator.
3. Forward Difference Table:-
The forward differences are usually arranged in tabular columns as shown in the

following table called a forward difference table

Values Values First Second Third Fourth
of x ofy differences differences differences differences
Xo yO
Ayo = yl - yo
X, Y, Azyosz1_yo
Ay1:y2_yl A3yo:A2y1_A2yo
X, Y, A’y = Ay, - Ay, Ay, =A%y, - A°
Ay, =Yy, - Y, Ay, =A%y, - Ay,
Xy Y, AZyz:Aya_Ayz
y4 = y4 - y3




Example finite forward difference table for y = x°

X y = f(x) Ay Ay Ay Aty
1 1
7
2 8 12
19 6
3 27 18 0
37 6
4 64 24 0
61 6
5 125 30
91
6 216

4. Backward Differences:-

As mentioned earlier, let y ,y,.....y,...... be the values of a function y = f (x) corresponding to
the values Koo Xy Xy erreirnann. X, e of X respectively. Then,

VY, =Y, = Y VY, = Y, — Y VY = Y, = Y, are called the first backward differences

Ingeneral vy, =y -y, _,,r=123.... - (1)
The symbol v is called the backward difference operator, like the operator a, this

operator is also a linear operator
Comparing expression (1) above with the expression (1) of section we immediately note

that vy =vy ,,r=0,12....> (2)
The first backward differences of the first background differences are called second

differences and are denoted by v*y, ,v’y, - - -v* —— - —ie.,..
Viy,=Vy,-Vy,Viy, =Vy, —Vy, cceeennn.
In general szr =Vy, -Vy, ,.r=23..- (3) similarly, the n™ backward differences
are defined by the formulav'y =v"'y -v"'y ,r=n,n+1...— (4)While using this

formula, for n = 1 we employ the notation v°y, =y




If y=f(x) isa constant function, theny = c is a constant, for all x, and we get

v'y —ovn thesymbol v" is referred to as the n™ backward difference operator

5. Backward Difference Table:-

X y vy vy v’y
X0 y0

Vy1
X, Y, vy,

vy, Ay,
X, Y, vy,

Vy3
X3 y3

6. Central Differences:-

With y,.y,.y,....y, as the values of a function y = f (x) corresponding to the values

x,....x ... of x, we define the first central differences

5 Y1206 Y4,:6 Y5, ———— as follows
Y1, = Y1 = Y00 Ya, =Y, = Y10 Y, =Y — Y, m -

5yr—l/2 = yr - yr—l - (1)
The symbol s is called the central differences operator. This operator is a linear

operator
Comparing expressions (1) above with expressions earlier used on forward and

backward differences we get
Yy, =AY, =VYy,0Y,, =4y, =Vy,....

Ingeneral 5y, =Ay =Vy

n

n=012...- (2)

n+l’

The first central differences of the first central differences are called the second central

differences and are denoted by 5°y,, 8"y, ...

2 2
Thus s Y, =05, =0 Y500 Y, =05, =0 g

2

6 Y, =Y = 0Y, iy ™ (3)

Higher order central differences are similarly defined. In general the n™ central
differences are given by

i) forodd n:s"y, ,,=6""y,-6""y, ,,r=12....- (4)




foreven n:s"y =6""y, ., -6""y, T =12....> (5)

r+1/2
while employing for formula (4) for n =1, we use the notation sy, = v,

If y is a constant function, that is if y=c a constant, then

5"y, =0 for all n>1

7. Central Difference Table

X, Yo Sy 5%y sty sty
O VY.

X, Y, 5%y,
5Y,, 63y3,2

X, Y, 5y, s'y,
S Vs, 53y5,2

X, Y, sy,
5Y,,

X, Y,

Example: Given

f(-2)=12,f(-1)=16, f (0) =15, f (1)=18, f (2)=20 from the central

difference table and write down the values of sy, .5°y, and 5’y bytaking x =0
3/2 0 712 0

Sol.  The central difference table is

X y = f(x) sy sy sty sty
-2 12
4
-1 16 -5
-1 9
0 15 4 -14
3 -5
1 18 -1
2
2 20

Symbolic Relations and Separation of symbols:

We will define more operators and symbols in addition toa, v and ¢ already defined

and establish difference formulae by symbolic methods




Definition:- The averaging operator x is defined by the equation .y, = £[ Yot Vil
2

Definition:- The shift operator E is defined by the equation Ey, =y . This shows that the

r+1

effect of E is to shift the functional value y, to the next higher valuey . A second operation

r+1 "

with E gives E°y, = E(Ey,)=E(y,,,) =Y

r+2

Generalizing E"y" =y, |

Relationship Between A and E
We have
Ay, =Y, =Y,
=Ey, -y, = (E —l)y0
= A=E-y(or)E=1+A
Some more relations

3

A%y, = (E-1)y, = (E°-3E° +3E -1)y,

= y3_3y2+3y1_y0

Definition

1

Inverse operator e isdefinedas E 'y, =y, ,

Ingeneral E "y, =y, |

We can easily establish the following relations

-1

)v=1-E

-1/2

ii)s="-E
iii) 1 1/2 -1/2
u= ;(E +E )

iv) A=VE = E"
1

V) u?=1+=5°
4

Definition The operator D is defined as Dy (x) = i[ y(x)]
OX

Relation Between The Operators D And E

3

h® h

Using Taylor’s series we have, y (x+h)=y(x)+hy" (x)+ —y" (x)+ —y" " (x)+ - - -~
21 3!
This can be written in symbolic form
[ h’D® h’D’ | .
Ey,=|1+hD + + t-——=]y =€ .y,
L 2w >




We obtain in the relation g = ¢" — (3)

X/
°e

If (x) isapolynomial of degree n and the values of x are equally spaced then A" f (x) is
constant
Proof:

Let f(x):aoxn+alx"71+ ————— +a _ Xx+a where a,,a,a,...a, dare constants and

n-1

a, = 0. If h is the step- length, we know the formula for the first forward difference

Af(x):f(x+h)_f(x):[ao(mh)“+al(x+h)“’1+_-__+an_1(x+h)+an}
n n-1
—[aox +a,X +————+aHx+anJ
rl n n-1 n(n_l) n-2 , 2 ] nT
=a,[{x +nx h+ X" ThT - =L x" |+
Ll 2! )]
[ n-1)(n-2 1 1
a1|Jx"1+(n—l)x"'2h+( )( )x"'3h2+———}—x”'1|+
21 J J
777777 +a, ,h
=a,nhx" +b,x" b x" 4 ————+b _x+b_,

Where b,,b,,....... b, , are constants. Here this polynomial is of degree(n -1), thus, the

first difference of a polynomial of n" degree is a polynomial of degree (n-1)

Now

= A[aonh.xn +b,x" "+ b, x" 4 -~~~ +b, 1x+bn72J
:aonh[(x+h)"7 - x" 1}+b2[(x+h) - x" 2}+———+bn71[(x+h)—x]
=a0n(n71)h2x"_2+ch"'3+ ————— +C, ,X+C,

Where c,....c, , are constants. This polynomial is of degree (n - 2)

Thus, the second difference of a polynomial of degree n is a polynomial of degree (n - 2)

continuing like this we get A" f (x)=a,n(n-1)(n-2)- - - — - 2.1.h" =a,h" (n})
~ which is constant
Note:-
1. As A" f (x) isaconstant, it follows that A™" f (x)=0,A""f (x)=0,........
2. The converse of above result is also true that is, if A"f (x) is tabulated at equal

spaced intervals and is a constant, then the function f (x) is a polynomial of degree n

Example:-




1. Form the forward difference table and write down

A®f(10),A°f (15) and A‘y(15)

the values of af (10),

X 10 15 20 25 30 35

y 19.97 21.51 22.47 23.52 24.65 25.89
X Y Ay Aty A’y Aty Ay
10 19.97

1.54
15 21.51 - 0.58

0.96 0.67
20 22.47 0.09 - 0.68

1.05 -0.01 0.72
25 23.52 0.08 0.04

1.13 0.03
30 24.65 0.11

1.24
35 25.89

We note that the values of x are equally spaced with step- length h =5

Note: - . x,
y, =
y, =
y, =
y, =
From table

Af (10) = Ay, =1.54

=10,x, =15- - - -x, = 35 and

f (x,)=25.89

f (x,)=25.89

A"f(10)=A"y, =-0.58

A*f(15)=A"y, =-0.01

A" (15)=A"y, =0.04

2. Evaluate




(i)Acosx
(ii)A”sin(px+q)
(iii)Aa"e™"”
Sol.  Let h be the interval of differencing
(i)Acosx =cos(x+h)-cosx
el
(ii)Asin(px+qg)=sin[p(x+h)+q]-sin(px+q)

( ph) . ph
=2cO0S| px+q+—|sin —
L 2 )"
. ph [z ph)
=2sin—=sin| —+ px+qQ+ —
2 LZ 2}

Azsin(px+q):25inp—hArsin(px+q)+i(7z+ ph)—|
2 | 2 |

=[ i pT} pr+q+—(7z+ph)J

(iii)Aeax+b _ ea(x+h)+b _ eax+b

A%e™P = A [A (e“”’)} - A [(ea“ —1)(e"‘“b)J
:(eah_l)zA(eax+h)
(eah _1)zeax+b

Proceeding on, we get A" (e™*) = (e™ —1)” e’

e(ax+b) (eahfl)

3. Using the method of separation of symbols show that

n(n—l) n
My, +==—=+(-1) u,,

n
Arp, o=,

Sol.  To prove this result, we start with the right hand side. Thus

n(n-1 n
X —NuX—1+ UX =2+ ————— +(-1) ux-n
2
~ n(n-1 —
= uXx—-nE ux+ E "ux+-——-——-—--— +(-1) E "ux
2
[ n(n-1 . 1 n
=|1-nE "+ Sl B +(-1) E " |ux=(1-E") ux
L 2 ]
(1Y) (E-1)
:Ll——J un = un
E E

n

- ux=A"E "ux

n

= A"u, . which is left hand side




4. Find the missing term in the following data
X 0 1 2 3 4
y 1 3 9 - 81

Why this value is not equal to3* . Explain
Sol.  Consider a'y, =0
= 4y, -4y, +5y,—-4y, +y,=0
Substitute given values we get
8l-4y,+54-12+1=0= y, =31
From the given data we can conclude that the given function is y =3". To find y, , we
have to assume that y is a polynomial function, which is not so. Thus we are not getting
y =3 =27
Newton’s Forward Interpolation Formula:-

Let y = f (x) be apolynomial of degree n and taken in the following form

y = f(X):b0+b1(X—X0)+b2(x—XD)(X—X1)+b3(X—XO)(X—Xl)(X—X2)+———

b, (X=X ) (X = %)= === (x=%,,) > (1)
This polynomial passes through all the points [xi; yi] for i =0 to n. there fore, we
can obtain the y, 's by substituting the corresponding x,'s as

at x=x,,Y, =b,
at x = x,,y, =b,+b (x, —x,)

at x = x,,y, =b,+b (x,-x,)+b,(x,=x,)(x,-x)— (1)
Let ‘h’ be the length of interval such that x, 's represent

Xgr Xo + N, X, +2h, X, +3h — -~ ——x, + xh
This implies x, - x, = h,x, - x, — 2h,x, — x, = 3h — — — —x_— x, = nh - (2)
From (1) and (2), we get

Yo = b,

y, =b, +bh

y,=b,+b2h+b,(2h)h

y, =b, +b3h+b,(3h)(2h)+b,(3h)(2h)h

Y, =by+b (nh)+b,(nh)(n-1)h+-——+b (nh)[(n-1)h][(n-2)h]— (3)

Solving the above equations for b,,b,,,b,....b, , we get b, =y,




h h h
—b, —b,2h Yy, -y
b2=y2 021 :yz_yo_(l O)Zh
2h h
_ yz_yg_zyl_zyO _ y2_2y1+y0 _ Azyo
2h’ 2h’ 2h’
. AZyo
b, = —22
2'h

Similarly, we can see that

Ay, Ay, A"y,

by =—=.b,=———-- -~ b, = ——
3th 41h nih
Ay, Ay,

V= (0= Yo s (X0 ) T (X ) (- %)
Ay
3lh§(X—XO)(X—XI)(X—X2)+———+
A"y,

+ (X—XO)(X—XI)———(X—XH 1)_)(3)

If we use the relationship x = x, + ph = x - x, = ph, where p =0,1,2

...... n
Then
X=X =X—(x,+h)=(x=-x,)=h
=ph-h=(p-1)h
X=X, =X—(x,+h)=(x=-x)-h
=(p-1)h-h=(p-2)h
x-x,=(p-i)h
x—xn_lz[p—(n—l)]h
Equation (3) becomes
-1 -1 -2
y:f(X)=f(X0+ph)=y0+pAy0+p(p )A2y0+p(p )(p )A3y0+————+
21 3!
-1 —2)—-—=——(p-(n-1
p(p-1)(p-2) (p—(n ))Anyﬁm
n!'
Newton’s Backward Interpolation Formula:-
If we consider
Vo (X) = 85+, (X= %)+ a, (X =X,) (X=X, )+ 8, (X =%, ) (X=X, ) (X=X, )+ === (x=x,)

and impose the condition that y and y_(x) should agree at the tabulated points




We obtain

p(p+1
(Pt

Y, (X)=y,+ pVy, +
21

p(p+1l)-———[p+(n-1)]

n!

vy, +----—> (6)

n

X=X
Where p = —=
h

This uses tabular values of the left of y, . Thus this formula is useful formula is useful

for interpolation near the end of the table values

Formula for Error in Polynomial Interpolation:-

If y=f(x) Iisthe exact curve and y =¢_ (x) is the interpolating curve, then the

error

in polynomial interpolation is given by

Error = £ (x)- 4, (x) - (X_X(’)(X_(an);l)_!"(x_xn) ) > )

for any x, where x, < x < x, and x, <& < x,
The error in Newton’s forward interpolation formula is given by

_p(p-1)(P-2)(P )

An+1f (S)

F(x)=¢, (%)

X

- X
Where p = 0
h

The error in Newton’s backward interpolation formula is given by

f(x)- g, (x) = p(p+1)(r()n++21))..! ..... (|0+n)hn+1ymf () Where p - x—hxn

Examples:-
1. Find the melting point of the alloy containing 54% of lead, using appropriate

interpolation formula

Percentage of
lead(p)

50 60 70 80

Temperature (Q-c) 205 | 225 248 | 274




Sol.

Sol.

The difference table is

X Y A A? A*
50 205
20
60 225 3
23 0
70 248 3
26
80 274

Let temperature = f (x)

X, + ph=24,x,=50,h =10

50+ p(10)=54 (or)p=0.4
By Newton’s forward interpolation formula

p(p-1) , p(p-1)(p-2) ,

f(X0+ph):yo+pAyg+ 21 Ay0+ I Ay0+___
: n!
0.4(0.4-1 0.4)(0.4-1)(0.4-2
f(54)=205+0.4(20)+ ( )(3)+( ) ) )(0)
2! 31!

=205+8-0.36
=212.64

Melting point = 212.64

Using Newton’s forward interpolation formula, and the given table of values
X 1.1 1.3 1.5 1.7 1.9

£ (x) 021 |069 |[125 |1.89 |261

Obtain the value of f (x) when x =1.4

X y = f(x) A A? A° Al
1.1 0.21
0.48
1.3 0.69 0.08
0.56 0
15 1.25 0.08 0




0.64 0

1.7 1.89 0.08

0.72

1.9 2.61

If we take x, =1.3 then y, =0.69,
Ay, =0.56,A"y, =0.08,A’y, =0,L=0.2,x=1.3

1
X, + ph=1.4(or)1.3+ p(0.2)=1.4,p=—
2

Using Newton’s interpolation formula

11 )
==
1 2(2
f(1.4)=0.69+—x0.56+——2>x0.08
2 21

=0.69+0.28-0.01=0.96

3. The population of a town in the decimal census was given below. Estimate the population for

the 1895
Year
1891 1901 | 1911 |1921 | 1931
X
Population
46 66 81 93 101
ofy

Sol.  Putting L =10,x, =1891,x =1895 inthe formula x = x, + ph we obtain p=2/5=0.4

X Y A A° A’ A’
1891 46
20
1901 66 -5
15 2
1911 81 -3 -3
12 -1
192 93 -4
8
1931 101




y (1895) =46+ (0.4)(20)+

(0.4-1)0.4(0.4-2)

+
6

(2)

(0.4)(0.4-1)(0.4-2)(0.4-3)

+

54.45 thousands

24

Gauss’s Interpolation Formula:- We take x, as one of the specified of x that lies around the

middle of the difference table and denote

y — r . Then the middle part of the forward

x, - rh by x - r and the corresponding value of y by

difference table will appear as shown in the next page

X Y Ay Ay Ay A'y A’y
X_, Y.,
X_, Y., Ay,
X, Y, Ay, Ay,
X, Y, Ay, Ay, Ay,
X, Y Ay, Ay, Ay, Ay,
X, Y, Ay, Aty Ay, Ay, Ay,
X, Y, Ay, Ay, Aty | Ay, Ay,
Xs Ys Ay, ATy, ATy, Ay, ATy,
X, Y, Ay, Ay, A%y, A'y, Ay,
Ay, = Ay  + A"y |
Ay, =A%y +A°y |
Ay, = A"y v A"y
A4y0=A4y71+A5y71 ————— (1) and
Ay  =Ay ,+A%y,
Ay =A%y ,+ A%y,
Ay =A%y ,+ Ay,
A4y71:A4y72+A5y72 ————— (2)

By using the expressions (1) and (2), we now obtain two versions of the following Newton’s

forward interpolation formula

p(p-1)
y, =Ly, + p(Ay0)+T(A2yO

. p(p—l)(p—Z)(p—S)A4
41

)+p(p—1)(p—2)A3y0

Here y, isthe value of yat x = x, = x, + ph

Gauss Forward Interpolation Formula:-




p(p-1) s p(p-1)(p-2) ,
y, =Ly, + p(Ay,)+ (21 )(A y1+Ay1)+ ( 3)'( )A Yy,
+A4y71+p(p_l)(p_Z)(p_S)A4y,1+A y1+——__]
41
p(p-1) p(p+1)(p-1) ,
yp:[%+p(Am)+—L——J(Ay4)+ (priip-d), Y,
21! 3!
p(p+1)(p-1)(p-2 .
2ENENGED)

41

Substituting a®y | from (2), this becomes

p(p-1) (p+1)p(p-1)
yp:[yo"'p(Ayo)ﬁ'TAzyfl*’ 31 A3y71

+(p+U(p;?p(p—2NA4yJ+____] _________________ 4

Note:- we observe from the difference table that
Ay, =6y, Ay =6y, A’y =&y, A"y, =¢"y, and so on. Accordingly the formula
(4) can be written in the notation of central differences as given below

p(p-1) , (p+1)p(p-1)

3

y, =[y, + p5y1,2+Tﬁ Yo + 2 S Vi
+1)(p-1 -2
+(p )(P-1)p(p )54y0+————] _________________ 5
41
2. Gauss’s Backward Interpolation formula:-

Let us substitute for ay,,a’y,, A%y, ----- from (1) in the formula (3), thus we obtain

(p-1)p(p-2)
31

p(p-1)

y, =Ly, + p(Ay71+Azy71)+ (A2y71+A3y71)+ (A3y71+A4y71)+

(p-1)(p-2)p(p-3)

" (A4y71+A5yfl)+————]
=[y, + p(Ay1)+(p2+|1) p(A2y1)+(p+1)3¢Asyl+(p+l) p(zl_l)(p—z)(AAyl)+____]

Substituting for A’y , and a*y_, from (2) this becomes

p+1)p ) p+1l)p(p-1 s .
y, =Ly, + p(Ay71)+¥A y71+( )P ( )(A y, +A yfz)
21 3!
1 -1 -2
e (p-1)(p NA4L2+AW4)+___4

41
Lagrange’s Interpolation Formula:-

Let x,,x,.x,,... x, be the (n+1) values of x which are not necessarily equally

spaced. Let y,,y,,y,........ y, be the corresponding values of y = f (x) let the polynomial




of degree n for the function y=f(x) passing through the (n+1)points

(Xo0 T (%5)). (%, f(x))=———(x,.f(x,)) bein the following form
y=f(x)=a,(x=x)(x=%,)..... (x=x, ) +a (X=X, )(X=X,)eern. (x=x,)+
a, (X=X, ) (X=X ). (X=X, )+ e, +a, (X=X ) (X=X ) (x=x,,)—> (1)

Where a,,a,,a,... a" are constants
Since the polynomial passes through (x,, f (x,))(x,. f (x,))......(x,. f (x,))- The
constants can be determined by substituting one of the values of x_,x,,....x, for x inthe

above equation

Putting x = x, in (1) we get, f (x,)=a,(x—x) (X, X,)(%, ~ X,)

. (%)
) (X = X ) (= X,)

Putting x = x, in (1) we get, f (x,)=a,(x—x,)(x —X,)————(x —X,)
_ F(x)

= a, =

(%, = X ) (%, = %, ) eee (X, = X,)
Similarly substituting x = x, in (1), we get
fF(x,)
(%o = %6 ) (X, = X, ) (X, = X))
Continuing in this manner and putting x = x, in (1) we

F(x)

(Xn _Xo)(xn _Xl)____(xn _anl)

= a, =

get a, =

Substituting the values of a,,a,, a,....a, , we get

(X = %) (X=%,) oo (X=X, (%= %) (X= %) (X = %,)
f(x)= f(x,)+
( ) (Xo_x1)(xo_xz) """"" (Xo_xn) ( ) (Xl_xo)(xl_XZ)""(Xl_Xn)
(X—XU)(X—XI)(X—XZ) """ (X_Xn) (X—XO)(X—Xl) """ (X_xnf1)
f(x, )+ + . f(x, )+ f(x
B P W B T TR R
Examples:-
1. Using Lagrange’s formula calculate f (3) from the following table

x |0 1 2 4 5 6

£ (%) 1 |14 |15 |5 |6 |19

Sol. Given x,=0,x, =1,x, =2,x,=4,%x,=6,X, =5

f(x,)=1f(x)=14,f(x,)=15,f(x,)=5,f(x,)=6,f(x,)=19




From langrange’s interpolation formula

(3-0)(3-1)(3-2)(3-4)(3-5)
(6-0)(6-1)(6- 2)(6—4)(6—5)><
12 18 36 36 18 12

=—— —x14+ —x15+ —x5-—x6+—x19
240 60 48 48 60 40

19

=0.05-4.2+11.25+3.75-1.8+0.95
=10
f(x,)=10

1) Find f (3.5) using lagrange method of 2™ and 3" order degree polynomials.
x1 2 3 4

f(x) 1 2 9 28

Sol: By lagrange’s interpolation formula

()= f(x)

For n = 4 ,we have




(x=x)(x=x,)(x=x;)

() (Xg = %) ( Xy = %, ) (X, = X )f(XO)+
(X=X ) (x=x%,)(x=x,) .
(X, = %o ) (%, = %, ) (%, = %5)
(X=X ) (x = %) (X = %)
(X, = X ) (%, = x, ) (X, = %)
(x=x)(x=x)(x=x,)
(X3 = X ) (X3 = %) (X, = X,)

(3.5-2)(3.5-3)(3.5-4) (3.5-1)(3.5-3)(3.5-4)

(1) +
(1-2)(1-3)(1-4) (2-1)(2-3)(2-4)

Fx)+

2)+

. F(3.5)=

=0.0625+(-0.625)+8.4375+8.75
=16.625

f(x) - <X-2><X_—63><X-4>(l)+ (x—l)(x;s><x-4)(2)

(D) (x=2)(x=4) o (x=1)(x=2)(x-3)

o : (29)
(x275x+6)(x74) (x273x+2) (x273x+2)

= ~ +(x —4x+3)(x—4)+ > (X—4)(9)+T(X—3)(28)

x°—9x®+26x—24 3 ) x°—7x’ +14x-8 x°—6x°+11x -6
= + X —8x +9x-12+ (9)+ (28)
-6 -2 6

[—x3+9x2—26x+24+6x3—48x2+114x—72—27x3+189x2—378x+216+308x+28x3—168x2—168]

6

6x°-18x° +18x
6

= f(x):x3—3x2+3x

. £(3.5)=(3.5) -3(3.5) +3(3.5)=16.625
Example:
Find y(25), given that y,0 = 24,y24 = 32, y2s = 35Yy3, =40 using Guass forward difference
Formula :

Solution: Given

X 20 24 28 32
Y 24 32 35 40

By Gauss Forward difference formula




p(p-1) p(pP-1)(pP-2)
Y, =0y, + p(Ay,)+ ” (A%y ,+A%y )+ . Ay,
-1 -2 -3
+A4y71+|0(|0 )(p-2)(p )A4y71+A5y1+____]

We take x= 24 as origin.
Xo=24,h=4,x=25p=X-Xo/ h, p=25-24/4=25

Gauss Forward difference table is

X y Ay Aty Ay
20 24
24 32 Ay =8
28 35 Ay, =3 Aty =
5)
32 40 Ay, =5 Ay, =2 Ay =7

By gauss Forward interpolation Formula

We y(25) = 32 +.25(3) + (:

+.46875 - .2734 = 32.945

Y(25) = 32.945.

Example:

Use Gauss Backward interpolation formula to find f(32) given that f(25) = .2707, f(30) =

25)(.25-1)
2

3027, f(35) = .3386 (40) = .3794.

Solution: let X, = 35 and difference table is

(=5) + (.25+1)(.z65)(.25—1) (7) =32 + .75

X y Ay Aty Aly
25 2707

30 3027 .032

35 .3386 .0359 .0039

40 3794 .0408 .0049 .0010

From the table yo = 0.3386

AV =0.0359,4 Vo

=0.0049, * -2 =0.0010, X, = 32 p = X,- Xo/h = 32-35/5 = -.6

By Gauss Backward difference formula
f(32) = .3386 + (-.6)(.0359) + (-.6)(-.6+1)(.0049)/2 + (-.6)(.36-1)(0.00010)/6 = .3165




UNIT-II




CURVE FITTING

Curve fitting

Suppose that a data is given in two variables x & y the problem of finding an analytical

expression of the form y = f (x) which fits the given data is called curve fitting
Let (x,y,). (X, ¥, ) (x,,y,) be the observed set of values in an experiment and

y = f (x) bethe givenrelation x& y,Let E,,E,,...... E_ are the error of approximations then we
have

E, =y, - f (Xl)

E,=vy,- f (Xz)

E,=y, - f (Xs)

E
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the differences E, ., E,.....E, between expected values of y and observed values of y are called
the errors, of all curves approximating a given set of points, the curve for which
E=E"+E,+..E  isaminimum is called the best fitting curve (or) the least square

curve

This is called the method of least squares (or) principles of least squares

1. EITTING OF A STRAIGHT LINE:-
Let the straight line be y = a + bx — (1)

Let the straight line (1) passes through the data points

(X0 ¥, ) (X0 ¥y ) een (X, Y, )i (X, Y, )i =1,2.00

So we have yi=a +bxi - (2)

The error between the observed values and expected values of y = yi is defined as
Ei=y,-(a+bxi)i=12...n—> (3)

The sum of squares of these error is

n

E=Y Ei"=Y [yi—(a+bxi)]2 now for E to be minimum

i=1

oE oE
—=0;—=0
da ob




These equations will give normal equations

> yi=na+b) xi
i=1 i=1

D xiyi=a) xi+b) xi’
i=1 i=1

The normal equations can also be written as

Z y =na+ bz X

Y xy=ay x+by x°

Solving these equation for a, b substituting in (1) we get required line of best fit to

the given data.

NON LINEAR CURVE FITTING

PARABOLA:-

Let the equation of the parabola to be fit
The parabola (1) passes through the data points

(xl,yl),(xz,yz) ............. (xn,yn),i.e.,(xi,yi);i=1,2 ...... X

We have yi = a +bx, +cx,” — (2)

y=a+bx+cx’ > (1)

The error Ei between the observed an expected value of y = y, is defined as
Ei=yi—(a+bxi+cxi’),i=12,3..n > (3)

The sum of the squares of these error is

2

Ei' =& (yi—a—bxi—cxiz) — (4)

1 i=1

E =¢

n
i=

For E to be minimum, we have

O0E oE O0E
—=0,—=0,—=0
da ob oc

The normal equations can also be written as

ey =na+bex+cex’

gxy=agx+ng2+05x3 use Zinstead of ¢

sxzy =aex’ +bex’ +cex’

Solving these equations for a, b, ¢ and satisfying (1) we get required parabola of best fit
POWER CURVE:-




The power curve is given by y = ax” - (1)

Taking logarithms on both sides

log,,” = log,,"+blog,,”

(or)y=A+bX — (2)

where y = log,,”, A =log,," and X =log "

Equation (2) is a linear equationin X & y

.. The normal equations are given by

£y =nA+bsX

exy = AeX +beX® use X symbol

From these equations, the values A and b can be calculated then a = antilog (A)

substitute a & b in (1) to get the required curve of best fit
4. EXPONENTIAL CURVE :- (1)y = ae™ (2)y =ab"

bx

1 y=ae™ - (1)
Taking logarithms on both sides
log,, y = log,,a+bxlog, e
(or)y=A+BX — (2)
Where y = log,, y,A=1l0og,,a& B =blog, e

Equation (2) is a linear equation in X and Y
So the normal equation are given by
Y = nA + BEX

TXy = AZX + BZX®

Solving the equation for A & B, we can find

a=antilog A&b =
log,, e

Substituting the values of a and b so obtained in (1) we get
The curve of best fir to the given data.

2. y=ab" - (1)
Taking log on both sides

log,, y = log,,a+ xlog, b (or)Y = A+ Bx

Y =log,, y,A=1log,,;a,B =1log, b

The normal equation (2) are given by

Xy =nA+ BXX

TXy = ATX + BIX’

Solving these equations for A and B we can find a = antilog A,b = antilog B

Substituting a and b in (1)




1. By the method of least squares, find the straight line that best fits the following data

X 1 2 3 4 5
Y 14 27 40 55 68

y = a+ bx

Ans. Thevalues of ex,cy,ex* and exy are calculated as follows

xi yi xi? xiyi
1 14 1 14
2 27 4 54
3 40 9 120
4 55 16 220
5 68 25 340

Replace xi, yi by x,y, anduse = instead of &
exi=15;eyi=204,exi’ =55 and exiyi = 748
The normal equations are
gy=na+bsx > (1)

EXY = asx+bex’ > (2)

204 =15a +5b
748 =55a +15b

Solving we get a = 0,b =13.6
Substituting these values a & b we get

y=0+13.6x= y=13.6x

2. Fit a second degree parabola to the following data

X 0 1 2 3 4
y 1 5 10 22 38

2
y =a+bx+cx
Ans.  Equation of parabola y = a + bx + cx® — (1)
Normal equations sy = na + bex + cex”
2 3
eXy =aexX+bex” +cex

2 2 3 4
ex'y=aex +bex +cex’ — (2)




AnSs,

X y Xy x* X"y x* x*
0 1 0 0 0 0 0
1 5 5 1 5 1 1
2 10 20 4 40 8 16
3 22 66 9 198 27 81
4 38 152 16 608 64 256

ex=10,6y =76,eXy = 243,ex° =30,ex°y =851,ex’ =100,ex" = 354
Normal equations
76 =5a+10b +30c

243 =10a +30b +100c

851 =30a +100b + 354c
Solving a =1.42,b = 0.26,c = 2.221

Substitute in (1) = y =1.42 +0.26x + 2.221x"

3. Fitacurve y = ax” to the following data

X 1 2 3 4 5 6
y 2.98 4.26 5.21 6.10 6.80 7.50
Let the equation of the curve be y = ax” — (1)
Taking log on both sides
logy =loga+blogx
y=A+bX - (2)
y=logy,A=loga,X =logx
£y =nA+beX
exy = Asx +bex” — (3)
X X =log x y y =logy Xy x°
1 0 2.98 0.4742 0 0
2 0.3010 4.26 0.6294 0.1894 | 0.0906
3 0.4771 5.21 0.7168 0.3420 | 0.2276
4 0.6021 6.10 0.7853 0.4728 | 0.3625
5 0.6990 6.80 0.8325 0.5819 | 0.4886

€X = 2.8574,gy = 4.3133,exy = 2.2671,ex° =1.7749

4.3313=6A +2.8574b

2.2671=2.8574A +1.7749b

solving A =0.4739 b =0.5143

a=antilog(A)=12.978

Sy =2.978.x

0.5143




Ans.

Ans,

Fitacurve y =ab* — (1)

X 2 3 4 5 6
y 144 172.8 | 207.4 | 248.8 |2985
logy =loga+ xlogh - (1)
y=A+xB > (2)
y =logy,A=1loga,B =1loghb
Yy =nA+ Bex
eXy = Aex+ Bex’ — (3)
X y x 2 Y =logy Xy
2 144.0 4 2.1584 4.3168
3 172.8 9 2.2375 6.7125
4 207.4 16 2.3168 9.2672
5 248.8 25 2.3959 11.9795
6 298.5 36 2.4749 14.8494

Fit a second degree parabola to the following data by the method of least squares.

X 0

1

3

4

y 1

1.8

2.5

6.3

Equation of parabola y = a + bx + cx* — (1)

Normal equations sy = na + bsx + cex”

2 3
exy =aex+bex +cex’ &

2 2 3 4
ex'y=aex +bex +cex - (2)

x y Xy X’ X"y X’ x*
0 1 0 0 0 0 0
1 1.8 1.8 1 1.8 1 1
2 1.3 2.6 4 5.2 8 16
3 2.5 7.5 9 22.5 27 81
4 6.3 25.2 16 100.8 64 256

Yxi= 10, Y yi =12.9, ¥ x* =30, ¥ x;* = 100, ¥ x;* = 354, ¥ x;%y; = 130.3

Yx; v, =371

Normal equations

5a+ 10b +30c=12.9

10a + 30b +100c = 37.1
30a + 100b +354c = 130.3




Solving o- 1 42 h = -1.07 c= 55

Substitute in (1) y = 1.42- 1.07x+.55x°

Numerical solutions of ordinary differential equations
1. The important methods of solving ordinary differential equations of first order numerically

are as follows
1) Taylors series method
2) Euler’s method
3) Modified Euler’s method of successive approximations
4) Runge- kutta method

To describe various numerical methods for the solution of ordinary differential eqn’s,we consider

the general 1% order differential eqn

dy/dx=f(x,y)------- Q)

with the initial condition y(Xo)=Yo

The methods will yield the solution in one of the two forms:

i) A series for y in terms of powers of x,from which the value of y can be obtained by direct

substitution.
ii ) A set of tabulated values of y corresponding to different values of x
The methods of Taylor and picard belong to class(i)
The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class (ii)

TAYLOR’S SERIES METHOD
To find the numerical solution of the differential equation

d
d—y= t(x,y) ()

X

With the initial condition y(x,) =y, 2(2)

y (x) can be expanded about the point x, in a Taylor’s series in powers of (x - x,) as

Y'(Xo)+%y"(xo)+ ............ +My“(xo) >(@3)

n!

n

(x=x,)

y(x) = y(x,)+

Inequ3, y(x,) is known from I.C equ2. The remaining coefficients y'(x,), y"(x,),.c....... y"(x,) etc
are obtained by successively differentiating equl and evaluating at x,. Substituting these values in
equ3, y(x)at any point can be calculated from equ3. Provided h = x - x, is small.

When x, = 0, then Taylor’s series equ3 can be written as

2 n

Y(X) = Y(0) + X.y'(0) + —y"(0) 4 ceovrs t
21 n!

y"(0) 4 ... -2>(4)

1. Using Taylor’s expansion evaluate the integral of y' -2y =3e",y(0)=0,ata) x=0.2




Sol:

b) compare the numerical solution obtained with exact solution .

Given equation can be writtenas 2y +3e* = y’,y(0) =0

Differentiating repeatedly w.r.t to ‘x’ and evaluating at x = 0

y'(x)=2y+3e",y'(0)=2y(0)+3e’=2(0)+3(1) =3
y"(x) =2y +3e",y"(0)=2y'(0)+3e°=2(3)+3=29
y"(x) =2.y"(x)+3e", y"(0)=2y"(0)+3e’ =2(9)+3 =21
y"(x)=2.y"(x)+3e",y"(0) = 2(21) + 3¢’ = 45

y'(x)=2.y" +3e",y"(0)=2(45)+3e° =90 +3 =093
Ingeneral, y“™(x)=2.y"(x)+3e" or y"'(0)=2.y"(0) +3e’

The Taylor’s series expansion of y(x) about x, = 0 IS

2 3 4 5

X X X X
y(x) = y(0)+ xy'(0) + —y"(0) + —y"(0) + —y""(0) + — y""(0) +....
21 31 41 51

Substituting the values of y(0), y'(0), y"(0), y"(0),

9 , 21 , 45 , 93
Y(X)=0+3X+—X"+—X +—X +—X +.......
2 6 24 120
9 7 15 31
Y(X)=3x+ =X+ =X 4+ —x + —x"+ .. - equl
2 2 8 40

Now put x = 0.1 inequl
9 , 7 , 15 . 31 ;
y(0.1) = 3(0.1) + —(0.1)* + —(0.1)° + —(0.1)* + —(0.1)° = 0.34869
2 2 8 40
Now put x = 0.2 inequl

9 , 7 , 15 , 31 ]
y(0.2) = 3(0.2) + —(0.2)> + —(0.2)° + =—(0.2)"* + —(0.2)° = 0.811244
2 2 8 40

9 , 7 , 15 . 31 s

y(0.3) = 3(0.3) + —(0.3)* + —(0.3)" + —(0.3)" + —(0.3)° =1.41657075
2 2 8 40

Analytical Solution:

The exact solution of the equ @ _ 2y +3e* with y(0) =0 can be found as follows
dx

d S .
Y 2y =3e* Whichisa linear iny.
dx

Here P =-2,Q =3¢’

|.F:Lp“:je’“x:e*2“

General solution is y.e ™ = j3e*.e’“dx +c=-3"+c¢
y=-3¢"+ce”*wherex=0,y=0 0=-3+c=c=3
The particular solution is y = 3e** —3e* or y(x) =3e”* —3e”

Put x = 0.1in the above particular solution,

y=3e""-3e"" =0.34869




Similarly put x = 0.2

y=3e’"-3e"" =0.811265

putx = 0.3

0.6

y=3e°°-3e"° =1.416577

. . . d 2 2 1
2. Using Taylor’s series method, solve the equation i A y? for x=0.4 giventhat y =0
dx

when x =0

. d .
Sol:  Giventhat 2= x? + y>and y=0 when x=0 i.e. y(0)=0
dx

Here y, =0, x, =0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x = 0
y'(x) = x° + yz,y'(O):0+ y2(0)=0+0=0
y"(x) =2x+y"2y,y"(0) = 2(0)+ y'(0)2.y = 0
y"(x)=2+2yy"+2y"y', y"(0) = 2+2.y(0).y"(0) + 2.y'(0)" = 2
y"'(x) =2.y.y"+2.y"y' +4.y"y’, y"'(0) = 0
The Taylor’s series for f(x) about x, = 0 iS

2 3 4

Y(x) = y(0) + xy'(0) + — y"(0) + — y"(0) + —— y"(0) + ...
21 31 41

Substituting the values of y(0), y'(0), y"(0),.....

2x° x° .
y(x)=0+x(0)+0+ + 0+ e, = —+ (Higher order terms are neglected)
31 3
(0.4)° 0.064
. y(0.4) = = =0.02133
3

3.Solve y'=x -y’ y(0) =1 using Taylor’s series method and compute y(0.1),y(0.2)
Sol:  Giventhat y'=x-y?* y(0)=1
Here y, =1, x,=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x=0
y'(x)=x-y",y'(0)=0-y(0)" =0-1=-1
y'(x)=1-2y.y", y"(0) =1-2.y(0)y'(0) =1-2(-1) =3
y"(x) =1-2yy'=2(y)°*, y"(0) = -2.y(0).y"(0) = 2.(y'(0))* = -6 - 2 = -8
y"'(x)=-2.y.y"-2.y"y'-4.y"y', y"'(0) = -2.y(0).y"(0) - 6.y"(0).y'(0) =16 +18 = 34
The Taylor’s series for f(x) about X = 0 is
X X2 X3
yw=ww;¢©+;W©+;W%ﬁmu
Substituting the value of y(0), y*(0), y**(0)......




3 8 34
y)=1-x+2x%- 3+ X+
2

6 24
y(x):l—x+ix2-ix3+ Lt ->(1)
2 3 12

now put x =0.1in (1)
y(0.1)=1— 01+_(01) + 4 (01) + 2004
12

=0.91380333 ~_O.91381

Similarly put x=0.2in (1)
y0.2)=1-02+202?2-2 022+ Y (0.2)"+....
2 3 12

= 0.8516.
4. Solvey' = X2 — Yy, Y(0) = 1, using Taylor’s series method and compute y(0.1), y(0.2),
y(0.3) and y(0.4) (correct to 4 decimal places).

Sol. Giventhaty' = x*—yand y(0)=1
Here Xo =0, yo = 1 or y =1 when x=0
Differentiating repeatedly w.r.t ‘x’ and evaluating at x = 0.

YY) =x*-y, y0)=0-1=-1

y'(x) =2x -y, y'(0)=2(0)-y'(0)=0-(-1)=1
y'=2-y",  ylO=2-y(0=2-1=1,
Yoo =-y", yY(0) =" (0) =-1.

The Taylor’s servies for f(x) about xg= 0 Is
y(x) = y(0) + —y '(0) + y“(O) + y“'(O) + y'V(O) L
substituting the values of y(0) , y*(0) , y“(O) Ve () DO

y(x)=1+x(-1) + 7(1) + ?(1) + ;(-1)+ ......

2 3 4

YO = LoX+ b e >(1)
2 6 24
Now put x = 0.1 in (1),
yo1=1-01+ %Y O (0
2 6 24

=1-0.1+0.005+0.01666 — 0.0000416 -0.905125 ~ 0.9051
(4 decimal places)
Now put x =0.2 ineq (1),




(02)° ,(02) (02)

2 6 64
=1-0.2+0.02 +0.001333 - 0.000025
=1.021333 - 0.200025
=0.821308 ~ 0.8213 (4 decimals)

Similarly y(0.3) = 0.7492 and y (0.4) = 0.6897 (4 decimal places).

y(0.2)=1-02+

5. Solve &y -1 =xy and y(0) = 1 using Taylor’s series method and compute y(0.1).
dx

Sol. Given that &Y - 1 = xy and y(0) = 1
dx

Here 2 =1+xyandy,=1, %o =0.
dx

Differentiating repeatedly w.r.t ‘x” and evaluating at xo =0

y'(x) =1+Xxy, y'(0) = 1+0(1) = 1.

y'(x) =xy+y, y'(0) = 0+1=1

YU ) =xy” +y +y, y"(0) = 0.(1) + 20(1) =2
YY) = xy! +y+ 2yt y™(0) = 0+3(1) =3.

y 00 = xy" + y! w2y, yW(0)=0+2+2(3)=8

The Taylor series for f(x) about Xo =0 is

3 4 5

Y00 =Y(0) + xy0) + =y 0+ Sy + Ly + Sy

X
! 41 !

Substituting the values of y(0) , y'(0) , y"(0) , ....

2 3 4

YO) = 1+X+ — + —(2) + — (3) + —
2 6 24

120

&) +....

2 3 4 5
X X

y(x):1+x+x—+x—+—+—+.... 2>(1)
2 3 8 15

Now put x = 0.1 in equ (1),

R R G S (S D (B D

3 8 15
=1+ 0.1 +0.005 + 0.000333 + 0.0000125 + 0.0000006
= 1.1053461

y(0.1)=1+0.1+

H.W
6. Given the differential equ y* = x* + y2, y(0) = 1.0Obtain y(0.25), and y(0.5) by Taylor’s
Series method.
Ans: 1.3333, 1.81667




7. Solve y1 = xy? + Y, Y(0) =1 using Taylor’s series method and compute y(0.1) and
y(0.2).
Ans: 1.111, 1.248.

Note: We know that the Taylor’s expansion of y(x) about the point xo in a power of (X —
Xo)iS.

)

V00 =y0) + A1) ) + CID i)+ D i 1 >

Or

y(X) =Yyo+ (X;IXO) Vo ¥+ (X_g)l(O) Yo * (X_3)|(0) Yo ...

If we let X — Xo = h. (i.e. X = Xo + h = X1) we can write the Taylor’s series as

2

= = h ! h h3 1 h v
YO =y(X) =Yot+ — y, + —y, + —y, +—y T
1! 21! 31 41
h h? h’ h'
i.e. Y1—YO+1—|y;+;yo +;y;"+ 4|y;V+..... >(2)

Similarly expanding y(x) in a Taylor’s series about x = x1, We will get.

2 3

h I h 1 h I h4 v
y2=y1+—y1+—y1 + Y, o+ Y o+ 9(‘?’)
11 21 3! 41
Similarly expanding y(x) in a Taylor’s series about x = x, We will get.
h h® o h* o, ht oy
Y3—Y2+—y2 t—y, +—y, +—y, ... >(4)
11 21 31 41

In general, Taylor’s expansion of y(X) at a point X= X, iS

Yor1 = Yo + :—!yn' +%y;' +2—!y;" +%yn'v T >(5)
8. Solve y* = x-y?, y(0) = 1 using Taylor’s series method and evaluate y(0.1), y(0.2).
Sol: Given y' = x — y? >(@1)
and y(0)=1 2(2)

Here X0 =0, yo=1.
Differentiating (1) w.r.t ‘x’, we get.

y'=1-2yy'>(3)
y"'=-2y. y"' + (v)) > (4)
yV=-2ly y+y Y2y v >(5)
=23y y'+y y"
Putxo =0, yo=11in(1),(3),(4) and (5),
We get
y! =0-1=-1,

y! =1-2(1) (-1) = 3,
v =-2[(-1)%) + (1) 3)] =-8




y' =-2[3(-1) (3) + (1) (-8)] =-2(-9 -8) = 34.
Take h=0.1
Stepl: By Taylor’s series, we have

2

h h
Yi=VYo+ —y0 + —vy, +—y, ... -2(6)
1! 21 31 41

on substituting the values of yo, y. , v.', etc in equ (6) we get

(0.1)" (0.1)° (01"

y0.1)=y1=1+ —( D+ ——0)+ (-8) +

=1-0.1+0.015-0.00133 +0.00014 + ...
=0.91381

——34)+.

Step2: Let us find y(0.2), we start with (x1,y1) as the starting value.
Here X3 =Xp+h=0+0.1=0.1and y; = 0.91381
Put these values of x; and y; in (1),(3),(4) and (5),we get
y! =x1- y? =0.1-(0.91381)* = 0.1 —0.8350487 = -0.735

" =1-2y;.y =1-2(0.91381) (-0.735) =1 +1.3433 = 2.3433
y" == 2[(y! ) +y1y"]=-2[(-0.735)* + (0.91381) (2.3433)] = -5.363112
=-2[3.y! y" +y1y"]=-2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)]
= -2[(-5.16697) — 4.9] =20.133953

By Taylor’s series expansion,

2

—_ + h 1 + h 1 + h 11 + +
Yo=Y1+ —y, + —y, + —y, —vy,
11 21 31 41

- y(0.2) =y, = 0.91381 + (0.1) (-0.735) + 2

(2.3433) +

(0.1)°

(-5.363112) + =2 (20.133953) + ...

y(0.2) =0.91381 - 0.0735 + 0.0117 — 0.00089 + 0.00008
=0.8512

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given that y' = y*+ x and
y(0)=1
Sol: Given y* = y* + x >@1)
and y(0)=1 2>(2)
Here X0 =0, yo = 1.
Differentiating (1) w.r.t ‘x’, we get

y'=2yy' 1 >(3)
y" =2y v+ (YY) >(4)
yU =2y vty y 2y

=2y y" +3y'y"] >(5)




Put Xo =0, Yo=1in (1), (3), (4) and (5), we get
yo =(1)?+0=1

y, =2(1) () +1=3,

" =2((1) (3) + (D)) =8

yo =2[(1)(8) +3(1)(3)]
=34
Take h =0.1.
Stepl: By Taylor’s series expansion, we have

2

— —_— h | h 1
y(X1) =y1=Yo+ oY +—y, + —y,

P Y0
21 3! 41

on substituting the values of y,, vy, , y,' etc in (6),we get

0

y(0.1) =yi= 1 + (0.1)(1) + (0'21) @)+ %Y @)+ %(34)+
= 1+0.1+0.015 + 0.001333 + 0.000416

y1 = 1.116749
Step2: Let us find y(0.2),we start with (x1,y;) as the starting values
Here x; =Xp+h=0+0.1=0.1andy; = 1.116749
Putting these values in (1),(3),(4) and (5), we get
y! = yi4xy = (1.116749)* + 0.1 = 1.3471283

y! =2y1y! +1=2(10116749) (1.3471283) + 1 = 4.0088
v =20y, + (v))?) =2((L.116749) (4.0088) + (1.3471283)?] = 12.5831

y =2y y" +6y! y" =2(1.116749) (12.5831) + 6(1.3471283) (4.0088) =
60.50653

By Taylor’s expansion

2 3 4
—_ —_ +h I_'_h II_'_h Ill+h IV+
Y(X2) =Yo=y1+—y, + —y, + —vy, —y, +t...
11 21 3! 41

(0.1
2

(0

- y(0.2) =y, = 1.116749 + (0.1) (1.3471283) + > (4.0088) +

'61) (12.5831)

(0.1
24
y,=1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252
=1.27385
y(0.2) =1.27385

Step3: Let us find y(0.3),we start with (x»,y-) as the starting value.
Herex,=x;+h=0.1+0.1=0.2and y, = 1.27385

Putting these values of x, and y, ineq (1), (3), (4) and (5), we get

y! = y? +x,=(1.27385)* + 0.2 = 1.82269

+

(60.50653)

y!' =2y, y! +1=2(1.27385) (1.82269) + 1 = 5.64366

2




"= 2Lys v+ (y!)?] = 2[(1.27385) (5.64366) + (1.82269)]
= 14.37835 + 6.64439 = 21.02274
y =2y + ¢ 46y .y =2(1.27385) (21.00274) + 6(1.82269) (5.64366)
= 53.559635 + 61.719856 = 115.27949

By Taylor’s expansion,

2

h h 1 h 1 h v
Y(Xs) =Yy3=Yy2 + —yz +—yl =y —y Y+
21 31 41
y(0.3) = ys = 1.27385 + (0.1) (1.82269) + 2 (5.64366) + > (21.02274)

G

(115.27949)

=1.27385 + 0.182269 + 0.02821 + 0.0035037 + 0.00048033
=1.48831
y(0.3) = 1.48831
10. Solve y'= X2 — Y, Y(0) = 1 using Taylor’s series method and evaluate
y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places)
Sol:  Giveny'=x*-y >(1)
and y(0) =1 2>(2)
Here xo =0,y =1
Differentiating (1) w.r.t ‘x’, we get

y'=2x-y'>(3)
y||| =2 yll 9(4)
y|V — _ylll 9(5)

put Xo =0, yo=1in (1),(3),(4) and (5), we get
Yo = %, -Yo=0-1=-1,
Yo =2X0- y, =2(0)-(-1) =1
y, =2-y, =2-1=1,
Y, =-vy, =-1 Take h=0.1

Stepl: by Taylor’s series expansion

h h’
X)) =Vi= Yo+ — vy, + — + — + —
y(X1) = Y1= Yo TRPY Yo ol T

On substituting the values of yo, vy, , vy, etcin (6), we get

(0.1)° (0.1)° (0.1)"

y(0.1) =y; =1+ (0.1) (-1) +

)+

1) + -Dt...

=1-0.1 + 0.005 + 0.01666 — 0.0000416

=0.905125 ~ 0.9051 (4 decimal place).
Step2: Let us find y(0.2) we start with (x1,y1) as the starting values
Herex=Xo+h=0+0.1=0.1 and y; = 0.905125,




Putting these values of x; and y; in (1), (3), (4) and (5), we get
y! = x2 -y; = (0.1)* — 0.905125 = -0.895125

y,'=2X1- y, =2(0.1) — (-0.895125) = 1.095125,
y,'=2-y' =2-1.095125 = 0.90475,
y,  =-y," =-0.904875,
By Taylor’s series expansion,
2 he h

;0 L + —y"+ —y"V+
y2) =y2=yi+ — vy, y,' Y, y
11 21 31 41

y(0.2) =y, = 0.905125 + (0.1)(-0.895125) + + (0'2 D (1.09125) +

(O 1 0g5125) + &1

(-0.904875)+....

y(0.2) =y, =0.905125 - 0.0895125 + 0.00547562 + 0.000150812 — 0.0000377

=0.8212351 ~ 0.8212 (4 decimal places)
Step3: Let us find y(0.3), we start with (X2,y») as the starting value

Here x, =x; +h=0.1+0.1=0.2and y, = 0.8212351

Putting these values of x, and y- in (1),(3),(4), and (5) we get

y! = x? -y, =(0.2)* - 0.8212351= 0.04 — 0.8212351 = - 0.7812351

y, = 2% - y, =2(0.2) +(0.7812351) = 1.1812351,

y'=2- =2-1.1812351 = 0.818765,
y, =-vy, =-0.818765,

By Taylor’s series expansion,
h hz h3 11 h4 v
Yy(X3) =Ys=ya+ — y, + — v+ =y, + —y)
11 21 31 41

(0.1)°

y(0.3) =y = 0. 8212351 + (0.1)(-0.7812351) + (1.1812351) +

(0.1)°

(0.818765) + 21 (10.818765)+....

y(0.3) =y; = 0. 8212351- 0.07812351+ 0.005906 + 0.000136 — 0.0000034

= 0.749150 ~ 0.7492 (4 decimal places)

Step4: Let us find y(0.4), we start with (x3,y3) as the starting value
Here x3=x;+h=0.2+ 0.1 =0.3 and y; = 0.749150
Putting these values of x; and ys in (1),(3),(4), and (5) we get
y! = x2 - yg = (0.3) = 0.749150= -0.65915,
S =2X3 -y, =2(0.3) +(0.65915) = 1.25915,




y;n =2._ yg” =2-1.25915 = 074085,
y¥ =y =-0.74085,

By Taylor’s series expansion,

2 3 4

h h h h
YXa) =Ya=ys+ — y, + — vy, —y F —y
1! 21 31 41

(0.1)"

Y(04) = s = 0. 749150 + (0.1)(-0.65915) + - (1.25015) +
(0'6” (0.74085) + (02'” (-0.74085)+. ..
4

y(0.4) =y, = 0. 749150 — 0.065915+ 0.0062926+ 0.000123475 — 0.0000030
= 0.6896514 ~ 0.6896 (4 decimal places)
11. Solve y* = x*—y, y(0) = 1using T.S.M and evaluate y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4
decimal place ) 0.9051, 0.8212, 07492, 0.6896

12. Given the differentiating equation y* = x* + y?, y(0) = 1. Obtain y(0.25) and y(0.5) by T.S.M.
Ans: 1.3333, 1.81667

13. Solve y* = Xy2 +y, y(0) = 1 using Taylor’s series method and evaluate y(0.1) and y(0.2)
Ans: 1.111, 1.248.

EULER’S METHOD

It is the simplest one-step method and it is less accurate. Hence it has a limited application.

Consider the differential equation LIRS f(x,y) 2>(1)

dx
With y(Xo) = Yo=(2)
Consider the first two terms of the Taylor’s expansion of y(x) at x = Xg
Y(X) = Y(Xo) + (X — Xo) Y'(Xo) 23)
from equation (1) yl(xo) = f(Xo0,Y(X0)) = f(Xo0,Y0)
Substituting in equation (3)
= Y(X) = Y(Xo) + (X — Xo) f(X0,Y0)
At X = X1, Y(X1) = Y(Xo) + (X1 — Xo) f(Xo,Y0)
~ Y1 =Yo+hf(Xo,Yo) Whereh=Xx;—Xo
Similarly at x =X, , Y2 =y1 + h f(X1,y1),
Proceeding as above, yn+1 = Yn + h f(Xn,Yn)

This is known as Euler’s Method

d
1. Using Euler’s method solve for x = 2 from . 3x* + 1,y(1) = 2,taking step size (I) h=0.5
dx

and (Il) h=0.25




Sol: here f(x,y) = 3x* + 1, Xo = 1,yo = 2

Euler’s algorithm is yn:1 = Yo + h f(Xn,¥n), n=0,1,2,3,..... -2>(1)
Q) h=0.5 L X1 =X +h=1+05=15
Takingn=0in (1), we have X2=X1+h=15+05=2

Y1= Yo+ h f(Xo,Yo)
ie.  yi=y(0.5)=2+(0.5)f(12) =2+ (0.5) (3 +1)=2+(0.5)4)

Herex;=Xo+h=1+05=15
~y(.5)=4=y,
Taking n =1 in (1),we have
y2= Y1+ h f(xg,y1)
i.e. y(x2) =y =4+ (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)* + 1] = 7.875
Herex;=x4+h=15+05=2

. y(2) =7.875
(m h=0.25 . X1 =1.25,%x, =150, X3 = 1.75, X4 = 2
Taking n =0 in (1), we have
y1= Yo+ h f(Xo,Yo)
e, y(x1)=y1=2+(0.25)1(1,2)=2+(0.25) (3+1) =3

y(X2) = y2=y1 + h f(x1,y1)

i.e. y(x2) =y, = 3 +(0.25) f(1.25,3)
=3+ (0.25)[3(1.25)* + 1]
=4.42188

Here xo=x;+h=125+0.25=15

.. y(1.5) =5.42188
Taking n =2 in (1), we have
e y(Xs) =ys =hf(XxzY>)
=5.42188 + (0.25) f(1.5,2)
= 5.42188 + (0.25) [3(1.5)% + 1]
= 6.35938

Here Xx3=X,+h=15+0.25=1.75
- y(1.75) =7. 35938
Taking n =4 in (1),we have
Y(Xa) = ¥a=y3 + h f(xs,y3)
I.e. Y(Xa) = y4 = 7.35938 + (0.25) f(1.75,2)

= 7.35938 + (0.25)[3(1.75)? + 1]




= 8.90626

Note that the difference in values of y(2) in both cases
(i.e. when h = 0.5 and when h = 0.25).The accuracy is improved significantly when h is reduced to
0.25 (Example significantly of the equ is y = x> + x and with this y(2) = y, = 10

2. Solve by Euler's method,y' = x +y, y(0) = 1 and find y(0.3) taking step size h = 0.1. compare the
result obtained by this method with the result obtained by analytical solution
Sol:  y;=1.1=y(0.1),
y>=y(0.2) = 1.22
y3 = y(0.3) = 1.362
Particular solution is y = 2e* — (x + 1)
Hence y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 1.5997

We shall tabulate the result as follows

X 0 0.1 0.2 0.3
Eulery 1 1.1 1.22 1.362
Eulery 1 1.11034 1.3428 1.3997
The value

of y deviate from the execute value as x increases. This indicate that the method is not accurate
3. Solve by Euler’s method y* +y = 0 given y(0) = 1 and find y(0.04) taking step size
h=0.01 Ans:  0.9606

4. Using Euler’s method, solve y at x = 0.1 from y* = x+ y +xy, y()) = 1 taking step size
h =0.025.

5. Given that &Y. = xy ,y(0) = 1 determine y(0.1),using Euler’s method. h=0.1
dx
Sol:  The given differentiating equation is L xy, y(0) =1
dx
a=0
Here f(X,y) =xy ,Xo=0and yp =1

Since h is not given much better accuracy is obtained by breaking up the interval (0,0.1) in to five

steps.

Euler’s algorithm is yn+1 = Yn + h f(Xn,yn) ->(1)




.. From (1) form = 0, we have
y1= Yo +h f(x0,y0)
=1+ (0.02) f(0,1)
=1+ (0.02) (0)
=1
Next we have X; = Xg+ h =0+ 0.02 =0.02
.. From (1), form = 1,we have
Y2 =y1+hf(xy,y1)
=1+ (0.02) f(0.02,1)
=1+ (0.02) (0.02)
= 1.0004
Next we have x; = x; + h=0.02 + 0.02 =0.04
.. From (1), form = 2,we have
Y3 =Yz + h f(x2,y2)
=1.004 + (0.02) (0.04) (1.0004)
=1.0012
Next we have x3 = x, + h=0.04 + 0.02 =0.06
.. From (1), form = 3,we have
Ya = Y3+ h f(xs,ys)
=1.0012 + (0.02) (0.06) (1.00012)
=1.0024.
Next we have x4 = x3 + h=0.06 + 0.02 =0.08
.. From (1), form = 4,we have
Ys = Ya + h f(X4,ya)
=1.0024 + (0.02) (0.08) (1.00024)
=1.0040.
Next we have xs = x4 + h=0.08 + 0.02 =0.1
When X = Xs, y~Vs
.y =1.0040 when x = 0.1

6. Solve by Euler’s method y* = 22 given y(1) = 2 and find y(2).
X
7. Giventhat & =32+ Yy, ¥(0) = 4.Find y(0.25) and y(0.5) using Euler’s method
dx
. dy 2
Sol: given — =3x"+yand y(1) = 2.
dx

Here f(x,y) =3x* +y, Xo = (1), Yo = 4
Consider h =0.25
Euler’s algorithm is yn:1 = Ya + h f(Xn,Yn) 2>(1)
.. From (1), for n = 0, we have

Y1 = Yo + h f(Xo,yo)
=2 +(0.25)[0 + 4]




=2+1
=3
Next we have x; =xo+h=0+0.25=0.25
When X = X1, Yi~ Y
. y=3whenx=0.25
.. From (1), for n = 1, we have
Y2 =y1 +hf(xy,y1)
=3 +(0.25)[3.(0.25)% + 3]
= 3.7968
Next we have x, =x; + h=0.25+0.25=0.5
When X =Xz, Y ~ V>
..y =3.7968 when x = 0.5.

8. Solve first order diff equation LIRS . , ¥(0) =1 and estimate y(0.1) using Euler’s
dx y + X
method (5 steps) Ans: 1.0928

9. Use Euler’s method to find approximate value of solution of Yoo y-x+5atx=2-1
dx

and 2-2with initial contention y(0.2) = 1

Modified Euler’s method

Itis given by y(i)k+l =y +h/2f [(ka y )+ f (xkﬂ,l)k“(i?l)]i =1,2....., ki=0,1.....
Working rule :
i)Modified Euler’s method

i (i-9)7 . .
y()wl:yk+h/2f[(xk,yk)+f(xkﬂ,l)“l ]l:l,Z ...... ki=0,1.....

i) When i =1 y°  can be calculated from Euler’s method
i) K=0, 1......... gives number of iteration. i =1,2...

gives number of times, a particular iteration Kk is repeated

Suppose consider dy/dx=f(x, y) -------- (1) with y(xo) =yo----------- (2)
To find y(x1) =y; at X=x;=Xp+h

Now take k=0 in modified Euler’s method

We get yl(l) =y, + hlz[ f (X, Y,)+ f (xl,yl('fl))—| ........................... 3)
Taking i=1, 2, 3...k+1 in eqgn (3), we get
v, =y, +hi2[ f(x,y,)] By Euler’s method)

(0)
y, = y0+h/2[f (Xo,¥o)+ f (xl,yl )}
y,” = y0+h/2[f(x0,y0)+ f(xl,yl(l))}




Y, :y0+h/2[f(x0,y0)+f(xl,yl(k))}
If two successive values of y ',y " are sufficiently close to one another, we will take the
commonvalueas y, = y(x,)=y(x, +h)

We use the above procedure again
1) using modified Euler’s method find the approximate value of x when x = 0.3

giventhat dy /dx=x+y and y(0)=1
sol:  Given dy/dx=x+y and y(0)=1
Here f (x,y)=x+y,x,=0,and y, =1
Take h = 0.1 which is sufficiently small
Here x, =0,x, =x,+h=0.1,x,=x,+h=0.2,x, = x, +h=0.3

The formula for modified Euler’s method is given by

Vea =y e ni2l t(x vy )+ (xn e ) - ()
L ]

Stepl: To find y;1= y(x1) =y (0.1)
Taking k =0 ineqgn(1)
yk““) =y, + hlz[ f(x,+y,)+ f (xl, yl(ifl))} - (2)

when =1 ineqgn(2)

v, =y, +h /2[ (X0 ¥o)+ (%, yl(o))}
First apply Euler’s method to calculate y - V1

Ly, =Y, +hf(x,.y,)
= 1+(0.1)f(0.1)
=1+(0.1)
=1.10

now|[x,=0,y,=1x =0.1y,(0)=1.10]

g yl(l): y0+0,1/2[f(x0,y0)+ f(xwylw))}

= 1+0.1/2[f(0,1) + f(0.1,1.10)
= 1+0.1/2[(0+1)+(0.1+1.10)]
=111

When i=2 in egn (2)

y, = y0+h/2[f(x0,yo)+ f(xl,yl(l))}

= 1+0.1/2[f(0.1)+f(0.1,1.11)]
=1+ 0.1/2[(0+1)+(0.1+1.11)]
=1.1105




y, @ =y, + hlz{f (Xo. ¥o)+ f (xl,yl(z))}
= 1+0.1/2[f(0,1)+f(0.1 , 1.1105)]

= 1+0.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since y* =y

1

- y1=1.1105

Step:2 To find y; = y(x2) = y(0.2)

Taking k =1 ineqn (1) , we get
y, = y1+h/2[f (x,y,)+ f (xz,yz(ifl))}a (3)

i=1,2,34,.....
Fori=1

y, = y1+h/2[f(x1,y1)+ f(xz,yz(o))}

yz(") is to be calculate from Euler’s method
Y, "=y, +h f(xl‘yl)

= 1.1105 + (0.1) f(0.1 , 1.1105)

=1.1105+(0.1)[0.1+1.1105]
=1.2316
g yi” = 1.1105+0.1/2[ f(0.1,1.1105)+ f (0.2,1.2316) ]

= 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316]
= 1.2426

y, =y, + h/Z[f (%, y,)+ f (xzyz(l))}

=1.1105 + 0.1/2[f(0.1, 1.1105) , (0.2 . 1.2426)]
= 1.1105 + 0.1/2[1.2105 + 1.4426]

=1.1105 + 0.1(1.3266)

=1.2432

y, =Yy, + h/2[f(x1,y1)ﬁL f (xzyz(z))}

= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]
= 1.1105+0.1/2[1.2105+1.4432)]




= 1.1105 + 0.1(1.3268)
=1.2432
Since y,* =y,
Hence y, = 1.2432
Step:3
To find ys = y(xs) = y ¥(0.3)
Taking k =2 in eqn (1) we get

y3<1):y2+h/2[f(xzvyz)+f(XS’y;H))}_)H)
For i=1,

) "

Ys :Y2+h/2[f(xz'y2)+f(x3'y3 )}

y,” is to be evaluated from Euler’s method .

Yy, =Y,+hf(x,,y,)
= 1.2432 +(0.1) f(0.2 , 1.2432)
= 1.2432+(0.1)(1.4432)
= 1.3875

. y," =1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)]

= 1.2432 +0.1/2[1.4432+1.6875]
= 1.2432+0.1(1.5654)

=1.3997

| —

y3(2): y2+h/2[ f(x,,y,)+f (xa,y3(1))

= 1.2432+0.1/2[1.4432+(0.3+1.3997)]
= 1.2432+ (0.1) (L1.575)

=1.4003

y, = y2+h/2[ f(x,.y,)+ f (x3.y3(2))}

= 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)]
= 1.2432 + 0.1(1.5718)

=1.4004




)
Ys

—y, ¢ h/Z[ (%, y,)+ f (x3,y3(3))]
=1.2432 + 0.1/2[1.4432+1.7004]

= 1.2432+(0.1)(1.5718)

= 1.4004

(4)

3

Since y,¥ =y

Hence y, =1.4004 The value of y at x = 0.3 is 1.4004

2 . Find the solution of &% = x-y,y(0)=1atx=0.1,0.2,0.3,0.4and 0.5. Using modified
dx

Euler’s method

Sol . Given 2. = x-yand y(0) =1
dx

Here f(X,y) = x-y,Xp=0and yp =1
Consider h=0.1 so that
Xx=0.1,% =0.2,x3=0.3,xs=0.4and x5 =0.5

The formula for modified Euler’s method is given by

Ve =y w12 £ (x,y0)+ Xy, o (1)
Where k=0,1, 2, 3,..... 1=1,2,3,.....
f oy 1 . 0 _ (1)
y (xk,yk) X, =Y, ;{f(xk'yk)+f(xk+lyyk+l( 1))} Vit yk+h/2|_f(xk,yk)+f(xkﬂ,yh1 )J

K
0
0. 0-1=-1 - 1+(0.1)(-1)=0.9 = y
0
0.1(i=1) 0-1=-1 1+(0.1)(-0.9)=0.91
15(-1-0.8) = -0.9
0.1(i=2) 0-1=-1 15(-1-0.81)= -0.905 1+(0.1)(-0.905)=0.9095
0.1(i=3) 0-1=-1 15(-1-0.80.95)= - 1+(0.1)(-0.90475)=0.9095
0.90475
K=1
0.1 0.1-0.9095= - - 0.9095+(0.1)(-
0.8095 0.8095)=0.82855
0.2(i=1) -0.8095 0.9095+(0.1)(-
%2(-0.8095-0.62855) 0.719025)=0.8376
0.2(i=2) -0.8095 15(-0.8095-0.6376) 0.9095+(0.1)(-
0.72355)=0.8371
0.2(i=3) -0.8095 15(-0.8095-0.6371) 0.9095+(0.1)(-
0.7233)=0.8372




0.2(i=4)

-0.8095

15(-0.8095-0.6372)

0.9095+(0.1)(-
0.72355)=0.8371

K=2

0.2 0.2-0.8371=-0.6371 | - 0.8371+(0.1)(-
0.6371)=0.7734

0.3(i=1) = 0.6371 15(-0.6371-0.4734) | 0.8371+(0.1)(-
0.555)=0.7816

0.3(i=2) =-0.6371 %(-0.6371-0.4816) 0.8371-
0.056=0.7811

0.3(i=3) = -0.6371 15(-0.6371-0.4811) | 0.8371-
0.05591=0.7812

0.3(i=4) = -0.6371 15(-0.6371-0.4812) | 0.8371-0.055915 =
0.7812

K=3

0.3(i=1) 0.3-0.7812 i 0.7812+(0.1)(-
0.4812) = 0.7331

0.4(i=1) -0.4812 1(-0.4812-0.4311) 0.7812-0.0457 =
0.7355

0.4(i=2) -0.4812 1(-0.4812-0.4355) 0.7812-0.0458 =
0.7354

0.4(i=3) -0.4812 1(-0.4812-0.4354) 0.7812-0.0458 =
0.7354

K=

0.4 -0.3354 - 0.7354-0.03354 =
0.70186

0.5 -0.3354 %(-0.3354- 0.7354-0.03186 =

0.301816) 0.7035
0.5 -0.3354 %(-0.3354- 0.7354-0.0319 =
0.30354) 0.7035

3. Find y(0.1) and y(0.2) using modified Euler’s formula given that dy/dxzxz-y,y(O)Zl

[consider h=0.1,y;=0.90523,y,=0.8214]

4. Given dy /dx = —xy”,y (0) = 2compute y(0.2) in steps 0of 0.1

Using modified Euler’s method

[h=0.1, y1=1.9804, y,=1.9238]




5. Given y' = x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using modified Euler’s

method

[y1=1.2046, y,=1.4644]

Runge — Kutta Methods

I. Second order R-K Formula

Yis1 = Yitl/2 (Ki+Ky),
Where K; = h (X, Vi)
Kz = h (xith, yit+kj)
Fori=0,1,2-------

1. Third order R-K Formula

Yis1 = Yitl/6 (Ki+4Ko+ Ks),
Where K; = h (X, Vi)
Kz = h (xi+h/2, yo+ki/2)
Kz = h (xi+h, yi+2kz-ki)
Fori=0,1,2-------

I11. Fourth order R-K Formula

Vis1 = Vit 1/6 (Ki+2Ko+ 2Ka+Ky),
Where K; = h (X, Vi)

Kz = h (xi+h/2, yi+ki/2)

Kz = h (xi+h/2, yit+k,/2)

Ks = h (Xi+h, yitks)

1. Using Runge-Kutta method of second order, find y (2.5) from

. d X +
Sol: Given — = J

dx X

¥(2)=2.

Here f(x, y) = xry ,X0=0,yp=2and h=0.25

X
" X1 = Xo+h =2+0.25=2.25, xp = X3+h =2.25+0.25=2.5

By R-K method of second order,

B XY y2)=2, h=0.25.
dx

X




Yo.=VY,+1/2(k +k,). k, —hf(x,+h,y +k),i=0,1..— (1)
Step -1:-
To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in eqn(i)

1
We have y, =y, + —(k, + k,)
2

Where ki= hf (Xo,Yo ), ko= hf (Xo+h,yo+kj)

f (Xo0,Yo )=f(2,2)=2+2/2=2

ki=hf (Xo,Yo )=0.25(2)=0.5

ko= hf (xo+h,yo+k:1)=(0.25)f(2.25,2.5)
=(0.25)(2.25+2.5/2.25)=0.528

- y1=y(2.25)=2+1/2(0.5+0.528)

=2.514

Step2:

To find y(x,) i.e., y(2.5)

i=1in (1)

x1=2.25,y,=2.514,and h=0.25

yo=y1+1/2(k1+K;)

where Kki=h f((x1,y1 )=(0.25)f(2.25,2.514)

=(0.25)[2.25+2.514/2.25]=0.5293

k,=hf(x,+h,y,+k )=(0.1) f (0.1,1-0.1)=(0.1)(-0.9) = -0.09

=(0.25)[2.5+2.514+0.5293/2.5]
=0.55433

y, =y (2.5)=2.514+1/2(0.5293+0.55433)

=3.0558
-y =3.0558 when x = 2.5
Obtain the values of y at x=0.1,0.2 using R-K method of
(i)second order (ii)third order (iii)fourth order for the diff eqn y*+y=0,y(0)=1
Sol: Given dy/dx = -y, y(0)=1
f(xy) =-y, %=0,y0=1

Here f (X,y) =-y, X0=0, yo=1take h=0.1




- X1=Xth=0.1,
X2 = X3+h =0.2
Second order:
stepl: To find y(x;) i.e y(0.1) or y;

by second-order R-K method,we have
Y1 = Yo+1/2(ki+ky)
where k;=hf(Xo,Y0)=(0.1) f(0,1) = (0.1)(-1)=- 0.1
ko= hf (Xo+h, yot+ki)=(0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09
y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905

-y =0.905 when x=0.1

Step2:
To find y; i.e y(x2) i.e y(0.2)

Here x;=10.1, y; = 0.905 and h=0.1

By second-order R-K method, we have
Y2 = Y(X2)= y1+1/2(kitkz)

Where k = h f (x,.y,)=(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905

k,=h f(x,+h,y +k)=(0.1)f(0.2,0.905-0.0905)

2
= (0.1) f (0.2,0.8145) = (0.1)(~0.8145)
= -0.08145

y>= y(0.2)=0.905+1/2(-0.0905-0.08145)
=0.905- 0.085975 = 0819025
Third order
Stepl:
To find y; i.e y(X1)=y(0.1)
By Third order Runge kutta method
y, =Y, +1/6(k, + 4k, + k;)
where ki =h f(Xo, Yo) = (0.1) f(0.1) = (0.1) (-1) =-0.1

k,=hf(x,+h/2,y,+k /2)=(0.1)f(0.1/2,1-0.1/2)=(0.1) f (0.05,0.95)

2

= (0.1)(~0.95) = -0.095

and ks=h f((Xo+h,y0+2k2-k1)




(0.1) f(0.1,1+2(-0.095)+0.1)= -0.905

Hence y1 = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905

y1=0.905 i.e y(0.1)= 0.905

Step2:

To find ys,i.e y(x2)= y(0.2)

Here x;=0.1,y;=0.905 and h=0.1

Again by 2" order R-K method

Y2 = y1+1/6(K; +4Ko+Ks)

Where ki=h f(x4, y1) = (0.1)f (0.1,0.905)= -0.0905

ko= h f (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.2,0.905 - 0.0905)=-(0.1) f (0.15, 0.85975)= (0.1) (-0.85975)
and ks = h f((x1+h,y1+2k>-k1)=(0.1)(0.2,0.905+2(0.08975)+0.0905= -0.082355
hence y, = 0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874

- y=0.905when x=0.1

And y =0.818874 when x =0.2

fourth order:

stepl:

X0=0,Y¥0=1,h=0.1 To find y; i.e y(x1)=y(0.1)

By 4™ order R-K method, we have

Y1 = Yot+1/6(ky+2ko+2Ks+ky)

Where ki=h f(Xo,Y0)=(0.1)f(0.1)=-0.1

Ko=h f (Xo+h/2, yo+k1/2) = -0.095

and k3= h f((xo+h/2,yo+k2/2)=(0.1)f (0.1/2,1-0.095/2)
= (0.1)f(0.05,0.9525)

=-0.09525

and k= h f(xo+h,yo+ks)

=(0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475)

=-0.090475

Hence y;=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475)
=1+1/6(-0.570975)+1-0.951625 = 0.9048375

Step2:

Tofindy,,ie.,y(x,)=y(0.2),y, =0.9048375,ie.,y(0.1)=0.9048375




Here x; = 0.1, y1=0.9048375 and h = 0.1

Again by 4™ order R-K method, we have

Y2 = y1+1/6(K1+2ko+2ks+k,)

Where k;=h f(x4,y1)=(0.1)f(0.1,0.9048375)=-0.09048375

ko= hf (x;+h/2,y1+k1/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-0.08595956
and ks=hf(x;+h/2, y1+k,/2)=(0.1)f(0.15,0. 8618577)= -0.08618577

ks =h f(x1+h,y1+ks)=(0.1)f(0.2,0.86517)

=-0.08186517

Hence y, = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)- 0.08186517
=0.9048375-0.0861065

=0.818731

y =0.9048375 when x =0.1 and y =0.818731

3. Apply the 4" order R-K method to find an approximate value of y when x=1.2 in steps
of 0.1,given that

y'=x*+y%y (1)=15

sol.  Giveny'=x’+y?and y(1)=1.5

Here f(x,y)= x*+y* yo=1.5 and x¢=1,h=0.1

So that x;=1.1 and x,=1.2

Stepl:

To find y1ie, Y(X1)

by 4™ order R-K method we have

Y1=Yo+1/6 (Ki+2ko+2ks+Ky)

ki=hf(xo,Y0)=(0.1)f(1,1.5)=(0.1) [1%*+(1.5)?]=0.325

ko= hf (xo+h/2,yo+ka/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866

and ks=hf((Xo+h/2,yo+k2/2)=(0.1)f(1.05,1.5+0. 3866/2)=(0.1)[(1.05)>+(1.6933)?]
=0.39698

Ks=hf(Xo+h,yo+ks)=(0.1)f(1.0,1.89698)

=0.48085

Hence




1
y,=1.5+—[0.325+2(0.3866)+2(0.39698)+0.48085 |
6

=1.8955

Step2:
Tofindy,, ie., y(x,)=y(1.2)

Here x;=0.1,y;=1.8955 and h=0.1

by 4™ order R-K method we have

Yo = Ya+1/6(Ki+ 2Ky + 2K +ka)

ki=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [12+(1.8955)*]=0.48029

ko= hf (xa+h/2,y1+ka/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834

and ks=hf((x:+h/2,y1+k»/2)=(0.1)f(1.5,1.8937+0.58743) =(0.1)[(L.05)?+(1.6933)]
=0.611715

ke=hf(xi+h,y1+ks)=(0.1)f(1.2,1.8937+0.610728)

=0.77261

Hence y,=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043

-~ y=2.5043 where x =0.2

4. using R-K method, find y(0.2) for the eqn dy/dx=y-x,y(0)=1,take h=0.2

Ans:1.15607

5.Given that y*=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1

Ans: 2.4214

6. Apply the 4™ order R-K method to find y (0.2) and y(0.4) for one equation

10~ x4y y(0)-1 take h=0.1 Ans. 1.0207, 1.038
dx

7. using R-K method, estimate y(0.2) and y(0.4) for the eqn dy/dx=y?-x*/ y*+x2,y(0)=1,h=0.2
Ans:1.19598,1.3751

8. use R-K method, to approximate y when x=0.2 given that y*=x+y,y(0)=1

Sol: Here f(x,y)=x+Yy,yo=1,%,=0

Since h is not given for better approximation of y




Take h=0.1

- X1=0.1, x2=0.2

Stepl

To find y; i.e y(x1)=y(0.1)

By R-K method,we have

Y1=Yo+1/6 (Ki+2ko+2ks+Ky)

Where k;=hf(xo,Y0)=(0.1)f(0,1)=(0.1) (1)=0.1

ko= hf (xo+h/2,yo+k1/2)=(0.1)f(0.05,1.05)=0.11

and ks=hf((xo+h/2,yo+k2/2)=(0.1)f(0.05,1+0. 11/2)=(0.1)[(0.05) +(4.0.11/2)]
=0.1105

ks=h f (xo+h,yo+ks)=(0.1)f(0.1,1.1105)=(0.1)[0.1+1.1105]

=0.12105
Hence - y, =y(0.1)=1+ l(o.1+ 0.22 +0.240 + 0.12105)
6

y =1.11034

Step2:

To find y; i.e y(x2) = y(0.2)

Here x;=0-1, y;=1.11034 and h=0.1

Again By R-K method,we have

Yo=y1+1/6(K1+2ko+2ks+Ky)

ki=h f(x,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034
ko= h f (xo+h/2, y1+ki/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2)
=0.1320857

and ka=h f((x.+h/2,y1+k»/2)=(0.1)(0.15,1.11034+0.1320857/2)
=0.1326382

ks=h f(x1+h,y1+ks)=(0.1)f(0.2,1.11034+0.1326382)
(0.1)(0.2+1.2429783)=0.1442978

Hence y,=1.11034+1/6(0.121034+0.2641714+0.2652764+0.1442978

=1.11034+0.1324631 =1.242803




'y =1.242803 when x=0.2
9.using Runge-kutta method of order 4,compute y(1.1) for the eqn y'=3x+y? y(1)=1.2 h = 0.05
Ans:1.7278

10. using Runge-kutta method of order 4,compute y(2.5) for the eqn dy/dx = x+y/x, y(2)=2 [hint h =
0.25(2 steps)]

Ans:3.058
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Multiple Integrals

Double Integral :

l. When y1,y» are functions of x and x, and X, are constants. f(x,y)is first integrated w.r.t y

keeping ‘x’ fixed between limits y1,Y» and then the resulting expression is integrated w.r.t ‘x” with
in the limits x¢,Xz i.e.,

x=x, y=¢,(x)

“‘f(x,y)dxdy: J' .[ f(x,y)dydx

X=X y=4,(x)
1. When x1,X; are functions of y and y; Y, are constants, f(x,y)is first integrated w.r.t ‘x’
keeping ‘y’ fixed, with in the limits x1,X and then resulting expression is integrated w.r.t ‘y’

between the limits yy,y- i.e.,

y=Y, x=4,(y)
”f(x,y)dxdy= '[ J' f(x,y)dx dy
R y=y; x=¢,(y)

I, When X3,X2, y1,Y» are all constants. Then

Y2 Xz X2 Y2

“‘f(x,y)dxdy: J' If(x,y)dx dy :'[ jf(x,y)dy dx
Problems

1. Evaluate J'jxyzdx dy

11

23

Sol. nyzdx—}dy

2|' , 2'| 2 2

:J.LyX?J dy:J.dey[Q—l]

82 , 2

= —([y’dy=4.[y’d

Z{Y y 4{y y

_ ryyf_i g 4728
_4.L 3J1_3[8 1]_3_3
2. Evaluate H y dy dx

2 X 2’—x —|

Sol. J’ J’ydydx:J’\‘[ydy|dx

X=0 y=0 x=0| y=0




5 x%

3. Evaluate J‘J' x(x2 + yz)dx dy

° T 3 2 x(x2)3—| o s x' ) [x* 1 x°1 5° 5°
_J'Lxx+ de:j‘x +_|dX:L_+__J - L
x-0 3 2ol 3 ) 6 3 8 6 24
1\)1+><Z
dydx
4, Evaluatej j ——
0 0 1+x +y
.1\/1+x dde 1 rﬁ 1 —|
Sol.f I . = II j - dy | dx
T lex 4y X=0LY=0 (1+x)+y J
1+ x
1+><2 —‘ 1
1 \ 10

1 1 _
Tan ' — | dx [ [———dx=—tan l(V)]
\/1+ij x> +a’ a a

y=0

o
—
=
T
>
o
—
~
4
<
.
o
<
_
o
>
I
.
1
5
§
i
>
o

[ [Tan"1-Tan"0]ax or Z(sin ) = Zisinn
= ——| Tan —Tan X —(si X) = —(si
XJZ.O 1+ x° ’ 4

4
4 x*

5. Evaluate Hey’*dydx
00

Ans: 3e*-7
1

6. Evaluate I J' (x* + y?)dxdy
0 x

Ans: 3/35

2 x
7. Evaluate [ e dydx

00

4 2
e —¢

2

Ans:

I
8. Evaluate jJ’xzyzdxdy

0 -1




3

Ans: 2
36

0 ©

9. Evaluate ”e*<*2”2>dxdy

Sol: I.fe'(x2+y2)dxdy = Je |je “dx |dy
0

R T A
2 { 2 2 4
Alter
S .
[Je ™ dxdy= [ [e “rdrde (o x>+ yi=r?)
00 #=0r=0

UreT %
Sl

1 ™ 1
‘;(9)04‘;(%—0)

4
10. Evaluate [ [ xy(x+ y)dxdy over the region R bounded by y:x2 and y=x

2

Sol: y=x* is a parabola through (0,0) symmetric about y-axis y=x is a straight line through (0,0)
with slopel.

Let us find their points of intersection solving y=x*, y=x we get x* =x = x=0,1Hence y=0,1

- The point of intersection of the curves are (0,0), (1,1)

Consider [] %y (x+ y)dxdy
For the evaluation of the integral, we first integrate w.r.t ‘y’ from y=x* to y=x and then w.r.t. ‘X’ from
x=0to x=1

IODY Xy (x + y)dy}dx=.[x:0[j::xz(xzy+xy )dy }dx

( xy )
:I | x° y | dx
x=0
L 2 3 )y=x2
v (xtoxt ox® x] i
:f | —+———-—|dx = (%,
=02 3 2 3 )
v(5xt x® xT) L&A us Yo (e
:J | - — - |dx ’ 5 v
XZUK 6 2 3) Joxa Pedo Yo nT onna Ghe

s{"veu U Aine Y — A -




1 1 1 28-12-7 28-19 9
6

14 24 168 168 168 56

11.Evaluate [ [ xydxdy where R is the region bounded by x-axis and x=2a and the curve x’=4ay.

Sol. The line x=2a and the parabola x*=4ay intersect at B(2a,a)

~The given integral = ny dx dy

Let us fix ‘y’
For a fixed ‘y’, x varies from 2«/ay to 2a. Then y varies from 0 to a.
Hence the given integral can also be written as

a x=2a a |' x=2a —|
J’yZOJ'X:Z\Exy dx dy = Iy:o L-[x:z - XdXJydy

a aow & viy en{"ed <dv.p
FZazy2 2ay3"| . 2a3* 3a%_ 23" 2t e o '
) . J o ) T3 W APhe  &vedkiov c{
2 3 0 3 3 3 IHL\Lo-")AY\J \x'

12. Evaluate jlj rsin@dedr

Sol. .[1:0 r [J’g%sin Hde}dr

='f7 r(—cos@):é)dr
:J’lo—r(cos%—coso)dr
:J'1 —r(O—l)dr:J‘lrdr:(r—} =£—O=i
r=o 0 L2 ), 2 2
13. Evaluate ”(x2 +y”)dxdy in the positive quardrant for
\/
which x+y <1 l“\k )
1 y=1-x \\
SOI IJ(X2+y2)dXdy:Ix=odXIy:o (X2+y2)dy \‘ \\\
WO L\
:I |xy+y—| dx \ \\».7/
X:Ok 3 }0 '\ \)i\Y
1 s : \
- (xz—x3+£(1—x)3\dx:rx——x——i(l—x)J | !
OL 3 J Ls 4 12 JO - -




14.Evaluate [ ( (x*+y*)dxdy over the area bounded by the ellipse —+ v -1
b’

2 2
. . . X
Sol. Given ellipse is =+ 2 -1
a b
2 2 2
X 1 b
i.e.,y—zzl——zz—z( )(or) —(az—xz)
b a a a
b
wy=+—4a’-x’ ,
a  /
. . . f
Hence the region of integration R can be expressed as )
b
—a<x<a, —\/ —\/aZ—x2
\)a *X
. 2 2 j—
.J'RJ(X +y )dxdy—jxxajy:/%a — (x +y )dxdy
A A . VAT
=2J‘ Ia (x2+y2)dxdy=2j x2y+y/
x=-a+vy=0 -a 3 0
a 3 —|
= /\/ - x° +— 2—X2)AJdX
a 3 —‘
= 4] LVX az—XZ)Ade
0 a
Changing to polar coordinates
putting x = asin @
dx =acosfdé
X ) . X
—=sinfd = 0 =sin —
a a
Xx—> 0,0 > 0
T
X —> a,f0 > —
2
Al b’ 1
=4I4LVa sin 9acos€+—a cos’® QJacosedé?
0
Al ab’ | [, 11 ab® 3 1 z 1l
:4]4 a®bsin’ 0cos’0 + —cos'0|do =4jab—— 4> 2 =T
’ L 3 J L 42 2 3 42 zJ
[ = 1 7]
| 2 n-1 n-3 PR
|-:J‘sinm9cos"9d9: — 2 2 |
| o m+n m+n-2 m |
L i
4 rab
=—(a’+ab’)=—(a’"+b")




Double integrals in polar co-ordinates:

ine  rdrd @

1. Evaluate I%Ias

2 2
a —r

Sol. Io%fw rard? —j0%4[ja5ing [ dr]}de——%jo%{jaw 2r dr]}de

0 az_rz LO /az—rz 0 az—l’2 J
:;1 %2 \/ﬁasmﬂd0= -1 %ZF\/az—azsinZG—\/az—OTde
[ =1 2| 1

2 0 0

%

:(fa)J'0 (cos@ -1)d@ =(-a)(sind -0)
:(—a)[[sin%—%]—(O—o)}

[ /1 L 1
R VAN ARC VA

N

0

7 asingd a
2. Evaluate [ [ rdrdo Ans: 2°

0 0 4
3. Evaluate jwjge*'zr dodr Ans: =

0o Jo 4

V.3 a(l+cosd) 3 az
4. Evaluate | [ rdrde Ans: 2Z

0o Jo 4

Change of order of Integration:

- 4a x/ax
1. Change the order of Integration and evaluate | jz o/ dy dx
x=0y=" /4

Sol. In the given integral for a fixed X, y varies from Z_ to 2+/ax and then x varies from O to 4a. Let
4a

2

X
us draw the curves y = — and y = 2+/ax
4a

The region of integration is the shaded region in diagram.
- - . 4a 2«/;
The given integral is = [ Y dy dx

Changing the order of integration, we must fix y

2

first,for a fixed y, x varies from Y to Jsay

4a
and then y varies from 0 to 4a.

Hence the integral is equal to
4a z\/; 4a|_ 2\/; "| JL
le:oj-x:y%ldXdy:Jy:oLIx:y%dXde T(

ORI MEN AT

X=




=12 a.y - 'y_
L y 43 3J
2 0
4 3
= —.Ja.4a+da — ——.64a
3 12a
32 , 16 , 16 ,
=—a —-—a =—a
3 3 3

2. Change the order of integration and evaluate = ja ff(xz +y")dxdy

Sol. In the given integral for a fixed x, y varies from “to \/Z and then x varies from 0 to a
a a

X X
Hence we shall draw the curves y = — and y = \/:
a a
i.e. ay=x and ay’=x
we get ay = ay’
= ay - ay2 =0

gy

= ay(l-y)=0

= y=0,y=1

If y=0, x=0 if y=1, x=a

The shaded region is the region of integration.

:\E(

The given integral is f jy:/

Changing the order of integration, we must fix

X2+ yz)dx dy

first. For a fixed y, x varies from ay? to ay and
then y varies from 0 to 1.

Hence the given integral, after change of the order of integration becomes

ay

J::[,L:ayz(xz + yz)dx dy

- I:ZO{L:”Z(XZ + yz)dx}dy




3 3 3

a a
=t —— - —= — —
5

a
28 20
3.Change the order of integration in [ [ xydxdy and hence evaluate the double integral.

Sol. In the given integral for a fixed x,y varies from x? to 2-x and then x varies from 0 to 1.
Hence we shall draw the curves y=x* and y=2-x.

The line y=2-x passes through (0,2), (2,0)

Solving y=x* ,y=2-x

Then we get x* =2 - x

= X +x-2=0

= X +2X-x-2=0

= x(x+2)-1(x+2)=0

= (x-1)(x+2)=0

= x=1,-2

If x=1,y=1

If x=-2,y=4

Hence the points of intersection of the curves are
(-2,4) (1,2)

The Shaded region in the diagram is the region of

intersection.

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies

from O to \/;

Then y varies from0to 1

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2

Hence J':J’:Xxydydx: jj xy dx dy + ” xy dx dy

OACO CABC

= 17 \{;xdx—lydy+ 27|— Ziiyxdx—|ydy
y70|‘ x=0 J y71|\ x=0 J

B3
o
Ne————
<
Il
o




1 fys\ 1 |—4y2 4y3 y4—|
=== +—. - +—
2\3)0 ZL 2 3 4J1
11 1 4 1
:—.—+—[2 4-2.1- (8—1)+/(16—1)}
2 3 2 3 4
1 17 28 15] 1 1[72-112+457 1 1[57 4+5 9 3
=4 —6-—4+— | = —4 — = —4 — — | = = — = —
6 2L 3 4J 6 2{ 12 J 6 ztlzj 24 24 8

4. Changing the order of integrationjajj;x xy “dy dx

5. Change of the order of integration Hﬁ y “dx dy

Hint : Now limitsarey =oto1and x = 0to «/1— y’

puty =siné

\/17 y2 =cosd

dy = cos@dé
! 2 2
= [y 1-yidy
0
A

= J'O%sinz @ cos’0do = jo%sinz 6deé —J':zsin‘lede
1 31
= ()75 ) = s

Change of variables:

The variables x,y in [ f(x y)dxdy are changed to u,v with the help of the relations

x=f (u,v),y=f,(u,v) then the double integral is transferred into

o(x.y)

o(u,v)

dudv

[[ [ f(uv), £ (uv)]

Where R*is the region in the uv plane, corresponding to the region R in the xy-plane.

Changing from Cartesian to polar co-ordinates

X=rcoséd,y=rsiné

ox  0OXx
((x,y)) lor og| |cos@ -rsing
0 = =
L(r,H)J oy oy sin @ rcosé@
or 06

= r(cosze+sin29): r

”f(x,y)dxdy:” f(rcos@,rsin@)rdr do
R

Ry




Note : In polar form dx dy is replaced by rdr do

Problems:

1. Evaluate the integral by changing to polar co-ordinates j: j: e " ax ay

Sol. The limits of x and y are both from 0 t0 « .

.. The region is in the first quadrant where r varies from 0 to » and ¢ varies from O to %

Substituting x = rcos@,y =rsing and dxdy =rdrdé
Hence [ [ e ™ axay = (7" e rard
jo IO e xdy L:Ojrzoe rdrdé

Putr® =t

= 2rdr = dt

:dy
= rdr 5

Wherer=0=t=0and r=w =>t=w

j j e dxdy-J‘gOJ'toze dtde

=?1J‘0%(0—1)d6' = %(9);% _ %%:%

2. Evaluate the integral by changing to polar co-ordinates IJ v (x*+y*)dxdy

Sol. The limits for xare x=0to *~ V® ~7

= x’ y2 -a’
- The given region is the first quadrant of the circle.
By changing to polar co-ordinates

X=rcosé,y=rsind,dxdy =rdrdéo

Here ‘r’ varies from 0 to a and '¢ 'varies from 0 to %

J'J' x +y’ dxdy_J‘UOJ‘ rlrdrd @

('Y
4 ),

_T 4
=7

3. Show that j:ajyz/ X - yzdxdy=8a2{1__J

4a X +Y

7/
2
0

0="00)




2
4. Sol. The region of integration is given by x = y%a ,x = y and y=0, y=4a.

i.e., The region is bounded by the parabola y’=4ax and the straight line x=y.
Let x=rcosd,y =rsind.Thendxdy =rdrd @
The limits for r are r=0 at O and for P on the parabola

2 .2 4acosé
r'sin“g =4a(rcosf)= r=———
sin” @

For the line y=x, slope m=1i.e., Tano =1,0 = 77

4
The limits for ¢ :%—> %
Also x* - y* =r*(cos” 0 —sin“0)and x" + y* =r’

460059

J. _[/X +y dXdy J.O Vj.ro sm&’ COSZH—SiHZH)rdrdQ

(r2\4acos%nzg
7J‘ i cos —sin29)|—| do
-7 L2 ),
A cos’ @
=8 0 — 6’ dé
aj/ cos sin )sm .
% 4 2 2|—37T_8 T —| 2(77 5\\
=8a’ 6 —cot’0)do =8 ——1;=8a’| —-—
aj'%(cos co ) atlz +4 J aL2 3J

Triple integrals :

If X1,X2 are constants. y;,y, are functions of x and z;,z, are functions of x and y, then f(x,y,z) is first
integrated w.r.t. ‘z’ between the limits z; and z, keeping x and y fixed. The resulting expression is
integrated w.r.t ‘y’ between the limits y; and y, keeping x constant. The resulting expression is

integrated w.r.t. ‘x’ from x; t0 X,

|e”J' (x,y,z)dxdydz =

b y=9,(x) 2=t (x.y)

oo T f(x, y,z)dz dy dx

z="f(x,y)




Problems

1. Evaluate J’ljﬁj s xyzdx dy dz
0+J0 0

Sol. Il J’ﬁ_" e xyz dx dy dz
x=04y=0 2=0

S e S A N
:j de' Xy| — | dy
e Tz
1 1 ’\]l—x2 2 z)dy

_8(;_;+U 48
2. Evaluate ffljoz I:f:(x+ y + z)dx dy dz

1 z x+z

II J' (x+y+y)dxdydz

-10 x-z
vl yz ]
= f|[xy+ 2+zyj |dx dz
-140
] e ]
2

[x+z] _I—X_Z—| +z(x+2z)-z(x~-2z)dxdz
2 | L 2]

Sol:

2

_ IZJJ[ZZ(X+ z)+§4xz}dx dz

[ ox x* 1 T2, 2%
:2[{27 ZX+Z_J dz—ZI L—+z +?Jd =
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Vector Calculus and VVector Operators

INTRODUCTION

In this chapter, vector differential calculus is considered, which extends the basic concepts
of differential calculus, such as, continuity and differentiability to vector functions in a simple and
natural way. Also, the new concepts of gradient, divergence and curl are introduced.
DIFFERENTIATION OF AVECTOR FUNCTION

Let S be a set of real numbers. Corresponding to each scalar t € S, let there be associated a

unique vector f . Then f is said to be a vector (vector valued) function. S is called the domain of

. Wewrite t = £ (t).

Let i, j,k be three mutually perpendicular unit vectors in three dimensional space. We can
write f = 1 ()= f,(t)i + f,(t) j+ f,(t)k , where fy(t), fa(t), fs(t) are real valued functions (which

are called components of f ). (we shall assume that i, j,k are constant vectors).

1. Derivative:
f(t)- f(a)

a

Let  be a vector function on an interval 1 and a e I. Then Lt , If exists, is

t—a
. - . . df -
called the derivative of ¢ at a and is denoted by f 1(a) or [d—] at t = a. We also say that t is
t

differentiable at t =a if f (a) exists.

2. Higher order derivatives

Let  be differentiable on an interval 1 and  *= 2" be the derivative of 7. If 1, 0~ ()
dt t—a

: : -1 dif
exists for everya € lyc 1 . It is denoted by f = —.

Similarly we can define f *(t) etc.
We now state some properties of differentiable functions (without proof)

(1) Derivative of a constant vector is a .

If a and b are differentiable vector functions, then

d _ - da db
(2. —(@+b)y=—+ —

dt t dt

d _— da — _db
(3). —(@b)y=—>b +a.—

dt t dt

d — db

_ - da —
(4) —(axb)=—xb +ax
dt dt dt




(5). If £ is a differentiable vector function and ¢ is a scalar differential function, then
d - df  dg -
=gy
dt dt  dt

(6). Iff=rt(t)i+f(t)j+f )k where fi(t), fo(t), fs(t) are cartesian components of the
df  df, - df, - df -

vector f ,then — - —Li 4 [at
dt ot dt dt

(7). The necessary and sufficient condition for f (t) to be constant vector function is -7
dt

3. Partial Derivatives
Partial differentiation for vector valued functions can be introduced as was done in the case

of functions of real variables. Let f be a vector function of scalar variables p, g, t. Then we write

f = t (p,q,t). Treating t as a variable and p,q as constants, we define

f(prqrt+5t)_ f(p,q,t)
ot

Lt

ot— 0

if exists, as partial derivative of ¢ w.r.t. tand is denot by a
ot

. . of of . .
Similarly, we can define —,—also. The following are some useful results on partial
ap aq

differentiation.

4. Properties

o _ 04 _ o0a
) S =Laie
ot ot ot
) o _ oa
2). If A is a constant, then —(1a) = 1 —
ot ot
. o _  _o¢
3). If ¢ s aconstant vector, then —(¢c) = c —
ot t
4). ﬂ(gi b) _a
ot ot ot
5). Camy -
ot ot ot

o _ — oa — _ ab
6). —(axb)=—xb+ax—
ot ot ot

7). Let f=fi+f,j+f, k , where fy, f,, fsare differential scalar functions of more then one
. of -of, -of, —of - o
variable, Then — =i —+ j—=+ k —(treating i, j, k as fixed directions)

ot ot ot ot

5. Higher order partial derivatives

- o%f o (of) 8%t o (of
Let t =t (p,q,t). Then —=—| —|, =—| — |etc.
ot at\ at ) apot  op | ot

6.Scalar and vector point functions: Consider a region in three dimensional space. To each point

p(x,y,z), suppose we associate a unique real number (called scalar) say ¢. This ¢(x,y,z) is called a




scalar point function. Scalar point function defined on the region. Similarly if to each point
p(x,y,Z)we associate a unique vector £ (x,y,z), f is called a vector point function.

Examples:

For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature
T(x,y,z). This T is a scalar point function.

Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a
position p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point
function.

Consider a particle moving in space. At each point P on its path, the particle will be having a
velocity v which is vector point function. Similarly, the acceleration of the particle is also a vector
point function.

In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This is

called magnetic force field. This is also an example of a vector point function.

7. Tangent vector to a curve in space.
Consider an interval [a,b].
Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a<t <b.
Then the set of all points (x(t),y(t),z(t)) is called a curve in a space.
Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If
A =B, the curve in said to be a closed curve.
Let P and Q be two neighbouring points on the curve.

Let OF =7(t), 00 =7(t + 6t) =7+ 67.Then 6T =00 — OF = PQ

Then 2 is along the vector PQ. As Q—P, PQ and hence PQ tends to be along the tangent
st st

to the curve at P.

st dr . o dr :
Hence 1t <= " willbe a tangent vector to the curve at P. (This = may not be a unit vector)
a0 5t dt dt

Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can

ar ..
observe that - is unit tangent vector at P to the curve.
ds

VECTOR DIFFERENTIAL OPERATOR

Def. The vector differential operator V(read as del) is defined as

-0 -0 -0 . . :
V=i —+ j—+ k —. This operator possesses properties analogous to those of ordinary vectors as
oX oy 0z

well as differentiation operator. We will define now some quantities known as “gradient”,




“divergence” and “curl” involving this operator V. We must note that this operator has no

meaning by itself unless it operates on some function suitably.

GRADIENT OF A SCALAR POINT FUNCTION
Let ¢(x,y,z) be a scalar point function of position defined in some region of space. Then the

op -0¢ ~—0¢

vector function i —+ j—+ k — is known as the gradient of ¢ or V¢
ox oy oz
V(I)—(la—ﬁLj_iJrki Zf%+1'_%+k%
0 0 ox oy oz
Properties:

(1) If fand g are two scalar functions then grad(f +g)=grad f + grad g

(2) The necessary and sufficient condition for a scalar point function to be constant is that Vf = 0

(3) grad(fg) = f(grad g)+g(grad f)
(4) If cis a constant, grad (cf) = c(grad f)

(5) grad [L] _9(grad f)- f(grad 9g)

2 (g #0)
9 9

(6) Let r=xi+yj+zk. Then dr = dx i+ dy j+dz kif ¢ is any scalar point function, then

o¢ o¢ o¢ 00 -0D  —0D ) - - -
d¢ = —dx + —dy + —dz =|i—+ j—+ k — .(IdX + jdy + kdz):V(D.dr
oX oy 0z oX oy 0z

DIRECTIONAL DERIVATIVE

Let ¢(X,y,z) be a scalar function defined throughout some region of space. Let this function have a

value ¢ at a point P whose position vector referred to the origin O is oP =r. Let o+Ad be the

value of the function at neighbouring point Q. If 8§ =+ + Ar . Let Ar be the length of A7

A

— gives a measure of the rate at which ¢ change when we move from P to Q. The limiting value
AT

of% as Ar — 0 is called the derivative of ¢ in the direction of PQ or simply directional derivative
of ¢ at P and is denoted by d¢/dr.

Theorem 1: The directional derivative of a scalar point function ¢ at a point P(X,y,z) in the
direction of a unit vectore is equal to e. grad ¢:g. V.

Level Surface

If a surface ¢(x,y,z)= c be drawn through any point P(F), such that at each point on it, function has
the same value as at P, then such a surface is called a level surface of the function ¢ through P.

e.g : equipotential or isothermal surface.




Theorem 2: V¢ at any point is a vector normal to the level surface ¢(X,y,z)=c through that point,

where ¢ is a constant.

The physical interpretation of V¢
The gradient of a scalar function ¢(X,y,z) at a point P(X,y,z) is a vector along the normal to the level

surface ¢(x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase

of ¢. Greatest value of directional derivative of o ata point P = |grad ¢| at that point.

SOLVED PROBLEMS
1: If a=x+y+z, b= X*+y*+z° | ¢ = xy+yz+zx, prove that [grad a, grad b, grad c] = 0.

Sol:- Given a=x+y+z

da da da
There fore — =1, —=1,—=1
OX oy 0z

-da - - -
Grada=Va=3Yi—=i+j+k
OX
Given b= x*+y*+7

ob ob ob
Therefore — = 2x, —=2y,— =2z
ox oy oz
-0b -ob _ob - - -
Gradb=Vb=i —+ j—+ Z—=2xi + 2yj + 2zk

oX oy 0z
Again ¢ = xy+yz+zx

oc ocC oc
Therefore— =y + z, — =z 4+ x,—=y + x

OX ay 0z

-0c -o0c _oc - - —

Si—+ j—+z—=(y+2)i+(z+XxX)j+(x+y

Grad ¢ = (y+2)i +(2+ )]+ (x+ Yk

oX oy z

1 1 1

[grad a, grad b, grad c] = 2x 2y 2z = 0, (on simplifica tion )

Y+2Z Z+XX+Y
[grad a, grad b, grad c] =0

f'(r)

2: Show that V[f(r)] = Fwhere r= xi + yj + zk .

Sol:- Since 7= xi + yj + zk , We have r’= x’+y*+z°
Differentiating w.r.t. ‘x’ partially, we get

or or X or y or z
2r—=2x => —= —Similarly —=-—, —=—
oX oX r oy r oz r
-0 -8 -0 - or - X
VIFN] =i —+ j—+k — [ f(n) =Y if () —=Y if "(r) =
oX oy 0z oX r
f! - fi(r) _
= (r)Zix= (r).r

r r




Note : From the above result, V(log r) = LZF
r

3: Prove that V(r")= nr'?r .
Sol:- Let 7= xi + yj+zk andr=|r]. Then we have r’ = x*+y*+2* Differentiating w.r.t. x partially,
we have

or or X or y q or z

2r—:2x:>—:—.SimiIarIy =—=—and —=—
oX oX r oy r oz r

V(r"): D i_i(r”) =y inr "_1a—r=z inr n'1£=n r"'zz ix=nr""7(r)
oX oX r
Note : From the above result, we can have

(2). v[ij = - La takingn=-1(2)gradr = E,taking n=1
r r r

4: Find the directional derivative of f = xy+yz+zx in the direction of vector i + 2 j + 2k at the point
(1,2,0).
Sol:- Given f = xy+yz+zx.

-of  -of  _of

Gradf=i—+ j—+7—=(y + z)i_+(z+ x)j_+(x+ y)k_
ox oy oz

If ¢ is the unit vector in the direction of the vector i + 2j + 2k , then
—_ i+ 2]T+ 2k_ 1 - - —
e =—————=—(i +2j+ 2k)

V1t + 2% + 22 3

Directional derivative of f along the given direction = &.Vf

(i-+ 2}+ ZE)[(y + z)i-+ (z + x)}+ (x + yg)]at 1,2,0)

w |

[+ 2) 42z +0) + 20 +)](120) = =

| =

5: Find the directional derivative of the function xy*+yz*+zx? along the tangent to the curve x =t, y
=t%, z = t* at the point (1,1,1).
Sol: - Here f = xy*+yz*+zx?
Vi = i_i+ 1_14r k_iz (y*+2x )|-+ (2% +2xy )T+ (x* +2yz )E
oX oy oz

At (1,1,1), Vf=3i+3j+3k

Let r be the position vector of any point on the curve x =t , y = t*, z = %, then
r_ = xi_+yj_+zk_:ti_+t2 j_+t3k_
i, 2t + 3tk = (i + 2 + 3k) at (1,1,1)
ot

or .

We know that < is the vector along the tangent to the curve.
ot

i-+2E+3; i-+2]+3;

V1427 +3° V14

Unit vector along the tangent =¢ « =

Directional derivative along the tangent = v f e

= T - = < - 3 18
(i+2j+3k).3(i+ j+k) —@+2+3)=

1
e Ny Ny




6: Find the directional derivative of the function f = x?-y?+2z2 at the point P =(1,2,3) in the direction

of the line pq where Q = (5,0,4).

Sol:- The position vectors of P and Q with respect to the origin are OP =i+2]j+3k and

0Q = 5i+ 4k

EZCE —op = 4i_—2j_+ k_
_ ) . . — _ 4i-2j+k
Let ¢ be the unit vector in the direction of PQ . Then e = ——

—af —8f —8f - - —_
gradf:|—+ j—+k —=2xi-2yj+ 4zk
OX oy oz

The directional derivative of ¢ at P (1,2,3) in the direction of PQ = ¢ .Vf
1 - - — - - — 1 1

= —— (4i-2j+k).(2xi —2yj+dzk) ——=(Bx+ 4y +42), . = —(28)
Jar Nen e 21

7: Find the greatest value of the directional derivative of the function f = x?yz® at (2,1,-1).
Sol: we have

-of - of — of - - — _ _ _
gradf=i—+ j—+k —=2xyz i+ x°z2°j+3x yz°k =—4i-4j+12k at(2,1,-1).
OX oy oz

Greatest value of the directional derivative of f = |Vf | ~ 16 +16 + 144 = 4~11 |

8: Find the directional derivative of xyz*+xz at (1, 1,1) in a direction of the normal to the surface
3xy*+y=z at (0,1,1).
Sol:- Let f(x, y, z) = 3xy*+y-z =0

Let us find the unit normal e to this surface at (0,1,1). Then

of , of of

— =3y, —=6xy +1,—=-1.
OX oy oz

Vf = 3y%i+(6xy+1)j-k
(Vo1 = 3itj-k = n
__n  Bi+j-k 3i+j-k
e = —= =
| Vor1+1 N

Let g(x,y,z) = xyz*+xz,then

o9 2 09 2 09
—=yz 4+ 2z, —=x2",—=2xy + X

oX oy 0z

Vg=(yz*+2)i+xz%j+(2xyz+x)k

And [VQ] @,11) = 2i+j+3k

Directional derivative of the given function in the direction of ¢ at (1,1,1) = Vg.e
3i + j—k}_6+1—3 4

Vi S

9: Find the directional derivative of 2xy+z* at (1,-1,3) in the direction of i + 2 + 3k .

=(2i+j+3K). {




of of of
Sol: Let f=2xy+zthen == 2y, &= 2x,— = 22.
oX oy oz

grad f= % o 2yi + 2xj + 2zk and (grad fat (1,-1,3)= - 2i + 2 + 6k
ox

given vectoris a-i+2j+3k = [a]-vi+4+9-14

Directional derivative of f in the direction of a is

AVE (i+2j+3K)(~2i+2]+6k). -2+4+18 20
& Jia Jia Via

10: Find the directional derivative of ¢ = x’yz+4xz” at (1,-2,-1) in the direction 2i-j-2k.

Sol:- Given ¢ = x’yz+4xz’

0 0 0
—¢= 2xyz + 422, —¢= xzz,—¢= xzy + 8xz.
ox oy 0z

Hence V¢ = > f%: i(2xyz +4z%)+ jxz+ k_(xzy +8xz)
0X
Vo at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k.
The unit vector in the direction 2i-j-2K is

_ o 2i-j-2k. 1
A= —— T (2i- j-2k)
NA+1+4 3

Required directional derivative along the given direction = V¢. a
= (8i-j-10k). 1/3 (2i-j-2k)
= 1/3(16+1+20) = 37/3.
11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which

temperature changes most rapidly with distance from the point (1,1,1) and determine the maximum
rate of change.

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by Vt.

_—5 _—5 —6
Wehave Vi=|i —+ j—+k — |(xy + yz + 2x)
oX oy oz

=i(y+z2)+ j(z+ x)+ k_(x+ y)=2i +2j+ 2k_at(1,1,l)

Magnitude of this vector is Vor 2t 12t 212 — 243

Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the
vector 2i + 2 + 2k and greatest rate of increase = 2+/3 .
12: Findthe directional derivative of ¢(x,y,z) = x’yz+4xz* at the point (1,-2,-1) in the direction of
the normal to the surface f(x,y,z) = x log z-y? at (-1,2,1).
Sol:- Given ¢(x,y,z) = X’yz+4xz* at (1,-2,-1) and f(x,y,z) = x log z-y? at (-1,2,1)

Nowve= 277227, 92¢
OX oy oz

= (2xyz +4zz)i_+ (xzz)JT+ (x2y+8xz)k_

(VO)2-1) = [2Q)(-2)(-1) + 4(=1)7Ti + [(1)° (=1) j1+ [(1°)(-2) + 8(-1)]k — — — —(1)




=8i-j-10k

Unit normal to the surface
. Vf
f(x,y,z)= x log z- y* is m
v

of - of — of
NowVf=i—4 j—+k—=log zi + (- 2)/)]+_k
OX oy 0z z

At (-1,2,1), V= log( 1)i - 2(2)j + e 4j-k
1

Vi —4j-k. -4j-k.

|Vf|_ V16 +1 ) \/F

o . A
Directional derivative = V¢. m
v

4j-k. 4+10 14

N N

=(8i - j-10k ).—

13: Find a unit normal vector to the given surface x?y+2xz = 4 at the point (2,-2,3).
Sol:- Let the given surface be f = x’y+2xz — 4
On differentiating,

f of , Of
— =2Xy +2z, — =X ,— = 2X.
OX oy 0z

_6f - — —
grad f =Y i—=i(2xy +2z)+ ix? + 2xk
ox

(grad f) at (2,-2,3) :i-(— 8+6)+ 4]+ 4K = 2+ 4T+ a4k
grad (f) is the normal vector to the given surface at the given point.

Vi 2(=i+2]+2k). —i_+2j_+2k_
|f| 21+ 27 + 27 3

14: Evaluate the angle between the normal to the surface xy= z* at the points (4,1,2) and (3,3,-3).

Hence the required unit normal vector —

Sol:- Given surface is f(x,y,z) = xy- z*
Let n, and n, be the normal to this surface at (4,1,2) and (3,3,-3) respectively.
Differentiating partially, we get

of of of
— =y, —=X,—=-22.
OX oy 0z

gradf: yi_+ xj_—sz_
=(grad f) at (4,1,2) =i + 4] - 4k
n,=(gradf) at (3,3,-3) = 3i +3j + 6k

Let 6 be the angle between the two normal.




n.n, (i+4j-4k) (3i+3j+6k)

C0S 0 = —=——=

nn.

) \/1+16 + 16 . \/9+9+36

(3+12 —24) -9

Vo e e

15: Find a unit normal vector to the surface x*+y?+2z° = 26 at the point (2, 2 ,3).

Sol:- Let the given surface be f(x,y,z) = x*+y?*+2z* — 26=0. Then

of of of
— =2X,—=2y,— =4z
OX oy oz

gradf=3 ot 2Xi+2yj+4zk
OX
Normal vector at(2,2,3) = [Vf Jo23 = 4i +4 ] +12k

. vf 4(i_+ j_+3k_) i+ j_+3k_
Unit normal vector = = -
|Vf| 4~/11 V11

16: Find the values of a and b so that the surfaces ax?-byz = (a+2)x and 4x?y+z°= 4 may intersect
orthogonally at the point (1, -1,2).
(or) Find the constants a and b so that surface ax*-byz=(a+2)x will orthogonal to 4x°y+z°=4 at the

point (1,-1,2).
Sol:- Let the given surfaces be f(x,y,z) = ax*-byz - (a+2)X------------- (1)
And g(X,y,z) = AXPY+Z°- 4ommmmmeeeee @)

Given the two surfaces meet at the point (1,-1,2).
Substituting the point in (1), we get
a+2b-(a+2) =0 = b=1

of of of
Now —=2ax —-(a+2), —=-bzand — = —by.
OX oy oz

vi=¥% Pt [(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk
OX
= (a-2)i-2j+k = n,, normal vector to surface 1.
Also % _ 8xy, % _ 4xz,a—g: 322,
oX oy 0z

Vg=3i 99 _ gyyi+axj+3z2%
oX

(VO)@1,2) = -8i+4j+12k = n, , normal vector to surface 2.

Given the surfaces f(x,y,2), g(x,y,z) are orthogonal at the point (1,-1,2).
[Vi][vg]= 0= ((a-2)i-2j+k). (-8i+4j+12k)=0

—=-8a+16-8+12 = a =5/2

Hence a = 5/2 and b=1.




17: Find a unit normal vector to the surface z= x*+y? at (-1,-2,5)
Sol:- Let the given surface be f = x*+y*-z

of of of
—=2Xx, —=2y,—=-1.
oX oy oz

grad f= vi=y i 2L - 2xis2yjk
X

(Vf) at (-1,-2,5)= -2i-4j-k

VT is the normal vector to the given surface.

. . v f
Hence the required unit normal vector = m =
v

-2i—-4j-k -2i-4j-k 1 . .
= = - (2i+4j+k)

\/(—2)2+(—4)2+(—1)2 ) Va1 Jor

18: Find the angle of intersection of the spheres x?+y?+z* =29 and x*+y*+z° +4x-6y-8z-47 =0 at the
point (4,-3,2).

Sol:- Let f = x*+y*+z%-29 and g = x*+y?+z° +4x-6y-8z-47

-of - of — of _ _ _
Thengrad f= i —+ j—+ k — = 2xi + 2yj + 2zk and
OX oy oz

grad g = (2x + 4)i + (2y - 6) ] + (22 - 8)k
The angle between two surfaces at a point is the angle between the normal to the surfaces
at that point.
Let n,= (grad f) at (4,-3,2) =8i -6 + 4k
n,=(gradf) at (4,-3,2) =12i —-12 j - 4k
The vectors n, and n, are along the normal to the two surfaces at (4,-3,2). Let 0 be the angle

between the surfaces. Then

Cos 0 n.n, 152
oS U=/ F—/— = .
n,|n, /116 /304

19
0 =cos ‘| |—
29

19: Find the angle between the surfaces x*+y*+z° =9, and z = x*+y*- 3 at point (2,-1,2).
Sol:- Let ¢y = X*+y?+z% -9=0 and ¢,= x*+Yy?*-z- 3=0 be the given surfaces. Then
V1= 2xi+2yj+2zk and V¢, = 2xi+2yj-k
Let n,= V¢, at(2,-1,2)= 4i-2j+4k and
T = Vo at (2,-1,2) = 4i-2j-k
The vectors n, and n, are along the normals to the two surfaces at the point (2,-1,2). Let 0 be the

angle between the surfaces. Then




N, (4i-2j+4k) (4i-2j-k) 16+4-4 16 8

|n_1n_2|: V16 +4+16 16 + 4 +16 6721 6var 32l
9—cos’1( i )
321 )

20: If a is constant vector then prove that grad (a .r )=a

Sol: Let a = a,i +a,]+a,k , where a;,a,as are constants.

grad (a .r)=a,i +a,j+ak =a
212 If Vo= yzi + zxj + xyk , find ¢.
Sol:- We know that V¢= A j'i+ 2L
oX oy oz
Giventhat Vo= yzi + 2xj + xy k
Y 04

yz, —=IX,— = Xy
OX oy oz

Comparing the corresponding coefficients, we have

Integrating partially w.r.t. x,y,z, respectively, we get
$= xyz + a constant independent of x.
$= xyz + a constant independent of y.
$= xyz + a constant independent of z.

Here a possible form of ¢ is ¢= xyz+a constant.

DIVERGENCE OF A VECTOR

- . . . . . _of - of —of .
Let t be any continuously differentiable vector point function. Then i. a_+ j.a—+ k .a— is
X y z

called the divergence of f and is written as div f .

. o~ —of -of —of (-6 -6 -2 -
e, div f=i—+j—+k—=|i—+ j—+k —|f

ox oy 0z ox dy oz
Hence we can write div f as

div f =V. ¢
This is a scalar point function.

of of of

2 3
+ +

ox oy 0z

1

Theorem 1: Ifthe vector = fi+ f, j+ f, k ,thendiv f =

Prof: Given f = fi+f, j+f k

of  _of, _of, —of,
+ ] + k
oX oX ox ox




pr of —of of
Also i. =—2and k. —= =2
oX oX oy oy 0z 0z
af _of, of, of
Wehaved|Vf—Z . Ly 2, =
ox ox oy 0z
of, afz of ,
Note : If f isa constant vector then —-, —2, —= are zeros.
oX 6y oz

. div f =0 for a constant vector f .

Theorem 2: div (f = §) = div f +div g

Proof: div (f = §)=% i_.aix(f tg) =y i_.aix(f_)iz i_.:—x(g_):div f+divg.

Note: If ¢ is a scalar function and  is a vector function, then

o [ o o -0l
(). (a.v)g =]a. i—t j—+k — ¢
| 0X oy 62J

I 0 o1
(ai)—+ (a. J)—+(a k)—
L OX oy azJ

{(al)%+(a J)%+(a k) a_qﬁ}

oX

=y (aT.i_)%. and
OX

(ii). @v)f =y (E.i')i.by proceeding as in (i) [simply replace ¢ by f in (i)].
oX

SOLENOIDAL VECTOR

A vector point function f is said to be solenoidal if div f =0.

Physical interpretation of divergence:

Depending upon f in a physical problem, we can interpret div f (= V. f ).

Suppose F (x,y,zt) is the velocity of a fluid at a point(x,y,z) and time ‘t’. Though time has
no role in computing divergence, it is considered here because velocity vector depends on time.

Imagine a small rectangular box within the fluid as shown in the figure. We would like to
measure the rate per unit volume at which the fluid flows out at any given time. The divergence of
F measures the outward flow or expansions of the fluid from their point at any time. This gives a
physical interpretation of the divergence.

Similar meanings are to be understood with respect to divergence of vectors  from other
branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics,

electricity and magnetism etc.

SOLVED PROBLEMS

1:0F = xy%i +2x%yzj - 3yz °k finddiv at(l, -1, 1).




Sol:- Given = xyzi_+ 2x2yzj_—3yz K.

of, of, of o o 0
L2 :—(Xy2)+—(2xzy2)+—(—3yzz)=y2+2X22'6yZ
X oy 0z  ox oy 0z

Thendiv f =

(div t)at (1, -1, 1) = 1+2+6 =9

2: Find div f when grad(x3+y*+z3-3xyz)

Sol:- Let ¢= x*+y*+z°-3xyz.

Then %:3x2—3yz,%=3y2—3zx,%:322—3xy
OX oy 0z
grad ¢=i_%+ J_%+ k_%:3[(x2—yz)i_+(y2—zx)jr+(zz—xy)k_]
OX oy oz
.- _of, of, of, o , 0 , G )
div f =—2+ —2 4+ —2 = [3(x" - yz2)] + —[3(y° - x)] + —[3(z% = xy)]
0z

OX oy 0z  OX oy
= 3(2x)+3(2y)+3(22) = 6(x+y+z)
:0f = (x+3y)i+(y—-22)]+(x+ pz)k issolenoidal, find P.

Sol:-- Let f = (x+3y)i +(y—-22)j+(x+ pz)k = fli_+ f, i+ f3I<_

of of of
We have — -1, —%2-1,—>= p
OX oy 0z
of of of
Ly —2 4 == 1+1+p =24p

div f =
ox oy oz

since f issolenoidal, wehavediv f =0 = 2+ p=0= p=-2

4: Find div f = r"r. Find n if it is solenoidal?
Sol: Given f = r"r. where ©=xi+yj+zk and r =[]

We have r? = x*+y?*+z°
Differentiating partially w.r.t. X , we get

or or X

2r — =2xX=> — = —,

oX oX r
.. or or z
Similarly — = Tang L%
oy r 0z r

f_:r”( Xi + yj_+ zk_)

.- o o o .
div f = —"x)+ —("y)+ —(r"z)
oy 0z

o0X
- n-1 or n n-1 or n n-1 or n
=nr —X+r +nr —Yy+r +nr —Z+Tr
X ay 0z
[x? A r’
=nr "1_+ Y, B ) B (n+3)r"
r r r r

Let f =r"r besolenoidal. Thendiv f =0




(n+3)"=0 = n=-3

5: Evaluate V {iﬂ where ¥ =xi + yj + z and r =|f| .

Sol:- We have

T o= xityjrzkand r= /x’ 4y’ 4 2°

r of, of of
Hence V (—3}2 Ly 2,2
\r°) ox oy 0z
- of or
We have fi= r¥x= Z2 o2 14 x(-3)r *.
oX oX
of X
—Lorlo3xr ==t o3xir?
OX y
r — of -3 -5 2
V.(—J—Z —==3r7-3r°Y x
r) oX

=3r3-3r°r* = 3r3-3r° =0
6: Find div  where 7= xi + yj + zk
Sol:-We have 7= xi+yj+zk =fi+f, j+fk

of, of, _ o 0 0
S—(x)+ —(y)+ —(z)=1+1+1=3
oy 0z

1

of
+ +
OX oy oz oX

div r =

CURL OF AVECTOR

Def: Let t be any continuously differentiable vector point function. Then the vector function

. - of - of - af | - . - -
defined by ix —+ jx—+k x — s called curl of f and is denoted by curl f or (Vxf ).
oX oy 0z
of - of - of - of
Cul’lf:Ix—+j><—+k><——Z i x —
oX oy 0z oX

Theorem 1: If  is differentiable vector point function given by f = fi + f, j+ f, k thencurl f =
f - f.)- -
of, of, i+(af1_asm+ of, of, .
oy 0z \ 0z ox ) o0X oy
( oty -
Proof : curl f z.x—(f)—z.x—(f|+fj+fk)=z >

ox )
_(of, = of, - of, - of - of
_(a_xk_ax }[gl_ayk]%m 0z }




- of, of, _-( of, 61‘3\ —( of, of,
=i - — |+ j - + k -
oy 0z \ oz ox ) ox oy

Note : (1) The above expression for curl ¢ can be remembered easily through the representation.

i ik
- o o8 0 -
curl + =|— — — | =VXf
ox o0y 0z
f.of f

1 2 3

Note (2) : If  isa constant vector thencurl f = o .
Theorem 2: curl (+b)=curl a+curl b

Proof: curl(@=b)=Y i« (+b)

1. Physical Interpretation of curl

If w is the angular velocity of a rigid body rotating about a fixed axis and v is the
velocity of any point P(X,y,z) on the body, then w =% curl v. Thus the angular velocity of rotation
at any point is equal to half the curl of velocity vector. This justifies the use of the word “curl of a
vector”.

2. Irrotational Motion, Irrotational VVector

Any motion in which curl of the velocity vector is a null vector i.e curl v =0 is said to be

Irrotational.
Def: A vector f is said to be Irrotational if curl f = 0.
If £ is Irrotational, there will always exist a scalar function ¢(x,y,z) such that t =grad ¢.
This¢ is called scalar potential of f .
It is easy to prove that, if ¢ =grad ¢, then curl t =0.

Hence Vx t =0 < there exists a scalar function ¢ such that t = V¢.

This idea is useful when we study the “work done by a force” later.

SOLVED PROBLEMS

1:0f £ = xy % +2x%yz j-3yz °k find curl f atthe point (1,-1,1).
Sol:- Let f = xy i + 2x%yz j-3yz2k . Then

i i
- - G
curl f =Vxf=|— —
oX

xy2 2x2yz —3yz2




_ 90 2 0 2 .‘(6 2 0 21 — 0 2 0 2
=i —(=3yz") - —@x"yz) |+ J| —(xy ") - —(=3yz ") |+ k| —(2x"yz) - —(xy ")
oy oz ( oz OX ) OX oy

=i(-32% - 2x2)+ j(0-0)+ k(4xyz - 2xy) = —(32° +2x2y)i-+(4xyz - 2xy )k
=curl t at(1-1,1)= —i - 2k.

2: Find curl f where f = grad(+y*+z3-3xyz)
Sol:- Let ¢= x*+y*+z3-3xyz. Then

grad ¢= Y f%: 3(x7 — y2)i +3(y - 2x)j+3(2% - xy)k
ox

i i K
d d d
curl grad ¢= Vx grad ¢=3|— — —
ox oy oz
2 2 2
X" —yz y —-X 7" —-Xxy

=3[i(-x+x)- j(cy+y)rk(-z+2)]= 0
~curl £=0.

Note: We can prove in general that curl (grad ¢)=0.(i.e) grad ¢ is always irrotational.

3: Prove that if ris the position vector of an point in space, then r"r is Irrotational. (or) Show that
curl(v##) =0

Sol- Let r= xi+yj+zk andr=|r| . r’=x+y+7"

Differentiating partially w.r.t. ‘x’, we get

or or X

2r —=2x=> — = —,

oX oX r
.. or or z
Similarly — = Yand Lo
oy r 0z r

We have r"r = r"(xi + yj + zk_)

i i K
V x (rnr_): i i i
ox oy 0z
xr " yr " "

— 0 n 0 n _(a n 0 n W —( 0 n 0 n
=i —( ) -—(y) |+ i = x)-—(r 2)|+k| —(ry)-—(rx)
0 z OX )

oy z (o ox oy
- er Lyor] R (y) (ZV
=) idamr ——ynr T —\L=nr ilz| —|-vy|—
- <L oy GZT 2 %L \r) erJ%

=nr"?[(zy - vz )|_+ (xz - zx)j_+ (xy — yz )k_]

=nr "’Z[Oi_+ 0j+ Ok_] = nr"? [6]:6
Hence r"r is Irrotational.




4: Prove that curl r =0
Sol:- Let r = xi + yj + zk

_ -8, - - - - =
CUI’|rZZixa—(r):Z(ixi):0+0+0=0
X

- r is Irrotational vector.

5: If a is a constant vector, prove that curl {air J -2 3—2(5.?).
r r r
Sol:- We have r = xi + yj + 7k
al’ - 8|’_ - 8_ _
—=l,— = Jv_zk
oX oy 0z
If |7 = rthen r? =x’+y*+7?
or X or y or z
—=—,—=—,and —=—
oX r oy r 0z r
Curl(airwzzfxi(axsr)
r- ) ox\ r° )
Now ifa”):axi(r—wzaxria—fi‘ta—rrj
ox r’ ) ox\r®) Lr3ax r ox J
__[1- 3 _T axi 3x(a.xr)
Sax|—i-—XI | = -
Lr3 r5 J r3 r5
ixi(axr :i_xraXI_3_X(a_><r_)—|:m—3—xi_x(a_xr_)
et ) e IS
=(-ha - (a)i _3("a)' _ 3—?[(?.?)5— (i.a)r]
r r

Let a3 =a,i+a,j+a,k.Theni.a =a, etc.

(2 —a,i) 3x

W= > - —(xa-ar)
r

_ a( xl‘_\] a-ai 3 . _
le—k ; ):Z - 2, (x"a—axr)

r r

3a , 3r
= -— )+ —(ax+a,y+a,z)
r r r
_2a 3a 3r __ a 3r __
= -+ (ra)=-—+—(ra)
r r r r r

6: Show that the vector (x? - yz)i + (y2 - 2x) j + (2% — xy) k is irrotational and find its scalar

potential.
Sol:let f = (x* - yz)i + (y2—2x)j+ (2" —xy)k

i j K
- |0 0 o - —
Then curl f =|— — — =Y i(-x+x)=0
oxX oy oz
2 2 2
X" —yz y© - x " - xy

- £ is Irrotational. Then there exists ¢ such that t =V¢.




:>|_%+ j_%+ k_%z (xz—yz)i_+(y2—zx)j_+(zz—xy)k_
oX oy 0z
Comparing components, we get
3

%: x? - yz = (/5:J'(x2 - yz)dx :X——xyz + f(y, ) (1)
oxX 3

3
%z yz—zx = ¢=y——xyz + f(z, %) 2)
oy 3
o¢ " z°
— =7 —-xy = ¢=—=-xyz + f (X,¥)( 3)
oz 3
From (1), 2),3), ¢ - *—X 2 _

3

1 3 3 3
¢=—(xX"+y +2°)-xyz +cons tant
3
Which is the required scalar potential.

7: Find constants a,b and ¢ if the vector f = (2x+3y+az)i +(bx +2y+32) ]+ (2x+cy + 3z)k_ is
Irrotational.

Sol:- Given f_=(2x+3y+az)i_+(bx +2y+32) JT+(2x+cy +32)k_

i j k
- 0 0 0 _ _ _
Curl = |— — — =(c-3)i-(2-a)j+(b-3)k
ox oy 0z
2x+3y+az bx +2y+3z 2X +cy + 3z

If the vector is Irrotational then curl f = o
n2-a=0=>a=2b-3=0=>b=3,c-3=0=>c=3

8: If f(r) is differentiable, show that curl { r f()} = 0 where 7 = xi + yj + zk .

Solir=r=4x*+y*+27°

o 1P = X+ ZP
or or X i or y or z
=2r —=2x= —=—, similarly — = =,and — = —
oX oX r oy r oz r

curl{r f(N}=curl{f(N( xi + yj+ zk Y}=curl (x.f(r)i + y.f(r)j+z.f(r)k)

k
5 P P 1o 0 |
_lo 2 o X o o)
X oy 0z oy oz

xf (r) yf (r) z7f (r)

‘|— 1 or 1 ar—l .‘|— 1 y 1 Z—|
i| zf — — = f - —
> IV (r)ay yf (r)azJ > ILZ (r)r yf (r)rJ




=0.

9: If A is irrotational vector, evaluate div( A Xr ) where r = xi + yj + zk .
Sol:We have r = xi + yj + zk

Given a isan irrotational vector

VXA =0

div (A Xr)=V.(A Xr)

r.(Vxa)-a .(Vxr)

r.(0)-A .(Vxr) [using (1)]

=-A .(VXr)....(2)
] j k
_ 0 0 0 - 0 0 -( 0 0 —( 0 0 —
Now VXr=|— — —I|=i|—z-—y —j(—z——x)+k —y-—x|=0
oX oy 0z oy 0z  ox oz ) ox oy
X y z

A (VX7)=0 ...(3)

Hence div (A xr)=0. [using (2) and (3)]

10: Find constants a,b,c so that the vector A =(x + 2y + az)i + (bx —3y — z) j + (4x + cy + 22)k IS
Irrotational. Also find ¢ such that A = V¢.

Sol: Given vectoris A =(x + 2y + az)i + (bx —3y — 2) j+ (4x +cy + 22) k

Vector a is Irrotational = curl A = 0

i i k

0 0 0

=|— — — =
oy

o |

oX 0z

X+2y+az bx-3y-1z 4X +cy + 22

—(c+1l)i+(a—4)j+(b-2)k=0

—(c+1)i+(@a-4)j+(b-2)k =0i +0j+0k

Comparing both sides,

c+1=0, a-4=0, b-2=0

c=-1, a=4,b=2

NOW A =(x+2y+4z)i +(2x-3y—z)j+(4x—-y+22z)k ,0nsubstituting the values of a,b,c
we have A = V.

— - - —_ -0 -0¢ -0¢
SA=(x+2y+42)i+(2x-3y-2z)j+(4bx-y+22)k = i —+ j—+ k —

OX oy 0z
Comparing both sides, we have

% _ X+2y+4z :(I): x2/2+2xy+4ZX+f1(y,Z)

oX




99 2x-3y-z == 2xy-3y2/2-yz+2(2,X)
oy

9 = AX-y+2Z = ¢= 4xz-yz+22+f3(X,y)

0z
Hence o= X%/2 -3y*/2+7°+2xy+4zX-yz+C

11: If ® is a constant vector, evaluate curl VV where V = oxr .
_ ar ]

_ - 0 _ - [om
Sol: curl (X = ix— x = i x X X —
(oxr) i aX(w ry=>.i Lax r+ao 6XJ

=S ix[0+@xi] [~ ax(bxc)=(ac)b - (ab).c]
=Y ix(exi)=Y[(iDo-(.0)il=Y 0-Y (i.0)i=30-0=20

) - ‘Assignments
LIFf =eY%G + j+k) findcurl £ .

2.Provethat f = (y+2)i +(z+x) ]+ (x+ y)k Iisirrotational.
3. Prove that V.(ax f )=—a .curl f where a is a constant vector.

4. Prove that curl (a x r_)=2 a Where a is a constant vector.

5.1 £ = x%yi —22 j+2yz k find (i) curl £ (ii) curlcurl .

OPERATORS
Vector differential operator V
The operator V.= i+ -2+ k 2 is defined such that Vo= i 2%+ 1224 k 2% where ¢ isa
OX oy 0z OX oy oz
scalar point function.
Note: If ¢ is a scalar point function then V= grad ¢= > i 9
oX
(2) Scalar differential operator a .V
The operator a .V = (5.?)%+ (a. j')%+ (a3 .k) 9% s defined such that
OX oy 0z
_ _-0 _ -0 _-0

(a .V)¢:(a.i)—¢+ (a.j)—¢+ (a.k)—¢

OX oy 0z

~ _-of _-of _— of
And (a .V)f=(ai)—+(a.j))—+(ak)—
oX oy 0z

(3). Vector differential operator a xV

The operator a XV= (ax i_)i+ (a x j’)i+ (a x k_)i is defined such that
oX oy 0z

N, _ -0 _ -0 _ -0
(1. (a xV)o=(a x i)—¢+(a>< j)—¢+(axk)—¢
ox oy oz

of _ - of _ - of
—+(axj)—+(axk)—

ii). (a xV). f =(axi).
()(a ) (2 I)ax oy 0z




o, - _ - et _ - of  _ - of
(ii). (a XV)X f =(axi)x —+(ax j)x —+ (axk)x —
oXx oy 0z
(4). Scalar differential operator V.
R N R - -of -of -—of
The operator V= i.—+ j.—+ k.—Iisdefined suchthat V. f = i.—+ j.—+ k.—
ox oy oz 00X oy oz

Note: V. t is defined as div It is a scalar point function.
(5). Vector differential operator V x

The operator V X = i x 2, jx 2,k «Zis defined such that

OX oy oz

- - of - of - of
VXf=Zix—+ jx —+kx—
oxX oy 0z

Note : Vx  is defined as curl f . It is a vector point function.
(6). Laplacian Operator V?

0 2
2 T 2 T 2¢:V¢
o0X oy 0z

2 2 2

Thus the operator V= i —+ i —+ 0 — is called Laplacian operator.

oX oy oz
Note : (i). V2¢= V.(V¢) = div(grad ¢)
(ii). If V2$=0 then ¢ is said to satisfy Laplacian equation. This ¢ is called a harmonic
function.

SOLVED PROBLEMS

1: Prove that div.(grad r™)= m(m+1)r™? (or) V4™ = m(m+1)r™? (or) VA(r") = n(n+1)r"?
Sol: Let 7 = xi + yj + zk and r = || then r* = X’+y?+2%,

. .. . or or
Differentiating w.r.t. ’x’ partially, wet get 2r —=2X = —= Ly
0X 0X r

. or or z
Similarly —= Yoand L=2
oy r oz r

Now grad(r™) = 3 i_i(rm):z imr ”‘la—r:z imr ”‘1122 imr "°x
ox

OX r

~div(grad ™) = 3 i[mr "x]=my r(m -2y LANVINL : |
X L ox J

=My [(m-2)r"*x* " l=m[m - 2)r" Y x> ]

= m[(m-2)r™*(r*)+3r"?]

= m[(m-2) F"2+3r™ )= m(m-2+3)r™ )= m(m+ e
Hence VZ(rm) = m(m+1)rm-2

2

d’f 2 df 2 _
—+ ——=ft%(r)+ = 1'(r) Wherer = |].
dr r dr r

2: Show that V2[f(r)]=




Sol: grad [f(r)] = V(=% iaa—x[f(r)] =i fl(r)a—rz L fl(r)é
-, div [grad f(r)] = VZ[f(r)] = V.Vf(r)= 3 ; Lf G )5}

o . 0
r—[f (r)x]- f (r)x—(r)
_ B f)
=y = ; :

r

r(f“(r)a—rh f1(rﬂ— fl(r)x(ﬂ
=y \ dx ) \r)

r

X X
) —x+rf(r)- fl(r)x(—w
r Lr)

=2 .

r

3 o ll(r)5x+ fi(r)-x’ fl(r)

fn(r) _"——Zfi(r)——fi(r)Z\'
3

1
)

f(r)r?

r r r

= () 2 1r)

r
3: If ¢ satisfies Laplacian equation, show that V¢ is both solenoidal and irrotational.
Sol: Given V2 = 0 =div(grad ¢)= 0 = grad ¢ is solenoidal

We know that curl (grad ¢) = 0 =grad ¢ is always irrotational.

4:Show that (i) (2 .V)o=a .V (ii) (3 .V)7 =7 .

Sol: (i). Let a = a,i +a,j+a,k . Then

0 0 — 0 0 0 0
a.V=(ai+a,j+ak)(i—+]—+k—)"a —+a,—+a, —
oy oz ox oy 0z
0 0
s (a.V)o=a, —+a —¢+a3—¢
oX oy 0z

Hence (a .V)¢=a .Vo

(ii)). 7 = xi + yj + zk

_ _ o _ 0 - - T
(a.V)r=Ya —(N=Ya —=aji+a,j+ak=a
oX OX

5: Prove that (i) ( f xV).r =0  (ii). (f XV)Xxir= -2t




Sol: (i) (1 XV).F=¥ (fxi).2-= 3 (f xi).i =0
oX
oy - -0 - -0 )
() (£ XV)=(fxi)—x(fxj)—x(fxk)—
oX oy 0z

(f_XV)XI’_:(f_Xi_)xa—r+(f_>< j_)xa—r+(f_><k_)><a—r:z (f_xl_)xl_:Z[(f_l)l— f_]
oxX oy oz

= (fi)i+(f.])j+(fk)k—3Ff = f—3f=-2F
6: Find div £ , where F = grad (*+y*+z3-3xyz)
Sol: Let ¢p= x>+y*+z%-3xyz. Then

F =grad ¢

o - - _
=y i—¢:3(x2 —yz2)i +3(y - x) j+3(x° —xy)k =Fi+ F,j+ Fk (say)
oX

. — _O0F, oF, oF
sdiv E =— ¢ —2 4 — = 6X+6y+62= 6(x+y+2)
OX oy 0z

|e diV[gl‘ad(X3+y3+23-3Xyz)]: VZ(X3+y3+23_3xyz): 6(X+y+z)

7: If f= (*+y?*+z°)™ then find div grad f and determine n if div grad f= 0.
Sol: Let f= (6P+y*+z%)™and 7 = xi + yj + zk

r=|f]= r? = x2+y’+2?

=f(n = ()" =r"

w fi(r)=-2nr?™

and f1(r) = (-2n)(-2n-1)r®"?= 2n(2n+1)r2"2

We have div grad f = V(r)= f(n)+%/f(r)= (2n)(2n+1)r>"2 -4n r"2
= r2[2n(2n+1-2)]= (2n)(2n-1)r>"?

If div grad f(r) is zero, wegetn=00r n=%.

n n+2

r r

8: Prove that Vx[Axnr]_ (2-mA  n{r.A)i

Sol: Wehave r = xi +yj+zk and r=|r] = yx* +y*+2°
or - or - or -
—=i, —=j,—=k and
oX oy 0z

2 = x2+y*+2%....(1)
Diff. (1) partially,

or or X .. or y or z
2r —=2x= —=—, similarly — = —and — = —
OX oX r oy r 0z r




ox r' ox\r' re’ ox
— Iri-nr"xrl — T1- n _]
= Ax - = A X - XT
] [
Axi —
= n - n+2 X(Axr)
r
- 0 AxTi i x (A xi nx - —
|><—( - ) = (n )— — i x(Axr)
OX r r r

_ Gi)A-(@G.A)i nx

n n+2
r

[(i.)A = (i.A)F]

r

Let Aji + A, j+Ak. Theni.a = A

1

- 8[(;xr_)] [K—Alf] X -
X — n = n T2 [XA - Alr]
r

r r

_ 3A - A 2 r
= T - n+2[r A]+—n+2(A1x+A2y+Asz)
2A n — nr —_ (2—n); nr — _
= n n A+ n+2 (A'r): n n+2
r r r r r

Hence the result.

VECTOR IDENTITIES

Theorem 1: If a  is a differentiable function and ¢ is a differentiable scalar function, then prove

that div(p a )= (grad ¢).a +¢ div a or V.(pa )= (Vd).a +¢(V.a )

Proof: div(¢a )=V.(¢a )=y i.:—x(¢;)

_ -0¢ ) — -oa — — -
=y {l a—x}a + (Z i a—x};ﬁ =(Vo).a +¢(V.a )

Theorem 2:Prove that curl (pa )= (grad ¢)xa +¢ curl a

Proof : curl (da )=Vx(da )=Y ix ai(ﬁ)




= i %E\_-F ﬁ: i-%xa_+ |-><£
=y ix[ZLri 2=y } z[ axj¢

| ox ox ) L ox
= Voxa +(Vxa )o=(grad ¢p)xa +¢ curl a
Theorem 3: Prove that grad (a .b )= (b.V)a + (a.V)b + b xcurl &+ axcurl b
Proof: Consider

a_xcurl(t;):;x(th;):axZ(fx@}

N

saxarl b =Y i_[a_.a—]—(aT.V)b_....(l)
oX
.. — — -(— oa —
Similarly, b < curl b =¥ {b.—}(b.v)a ......................... (2)
(1)+(2) gives
_ - - _ _-[_ab_J R _-(—aa) _
axcurl b +bxcurl a=>ila.—|-(aV)b+> i|b.—[-(b.V)a
ox N )
_ob —aa]

= axcurl b+bxcul @+ (aV)b+(b.v)a=Sila—+b.—
OX oX

-y i@
_Z oxX '
=V(a .b )=grad (a .b )

Theorem 4: Prove that div(axb) = b.curl a - a.curl b

Proof: div (axb) —Zi_.ﬁ(a_xb_)—Zi_.[a—axb_-ﬁ-a_xﬁJ
OX

oX OX
-y i_{%xb_}+2i-{5xg]— Z(i_x%}b_—Z[i_xg].a_

= (Vxa)b —(Vxb)a=b.curl a— a.curl b

Theorem 5 :Prove that curl (xb) =adivb —bdiva + (b.V)a - (a.V)b

- - 8 _ - _ [oea - ob |
Proof tcurl(axb)=>% ix—(axb)=>Y ix|—xb+ax—
oxX Lax axJ




Z.—(@_ b_\ Z—(_ ob )
| X|] —X + I X| ax—
Lax J |\ 6x)|
[~ (—oa)- (—ob)_ —_ ab
:Z{(I.b)—a—kl.—an}-i-ZLI —|a—(|.a)—l
[ OX X J “ axj XJ
—_ o8 _(—oa)— _[(—8b)\_ (__ —0)\-
=Y (b.i)—- i.— |b + i.—lja-[a.>yi—|b
Z OX ZL 8XJ ZL ax)| LZ axJ
—(b.V)a-(V.a)b +(Vb)a—-(aVv)b
—(Vb)a-(V.a)b + (b.V)a - (a.V)b
—adivb —bdiva+(b.V)a-(a.v)b
Theorem 6: Prove that curl grad ¢ = 0.
Proof: Let ¢ be any scalar point function. Then
.grad ¢=i_%+ j_%+ k_%
OX oy 0z
i ik
0 0 0
curl(gradg)=|— — —
OX oy 0z
o9 94 99
ox oy oz
-( 8% o'\ —( o' o\ —(0o'p o)\ -
—i -— -] - |- K| - |=0

~ (oyoz ozdy ) | 0xdz  9z0x ) ( 0xdy 0Oyox )
Note : Since Curl(gradg) = 0, we have grad ¢ is always irrotational.

7. Prove that divcurl f = 0

Pr oof : Let f_: fli_+ f2j_+ f3k_

i j k_

— — 0 0 0
curl f =Vx f =|— — —
oxX oy 0z

f f f

oty ot ) (ot ot - fof, of -
oy ) Tl T m ) Ty )

_ - — o f(of, of,\ o (of, of) o (of
div curl f =V(Vx f)=—] — —~ |- — | — = — |+ —| — = —
axLay GZJ aykax azJ azLax ayJ

2
otf, o'f, o'f, a'f, a'f, a'f
= - - + + - =0

oxo0y 0x0z 0yox 0yorz 010X 010y

Note : Since div(curl f) =0, we havecurl f is always solenoidal.




Theorem 8: If f and g are two scalar point functions, prove that div(fVg)= fV2g+Vf. Vg
Sol: Let f and g be two scalar point functions. Then

-0 -0 — 0
v .09, %9 o9

OX oy 0z
- o9 - o9 - 0
Now fvg - it 2o i D L
oX oy 0z

:-V.(ng): i( f ﬁ_g) + i[ f 6_9] + i( f a_gw
ox\ ox ) oy oy oz oz )

_¢[2le, 270 %) (of og ot ag ot og
= ST i el . + . + .
oX oy oX oX O0x 0y o0y 0z o0z

_of  -of —of ) (-0g -0g -0
=g+ i T ek T 20
oxX oy 0z ox oy oz

= fV%g+Vf. Vg

Theorem 9: Prove that Vx(Vxa )= V(V.a )-V?a .

Proof: Vx(Vxa') =% i x i(v xa)
X

- 0 _ o8- o6a — oa — oa)
NOW i x —(Vxa)=ix—|ix—+ jx—+kx—
oX axL oX oy azJ
- (— (323_ - aza_ - aza_
=0 x| x—0+ jx + k x |
L oX oxoy oxoz )
— (= d%a) — (= od%a) — (- o&%a
=i x| i x——|+ix|jx [+ 1 x| k x
( ox ) ( oxay ) ( 0xoz )
-o'a)- o'a (-o'a)- (-o'a)- o
=i iU bl jH i k [~ ii=1i.j=ik =0]
oX oX oxoy 0X02

Z_— a(v ) VZ_—aeTzﬁa v (V.3) a a
i x—(Vxa)-= i—- = a) - + +
OX ox ox’ |kax oy 0z

L VX(Vxa )=V(V.a)-Via

i.e.,curlcurla = grad diva-V°’a

SOLVED PROBLEMS




1: Prove that (Vf xVQ)is solenoidal.

Sol: We know that div (a2 Xb ) = b.curl & — a.curl b

Takea=Vf and b= Vg

Then div (Vfx Vg) = Vg. curl (Vf) - V£. curl (Vg)=0[ ~ cur(VF) =0 =curl(vg) ]

- v xvg issolenoidal.

2:Prove that (i) div{(rx a)b} = ~2(b.a) (ii) curl {(ra)xb}=bxawhere a and b are constant

vectors.
sol: (i)

div{(Fxa)xb}=div[(rb)a - (a.b)r]

—div (F.b)a - (a.b)r

:[(r_.b_)divaT+ a.grad (r_.b )J—[(E.b_)divr_+ r.grad (a_b_)J
We have div a = 0,div r = 3,grad (a.b) =0
div{(rxa)xb}=0+agrad(ra)-3(aa)
io ——

=X —(rb)-3(ab)

_aZ|—b—3(ab)

—ay i(ib)-3(ab)
~ab-3(ab)=-2(ab)

- -2(b.a)

(ii) curt{(r=a)xbf=curl[(rb)a~(ab)r]
= curl(rb)a-curl(ab)r

(FE)CUH&-F grad (r.b)xa

+V (rb)xa(~ curla=0)
a =b

—0+
—bxa Since grad (r b)

all

3: Provethat v, v. J

[
L
Sol: We have v {9 => i —(Q

ox\r )
_ofror -y T
Ry B ey
.1, 3 1 2
——ZI.I——SI’ =———=—
r r rr r




(PN (a2 o (-2\(x)_ -2 _ -2F
AR A (5 el e e
4: Find (AXV)o, if A = yz%i - 3xz2? | +2xyz k and ¢ = xyz.
Sol : We have
i j k
AxV= |yz® ~3xz° 2xyz
2 2 o
oX oy oz
_Ta 2y 0 1 -re ., 0 1 -Te , @ 2 |
=i —(-3xz")-—(@2xyz) |- j; —(yz")—-—(2xyz) |+ k| —(yz") ——(-3xz")
L@x oy J Laz oX J Lay ox J

=i (-6x2-2X2)- j (2yz-2yz2)+ k (Z2+32%)=-8xz i -0 j +4z%k

- (AXV)d, = (-8XZ i +47%k )xyz = -8X%yZ%i +AxyZ° k.

Vector Integration

Line integral:- (i) | F.d r is called Line integral of F along ¢

C

Note : Work done byI; along a curve c is Iﬁ.d ‘

C

PROBLEMS

1. If F (x%-27) {-Gyz }+8x22 k , evaluate [ 7. d;from the point (0,0,0) to the point (1,1,1) along the
Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1).
Solution : Given F = (x2-27)i -6yz j +8xz%k
NOW 1= xi+yj+zk = dr = dxi +dyj+dzk
F .dr = (x%27)dx — (6yz)dy +8xz2dz

(1) Along the straight line from O = (0,0,0) to A = (1,0,0)
Here y =0 =z and dy=dz=0. Also x changes from 0 to 1.




j I;.szj (x2-27)dx={x?—27x]1)=§—27=%

(i) Along the straight line from A = (1,0,0) to B = (1,1,0)

Here x =1, z=0 = dx=0, dz=0. y changes from 0 to 1.

o Fodr= [(-6yz)dy =0
(iii)  Along the straight line from B = (1,1,0) to C = (1,1,1)
x=1=y  dx=dy=0 and z changes from 0 to 1.
J' I; dr= j8xzzdz =

BC =0 72=0

[8
8xz °dz = L

21 8
3J0 3

[N

(i) + (if) + (iil) = | Eodr =28

C

2. 1f F =(5xy-65) i +(2y-4%) |, evaluate | F.dr along the curve C in xy-plane y=x*from (1,1) to

(2,8).

Solution : Given F :(5xy-6x2)i +(2y-4x)]‘, ------- (1)
Along the curve y=x?, dy =3x° dx
E =(5x*-6x%)i +(2X-4X) , [Putting y=x in (1)]
dr = dx i+dy j=dx i +3%°dX |
F.dr = [(5x*-6x)i +(2x3-4x)_j].[ dx i+ 3x2dx}}
= (5x* — 6x%) dx+(2x% — 4x)3x°dx
= (6x°+5x*-12x° -6x?)dx

- _ 2
Hence j F .dr:'[(6x5+5x4—12x3—6x2)dx
y=x’ 1
x° x° x* x* ) 2
—+5.—-12.—-6.— | = (x6 +x°-3x" —2x3)
6 5 4 4

(
| 6.
\
= 16(4+2-3-1) — (1+1-3-2) = 3243 = 35

1

3. Find the work done by the force F = ZiHxj+ yk_, when it moves a particle along the arc of the

curve r =cost i + sint ]-t [fromt:Ototzzz

Solution : Given force F =zi+ X j +y kand thearcisr =costi +sint j -tk




l.e., X =cost, y=sint, z = -t
wdr=(sinti +cost j -k )dt

. F.dr=(ti+cost j+sint k). (-sinti +cost j - k )dt = (t sin t + cos? t — sin t)dt

Ir Ir

Hence work done = | F.dr = | (tsint+cos’t—sint) dt
0 0
i "1+ cos2t 2
= [t( cost)] —I( S|nt)dt+J'—dt—jsintdt
0
2t
= - 27 - (cos t)." + ( o \ (cos t),
2\ 2 ),

:—27r—(1—1)+£(27z)+(1—1)=—27z'+7r =-7
2

PROBLEMS

1 : Evaluate jE.ndS where F =zi+ xj— 3y’zk and S is the surface x* + y* = 16 included in the

first octant betweenz=0and z=5
Sol. The surface S is x> + y* = 16 included in the first octant betweenz=0and z = 5

Let b=x"+y* =16
-0 -0 —0¢

Then Vo =i—+ j—+ k——2XI+2yj
0X oy 0z
. -V xi_+ i ) )
unit normal n = ¢ = Y (v x +y =16)
|V(p| 4

Let R be the projection of S on yz-plane

——d d
Then J’FndS— I3 ﬁ ................ *
Given F =zi+xj— 3y%zk
- - 1
F.n=—(xz+ xy)
4
oy
and n.i=—
4

Inyz-plane, x=0,y=4
In first octant, y varies from 0 to 4 and z varies from 0 to 5.

J’E.ndS _ 4 JS(xz+xy\dydz
4

y=0 2=

X
4




[ (y+2z)dz dy

y=0 z=0

=90.

1
—

21 1f F = zi+ xj— 3y’zk, evaluate jE.EdS where S is the surface of the cube bounded by x =

0,x=a,y=0,y=a,z=0,z=a.

Sol. Given that S is the surface of thex =0, x=a,y=0,y=a,z=0,z=a, and rF =zi + Xj—

3y’zk we need to evaluate [F.ndS.
S

y 4
C
B
Q
P
0 A %
R
(i) For OABC
Egnisz =0 and dS = dxdy
n =-k
jE.HdS = —ja —ja (yz) dxdy =0
(i) For PQRS
Egnis z =aand dS = dxdy
n o=k
J— a a a4
[Fnds = | (] y(a)dy)dx:;
(iii) For OCQR
Egnis x =0, and n =—i_,dS:dydz

E.ndS = a a4xzdydz =0
i y!o ZJO

(iv) For ABPS

Egnisx=a, and n o= —| dS = dydz

J'E.;ds = ja( fa4azdz)dy = 2a
s y=0 z=0

4

3




(v) For OASR

Egnisy =0, and n =—],dS:dxdz

jE.ndS = ja Iayzdzdx:o
Ss y=0  z=0

(vi) For PBCQ

Egnisy =a, and n =—},dS:dxdz
J'E.;ds = ja | y‘dzdx = 0

From (i) — (vi) we get

4 4
—— a 3a
[F.nds =0+ — +0+ 2a' +0 - ad= —
e 2 2

VOLUME INTEGRALS

Let V be the volume bounded by a surface —_ (u,v). Let F (r) be a vector point function define

over V. Divide V into m sub-regions of volumes 6V .6V, .. 6V ... 6V

Let P (; i ) be a point insV, . Then form the sum I, = 3 #(ri)(svi. Letm —» « insucha way that

6V, shrinks to a point,. The limit of I, if it exists, is called the volume integral of F (r ) inthe

region V is denoted by J'I;(r_) dv or Fv.

\ \

Cartesian form : Let F (r)=F, i+ F, i+ F, k where Fy, F», Fs are functions of X,Y,z. We know that

dv = dx dy dz. The volume integral given by

J'l;dv:J'.[J'(F1;+ in_+ F3|;)dxdydz: {JHF dxdydz+]HjF2 dxdydz+|;jHF3 dxdydz




Vector

SOLVED EXAMPLES

BT Al I F=2xzi -xj + yik cvaluatejf dv where V' is the region bounded by the
%

surfaces x=0,x=2,y=0,y=6,z=x2,z=4.

Solution : Given F = 2xzi —xj + y*k. . The volume integral is

J'de=” (2xzi - xj + y*k)dx dy dz

]

x=0 )’=0 =

4 2 6 4 - 2 6 4
szzdxaydz-}] j jxdcdydm?j j Iyzdrdydz

. x=0y=0z=v' x=0y=0z=x’

/

2 6 2 6
-7 [ [uttoaa-7 [ [
x=0 y=0 x=0y=0 x

jj(l6x}a&cﬁz;jj4x}c&dyk[
x=0y=0 x=0 y=0

x=0y

==
Lo
‘l__la_c__,o'-
=
(%)
~~
™~
S
£
[ =]

L—~
~
[ ]
~~
(o)
(3=
|
&
&
5.

2 2 2
j(l6x - ) dx I(4x—x3)(y)g J‘(x2 —4)[-);—]

x=0 x=0, x=0

oY Y o 2)(
e

=1287 - 247 -384k

Integral Theorems

Introduction

In

theorem,

this chapter we discuss three important vector integral theorems: (i) Gauss divergence

(i) Green’s theorem in plane and (iii) Stokes theorem. These theorems deal with

conversion of

(i)

.n ds into a volume integral where S is a closed surface.

7

S

(i) j F .d r into a double integral over a region in a plane when C is a closed curve in

C

the plane and.




(1) j (V x A) .nds into a line integral around the boundary of an open two sided

surface.

1. GAUSS’S DIVERGENCE THEOREM
(Transformation between surface integral and volume integral)

Let S be a closed surface enclosing a volume V. If F is a continuously differentiable vector
point function, then

jdidev:jﬁ.ﬁ ds

When n is the outward drawn normal vector at any point of S.

SOLVED PROBLEMS

1) Verify Gauss Divergence theorem for F = (x* — yz)T — 2x” yJ + zk taken over the surface of
the cube bounded by the planes x = y = z = a and coordinate planes.

Sol: By Gauss Divergence theorem we have

jF.Eds - jdidev

RHS = J J J (327 — 2x* + 1)dr dvdz = J J J[I: +1)dxdydz= J J [%—1) dy dz
o000 oo o o0 " o
ra® “Ta® 1 (a® ) ° (a® ) a’
—+adydz=[|—+a|(y),dz=| —+a|afdz=| —+a| a’)=—+a’...... (1)
£H 3 J M 3 J 3 J J; 3 )( ) 3

Verification: We will calculate the value of J'E.;ds over the six faces of the cube.

S

Q) For S; = PQAS; unit outward drawn normal i = 1

x=a; ds=dy dz; 0<y<a, 0<z<a y
A
C s
- 3 3 . R P
L~ Fn=x"-yz=a -yzsincex =a
- — a a A
HF.nds = j I (a’- yz)dydz B
Q
S, z=0 y=0 &
a - [
N B
= J a‘y -7z dz
= S




(i) For S; = OCRB; unit outward drawn normal 1 = —1

x=0; ds=dy" dz; 0<y<a, y<z<a

Fran=—(x*—yz)=vyzsincex=10
@ lird [ird _—

i i - _ i i i =
J J F.nds = J J yvzdydz = J = zdz
S z=0y=0 z=p-  ¥=0

- a 2

N a 2
= — TAZ = —

2 | T

=0

(i)  For S3=RBQP; Z=a; ds = dxdy; 1 = k

0<x<a, 0<y<a

Fn=z=a sincez=a

(iv)  For S4=OASC;z=0; 7 = —k, ds = dxdy;

0<x<a, 0<y<a

"H)

M =—z=0 sincez =10
Il

(v) For Ss = PSCR; y = a; i1 = j, ds = dzdx;

]

AdS=0..(5)

0<x<a, 0<z<a

F.il=—-2x%y=—-2ax? sincev=a
Jird Jird
J J F fidS = J J:ﬁj—zaxf}dzdx
Sz x=0==0
a
2 a
J' (-2ax"z),_,dx
x=0
goomy =
-3 B
= —Eaf[L) —— .. (8)
3 o 3 -

(vi) For Sg = OBQA,; y=0; i = —J, ds = dzdx;

0<x<a, 0<y<a

T
=

n=2xv=0sinceyv=10

o —
‘\-‘_-_\
)
=]
o
Ly
I
=3

[
LS
1)
=
o
Ly
Il
LS
L
+
X} E"‘—-—\
‘-‘_-_\
+
[t E"‘—-—\
:-‘_-_\
+
L
LS
+
L
L
+
L
L




¥y B

a*

- a
——+a%+0-

- 5_ — 40
T T, 3
a5 ) Cr o )
= E+a*" =J J J V.F dvusing (1)

Hence Gauss Divergence theorem is verified

2.Compute [(ax® + by? + cz*)dS over the surface of the sphere x*+y*+z” = 1
Sol: By divergence theorem IE.;ds =f V.F dv

Given F.n = ax
. Normal vector 7i to the surface ¢ is

(_'6

"7

Unit normalvector =n =

-0 —0

i—+ j—+k—\(
ayJ

x2+y2+22—1):2(xi+yj+zk)
OX oy

2xi-+ _'+2E - - - ..
( yJ ):xi+yj+zk Since x>+ y’+z2=1
2«/x2+y2+z2

~ F.n :E.(xi-+ yT+ zk_) = (ax2 + by2 + sz) = (a xi-+ by}+ czk_).(xi-+ y}+ zk_)

i.e., F=axi+byj+czk V.F=a+b+c

Hence by Gauss Divergence theorem,

. ) ) ) . A
J (ax=+ by~ +cz-)dS = J (a+b+cldv=(atb+tc)V= ?[a— b+c¢)
5 v

4m
[Sfﬂce = is the volume of the sphere of unit radius

3)By transforming into triple integral, evaluate | [ x* dy dz + x*y dz dx + x*dx dy where S is
the closed surface consisting of the cylinder x*+y? = a® and the circular discs z= 0, z= b.

Sol: Here F, = x*,F, = x*y,F, =x’zand F=FRi+Fj+ Rk

oF, :3)(2‘6F2 _ X2’6F3 _ 2
OX oy oz
— OF oF oF
VF=—24 24 2-3x"+x"+x"=5x"
OX oy 0z




l/
) \J

By Gauss Divergence theorem,

F.dydz +F _dzdx + F dxdy = £ 2 3
”1 2 3 IH{@F oF, oF, )

+
oX oy 0z

jj(xadydz +x°ydzdx + x“zdxdy = J’jijzdxdydz

a a?-x? b
J' j x>dxdydz
a ’\/az—xz b

=20f [ x“dxdydz [Integrand is even function]

0

=5

0 0 z

——r ——r
2vaT—x" o wvaE©—x

=20 J x*(z)idxdy = 20b
0

I o

x=0 0

=L S

e [ird

1.2(_1;)E_E‘—.r‘ dx = EGbJ 1.2%..'&: _ ‘).': dx

o o

I
B
)
B—l

[ —

a® sin® @ a? —a?sin?8 (acosfda)

Il

[E8]

]

o
O a1 H

dedydz

J i dxdy

T
[Put x = asing == dx =acosfdo When x=a= 6 =—and x=0= 6 =0]

2




-

(2sin @ cosf)* df =5a*b Jfé—'i—cfs;_g 46

= 20a*b fgsiﬂ: 8 cos’8df = 5a*b jc-

11 w2

Sa“b gin 48
o -
2 4

Sa*h 5 .
= [—] = —ma“hb
. 2

4: Applying Gauss divergence theorem, Prove that [ # .7idS =3V or [7 .ds = 3V
Sol: Let 7 = xT + vj + zk we know that div 7 = 3

By Gauss divergence theorem, JE.Eds = jdivEdv

Take F=7 == J F.ads = J 3 dlV = 3V, Hence the result
5

5: Show that [, (axT + byJ + czk).idS = ? (@+ b+ c), where S is the surface of the sphere
X2+y?+z°=1.
Sol: Take F = axT+ byj+ czk

. — OF 0F, O0F,
divF =—+ ——+—=a+b+c
OX oy 0z

By Gauss divergence theorem, fs F.7dS = j V.FdV =(a+b +c) j dV =(a+b+c)V
4
We have V = E;r’r"‘ forthe sphere.Herer =1

—- 4z
.'.IF.ndS =(a+b+c)—
3

S

6: Using Divergence theorem, evaluate
| J;, (xdvdz+vdzdx +zdxdy),where 5:x2+y2+22:a2

Sol: We have by Gauss divergence theorem, jF.Eds = J'divEdv

L.H.S can be written as [(F, dvdz + F,dzdx + Fydxdv) in Cartesian form
Comparing with the given expression, we have F1=X, F,=y, Fs=z

— J9F. OF, oF
Then divFk = —+ —2 4+ —2_3
OX oy oz

J'divEdv = [3dv =3v

v v

Here V is the volume of the sphere with radius a.

3

.V =—rxa

w |~

Hence [ [(x dv dz + v dz dx + =z dx dy) = 4na®




7: Apply divergence theorem to evaluate”(x +2)dydz + (y + z)dzdx + (x + y)dxdy S is the surface

S

of the sphere x*+y*+z°=4

Sol: Given “'(x +2)dydz + (y + z)dzdx + (x + y)dxdy

Here F; = x+z, F, = y+z, F3= x+y

oF oF oF oF. OF, OF
Lo, —2=-1,—-o0and —+ —24+—-14+1+0=2
OX oy 0z OX oy 0z

By Gauss Divergence theorem,

[ [ Fidydz + F,dzdx + F dxdy = J.'“(a':l L F oF,
s \

ox oy 0z
=J J J 2dxdydz = EJ dv = 2V

=2 [;H(jjc'] = 6:—'— [for the sphere,radius = 2]

)
dedydz

8: Evaluate I, F.7ds, if F=xyl+ z°J+ 2yzk over the tetrahedron bounded by x=0, y=0, z=0
and the plane x+y+z=1.
Sol: Given F = xvT+ z°j + 2vzk, then div. F = y+2y = 3y
o - 1 1-x1-x-y
jF.ndS = J'didev = J' J' J‘ 3ydxdydz

x=0y=0 z=0

-!: 1?.'4.' -{_ -1 13.
=3 J J _1'[:]3._';{_:'--:{::.'{1[}' =13 J J _1'(1 — = _u':l dx ::1’_1'
x=0y=0 x=0y=0
e 2 37l—=x 1 a - -
m r & = = i l —_ e = . l —_ A l PR |
3 J[—"__i_‘*_ dx:aH( 0? x(1-2)° ( ﬂlﬂ,x
2 2 3 2 2 3
=0 o o
[1-x)° (1-x)° F(1-xF . 3[-(1-
M 1—x 3 1—x 3 - 1 — 3 —(1— x)* 1
:3J[ : - * -:1’,‘L'=3J—:L.:1’;(:—[—;L —
2 3 6 6 4 2
o o o

9: Use divergence theorem to evaluate j IE.d s where F =x’i+y*j+z°k and S is the surface of the

sphere x*+y?*+z% = 12

Sol: We have

—— 9 b b

VF=—0)+— @)+ — @) =3(x"+y’ +2%)
ox oy 0z

~.By divergence theorem,




V.Fdv = [ [, JV.Fav=[[[3(x"+y"+z")dxdydz
@ T i
=3 J J J r?(r’sin B dr d6 d ¢)
r=08=0¢=0
[Changing into spherical polar coordinates x = rsinflcos¢,v =rsinfsing,z = rcosf]
- T e
JJF.ds=3 J Jr-sme J de | dr db
5 r=08=0 =0
=3 Ja' } rsin (27 -0)drdd =6rx } r | }sin 6’d«91|dr
r=00-0 o Lo J
: =
= 6m J r¥*(—cosB)] dr = —f:uTJ r*(cosm — cos Q) dr
r=0 o
a _ .
=12m J ridr = lznli ’ = Lema
J 5], 5

10: Use divergence theorem to evaluate [ [ F.ds where F = 4xi — 2y%j + z*k and S is the

surface bounded by the region x*+y?*=4, z=0 and z=3.
Sol: We have

0 oy 0
Ax)+ —(-2y )+ —(z")=4-4y + 22

= — 0
divF =V.F = —
ox oy oz

Bv divergence theorm,

5
= J J J (4 —4y + 2z)dx dy dz
x==2 =2 T z=0




-

= J 21dv —12 J vdv | dx

2| = A= —_

[ 1
= I|LZl [ dy-12(0) ldx

[Since the integrans in forst integral is even and in 2™ integral it is on add function]

=42 J (v)3* dx

2 2
:42J'\/4—x2dx:42><2_[\/4—x2dx
-2 0

x . _ 4 _11. ol
= 34 [— 4 —x- +—sin —]
2 2 21,

T
— 84 [G—EE—G] — 84n

11: Verify divergence theorem for F = x*i + y*j + z* k over the surface S of the solid cut off by

the plane x+y+z=a in the first octant.

Sol; By Gauss theorem, jF.Eds - J'divEdv

Letgp = x+ v +z—a bethe given plane then

09 _, 09 a4

-1, -1, -1

oX ay 0z

0 -~ =
cogradg = i—=i+j+k

oX
grad¢ T+]+k
V3

Unit normal =

Let R be the projection of S on xy-plane
Then the equation of the given plane will be x+y=a = y=a-x

Also when y=0, x=a

F ndxdy
F ndS = —
~ ] o] |
= J J :_1'—3' — J J [l':_.":—I:H—J.'—_K':I:]d:a.'d_‘»'[f-‘l'ﬂcex—_v—:=,ﬂ]
x=0v=0 ‘*3 ﬂfx l._.lfur ' =0
- 1/4/3 :

= chc chc T[2x% + 2y% — 2ax + 2xv — 2ay + a®ldx dy
: o—x

ax

" - 2y* - - -
J 2xTv + 3 T xyv- —Zaxy—ay- +ay




fir]

= J [2x%(a— x) —%[a —x) ¥ +x(a—x)*—2ax(a—x)—ala—x)*+ a*(a —x)dx

x=0
(5 2 a’ T .
J'F nds = J'( =x*+3ax’ - 2a2x+—a3\dx = =, on simplification...(1)
OL 3 3 J 4
Given F —x2|-+y j+z k
. div F :—(x )+—(y )+—(z Y=2(x+y+12)

OX oy 0z

a a-xa-x-y

Now J‘“divF.dv:ZJ' J' j (x+y+z)dxdydz

X=0y=0 2z=0

= 2 [ [,1—1,)——] dx dy
x=0y=e, ¢
=2 J J (a—x—v) [;L' +y+ a—;——u dx dy

|:.

03
J (a—x—v)[la+ x+ v]dx dy

L'.' o o—x

] [a® — (x +v)?] dvdx = J J (a® —x? — v? — 2xyv)dx dy

oo
1;3

= J[a yv—x’y —?—lk ] 37 dx
|:.

J (a—x)(2a* — x* —ax)dx = (2)

Hence from (1) and (2), the Gauss Divergence theorem is verified.

12: Verify divergence theorem for 2x2yi_ Vi +4xz%k taken over the region of first octant of the

cylinder y*+z°=9 and x=2.

(or) Evaluate | | F.nds, where F =2x%yi -y j +4xz%k and S is the closed surface of the region in the

S

first octant bounded by the cylinder y*+z* = 9 and the planes x=0, x=2, y=0, z=0

Sol: Let F =2x2yi -y? j +4x2°K

- 0 2 0 2 0 2
V.F=—(2x )+ —(-y )+ —(4xz")=4xy -2y +8xz
00X oy 0z




2 3 4/9-5F

J, J J V.Fdv = J J J (4xy — 2y + 8xz)dz dy dx

x=0y=0 =z=0

—_—

Iy

-

3
4xy — 2yv)z + 8x —
| |er-amz e

z=0

-[41'_1: —2vIy9— yvi+ 4x(9— _v:j] dy dx

m‘-\___"..l.'l mL'__—"..l.'. =
m‘“—_—'..r.u =

3

[(1—2x)(—2M) 49— v*+4x(9—v7)] dydx

I
m‘“—_—'..l:u
=L

373

9—y7)2 / E
(1— 2-:()u + 4x 9}’—'—) dx

Il
n‘-‘___"..l.'.

B | Lad
o
[

Ll | B

= J‘£ (1—2x)[0—27] + 4x[27 — 9]} dx = J [—18(1 — 2x) + 72x]dx

2

[18(x —x*)+ 72 X—} = -18(2-4)+36(4) =36 +144 =180...(1)
2

Now we sall calculate J F.7t ds for all the five faces.
s

fE.Hds:IEHds +IE.Eds+ ...... +[ F.nds

S S2 Ss




Where S; is the face OAB, S, is the face CED, S; is the face OBDE, S, is the face OACE and Ss is
the curved surface ABDC.

(i) OnsS :x=0,n=-i. F.;:O Hence J'E.;ds
(ii) On Sz:x:z,;:i.-. F.;=8y
3 \o-z? 3 [ y? -2
S y2)
IF.ndS :J‘ J' 8ydydz :J'8| — dz
s, 0o o 0 \2 )o
=4J(9—:fjd:= (9:—'?) =4(27—-9)=72
v b |:

(iii) Ons,:y=0n=-j - F.n=0Hence [ F.nds

S3

(iv)OnS,:z=0nRr=—k. F.ni=0. Hence J F.ads =0

S

-V +Z 2 _'+ ZZE _'+ ZE _'+ z;
(VMOns, :y"+z°=9,n= (y ) _2yi :y\/J _ Yy
4x9

‘V(y2+z )‘ \/4y +47 3
—= -y +4xz’ —-— 1
Fan-——"" and nk-2-= 9-y°
3 3 3
I = _-'_E.:‘:E.:'- Th o T ! 15 i T (3% 1 — ]

Hence j55 F.fids qu F.n = Where R is the projection of 5. on xy — plane.

© M dxz?—yd ror . - -
= J J—ﬂdx dy = J J [4x(9—v) —¥° [9—_1."] 2]-:1’_1.' dx

_\I_-'g_}._
R #=0 ¥=0

;]
a

- 32 )
= J 72x dx — 18 J dx = ?2[?) —18(x)2 = 144 —36 = 108
o b o

Thus [[ F.Ads=0+72+0+0+108=180... ... ()

Hence the Divergence theorem is verified from the equality of (1) and (2).

13: Use Divergence theorem to evaluate [ [ (xi+y j + 2"k ).nds. Where S is the surface bounded by

the cone x*+y?=z” in the plane z = 4.
Sol: Given [ [{xT+ yj +z%k).7i.ds Where S is the surface bounded by the cone X’+y?=z% in the

plane z = 4.




27

Let F = x1+ vj+zk

BEv Gauss Divergence theorem,we have

J1 Jii‘f—}f—::}?}.ﬁ.ds = J J J1L?Ilﬁdv

— 0 0 a .,
Now V.F = —(X)+ —(y)+ —(z2")=1+1+2z2=2(1+ z)
OoX oy 0z

Onthecone x* + y* = z?and z=4 = x* + y* =16

The limits arez= 0 tod,v = a to -\.-"HJ x=0to 4
C TviemwT 2
JJ J?.Fn’t:-= J J JE[l—:)a’xd_va’:
v ¢ 0 )
416 —x s
= 2 J J {[:]E—l:l Ia’x dy
ioo 0
= e 4 mdx

2] j [4 +8]dxdy = 2x12j[y]0

0

=24 J J16 — x2dx = 24

|:.

V16 — 16 sin® 6 4 cosBdf

‘T”“———~.u|-,1

[putx = 4sinfd = dx =4cosfdf. Also x=0= 6 =0 and x=4= 9:1]
2
B B A
IJ'J'V.de=96><4J'4\/1—sin290059d9:96><4J'cosz49d49
0 0
JJJ'L'_.F::{L’-=96X'¢1-J411—5% 5'.:&515'(1’6'—96_5{'4-]-:&5:5' dé
0 0

[1+ cos28 [ cosEE‘
=96X¢1-J df = 98X4 J df
o 0
1 lsinEEﬁ_l
= 384 [—5‘—— = 91
2 2 2 1

14: Use Gauss Divergence theorem to evaluate [ [ (yz°T+ zx"J + 22°k).ds, where S is the

closed surface bounded by the xy-plane and the upper half of the sphere x*+y*+z°=a*
above this plane.

Sol: Divergence theorem states that




— 9 0 0
Here V.F = —(yz?) + —(zx’) + —(22%) = 4z
ox oy 0z

“;E.ds - j“mxdydz

Introducing spherical polar coordinates x = rsin @ cos¢, y = rsin @ sin ¢,

z = rcos@ then dxdydz = r’drdod ¢

a 7 2rm

IJ’E.ds: 4J' J' J' (rcos@)(r’sinodrdodg)

r=06=0¢=0
4 J J?E siné cos@ J dep | dr df
H=0

r=08=0

J rsinfcosf (2w — 0)dr df

r=08=0

Il
=

o

= 4 J 73 U gin 28 48

r=0 o

dr = 4 J‘?E [—

r=0

T

cos 28
J dar
2/,

=(-2m) J’;’rs (1—1)dr=0

15: Verify Gauss divergence theorem for F = x*T + y*J + z* k taken over the cube bounded by

x=0,x=a,y=0,y=a,z=0,z=a.

Sol: We have F = x*T+ v¥j+ =%k

- 0 3 0 3 0 3 2 2 2
VF=—X)+—(y )+ —(z2)=3x"+3y" +3z
00X oy 0z
J J J V.Fdv = J J J[E:L':—S_v: +3z%)dx dy dz
=3 J J J[x:—_v:—::jdxd}'d:
z=0y=0x=0
N ES Y
=3 J J [——1‘1,"—:'1') dv dz
3 ’ ’
3=|:'_".'=|:' - (W)
" [a® , ,
=3 J J [——a}"—a:')d}'c{:
W
z=0y=0 h
2 .ﬂg 1;3 i el
=3 J (—u’—a'——a:‘u') dz
= 3 ;
==0 . i)




To evaluate the surface integral divide the closed surface S of the cube into 6 parts.

i.e., Si:Theface DEFA ;S4: The face OBDC i
S, : The face AGCO ; Ss: The face GCDE C s
S3: The face AGEF  ; Sg: The face AFBO R s

_— . — . -

J J F.fids = J J F.fids + J J F.fids + -+ J J F.nids B

g 5.._ 5: 55 b 4 “

OnS,,wehaven=1Lx=a

J’J'Egds = J' J’ (asi-+ y3E+ Z3E).i-dydz

J J F.7ids = J J (:asf—_vgf—:giz}.fd}' dz

5 z=0y=0

= J J ady dz = -:‘IEJ (v)§ dz

z=0 y=0 o
= a*(2)§ = a°
OnS,wehaven=—-L,x=0

”EEdS: [ ] (y3}+ ZBE)-(—_i)dydzzo

s, z=0 y=0

P ra hAaare 3 — T ar —
OnS,,wehaven=J,v=a

J'IE.;ds = Ja' } (x3i-+ a3T+ z‘i).]dxdz =a’ Ja' Ja' dxdz = a3}adz = aA(z):
5 220 x=0 220 x=0 0
-a’
OnS,wehaven=—jy=20
-
J JF_.ﬁd_c.': J J [:133—:"‘3{} (—fldxdz= 0
A ==0x=0
OnS.,we haven = k.z=a




@ @ [ird

= J J a*dx dy = a® J(:L)Ea’u =a*(¥)2 = d®

yE0x20 2
On 5., we have n = —k,z=0

.. sz
J J F.ads = J J (ng—_vgj].[:—p‘?}dx dy= 0
s, y=0x=0

ThiLS‘J JF.ﬁn’s= a®+0+a*+0+a®*+0=3a"
T

Hence J JF.ﬁa’s = J J V.F dv

5

-. The Gauss divergence theorem is verified.

II. GREEN’S THEOREM IN A PLANE

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S].
If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous

functions of x and y having continuous derivatives in R, then

(6N &M )

Ecﬁ Mdx + Ndy = ‘[R‘[La_x_ ngxdy.

Where C is traversed in the positive(anti clock-wise) direction

4 y=d F
=
A
Y=8 | E
X =a XZEJ’X
@)

SOLVED PROBLEMS
Verify Green’s theorem in plane for $(3x*— 8y*)dx + (4y — éxy)dy where C is the region

bounded by y=+x and y=x"~ .

Solution: Let M=3x2-8y* and N=4y-6xy. Then

EN aN
= = P — = —HY
o 16y, -~ :




We have by Green’s theorem,

dex+ Ndy—”{aa’: aa'\: dedy.
Now ”(aN om \dxdy—” (16y —6y)dxdy
Lax 6yJ
s N
[y
—10” ydxdy lOJ J' ydydx =10 '“\7)' dx
z, 1 o
_5j(l_l )dx—E-[fT—;—\]c=5[g—£]=% ..

Verification:

We can write the line integral along ¢
=[line integral along y=x=~(from O to A) + [line integral along ¥*=x(from A to O)]
=l +1,(say)

Now Iizjjzc_{[ﬁxz—S(x::l:]dx—[41':—61‘(1‘3)]21'.:{1'}[ y=x" :——21‘]

Lx
:JEES:L'E +8x% — 20x)dx = —1

° 1 1 ¢ 5

And l, = I[(Bx —8x)dx+(4\/_ 6X/) \/_dXJ:_[(3x2—llx+2)dx:—
24/ X

2

1 1

L e e Vs

From(1) and (2), we have deX+ Ndy = U{aN o dedy.
OX oy

Hence the verification of the Green’s theorem.

Evaluate by Green’s theorem f.; (v —sinx)dx + cosx dy where C is the triangle enclosed by

the lines y=0, x==, my = 2x.

Solution : Let M=y-sin x and N = cesx Then




M oN .
%Zl and  ——=-sinx

. By Green’s theorem dex+ Ndy_U(aN oM \dxdy.
L OX oy J va
= j(y—sin x)dx+cosxdy=”(—1—sin x)dxdy N 5
.y

i x=nl2
="' [= {1+ sinx) dxdy .

®=0 =t o y=0 A
— S . 2x S [E’UJ
=- [ (sinx+ 1) [v]77' 7 dx 2

::—EIF=E: x(sinx + 1)dx

=—[x(—cosx+ x)]0 - Il(—cosx+ x)dx
T

=i[x[— cosx + x) +sinx —AT] N
T = W)

-

_‘___|:_1'C051'_§_Sinx:| =—[——l]=—[($——]
. 2 o "
Evaluate by Green’s theorem for gf)c (x° — coshv)dx + (v + sin x)dy where C is the rectangle
with vertices (0,0), (w,0), (7, 1), (0,1).

Solution: Let M=x* — coshv ,N = v + sinx

. ? = —sinhy and B—‘ = COSX
(oN oM )
By Green’s theorem, dex+ Ndy = [f dxdy.
Lax oy J b
(0, 1) (r, 1)
= [ﬁ(x2 —cosh y)dx + (y + sin x)dy = H’(cos X +sinh y)dxdy
=¢ (x*—coshy)dx + (y +sinx)dy = [ [(cosx +sinh o] (. 0)

:J’::E_ j:':c_[ccrs x + sinh v)dydx = J:_:c (vcosx + coshy)idx

k3

= J' (cos x + cosh1—1)dx

x=0

=m(coshl — 1)

A Vector field is given by F = (siny)i+ x(1+cosy)j
Evaluate the line integral over the circular path x*+v* = a*, z=0
(i) Directly (ii) By using Green’s theorem

Solution : (i) Using the line integral




F.dr = qS Fidx + Fdy = ch sin ydx + x(1 + cosv)dy

“c

:Djsin ydx + x cos ydy + xdy = U]d(xsin y) + xdy

Given Circle is x*+v* = a”. Take x=a cos@ and y=a sin & so that dx=-a sin & d& and
dy=acosfdfand 8 =0 — 2m

¢F.dr = f;x d[a cosf@sin(a sinf)] + JFE_:'T a( cosf)a cosf df
=[a cosfsin(a sin §)]5 + 4a’ fEF o528 db

1
=0+4a°.— 1 =ra’

2 2
(11)Using Green’s theorem

Let M=sin v and N=x{1 + casv). Then

KX

aM_ , aN_q L ,
5, —C0S) and .:"x_(l cosv)

By Green’s theorem,

(6N oM )

dex+ Ndy_”LG dedy

X oy

[ﬁsin ydx + x(1+ cos y)dy = ” (-cosy+1+cosy)dxdy == ”dxdy

c R

= ”dA = A=ra’(-area Of circle=ra?)

We observe that the values obtained in (i) and (ii) are same to that Green’s theorem is verified.

Show that area bounded by a simple closed curve C is given by 1qS xdy — vdx and hence find the
area of

2 2

. . X
(i)The ellipse Xx=acos 6,y = bsing (i.e) —+ y—zz 1
a b

(ii )The Circle x=acos8,y = asinf (i.e)x” + ¥

Solution: We have by Green’s theorem Eﬁ Mdx + Ndy = ”[8'\' om dedy
OX oy

Here M=-y and N=x so that ? =-1 aﬂd? =1

Uj xdy — ydx = 2[ dxdy = 2 A where A is the area of the surface.

%_jf xdy —vdx = A

()For the ellipse x=acesf and y=bsinf and 8 = 0 = 27

~ Area, .4:}95 xdy — ydx = }Jr:'_[(a cos8)(bcosf) — (b sin@ (—a sin6))]d @

——aﬂf “(cos?@ + sin*@) df —%a:}[ﬂ]é =2 (2 —0) = wab




(ii)Put a=b to get area of the circle A=ma*

6: Verify Green’s theorem for f (xv+ v*)dx + x*dy], where C is bounded by y=x and
y=x>

Solution:By Green’s theorem, we have m Mdx + Ndy = H[aN oM ]dxdy
OX oy

Here M=xy +v~* and N=x"

er
y=x2

c2

The line y=x and the parabola y=x~ intersect at O(0,0) and A(1,1)

Now dex+ Ndy_J'de+Ndy+J'de+Ndy ...... 1) ceen(D)

't C;

Along €, (i.e.y = x7), the line integral is

J'de + Ndy = J[x(x2)+ x“1dx + xd (xz)J'(x3 +x 4 2x%)dx = J'(3x3 +x1)dx

[ [ c 0

.

b

7

I
S
11
e |
| =
[

un
~
[\9]
~

Along ¢, (i.e.y = x) from (1,1) to (0,0}, the line integral is

J' Mdx + Ndy = j(x.x +x2)dx + x2dx [+ dv = dx]

C; C,

0

—f 3x7dx =3 f x - dl—g[%\] =(x%)]=0-1=-1 ...(3)
From (1), (2) and (3), we have
[ Mdx+Ndy= =—1=2
c 20 20
..(4)
Now

H@N om }dxdy -H(zx—x—zy)dxdy
X

=07 = x) — (23 —x9)]dx = [*(x* — x%)dx




(5)

From(4)and(5), We hav E'[ﬁ M dx + Ndy = -”{aN om JdXdy
OX oy

Hence the verification of the Green’s theorem.

Using Green’s theorem evaluate fE(E xv— x7)dx + (x? + v*)dy, Where “C” is the closed

curve of the region bounded by y=x* and v* = x

Solution:

y A

The two parabolas ¥* = x and v = x~ are intersecting at 00,0}, and P(1,1)
Here M=2xy-x~ and N=x~ +y~

aM aN
E,'__ 2x ﬂﬂﬂrg— 2x

N BM
HenceE——F =2x—2x=10

By Green’s theorem IM dx + Ndy = H{aN oM }dxdy
OX oy

A
i.e.,j(2xy—x2)dx+(x2+yz)dyz J I (0)dxdy = 0

E Verify Green’s theorem for j;[[S x®— 8y )dx + (4v — 6xv)dy] where ¢ is the region bounded
by x=0, y=0 and x+y=1.
Solution : By Green’s theorem, we have

(6N oM )
J'de+ Ndy_J'J'Lax > dedy

Here M=3x~ — 8y~ and N=4y-6xy




oM oN
. ——=-16y and —= -6y
oy OX

Now J'de+ Ndy—Ide+ Ndy + J M dx + Ndy + I M dx + Ndy...(1)

BC

Along OA, y=0 .~ dy =10
LB 1
JFGA Mdx + Ndy = fci 3x dx :(AT\] =1
e
Along AB, x+y=1 .. dyv = —dx and x=1-y and y varies from 0 to 1.
[ Mdx+Ndy = j[3(y )" -8y 1(~dy) +[4y + 6y(y - 1)]dy
:J:' (—=5v? —6v +3)(—dv) + (6v* — 2v)dy

B L2 1
=[J(11y* + 4y —3)dy = (11 + 4L — 3y)

/o
Along BO, x=0 - dx =0 and limits of yare from1to 0
o - o -
f,, Mdx + Ndy = [ 4ydy = [4-'7] =(2y})i=-2
from (1), we have j Mdx+Ndy=1+2—2=2
(N oM ) S
Now HL dedy = I f -6y +16y)dxdy
ox
R x=0y=0
1 1-x 1\
=10 L-:n:- [fzc _1,'.:1’_1:] dx = 10 fc_ [T]c dx
i S E 1
—5f (1—x)"dx —5[1 = ]
3 o
=S[(1-1* - (1-0)°)=
From (2) and (3), we have IM dx + Ndy = H[aN oM \dxdy
Lax oy J

Hence the verification of the Green’s Theorem.




g Apply Green’s theorem to evaluate 955[2 P — vy )dx+ (x*+ v*)dy, where cis

the boundary of the area enclosed by the x-axis and upper half of the circle x~ + v = a~

Solution : Let M=2x2 — v2 and N=x2 <+ v Then

aM oN
— = —2vand —=2x
dy - Bx

/ <
/7 )
Y

Figure

By Green'sTheorem, J‘M dx + Ndy = H(ﬂ_ %\dxdy
. OX oy J

R

[ﬁ[(Zx2 —yHdx+ (x2+ yi)dy] = “’(2x+ 2y)dxdy

c R

ZZII(X+ y)dy

zzf: J: r(cosf +sin @).7d Bdr

[Changing to polar coordinates (r,&7, r varies from 0 to a and @ varies from 0 to =]

L I@xE = yHydx+ (xF + y)dyl = 2[ ridr [ (cos 0 +sin 0)do

c 0 0

:2':;—-(]_—ljl=_3£

Find the area of the Folium of Descartes x> + v = 3axv(a = 0)using Green's
Theorem.

Solution: from Green’s theorem, we have
o TR T T AN
I Pdx+Qdy =[] [E_ E;Iaxaj,
s 1
By Green’s theorem, Area = _[ﬁ (xdy — ydx)
2

Considering the loop of folium Descartes(a>0)




2 [d (3at* )]
Let x= 3at3:y = 3at3 ,Then dx:rd—[ sat ﬂdtanGl dy = | —| & | dt
1+t 1+t Ldtkut M Ldt{1+t° )]

The point of intersection of the loop is {— S—aJ =t=1
2 2

Along OA, t varies from 0 tol.

g —QSE:Ln’u — ydx) = —fc (

3G =) )]

1 1J 3at |r3at(2—t3)—}7

1 3at’ I—Ba(l—Zta)H

'[ ’ 3\ 1+1t° ?
20t1+tL(1+t) J “1“) JJ

_ga® 1 [ef(2-ef) f(1-207) _8a% 12e% 5 pBrt
2 X [Ei—r?‘-f T (1eeR ) ]dr_ 2 X Rero
9a’ L t*+t° 9a’ 1t2(1+t‘°’)Clt
2 {(1+t3)3 2 '([(1+t3)3
=3 [T =S —dt [Put 1+t® = x = 3t> dt = dx
2 Y01+

L.L.: x=1, U.L..x=2]

2 2 2 2

_9a t> dx 9a’ .1
2 {xz'etz_ |

1

X2

: Verify Green’s theorem in the plane for [_(x* — xy®) dx + (v* — 2xy)dy
Where C is square with vertices (0,0), (2,0), (2,2), (0,2).

Solution: The Cartesian form of Green’s theorem in the plane is

(6N oM )

J'de+ Ndy_H'LaX > dedy

Here M=x? — xv? and N=v* — 2xv

M _ 2 w5,
Sy T 3xv-and ™ 2y
Yﬂ‘ y._.2
c <
(0.2) 823
"\
x=0v% Qo
o .
(0.0 w0 —
(2,0

Evaluation of [ (Mdx + Ndy)




To Evaluate [_(x* — xy®) dx + (¥* — 2xy)dy, we shall take C in four different segments viz (i)

along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0).

())Along OA(y=0)

J (e = xy®)de + (vF = 2xy)dy = f; xidx = (%]_ =§

-:lzl:_

(i)Along AB(x=2)

fc(x: —xvPdx + (v? —2xv)dv = _J? (vi—4y)dy [vx=2,dx=0]

-

(£ -2y2) = (2-8) =

W oo & |:
(iii)Along BC(y=2)
_J:_,[x: —xvdx + (v* —2xv)dy = ff[:{: —8x)dx [v¥v= = 0]
-|(X—— 4x \| (860
( 3 )o L3 J 3

(iv)Along CO(x=0)

jc(l': —xv)dx + (v? — 2xv)dy = ff}': dex [vx=0,dx=0]=

Adding(1),(2),(3) and (4), we get

8 16 40 8 24
2 xy®)d 2 2xy)dy=—-—4———=""_3
Jc'(x xy)x+(y xy)y 3 3+3 i
Evaluation of ”(ﬂ— ﬂ\dxdy
Lax ayJ

Here x ranges from 0 to 2 and y ranges from O to 2.

(ﬂ—ﬂ\dxdy: (-2y +3xy*)dxdy
Lax oy J

00

-

—j ( 211—;1 ]_d_u'

‘o

2
2

— 2 2 3
=[(-4y+6yi)dy =(-2y +2y")

=-8+16=8
From (5) and (6), we have

)
J'M dx + Ndy = J'J'La—’:—%dedy

Hence the Green’s theorem is verified.

(1)

(4)

...(6)




I11. STOKE’S THEOREM
(Transformation between Line Integral and Surface Integral) [JNTU 2000]

Let S be a open surface bounded by a closed, non intersecting curve C. If F is any
differentieable vector point function then 95.: F.dr=
_J; curl F.7lds where ¢ is traversed in the positive direction and

1 {5 unit outward drawn normal at any point of the surface.

Prove by Stokes theorem, Curl grad ¢=0
Solution: Let S be the surface enclosed by a simple closed curve C.
& Bv Stokes theorem

_j;(mrri grandg).in ds = L["F.\:"-?cp].ﬁ ds = 95:: Ve.dr = 95[?:3:. dr

(i - -8¢ ) - - -
:Eﬁ| @+ j%+k%|.(idx+ jdy+kdz)
ckax oy 62)

=[ﬁ(%dx+%dy+%dz\ = [d¢ =[¢], Where P isany pointon C.
g Lax oy oz J P

. Jeurl grade¢.fi ds =0 = curl gradg = 0

prove that [ gcurl f.ds = j¢?.d?-jcur|g radg x fds

Solution: Applying Stokes theorem to the function ¢ f

jgb?.d;z qurl(¢?).;ds = j(grad¢x?+ ¢cur|?)ds

Cc S

I¢cur|?.ds = jqﬁ?.d?— '[Vqﬁx?.ds

3: Prove that ¢ fVf.d7 = 0.
Solution: By Stokes Theorem,

JCEVE)dr=[curlfv f.n ds=[[feurlVf + VfxVf]n ds

C S

= J’O.nds =0[- curlvf =oand Vf xVf = 0]

: Prove that[]j ng.sz I(Vf x Vg ).;ds

Solution: By Stokes Theorem,

m(ng.d;):J[Vx(ng)J;ds:“Vf x Vg + feurlg radg].;ds

C S S

:I[Vf ng].Eds [ curl(gradg) = 6}




Verify Stokes theorem for F = —v37 + x*37, Where S is the circular disc
x? —_1,': =Z1l,z=

Solution: Given that F = —v*1 + x 7. The boundary of C of S is a circle in xy plane.

x® 4+ y* < 1,z = 0. We use the parametric co-ordinates x=cos, vy = sinf,z = 0,0 = 8 < 2m;
dx=-sinf d& and dy =cos# dé
95,: F.dr = .Jf,: Fidx + F,dy +Fdz = . -y dx + x%dy

:Jf.;.:"r [—sin®@(—sind) + cos®BeoshldE = Jf.;.:"T(C'f"‘F;"S' + sin*g)de
=[5 (1 —2sin*6 cos*@)d6=[7" do 3 [7 (25inf cos6)? d6

— r&m 1p2m ., 2 _ o 1 pIx .
—fc_ -:1’:5‘—;]::_ sin®2df = (2w — Q) ;_Jrc_ (1 — cos48)dB

=om+ [-16+ Lsinaf) mpr oo
3 0 s &z
Tk
NowV X F =] — FI =k(3x=+3v")
—v¥ x¥ 0

» [(VX F)fids =3 [ (x* + y*)k.Ads

We have (k.n)ds = dxdy and R is the region on xy-plane
jff["-? X F)hads =3 JL[:L': + v ) dx dy

Put x=r cos@, v = r sin@.. dxdv = rdr d@

ris varying from0to 1and 0= @ =< 2m.

1 2 3
E_L_:E_T'.rdr do = =

T —
-

L J(VxF).Ads =3

L.H.S=R.H.S.Hence the theorem is verified.

ﬁ If F = yi+ (x-2x2)j- xyk, evaluate [(vxF ).;ds . Where S is the surface of sphere

el - -

x~+ v -+ z-=a",above the xv — plane.

Solution: GivenF = vi + (x — 2xz)j — xvk.

By Stokes Theorem,
J(vx F_j.ﬁds:IE.d r= _J; Fydx + Fydy + Fydz = |_ydx + (x —2xz)dy — xydz
Above the xy plane the sphere is x* + y*+=a,z = 0

J F.dr = J}'a’x + xdy.

Put x=a cos 8,y=asing s¢ that dx = —a sinfdf, dv = acosfdf andf =0 — 2r

J F.dr = J ) (a sinf) (—a sinf) d@ + (acosf)(acosd)df
C 0




=a® JF,:.:'T cos28 df = a* [Eiﬂ:g]: =< (0)=0

- o 2

Verify Stokes theorem for F = (2x — v)T— ¥z°7 — v~ zk over the upper half surface of the

sphere x* + v* + z* = 1bounded by the projection of the xy-plane.

Solution: The boundary C of S is a circle in xy plane i.e x* + v-=1, z=0
The parametric equations are x=cos8, v = sin8,8 = 0 — 2mw
dx = —sing df, dy = cos8 df

[Fdr=[Fdx+F,dy+Fdz=[(2x-y)dx- yz'dy - y“zdz

C C C

:_j;(Ex — y)dx(since z = 0 and dz = Q)

2 2z 27

:—J' (2cos@ —sin@)singdo = J'sinZHdH—J'sin 20d0
0 0 0

=[;7, T2 dg — [I7 sin26 df = [36 — 25in20 +3.cos26]

|:.

:%[2:'{ —0)+0 —%. (cosdm — cos0) = w

T 7 k
. _ 8 8 E _ _ — —
Again Vv x F=| o ™ o | =i—2yz+2yz) —j(0O-0) + k(0 + 1) =k
2x—y —vz® —vyiz

fs["-? x F)ads=[_k.fds = [_[dxdy

Where R is the projection of S on xy plane and k. 7ids = dxdy
et PTE L at T T e — alF T oo a1 ]
NOWVIFJFR dxdy = 4L:c—f_~.-:c- dvdx = 4J;=E_*.f 1—x-de=4 SV1l—x Ssin™ " x ;
=4 [%Siﬂ_i l] :2'“2:;‘?

~. The Stokes theorem is verified.

8: Verify Stokes theorem for the function F = x* 7+ xv j integrated round the square in the plan
z=0 whose sides are along the lines x=0, y=0, x=a, y=a.
Solution: Given F = x? T+ xvJ

7
C y=2 B (a, a)
(0, a)
X=a
o A@o

Fig. 13




By Stokes Theorem, js(? X Fj.ﬁa’s:j Fadr

T ]
=_|& £
Now ¥ x F= e 3

ta H

= -
Il
=
<

X it

LH.S.=[(Vx F)Ads=] y(nk)ds = [ vdxdy

- fi.k.ds = dxdy and R is the region bounded for the square.

o

. [V x F)Ads = [} [ ydyde =%

R.H.S. :JE.dF: J'(xzdx + xydy)

But [F.dFf=[ F.di+[_F.di+ [ F.df+[ F.dF
()Along OA: y=0, z=0, dy=0, dz=0
fGAF.d*F = jcﬂ x dx =ET

(i)Along AB:x=3a, z=0,dx=0,dz=0
- _ @ 1,
F.dr=[aydy = —

J’ r Iay y , a

(iii)Along BC: y=a,z=0,dy=0,dz=0

o [, F.dF = [°0dx =1a®

(iv)Along CO: x=0, z=0, dx=0, dz=0
i [ F.d7 =] 0dy =0

Adding [F.dF=Za®+2a®+-a®+0=

a-ﬁ

Ba |

Hence the verification.

9: Apply Stokes theorem, to evaluate Dj (ydx + zdy + xdz) where c is the curve of intersection of the

sphere x* + ¥? + z% = a® and x+z=a.
Solution : The intersection of the sphere x* + v + z* = a” and the plane x+z=a. is a circle in the
plane x+z=a. with AB as diameter.

Equation of the plane is x+z=a= i +i=1

fir]

. OA=0B=al.e., A=(a,0,0) and B=(0,0,a)

 Length of the diameter AB=/a® + a’ + 0 =a\2
Radius of the circle, r=—

Let F.d7 = ydx + zdy + xdz = F.dr =F. [ tdx + jdv + En’:} = ydx + zdy + xdz




vE

(vl

Let # be the unit normal to this surface. it =

Then s=x+z-a, vs Zi+k = 7 = —= =

lvgl 2
Ts Vg

Hence ¢ F.d7 = [curl F.ids (by Stokes Theorem)

=[(7+7+ ). (T =1 {5+ 5)es

&

ma”

:-\.;'E js fds = —*.;'Ef:-' = —*.;'E [:TTE:J =

10: Apply the Stoke’s theorem and show that [_ [ curl F.7ids = 0 where F is any vector and S =

- el -

x-+y-+=zo=1

-

Solution: Cut the surface if the Sphere x* + v= + z* = 1 by any plane, Let 5, and S.denotes its

upper and lower portions a C, be the common curve bounding both these portions.
J'curlE.dgz J'Ed ;+J' Fds

Applying Stoke’s theorem,

qurlE.dg: IE.dE+IEdE: 0

S S2

The 2" integral curl .45 is negative because it is traversed in opposite direction to first integral.
The above result is true for any closed surface S.

11: Evaluate by Stokes theorem 955(1' +v)dx + (2x — z)dy + (v + z)dz where C is the boundary
of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0).

Solution: Let F.d7 = F.( idx +jdy + kdz) = (x + y)dx + (2x — z)dy + (y + z)dz

Then F=(x+v)i+(2x—z)j+ (v +2)k

By Stokes theorem, ¢_F.d7 = [ [ curl F.iids

B(1,1,0)




Where S is the surface of the triangle OAB which lies
in the xy plane. Since the z Co-ordinates of O,A and B
Are zero. Therefore = k. Equation of OA is y=0 and
that of OB, y=x in the xy plane.

=2t + k

3 7
= d 2
~ curl F=| — =

ol =

x+v 2x—z v+=
 curl F.ads=curl F.K dx dv = dx dv
E}SEF. dr = | J; dedy =] J; dA = A =area of the A OAB

='0Ax AB=1.1.1-1
- 2 2

12: Use Stoke’s theorem to evaluate [ fs curl F.7dS over the surface of the paraboloid
z4x’+y’=1,z>0Where F=vi+zj+xk
Solution : By Stoke’s theorem

J'curIE.d;: Dj;d;: J(yi_+ z}+ xE).(i_dx + }dy + Edz)
=j ydx (Since z=0,dz=0) ...... (1)

Where C isthecircle x? + v* =1
The parametric equations of the circle are x=co=8, v = sinf
o odx = — sinf df

Hence (1) becomes

_ 2z - - 2r o, 2 o, l u
J'curIF.ds: Ism@(—sm@)d&:— J' sin 9d0=—4j‘sm 0dO = —-4x —x —=—x
2 2

s 0=0 6=0 0

13: Verify Stoke’s theorem for F = (x* + v*)T— 2xvj taken round the rectangle bounded by the

lines x=xa,v =0,v = b.
Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0).
Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0.
We have to prove that § F. d7 = |_curl F.7ids
QSEF. dr = 955{[:(: +v31 — 2xvih{ tdx + jdv}
:95c (x*+y?) dx — 2xydy

S N (D)




C(-a,b) y=b B(a,b)
e
X=-3a Y - A X=2a
- —PX
D('a;O) O y =O A(a,O)
(i) Along AB, x=a, dx=0
from (1), _];_5 = _J:E_J:E_—Ea_v dy = —2a [Tr = —ab?
- = o
(if)Along BC, y=b, dy=0
L U T
from(l),j:j (x +b)dX:L_+b XJ =— — 2ab
BC x=a 3 Xx=a :
(iii) Along CD, x=-a, dx=0
° [y?1° )
from (1), | = | 2aydy = ZaLYJ = —ab
(iv)Along DA, y=0, dy=0
e sl 2a’
from (1), [ = 2dx = | — -
( ) ID.[A x:J:aX " \; 3 Jx:fa 3
(i)+(i)+(iii)+(iv) gives
E}SEF..:{F = —abf--;ﬂz —2ab* — ab® +:"':E = —4ab? (2)
Consider [_curl F.idS
Vector Perpendicular to the xy-plane is = = k
T j k
_ 3 2 8 -
vocurl F= W a 2| = 4vk

(1.: 1 -1',::] _21.-1'.. 'D
Since the rectangle lies in the xy plane,
fi = k and ds =dx dy

js curl F.ndS = js —4vk. kdx dv = J:_::_E IU:E —4yvdx dy
=4 J' 2aydy

y=0

:J:IE_J:E_ jr;:_c —4dvdrxdv=4 I y[x] dy

y=0




=—4a[y’]j=, = —4ab’ e(3)
Hence from (2) and (3), the Stoke’s theorem is verified.
14: Verify Stoke’s theorem for F = (v —z + 2)T+ (yz + 4)7 — xzk where S is the surface of the
cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane.
Solution: Given F = (v —z + 2)7+ (vz + 4)7 — xzk where S is the surface of the cube.
x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.
By Stoke’s theorem, we have [ curl F.iids = [ F.dr

1 j k
VxF=[ = = Z|=w0+y) —J(—z+ D +kO-1) =yi-(1-2)j-k
y—z4+2 y+4 —xz
2 VXFa=VxFk=(yi-(1-z)j-k)k=-1
« [VxFads=[ [F—ldedy (vz=0,dz=0)=—4 ()
To find [ F.d7¥
[Fdi=] ([_1.'— z+ 2T+ (vz+4)7— :L':E] . (dxT + dyj+ dzk)

= [[(y—z + 2)dx + (vz + 4)dy — (x2)dz]
Sis the surface of the cube above the xy-plane
~z=0=dz=20
o [Fdi= [(y+ 2)dx+ [ 4dy
Along 04, v =0,z =0,dv = 0,dz = 0, x change from 0 to 2.
fPrdx=2[x1=4 ... ?)
Along BEC,v = 2,z=0,dy = 0,dz = 0,x change from 2 to 0.
J4dx=4[x]3=-8 ... .(3)

Along 4B, x = 2,z =0,dx = 0,dz = 0,y change from 0 to 2.

2

fF.d’F:JZ'4dy[4y] =8 . 4)

Along€0,x = 0,z =0,dx = 0,dz = 0,v change from 2 te 0.

S 4dy = -8 n(5)

Above the surface When z=2

Along 0'4', S Fdr=0 ...(6)

Along A'B',x =2,z = 2,dx = 0,dz = 0,y changes from 0 to 2
;E.d?}(2y+4)dy2|—£—|2+4[y]24+812 (D)
SR 2

Along B'C',y =2,z = 2,dy = 0,dz = 0, x changes from 2 to 0

-

[PEdr=o0 ..(8)

|:.




Along ¢'D',x = 0,z = 2,dx = 0,dz = 0,y changes from 2 to 0.

0 20

jwy+®2{%ﬂ vay] = 12 ..9)

(2)+(3)+(4)*+(5)+(6)+(7)+(8)+(9) gives
JF.d7=4-8+8-8+0+124+0-12=—4 ....(10)
By Stokes theorem, We have
[ F.dr=[ curl F.7ds=-4

Hence Stoke’s theorem is verified.

: Verify the Stoke’s theorem for F = ¥T + zj + xk and surface is the part of the sphere

- el -

x4+ v-+ z° =1 above the xv plane.
Solution: Given F = vT+ zj+ xk over the surface x* + v? + z% = 1 is xv plane.
F dv= url F o7
We have to prove [ F.d7=] [ Curl F.fids
F.d7=.(yi +zj +xk).(d=T+ dyj + dzk)=ydx + zdy + xdz
r 4 7 rL vyar]l = r - 13 v 1l i - =
ICE}Fdh zdy + xdz) = [ ydx (inxyplane z =0,dz = 0)
Let Xx=cosB, v = sinf = dx = —sinf d8,dy = cosf df

-

fc F.dv= _J:f y.dx = fc_"T vdx [« x*+w

-

=1,z=10]
=[77 sinf (—sinB)d8 = —4 [**sin*6 d8

=—4 J:":jﬂa’ﬁ' =—4 [[%;] —iz[sifrm]]

& ¥y

1= ] T
B J k ~
CurlF=|a/8x d/8v 8/8z|=—-(@+J+k)
¥ z X
. — vE xT+2yJ+i=k _ — —
Unit normal vector n = == = ———=_——=xi+ ¥ + zk

Substituting the spherical polar coordinates, we get
7l = sinf cospi+ sinf sing j+ cosfk
~ Curl F.i = —(sinf cos @ + sinf sin ¢ + cosf)

%2/1‘
IfcurIF.nds = J _[ (sin @ cos¢ +sin @sin ¢ + cos)sinddod g

0=0¢=0

= qu:‘_: [sinf sin ¢ — sin@ cos ¢ + ¢cosf];” sinfdf

g2
—CDE_E']

"

=-2m JFEF: cosBsinfdf = —m JFEF: sin28df = (—m) [
|:.

:':EE—]_— 1) =—-m en(2)

From (1) and (2), we have




fal F = 1l E o+ -
ch.dr _er;CLLnF.nn’s i
. Stoke’s theorem is verified.
16: Verify Stoke’s theorem for F = (x* - y* )i+ 2xy j over the box bounded by the planes

x=0,x=a,y=0,y=Db.

Solution :

0,b)C B(a,b)
|

0 A(a,0)

Stoke”’s theorem states that J' Fdr= I CurlF .nds

Given F = (x? — v3)T+ 2xvj

i j

K
5—| 0 P P :._ __. - _ v
CurlF AX Ay AZ i(0,0)- j(0,0)+k(2y+2y)=4yk
Xz—

2

y 2 Xy 0

R.H.S= J'CurI;.;ds = I4y(E.;)ds

Let R be the region bounded by the rectangle
[:E.ﬁ}dg =dx dy

a b a b

_ 2
{CurlF.nds: I J'4ydxdy= I0[4y7ldx=2b2 J' 1dx

x=0

a

=2b*(x)§ =2ab”
To Calculate L.H.S
F.df = (x? —v3dx + 2xv dy
Let O=(0,0),4 =(a,0),F = (a,b) and
C=(0,b) are the vertices of the rectangle.
()Along the line OA

y=0; dy=0, x ranges from O to a.

-

[, Fdf=[" x%dx= [L]: =E?

o




(i)Along the line AB

x=a; dx=0, y ranges from 0 to b.

f,-m F.dr = J:J:E(Ex_ﬂl dy = [za %]E_:abf
(iif)Along the line BC

y=b; dy=0, x ranges from a to 0

S S A L LR
:I(x—y)dx:L?—bXJ =0-| —-b"a|

X=a

=

[ E.d
BC

1.2 a®
o i
3

(iv) Along the line CO
x=0,dx=0,y changes frombto 0

ICF_.{f’F= J' 2xydy =0
y=h

Adding these four values

— _ a3 A 4 =
[ F.dFf == + ab*+ab* — = =2ab”
co 3 3

LHS = RH.S
Hence the verification of the stoke’s theorem.
17: Verify Stoke’s theorem for F=v~ 1 — 2xyj taken round the rectangle bounded by
x=xb, y=0,y=a.

Solution:
Y
i e
=a
C < i B
X=-Dy A X=b
> > X
D o A y=0 ~
I J k
Curl 4= a-“'flﬂx af‘“‘a - ala'fla: = -4yk
¥l —2xv 1]

For the given surface S, i= k




cA(Curl F).m = —4y
Now jff(cm F).nds = ﬂ;—cl_vdxd_v

= [, —8bydy :[—4by2]: — —4a’b.......(1)

ch'dF :jDA_ ae " Jec T Jep
[F.dFf =y?dx — 2xydy
Along DA, y=0,dy=0 = [ . F.d7 =0 (- F.dr=0)
Along AB, x=b,dx=0

'J:*i..'_:; F ' d"-r: = _J;'_::E_—Eb_‘»'d}':[—byz]: = —azb
Along BC,y=a,dy=0

IEC F ! d-'-r: = _er_b ﬂ: -:'1':!:_:—2-:‘{:10

Along CD, x=-b,dx=0

0

[ F.dF= Iy 2bydy=[-by’] =-a’.
| _F.d7 =0-a’b—2a’b — a’b=—4a’h - (2)
From (1),(2) J.F.d7 =[] (Curl F).7dS

Hence the theorem is verified.

19: Using Stroke’s theorem evaluate the integral _J:: F.d7 where

F=2v*1+3x7] -(2x+z)k and C is the boundary of the triangle whose vertices are
(0,0,0),(2,0,0,(2,2,0).

Solution:

T 7 k
curl F=|%3, %3, 93 | =27+ (6xay)k
2_1,': 3’ —2x—z

- <

B(2,2)

(0.0 > A (200




Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane .
- =k

~ (Curl Fy.7i= 6x-4y

Consider the triangle in xy-plane .

Equation of the straight line OB is y=x.

By Stroke’s theorem

jF.dF: ”(curl?).ﬁds
:vl:-c::c- JF:::['E}L — 4y)dxdy = L-::C- [J-A:L.Eﬁl —4y)dy|dx

= J' [6xy—2y2J: dx = _]FC_:(EI.‘:.': — 2x%)dx
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1. THE GAMMA FUNCTION

The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive
integer to x!, where x is any real number. (With limited exceptions, the discussion that follows will
be restricted to positive real numbers.) Such an extension does not seem reasonable, yet, in certain
ways, the gamma function defined by the improper integral

00
rx)=| e 'de (1)

JO

meets the challenge. This integral has proved valuable in applications. However, because it cannot
be r presented through elementary functions, establishment of its properties take some effort. Some
of the important ones are outlined below.

The gamma function is convergent for x > 0. It follows from eq.(1) that
From (1): T'(x+1)= J tre~tdt
0
Integrating by parts
ol 00 00
I'(x+1)= [tx (E—)] + xj e df
-1 0 0
A = {0 — 0} +xT'(x)
ST+ 1) =xI'(x) (2)

This is a fundamental recurrence relation for gamma functions. It can also be written as
I'x)=(x—-DHI'(x—1).

A number of other results can be derived from this as follows: If x = n, a positive integer, i.e. if n >
1, then

['n+1) = nl'(n).
n(n—1)I'(n—1) since I'(n) =(n—1)I'(n —1)
nn—1)(n—2)I'(n—-2) since I'n—1)=(n—2)['(n — 2)

I

nn—1)(n—2)(n—3)...1I'(1)

= ‘wlil(1)
But T'(1) = Jf* il ¥t = [y =1
= I'(n+1)=n! (3)
Example:
[(7)=6l=720, T(8)=7!=5040, T(9)=40320

We can also use the recurrence relation in reverse
T(z+1
Dz+1)=al(z) = D(z)=1zl

xr




What happens when x = 3? We will investigate.
o0
r@) = J 12t qt
0
Putting t = u?, dt = 2udu, then

rg = r uwle™2udu=2 r e du.
0 0

Unfortunately, r e du cannot easily be determined by normal
0

means. It is, however, important, so we have to find a way of getting
round the difficulty.

00
Evaluation of J e*dx
0

LetI = rﬂ e*dx, then alsol = r e” dy
0 0

P = (j e‘*zdx) (F e"'zdy) =J J e~ ®+) dx dy
0 0 o Jo

ba = 6x 6y represents an element of area in the x—y plane and the
integration with the stated limits covers the whole of the first
quadrant.

Converting to polar coordinates, the element of area éa = r 66 ér. Also,
X+y2=r
© e @) o

For the integration to cover the same region as before,

4

i the limits of r are r =0 to r = oo
|
r ly the limits of § are § = 0 to 6 = /2.
|
|
1

VT
2
J e dx = ‘/7’_’ (5)




Before that diversion, we had established that
r(l) = zr e du
0

00
We now know that J e dy = l/zl_r p(%) =7
0
From this, using the recurrence relation I'(x+ 1) =xI'(x), we can

obtain the following

r@) =3 r¢)={vm -
@ -1 r®-3(F) - I

b=

l:?lﬁ/»

Il
»lﬁ Nl§

N
~—
It

Negative values of x

I'(x+1)

Since I'(x) = , then asx — 0, I'(x) - oo .. I'(0) = oo0.

The same result occurs for all negative integral values of x — which does
not follow from the original definition, but which is obtainable from
the recurrence relation.

Because at x = -1, I'(-1)= l(;) =
x=-2, I'(-2)= P(_—Zl) = 00 etc
1
Also, at x=-1, 1"(—%) =%=_2\/77
2

0 |
and at x=-3, F(—%):M-_-é\/}

So we have
(a) For n a positive integer
I'(n+ 1) =nl'(n) =n!
'1)=1; r'0)=o00; I'(—n)==o00

®T@)=vE (-} =-2/7

F(z 2 ’ (*i =3\/7_r
3w 8

r -3 rCy--gva

M@= T(-D-qgve




Example:

(OO0
Evaluate | x’e*dx.
Jo

We recognise this as the standard form of the gamma function

(00
I'(x)=| tletdt with the variables changed.
Jo

It is often convenient to write the gamma function as

(00
r'(v)=| x"le*dx
Jo

Our example then becomes
00 00
I= J xe*dx = J xle*dx  wherev=............
o 0
i.e. J x’ e* dx =T'(8) = 7! = 5040
0

Graph of y =T'(x)

Values of I'(x) for a range of positive values of x are available in
tabulated form in various sets of mathematical tables. These, together
with the results established above, enable us to draw the graph of

y =T(x).
X 0 0-5 1-0 1-5 2:0 2-5 3-0 3:5 4-0
I'(x) oo 1772 1-000 0-886 1-000 1-329 2-000 3-323 6-000

P —0-5 -1-5 -2-5 -3-5
I'(x) | -3-545 2-363 —0-945 0-270

6 -
U y=T(x)
4
2_.._
: . | - - ' '
<l B e o

1 0 1

M=

N -

W
a4
>




Example:

o0
Evaluate J x3 e dx.
0

00

If we compare this with I'(v) = [ x"1 ¢ dx, we must reduce the
0

power of e to a single variable, i.e. put y = 4x, and we use this

substitution to convert the whole integral into the required form.
y=4x . dy=4dx Limits remain unchanged.

The integral now becomes ............

1 [* 1
IZFJ Ve Ydy=4zT(v) wherev=............
j Y levdy = J ye’dy v=4
0
1
=g D) = oo
1 1 6 3
_ —— —_= — ) e
I 256F(4) 256 (31 256 128

Review of Properties of Power Series

A power series in (x-a) is an infinite series of the form

Cot Cp (X-2) + Cp (X-a)% +- - - - = i c, (x-a)" (6.1)

n=o0

Series of (6.1) is also called a power series centered at a. The power series centered at a=0 is

often referred as the power series, that is, the series > ¢ x" A power series centered at a is

n=o0

called convergent at a specified value of x if its sequence of partial sums Sy(x) =
3 ¢, (x-a)",thatis, {Sy (X)} is convergent. In other words the limit of {Sy (x)} exists. If

the limit does not exist the power series is called divergent. The set of points x at which the
power series is convergent is called the interval of convergence of the power series. For R

>0, a power series ' ¢ (x -a)" converges if |x - a‘<R and diverges if |x - a‘>R. If the series

n=o0




converges only at a then R=0, and if it converges for all x then R=co. |x - a‘ <R is equivalent to

a-R<x<a+R. A power series may or may not converge at the end points a-R and a+R of this
interval.

A power series is called absolutely convergent if the series 3 ‘c _(x —a)"| converges. A power

series converges absolutely within its interval of convergence. By the Ratio test a power series

c n+1

centered at a, series given in (6.1) is absolutely convergent if L= |x-a| lim | | is less than

n— o
n

1, that is, L <1, the series diverges if L>1, and test fails if L=1. A power series defines a

function f(x)= 3 ¢ (x - a)" whose domain is the interval of convergence of the series. If the

n=o0

radius of convergence R>0, then f is continuous, differentiable and integrable on the interval
(a-R, a+R). Moreover f(x) and [f(X)dx can be found by term by term differentiation and
integration. Convergence at an endpoint may be either lost by differentiation or gained through
integration.

Lety=> c x"

n=o0

y'= > nc X"
n=o

©

y’=3 n(n-1c x"

n=o0

We observe that the first term in y' and first two terms in y' are zero. Keeping this in mind we
can write

-2

y' = z:l nc x"" (6.2)

w©

y' = > n(n-1c x"

n=2

2

Identity property: If Z c. (x —a)" =0, R>o0 for all x in the interval of convergence, then

n=0

¢,=0 for all n.

Analytic at a point:




A function f is analytic at a point a if it can be represented by a power series in x-a with a
£ (a)

n!

positive or infinite radius of convergence. A power series where c,= , that is, the series

(n)

of the type > ¢,

n=o0

—(x- a)" is called the Taylor series. If a=o0 then Taylor series is called
n:

Maclaurin series. In calculus it is shown that e*, cos X, sin X, In (x-1) can be written in the form
of a power series more precisely in the form of Maclaurin series. For example

2
X

e =1+ X+ —+----
21
3 5
_ X X
Sin X = X — —+ —=----
3! 5!
2 4 6
X X X
cos X=1-—+ ——-—+----
2! 41 6!

for | x| < .
Arithmetic of Power Series:

Two power series can be combined through the operation of addition, multiplication, and
division. The procedures for power series are similar to those by which two polynomials are
added, multiplied, and divided. For example:

2 3 4 3 5 7
< . X X X X X X
e sinx=1+X+—+—+—4+----|| X-—+ - +----

2 6 24 6 120 5040
2(11W3(11W4 (l 11)5
=X+ X"+ -—+—|X +|-—+— X +----|] ——-—+— X +----
6 2) \ 6 6) (120 12 24 )

3 5
, X X
=X+X +—=-——----
3 30

Since the power series for * and sin x converge for | x| <00, the product series converges on
the same interval.

Shifting the Summation Index: In order to discuss power series solutions of differential
equations it is advisable to learn combining two or more summations as a single summation.

6.2 Solution about Ordinary Point :

We look for power series solution of linear second-order differential equation about a special
point:
2

d
a,(x)
dx

y+a1(x)di+ a,(x)y=0 (6.4)
dx

2

where a, (X) = 0.




This can be put into the standard form
d'y a,(x)dy a,(x)
+ —+

2 y:0

dx a,(x)dx a,(x)
d’y dy

or S+ P(X)—+Q(x)y =0 (6.5)
ax dx

A point X, is said to be an ordinary point of the differential equation (6.4) if P(x) and Q (x) of
(6.5) are analytic at x,, that is, P(x) and are Q(x) represented by a power series. A point that is
not an ordinary point is called a singular point.

A solution of the formy =% ¢ (x-x,)" is said to be a solution about the ordinary point

n=0

Xo-

Power series solution about an ordinary point:

Let y=3 c,x" and substitute values of y, Yy _ Y —=y"in (6.5)
= dx dx

Combine series as in Example 6.1, and then equate all coefficients to the right hand side of the
equation to determine the coefficients c,. We illustrate the method by the following examples.

We also see through these examples how the single assumption that y= 3" ¢ x" leads to two

sets of coefficients, so we have two distinct power series y; (X) and y2(X) 7b0th expanded about
the ordinary point x=0. The general solution of the differential equation is y=C;y;1(X)+C,y2(X),
infact it can been shown that C;=c , and C,=c;.

2

The differential equation d y2
dx

diffraction of light, diffraction of radio waves around the surface of the earth, aerodynamics
etc. We discuss here power series solution of this equation around its ordinary point x=0.
Example 6.2 Write the general solution of Airy’s equation y'+xy=0.

Solution: In view of the remark, two power series solutions centred at 0, convergent for ‘x |<oo

+xy =0 is known as Airy’s equation and used in the study of

exist. By substituting y=%" ¢ x", y"=3 n(n-1)c,x"° into Airy’s differential equation we

get
y'+xy=% c,n (n—l)x"72+xz c x",

_ n=0

= Zw“ c.n (n-1)x"? +§ c x"* (6.6)

n=0

As seen in the solution of Example 6.1, (6.6) can be written as y"+xy:202+i [(k+1)

k=1

(K+2)CiszH+Crea ]X =0 (6.7)




Since (6.7) is identically zero, it is necessary that coefficient of each power of x be set equal to
zero, that is,

2¢,=0 (It is the coefficient y x°) and

(k+1)(k+2) cksptCr1=0, k=1,2,3 - - - —- - - - . (6.8)

The above holds in view of the identity property. It is clear that c,=0. The expression in (6.8) is
called a recurrence relation and it determines the ¢ in such a manner that we can choose a
certain subset of the set of coefficients to be non-zero. Since (k+1)(k+2)=0 for all values of k,
we can solve (6.8) for cy+ in terms of cy.;.

Chrp= - — L 123,---- (6.9)
(k + 1)(k + 2)

For k=1, c3 = - Lo
2.3
C
Fork=2,¢c4=- —>
3.4

Fork=3,cs=- —2 =0 as ¢,=0

4.5
c 1
Fork=4,c6=- — = ——¢,
56 2.3.5.6.
-c 1
Fork=5¢7=- —= c
6.7 3.4.6.7
- C
Fork=6.cg=- —= =0 as cs=0
7.8
c 1
Fork=7.Co=- — = - c,
8.9 2.3.5.6.8.9.
c 1
Fork=8,cip=- ——=- c
9.10 3.4.6.7.8.10
C
Fork=9, ci1=- —2—= 0ascg=0
10 .11
and so on,

Substituting the coefficients just obtained into y=3%" ¢ x"

n=0

=Co+CiX+Co X2+ CaXC+Ca X+ CexC+Ce X+ X +CgxC+Cox P +C X 0- - - -

we get

y=Co+C1X+0
c c c c c c

- L x"+0+ ° x° 4+ L x"+0- 2 x° - ! x° +0+----
2.3 3.4 2.3.5.6 3.4.6.7 2.3.5.6.8.9. 3.4.6.7.9.10

After grouping the terms containing c, and the terms containing c;, we obtain
y=CoYy1(X)+C1Y2(X), where
1 1 1
y1(X)=1- x® + x° - X% -
2.3 2.3.5.6 2.3.5.6.8.9

k

- (-1 3k
=1+ X
El 2.3----(3k - 1)(3k)




1 1 1
ya(X) = X - x*+ x' - X o
3.4 3.4.6.7 3.4.6.7.9.10
- —1k +1
=Xty (-1) ML
~  3.4-.--(3k)(3k +1)

Since the recursive use of (6.9) leaves ¢y and ¢, completely undetermined, they can be chosen
arbitrarily.
y=CoYy1(X)+C1Y2(X) is the general solution of the Airy’s equation.

Example 6.3 : Find two power series solutions of the differential equation y"-xy=0 about the
ordinary point x=0.

Solution: Substitutingy =3 ¢, x" into the differential equation we get

n=0
y'-Xy=3 n(n-1c x"* - c, x""
n=2 n=0
x“-yc,  x"
k=1

= v (k + 2)(k + 1)c

k+2

=2C +i [(k + 2)(k + 1)c
Thus c; - 0,
(k+2)(k+1)Cys2 —Ck1= 0

k
ki2 — C k—l]X

and

1
C(k+2)(k + 1)
Choosing ¢,= 1 and ¢;=0 we find

[ c, .. k=123..

k+2

1 1
c,=—c,=¢, =0c, =—— and soon.
6 180
For co=0 and c;=1 we obtain
1 1 .
c,=0c,=—,c, =c, =0,c, =—— and so on. Thus two solutions are
12 504
1 3 1 6
Yi=1+—x + X +----and
6 180
1, 1,
Yy, =X+ —X + X 4+----
12 504

6.3 Solutions about Regular Singular Points — The Method of Frobenius:




A singular point xo of (6.4) is called a regular singular point of this equation if the
functions p(x) = (x-Xo) P(X) and q(x)=(X-Xo)*Q(x) are both analytic at xo. A singular point that
is not regular is said to be on irregular singular point of the equation. This means that one or
both of the functions p(x)=(x-xo) P(x) and q(x) = (x-X0)*Q(x) fail to be analytic at .

In order to solve a differential equation given by (6.4) about a regular singular point we

employ the following theorem due to Frobenius.

Theorem 6.1 (Frobenius Theorem)

If Xx=Xo is a regular singular point of the differential equation (6.4), then there exists at least one

solution of the form y=(x-x,)" > oc,(x-x,)" = z c, (x - x,)"" where r is constant to be

n=o0

determined. The series will converge at least on some interval 0<x-xo<R.

The method of Frobenius:

Finding series solutions about a regular singular point Xo is similar to the method of previous

o

section in which we substitute y= 3" ¢, (x - x,)"" into the given differential equation and

n=0

determine the unknown coefficients c, by a recurrence relation. However, we have an
additional task in this procedure. Before determining coefficients we must find unknown
exponent r. Equate to 0 the coefficient of the lowest power of x. This equation is called the
indicial equation and determines the value(s) of the index r.

If r is found to be number that is not a non negative integer, then the corresponding solution

o

y=3 ¢, (x-x,)"" isnotapower series. For the sake of simplicity we assume that the

regular singular point is x=0.
Example 6.4 Apply the Method of Frobenius to solve the differential equation 2x y"+3y’-y=0
about the regular singular point x=0.

Solution: Let us assume that the solution is of the form




y=3 ¢, x"" then

y'= > c,(n+ ryx"
n=o0

y'= i c,(n+r)(n+r-1)x""?

n=o0

Substituting these values of y', y" and y" into 2x y"+3 y'-y=0, we get

w©

> c.n+r)n+r-1)x"""+3 > c (n+r)x"" - > ¢ x""=0.

n=o0 n=o0 n=o0

Shifting the index in the third series and combing the first two yields i c. (n+r)

n=o0

n+r-1 n+r-1 —
(2n + 2r + 1)x -y ¢, x""=0
n=o0

Writing the term corresponding to n=0 and combining the terms for n>/ into one series,

Cor(2r+1)x '+ 5 lc (0 + 1) (2n+2r+1)-Cog X =0

n=1
Equating the coefficients of X" to zero yields the indicial equation
Cor(2r+1)=0
Since co= 0, either r=0 or = - L
2
Hence two linearly independent solutions of the given differential equation have the form

y1=Fo (X):i c,x" and

_ o2 v .
Y2=F ,,(X)=X""Y ¢ ux

Since c,(n+r) (2n+2r+1) -¢,1=0 for all n > 1, we have the following information on the
coefficients for the two series:

1

Q) Co Is arbitrary, and for n>1, c;= ———«c__
n(2n + 1)

(i)  c’ois arbitrary, and for n>1,c'= — ¢ |
n(2n -1)

Iteration of the formula for c, yields

1 2 2c
n=1,¢=—c, = Cp = —
1.3 1.2.3 3!
1 1 2%¢c
n=2, C,= c,= c, = -
2.5 2.3.5 51
1 1 2%c 2%¢c
n=3,C3= —c, = e - -
3.7 3.7 5! 71

Each term of ¢, was multiplied by 2 to make the denominator (2n+1)!. The general form of ¢,
2

is then




n

2 cC

0

n=
(2n + 1)

n

2°¢c,

(2n)

Similarly, the general form of ¢,"is found to be ¢, =

The two solutions are

o0 n 0 n

. 2
=c XY= X2y —
n °n§(2n+1)! Y=o 2 2y

y2 IS not a power series.

n

n=o0

Example 6.5 Apply the method of Frobenius to obtain two linearly independent series solution
of the differential equation  2x y" — y'+2y= 0 about a regular singular point x=0 of the

differential equation.

Solution: Substitutingy =% ¢ x"", y'=3 c, (n+r)x""" and

n=o0 =

n+r-1

y'= icn(n+r)(n+r—1)x

n=o

into the differential equation and collecting terms, we obtain
2x y'- y'+2y:(2r2-3r)coxr'1+i [2(k+r-1)(k+r)ck -(K+r)Ciet2ck4]X< =0,

which implies that
2r2-3r=r(2r-3)=0

and
(k+r)(2k+2r-3)ck+2ck-1=0.

e e . 3 . . 2c
The indicial roots are r=0 and r==.For r=0 the recurrence relation is ¢, = - —**— |
2 k(2k — 3)

1,23,----

4
and ¢y = 2Co, Co= - 2Cp, C3= —Co
9




2c, 4

3 L.
For r= = the recurrence relation is ¢, = - , k=1,2,3,- - --and
2 (2k + 3)k
Cim 2 2 4
1=- —C4,C, = —C,,Cy = — c
072 g5 0778 945 °

The general solution is y = Cy (1+2x-2x%+ 233+~ - - - J+C 2 (1-2 + 2 -2 x4 - - 1)
9 5 35 945

6.4 Bessel's equation:
X2 y'+x y'+(x-v?)y=0 (6.10)
(6.10) is called Bessel's equation.

Solution of Bessel's Equation:

Because x=0 is a regular singular point of Bessel's equation we know that there exists at least

one solution of the formy=3" ¢ x"". Substituting the last expression into (6.10) gives

n=o0

XY X YHOEV)Y= 5 e (e n)(n+r-Dx"THY o (nen)x"THY ¢ x"

n=o n=o n=o

VY e " = Co(rP-rHr-VA)X

+2

+X' > c l(n+r)n+r-1)+(n +r)—vix" + x> e, x"
e, (rf - vz)xr +x' i c ln+r)’T-vix" +x' f c x"?  (6.11)

From (6.11) we see that the indicial equation is r?>-v*=0, so the indicial roots are r;=v and r, = -
v. When r;=v, (6.11) becomes

XVZ c,n(n+2v)x" +x"Y ¢ x"’

n=1 n=o

|— " n " n+
:XVL(1+ 2v)e,x+ > ¢ n(n+2v)x + > ¢ X ZJ
n=2 n=0

k+2

k+2 +Ck]x

:xv{(u 2v)C X + i [(k + 2)(k + 2+ 2v)cC

k=0

.
J:O

Therefore by the usual argument we can write (1+2v)c;=0 and
(k+2) (k+2+2v)Cys2+C=0




Or Cy+2= Ly k=0212,---- (6.12)
(k+2)k+2+2v)

The choice ¢;=0 in (6.12) implies c3=Cs=C;= - - - - = 0, so for k=0,2,4, - - - - we find, after
letting k +2 = 2n,

n=1223,----that
Con = - — 202 (6.13)
2°n(n +v)
ThUSCzZ-ZC—O
2°.1(1+ v)
CZ CO
C4:_ 2 = 4
2°2(2+v) 2211+ v)2+vV)
C4 Co
C6:_ 2 = 6
2°.3(3+vV) 2°.1.2.3(1+v)(2+V)(3+V)
Con = D <, Nn=123.---- (6.14)

22n!(1+ v)(2+ V). (n+V)

It is standard practice to choose ¢, to be specific value — namely.

o=
2°'T(1+v)
where T" (1+v) is the gamma function. (See Appendix) Since this latter function possesses the
convenient property I' (1+a) = al"(o), we can reduce the indicated product in the denominator
of (6.14) to one term.
For example:
I' (1+v+1)= (1+v) T (1+V)
I' (1+v+2)= (2+Vv) T (2+V)= (2+V)(1+V)[(1+Vv).
Hence we can write (6.14) as

(-1’ - (-1)

PRI+ V) (24 V) (N4 V)T(L+v) 2%

forn=0,1,2, - - - -

n

C =
n'rC(l+v+n)

Bessel Function of the First Kind:

Using the coefficients c,, just obtained and r=v, a series solution of (6.10) isy=3 ¢, x*""

n=0

This solution is usually denoted by 3, (x):




2n+v

L=y —E0 (X)) (6.15)
nNrd+v+n)l2)

n=0
If v>0, the series converges at least on the interval [0, » ). Also, for the second exponent r,= -v
we obtain, in exactly the same manner,
0 (_ 1)n X

I,0=Y

o' (1-v +n)k;)

2n-v

(6.16)

The functions Jy(Xx) and J.,(x) are called Bessel functions of the first kind of order v and —v,
respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence

converge on (0, » ).

SPECIAL FUNCTIONS




Introduction

Many Differential equations arising from physical problems are linear but have variable
coefficients and do not permit a general analytical solution in terms of known functions. Such
equations can be solved by numerical methods (Unit — 1), but in many cases it is easier to find a
solution in the form of an infinite convergent series. The series solution of certain differential
equations give rise to special functions such as Bessel’s function, Legendre’s polynomial.
These special functions have many applications in engineering.

Series solution of the Bessel Differential Equation
Consider the Bessel Differential equation of order n in the form

, d ’ y dy 2 2 ;
X 4+ x—+(x"=n")y=0 (i
dx dx
where n is a non negative real constant or parameter.

We assume the series solution of (i) in the form

y=3 ax“" whereag#0 (ii)
r=0
d .
Hence, LS a (ke
dx o
2 ©
y k+r-2

: =Zar(k+r)(k+rfl)x
dX r=0

Substituting these in (i) we get,

X*S a (k+r)k+r-0x""TT xS a (k+ x4 (xT-nf )Y a,x" =0

r=0 r=0 r=0

e, X a, (e (ks r-Dx =3 a (K x" e X a xS0t S a k<o
r=0 o o ~

Grouping the like powers, we get

a |[(k+r)k+r-2)+(k+r)—-n"|x + a x =0
. 2 k+r ) k+r+2

r=0 r=0

Zar[(k+r)2—n2]xk”+Zarxk+”2:0 (iii)
r=0

r=0

Now we shall equate the coefficient of various powers of x to zero
Equating the coefficient of x* from the first term and equating it to zero, we get

ao[k2 - n2]= 0. Since a, # 0,we get k®-n®=0, .~ k==zn

Coefficient of xX** is got by putting r = 1 in the first term and equating it to zero, we get
ie., al[(k +1)2 - nz]: 0. This gives a, = 0,since (k +1)2 -n? =0 gives ,k +1=%n
which is a contradiction to k = #n.




Let us consider the coefficient of xX*" from (iii) and equate it to zero.
e, ar[(k + r)2 - n2]+ a,_,=0.

2

—a
="z iv
o [(k+r)* —n?] (V)

If k = +n, (iv) becomes

a _ar—z _ B ar72
2

T [(n+r)2—n2] [r +2nr]

Now putting r = 1,3,5, ....., (odd vales of n) we obtain,

-a,

a; = =0, ~a; =0
6n+9
Similarly as, as, ..... are equal to zero.
i.e., daa=as=ar=...... =0
Now, putting r = 2,4,6, ...... ( even values of n) we get,
a — &, — &, a - a, a,

T an+4 4(n+1) T 8n+16 R (n+1)(n+2)
Similarly we can obtain ag, as, ...
We shall substitute the values of a,,a,,a,,a,, - in the assumed series solution, we get

4

2z ker ok 2 3 4
y=3XYa,x =X (ag+ay;Xx+a,Xx" +agXx +a,X 4o )

r=0

Let y; be the solution for k = +n

nl— a'0 2 ao 4 —|
yl = X ao_ X" + X = e e
L 4(n +1) 32(n+1)(n+ 2) J
e, vy, = aox"(l— X + X _......1 (v)
L 2°(n+1)  2°(n+1)(n+ 2) J

This is a solution of the Bessel’s equation.
Let y, be the solution corresponding to k = - n. Replacing n be — n in (v) we get

[ X’ x' | .

1-— + e e (VI)

{ 2°(=n+1) 2°(=n+1)(-n+2) J

The complete or general solution of the Bessel’s differential equation is y = c1y1 + CaY2, Where

C1, C; are arbitrary constants.
Now we will proceed to find the solution in terms of Bessel’s function by choosing

-n

y, = a,Xx

1 .
a, = —=——=and let us denote it as Y.
2" )(n +1)

x" [ XY 1 x\! 1 1
TR S N
2" (n+1)L (2) (n+1) (2) (n+1)(n+2)-2 J




n

2 4 —|
(2] in+1) (2} (n+1))(n+1) (2} (n+1)(n+2)in+1) 2 J

We have the result I'(n) = (n—1) I'(n — 1) from Gamma function
Hence,I'(n+2) =(n+1)I'(n+1)and

'h+3) =(n+2)T(n+2)=(n+2)(n+1)I'(n+1)
Using the above results in Y3, we get

n’— 2 4 —|

voo [ X)) ()

\2) )+ (2) )n+2) (2] J(n+3)-2 ]
which can be further put in the following form

PN EA N N F ARG N S A G C AR
1\ZJU(nH).O!kZ) Y(n+2)-1.2) Jn+3)-2102) |

(e (x)”
_(ZJ rz:() j(n+r+1)~r![2}

1
_,zo(l) [ZJ -i(n+r+1)-r!

This function is called the Bessel function of the first kind of order n and is denoted by Jn(X).

| I —|

Thus Jn(x):zm(fl)f.fﬂm2r -

(2) '}(n+r+1)~r!

Further the particular solution for k = -n ( replacing n by —n ) be denoted as J.,(x). Hence the
general solution of the Bessel’s equation is given by y = AJn(X) + BJ.n(X), where A and B are
arbitrary constants.

Properties of Bessel’s function

1.5 . (x)=(-1)"3,(x), Where n is a positive integer.

Proof: By definition of Bessel’s function, we have

n+2r

o=y ey (A (1)
o (2) }(n+r+1)~r!
Hence, 5 (x)-= s (1) -(ﬂinm L (2)

r=0 (2) i(—n+r+1)~r!

But gamma function is defined only for a positive real number. Thus we write (2) in the
following from

-n+2r
J_(x)= g(—l)’.(ﬂ —_— 3)

r=n (2) i(—n+r+1)~r!

Letr—n=sorr=s+n. Then (3) becomes




-Nn+2s+2n
1 0= (-0 X R —
o 50 (2) )(s+1)-(s+n)

We know that I'(s+1) = s! and (s + n)! = I'(s+n+1)

n+2s

e s+n X 1
s ———
5=0 (2) i(s+n+1)~s!
e ()T e
5=0 \(2) (s+n+1)-s!

Comparing the above summation with (1), we note that the RHS is Jy(X).
Thus, 3 . =(-1"3, ®

2. 3, (-x)=(-1)"J (x)=3_,(x), Where n is a positive integer

Proof : By definition, J (x) =Y (-1)' (ﬂ —
o (2) (N+r+1)-r!
n+2r 1

* r _i —
Jn(—x):zo(—l) { 2} m‘rg

n+2r

(_1)'.(_1)"*2’(1W ;
L(2)

}(n+r+1)~r!

1
( .

e, =%

r=0

n+2r

i n+r+1)-r!

Since, (-1)"3,(x)=3_,(x),wehave 5, (-» =(-n"3,® =J_, ®

r=0

LTI
L2

Ne—

Thus, I, =(-D"I, ®

Recurrence Relations:
Recurrence Relations are relations between Bessel’s functions of different order.

Recurrence Relations 1: d—[ann(x)]: x"3 . (x)
dx

From definition,

n+2r 2(n+r)
> X 1 ® X 1
x"I (x)=x"x(-1)" | = — = z(_l)r‘(_ O —
r=0 (2) i(n+r+l)~r! r=o (2) i(n+r+l)~r!

» (n i r)Xn+2r—l
:an(—l)r n+2r-1
r=0 2 (n+r))(n+r)-r!
(n-1)+2r
» /2
=x"y (x ) =x"3, ,(x)

(-1)"-
r=0 i(n71+r+1)-r!

Thus’ dd_[Xan(X)]:annf1(X) """" (1)




Recurrence Relations 2: [« "5 (x)]= =x"3,_,(x)
dx

From definition,

n+2r

© X 1
x "1 () =x"x(-1)" | = 5SS
r=0 (2) }(n+r+1)‘r!

2r

*© X 1
Cosen (X)) —
r=0 (2) }(n+r+1)‘r!
Lo, 0= = -1y 2
—[x " (0= _1)".
dx r=0 2"+2r}(n+r+1)-r!

n+1+2(r-1)

-n ® r-1
=-x  X(-1) -
r=1 2n+1+2(r_l)i(n+r+1)-(r—1)!

Letk=r-1
n+1+2k
-n & k X -n
=-x  X(-1)" - =-x "J,,,(x)
k=0 2" k1) k!
Thus, o, col=—x"0, 000 e (2

dx

Recurrence Relations 3: 5, (x)=——[1, ,(x)+J,,,(x)]
2n

We know that % [x"3_(x)]= x"3, ,(x)
dx

Applying product rule on LHS, we get x"3/(x)+nx " 3 (x)=x"3, ,(x)
Dividing by X" we get 3/ (x)+(n/x)3,(x)= 3, ,(x)==--===- (3)

Also differentiating LHS of L [x"3 (x)]= —x "3, (x), We get
dx

n n

xfan/(x)—nxf 71Jn(x):—x7 J 1 (x)

Dividing by —x" we get -3/ (x)+(n/x)3,(x)=3,,,(x) === (4)
Adding (3) and (4), we obtain2ns  (x)=x[3, ,(x)+3,.,(x)]

e, U, ()= [0, ,(x)+3,,,(x)]
2n

Recurrence Relations 4: 5/ (x) = %[J () =3,.,(x0)]

Subtracting (4) from (3), we obtain 23/ (x)=[3, ,(x)-3,.,(x)]

. 1
l.e., Jn’(x)=;[Jn,l(x)—Jn+1<x>]

Recurrence Relations 5: 5/ (x) = %Jn(x)f 3..40(x)

This recurrence relation is another way of writing the Recurrence relation 2.
Recurrence Relations 6: 5/ (x) = Jnfl(x)fgjn(x)

This recurrence relation is another way of writing the Recurrence relation 1.
Recurrence Relations 7: 5 (x)= ZTan(x)— 3. 4(x)

This recurrence relation is another way of writing the Recurrence relation 3.




Problems:

PI’OVEthat(a) Jl,z(x):disinx (b) Jfl,z(x):wficosx
X X

By definition,
o= sen (2T
" r=0 (2) j(n+r+1)-r!
Putting n = %2, we get
1/2+2r 1

3, 00= (-1 [ 2] :
r=0

- (2) i(r+3/2).r!

Xl— X X —‘
PO 1 S P S S PSS SR R B
2| r(3/2) (2) r(si2)t \2) r(1/2)2 ]
Using the results T'(1/2) = Vr and T'(n) = (n — 1) T(n-1), we get

3\/; 15\/;

r3r2y="2rsr2y=22 rri2)-= and so on.
2 4 8

Using these values in (1), we get

3 (x) \/:I_ 2 x2 4 ><4 8 —}
X)= |—| —_ = L= T
e ZL\/; 4 3r 16 15472 ]

/x Zr ><3 X s 1 2’— x3 x5 1

— —‘—lx_— + _....‘.|= _‘X—_ + — _|

2 X|_ 6 120 J Xﬂ'l_ 3! 5! J

2
Ji,,(x)=4[—sin x
7X

Putting n = - 1/2, we get

- (XW—1/2+2r 1
Ioa(0)=x(-1)" = e
e r=0 (2) i(r+l/2)‘r!
r 1
s (B ] e
ZLF(“Z) (2) r(3/2)t (2) r(s/z2)2 |

Using the results T'(1/2) = Vr and I'(n) = (n — 1) ['(n-1) in (2), we get

Do 2‘(1 x? 2 x* 4 7‘
- X)= |—| —-— —,+ — e
T e e

2|— ><2 4 1

S B |

xz |24 ]

f2
J_4,,(x)=[—cos x
X

2. Prove the following results :

2 [3-x? 3 1
(a) Jg,,(x)=4—]| " sin x — —cos x\and
ﬂx|_ X X J

/2f3—x2 31
(b) J_¢,,(x)=,/—] cos X + —sin x |
7Z'X|_ XZ X J




Solution :

We prove this result using the recurrence relation 5 (x)y=—[3. . (x)+3,.,(x)]
2n

Putting n=3/2in (1), We get 3, ,,(x)+ 3. ,,(x) = —3,,,(x)
X

3
Jg/2(x)=—=J3,,(x)=J,,(x)
X

_ 3 [2 [sin x—-xcos X | 2
ie, Jg,,(X)=—/—| = |—4[—sin x
X nxL X J X
2 [3sin x—3xcos x—x2sin x| 2((3—x2)_ 3 1
Jg o (x)=4]—]| . | =4/—1| . sin x — —cos X |
ﬂXL X J nx'_ X X _|

Also putting n=-3/2in (1), we get 3 .,,(x)+3_,,,(x)= -3 4,,(x)
X

3 (—3) 2 [ xsin x+cos x| 2
‘]—5/2()()=__J-3/2(X)_‘]_1/2(X): — - ||| — ./ ¢Co0s X
X L x ) X L X J X

i 2 ['3xsin x+3cos x—x° cos x| 2 I3 . 3-x? 1
ie, J_g,,(x)=_[—]| | = [—|—sin x+ cos X |
Tx| x? | TX | x x? |

3. Show that d—[J:(x)+Jf+1(x)]=£[nJ Z(x)=(n+1)32,(x)]
dx X

Solution:
LHS= 25200+ 32,00]= 23,000 ()% 23,13, (0 === (1)
dx
We know the recurrence relations
xJn/(X):an(x)—xJMl(x) _______ (2)
X0 ()=, ()= (n+1)3, 5 (x) === 3)

Relation (3) is obtained by replacing n by n+1in xs/(x)=x, ,(x)-n3 ,(x)

Now using (2) and (3) in (1), we get
d

LHS = —[J:(X)Jrqu(x)]:2Jn(x){£.]n(x)fJml(x)}Jr2Jn+1(x)[~]n(x)fm
X

X

dx

2n ., n+1 ,
=—J,(x)=2J3,(x)J (x)+23,,(x)I (x)=2——3_,,(x)
X X

n+1
d 2 2 2 2 2

Hence, —[12(x)+ 32, (x)]= =] 2(x)-(n+1)32(x)]
dx X

4. Prove that 3/ (x)= 200, (x)-3,(x)]
2
Solution :
We have the recurrence relation 3/ (x)= 23, ,(x)-3..,(x)] === (1)
2

‘]n+l(x)}

Putting n =0 in (1), we get Jé(x):i[Jfl(x)—Jl(x)]=i[—Jl(x)—Jl(x)]=—Jl(x)
2 2

Thus, 5/ (x)=-3,(x). Differentiating this w.r.t. x we get, s/ (x)=-3/(x) ---




Now, from (1), for n = 1, we get J{(x):%[Jo(x)—Jz(x)].
Using (2), the above equation becomes
fJo”(x)=%[Jo(m—Jz(x)]ow é’(x)=§[az(x)—%<x>]-

1
2

Thus we have proved that, 5/ (x)==[3,(x)-3,(x)]

5. Showthat ()3, (x)dx = c—3,(x)-23,(x)
X

(b) 1x3 2(x)ax =§x2[aé<x)+Jf<x)]
Solution :
(a) We know that dd—[x’”Jn(x)]:fx’”Jm(x) OF [x"J3,,,(x)dx =—x "3, (x) === 1)
X

NOW, [Jd,(x)dx :sz-xfz.]s(x)dx-#c:x2-jxfz.]a(x)dx—j2x[jx72\]3(x)dx]dx+c
=x? ~[—xfzJZ(x)]—jZX[—xfsz(x)]dx+c(fr0m (1) Whenn=2)

-3, ()= [ 29, () = c-3,(x)-23,(x) (from (1) when n = 1)
X X
Hence, jJS(x)dx:cf.Jz(x)fiJl(x)
X
(D) [x3 2(x)dx = 32(x)-2x? —j23,(x)-3.(x) 2x?ax (Integrate by parts)
2 2

X235 () + x5 (x)- 3, (X )dx (From (1) for n = 0)

NP N e

d
szoz(x)+ij1(x)~d—[xJ1(x)]dx [ d—[x.]l(x)]:x.]o(x)from recurrence  relation (1)}
dx X

szj(x)+§[le(x)]2 =§x2[J02(x)+ 32(x0)]

Il
N | e

Generating Function for J,(x)

i(t—l/t) w
To prove that 2 = $t"3,(x)

n=-w

or

X
“(t-1/t)
2

If nis an integer then J,(X) is the coefficient of t" in the expansion of e
Proof:

X
“(t-11/1)

We have ¢? —eX2 Xl




[ o(xt/2) (xti12) (xt/2) TT (oxtr2) (=xt/12) (-xti2)° 1
+ + + o1+ + + +

Sl — 4 ol —— 4 —— ‘
| 1 21 3! N 1 21 3! |
(using the expansion of exponential function)
|' Xt X2t2 Xntn Xn+1tn+l '| " X X2 (—1)an (_l)n+1xn+l '|
:|1+ * 2 o n * n+1 o |.‘1_ * 2.2 T n_n * n+l n+1 o |
| 2-1 272 2'nl 2" (n+ 1) I 2t 2%t 2 27t 2" (ns ) ]
If we collect the coefficient of t" in the product, they are
Xn Xn+2 Xn+4
- - + _
2"nt 2™ F(n+ 1y 2" (n+2) 21
n n+2 n+4 n+2r
:i(iw _ . X " L X e = g(_l)'(iw -t =J,(x)
nt{2) (n+1)1r(2) (n+2)212) r=0 L2) I'(n+r+1)r!
Similarly, if we collect the coefficients of t™ in the product, we get J_n(X).
i(t—l/t) w
ThUS, e? = $t"3,(x)
L([—lll) o -
Result: e 3,0+ -0 L 00
n=1
Proof :
i(t—llt) o -1 »
e? = $t"I (x)= TtNI(x)+ 2t"I, (x)
n=—w0 n=-wo n=0
? -n * n * -n n * n n
=Yt I ()T (x)+ Tt (x)=Jd(x)+ Xt (=1) I (x)+ Tt I (x) {~JI_(x)=(=-1)J, (x)}
n=1 n=1 n=1 n=1
L([—lll) ©
Thus, e? =30+ ST -0 e 00
n=1

Problem 6: Show that

(@) Jn(x):i}cos( ne - xsin 6)de , N being an integer

7 0
(b) Jo(x):iifcos( xcos 6)dé
7T o

(€ a2+232+232 4324 =1

Solution :

-1/t

Xt ) -
We know that e 2 S 3,0+ ST - e o)
n=1

= Jo(x)+t.]1(x)+t2J2(x)+t3J3(x)+ ------ +t71J_1(x)+t72J_2(x)+t73J_3(x)+ ------
Since 5, (x)=(-1)"3,(x), We have

e;(ld”):Jo(x)+J1(x)(t—1/t)+Jz(x)(tz+1/t2)+J3(x)(t371/t3)+ ........... (1)

Let t = cosO + i sinO so that t” = cospd + i sinpd and 1/t” = cospo - i sinpo.
From this we get, t” + 1/t° = 2cosp0 and t* — 1/t” = 2i sinp0
Using these results in (1), we get

X
—(2isin 0) o
e? =e™ M 3 (x)+2[3,(x)cos 20 + I, (x)cos 40 + -]+ 2i[I (x)sin @+ I, (x)sin 30 + -]




Since ™"’ = cos(xsind) + i sin(xsiné), equating real and imaginary parts in (2) we get,
cos( xsin 8)=J,(x)+2[J,(x)cos 260 +J,(x)cos 48 +---] ===== (3)
sin( xsin @)=2[J,(x)sin @+ J,(x)sin 30 +--]  -==-- (4)

These series are known as Jacobi Series.

Now multiplying both sides of (3) by cos n@ and both sides of (4) by sin né and
integrating each of the resulting expression between 0 and =, we obtain

17 fJn(x), n is even or zero
— Jcos( xsin @)cos n@do =
T o L 0, nis odd
17 [ o0, n is even
and —[sin( xsin @)sin nodo = |
) [J,(x), nis odd

T T a .
Here we used the standard result jcos pocos qOde = [sin pé sin qodeo = J ; itp=q
0 0 o, if p=q
From the above two expression, in general, if n is a positive integer, we get

17 17
J,(x)=—7[cos( xsin #)cos N +sin( xsin #)sin n@]dg =—[cos( ng - x sin 9)do
7 o T o

(b) Changing 6 to (n/2) 6 in (3), we get
cos( xcos @)= J,(x)+2[I,(x)cos( 7 —20)+I,(x)cos( 7 —48)+--]
cos( xcos @)= J,(x)—-2J,(x)cos 20 +2J,(x)cos 40 —--

Integrating the above equation w.r.t 6 from 0 to &, we get

feos( xcos @) = [[I,(x)-23,(x)cos 20 +2J,(x)cos 40 — -]

0 0
. . T

i sin 26 sin 46

feos( xcos @)dO =|J,(x)-0-2F,(x) +2J,(x) . — =Jy(x) 7

0 0

ThUS, Jo(x):i}cos( x cos 6)dé

(c) Squaring (3) and (4) and integrating w.r.t. & from 0 to 7 and noting that m and n being
integers

}!cos “(xsin 0)@ :[Jo(x)]2 ~7z+4[J2(x)]2 £+4[J4(X)]2 r o
0 2 2

fsin 2(xsin 0y = 4[3, ()] Zrala, ()] T+
0 2 2

Adding,}dezzr:ﬂ[JOZ(x)+2J12(x)+2J22(x)+Jsz(x)+ ------ ]
0

Hence, 52 +202+232+32 4+ -1

Orthogonality of Bessel Functions




If « and S are the two distinct roots of J,(x) = 0, then

- j 0, if a=p

J e, (s li[ma =20 i a=p
2 2

Proof:

We know that the solution of the equation
XU+ xu' + (A -rHu =0 - (1)
XAV +xv + (B - =0 e (2)

are u = Jp(ax) and v = Jn(PX) respectively.
Multiplying (1) by v/x and (2) by u/x and subtracting, we get

x(U"v-uvh+ (U v—uw)+ (F -dP)xuv =0

or :—X{x(u/v—uv/)}:(ﬁz—az)xuv
Now integrating both sides from 0 to 1, we get
(,82 —az)jxuvdx = [x(u/v—uv/)]i :(u/v—uv/)x:1 ------- (3)

0

SinCE‘U:Jn((ZX),u/=dd—[Jn(ax)]= d )[Jn(ax)].d(ax):aan’(ax)
X

(ax dx

Similarly v = Jy() gives v/ = <3, (sx)]= g3 (px) . Substituting these values in (3), we get
dx

; 31Ca)3, (B)-BI, (@)L (B)
(33 (ax)d, (px)de = =022 PR A I oA (4)
0 -

If o and B are the two distinct roots of J,(x) = 0, then Jy(a) = 0 and J,(B) = 0, and hence (4)

reduces to IjrxJn(ax)Jn(,Bx)dx =0.

0

This is known as Orthogonality relation of Bessel functions.

When 8 = a, the RHS of (4) takes 0/0 form. Its value can be found by considering o as
a root of J,(x) = 0 and B as a variable approaching to a.. Then (4) gives

1 3 (a)d
Lt [xd,(ax)d, (fx)x = Lt M
ﬁaao poa ﬂZ,aZ

Applying L Hospital rule, we get

1 J/ J/
Lt [x),(ax)d, (fx)dx = Lt M:i{Jn’(a)}z -------- (5)
Boag Boa 2 2

We have the recurrence relation 3/ (xy="1 (x)-3,.,(x).
X

n
I(a)y=—3 (a)-3,,,(a)Snce I (a)=0,we have J/(a)=-3,.,(a)
(04

1
Thus, (5) becomes wt jx3, (ax)J, (Bx)dx =

Boag

N |

0! = f{Jm(a )2




