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Solution of algebraic and Transcendental equations and Interpolation 

Solutions of Algebraic and Transcendental equations: 

1) Polynomial function: A function  f x  is said to be a polynomial function  

               if   f x   is a polynomial in x. 

              ie,   𝑓 𝑥 = 𝑎0𝑥
𝑛 + 𝑎1𝑥

𝑛−1 + ⋯……… . . +𝑎𝑛−1𝑥 + 𝑎𝑛  

  where
0

0a  , the co-efficients 
0 1

, . . . . . . . . . . .
n

a a a  are real constants and n is a 

    non-negative integer. 

2) Algebraic function: A function which is a sum (or) difference (or) product of                         

 two polynomials is called an algebraic function. Otherwise, the function is called a  

 transcendental (or) non-algebraic function. 

Eg:      𝑓 𝑥 = 𝑐1𝑒
𝑥 + 𝑐2𝑒

−𝑥 = 0 

𝑓 𝑥 = 𝑒5𝑥 −
𝑥3

2
+ 3 = 0 

3)  Root of an equation: A number   is called a root of an equation   0f x   if  

  0f   . We also say that   is a zero of the function. 

 Note: The roots of an equation are the abscissae of the points where the graph  

  y f x  cuts the x-axis. 

Methods to find the roots of f (x) = 0 

 Direct method: 

We know the solution of the polynomial equations such as linear  equation 

𝑎𝑥 + 𝑏 =0, and quadratic equation 2
0a x b x c   ,using direct methods or 

analytical methods. Analytical methods for the solution of cubic and quadratic 

equations are also available. 

1) Bisection method: Bisection method is a simple iteration method to solve 

an equation. This method is also known as Bolzono method of successive  

bisection. Some times it is referred to as half-interval method. Suppose we 

know an equation of the form   0f x   has exactly one real root between 

two real numbers 
0 1

,x x .The number is choosen such that  0
f x  and  1

f x

will have opposite sign. Let us bisect the interval  0 1
,x x  into two half 

intervals and find the mid point 0 1

2

2

x x
x


 . If  2

0f x   then 
2

x  is a root. 

If  1
f x  and  2

f x  have same sign then the root lies between 
0

x  and x2. 

The 

interval is taken as 𝑥0, 𝑥2 . Otherwise the root lies in the interval  2 1
,x x . 

 

 

 



 

 

PROBLEMS 

1). Find a root  of the equation 3
5 1 0x x    using the bisection method  in 5 – stages 

Sol     Let  𝑓 𝑥 = 𝑥3 − 5𝑥 + 1. We note that 
𝑓 0 > 0

𝑓 1 < 0
           𝑎𝑛𝑑 

 

    One root lies between 0 and 1 

  Consider 
0 1

0 1x a n d x   

By Bisection method the next approximation is  

  
 

     

0 1

2

2

1
0 1 0 .5

2 2

0 : 5 1 .3 7 5 0 0 0

x x
x

f x f a n d f


   

     

 

       We have the root lies between 0 and 0.5 

        Now  
3

0 0 .5
0 .2 5

2
x


   

        We find    3
0 .234375 0 0 0f x and f     

         Since  0 0f  , we conclude that root lies between 
0 3

x a n d x  

        The third approximation of the root  is  

 𝑥4 =
𝑥0+𝑥3

2
=

1

2
 0 + 0.25 = 0.125 

        We have  4
0 .37495 0f x    

        Since    4 3
0 0f x and f x  , the root lies between  

  
4 3

0 .1 2 5 0 .2 5x a n d x   

        Considering the 4
th
 approximation of the roots  

   
3 4

5

1
0 .1 2 5 0 .2 5 0 .1 8 7 5

2 2

x x
x


     

 5
0 .06910 0f x   , since    5 3

0 0f x and f x   the root must lie between 

𝑥5 = 0.18758 𝑎𝑛𝑑 𝑥3 = 0.25 

Here the fifth approximation of the root is   

  

 

 

6 5 3

1

2

1
0 .1 8 7 5 0 .2 5

2

0 .2 1 8 7 5

x x x 

 



 

          We are asked to do up to 5 stages 

           We stop here 0.21875 is taken as an approximate value of the root and it             

   lies between 0 and 1 

 



 

2) Find a root of the equation 3
4 9 0x x    using bisection method in four stages 

Sol        Let  
3

4 9f x x x    

        We note that  2 0f   and  3 0f   

    One root lies between 2 and 3  

         Consider 
0 1

2 3x a n d x   

  By Bisection method 0 1

2
2 .5

2

x x
x


   

  Calculating    2
2 .5 3 .375 0f x f     

  

   The root lies between 𝑥2 𝑎𝑛𝑑 𝑥1 

  The second approximation is 𝑥3 =
1

2
 𝑥1 + 𝑥2 =

2.5+3

2
= 2.75 

Now 𝑓 𝑥3 = 𝑓 2.75 = 0.7969 > 0 

    The root lies between 
2 3

x a n d x  

  Thus the third approximation to the root is  

    4 2 3

1
2 .6 2 5

2
x x x    

  Again    4
2 .625 1 .421 0f x f     

    The root lies between 
3 4

x a n d x  

  Fourth approximation is𝑥5 =
1

2
 𝑥3 + 𝑥4 =

1

2
 2.75 + 2.625 = 2.6875 

False Position Method ( Regula – Falsi Method) 

In the false position method we will find the root of the equation   0f x   Consider two 

initial approximate values 
0 1

x a n d x  near the required root so that    0 1
f x and f x  have 

different signs. This implies that a root lies between
0 1

x a n d x . The curve  f x  crosses x- 

axis only once at the 

 Point 
2

x  lying between the points 𝑥0 𝑎𝑛𝑑𝑥1. Consider the point   0 0
,A x f x  and 

  1 1
,B x f x   

on the graph and suppose they are connected by a straight line. Suppose this line cuts x-axis 

at𝑥2. We calculate the value of  2
f x  at the point. If    0 2

f x and f x  are of opposite 

signs, then the root lies between 
0 2

x a n d x  and value 
1

x  is replaced by 
2

x  

Otherwise the root lies between 
2

x  and 
1

x  and the value of 
0

x  is replaced by𝑥2. 

 Another line is drawn by connecting the newly obtained pair of values. 

Again the point here cuts the x-axis is a closer approximation to the root. This process is 

repeated as many times as required to obtain the desired accuracy. It can be observed that the 

points
2 3 4

, ,x x x ,…obtained converge to the expected root of the equation  y f x
 

 

 

 



 

 

 

 

To Obtain the equation to find the next approximation to the root 

  Let      0 0 1 1
, ,A x f x and B x f x   be the points on the curve  y f x  Then 

the equation to the chord AB is 
𝑦−𝑓 𝑥0 

𝑥−𝑥0
=

𝑓 𝑥1 −𝑓 𝑥0 

𝑥1−𝑥0
− − − − − − 1 

 
At the point C where the line AB crosses the x – axis, where 𝑓 𝑥 = 0 𝑖𝑒, 𝑦 = 0 

 From (1), we get 
   

   
1 0

0 0

1 0

2
x x

x x f x
f x f x


  


 

x is given by (2) serves as an approximated value of the root, when the interval in which it lies is 

small. If the new value of x is taken as 
2

x  then (2) becomes 

 

  

 

   
 

   

   
 

1 0

2 0 0

1 0

0 1 1 0

1 0

3

x x
x x f x

f x f x

x f x x f x

f x f x


 




 



 

     Now we decide whether the root lies between  

 0 2 2 1
x and x or x and x

 

--------------(2) 

-------------(3) 



 

We name that interval as  1 2
,x x  The line joining 𝑥1, 𝑦1 ,  𝑥2, 𝑦2   meets x – axis at 

3
x  is 

given by 
   

   

1 2 2 1

3

2 1

x f x x f x
x

f x f x





 

 This will in general, be nearest to the exact root. We continue this procedure till the root 

is found to the desired accuracy 

 The iteration process based on (3) is known as the method of false position  

 The successive intervals where the root lies, in the above procedure are named as  

      0 1 1 2 2 3
, , , , ,x x x x x x  etc 

Where 𝑥𝑖 < 𝑥𝑖+1  and𝑓 𝑥0 , 𝑓 𝑥𝑖+1   are of opposite signs. 

Also 
   

   

1 1

1

1

i i i i

i

i i

x f x x f x
x

f x f x

 









 

 

PROBLEMS: 

1. By using Regula - Falsi method, find an approximate root of the equation 4
1 0 0x x    

that lies between 1.8 and 2. Carry out three approximations 

Sol.Let us take  
4

10f x x x    and 
0 1

1 .8 , 2x x   

 Then    0
1 .8 1 .3 0f x f     and    1

2 4 0f x f    

 Since  0
f x  and  1

f x are of opposite signs,the equation   0f x   has a root between 

0 1
x a n d x  

 The first order approximation of this root is  

   

   
 

 

1 0

2 0 0

1 0

2 1 .8
1 .8 1 .3

4 1 .3

1 .8 4 9

x x
x x f x

f x f x


 




   





 

 We find that  2
0 .161f x    so that    2 1

f x and f x  are of opposite signs. Hence the 

root lies between 
2 1

x a n d x  and the second order approximation of the root is  

   

   
 

 

1 2

3 2 2

1 2

.

2 1 .8 4 9
1 .8 4 9 0 0 .1 5 9

0 .1 5 9

1 .8 5 4 8

x x
x x f x

f x f x

 
   


 

 
   

 
 



 

 We find that    3
1 .8548f x f  

   0 .0 1 9   

 



 

 So that    3 2
f x and f x  are of the same sign. Hence, the root does not  lie between 

2 3
x a n d x .But    3 1

f x and f x  are of opposite signs. So the root lies between 
3 1

x a n d x  

and the third order approximate value of the root is  𝑥4 = 𝑥3 −  
𝑥1−𝑥3

𝑓 𝑥1 −𝑓 𝑥3 
 𝑓 𝑥3  

= 1.8548 −
2 − 1.8548

4 + 0.019
×  −0.019  

= 1.8557  

 
 This gives the approximate value of x. 

 

2. Find out the roots of the equation 3
4 0x x    using False position method 

Sol. Let  
3

4 0f x x x     

 Then      0 4, 1 4, 2 2f f f      

 Since    1 2f and f  have opposite signs the root lies between 1 and 2 

 By False position method 
   

   

0 1 1 0

2

1 0

x f x x f x
x

f x f x





 

     

   

 
2

1 2 2 4

2 4

2 8 1 0
1 .6 6 6

6 6

x
  


 


  

 

  
   

3

1 .6 6 6 1 .6 6 6 1 .6 6 6 4

1 .0 4 2

f   

 

 

 Now, the root lies between 1.666 and 2 

  

 

 

   

3

3

1 .6 6 6 2 2 1 .0 4 2
1 .7 8 0

2 1 .0 4 2

1 .7 8 0 1 .7 8 0 1 .7 8 0 4

0 .1 4 0 2

x

f

   
 

 

  

 

 

 Now, the root lies between 1.780 and  2 

  

 

 

   

4

3

1 .7 8 0 2 2 0 .1 4 0 2
1 .7 9 4

2 0 .1 4 0 2

1 .7 9 4 1 .7 9 4 1 .7 9 4 4

0 .0 2 0 1

x

f

   
 

 

  

 

 

 Now, the root lies between 1.794 and 2 

  

 

 

   

5

3

1 .7 9 4 2 2 0 .0 2 0 1
1 .7 9 6

2 0 .0 2 0 1

1 .7 9 6 1 .7 9 6 1 .7 9 6 4 0 .0 0 2 7

x

f

   
 

 

    
 



 Now, the root lies between 1.796 and 2 

  
 

 
6

1 .7 9 6 2 2 0 .0 0 2 7
1 .7 9 6

2 0 .0 0 2 7
x

   
 

 
   

The root is 1.796 

 

Newton- Raphson Method:- 

The Newton- Raphson method is a powerful and elegant method to find the root of an 

equation. This method is generally used to improve the results obtained by the previous 

methods. 

Let 
0

x  be an approximate  root of   0f x   and let 
1 0

x x h   be the correct root which 

implies that   1
0f x  . We use Taylor‟s theorem and expand    1 0

0f x f x h    

   

 

 

1

0 0

0

1

0

0f x h f x

f x
h

f x

  

  
 

Substituting this in 
1

x  ,we get 

 

 

1 0

0

0 1

0

x x h

f x
x

f x

 

 
 

1
x  is a better approximation than 

0
x  

Successive approximations are given by 

𝑥2, 𝑥3 ……… . . 𝑥𝑛+1 Where  𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖 

𝑓1(𝑥𝑖)
 

 

 
 

 

 

 

 

 

 

 

 



 

 

Problems: 

 

1. Apply Newton – Rapson method to find an approximate root, correct to three decimal 

places, of the equation 3
3 5 0 ,x x    which lies near 2x   

Sol:- Here      
3 1 2

3 5 0 3 1f x x x a n d f x x     
 

   The Newton – Raphson iterative formula   

             
   

 

3 3

1 2 2

3 5 2 5
, 0 ,1, 2 .... 1

3 1 3 1

i i i

i i

i i

x x x
x x i

x x


  
   

 

 

 To find the root near 2x  , we take 
0

2x   then (1) gives 

 
   

 

 

 

3

0

1 2

0

3
3

1

2 22

1

2 5 1 6 5 2 1
2 .3 3 3 3

3 4 1 93 1

2 2 .3 3 3 3 52 5
2 .2 8 0 6

3 1 3 2 .3 3 3 3 1

x
x

x

x
x

x

 
   



 
  

  
 

 

  

𝑥3 =
2𝑥2

3 + 5

3 𝑥2
3 − 1 

=
2 ×  2.2806 3 + 5

3  2.2806 2 − 1 
= 2.2790 

𝑥4 =
2 ×  2.2790 3 + 5

3  2.2790 2 − 1 
= 2.2790 

Since 
3

x  and  
4

x  are identical up to 3 places of decimal, we take 
4

2 .2 7 9x   as the 

required root, correct to three places of the decimal 

2. Using Newton – Raphson method 

 a) Find square root of a number 

 b) Find reciprocal of a number 

Sol. a) Square root:- 

  Let  
2

0f x x N   , where N is the number whose square root is to be found. 

The solution to  f x  is then x N  

  Here  ' 2f x x  

  By Newton-Raphson technique 

  
 

 

2

1 1
2

i i

i i i

i i

f x x N
x x x

f x x



     

  
1

1

2
i i

i

N
x x

x


 
   

 

 

 Using the above iteration formula the square root of any number N can be found to any 

desired accuracy. For example, we will find the square root of 24N  .  

 Let the initial approximation be 
0

4 .8x   

𝑥1 =
1

2
 4.8 +

24

4.8
 =

1

2
 

23.04 + 24

4.8
 =

47.04

9.6
= 4.9 



  

2

3

1 2 4 1 2 4 .0 1 2 4 4 8 .0 1
4 .9 4 .8 9 8

2 4 .9 2 4 .9 9 .8

1 2 4 1 2 3 .9 9 0 4 2 4 4 7 .9 9 0 4
4 .8 9 8 4 .8 9 8

2 4 .8 9 8 2 4 .8 9 8 9 .7 9 6

x

x

   
       

   

   
       

   

 

  Since 
2 3

x x , therefore the solution to  
2

24 0f x x    is 4 .8 9 8 . That means,  

 The square root of 24 is 4 .8 9 8  

 

b) Reciprocal:- 

 Let  
1

0f x N
x

    where N is the number whose reciprocal is to be found 

The solution to  f x is then 𝑥 =
1

𝑁
 . Also,  

1

2

1
f x

x


  

 To find the solution for   0f x  , apply Newton – Raphson method 

𝑥𝑖+1 = 𝑥𝑖 −
 

1
𝑥𝑖

− 𝑁 

−1 𝑥𝑖
2 

= 𝑥𝑖 2 − 𝑥𝑖𝑁  

For example, the calculation of reciprocal of 22 is as follows 

Assume the initial approximation be 
0

0 .0 4 5x   

 

 

 

 

 

 

 

 

1

2

3

0 .0 4 5 2 0 .0 4 5 2 2

0 .0 4 5 2 0 .9 9

0 .0 4 5 4 1 .0 1 0 .0 4 5 4

0 .0 4 5 4 2 0 .0 4 5 4 2 2

0 .0 4 5 4 2 0 .9 9 8 8

0 .0 4 5 4 1 .0 0 1 2 0 .0 4 5 4 5

0 .0 4 5 4 5 2 0 .0 4 5 4 5 2 2

0 .0 4 5 4 5 1 .0 0 0 1 0 .0 4 5 4 5

x

x

x

   

 

 

  

 

 

  

 

 

𝑥4 = 0.04545 2 − 0.04545 × 22  

= 0.04545 2 − 0.99998  

= 0.04545 1.00002  

 = 0.0454509 

  The reciprocal of 22 is 0.04545 

3. Find by Newton’s method, the real root of the equation 𝒙𝒆𝒙 − 𝟐 = 𝟎 correct to 

three decimal places. 

Sol. Let    2 1
x

f x xe    

 Then  0 2f    and  1 2 0 .7183f e    

 So root of  f x  lies between 0 and 1 

 It is near to 1. So we take 
0

1x   and    
1 1

1 5 .4366
x x

f x xe e and f e e      



   By Newton‟s Rule 

 First approximation 
 

 

0

1 0 1

0

f x
x x

f x
   

   
0 .7 1 8 3

1 0 .8 6 7 9
5 .4 3 6 6

    

    
1

1 1
0 .0672 4 .4491f x f x  

 

 

 The second approximation 
 

 

1

2 1 1

1

f x
x x

f x
   

    

0 .0 6 7 2
0 .8 6 7 9

4 .4 4 9 1

0 .8 5 2 8

 



 

   Required root is 0.853 correct to 3 decimal places. 

 

Interpolation 

Introduction:- 

  If we consider the statement   0 n
y f x x x x    we understand that we can find 

the value of y, corresponding to every value  of x in the range 
0 n

x x x  . If the function  f x  

is single valued and continuous and is known explicitly then the values of  f x  for certain 

values of x like 
0 1

, , . . . . . . . . .
n

x x x  can be calculated. The problem now is if we are given the set of 

tabular values 

   
0 1 2

0 1 2

: ... . . . . .

: .. . . . . . .

n

n

x x x x x

y y y y y
 

  Satisfying the relation  y f x  and the explicit definition of  f x  is not 

known, then it is possible to find a simple function say  f x  such that  f x  and  x  agree at 

the set of tabulated points. This process to finding  x  is called interpolation. If  x  is a 

polynomial then the process is called polynomial interpolation and  x  is called interpolating 

polynomial. In our study we are concerned with polynomial interpolation 

Errors in Polynomial Interpolation:-  

 Suppose the function  y x  which is defined at the points  , 0 ,1, 2 , 3
i i

x y i n      is 

continuous and differentiable  1n   times let  n
x  be polynomial of degree not exceeding n 



such that    , 1, 2 1
n i i

x y i n        be the approximation of  y x  using this  n i
x  for 

other value of x, not defined by (1) the error is to be determined   

  Since     0 1
0 , , ......

n n
y x x for x x x x    we put  

     1n n
y x x L x 


   

Where        1 0
......... 3

n n
x x x x x


     and L to be determined such that the equation (2) 

holds for any intermediate value of x such as 1 1

0
,

n
x x x x x    

 Clearly 
   

 
 

1 1

1

1

4
n

n

y x x
L

x







 

 

We construct a function  F x  such that      
1

n
F x F x F x  . Then  F x  vanishes  2n   

times in the interval  0
,

n
x x . Then by repeated application of Rolle‟s  theorem.  

1
F x Must be 

zero  1n   times,  
1 1

F x  must be zero n times…….. in the interval  0
,

n
x x . Also  

1
0

n
F x


  

once in this interval. Suppose this point is x  , 
0 n

x x   differentiate (5)  1n   times with 

respect to x and putting x  , we get 

     
1

1 ! 0
n

y L n


    Which implies that 
 

 

1

1 !

n
y

L
n







 

Comparing (4) and (6) , we get 

     
 

 
 

1

1 1 1

1

1 !

n

n n

y
y x x x

n


 




 


 

Which can be written  as    
 

 
 

1 1

1 !

n n

n

x
y x x y

n


 

 
 


 

This given the required expression 
0 n

x x   for error 

 

Finite Differences:- 

1. Introduction:- 

  In this chapter, we introduce what are called the forward, backward and central 

differences of a function  y f x . These differences and three standard examples of finite 

differences and play a fundamental role in the study of differential calculus, which is an 

essential part of numerical applied mathematics 

2. Forward Differences:- 

  Consider a function  y f x of an independent variable x. let 
0 1 2

, , , . . . .
r

y y y y  be 

the values of y corresponding to the values 
0 1 2

, , . . . .
r

x x x x  of x respectively. Then the differences 



1 0 2 1
,y y y y        are called the first forward differences of y, and we denote them by 

0 1
, , . . . . . . .y y   that is  

  
0 1 0 1 2 1 2 3 2

, , . . . . . . . . .y y y y y y y y y          

  In general 
1

0 ,1, 2
r r r

y y y r


           

  Here, the symbol   is called the forward difference operator  

The first forward differences of the first forward differences are called second forward 

differences and are denoted by 2 2

0 1
, . . . . . .y y   that is  

  

2

0 1 0

2

1 2 1

y y y

y y y

    

      

In general 2

1
0 ,1, 2 ... . . . .

r r r
y y y r


       similarly, the n

th
 forward differences are defined by 

the formula. 

  1 1

1
0 ,1, 2 ... . . . .

n n n

r r r
y y y r

 


       

While using this formula for 1n  , use the notation 0

r r
y y   and we have 

0 1, 2 .. . . . . 0 , 2 , . . . . . . . . .
n

r
y n a n d r      the symbol n

  is referred as the n
th

 forward difference 

operator. 

3. Forward Difference Table:- 

  The forward differences are usually arranged in tabular columns as shown in the 

following table called a forward difference table 

 

Values 

of x 

Values 

of y 

First 

differences 

Second 

differences 

Third 

differences 

Fourth 

differences 

o
x  

0
y      

  
0 1 0

y y y       

1
x  

1
y   2

0 1 0
y y y   

 

  

  
1 2 1

y y y     3 2 2

0 1 0
y y y    

 

 

2
x  

2
y   2

1 2 1
y y y    

 

 4 3 3

0 1 0
y y y    

 

  
2 3 2

y y y     3 2 2

1 2 1
y y y    

 

 

3
x  

3
y   2

2 3 2
y y y    

 

  

 
4

y  
34

yy      

 



Example finite forward difference table for 3
y x  

 

 

 

 

x  y f x  y  2
y  3

y  4
y  

1 1     

  7    

2 8  12   

  19  6  

3 27  18  0 

  37  6  

4 64  24  0 

  61  6  

5 125  30   

  91    

6 216     

 

4. Backward Differences:- 

As mentioned earlier, let 
0 1

, . . . . . . . . . . . .
r

y y y  be the values of a function  y f x  corresponding to 

the values 
0 1 2

, , . . . . . . . . . . . . . . . . . . .
r

x x x x  of x respectively. Then, 

1 1 0 2 2 1 3 3 2
, , , . . . .y y y y y y y y y          are called the first backward differences 

 In general  1
, 1, 2 , 3 ......... 1

r r r
y y y r


      

 The symbol  is called the backward difference operator, like the operator  , this 

operator is also a linear operator 

 Comparing expression (1) above with the expression (1) of section we immediately note 

that  1
, 0 ,1, 2 ....... 2

r r
y y r


      

 The first backward differences of the first background differences are called second 

differences and are denoted by 2 2 2

2 3
,

r
y y          i.e.,.. 

  2 2

2 2 1 3 3 2
,y y y y y y          ………. 

 In general  
2

1
, 2 , 3 ..... 3

r r r
y y y r


        similarly, the n

th 
backward differences 

are defined by the formula  
1 1

1
, , 1 ..... 4

n n n

r r r
y y y r n n

 


        While using this 

formula, for n = 1 we employ the notation 0

r r
y y    



  If  y f x  is a constant function, then y = c is a constant, for all x, and we get 

0
n

r
y n    the symbol n

  is referred to as the n
th 

backward difference operator 

 

 

 

5. Backward Difference Table:- 
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6. Central Differences:-  

 With  as the values of a function  corresponding to the values

, we define the first central differences  

   as follows  

   

   

The symbol  is called the central differences operator. This operator is a linear  

operator 

Comparing expressions (1) above with expressions earlier used on forward and 

backward differences we get 

 

  In general  

 The first central differences of the first central differences are called the second central 

differences and are denoted by  

  Thus  

   

 Higher order central differences are similarly defined. In general the n
th
 central 

differences are given by  

i) for odd  
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ii) for even  

while employing for formula (4) for , we use the notation  

If y is a constant function, that is if  a constant, then 

 

 

7. Central Difference Table 

 

Example: Given  from the central 

difference table and write down the values of  by taking  

Sol. The central difference table is  

 

 

 

   

-2 12     

  4    

-1 16  -5   

  -1  9  

0 15  4  -14 

  3  -5  

1 18  -1   
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2 20     

 

Symbolic Relations and Separation of symbols: 

 We will define more operators and symbols in addition to ,  and  already defined 

and establish difference formulae by symbolic methods 
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Definition:- The averaging operator  is defined by the equation  

Definition:-   The shift operator E is defined by the equation . This shows that the 

effect of E is to shift the functional value to the next higher value . A second operation 

with E gives  

Generalizing  

 

Relationship Between  

  We have   

 

 

 

Some more relations 

   

 

Definition 

  Inverse operator   is defined as  

 In general  

  We can easily establish the following relations 

 i)  

 ii)  

 iii)  

 iv)  

 v)  

Definition  The operator D is defined as  

Relation Between The Operators D And E 

Using Taylor‟s series we have,  

This can be written in symbolic form 
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 We obtain in the relation  

 If  is a polynomial of degree n and the values of x are equally spaced then  is 

constant 

Proof: 

 Let  where  are constants and

. If h is the step- length, we know the formula for the first forward difference 

 

  

  

Where  are constants. Here this polynomial is of degree , thus, the 

first difference of a polynomial of n
th
 degree is a polynomial of degree  

  Now  

   

Where  are constants. This polynomial is of degree  

Thus, the second difference of a polynomial of degree n is a polynomial of degree  

continuing like this we get  

 which is constant 

Note:- 

1. As  is a constant, it follows that  

2. The converse of above result is also true that is, if  is tabulated at equal 

spaced intervals and is a constant, then the function  is a polynomial of degree n 

Example:- 
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1. Form the forward difference table and write down the values of , 

  

 

 x 10 15 20 25 30 35 

y 19.97 21.51 22.47 23.52 24.65 25.89 

 

 

 

 

x Y 
 

    

10 19.97      

  1.54     

15 21.51  - 0.58    

  0.96  0.67   

20 22.47  0.09  - 0.68  

  1.05  - 0.01  0.72 

25 23.52  0.08  0.04  

  1.13  0.03   

30 24.65  0.11    

  1.24     

35 25.89      

 We note that the values of x are equally spaced with step- length h = 5 

 

Note: -  and 

 

----------------------- 

----------------------- 

 

 

From table  

  

2. Evaluate  
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Sol. Let h be the interval of differencing  

   

   

     

   

Proceeding on, we get  

3. Using the method of separation of symbols show that 

 

Sol. To prove this result, we start with the right hand side. Thus 

   

   which is left hand side 
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4. Find the missing term in the following data 

x 0 1 2 3 4 

y 1 3 9 - 81 

 

 Why this value is not equal to . Explain 

Sol. Consider  

  

 Substitute given values we get 

  

 From the given data we can conclude that the given function is . To find , we 

have to assume that y is a polynomial  function, which is not so. Thus we are not getting 

 

 Newton’s Forward Interpolation Formula:- 

  Let  be a polynomial of degree n and taken in the following form 

 

  This polynomial passes through all the points  for i = 0 to n. there fore, we 

can obtain the  by substituting the corresponding  as  

   

 Let „h‟ be the length of interval such that  represent  

   

 This implies  

 From (1) and (2), we get 

  

 Solving the above equations for , we get  
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 Similarly, we can see that 

 

 

  

 If we use the relationship  

 Then  

   

 Equation (3) becomes 

  

 Newton’s Backward Interpolation Formula:- 

  If  we  consider 

 

  and impose the condition that y and  should agree at the tabulated points 
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We obtain   

   

 Where  

 This uses tabular values of the left of . Thus this formula is useful formula is useful  

for interpolation near the end of the table values 

 

Formula for Error in Polynomial Interpolation:-  

  If  is the exact curve and  is the interpolating curve, then the 

error 

 in polynomial interpolation is given by 

   

 for any x, where  

 The error in Newton‟s forward interpolation formula is given by  

   

  Where  

 The error in Newton‟s backward interpolation formula is given by  

  Where  

Examples:- 

1. Find the melting point of the alloy containing 54% of lead, using appropriate 

  interpolation formula  

Percentage of 

lead(p) 
50 60 70 80 

Temperature  205 225 248 274 
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Sol. The difference table is  

x Y 
 

  

50 205    

  20   

60 225  3  

  23  0 

70 248  3  

  26   

80 274    

 Let temperature =  

    

 By Newton‟s forward interpolation formula 

   

 Melting point = 212.64 

2. Using Newton‟s forward interpolation formula, and the given table of values 

X 1.1 1.3 1.5 1.7 1.9 

 

0.21 0.69 1.25 1.89 2.61 

 Obtain the value of  

Sol.  

x 
 

 

   

1.1 0.21     

  0.48    

1.3 0.69  0.08   

  0.56  0  

1.5 1.25  0.08  0 
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  0.64  0  

1.7 1.89  0.08   

  0.72    

1.9 2.61     

  

If we take , 

   

Using Newton’s interpolation formula 

   

3. The population of a town in the decimal census was given below. Estimate the population for  

the 1895 

 Year 

x 
1891 1901 1911 1921 1931 

Population 

of y 
46 66 81 93 101 

 

Sol. Putting  in the formula  we obtain  

   

X Y 
 

   

1891 46     
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1901 66  -5   
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Gauss’s Interpolation Formula:- We take  as one of the specified of x that lies around the 

middle of the difference table and denote  by  and the corresponding value of y by 

. Then the middle part of the forward difference table will appear as shown in the next page 
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By using the expressions (1) and (2), we now obtain two versions of the following Newton‟s  

forward interpolation formula 

 

Here  is the value of y at  

Gauss Forward Interpolation Formula:- 
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 Substituting for  from (1)in the formula (3), we get 

  

  

Substituting , this becomes 

 

Note:-  we observe from the difference table that  

  and so on. Accordingly the formula 

 (4) can be written in the notation of central differences as given below 

 

2. Gauss’s  Backward Interpolation formula:- 

  Let us substitute for ----- from (1) in the formula (3), thus we obtain 

  

 

 Substituting for  and  from (2) this becomes 

  

Lagrange’s Interpolation Formula:- 

 Let  be the  values of x which are not necessarily equally 

spaced. Let  be the corresponding values of  let the polynomial 
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2 2 3 3 4

0 1 1 1 1 1 1

4 5

1 1

1 1 2
[

2 ! 3 !

1 2 3
]

4 !

p

p p p p p
y y p y y y y y y

p p p p
y y

     

 

  
             

  
       

 
 

 
         

 
2 3 4

0 1 1 1 1

1 1 1 1 1 2
[ ]

2 ! 3 ! 4 !

p p p p p p p p
y p y p y y y

   

     
             

3

1
y



4

1
y




 
     

 

     
 

2 3 4

0 1 1 1 2

4 5

2 2

1 1 1
[

2 ! 3 !

1 1 2
]

4 !

p

p p p p p
y y p y y y y

p p p p
y y

   

 

  
        

  
        

0 1 2
, , , . . . .x x x

n
x  1n 

0 1 2
, , . . . . . . . .

n
y y y y  y f x

-----------------5 

-----------------4 



of degree n for the function  passing through the points                                   

  be in the following form 

 

Where  a
n
 are constants 

 Since the polynomial passes through , . The 

constants can be determined by substituting one of the values of  in the 

above equation 

Putting  in (1) we get,  

 

Putting  in (1) we get,  

 

Similarly substituting  in (1), we get 

 

Continuing in this manner and putting  in (1) we  

get  

 

Substituting the values of , we get  

 

 

Examples:-  

1. Using Lagrange‟s formula calculate  from the following table 

 x 0 1 2 4 5 6 

 

1 14 15 5 6 19 

Sol. Given  

  

 y f x  1n 

        0 0 1 1
, , , ,

n n
x f x x f x x f x   

             

             

0 1 2 1 0 2

2 0 1 0 1 1

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . 1

n n

n n n

y f x a x x x x x x a x x x x x x

a x x x x x x a x x x x x x


         

        

0 1 2
, , . . . .a a a

  0 0
,x f x      1 1

, ...... ,
n n

x f x x f x

0 1
, , . . . . .

n
x x x fo r x

0
x x        0 0 1 0 2 0 n

f x a x x x x x x   

 

     

0

0

1 0 2 0
....

n

f x
a

x x x x x x
 

  

1
x x        1 1 0 1 2 1 n

f x a x x x x x x       

 

     

1

1

1 0 1 2 1
....

n

f x
a

x x x x x x
 

  

2
x x

 

     

2

2

2 0 2 1 2
......

n

f x
a

x x x x x x
 

  

n
x x

 

     0 1 1

n

n

n n n n

f x
a

x x x x x x



      

0 1 2
, , . . . .

n
a a a a

 
     

     
 

     

     

1 2 0 2

0

0 1 0 2 0 1 0 1 2 1

....... .....

......... ....

n n

n n

x x x x x x x x x x x x
f x f x

x x x x x x x x x x x x

     
 

     

 
       

     
 

     

     
 

0 1 2 0 1 1

1 2

2 0 2 1 2 1 2 1

..... .....
.....

...... .....

n n

n

n n n n n

x x x x x x x x x x x x x x
f x f x f x

x x x x x x x x x x x x





      
  

     

 3f

 f x

0 1 2 3 5 4
0 , 1, 2 , 4 , 6 , 5x x x x x x     

           0 1 2 3 4 5
1, 14, 15, 5, 6, 19f x f x f x f x f x f x     



From langrange‟s interpolation formula 

  

 Here  then 

  

 

 

 

 

 

1) Find  using lagrange method of  and  order degree polynomials. 

 

  
 

 

Sol:      By lagrange‟s interpolation formula 

  

                      For ,we have  

 
         

         
 

         

         
 

         

         
 

   

1 2 3 4 5

0

0 1 0 2 0 3 0 4 0 5

0 2 3 4 5

1

1 0 1 2 1 3 1 4 1 5

0 1 3 4 5

2

2 0 2 1 2 3 2 4 2 5

0 1

x x x x x x x x x x
f x f x

x x x x x x x x x x

x x x x x x x x x x
f x

x x x x x x x x x x

x x x x x x x x x x
f x

x x x x x x x x x x

x x x x x x

    


    

    


    

    


    

                   

                   

       

         
 

2 3 4

5

5 0 5 1 5 2 5 3 5 4

x x x x
f x

x x x x x x x x x x

 

    

3x 

 
         

         

         

         

         

         

3 1 3 2 3 4 3 5 3 6
3 1

0 1 0 2 0 4 0 5 0 6

3 0 3 2 3 4 3 5 3 6
1 4

1 0 1 2 1 4 1 5 1 6

3 0 3 1 3 4 3 5 3 6
1 5

2 0 2 1 2 4 2 5 2 6

f
    

  
    

    
 

    

    
 

    

         

         

         

         

3 0 3 1 3 2 3 5 3 6
5

4 0 4 1 4 2 4 5 4 6

3 0 3 1 3 2 3 4 3 6
6

5 0 5 1 5 2 5 4 5 6

    
 

    

    
 

    

         

         

3 0 3 1 3 2 3 4 3 5
1 9

6 0 6 1 6 2 6 4 6 5

    


    

1 2 1 8 3 6 3 6 1 8 1 2
1 4 1 5 5 6 1 9

2 4 0 6 0 4 8 4 8 6 0 4 0
          

0 .05 4 .2 11 .25 3 .75 1 .8 0 .95     

10

 3
10f x 

 3 .5f 2
n d

3
rd

x 1 2 3 4

  1 2 9 28f x

   
       

     

0 1 1

0 0 1

.......

....... .......

n

k k n

k

k k k k k n

x x x x x x x x
f x f x

x x x x x x

 

 

   


  


4n 



 

  

 

  

 

  - - - -  

=0.0625+(-0.625)+8.4375+8.75 

=16.625 

 

 

 

 

 

 

Example: 

Find y(25), given that y20 = 24,y24 = 32, y28  = 35 y32  = 40  using Guass forward difference      

Formula : 

Solution:  Given  

 X 20 24 28 32 

              Y 24 32 35 40 

 By Gauss Forward difference formula  

 

 
     

     
 

1 2 3

0

0 1 0 2 0 3

x x x x x x
f x f x

x x x x x x

  
 

  

     

     
 

     

     
 

     

     
 

0 2 3

1

1 0 1 2 1 3

0 1 3

2

2 0 2 1 2 3

0 1 2

3

3 0 3 1 3 2

x x x x x x
f x

x x x x x x

x x x x x x
f x

x x x x x x

x x x x x x
f x

x x x x x x

  


  

  


  

  


  

 
     

     
 

3 .5 2 3 .5 3 3 .5 4
3 .5 1

1 2 1 3 1 4
f

  
  

  

     

     
 

3 .5 1 3 .5 3 3 .5 4
2

2 1 2 3 2 4

  


  

     

     
 

     

     
 

3 .5 1 3 .5 2 3 .5 4
9

3 1 3 2 3 4

3 .5 1 3 .5 2 3 .5 3
2 8

4 1 4 2 4 3

  


  

  


  

 
     

 
     

 

     

 
 

     
 

2 3 4 1 3 4
1 2

6 2

1 2 4 1 2 3
9 2 8

2 6

x x x x x x
f x

x x x x x x

     
 



     
 



   
   

 
   

 
   

2 2 2

2
5 6 4 3 2 3 2

4 3 4 4 9 3 2 8
6 2 6

x x x x x x x
x x x x x

      
        

 

   

3 2 3 2 3 2

3 29 2 6 2 4 7 1 4 8 6 1 1 6
8 9 1 2 9 2 8

6 2 6

x x x x x x x x x
x x x

        
      

 

3 2 3 2 3 2 3 2
9 2 6 2 4 6 4 8 1 1 4 7 2 2 7 1 8 9 3 7 8 2 1 6 3 0 8 2 8 1 6 8 1 6 8

6

x x x x x x x x x x x x                
 



 

3 2

3 26 1 8 1 8
3 3

6

x x x
f x x x x

 
    

       
3 2

3 .5 3 .5 3 3 .5 3 3 .5 1 6 .6 2 5f    



 

 We take x= 24  as origin. 

X0 = 24, h = 4, x = 25 p = x-x0/ h, p = 25-24/4 = 2.5 

Gauss Forward difference table is  

X y 
 

  

20
 

24
 

   

24
 

32
 

= 8   

28
 

35
 

 = 3 = -

5 

 

32 40
 

= 5 = 2 = 7 

 

By gauss Forward interpolation Formula  

We y(25) = 32 +.25(3) + (
.25)(.25−1)

2
(−5) + 

 .25+1  .25  .25−1 

6
 7  = 32 + .75  

+ .46875 - .2734 = 32.945 

Y(25) = 32.945. 

Example: 

 Use Gauss Backward interpolation formula to find f(32) given that f(25) = .2707, f(30) = 

.3027, f(35) = .3386 f(40) = .3794. 

Solution: let x0 = 35 and difference table is  

 

X y 
 

  

25
 

.2707
 

   

30
 

.3027
 

.032    

35
 

.3386 .0359
 

.0039  

40 .3794
 

.0408
 

.0049
 

.0010 

 

From the table y0 = 0.3386  

 = 0.0359 ,
 = 0.0049,  = 0.0010, xp = 32 p = xp- x0/h = 32-35/5 = -.6 

By Gauss Backward difference formula  

f(32) = .3386 + (-.6)(.0359) + (-.6)(-.6+1)(.0049)/2 + (-.6)(.36-1)(0.00010)/6 = .3165
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UNIT-II 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CURVE FITTING 

Curve fitting 

Suppose that a data is given in two variables x & y the problem of finding an analytical 

expression of the form  which fits the given data is called curve fitting 

 Let  be the observed set of values in an experiment and 

 be the given relation  are the error of approximations then we 

have  

  

  where  are called the expected values of y 

corresponding to  

  are called the observed values of y corresponding to  

the differences  between expected values of y and observed values of  y are called 

the errors, of all curves approximating a given set of points, the curve for which 

  is a minimum is called the best fitting curve (or) the least square 

curve 

 This is called the method of least squares (or) principles of least squares 

 

1. FITTING OF A STRAIGHT LINE:-  

Let the straight line be  

Let the straight line (1) passes through the data points 

 

So we have  

The error between the observed values and expected values of  is defined as 

 

The sum of squares of these error is 

 now for E to be minimum 

 

 y f x

     1 1 2 2
, , , ........ ,

n n
x y x y x y

 y f x
1 2

& , , , . . . . . .
x

x y L e t E E E

 

 

 

1 1 1

2 2 2

3 3 3

E y f x

E y f x

E y f x

 

 

 

 n n n
E y f x       1 2

, ...........
n

f x f x f x

1 2
, . . . . . . . .

n
x x x x x x  

1 2
, . . . . . .

n
y y y

1 2
, . . . . . . . .

n
x x x x x x  

1 2
, . . . . .

n
E E E

2 2 2

1 2
. . . .

n
E E E E  

 1y a bx  

       1 1 2 2
, , , ...... , . ., , , 1, 2 ....

n n i i
x y x y x y i e x y i n

 2yi a bxi  

y y i

   1
. 1, 2 ....... 3E i y a bxi i n    

 
2

2

1 1

n n

i i

E E i y i a b x i

 

      

0; 0
E E

a b

 
 

 



These equations will give normal equations 

 

 

 

The normal equations can also be written as  

 

Solving these equation for a, b substituting in (1) we get required line of best fit to 

the given data. 

 

NON LINEAR CURVE FITTING 

 

 

PARABOLA:- 

 

2. Let the equation of the parabola to be fit  

The parabola (1) passes through the data points 

 

We have  

 

The  error  Ei between the observed an expected value of  is defined as 

 

The sum of the squares of these error is  

 

For E to be minimum, we have 

 

The normal equations can also be written as  

 

Solving these equations for a, b, c and satisfying (1) we get required parabola of best fit  

3. POWER CURVE:- 

1 1

2

1 1 1

n n

i i

n n n

i i i

y i n a b x i

x iy i a x i b x i

 

  

 

 

 

  

2

y n a b x

x y a x b x

 

 

 

  

       1 1 2 2
, , , ............. , , . ., , ; 1, 2 ......

n n i i
x y x y x y i e x y i x

 
2

2
i i

yi a bx cx   

 
2

1y a bx cx   

i
y y

   
2

, 1, 2 , 3 ...... 3E i y i a b x i cx i i n     

   
2

2 2

1 1
4

n n

i i
E E i y i a b x i cx i 

 
     

0 , 0 , 0
E E E

a b c

  
  

  

2

2 3

2 2 3 4

y n a b x c x

xy a x b x c x u se in s tea d o f

x y a x b x c x

  

    

   

  

  

  





The power curve is given by  

Taking logarithms on both sides 

 

Equation (2) is a linear equation in  

 The normal equations are given by 

 

From these equations, the values A and b can be calculated then a = antilog (A) 

substitute a & b in (1) to get the required curve of best fit 

4. EXPONENTIAL CURVE :-  

      1.  

Taking logarithms on both sides 

 

Where  

Equation (2) is a linear equation in X and Y 

So the normal equation are given by  

 

Solving the equation for A & B, we can find 

 

Substituting the values of  a and b so obtained in (1) we get 

The curve of best fir to the given data. 

       2.  

       Taking log on both sides 

  

       The normal equation (2) are given by  

 

       Solving these equations for A and B we can find  

       Substituting a and b in (1) 

 1
b

y ax 

   

1 0 1 0 1 0

1 0 1 0 1 0

lo g lo g lo g

2

lo g , lo g lo g

y a X

y a X

b

o r y A b X

w h e r e y A a n d X

 

  

  

&X y



2

y n A b X

xy A X b X u se sym b o l

 

  

 

  

   1 2
bx x

y ae y ab 

 1
bx

y ae 

   

1 0 1 0 1 0
lo g lo g lo g

2

y a b x e

o r y A B X

 

  

1 0 1 0 1 0
lo g , lo g & lo gy y A a B b e  

2

Y n A B X

xy A X B X

   

    

1 0

lo g &
lo g

B
a a n ti A b

e
 

 1
x

y ab 

 1 0 1 0 1 0

1 0 1 0 1 0

lo g lo g lo g

lo g , lo g , lo g

y a x b o r Y A B x

Y y A a B b

   

  

2

y n A B X

xy A X B X

   

    

lo g , lo ga a n ti A b a n ti B 



 

1.  By the method of least squares, find the straight line that best fits the following data  

 

X 1 2 3 4 5 

Y 14 27 40 55 68 

 

      Ans.     The values of  are calculated as follows 

   

 

 

 

 

1 14 1 14 

2 27 4 54 

3 40 9 120 

4 55 16 220 

5 68 25 340 

 

        Replace  and use  

   

  The normal equations are 

   

  Solving we get  

  Substituting these values a & b we get 

   

 

2. Fit a second degree parabola to the following data 

 

x 0 1 2 3 4 

y 1 5 10 22 38 

  

   

Ans. Equation of parabola  

 Normal equations  

    

    

 

 

 

 

y a b x 

2
, ,x y x a n d x y   

x i y i 2
x i x iy i

, ,
i i

x i y i b y x y in s tea d o f 

2
1 5; 2 0 4 , 5 5 7 4 8x i y i x i a n d x iy i      

 

 
2

1

2

2 0 4 1 5 5

7 4 8 5 5 1 5

y n a b x

x y a x b x

a b

a b

 

  

  

  

 

 

0 , 1 3 .6a b 

0 1 3 .6 1 3 .6y x y x   

2
y a b x c x  

 
2

1y a bx cx   

2
y n a b x c x    

2 3
x y a x b x c x     

 
2 2 3 4

2x y a x b x c x      



 

 

 

 
  

 

 

  

0 1 0 0 0 0 0 

1 5 5 1 5 1 1 

2 10 20 4 40 8 16 

3 22 66 9 198 27 81 

4 38 152 16 608 64 256 

 

Normal equations 

 

 Solving  

  Substitute in (1)  

3. Fit a curve  to the following data 

x 1 2 3 4 5 6 

y 2.98 4.26 5.21 6.10 6.80 7.50 

 

Ans.    Let the equation of the curve be  

    Taking log on both sides 

  

 
 

 

 

 

 

 

 

1 0 2.98 0.4742 0 0 

2 0.3010 4.26 0.6294 0.1894 0.0906 

3 0.4771 5.21 0.7168 0.3420 0.2276 

4 0.6021 6.10 0.7853 0.4728 0.3625 

5 0.6990 6.80 0.8325 0.5819 0.4886 

   

 

x y xy 2
x

2
x y

3
x

4
x

2 2 3 4
1 0 , 7 6 , 2 4 3, 3 0 , 8 5 1, 1 0 0 , 3 5 4x y x y x x y x x            

7 6 5 1 0 3 0

2 4 3 1 0 3 0 1 0 0

8 5 1 3 0 1 0 0 3 5 4

a b c

a b c

a b c

  

  

  

1 .4 2 , 0 .2 6 , 2 .2 2 1a b c  

2
1 .4 2 0 .2 6 2 .2 2 1y x x   

b
y a x

 1
b

y ax 

 

 
2

lo g lo g lo g

2

lo g , lo g , lo g

3

y a b x

y A b X

y y A a X x

y n A b X

x y A x b x

 

  

 

  

  

 

  

x lo gX x y lo gy y xy 2
x

 

2

0 .5 1 4 3

x 2 .8 5 7 4 , y 4 .3 1 3 3, x y 2 .2 6 7 1, x 1 .7 7 4 9

4 .3 3 1 3 6 A 2 .8 5 7 4 b

2 .2 6 7 1 2 .8 5 7 4 A 1 .7 7 4 9 b

s o lv in g A 0 .4 7 3 9 b 0 .5 1 4 3

a a n ti lo g A 2 .9 7 8

y 2 .9 7 8 .x

       

 

 

 

 

 



 

 

4. Fit a curve  

x 2 3 4 5 6 

y 144 172.8 207.4 248.8 298.5 

Ans.   

   

 
 

 

 

 

2 144.0 4 2.1584 4.3168 

3 172.8 9 2.2375 6.7125 

4 207.4 16 2.3168 9.2672 

5 248.8 25 2.3959 11.9795 

6 298.5 36 2.4749 14.8494 

 
5. Fit a second degree parabola to the following data  by the method of least squares. 

x 0 1 2 3 4 

y 1 1.8 1.3 2.5 6.3 

  

Ans. Equation of parabola   

Normal equations  

   &  

 
  

 

 

  

0 1 0 0 0 0 0 

1 1.8 1.8 1 1.8 1 1 

2 1.3 2.6 4 5.2 8 16 

3 2.5 7.5 9 22.5 27 81 

4 6.3 25.2 16 100.8 64 256 

 
 𝑥i =  10,  𝑦i  = 12.9,  𝑥2

 = 30,  𝑥i
3
 = 100,  𝑥i

4
 = 354,  𝑥i

2
yi = 130.3 

 𝑥𝑖 𝑦𝑖 , = 37.1 

 

Normal equations

5a + 10b + 30c = 12.9 

10a + 30b +100c = 37.1

 

30a + 100b +354c = 130.3

 

 1
x

y ab 

 

 

 
2

lo g lo g lo g

2

lo g , lo g , lo g

3

  

  

  

  

  

y a x b I

y A x B

y y A a B b

y n A B x

x y A x B x



  

x y 2
x lo gY y xy

 
2

1y a bx cx   

2
y n a b x c x    

2 3
x y a x b x c x       

2 2 3 4
2x y a x b x c x      

x y xy 2
x

2
x y

3
x

4
x



 Solving a= 1.42 b = -1.07  c= .55 

 

  Substitute in (1)  y = 1.42- 1.07x+.55x
2
 

 
Numerical solutions of ordinary differential equations 

1. The important methods of solving ordinary differential equations of first order numerically 

are as follows 

1) Taylors series method 

2) Euler‟s method 

3) Modified Euler‟s method of successive approximations 

4) Runge- kutta method 

To describe various numerical methods for the solution of ordinary differential eqn‟s,we consider 

the general 1
st
 order differential eqn 

dy/dx=f(x,y)-------(1) 

with the initial condition y(x0)=y0 

The methods will yield the solution in one of the two forms:  

i) A series for y in terms of powers of x,from which the value of y can be obtained by direct 

substitution. 

ii ) A set of tabulated values of y corresponding to different values of x 

The methods of Taylor and picard belong to class(i) 

The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class (ii) 

TAYLOR’S SERIES METHOD 

To find the numerical solution of the differential equation  

 (1) 

With the initial condition (2) 

can be expanded about the point  in a Taylor‟s series in powers of   as 

(3) 

In equ3,  is known from I.C equ2. The remaining coefficients etc 

are obtained by successively differentiating equ1 and evaluating at . Substituting these values in 

equ3, at any point can be calculated from equ3. Provided  is small. 

When , then Taylor‟s series equ3 can be written as 

(4) 

1. Using Taylor’s expansion evaluate the integral of , at a)  

( , )
d y

f x y
d x



0 0
( )y x y

( )y x
0

x
0

( )x x

2

0 0 0

0 0 0 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ... . . . . . . . . . ( )

1 2 ! !

n

nx x x x x x
y x y x y x y x y x

n

  
     

0
( )y x

0 0 0
( ) , ( ) , . . . . . . . . . ( )

n
y x y x y x 

0
x

( )y x
0

h x x 

0
0x 

2

( ) (0 ) . (0 ) (0 ) ... . . . ( 0 ) ... . . . . .
2 ! !

n

nx x
y x y x y y y

n
      

2 3 , (0 ) 0
x

y y e y    0 .2x 



b) compare the numerical solution obtained with exact solution . 

Sol: Given equation can be written as  

 Differentiating repeatedly w.r.t to „x‟ and evaluating at  

 

  

 In general,  or  

The Taylor‟s series expansion of  about  is 

  

Substituting the values of  

  

  equ1 

Now put  in equ1 

  

Now put  in equ1 

  

  

Analytical Solution: 

 The exact solution of the equ  with  can be found as follows 

 Which is a linear in y. 

Here   

I.F =  

General solution is  

where   

The particular solution is  or  

Put in the above particular solution, 

 

2 3 , (0 ) 0
x

y e y y  

0x 

0

0

0

0

( ) 2 3 , (0 ) 2 (0 ) 3 2 (0 ) 3 (1) 3

( ) 2 3 , (0 ) 2 (0 ) 3 2 (3 ) 3 9

( ) 2 . ( ) 3 , (0 ) 2 (0 ) 3 2 (9 ) 3 2 1

( ) 2 . ( ) 3 , (0 ) 2 ( 2 1) 3 4 5

( ) 2 . 3 , (0 ) 2 ( 4 5 ) 3

x

x

x

iv x iv

v iv x v

y x y e y y e

y x y e y y e

y x y x e y y e

y x y x e y e

y x y e y

       

         

         

    

   
0

9 0 3 9 3e   

( 1 ) ( )
( ) 2 . ( ) 3

n n x
y x y x e


 

( 1 ) ( ) 0
(0 ) 2 . (0 ) 3

n n
y y e


 

( )y x
0

0x 

2 3 4 5

( ) (0 ) (0 ) (0 ) (0 ) (0 ) (0 ) ... .
2 ! 3 ! 4 ! 5 !

x x x x
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Similarly put  

   

put  

   

 

2. Using Taylor’s series method, solve the equation  for  given that 

when  

Sol: Given that  and  when  i.e.  

Here ,  

Differentiating repeatedly w.r.t „x‟ and evaluating at  

 

The Taylor‟s series for f(x) about  is  

  

Substituting the values of  

(Higher order terms are neglected) 

 

3. Solve  using Taylor’s series method and compute y(0.1),y(0.2) 

Sol: Given that  

Here ,  

Differentiating repeatedly w.r.t „x‟ and evaluating at x=0 

 

The Taylor‟s series for f(x) about x0 = 0 is 

y(x) = y(0) + y
1
(0) + y

11
(0) + y

111
(0) + ….. 

Substituting the value of y(0), y
1
(0), y

11
(0),….. 
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y(x) = 1 – x + x
2
 - x

3
 + x

4 
+….. 

y(x) = 1 – x + x
2
 - x

3
 + x

4 
+…..     (1) 

now put x = 0.1 in (1) 

y(0.1) = 1 – 0.1 + (0.1)
2
 +  (0.1)

3
 + (0.1)

4 
+ ….. 

   = 0.91380333 ~ 0.91381 

 

Similarly put x = 0.2 in (1) 

y(0.2) = 1 – 0.2 + (0.2)
2
 -  (0.2)

3
 + (0.2)

4 
+ ….. 

   = 0.8516. 

4.  Solve y
1
 = x

2
 – y, y(0) = 1, using Taylor’s series method and compute y(0.1), y(0.2), 

y(0.3) and y(0.4) (correct to 4 decimal places). 

Sol.  Given that y
I
 = x

2
 – y and y(0) = 1 

Here x0 = 0, y0 = 1 or y =1 when x=0 

Differentiating repeatedly w.r.t „x‟ and evaluating at x = 0. 

Y
I
(x) = x

2
 – y,  y

I
(0) = 0 – 1 = -1 

y
II
(x) = 2x – y

I
, y

II
(0) = 2(0) – y

I
(0) = 0 – (-1) = 1 

y
III

(x) = 2 – y
II
, y

III
(0) = 2 – y

II
(0) = 2 – 1 = 1, 

y
IV

(x) = - y
III 

,     y
IV

(0) = -y
III

 (0) = -1. 

The Taylor‟s servies for f(x) about x0 = 0 is  

           y(x) = y(0) + y
I
(0) + y

II
(0) + y

III
(0) + y

IV
(0) +…… 

substituting the values of  y(0) , y
1
(0) , y

11
(0) , y

111
(0) ,…… 

y(x) = 1 + x (-1) + (1) + (1) + (-1) + …… 

y(x) = 1 – x +  +  -  + ……                    (1) 

Now put x = 0.1 in (1), 

y(0.1) = 1 – 0.1 +  +  -  + …. 

   = 1 – 0.1 + 0.005 + 0.01666 – 0.0000416 -0.905125 ~ 0.9051  

       (4 decimal places) 

Now put x = 0.2 in eq (1), 
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y(0.2) = 1 – 0.2 +  +  -  

   = 1 – 0.2 + 0.02 + 0.001333 – 0.000025 

   = 1.021333 – 0.200025 

   = 0.821308 ~ 0.8213 (4 decimals) 

Similarly y(0.3) = 0.7492 and y (0.4) = 0.6897 (4 decimal places). 

5. Solve  -1 = xy and y(0) = 1 using Taylor’s series method and compute y(0.1). 

Sol. Given that  - 1 = xy and y(0) = 1 

Here  = 1 + xy and y0 = 1, x0 = 0. 

Differentiating repeatedly w.r.t „x‟ and evaluating at x0 = 0 

y
I
(x) = 1 + xy,              y

I
(0) = 1+0(1) = 1 . 

y
II
(x) = x.y‟+ y,              y

II
(0) = 0+1=1  

y
III

(x) = x.y‟‟ + y
I
 + y

I
,   y

III
(0) = 0.(1) + 2 (1) =2 

y
IV

(x) = xy
III

 + y
II
 + 2y

II,  
y

IV
(0) = 0+3(1) =3. 

y
V
(x) = xy

IV
 + y

III
 +2y

III
,   y

V
(0) = 0 + 2 + 2(3) = 8 

The Taylor series for f(x) about x0 = 0 is 

y(x) = y(0) + x.y
I
(0) +  y

II
 (0) + y

III
(0) + y

IV
(0) + y

V
(0)+….. 

Substituting the values of y(0) , y
I
(0) , y

II
(0) , ….  

y(x) = 1 + x +  + (2) + (3) + (8) + …. 

y(x) = 1 + x +  +  +  +  + ….            (1) 

 Now put x = 0.1 in equ (1), 

y(0.1) = 1 + 0.1 +  +  +  +  + ….. 

   = 1 + 0.1 +0.005 + 0.000333 + 0.0000125 + 0.0000006 

   = 1.1053461 

 

H.W 

 

6. Given the differential equ y
1
 = x

2
 + y

2
, y(0) = 1.Obtain y(0.25), and y(0.5) by Taylor’s 

Series method. 

Ans: 1.3333, 1.81667 
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7. Solve y
1 
= xy

2
 + y, y(0) =1 using Taylor’s series method and compute y(0.1) and    

y(0.2). 

Ans: 1.111, 1.248. 

 

Note:  We know that the Taylor‟s expansion of y(x) about the point x0 in a power of (x – 

x0)is. 

y(x) = y(x0) + y
I
(x0) + y

II
(x0) + y

III
(x0) + … (1) 

                                                                  Or 

y(x) = y0 +  +  +  + ….. 

 

If we let x – x0 = h. (i.e. x = x0 + h = x1) we can write the Taylor‟s series as  

y(x) = y(x1) = y0 +  +  +  +  + …. 

i.e. y1 = y0 +  +  +  +  + …..            (2) 

Similarly expanding y(x) in a Taylor‟s series about x = x1. We will get. 

  y2 = y1 +  +  +  +  + …….                                                (3) 

Similarly expanding y(x) in a Taylor‟s series about x = x2 We will get. 

  y3 = y2 +  +  +  + + …...   (4) 

In general, Taylor‟s expansion of y(x) at a point x= xn is 

  yn+1 = yn +  +  +  +  + …..   (5) 

8. Solve y
1 
= x-y

2
, y(0) = 1 using Taylor’s series method and evaluate y(0.1), y(0.2). 

Sol:   Given y
1 

= x – y
2
 (1) 

and  y(0) = 1  (2) 

Here    x0  = 0,  y0 = 1. 

Differentiating (1) w.r.t „x‟, we get. 

y
II
 = 1 – 2yy

I
(3) 

           y
III

 = -2(y. y
II
 + (y

I
)

2
)                        (4) 

           y
IV

 = -2[y. y
III 

+ y. y
II 

+ 2y
I
. y

II
]   (5) 

                = -2(3y
I
. y

II
 + y. y

III
) …... 

Put x0 = 0, y0 = 1 in (1),(3),(4) and (5),  

We get 

   = 0-1 = -1, 

   = 1-2(1) (-1) = 3, 

= -2[(-1)
2
) + (1) (3)] = -8 
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 = -2[3(-1) (3) + (1) (-8)] = -2(-9 -8) = 34. 

Take h=0.1 

Step1: By Taylor‟s series, we have 

y1 = y0 +  +  +  +  + …..                  (6) 

on substituting the values of y0, , , etc in equ (6) we get 

  y(0.1) = y1 = 1 + (-1) + (3) + (-8) + (34) + …. 

   = 1 – 0.1 + 0.015 – 0.00133 + 0.00014 + … 

   = 0.91381 

 

Step2: Let us find y(0.2), we start with (x1,y1) as the starting value. 

Here x1 = x0 + h = 0+0.1 = 0.1 and y1 = 0.91381 

Put these values of x1 and y1 in (1),(3),(4) and (5),we get 

   = x1 -  = 0.1 – (0.91381)
2
 = 0.1 – 0.8350487 = -0.735 

  = 1 – 2y1  = 1- 2(0.91381) (-0.735)   = 1 + 1.3433 = 2.3433 

  = - 2[( )
2
 + y1 ] = - 2[(-0.735)

2
 + (0.91381) (2.3433)] = -5.363112 

  = - 2[3.  + y1 ] = - 2[3.(-0.735) (2.3433) + (0.91381) (-5.363112)] 

           = -2[(-5.16697) – 4.9]  = 20.133953 

By Taylor‟s series expansion, 

  y2 = y1 +  +  +  +  + …. 

y(0.2) = y2 = 0.91381 + (0.1) (-0.735) + (2.3433) +                                                                              

(-5.363112) + (20.133953) + …. 

y(0.2) = 0.91381 – 0.0735 + 0.0117 – 0.00089 + 0.00008 

           = 0.8512 

9. Tabulate y(0.1), y(0.2) and y(0.3) using Taylor’s series method given that y
1
 = y

2 
+ x  and 

y(0) = 1 

Sol:       Given y
1
 = y

2
 + x                                  (1) 

  and  y(0) = 1                                       (2) 

Here x0 = 0, y0 = 1. 

Differentiating (1) w.r.t „x‟, we get 

  = 2y y
I
 + 1                                (3) 

  = 2[y  + (y
I
)

2
]                     (4) 

  = 2[y  + y
I

+ 2 y
I

] 

       = 2[y  + 3 y
I

]                  (5) 
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Put x0 = 0, y0 = 1 in (1), (3), (4) and (5), we get  

  = (1)
2
 + 0 = 1 

 = 2(1) (1) + 1 = 3, 

 = 2((1) (3) + (1)
2
) = 8 

 = 2[(1)(8) + 3(1)(3)] 

               = 34 

Take h = 0.1. 

Step1: By Taylor‟s series expansion, we have  

y(x1) = y1 = y0 +  +  +  +  + ….    (6) 

on substituting the values of yo, ,  etc in (6),we get 

 y(0.1) = y1= 1 + (0.1)(1) + (3) + (8) + (34) + …. 

            = 1 + 0.1 + 0.015 + 0.001333 + 0.000416 

                  y1 = 1.116749 

Step2: Let us find y(0.2),we start with (x1,y1) as the starting values 

Here x1 = x0 + h = 0 + 0.1 = 0.1 and y1 = 1.116749 

Putting these values in (1),(3),(4) and (5), we get 

  = +x1 = (1.116749)
2
 + 0.1 = 1.3471283 

  = 2y1  + 1 = 2(10116749) (1.3471283) + 1 = 4.0088 

  = 2(y1  + ( )
2
) = 2((1.116749) (4.0088) + (1.3471283)

2
] = 12.5831 

  = 2y1  + 6  = 2(1.116749) (12.5831) + 6(1.3471283) (4.0088)  = 

60.50653 

By Taylor‟s expansion 

 y(x2) = y2 = y1 +  +  +  + + …. 

y(0.2) = y2 = 1.116749 + (0.1) (1.3471283) +  (4.0088) +  (12.5831) 

                                  +  (60.50653) 

 y2 = 1.116749 + 0.13471283 + 0.020044 + 0.002097 + 0.000252 

     = 1.27385 

   y(0.2) = 1.27385 

Step3: Let us find y(0.3),we start with (x2,y2) as the starting value. 

Here x2 = x1 + h = 0.1 + 0.1 =0.2 and y2 = 1.27385 

Putting these values of x2 and y2 in eq (1), (3), (4) and (5), we get  

  =  + x2 = (1.27385)
2
 + 0.2 = 1.82269 

 = 2y2  + 1 = 2(1.27385) (1.82269) + 1 = 5.64366 
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 = 2[y2  + ( )
2 
] = 2[(1.27385) (5.64366) + (1.82269)

2
] 

        = 14.37835 + 6.64439 = 21.02274 

 = 2y2 +  + 6  = 2(1.27385) (21.00274) + 6(1.82269) (5.64366) 

             = 53.559635 + 61.719856   = 115.27949 

By Taylor‟s expansion, 

y(x3) = y3 = y2 +  +  +  +  + ….. 

y(0.3) = y3 = 1.27385 + (0.1) (1.82269) + (5.64366) + (21.02274)  

                      + (115.27949) 

                   = 1.27385 + 0.182269 + 0.02821 + 0.0035037 + 0.00048033 

                   = 1.48831 

        y(0.3) = 1.48831 

10. Solve y
1
= x

2
 – y, y(0) = 1 using Taylor’s series method and evaluate 

y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 decimal places) 

Sol:     Given y
1
= x

2
 – y                (1) 

    and y(0) = 1                       (2) 

Here x0 = 0, y0 = 1 

Differentiating (1) w.r.t „x‟, we get  

 y
II
 = 2x – y

1
(3) 

 y
III

 = 2- y
II     
(4) 

 y
IV

 = -y
III 
(5) 

put x0 = 0, y0 = 1 in (1),(3),(4) and (5), we get  

=  - y0 = 0-1 = -1, 

= 2x0 -  = 2(0) – (-1) = 1 

= 2-  = 2-1 = 1, 

= -  = -1  Take h = 0.1 

 

Step1: by Taylor‟s series expansion 

 y(x1) = y1= y0 +  +  +  +  + ….        (6) 

On substituting the values of y0, ,  etc in (6), we get  

 y(0.1) = y1 = 1+ (0.1) (-1) + (1) + (1) + (-1)+…. 

            = 1-0.1 + 0.005 + 0.01666 – 0.0000416 

  = 0.905125 ~ 0.9051 (4 decimal place). 

Step2: Let us find y(0.2) we start with (x1,y1) as the starting values   

Here x = x0 + h = 0 + 0.1 = 0.1 and y1 = 0.905125, 
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Putting these values of x1 and y1 in (1), (3), (4) and (5), we get 

 =  - y1 = (0.1)
2
 – 0.905125 = -0.895125 

= 2x1 -  = 2(0.1) – (-0.895125) = 1.095125, 

= 2 -  = 2 – 1.095125 = 0.90475, 

= -  = -0.904875, 

 By Taylor‟s series expansion, 

y(x2) = y2 = y1 +  +  +  + +…. 

y(0.2) = y2 = 0.905125 + (0.1)(-0.895125) + + (1.09125) + 

(1.095125) + (-0.904875)+…. 

y(0.2) = y2 = 0.905125 – 0.0895125 + 0.00547562 + 0.000150812 – 0.0000377 

        = 0.8212351 ~ 0.8212 (4 decimal places) 

Step3: Let us find y(0.3), we start with (x2,y2) as the starting value 

Here x2 = x1 + h = 0.1+ 0.1 = 0.2 and y2 = 0.8212351 

Putting these values of x2 and y2 in (1),(3),(4), and (5) we get  

 =  - y2 = (0.2)
2
 – 0.8212351= 0.04 – 0.8212351 = - 0.7812351 

= 2x2 -  = 2(0.2) + (0.7812351) = 1.1812351, 

= 2 -  = 2 – 1. 1812351 = 0.818765, 

= -  = -0.818765, 

By Taylor‟s series expansion, 

y(x3) = y3 = y2 +  +  +  + +…. 

y(0.3) = y3 = 0. 8212351 + (0.1)(-0.7812351) + (1.1812351) +     

(0.818765) + (-0.818765)+…. 

y(0.3) = y3 = 0. 8212351– 0.07812351+ 0.005906 + 0.000136 – 0.0000034 

        = 0.749150 ~ 0.7492 (4 decimal places) 

 

Step4: Let us find y(0.4), we start with (x3,y3) as the starting value 

Here x3 = x2 + h = 0.2+ 0.1 = 0.3 and y3 = 0.749150 

Putting these values of x3 and y3 in (1),(3),(4), and (5) we get  

 =  - y3 = (0.3)
2
 – 0.749150= -0.65915, 

= 2x3 -  = 2(0.3) + (0.65915) = 1.25915, 
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= 2 -  = 2 – 1. 25915 = 0.74085, 

= -  = -0.74085, 

By Taylor‟s series expansion, 

y(x4) = y4 = y3 +  +  +  + +…. 

y(0.4) = y4 = 0. 749150 + (0.1)(-0.65915) + (1.25915) +     

(0.74085) + (-0.74085)+…. 

y(0.4) = y4 = 0. 749150 – 0.065915+ 0.0062926+ 0.000123475 – 0.0000030 

        = 0.6896514 ~ 0.6896 (4 decimal places) 

 11. Solve y
1
 = x

2 
– y, y(0) = 1using T.S.M and evaluate y(0.1),y(0.2),y(0.3) and y(0.4) (correct to 4 

decimal place ) 0.9051, 0.8212, 07492, 0.6896 

 

 12. Given the differentiating equation y
1
 = x

1
 + y

2
, y(0) = 1. Obtain y(0.25) and y(0.5) by T.S.M. 

Ans:   1.3333, 1.81667 

 13.  Solve y
1
 = xy

2
 + y, y(0) = 1 using Taylor‟s series method and evaluate y(0.1) and y(0.2) 

   Ans:    1.111, 1.248. 

 

EULER’S METHOD 

It is the simplest one-step method and it is less accurate. Hence it has a limited application. 

Consider the differential equation   = f(x,y)          (1) 

     With  y(x0) = y0(2) 

Consider the first two terms of the Taylor‟s expansion of y(x) at x = x0 

               y(x) = y(x0) + (x – x0) y
1
(x0)                 (3) 

from equation (1) y
1
(x0) = f(x0,y(x0)) = f(x0,y0) 

Substituting in equation (3) 

 y(x) = y(x0) + (x – x0) f(x0,y0) 

At x = x1, y(x1) = y(x0) + (x1 – x0) f(x0,y0) 

 y1 = y0 + h f(x0,y0)    where h = x1 – x0 

Similarly at x = x2 ,  y2 = y1 + h f(x1,y1), 

Proceeding as above, yn+1 = yn + h f(xn,yn) 

This is known as Euler‟s Method 

1. Using Euler’s method solve for x = 2 from  = 3x2 + 1,y(1) = 2,taking step size (I) h = 0.5  

and (II) h=0.25 
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Sol:   here f(x,y) = 3x
2
 + 1, x0 = 1,y0 = 2 

 Euler‟s algorithm is yn+1 = yn + h  f(xn,yn), n = 0,1,2,3,…..                 (1) 

(I) h = 0.5                                    x1 = x0 + h = 1+0.5 = 1.5 

 Taking n = 0 in (1) , we have               x2 = x1 + h = 1.5 + 0.5 = 2 

   y1 = y0 + h f(x0,y0) 

i.e.  y1 = y(0.5) = 2 + (0.5) f(1,2) = 2 + (0.5) (3 + 1) = 2 + (0.5)(4) 

  Here x1 = x0 + h = 1 + 0.5 = 1.5 

   y(1.5) = 4 = y1 

 Taking n = 1 in (1),we have  

   y2 = y1 + h f(x1,y1) 

 i.e. y(x2) = y2 = 4 + (0.5) f(1.5,4) = 4 + (0.5)[3(1.5)
2
 + 1] = 7.875 

  Here x2 = x4 + h = 1.5 + 0.5 = 2 

   y(2) = 7.875 

(II)  h = 0.25                                    x1 = 1.25, x2 = 1.50, x3 = 1.75, x4 = 2 

  Taking n = 0 in (1), we have                

   y1 = y0 + h f(x0,y0) 

  i.e.  y(x1) = y1 = 2 + (0.25) f(1,2) = 2 + (0.25) (3 + 1) = 3 

   y(x2) = y2 = y1 + h f(x1,y1) 

  i.e. y(x2) = y2 = 3 + (0.25) f(1.25,3)  

              = 3 + (0.25)[3(1.25)
2
 + 1]  

                         = 4.42188 

  Here x2 = x1 + h = 1.25 + 0.25 = 1.5 

   y(1.5) = 5.42188 

  Taking n = 2 in (1), we have                

  i.e.  y(x3) = y3 = h f(x2,y2)  

                    = 5.42188 + (0.25) f(1.5,2)  

                    = 5.42188 + (0.25) [3(1.5)
2
 + 1] 

           = 6.35938 

   Here x3 = x2 + h = 1.5 + 0.25 = 1.75 

   y(1.75) =7. 35938  

 Taking n = 4 in (1),we have  

   y(x4) = y4 = y3 + h f(x3,y3) 

 i.e. y(x4) = y4 = 7.35938 + (0.25) f(1.75,2)  

             = 7.35938 + (0.25)[3(1.75)
2
 + 1]  















             = 8.90626 

 Note that the difference in values of y(2) in both cases      

 (i.e. when h = 0.5 and when h = 0.25).The accuracy is improved significantly when h is reduced to 

0.25 (Example  significantly of the equ is y = x
3 
+ x and with this y(2) = y2 = 10 

2. Solve by Euler’s method,y1 = x + y, y(0) = 1 and find y(0.3) taking step size h = 0.1. compare the 

result obtained by this method with the result obtained by analytical solution 

 Sol:   y1 = 1.1 = y(0.1), 

   y2 = y(0.2) = 1.22 

   y3 = y(0.3) = 1.362 

Particular solution is y = 2e
x
 – (x + 1) 

Hence y(0.1) = 1.11034, y(0.2) = 1.3428, y(0.3) = 1.5997 

We shall tabulate the result as follows 

  

 

 

 

 

The value 

of y deviate from the execute value as x increases. This indicate that the method is not accurate 

3. Solve by Euler’s method y
1
 + y = 0 given y(0) = 1 and find y(0.04) taking step size  

         h = 0.01   Ans:  0.9606 

4. Using Euler’s method, solve y at x = 0.1 from y
1
 = x+ y +xy, y()) = 1 taking step size                             

h = 0.025. 

5. Given that  = xy ,y(0) = 1 determine y(0.1),using Euler’s method. h =0.1 

Sol:  The given differentiating equation is = xy, y(0) = 1     

            a = 0 

Here f(x,y) = xy , x0 = 0 and y0 = 1 

Since h is not given much better accuracy is obtained by breaking up the interval (0,0.1) in to five 

steps. 

i.e. h =  =  = 0.02 

Euler‟s algorithm is yn+1 = yn + h f(xn,yn)                         (1) 
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From (1) form = 0, we have 

  y1 = y0 +h f(x0,y0) 

      = 1 + (0.02) f(0,1) 

      = 1 + (0.02) (0) 

      = 1 

Next we have x1 = x0 + h = 0 + 0.02 = 0.02 

From (1), form = 1,we have  

  y2 = y1 + h f(x1,y1) 

      = 1 + (0.02) f(0.02,1) 

      = 1 + (0.02) (0.02) 

      = 1.0004 

Next we have x2 = x1 + h = 0.02 + 0.02 =0.04  

From (1), form = 2,we have  

    y3 = y2 + h f(x2,y2) 

         = 1.004 + (0.02) (0.04) (1.0004) 

         = 1.0012 

Next we have x3 = x2 + h = 0.04 + 0.02 =0.06 

From (1), form = 3,we have  

    y4 = y3 + h f(x3,y3) 

         = 1.0012 + (0.02) (0.06) (1.00012) 

         = 1.0024. 

Next we have x4 = x3 + h = 0.06 + 0.02 =0.08 

From (1), form = 4,we have  

    y5 = y4 + h f(x4,y4) 

         = 1.0024 + (0.02) (0.08) (1.00024) 

         = 1.0040. 

Next we have x5 = x4 + h = 0.08 + 0.02 =0.1 

When x = x5, y~y5 

y = 1.0040 when x = 0.1 

6. Solve by Euler’s method y
1
 =  given y(1) = 2 and find y(2). 

7. Given that  = 3x
2
 + y, y(0) = 4.Find y(0.25) and y(0.5) using Euler’s method 

Sol:  given  = 3x
2
 + y and y(1) = 2. 

Here f(x,y) = 3x
2
 + y , x0 = (1), y0 = 4 

Consider h = 0.25 

Euler‟s algorithm is yn+1 = yn + h f(xn,yn)            (1) 

From (1), for n = 0, we have 

    y1 = y0 + h f(x0,y0) 

       = 2 + (0.25)[0 + 4] 
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       = 2 + 1 

       = 3 

Next we have x1 = x0 + h = 0 + 0.25 = 0.25 

 When x = x1, y1~ y 

  y = 3 when x = 0.25 

From (1), for n = 1, we have 

    y2 = y1 + h f(x1,y1) 

       = 3 + (0.25)[3.(0.25)
2
 + 3] 

       = 3.7968 

Next we have x2 = x1 + h = 0.25 + 0.25 = 0.5 

 When x = x2, y ~ y2 

  y = 3.7968 when x = 0.5. 

 

8. Solve first order diff  equation  = , y(0) = 1 and estimate y(0.1) using Euler’s 

method (5 steps)   Ans:         1.0928 

9. Use Euler’s method to find approximate value of solution of   = y-x + 5 at x = 2-1 

and 2-2with initial contention y(0.2) = 1 

 

Modified Euler’s method 

 

It is given by  

Working rule : 

i)Modified Euler’s method 

 

ii) When can be calculated from Euler‟s method 

iii) K=0, 1……… gives number of iteration.  

gives number of times, a particular iteration k is repeated
 

Suppose consider dy/dx=f(x, y) -------- (1) with y(x0) =y0----------- (2) 

To find y(x1) =y1 at x=x1=x0+h 

Now take k=0 in modified Euler‟s method 

We get ……………………… (3) 

Taking i=1, 2, 3...k+1 in eqn (3), we get 

 (By Euler‟s method) 
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If two successive values of are sufficiently close to one another, we will take the 

common value as  

We use the above procedure again 

1)  using modified Euler‟s method find the approximate value of when  

given that  

sol:  Given  

Here  

Take h = 0.1 which is sufficiently small 

Here  

The formula for modified Euler‟s method is given by 

   

 

Step1: To find y1= y(x1) = y (0.1) 

                  Taking k = 0 in eqn(1) 

 

 when     i = 1  in eqn (2) 

 

        First apply Euler‟s method to calculate  = y1 

 

                = 1+(0.1)f(0.1) 

                = 1+(0.1) 

                = 1.10 

 

 

             = 1+0.1/2[f(0,1) + f(0.1,1.10) 

              = 1+0.1/2[(0+1)+(0.1+1.10)] 

              = 1.11 

   When i=2 in eqn (2) 

 

             = 1+0.1/2[f(0.1)+f(0.1,1.11)] 

             = 1 + 0.1/2[(0+1)+(0.1+1.11)] 

             = 1.1105 
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= 1+0.1/2[f(0,1)+f(0.1 , 1.1105)] 

             = 1+0.1/2[(0+1)+(0.1+1.1105)] 

             = 1.1105 

Since  

 y1 = 1.1105 

 

Step:2    To find y2 = y(x2) = y(0.2) 

Taking k = 1 in eqn (1) , we get  

 

                               i = 1,2,3,4,….. 

For i = 1 

 

is to be calculate from   Euler‟s method  

 

              = 1.1105 + (0.1) f(0.1 , 1.1105) 

              = 1.1105+(0.1)[0.1+1.1105] 

               = 1.2316 

  =  

              = 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316] 

              = 1.2426 

 

                = 1.1105 + 0.1/2[f(0.1 , 1.1105) , f(0.2 . 1.2426)] 

                 = 1.1105 + 0.1/2[1.2105 + 1.4426] 

                 = 1.1105 + 0.1(1.3266) 

                 = 1.2432 

 

                = 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)] 

                = 1.1105+0.1/2[1.2105+1.4432)] 
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                = 1.1105 + 0.1(1.3268) 

                = 1.2432 

          Since  

           Hence y2 = 1.2432 

Step:3 

To find y3 = y(x3) = y y(0.3) 

            Taking k =2 in eqn (1) we get  

 

    For  i = 1 , 

 

 is to be evaluated from Euler‟s method . 

 

              = 1.2432 +(0.1) f(0.2 , 1.2432)        

              = 1.2432+(0.1)(1.4432) 

              = 1.3875 

  = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)] 

             = 1.2432  + 0.1/2[1.4432+1.6875] 

              = 1.2432+0.1(1.5654) 

               = 1.3997 

 

         = 1.2432+0.1/2[1.4432+(0.3+1.3997)] 

         = 1.2432+ (0.1) (1.575) 

         = 1.4003 

 

         = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)] 

         = 1.2432 + 0.1(1.5718) 

          = 1.4004 
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         = 1.2432 + 0.1/2[1.4432+1.7004] 

         = 1.2432+(0.1)(1.5718) 

          =  1.4004 

        Since  

        Hence    The value of y at x = 0.3 is 1.4004 

2 . Find the solution of  = x-y , y(0)=1 at x =0.1 , 0.2 ,0.3 , 0.4 and 0.5 . Using modified  

      Euler’s method 

Sol . Given  = x-y and y(0) = 1 

 Here f(x,y) = x-y , x0 = 0 and y0 = 1 

  Consider    h = 0.1  so that  

  x = 0.1 , x2  = 0.2 , x3 =0.3 , x4 = 0.4 and  x5 = 0.5 

         The formula for modified Euler‟s method is given by 

    

                 Where k = 0,1, 2, 3,…..                             i = 1, 2, 3,…..  

 

0.1(i=1) 0-1=-1 
½(-1-0.8) = -0.9 

1+(0.1)(-0.9)=0.91 

0.1(i=2) 0-1=-1 ½(-1-0.81)= -0.905 1+(0.1)(-0.905)=0.9095 

0.1(i=3) 0-1=-1 ½(-1-0.80.95)= -

0.90475 

1+(0.1)(-0.90475)=0.9095 

K=1   
 

0.1 0.1-0.9095= -

0.8095 

- 0.9095+(0.1)(-

0.8095)=0.82855 

0.2(i=1) -0.8095 
½(-0.8095-0.62855) 

0.9095+(0.1)(-

0.719025)=0.8376 

0.2(i=2) -0.8095 ½(-0.8095-0.6376) 0.9095+(0.1)(-

0.72355)=0.8371 

0.2(i=3) -0.8095 ½(-0.8095-0.6371) 0.9095+(0.1)(-

0.7233)=0.8372 
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0.2(i=4) -0.8095 ½(-0.8095-0.6372) 0.9095+(0.1)(-

0.72355)=0.8371 

K=2    

0.2 0.2-0.8371=-0.6371 - 0.8371+(0.1)(-

0.6371)=0.7734 

0.3(i=1) = -0.6371 ½(-0.6371-0.4734) 0.8371+(0.1)(-

0.555)=0.7816 

0.3(i=2) = -0.6371 ½(-0.6371-0.4816) 0.8371-

0.056=0.7811 

0.3(i=3) = -0.6371 ½(-0.6371-0.4811) 0.8371-

0.05591=0.7812 

0.3(i=4) = -0.6371 ½(-0.6371-0.4812) 0.8371-0.055915 = 

0.7812 

K =3    

0.3(i=1) 0.3-0.7812 - 0.7812+(0.1)(-

0.4812) = 0.7331 

0.4(i=1) -0.4812 ½(-0.4812-0.4311) 0.7812-0.0457 = 

0.7355 

0.4(i=2) -0.4812 ½(-0.4812-0.4355) 0.7812-0.0458 = 

0.7354 

0.4(i=3) -0.4812 ½(-0.4812-0.4354) 0.7812-0.0458 = 

0.7354 

K=4    

0.4 -0.3354 - 0.7354-0.03354 = 

0.70186 

0.5 -0.3354 ½(-0.3354-

0.301816) 

0.7354-0.03186 = 

0.7035 

0.5 -0.3354 ½(-0.3354-

0.30354) 

0.7354-0.0319 = 

0.7035 

 

3. Find y(0.1) and y(0.2) using modified Euler‟s formula given that dy/dx=x
2
-y,y(0)=1 

     [consider h=0.1,y1=0.90523,y2=0.8214] 

4. Given compute y(0.2) in steps of 0.1 

     Using  modified Euler‟s method 

     [h=0.1, y1=1.9804, y2=1.9238] 

 
2

/ , 0 2dy dx xy y  



5. Given y
1 

= x+siny, y(0)=1 compute y(0.2) and y(0.4) with h=0.2 using modified Euler‟s    

    method                             

    [y1=1.2046, y2=1.4644] 

 

Runge – Kutta Methods 

I. Second order R-K Formula 

yi+1 = yi+1/2 (K1+K2), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h, yi+k1) 

For i= 0,1,2------- 

II. Third order R-K Formula 

yi+1 = yi+1/6 (K1+4K2+ K3), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, y0+k1/2) 

 K3 = h (xi+h, yi+2k2-k1) 

For i= 0,1,2------- 

III. Fourth order R-K Formula 

yi+1 = yi+1/6 (K1+2K2+ 2K3+K4), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, yi+k1/2) 

 K3 = h (xi+h/2, yi+k2/2) 

 K4 = h (xi+h, yi+k3) 

For i= 0,1,2------- 

1. Using Runge-Kutta method of second order, find from  =  , y(2)=2 ,  h = 0.25 . 

Sol:  Given      =    , y(2) = 2 . 

Here f(x, y) =  , x0 = 0 , y0=2 and h = 0.25 

 x1 = x0+h = 2+0.25 = 2.25 , x2 = x1+h =2.25+0.25 = 2.5 

 By R-K method of second order, 

 2 .5y
d y

d x

x y

x



d y

d x

x y

x



x y

x







 

Step -1:- 

To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in eqn(i) 

We have  

Where k1= hf (x0,y0 ), k2= hf (x0+h,y0+k1) 

f (x0,y0 )=f(2,2)=2+2/2=2 

k1=hf (x0,y0 )=0.25(2)=0.5 

k2= hf (x0+h,y0+k1)=(0.25)f(2.25,2.5) 

   =(0.25)(2.25+2.5/2.25)=0.528 

y1=y(2.25)=2+1/2(0.5+0.528) 

=2.514 

Step2: 

To find y(x2) i.e., y(2.5) 

i=1 in (1) 

x1=2.25,y1=2.514,and h=0.25 

y2=y1+1/2(k1+k2) 

where  k1=h f((x1,y1 )=(0.25)f(2.25,2.514) 

=(0.25)[2.25+2.514/2.25]=0.5293 

 

=(0.25)[2.5+2.514+0.5293/2.5] 

    =0.55433 

 (2.5)=2.514+1/2(0.5293+0.55433) 

     =3.0558 

y =3.0558 when x = 2.5 

Obtain the values of y at x=0.1,0.2 using R-K method of 

(i)second order (ii)third order (iii)fourth order for the diff eqn y
1
+y=0,y(0)=1 

Sol: Given dy/dx = -y, y(0)=1 

f(x,y) = -y, x0 = 0, y0 = 1 

Here f (x,y) = -y, x0 = 0, y0 = 1 take h = 0.1 

     1 1 2 1 1
1 / 2 , , , 0 ,1 .... 1

i i i i
y y k k k h f x h y k i


       

 1 0 1 2

1

2
y y k k  



         2 0 0 1
, 0 .1 0 .1,1 0 .1 0 .1 0 .9 0 .09k h f x h y k f        

2
y y





 x1 = x0+h = 0.1, 

x2 = x1+h = 0.2 

Second order: 

step1: To find y(x1) i.e y(0.1) or y1 

by second-order R-K method,we have 

y1 = y0+1/2(k1+k2) 

where k1=hf(x0,y0)=(0.1) f(0,1) = (0.1)(-1)= - 0.1 

k2= hf (x0+h, y0+k1)= (0.1) f (0.1, 1-0.1) = (0.1)(-0.9) = -0.09 

y1=y(0.1)=1+1/2(-0.1-0.09)=1-0.095=0.905 

y =0.905 when x=0.1 

Step2: 

To find y2 i.e y(x2) i.e y(0.2) 

Here x1 = 0.1, y1 = 0.905 and h=0.1 

By second-order R-K method, we have 

y2 = y(x2)= y1+1/2(k1+k2) 

Where =(0.1)f(0.1,0.905)=(0.1)(-0.905)=-0.0905 

 

y2 =  y(0.2)=0.905+1/2(-0.0905-0.08145) 

    = 0.905- 0.085975 = 0819025 

Third order 

Step1: 

To find y1 i.e y(x1)= y(0.1) 

By Third order Runge kutta method 

 

where k1 = h f(x0, y0) = (0.1) f (0.1) =  (0.1) (-1) = -0.1 

 

and k3 = h f((x0+h,y0+2k2-k1) 





 1 1 1
,k h f x y

     

       

2 1 1 1
, 0 .1 0 .2 , 0 .9 0 5 0 .0 9 0 5

0 .1 0 .2 , 0 .8 1 4 5 0 .1 0 .8 1 4 5

0 .0 8 1 4 5

k h f x h y k f

f

    

  

 

 1 0 1 2 3
1 / 6 4y y k k k   

         

   

2 0 0 1
/ 2 , / 2 0 .1 0 .1 / 2 ,1 0 .1 / 2 0 .1 0 .0 5 , 0 .9 5

0 .1 0 .9 5 0 .0 9 5

k h f x h y k f f     

   



(0.1) f (0.1,1+2(-0.095)+0.1)=  -0.905 

Hence y1 = 1+1/6(-0.1+4(-0.095)-0.09) = 1+1/6 (-0.57) = 0.905 

y1=0.905 i.e y(0.1)= 0.905 

Step2: 

To find y2,i.e y(x2)= y(0.2) 

Here x1=0.1,y1=0.905 and h = 0.1 

Again by 2
nd

 order R-K method 

y2 = y1+1/6(k1+4k2+k3) 

Where k1=h f(x1, y1) = (0.1)f (0.1,0.905)= -0.0905 

k2 = h f (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.2,0.905 - 0.0905)= -(0.1) f (0.15, 0.85975)= (0.1) (-0.85975) 

and k3 = h f((x1+h,y1+2k2-k1)=(0.1)f(0.2,0.905+2(0.08975)+0.0905= -0.082355 

hence y2 = 0.905+1/6(-0.0905+4(-0.085975)-0.082355)=0.818874 

y = 0.905 when x = 0.1 

And y =0.818874 when x =0.2 

 fourth order: 

step1: 

x0=0,y0=1,h=0.1 To find y1 i.e y(x1)=y(0.1) 

By 4
th

 order R-K method, we have 

y1 = y0+1/6(k1+2k2+2k3+k4) 

Where k1=h f(x0,y0)=(0.1)f(0.1)= -0.1 

k2= h f (x0+h/2, y0+k1/2) = -0.095 

and k3= h f((x0+h/2,y0+k2/2)=(0.1)f (0.1/2,1-0.095/2) 

= (0.1)f(0.05,0.9525) 

= -0.09525 

and k4= h f(x0+h,y0+k3) 

= (0.1) f(0.1,1-0.09525)=(0.1)f(0.1,0.90475) 

=-0.090475 

Hence y1=1+1/6(-0.1)+2(-0.095)+2(0.09525)-0.090475) 

=1+1/6(-0.570975)+1-0.951625 = 0.9048375 

Step2: 

To find  



     2 2 1
, . ., 0 .2 , 0 .9048375, . ., 0 .1 0 .9048375y i e y x y y i e y  



Here x1 = 0.1, y1=0.9048375 and h = 0.1 

Again by 4
th

 order R-K method, we have 

y2 = y1+1/6(k1+2k2+2k3+k4) 

Where k1=h f(x1,y1)=(0.1)f(0.1,0.9048375)=-0.09048375 

k2= hf (x1+h/2,y1+k1/2)=(0.1)f(0.1+0.1/2,0.9048375 -0.09048375 /2)=-0.08595956 

and k3=hf(x1+h/2, y1+k2/2)=(0.1)f(0.15,0. 8618577)= -0.08618577 

k4 =h f(x1+h,y1+k3)=(0.1)f(0.2,0.86517) 

= -0.08186517 

Hence y2 = 0.09048375+1/6(-0.09048375-2(0.08595956)-2(0.08618577)- 0.08186517 

=0.9048375-0.0861065 

=0.818731 

y = 0.9048375 when x =0.1 and y =0.818731 

3. Apply the 4
th

 order R-K method to find an approximate value of y when x=1.2 in steps 

of  0.1,given that 

y
1 
= x

2
+y

2
,y (1)=1.5 

sol. Given y
1
= x

2
+y

2
,and  y(1)=1.5 

Here f(x,y)= x
2
+y

2, 
y0 =1.5 and x0=1,h=0.1 

So that x1=1.1 and x2=1.2 

Step1: 

To find y1 i.e., y(x1)  

by 4
th
  order R-K method we have 

y1=y0+1/6 (k1+2k2+2k3+k4) 

k1=hf(x0,y0)=(0.1)f(1,1.5)=(0.1) [1
2
+(1.5)

2
]=0.325 

k2= hf (x0+h/2,y0+k1/2)=(0.1)f(1+0.05,1.5+0.325)=0.3866 

and k3=hf((x0+h/2,y0+k2/2)=(0.1)f(1.05,1.5+0. 3866/2)=(0.1)[(1.05)
2
+(1.6933)

2
] 

=0.39698 

k4=hf(x0+h,y0+k3)=(0.1)f(1.0,1.89698) 

=0.48085 

Hence  



 

Step2: 

To find y2, i.e.,  

Here x1=0.1,y1=1.8955 and h=0.1 

by 4
th
  order R-K method we have 

y2 = y1+1/6(k1+2k2+2k3+k4) 

k1=hf(x1,y1)=(0.1)f(0.1,1.8955)=(0.1) [1
2
+(1.8955)

2
]=0.48029 

k2= hf (x1+h/2,y1+k1/2)=(0.1)f(1.1+0.1,1.8937+0.4796) =0.58834 

and k3=hf((x1+h/2,y1+k2/2)=(0.1)f(1.5,1.8937+0.58743) =(0.1)[(1.05)
2
+(1.6933)

2
] 

=0.611715 

k4=hf(x1+h,y1+k3)=(0.1)f(1.2,1.8937+0.610728) 

=0.77261 

Hence y2=1.8937+1/6(0.4796+2(0.58834)+2(0.611715)+0.7726) =2.5043 

 y =2.5043 where  

 

4. using R-K method, find y(0.2) for the eqn dy/dx=y-x,y(0)=1,take h=0.2 

Ans:1.15607 

 

5.Given that y
1
=y-x,y(0)=2 find y(0.2) using R- K method take h=0.1 

Ans: 2.4214  

 

6. Apply the 4
th

 order R-K method to find  for one equation

 take h = 0.1   Ans.  1.0207, 1.038 

7. using R-K method, estimate y(0.2) and y(0.4) for the eqn dy/dx=y
2
-x

2
/ y

2
+x

2
,y(0)=1,h=0.2 

Ans:1.19598,1.3751 

8. use R-K method, to approximate y when x=0.2 given that y
1
=x+y,y(0)=1 

Sol: Here f(x,y)=x+y,y0=1,x0=0 

Since h is not given for better approximation of y 

   1

1
1 .5 0 .3 2 5 2 0 .3 8 6 6 2 0 .3 9 6 9 8 0 .4 8 0 8 5

6

1 .8 9 5 5

y       



   2
1 .2y x y

0 .2x 

   0 .2 0 .4y and y

 
2 2

1 0 , 0 1
d y

x y y
d x

  



Take h=0.1 

x1=0.1, x2=0.2 

Step1  

To find y1 i.e y(x1)=y(0.1) 

By R-K method,we have  

y1=y0+1/6 (k1+2k2+2k3+k4) 

Where k1=hf(x0,y0)=(0.1)f(0,1)=(0.1) (1)=0.1 

k2= hf (x0+h/2,y0+k1/2)=(0.1)f(0.05,1.05)=0.11 

and k3=hf((x0+h/2,y0+k2/2)=(0.1)f(0.05,1+0. 11/2)=(0.1)[(0.05) +(4.0.11/2)] 

=0.1105 

k4=h f (x0+h,y0+k3)=(0.1)f(0.1,1.1105)=(0.1)[0.1+1.1105] 

=0.12105 

Hence  

y = 1.11034 

 

Step2: 

To find y2 i.e y(x2) = y(0.2) 

Here x1=0-1, y1=1.11034 and h=0.1 

Again By R-K method,we have  

y2=y1+1/6(k1+2k2+2k3+k4) 

k1=h f(x1,y1)=(0.1)f(0.1,1.11034)=(0.1) [1.21034]=0.121034 

k2= h f (x1+h/2, y1+k1/2)=(0.1)f(0.1+0.1/2,1.11034+0.121034/2) 

=0.1320857 

and k3=h f((x1+h/2,y1+k2/2)=(0.1)f(0.15,1.11034+0.1320857/2) 

=0.1326382 

k4=h f(x1+h,y1+k3)=(0.1)f(0.2,1.11034+0.1326382) 

(0.1)(0.2+1.2429783)=0.1442978 

Hence y2=1.11034+1/6(0.121034+0.2641714+0.2652764+0.1442978 

=1.11034+0.1324631 =1.242803 



    1

1
0 .1 1 0 .1 0 .2 2 0 .2 4 0 0 .1 2 1 0 5

6
y y     



y =1.242803 when x=0.2 

9.using Runge-kutta method of order 4,compute y(1.1) for the eqn y
1
=3x+y

2
,y(1)=1.2 h = 0.05 

Ans:1.7278 

10. using Runge-kutta method of order 4,compute y(2.5) for the eqn dy/dx = x+y/x, y(2)=2 [hint h = 

0.25(2 steps)] 

Ans:3.058 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

UNIT-III 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Multiple Integrals 

Double Integral : 

I. When y1,y2 are functions of x and 
1

x  and x2 are constants. f(x,y)is first integrated w.r.t y 

keeping „x‟ fixed between limits y1,y2 and then the resulting expression is integrated w.r.t „x‟ with 

in the limits x1,x2 i.e., 

 ,

R

f x y d x d y 
  

2 2

1 1

( )

( )

( , )

x x y x

x x y x

f x y d y d x





 

 

 
 

II. When x1,x2 are functions of y and y1 ,y2 are constants, f(x,y)is first integrated w.r.t „x‟ 

keeping „y‟ fixed, with in the limits x1,x2 and then resulting expression is integrated w.r.t „y‟ 

between the limits y1,y2 i.e., 

 ,

R

f x y d x d y 
  

 
 

 22

1 1

,

x yy y

y y x y

f x y d x d y







 

 
 

III. When x1,x2, y1,y2 are all constants. Then 

 ,

R

f x y d x d y 
  

   

2 2 2 2

1 1 1 1

, ,

y x x y

y x x y

f x y d x d y f x y d y d x   
 

Problems 

1. Evaluate 
2 3

2

1 1

xy d x d y   

Sol. 
2 3

2

1 1

x y d x d y
 

 

 
 

 

 

3
2 22 2

2

1 11

. 9 1
2 2

x y
y d y d y

 
   

 
 

 

2 2

2 2

1 1

8
4 .

2
y d y y d y  

 

 

2
3

1

4 4 .7 2 8
4 . 8 1

3 3 3 3

y 
    

 
 

 

2. Evaluate 
2

0 0

x

y d y d x   

Sol. 
2 2

0 0 0 0

x x

x y x y

y d y d x y d y d x

   

 

  

  
   

 

   

2
2 2 22 3

2 2

0 0 00 0

1 1 1 1 8 4
0 8 0

2 2 2 2 3 6 6 3

x

x x x

y x
d x x d x x d x

  

   
           

   
  

 



3. Evaluate  

2
5

2 2

0 0

x

x x y d x d y 
    

 

Sol. 

 

 

2
2

5 5 3

2 2 3

0 0 0 0
3

x
x

x y x y

xy
x x y d y d x x y d x

   

 
   

 
  

 

5
65 52 3 7 6 8 8

3 2 5

0 0 0

( ) 1 5 5
. .

3 3 6 3 8 6 2 4
x x

x x x x x
x x d x x d x

 

     
           

     
   

4. Evaluate 

2
1 1

2 2

0 0
1

x

d y d x

x y



 
 

    

 

Sol: 
 

2 2
1 1 1 1

2 2 2 2

0 0 0 0

1

1 1

x x

x y

d y d x
d y d x

x y x y

 

 

 

 
    

 

   
  

 

 

2

2

1

1 1 1

1

2
2 2

2 2
0 0 0

0

1 1

1 11

x

x

x y x

y

y
d y d x T a n d x

x xx y







  



 

  
    

    
 

  
1

2 2

1 1
[ tan ( )]xd x

ax a a





  

1

1 1

2

0

1
1 0

1x

T a n T a n d x

x

 



  
 




 

o r

 

1 1 1

0
(s in h x ) (s in h 1)

4 4

  


 

1
1

2

2 0
0

1
lo g ( 1)

4 41 x
x

d x x x

x

 




    
 


  

lo g (1 2 )
4


   

5. Evaluate 

2
4

/

0 0

x

y x
e d y d x 

  

Ans: 3e4-7 

6. Evaluate

 

1

2 2

0

( )

x

x

x y d x d y 
  

Ans: 3/35 

7. Evaluate 
2

( )

0 0

x

x y
e d yd x



    

Ans: 
4 2

2

e e

 

 

8. Evaluate 
12

2 2

0 1

x y d x d y





    



Ans: 
3

3 6


 

9. Evaluate 
2 2

( )

0 0

x y
e d xd y

 

 

    

Sol: 
2 2 2 2

( )

0 0 0 0

x y y x
e d xd y e e d x d y

   

   
 

  

 
     

2

0
2

y
e d y





 

                           

2

0
2

x
e d x







 

 

2

0

.
2 2 2 4

y
e d y

   



  

 

Alter:  

2 2 2
2

( )

0 0 0 0

x y r

r

e d x d y e rd rd







  

  

 

   
                               

2 2 2
( )x y r 

 

(changing to polar coordinates taking co s , s inx r y r   )  

2
2 2

0 0
0

0 1

2 2

r
e

d d
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1 1
0

22 2
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10. Evaluate ( )xy x y d xd y 

  

over the region R bounded by y=x
2
 and y=x 

Sol: y= 2
x  is a parabola through (0,0) symmetric about y-axis y=x is a straight line through (0,0) 

with slope1.  

Let us find their points of intersection solving y= 2
x , y=x we get 2

x =x   x=0,1Hence y=0,1 
 

  The point of intersection of the curves are (0,0), (1,1)  

Consider ( )

R

xy x y d xd y
 

For the evaluation of the integral, we first integrate w.r.t „y‟ from y=x
2
 to y=x and then w.r.t. „x‟ from 

x=0 to x=1 

   
2 2

1 1
2 2

0 0

x x

x y x x y x

xy x y d y d x x y xy d y d x
   

   
  

         
 

2

32
1

2

0 2 3

x

x

y x

y xy
x d x





 
  

 


                       

4 4 6 7
1

0 2 3 2 3x

x x x x
d x



 
    

 


 

4 6 7
1

0

5

6 2 3x

x x x
d x
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5 7 8

0

5
.

6 5 1 4 2 4

x x x 
   
   

1 1 1 2 8 1 2 7 2 8 1 9 9 3

6 1 4 2 4 1 6 8 1 6 8 1 6 8 5 6

  
        

11. Evaluate 
R

xyd xd y   where R is the region bounded by x-axis and x=2a and the curve x
2
=4ay. 

Sol. The line x=2a and the parabola x
2
=4ay intersect at B(2a,a) 

The given integral =    

R

xy d x d y   

Let us fix „y‟ 

For a fixed „y‟, x varies from 2 a y

 

to 2a. Then y varies from 0 to a. 

Hence the given integral can also be written as  

2 2

0 2 0 2

a x a a x a

y x a y y x a y

xy d x d y xd x yd y
 

   

 


  
   

 
2

2

0

2
2

a

a

y

x a y

x
y d y
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0

2 2
a

y

a a y y d y


  
 

 

2 2 3

0

2 2

2 3

a

a y a y 
  
 

4 4 4 4

4 2 3 2

3 3 3

a a a a
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12. Evaluate 
2

1

0

0

s inr d d r



     

Sol. 
1

2

0 0

s in
r

r d d r
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00
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13. Evaluate  

2 2
x y d x d y  in the positive quardrant for 

which 1x y    

Sol.    
1 1

2 2 2 2

0 0

y x

x y

R

x y d x d y d x x y d y
 

 

    
 

1
3

1
2

0

0
3

x

x

y
x y d x





 
  

 


 

   

1
3 4

1 3 42 3

0

0

1 1
1 1

3 3 4 1 2x

x x
x x x d x x



  
          

   


 



1 1 1 1
0

3 4 1 2 6
    

 

14. Evaluate  
2 2

x y d x d y  over the area bounded by the ellipse 
2 2

2 2
1

x y

a b
   

Sol. Given ellipse is 
2 2

2 2
1

x y

a b
 

 

   
2 2 2

2 2 2 2 2

2 2 2 2

1
. ., 1 ( )

y x b
i e a x o r y a x

b a a a
     

 
2 2b

y a x
a

   

 
Hence the region of integration R can be expressed as 

2 2 2 2
,

b b
a x a a x y a x

a a


      

 

   
2 2

2 2

2 2 2 2
ba a x

a

bx a y a x
a

R

x y d x d y x y d x d y


   

     
 

 

2 2

2 2 3
2 2 2

0
0

2 2
3

b a x
b aa a x a

a

x a y a

y
x y d x d y x y




   

 
    

 
  

 

 
3

3
2 2 2 2 2 2

3
2 .

3

a

a

b
bx a x a x d x

a a

 
    

 


 

 
3

3
2 2 2 2 2 2

3
0

4
3

a b
b x a x a x d x

a a

 
    

 


 

Changing to polar coordinates 
s in

c o s

p u tt in g x a

d x a d



 




 

1
s in s in

0 , 0

,
2

x x

a a

x

x a

 







  

 

 
 

3

2 2 2 3 3

3
0

4 . s in . co s . co s co s
3

b
b a a a a d

a a



    
 

  
 


 

3 3

2 3 2 2 4 3

0

1 1 3 1
4 s in co s co s 4 . . . . .

3 4 2 2 3 4 2 2

a b a b
a b d a b

  
   

   
      

   


                            

2

0

1
.

1 3 2 2
s in c o s . ... . . . . . .

2

m n n n
d

m n m n m

 

  

 

  
 

  
 
 



 

   
3 3 2 24

1 6 4

a b
a b a b a b

 
   

 

 

 

 

 

 



Double integrals in polar co-ordinates: 

 

 

1. Evaluate 
s in

4

2 20 0

a r d r d

a r

  


      

Sol. 
s in s in s in

4 4 4

2 2 2 2 2 20 0 0 0 0 0

2
1

2

a a ard rd r r
d r d d r d

a r a r a r

    
 

   
    

     
     

 

   
s in

4 42 2 2 2 2 2

0 00

1
2 1 2 s in 0

2

a

a r d a a a d

 

  


       
  

 

       
4

4

0 0

c o s 1 s ina d a




        
 

   s in 0 0
4 4

a        
  

 

  1 12
4 42 2

a     
    

      
 

 

2. Evaluate 
s in

0 0

a

r d r d
 

    Ans: 
2

4

a 
 

3. Evaluate 
2

2

0 0

r
e r d d r








    Ans:

 
4


 

4. Evaluate 
 1 c o s

0 0

a

r d r d
 




    Ans:

 

2
3

4

a
 

 

Change of order of Integration: 

1. Change the order of Integration and evaluate 2

4 2

0
4

a a x

xx y
a

d y d x
    

Sol. In the given integral for a fixed x, y varies from 
2

4

x

a
 

to 2 a x

 

and then x varies from 0 to 4a. Let 

us draw the curves 
2

4

x
y

a


 

and 2y a x  

The region of integration is the shaded region in diagram. 

The given integral is 2

4 2

0
4

a a x

xx y
a

d y d x
 

    

Changing the order of integration, we must fix y 

first,for a fixed y, x varies from 
2

4

y

a
 

 

to 4 a y

and then y varies from 0 to 4a. 

Hence the integral is equal to    

2 2

4 2 4 2

0 0
4 4

a a y a a y

y y
y x y x

a a

d x d y d x d y
   

 


 
 

   
 

  2

24 42

0 0
4

2
4

a aa y

yy yx
a

y
x d y a y d y

a 

 
  

 
 

 
 



4
3

32

0

1
2 . .

3 4 3
2

a

y y
a

a

 

  
 
   

34 1
. .4 4 .6 4

3 1 2
a a a a

a
 

 

2 2 23 2 1 6 1 6

3 3 3
a a a    

2. Change the order of integration and evaluate  
2 2

0

xa
a

x
a

x y d x d y    

Sol. In the given integral for a fixed x, y varies from 
x

a
to 

x

a  
and then x varies from 0 to a 

Hence we shall draw the curves 
x

y
a



 
and 

x
y

a
  

i.e. ay=x and ay
2
=x 

we get 2
a y a y

 
2

0a y a y  

 

 1 0ay y  

 
0 , 1y y    

If y=0, x=0 if y=1, x=a 

The shaded region is the region of integration. 

The given integral is  
2 2

0

xa y
a

xx y
a

x y d x d y


 

   

Changing the order of integration, we must fix y 

first. For a fixed y, x varies from ay
2
 to ay and 

then y varies  from 0 to 1. 

Hence the given integral, after change of the order of integration becomes 

 
2

1
2 2

0

a y

y x a y

x y d x d y
 

 
 

 
2

1
2 2

0

a y

y x a y

x y d x d y
 

 
 

   
 

2

3
1

2

0 3

a y

y

x a y

x
x y d y





 
  

 


 

3 3 3 6
1

3 4

0 3 3y

a y a y
a y a y d y



 
    

 


 

1
3 4 4 3 7 5

0
1 2 4 2 1 5

y

a y a y a y a y



 
    
   



3 3 3

1 2 4 2 1 5 2 8 2 0

a a a a a a
     

 

3.Change the order of integration in 
2

1 2

0

x

x

xyd xd y



  and hence evaluate the double integral. 

Sol. In the given integral for a fixed x,y varies from x
2
 to 2-x and then x varies from 0 to 1. 

Hence we shall draw the curves y=x
2
 and y=2-x.  

The line y=2-x passes through (0,2), (2,0)   

Solving y=x
2
 ,y=2-x 

Then we get 2
2x x   

 

2
2 0x x   

 
2

2 2 0x x x    

 
   2 1 2 0x x x    

 

   1 2 0x x   

 
1, 2x  

 
1, 1If x y 

 
2 , 4If x y    

Hence the points of intersection of the curves are      

(-2,4) (1,1) 

The Shaded region in the diagram is the region of 

intersection.  

Changing the order of integration, we must fix y, for the region with in OACO for a fixed y, x varies 

from 0 to y  

Then y varies from 0 to 1 

For the region within CABC, for a fixed y, x varies from 0 to 2-y ,then y varies from 1 to 2 

Hence 
2

1 2

0

x

x

O A C O C A B C

x y d y d x x y d x d y x y d x d y


    
 

1 2 2

0 0 1 0

y y

y x y x

x d x y d y x d x y d y


   

   
 

     
   

 

2

2 2
1 2

0 1

0 0
2 2

y
y

y y

x x

x x
y d y y d y



 

 

   
    

   
 

 

 
2

1 2

0 1

2
.

2 2y y

yy
y d y y d y

 


  

 

 
1 2

2 2 3

0 1

1 1
. 4 4

2 2y y

y d y y y y d y
 

    
 



1 2
3 2 3 4

0 1

1 1 4 4
. .

2 3 2 2 3 4

y y y y   
      

     

   
1 1 1

4 1. 2 .4 2 .1 8 1 1 6 1
3 42 3 2

       
 

 

1 1 2 8 1 5 1 1 7 2 1 1 2 4 5 1 1 5 4 5 9 3
6

6 2 3 4 6 2 1 2 6 2 1 2 2 4 2 4 8

       
          

     
       

4. Changing the order of integration
2

2
2

0

a a x

x
a

xy d y d x


 
 

5. Change of the order of integration
2

1 1
2

0 0

:
1 6

x

y d x d y A n s


 
 

Hint : Now limits are 0 1y to and 2
0 1x to y 

 

2

s in

1 c o s

c o s

p u t y

y

d y d





 



 


 

1
2 2

0

1y y d y 
 

2 2 22 2 2 4

0 0 0

s in co s s in s ind d d

  

          
 

   
1 3 1

.
2 2 1 62 4 2

    

 

 

Change of variables: 

The variables x,y in  ,

R

f x y d x d y
 
are changed to u,v with the help of the relations 

   1 2
, , ,x f u v y f u v 

 
then the double integral is transferred into 

   
 

 1

1 2

,
, , ,

,
R

x y
f f u v f u v d u d v

u v


  


  

Where R
1
is the region in the uv plane, corresponding to the region R in the xy-plane. 

 

Changing from Cartesian to polar co-ordinates 

co s , s inx r y r  

 

 

 

c o s s in,

s in c o s,

x x

rx y r

y y rr

r

 

 



 

   
   
   
 

 

 

 
2 2

co s s inr r   

 

   

1

, co s , s in

R R

f x y d x d y f r r r d r d      



Note : In polar form dx dy is replaced by r d r d  

Problems:  

1. Evaluate the integral by changing to polar co-ordinates 
 

2 2

0 0

x y

e d x d y
   

   

Sol. The limits of x and y are both from 0 to  . 

 The region is in the first quadrant where r varies from 0 to   and 
 
varies from 0 to 

2
  

Substituting  co s , s inx r y r  

 
and d x d y r d r d  

Hence 
 

2 2
2

2

0 0 0 0

x y r

r

e d x d y e r d r d






    

 

   
 

2

2

2

P u t r t

rd r d t

d tr d r



 

 
 

W here 0 0r t   a n d

 
r t    

 
 

2 2

2

0 0 0 0

1

2

x y
t

t

e d x d y e d t d






   



 

    
 

 
2

00

1

2

t
e d







 

 

   
2 2

00

1 1 1
0 1

2 42 2 2
d

 
  


    

 

2. Evaluate the integral by changing to polar co-ordinates  
2 2

2 2

0 0

a a y

x y d x d y


   

Sol. The limits for x are x=0 to 
2 2

2 2 2

x a y

x y a

 

  

 



 
The given region is the first quadrant of the circle. 

By changing to polar co-ordinates 

co s , s in ,x r y r d x d y r d r d      

Here „r‟ varies from 0 to a and ' ' varies from 0 to 
2



 

 
2 2

22 2 2

0 0 0 0

a a y a

r

x y d x d y r rd rd








 

     
 

 

4 4

2 2

00

0
4 4

a

r a
d

 

 
 

  
 


 

4

8
a  

3. Show that 2

2 2
4

2

2 2
0

4

5
8

2 3

a y

y

a

x y
d x d y a

x y

  
  

  
   



4. Sol. The region of integration is given by 
2

,
4

y
x x y

a
 

 
and y=0, y=4a. 

 

i.e., The region is bounded by the parabola y
2
=4ax and the straight line x=y. 

 Let  co s , s in .x r y r T h en d x d y rd rd      

The limits for r are r=0 at O and for P on the parabola 

 
2 2

2

4 co s
s in 4 co s

s in

a
r a r r


 


    

For the line y=x, slope m=1 i.e., 1,
4

T a n     

The limits for :
4 2

    

Also  
2 2 2 2 2 2 2 2

co s s inx y r a n d x y r     

 

 
2

2

2 2 4 c o s4
2 2 2s in

2 2
0 0

4 4

c o s s in

aa y

y
r

a

x y
d x d y r d r d

x y

 





  
 


  


   

 

 
2

4 c o s
2 s in

2 2 2

4
0

c o s s in
2

a

r
d







  


 
   

 


 

 
2

22 2 2

4

4

c o s
8 c o s s in

s in
a d






  


 

 

 
22 4 2 2 2

4

3 8 5
8 c o s c o t 8 1 8

1 2 4 2 3
a d a a





  
  

   
        

   


 

Triple integrals : 

If x1,x2 are constants. y1,y2 are functions of x and z1,z2 are functions of x and y, then f(x,y,z) is first 

integrated w.r.t. „z‟ between the limits z1 and z2 keeping x and y fixed. The resulting expression is 

integrated w.r.t „y‟ between the limits y1 and y2 keeping x constant. The resulting expression is 

integrated w.r.t. „x‟ from x1 to x2 

  . . , ,

v

i e f x y z d x d y d z 
 

 

 

 
 

 2 2

1 1

,

,

, ,
b y g x z f x y

x a y g x z f x y

f x y z d z d y d x
 

    
 



 

Problems
 

1. Evaluate 
2 2 2

1 1 1

0 0 0

x x y

xyz d x d y d z
  

    

Sol. 
2 2 2

1 1 1

0 0 0

x x y

x y z

xyz d x d y d z
  

    
 

2 2 2
1 1 1

0 0 0

x x y

x y z

d x d y xyz d z
  

  

   
 

2 2

2
1

2
1 1

0 0

0
2

x y

x

x y

z

z
d x xy d y

 



 



 
  

 
 

 

 
2

1 1
2 2

0 0

1
1

2

x

x y

d x x y x y d y


 

   
 

 
2

1 1
2 3

0 0

1
1

2

x

x y

d x x x y y d y


 

   
  

 

 

2
1

2 4
1

2

0

0

1
1

2 2 4

x

x

y y
x x d x





 
   

 


 

2
1

2 2 2 4
1

0

0

1
.

2 2 2 4

x

x

y x y y
x d x





 
   

 


 

     
1 2

2 2 2 2

0

1
. 2 1 2 1 1

8 x

x x x x x d x


      
  

 

 

1
2 4 6

1
3 5

0

0

1 1 2
2

8 8 2 4 6x

x x x
x x x d x



 
      

 


 

1 1 1 1 1

8 2 2 6 4 8

 
    

   

2. Evaluate  
1

1 0

z x z

x z
x y z d x d y d z



 
     

:So l

     

 

1

1 0

z x z

x z

x y y d x d yd z



 

   
 

21

1 0 2

x z
z

x z

y
x y z y d x d z






  
    

   
 

 

   

2 2
1

1 0

( ) ( )
2 2

z x z x z
x x z x x z z x z z x z d x d z



    
         

   
   

   

1

1 0

1
2 ( ) 4

2

z

z x z x z d x d z


 
  

 
 

   

2 2
1

2

1

0

2 . .
2 2

z

x x
z z x z d z



 
   

 


1
3 3 4

1
3

1

1

2 . 4 . 0
2 2 4

z z z
z d z
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Vector Calculus and Vector Operators 
 

INTRODUCTION 

 In this chapter, vector differential calculus is considered, which extends the basic concepts 

of differential calculus, such as, continuity and differentiability to vector functions in a simple and 

natural way. Also, the new concepts of gradient, divergence and curl are introduced. 

DIFFERENTIATION OF A VECTOR FUNCTION 

 Let S be a set of real numbers. Corresponding to each scalar t ε S, let there be associated a 

unique vector f . Then f  is said to be a vector (vector valued) function. S is called the domain of 

f . We write f  = f (t). 

 

 Let kji ,, be three mutually perpendicular unit vectors in three dimensional space. We can 

write f  = f (t)= ktfjtfitf )()()(
321

  , where f1(t), f2(t), f3(t) are real valued functions (which 

are called components of  f ). (we shall assume that kji ,,  are constant vectors). 

 

1. Derivative: 

 Let f  be a vector function on an interval I and a є I. Then  
at

aftf
Lt

at







)()(
, if exists, is 

called the derivative of  f  at a and is denoted by f
1
(a) or 














dt

fd
 at t = a. We also say that f  is 

differentiable at t =a if  f
1
(a) exists. 

 

2. Higher order derivatives 

Let f be differentiable on an interval I and f
1
= 

dt

fd
be the derivative of f . If 

at

aftf
Lt

at







)()(
11

 

exists for every a Є I1 I . It is denoted by f
11

= 
2

2

dt

fd
.  

Similarly we can define f
111

(t) etc. 

 

We now state some properties of differentiable functions (without proof) 

 (1) Derivative of a constant vector is a . 

If  a  and b  are differentiable vector functions, then 

 (2). 
dt

bd

dt

ad
ba

dt

d
 )(  

  

 (3). 
dt

bd
ab

dt

ad
ba

dt

d
..).(   

 (4). 
dt

bd
ab

dt

ad
ba

dt

d
 )(  

  



 (5). If f is a differentiable vector function and  is a scalar differential function, then 

f
dt

d

dt

fd
f

dt

d 
 )(  

 (6).  If f = ktfjtfitf )()()(
321

  where f1(t), f2(t), f3(t) are cartesian components of the 

vector f , then k
dt

df
j

dt

df
i

dt

df

dt

fd
321

  

 (7). The necessary and sufficient condition for f (t) to be constant vector function is 
dt

fd
= 0

. 

 

3. Partial Derivatives 

 Partial differentiation for vector valued functions can be introduced as was done in the case 

of functions of real variables. Let f  be a vector function of scalar variables p, q, t. Then we write 

f = f (p,q,t). Treating t as a variable and p,q as constants, we define  

    
t

tqpfttqpf
Lt

t






),,(),,(

0




 

if exists, as partial derivative of  f  w.r.t. t and is denot by 
t

f




 

 Similarly, we can define 
p

f




,

q

f




also. The following are some useful results on partial 

differentiation. 

 

4. Properties 

 

1) 
t

a
a

t
a

t 















 )(  

2). If λ is a constant, then 
t

a
a

t 







 )(  

3). If c  is a constant vector, then 
t

cc
t 






 
 )(  

4). 
t

b

t

a
ba

t 












)(  

5). 
t

b
ab

t

a
ba

t 












..).(  

6). 
t

b
ab

t

a
ba

t 












)(  

7). Let f = kfjfif
321

  , where f1, f2, f3are differential scalar functions of more then one 

variable, Then 
t

f
k

t

f
j

t

f
i

t

f



















321 (treating kji ,,  as fixed directions) 

 

 

5. Higher order partial derivatives 

 Let f = f (p,q,t). Then .,

2

2

2

etc
t

f

ptp

f

t

f

tt

f






















































 

6.Scalar and vector point functions: Consider a region in three dimensional space. To each point 

p(x,y,z), suppose we associate a unique real number (called scalar) say . This (x,y,z) is called a 



scalar point function. Scalar point function defined on the region. Similarly if to each point 

p(x,y,z)we associate a unique vector f (x,y,z), f  is called a vector point function. 

Examples: 

 For example take a heated solid. At each point p(x,y,z)of the solid, there will be temperature 

T(x,y,z). This T is a scalar point function. 

 Suppose a particle (or a very small insect) is tracing a path in space. When it occupies a 

position p(x,y,z) in space, it will be having some speed, say, v. This speedv is a scalar point 

function. 

 Consider a particle moving in space. At each point P on its path, the particle will be having a 

velocity v  which is vector point function. Similarly, the acceleration of the particle is also a vector 

point function. 

 In a magnetic field, at any point P(x,y,z) there will be a magnetic force f (x,y,z). This is 

called magnetic force field. This is also an example of a vector point function.  

 

7. Tangent vector to a curve in space. 

 Consider an interval [a,b]. 

Let x = x(t),y=y(t),z=z(t)be continuous and derivable for a t b. 

 Then the set of all points (x(t),y(t),z(t)) is called a curve in a space. 

Let A = (x(a),y(a),z(a)) and B = (x(b),y(b),z(b)). These A,B are called the end points of the curve. If 

A =B, the curve in said to be a closed curve. 

 Let P and Q be two neighbouring points on the curve. 

 Let  

 Then 
t

r




is along the vector PQ. As Q→P, PQ and hence 

t

PQ


 tends to be along the tangent 

to the curve at P. 

Hence  
t

r
lt
t 



 0

= 
dt

rd
 will be a tangent vector to the curve at P. (This 

dt

rd
 may not be a unit vector) 

 Suppose arc length AP = s. If we take the parameter as the arc length parameter, we can 

observe that 
ds

rd
 is unit tangent vector at P to the curve. 

 

VECTOR DIFFERENTIAL OPERATOR 

 Def. The vector differential operator (read as del) is defined as  


z

k
y

j
x

i













. This operator possesses properties analogous to those of ordinary vectors as 

well as differentiation operator. We will define now some quantities known as “gradient”, 



“divergence” and “curl” involving this operator . We must note that this operator has no 

meaning by itself unless it operates on some function suitably. 

 

 

 

GRADIENT OF A SCALAR POINT FUNCTION 

 Let (x,y,z) be a scalar point function of position defined in some region of space. Then the 

vector function 
z

k
y

j
x

i












 
 is known as the gradient of  or  

 = (
z

k
y

j
x

i













) = 

z
k

y
j

x
i













 
 

Properties: 

(1) If f and g are two scalar functions then grad(f g)= grad f  grad g 

(2) The necessary and sufficient condition for a scalar point function to be constant is that f = 


0  

(3) grad(fg) = f(grad g)+g(grad f) 

(4) If c is a constant, grad (cf) = c(grad f) 

(5) grad )0(,
)()(

2


















g

g

ggradffgradg

g

f
 

(6) Let 


r = .



 kzjyix  Then 


 kdzjdyidxrd if  is any scalar point function, then 

dz
z

dy
y

dx
x

d
















   rddzkdyjdxi

z
k

y
j

x
i .. 




























  

DIRECTIONAL DERIVATIVE  

Let (x,y,z) be a scalar function defined throughout some region of space. Let this function have a 

value  at a point P whose position vector referred to the origin O is OP  = r . Let +Δ be the 

value of the function at neighbouring point Q.  If  Δ r . Let Δr be the length of Δ  

gives a measure of the rate at which  change when we move from P to Q. The limiting value  

of is called the derivative of  in the direction of PQ  or simply directional derivative 

of  at P and is denoted by d/dr. 

Theorem 1: The directional derivative of a scalar point function  at a point P(x,y,z) in the 

direction of a unit vector e is equal to e . grad = e . . 

Level Surface 

If a surface (x,y,z)= c be drawn through any point P( r ), such that at each point on it, function has 

the same value as at P, then such a surface is called a level surface of the function  through P. 

e.g : equipotential or isothermal surface. 



Theorem 2:   at any point is a vector normal to the level surface (x,y,z)=c through that point, 

where c is a constant. 

 

 

 

The physical interpretation of  

 The gradient of a scalar function (x,y,z) at a point P(x,y,z) is a vector along the normal to the level 

surface (x,y,z) = c at P and is in increasing direction. Its magnitude is equal to the greatest rate of increase 

of . Greatest value of directional derivative of   at a point P = |grad | at that point.  

SOLVED PROBLEMS 

1:  If a=x+y+z, b= x
2
+y

2
+z

2
 , c = xy+yz+zx, prove that [grad a, grad b, grad c] = 0. 

Sol:- Given a=x+y+z       

There fore 1,1,1 














z

a

y

a

x

a
 

Grad a = a = kji
x

a
i 




  

Given b= x
2
+y

2
+z

2
 

Therefore z
z

b
y

y

b
x

x

b
2,2,2 














 

Grad b = b = kzjyix
z

b
z

y

b
j

x

b
i 222 














 

Again c = xy+yz+zx   

Therefore xy
z

c
xz

y

c
zy

x

c















,,  

Grad c = kyxjxzizy
z

c
z

y

c
j

x

c
i )()()( 














 

[grad a, grad b, grad c] = )(,0222

111

tionsimplificaon

yxxzzy

zyx 



 

[grad a, grad b, grad c] =0 

 

2: Show that [f(r)] = r
r

rf
i

)(
where r = kzjyix  . 

Sol:- Since r = kzjyix  , we have r
2
= x

2
+y

2
+z

2
 

 Differentiating w.r.t. „x‟ partially, we get 

2r
r

z

z

r

r

y

y

r
Similarly

r

x

x

r
x

x

r




















,.2  

[f(r)] =  

































r

x
rfi

x

r
rfirf

z
k

y
j

x
i )()()(

11

 

 =   r
r

rf
xi

r

rf
.

)()(
11

 



Note : From the above result, (log r) = r
r

2

1
 

3: Prove that (r
n
)= nr

n-2
r . 

Sol:- Let  r = kzjyix   and r = r . Then we have r
2
 = x

2
+y

2
+z

2
 Differentiating w.r.t. x partially, 

we have 

2r
r

z

z

r
and

r

y

y

r
Similarly

r

x

x

r
x

x

r




















.2  

(r
n
)= 












)()(

2211
rrnxirn

r

x
nri

x

r
nrir

x
i

nnnnn  

Note : From the above result, we can have 

(1). ,
1

3
r

r

r









  taking n = -1 (2) grad r = 

r

r
, taking n = 1 

4: Find the directional derivative of f = xy+yz+zx in the direction of vector kji 22   at the point 

(1,2,0). 

Sol:- Given f = xy+yz+zx. 

 Grad f = kyxjxzizy
z

f
z

y

f
j

x

f
i )()()( 














 

If e  is the unit vector in the direction of the vector kji 22  , then  

 

  )22(
3

1

221

22

222

kji
kji

e 




  

Directional derivative of f along the given direction  =  

         )0,2,1(.22
3

1
atkyxjxzizykji   

 
 

 

5: Find the directional derivative of the function xy
2
+yz

2
+zx

2
 along the tangent to the curve x =t, y 

= t
2
, z = t

3
 at the point (1,1,1). 

Sol: - Here f = xy
2
+yz

2
+zx

2
 

  f = 
z

f
k

y

f
j

x

f
i














=      kyzxjxyzixzy 222

222
  

 At (1,1,1) ,   f = kji 333   

 Let r  be the position vector of any point on the curve x =t , y = t
2
, z = t

3
. then  

  r  =  kzjyix ktjtit
32

  

  



ktjti

t

r 2
32 )32( kji  at (1,1,1) 

We know that 
t

r




 is the vector along the tangent to the curve. 

Unit vector along the tangent = e

14

32

321

32

22

kjikji
e







  

 

Directional derivative along the tangent = f .e  

  = 
14

1
)32( kji  .3 )( kji 

14

18
)321(

14

3
  



6: Find the directional derivative of the function f = x
2
-y

2
+2z

2
 at the point P =(1,2,3) in the direction 

of the line P Q  where Q = (5,0,4). 

 

Sol:- The position vectors of P and Q with respect to the origin are OP  = kji 32   and  

OQ = ki 45   

 P Q = O Q  – O P  = kji  24  

 Let e  be the unit vector in the direction of PQ . Then  
21

24 kji
e


  

 grad f = 














z

f
k

y

f
j

x

f
i kzjyix 422   

 The directional derivative of f  at P (1,2,3) in the direction of PQ  = e .f 

 = 
21

1
)24( kji  . )422( kzjyix  )28(

21

1
)448(

21

1

)3,2,1(


at
zyx  

 

7: Find the greatest value of the directional derivative of the function f = x
2
yz

3
 at (2,1,-1). 

Sol: we have 

 grad f = 














z

f
k

y

f
j

x

f
i kyzxjzxixyz

22323
32  = kji 1244   at (2,1,-1). 

 Greatest value of the directional derivative of f = 1441616  f = .114  

 

 

8:  Find the directional derivative of xyz
2
+xz at (1, 1 ,1) in a direction of the normal to the surface 

3xy
2
+y= z at (0,1,1). 

Sol:- Let f(x, y, z)  3xy
2
+y- z = 0 

 Let us find the unit normal e to this surface at (0,1,1). Then  

 .1,16,3
2
















z

f
xy

y

f
y

x

f
 

 f = 3y
2
i+(6xy+1)j-k 

 (f)(0,1,1) = 3i+j-k = n  

 e = 
11

3

119

3 kjikji

n

n 





  

 Let g(x,y,z) = xyz
2
+xz,then 

 

 xxy
z

g
xz

y

g
zyz

x

g















2,,

22  

 g=(yz
2
+z)i+xz

2
j+(2xyz+x)k 

 And [g] (1,1,1) = 2i+j+3k 

 Directional derivative of the given function in the direction of e  at (1,1,1) = g. e  

     =(2i+j+3k). 
11

4

11

316

11

3

















  kji
 

9: Find the directional derivative of 2xy+z
2
 at (1,-1,3) in the direction of kji 32  . 



Sol: Let  f = 2xy+z
2
then .2,2,2 z

z

f
x

y

f
y

x

f















 

 grad  f = kzjxiy
x

f
i 222 




  and (grad f)at (1,-1,3)= kji 622   

 given vector is  1494132  akjia  

 Directional derivative of f in the direction of a is 

 
14

20

14

1842

14

).622)(32(.








 kjikji

a

fa

 
 

 

10: Find the directional derivative of  = x
2
yz+4xz

2
 at (1,-2,-1) in the direction 2i-j-2k. 

Sol:- Given  = x
2
yz+4xz

2
 

 .8,,42
222

xzyx
z

zx
y

zxyz
x














 
 

Hence  = )8()42(
222

xzyxkzxjzxyzi
x

i 







 

  at (1,-2,-1) = i(4+4)+j(-1)+k(-2-8)= 8i-j-10k. 

 The unit vector in the direction 2i-j-2k is 

  )22(
3

1

414

.22
kji

kji
a 




  

 Required directional derivative along the given direction = . a  

        = (8i-j-10k). 1/3 (2i-j-2k) 

        = 1/3(16+1+20) = 37/3. 

11: If the temperature at any point in space is given by t = xy+yz+zx, find the direction in which 

temperature changes most rapidly with distance from the point (1,1,1) and determine the maximum 

rate of change. 

Sol:- The greatest rate of increase of t at any point is given in magnitude and direction by t. 

 We have t = )( zxyzxy
z

k
y

j
x

i 



























 

 = kjiyxkxzjzyi 222)()()(  at (1,1,1) 

 Magnitude of this vector is 3212222
222

  

 Hence at the point (1,1,1) the temperature changes most rapidly in the direction given by the 

vector kji 222  and greatest rate of increase = 32 . 

12: Findthe directional derivative of (x,y,z) = x
2
yz+4xz

2
 at the point (1,-2,-1) in the direction of 

the normal to the surface f(x,y,z) = x log z-y
2
 at (-1,2,1). 

Sol:- Given (x,y,z) = x
2
yz+4xz

2
 at (1,-2,-1) and f(x,y,z) = x log z-y

2
 at (-1,2,1) 

 Now  = k
z

j
y

i
x 











 
 

  = kxzyxjzxizxyz )8()()42(
222

  

()(1,-2,-1) = )1()]1(8)2)(1[(])1()1[(])1(4)1)(2)(1(2[
222

 kji  



  = kji 108   

 Unit normal to the surface 

f(x,y,z)= x log z- y
2
 is 

f

f




 

Now f = 














z

f
k

y

f
j

x

f
i k

z

x
jyiz  )2(log  

At (-1,2,1), f =  kjkji 


 4
1

1
)2(2)1log(  

f

f




= 

17

.4

116

.4 kjkj 





 

Directional derivative = .
f

f




 

   = ( kji 108  ). .

17

14

17

104

17

.4





 kj
 

 

13: Find a unit normal vector to the given surface x
2
y+2xz = 4 at the point (2,-2,3). 

Sol:- Let the given surface be f = x
2
y+2xz – 4 

 On differentiating, 

 .2,,22
2

x
z

f
x

y

f
zxy

x

f















 

grad   kxxjzxyi
x

f
if 222

2





   

(grad f) at (2,-2,3) =   kjikji 4424468   

grad (f) is the normal vector to the given surface at the given point. 

Hence the required unit normal vector 
f

f




=

3

22

2212

).22(2

22

kjikji 





 

14: Evaluate the angle between the normal to the surface xy= z
2
 at the points (4,1,2) and (3,3,-3). 

Sol:- Given surface is f(x,y,z) = xy- z
2
 

Let 
1

n  and 
2

n be the normal to this surface at (4,1,2) and (3,3,-3) respectively. 

 Differentiating partially, we get 

 .2,, z
z

f
x

y

f
y

x

f















 

 grad f = kzjxiy 2  

 
1

n = (grad f) at (4,1,2)  = kji 44   

 
2

n = (grad f) at (3,3,-3) = kji 633   

 Let  be the angle between the two normal.  



 cos  = 
   

3699

633
.

16161

44.

21

21










kjikji

nn

nn
 

 
5433

9

5433

)24123( 



 

15: Find a unit normal vector to the surface x
2
+y

2
+2z

2
 = 26 at the point (2, 2 ,3). 

 

Sol:- Let the given surface be f(x,y,z)  x
2
+y

2
+2z

2
 – 26=0. Then 

 

 .4,2,2 z
z

f
y

y

f
x

x

f















 

 grad f = 





x

f
i 2xi+2yj+4zk 

 Normal vector at(2,2,3) = [f ](2,2,3) = 4 i +4 j +12 k  

 Unit normal vector = 
f

f




=

11

3

114

)3(4 kjikji 



 

16: Find the values of a and b so that the surfaces ax
2
-byz = (a+2)x and 4x

2
y+z

3
= 4 may intersect 

orthogonally at the point (1, -1,2). 

(or) Find the constants a and b so that surface ax
2
-byz=(a+2)x will orthogonal to 4x

2
y+z

3
=4 at the 

point (1,-1,2).  

Sol:- Let the given surfaces be f(x,y,z) = ax
2
-byz - (a+2)x-------------(1) 

         And g(x,y,z) = 4x
2
y+z

3
- 4------------(2) 

         Given the two surfaces meet at the point (1,-1,2). 

        Substituting the point in (1), we get 

 a+2b-(a+2) = 0  b=1 

Now  .),2(2 by
z

f
andbz

y

f
aax

x

f















 

 f = 





x

f
i [(2ax-(a+2)]i-bz+bk = (a-2)i-2bj+bk 

    = (a-2)i-2j+k = 
1

n , normal vector to surface 1. 

Also   .3,4,8
22

z
z

g
x

y

g
xy

x

g















 

g = 





x

g
i 8xyi+4x

2
j+3z

2
k 

(g)(1,-1,2) = -8i+4j+12k = 
2

n , normal vector to surface 2. 

Given the surfaces f(x,y,z), g(x,y,z) are orthogonal at the point (1,-1,2). 

     0. gf ((a-2)i-2j+k). (-8i+4j+12k)=0 

-8a+16-8+12  a =5/2 

Hence a = 5/2 and b=1. 

 



17: Find a unit normal vector to the surface z= x
2
+y

2
 at (-1,-2,5) 

Sol:- Let the given surface be f = x
2
+y

2
-z 

 .1,2,2 














z

f
y

y

f
x

x

f
 

 grad f = f = 





x

f
i 2xi+2yj-k 

 (f) at (-1,-2,5)= -2i-4j-k  

 f  is the normal vector to the given surface. 

Hence the required unit normal vector = 
f

f




=

)42(

21

1

21

42

)1()4()2(

42

222

kji
kjikji









 

18: Find the angle of intersection of the spheres x
2
+y

2
+z

2
 =29 and x

2
+y

2
+z

2
 +4x-6y-8z-47 =0 at the 

point (4,-3,2). 

Sol:- Let f =  x
2
+y

2
+z

2
 -29 and g = x

2
+y

2
+z

2
 +4x-6y-8z-47 

 Then grad f= 














z

f
k

y

f
j

x

f
i kzjyix 222   and 

 grad g = kzjyix )82()62()42(   

 The angle between two surfaces at a point is the angle between the normal to the surfaces 

at that point. 

 Let 
1

n = (grad f) at (4,-3,2)  =8 kji 46   

 
2

n = (grad f) at (4,-3,2) = kji 41212   

 The vectors 
1

n  and 
2

n are along the normal to the two surfaces at (4,-3,2). Let θ be the angle 

between the surfaces. Then  

Cos θ=
304116

152
.

.

21

21


nn

nn

 


















29

19
cos

1
  

19: Find the angle between the surfaces x
2
+y

2
+z

2
 =9, and z = x

2
+y

2
- 3 at point (2,-1,2). 

Sol:- Let 1 = x
2
+y

2
+z

2
 -9=0 and 2= x

2
+y

2
-z- 3=0 be the given surfaces. Then  

 1= 2xi+2yj+2zk and 2 = 2xi+2yj-k 

Let 
1

n = 1 at(2,-1,2)=  4i-2j+4k  and  

 
2

n = 2 at (2,-1,2) = 4i-2j-k 

The vectors 
1

n  and 
2

n are along the normals to the two surfaces at the point (2,-1,2). Let θ be the 

angle between the surfaces. Then 



 Cos θ =  
213

8

216

16

216

4416

16416

)24(
.

16416

)424(

21

21














kjikji

nn

nn
 

 













213

8
cos

1
 . 

 

 

20: If  a  is constant vector then prove that grad ( a . r )= a  

Sol: Let a = kajaia
321

 , where a1,a2,a3 are constants. 

a . r = ( kajaia
321

 ).( )kzjyix  = zayaxa
321

  

321
).(,).(,).( ara

z
ara

y
ara

x















 

grad ( a . r )= kajaia
321

 = a  

21: If  =  kxyjzxiyz  , find . 

Sol:- We know that = 
z

f
k

y

f
j

x

f
i














 

 Given that =  kxyjzxiyz   

Comparing the corresponding coefficients, we have xy
z

zx
y

yz
x














 
,,  

 Integrating partially w.r.t. x,y,z, respectively, we get 

= xyz + a constant independent of x. 

= xyz + a constant independent of y. 

= xyz + a constant independent of z. 

Here a possible form of  is = xyz+a constant. 

 

DIVERGENCE OF A VECTOR 

 Let f be any continuously differentiable vector point function. Then 
z

f
k

y

f
j

x

f
i














... is 

called the divergence of f and is written as div f . 

 i.e., div f =
z

f
k

y

f
j

x

f
i














... = f

z
k

y
j

x
i .




























 

 Hence we can write div f as  

 div f = . f  

 This is a scalar point function. 

Theorem 1: If the vector f = kfjfif
321

 , then div f  =  
z

f

y

f

x

f














321  

Prof:  Given f = kfjfif
321

  

 

x

f
k

x

f
j

x

f
i

x

f



















321  



Also 
x

f

x

f
i









1

. . Similarly 
y

f

y

f
j









2

. and 
z

f

z

f
k









3

.  

We have div f = 



















x

f
i .

z

f

y

f

x

f














321  

Note : If f  is a constant vector then 
z

f

y

f

x

f












321

,, are zeros. 

 div f =0 for a constant vector f . 

 

Theorem 2: div ( gf  ) = gdivfdiv   

Proof: div ( gf  )=  gf
x

i 




 .  =    g
x

if
x

i









 .. = gdivfdiv  . 

Note: If  is a scalar function and f  is a vector  function, then 

(i).  








































z
k

y
j

x
iaa .).(  

 = 























z
ka

y
ja

x
ia ).().().(  

 = 























z
ka

y
ja

x
ia


).().().(  

 = .).(
x

ia







 and 

(ii). fa ).(  = .).(
x

f
ia





 by proceeding as in (i) [simply replace  by f  in (i)]. 

 

SOLENOIDAL VECTOR 

 

 A vector point function f  is said to be solenoidal if div f =0. 

 

Physical interpretation of divergence: 

 Depending upon f  in a physical problem, we can interpret div f  (= . f ). 

 Suppose F (x,y,z,t) is the velocity of a fluid at a point(x,y,z) and time „t‟. Though time has 

no role in computing divergence, it is considered here because velocity vector depends on time. 

 Imagine a small rectangular box within the fluid as shown in the figure. We would like to 

measure the rate per unit volume at which the fluid flows out at any given time. The divergence of 

F  measures the outward flow or expansions of the fluid from their point at any time. This gives a 

physical interpretation of the divergence. 

 Similar meanings are to be understood with respect to divergence of vectors f from other 

branches. A detailed elementary interpretation can be seen in standard books on fluid dynamics, 

electricity and magnetism etc. 

 

SOLVED PROBLEMS 

 

1: If f = kyzjyzxixy
222

32   find div f  at(1, -1, 1). 



Sol:- Given f = kyzjyzxixy
222

32  .  

Thendiv f = 
z

f

y

f

x

f














321 = 














)3()2()(

222
yz

z
yzx

y
xy

x
y

2
+2x

2
z-6yz 

(div f ) at (1, -1, 1) = 1+2+6 =9 

 

 

2: Find div f when grad(x
3
+y

3
+z

3
-3xyz) 

Sol:- Let = x
3
+y

3
+z

3
-3xyz.  

Then  xyz
z

zxy
y

yzx
x

33,33,33
222














 
 

 grad   =
z

k
y

j
x

i












 
 = 3 ])()()[(

222
kxyzjzxyiyzx   

 div f =
z

f

y

f

x

f














321 = )](3[)](3[)](3[

222
xyz

z
zxy

y
yzx

x















 

 = 3(2x)+3(2y)+3(2z) = 6(x+y+z) 

3: If  f = kpzxjzyiyx )()2()3(   is solenoidal, find P. 

Sol:- Let f = kpzxjzyiyx )()2()3(  = kfjfif
321

  

 We have p
z

f

y

f

x

f















321

,1,1  

  div f =
z

f

y

f

x

f














321 = 1+1+p =2+p 

 since  f  is solenoidal, we have div  f  = 0 202  pp  

 

4: Find div f = .rr
n Find n if it is solenoidal? 

Sol: Given f = .rr
n where  rrandkzjyixr   

 We have r
2
 = x

2
+y

2
+z

2
 

 Differentiating partially w.r.t. x , we get 

  

 ,22
r

x

x

r
x

x

r
r 









 

 Similarly 
r

z

z

r
and

r

y

y

r










 

f =r
n
 ( )kzjyix   

 

div f =  )()()( zr
z

yr
y

xr
x

nnn














 

 = nnnnnn
rz

z

r
nrry

y

r
nrrx

x

r
nr 













  111  

 =
 

r

r
nrr

r

z

r

y

r

x
nr

nnn

2

1

222

1
3












 +3r

n
 = nr

n
+3r

n
= (n+3)r

n
 

 Let  f = rr
n

 be solenoidal. Then div f = 0 



 (n+3)r
n
 = 0   n= -3  

 

5: Evaluate . 








3
r

r
where rrandzkyjxir  . 

Sol:- We have 

 r  = xi+yj+zk and r = 222
zyx   

  

 

 ,
r

x

x

r






r

z

z

r
and

r

y

y

r










,  

 
3

r

r
 = .r  r

-3
 = r

-3
xi+r

-3
yj+r

-3
zk = f1i+f2j+f3k 

 Hence . 








3
r

r
=

z

f

y

f

x

f














321  

 We have f1= r
-3 

x
x

r
rxr

x

f











.)3(1.
431

 
523431

33






 rxr

y

x
xrr

x

f
 

  . 








3
r

r
= 






 2531
33 xrr

x

f
 

 = 3r
-3

-3r
-5 

r
2
 = 3r

-3
-3r

-3
 =0 

6: Find div r where r = kzjyix   

Sol:- We have r = kzjyix  = kfjfif
321

  

 div r = 
z

f

y

f

x

f














321 = 3111)()()( 














z

z
y

y
x

x  

 

CURL OF A VECTOR 
 

Def: Let f  be any continuously differentiable vector point function. Then the vector function 

defined by 
z

f
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y

f
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f
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 is called curl of f  and is denoted by curl f  or (x f ). 

Curl f  =  

































x

f
i

z

f
k

y

f
j

x

f
i  

Theorem 1: If f  is differentiable vector point function given by f = kfjfif
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  then curl f  = 
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Proof : curl f  =   
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Note : (1) The above expression for curl f  can be remembered easily through the representation.  

 curl f  = 

321
fff

zyx

kji












 =x f  

 Note (2)  : If f  is a constant vector then curl f = o . 

Theorem 2:  curl   bcurlacurlba   

Proof:  curl    ba
x

iba 



   

  = 























x

b

x

a
i = 











x

b
ix

x

a
i  

  = bcurlacurl   
 

1. Physical Interpretation of curl 

  If w is the angular velocity of a rigid body rotating about a fixed axis and v is the 

velocity of any point P(x,y,z) on the body, then w  = ½ curl v . Thus the angular velocity of rotation 

at any point is equal to half the curl of velocity vector. This justifies the use of the word “curl of a 

vector”.  

2. Irrotational Motion, Irrotational Vector 

 Any motion in which curl of the velocity vector is a null vector i.e curl v = 0  is said to be 

Irrotational. 

Def: A vector f  is said to be Irrotational if curl f  = 0 . 

 If f is Irrotational, there will always exist a scalar function (x,y,z) such that f =grad . 

This is called scalar potential of f . 

It is easy to prove that, if f  = grad , then curl f = 0. 

Hence x f  = 0  there exists a scalar function  such that f = . 

This idea is useful when we study the “work done by a force” later. 

 

 

SOLVED PROBLEMS 

 

1: If f = kyzjyzxixy
222

32  find curl f at the point (1,-1,1). 

Sol:- Let f = kyzjyzxixy
222

32  . Then  

 curl f = x f = 

222
32 yzyzxxy
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kji
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=          kxyxyziyxzxyxyzkjzxzi 2423240023
2222

  

= curl f  at (1,-1,1) = .2 ki   

 

 

2: Find curl f  where f = grad(x
3
+y

3
+z

3
-3xyz) 

Sol:- Let = x
3
+y

3
+z

3
-3xyz. Then  

grad = kxyzjzxyiyzx
x

i )(3)(3)(3
222









 

curl grad = x grad = 3

xyzzxyyzx

zyx

kji
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   =       0][3  zzkyyjxxi  

   curl f = 0 . 

Note: We can prove in general that curl (grad )= 0 .(i.e) grad  is always irrotational. 

 

3: Prove that if r is the position vector of an point in space, then r
n

r is Irrotational. (or) Show that  

curl  

Sol:- Let r = kzjyix   and r = r r
2
= x

2
+y

2
+z

2
. 

 

 Differentiating partially w.r.t. „x‟, we get 
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 [ 0 ]= 0  

Hence r
n

r is Irrotational. 



 

4: Prove that curl r = 0  

Sol:- Let r = kzjyix   

 curl r =    



 )( ixir

x
i 0 + 0 + 0 = 0  

  r  is Irrotational vector. 

5: If a is a constant vector, prove that curl )..(
3
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Sol:- We have r = kzjyix   
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Let a = kajaia
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 . Then i . a = a1 , etc. 
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6: Show that the vector kxyzjzxyiyzx )()()(
222
  is irrotational and find its scalar 

potential. 

Sol: let f = kxyzjzxyiyzx )()()(
222
  

 Then curl f =

xyzzxyyzx

zyx

kji
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 f  is Irrotational. Then there exists  such that f =. 
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Comparing components, we get 
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From (1), (2),(3),  xyz
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Which is the required scalar potential. 

 

7: Find constants a,b and c if the vector f = kzcyxjzybxiazyx )32()32()32(   is 

Irrotational. 

 

Sol:- Given f = kzcyxjzybxiazyx )32()32()32(   

 Curl f =  

zcyxzybxazyx

zyx

kji

323232 












= kbjaic )3()2()3(   

 

If the vector is Irrotational then curl f = 0  

303,303,202  ccbbaa  

8: If f(r) is differentiable, show that curl { r f(r)} = 0  where r  = kzjyix  . 

Sol: r = r =
222

zyx   
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 = x

2
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= 0 . 

 

9: If A  is irrotational vector, evaluate div( A x r ) where r  = kzjyix  . 

Sol:We have r  = kzjyix   

Given A  is an irrotational vector 

x A  = 0  

div ( A x r ) = .( A x r ) 

 = r .(x A )- A .(x r ) 

 = r .( 0 )- A .(x r )   [ using (1)] 

 = - A .(x r )…..(2) 

 

Now  x r = 
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kji
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 A .(x r )=0 …(3) 

 

Hence div ( A x r )=0.  [using (2) and (3)] 

 

 

10:  Find constants a,b,c so that the vector A = kzcyxjzybxiazyx )24()3()2(   is 

Irrotational. Also find  such that A = . 

 

Sol: Given vector is A = kzcyxjzybxiazyx )24()3()2(   

 Vector A  is Irrotational  curl A  =  0  

 

 0

2432
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 0)2()4()1(  kbjaic  

 kbjaic )2()4()1(  = kji 000   

Comparing both sides, 

c+1=0, a-4=0, b-2=0 

c= -1, a=4,b=2 

Now A = kzyxjzyxizyx )24()32()42(  , on substituting the values of a,b,c  

we have  A = . 

 A = kzyxjzyxizyx )24()32()42(  = 
z

k
y

j
x

i












 
 

Comparing both sides, we have 






x


x+2y+4z = x

2
/2+2xy+4zx+f1(y,z) 








y


2x-3y-z = 2xy-3y

2
/2-yz+f2(z,x) 






z


4x-y+2z = 4xz-yz+z

2
+f3(x,y) 

Hence = x
2
/2 -3y

2
/2+z

2
+2xy+4zx-yz+c 

11: If  is a constant vector, evaluate curl V where V = x r .  

 

Sol: curl (x r ) =  



 )( r

x
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 =  ])..().()([]0[ cbabcacbaii   

 =     23).(]).().([)( iiiiiiii  

 

 

 

Assignments 

1. If f  = e
x+y+z

)( kji   find curl f .  

2. Prove that f  = kyxjxzizy )()()(   is irrotational. 

3. Prove that .( a f )= a  . curl f  where a is a constant vector. 

4. Prove that curl ( a r )=2 a  where a  is a constant vector. 

5. If f = kyzjzxiyx 22
2

 find (i) curl f  (ii) curl curl f . 

 

OPERATORS 
 

Vector differential operator  

 The operator  = 
z

k
y

j
x

i













 is defined such that = 

z
k

y
j

x
i













 
 where  is a 

scalar point function. 

Note: If  is a scalar point function then = grad = 




x
i


 

(2) Scalar differential operator a . 

The operator a . = 
z
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y

ja
x

ia












 
).().().(  is defined such that 

( a .)=
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y
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x

ia












 
).().().(  

And ( a .) f =
z

f
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y

f
ja

x

f
ia














).().().(  

(3). Vector differential operator a x 

The operator a x= 
z
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y

ja
x

ia













 )()()( is defined such that  

(i). ( a x)=
z
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y

ja
x

ia
















)()()(  

(ii). ( a x). f =
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f
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f
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x

f
ia














 ).().(.)(  



(iii). ( a x)x f =
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f
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f
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 )()()(  

(4). Scalar differential operator . 

            The operator  = 
z

k
y

j
x

i













... is defined such that . f =

z

f
k

y

f
j

x

f
i














...  

Note: . f  is defined as div f . It is a scalar point function. 

(5). Vector differential operator  x 

The operator  x = 
z

k
y

j
x

i













 is defined such that 

 x f = 
z

f
k

y

f
j

x

f
i














  

Note : x f  is defined as curl f . It is a vector point function. 

(6). Laplacian Operator 
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Thus the operator 
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2

2

2

2
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 is called Laplacian operator. 

Note : (i). 
2
= .() = div(grad ) 

 (ii). If 
2
=0 then  is said to satisfy Laplacian equation. This  is called a harmonic 

function. 

 

 

SOLVED PROBLEMS 

 

1: Prove that div.(grad r
m
)= m(m+1)r

m-2
 (or) 

2
(r

m
) = m(m+1)r

m-2
 (or) 

2
(r

n
) = n(n+1)r

n-2
 

Sol: Let kzjyixr   and r = r  then r
2
 = x

2
+y

2
+z

2
. 

Differentiating w.r.t. ‟x‟ partially, wet get 2r
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 Hence 
2
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2: Show that 
2
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 where r = r . 



Sol: grad [f(r)] = f(r)= 
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 div [grad f(r)] = 
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3: If  satisfies Laplacian equation, show that  is both solenoidal and irrotational. 

Sol: Given 
2
 = 0 div(grad )= 0  grad  is solenoidal 

We know that curl (grad ) = 0 grad  is always irrotational. 

 

4:Show that (i) ( a .)= a . (ii) ( a .) r = a . 

Sol: (i). Let a  = kajaia
321

 . Then  

 a .= ( kajaia
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Hence  ( a .)= a . 

(ii). r  = kzjyix   
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5: Prove that (i) ( f x). r =0      (ii). ( f x)x r = f2  



Sol: (i) ( f x). r =
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6: Find div F , where F = grad (x
3
+y

3
+z

3
-3xyz)  

Sol:  Let = x
3
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3
+z

3
-3xyz. Then  

 F = grad  
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222
 = )(

321
saykFjFiF   

   div F =
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321 = 6x+6y+6z= 6(x+y+z) 

 i.e div[grad(x
3
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3
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2
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7: If  f= (x
2
+y

2
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2
)

-n
  then find div grad f and determine n if div grad f= 0. 
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2
f(r)= f

11
(r)+

2
/rf

1
(r)= (2n)(2n+1)r

-2n-2
 -4n r

-2n-2
 

   = r
-2n-2

[2n(2n+1-2)]= (2n)(2n-1)r
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If div grad f(r) is zero, we get n = 0 or  n = ½ . 

 

8: Prove that x
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Sol:   We have r  = kzjyix  and  r = r  = 
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Hence the result. 

 

 

VECTOR IDENTITIES 

 

Theorem 1: If a  is a differentiable function and  is a differentiable scalar function, then prove 

that div( a )= (grad ). a + div a  or .( a )= (). a +(. a ) 

Proof: div( a )=.( a )=  a
x

i 
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Theorem 2:Prove that curl ( a )= (grad )x a + curl a  

Proof : curl ( a )=x( a )=
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  = x a +(x a )=(grad )x a + curl a  

Theorem 3: Prove that grad ( a . b )= bcurlaacurlbbaab  ).().(  

Proof: Consider 
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 Similarly,  
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(1)+(2) gives 
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     = ( a . b )=grad ( a . b ) 

Theorem 4: Prove that div ( )a b = bcurlaacurlb ..   

Proof: div ( )a b   
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  = abba ).().(  = bcurlaacurlb ..   

 

 

Theorem 5 :Prove that ( ) ( . ) ( . )c u r l a b a d iv b b d iv a b a a b        

P r : ( ) ( )
a b

o o f cu r l a b i a b i b a
x x x

   
         

   
   



 
a b

i b i a
x x

   
      

    
   

( . ) . . ( . )
a a b b

i b i b i a i a
x x x x

         
        

          

   

( . ) . . .
a a b

b i i b i a a i b
x x x x

       
       

       
     

( . ) ( . ) ( . ) ( . )b a a b b a a b         

baabbaab ).().().().(   

baabadivbbdiva ).().(   

Theorem 6: Prove that curl grad  = 0. 

Proof: Let  be any scalar point function. Then  

 
z

k
y

j
x

igrad
















.

 

( )

i j k

c u r
x y z

l g r a d

x y z



  

  


  

  

  

 

=

2 2 2 2 2 2

0i j k
y z z y x z z x x y y x

               
          

                
 

Note : Since ( ) 0C u r l g r a d   , we have g ra d   is always irrotational. 

7. Prove that div 0curl f   

 

kfjfiffLetoof
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1 2 3

i j k

c u r l f f
x y z

f f f

  
    

    

 

 3 32 1 2 1
f ff f f f

i j k
y z x z x y

        
         

         

 

 

3 32 1 2 1
.( )

f ff f f f
d iv cu r l f f

x y z y x z z x y

          
              

            

 

0
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2

2
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2

3

2

2
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3
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yz

f

xz

f

zy

f

xy

f

zx

f

yx

f

 

Note : Since ( ) 0 ,d iv c u r l f   we have c u r l f  is always solenoidal. 



 
 

Theorem 8: If f and g are two scalar point functions, prove that div(fg)= f
2
g+f. g   

Sol: Let f and g be two scalar point functions. Then  

z

g
k

y

g
j

x

g
ig














  

Now  fg 
z

g
fk

y

g
fj

x

g
fi














  

 ∴.(fg) 
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g
f

zy

g
f

yx

g
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z

g

z

f

y

g

y

f

x

g

x

f

x

g

y

g

x

g
f ...

2

2

2

2

2

2

 

 =f
2
g+ .





























z

f
k

y

f
j

x

f
i .





























z

g
k

y

g
j

x

g
i  

 = f
2
g+f. g   

 

Theorem 9: Prove that x(x a )= (. a )-
2

a . 

Proof: x(x a ) = ( )i a
x


  


  

Now ( )
a a a

i a i i j k
x x x y z

     
          
     

 

 

2 2 2

2

a a a
i i j k

x x y x z

   
       

     

 

 

2 2 2

2

a a a
i i i j i k

x x y x z
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 kijiiik

zx

a
ij

yx

a
i

x

a
i

x

a
i   

 =
2 2

2 2
. . . .

a a a a a a
i i j i k i i

x x y y z x x x x

              
           

              

 

 

2 2 2 2

2 2 2 2
( ) . ( . )

a a a a a
i a i a

x x x x y z

      
             

      
    

  x(x a )= (. a )-
2

a  

i.e., c u r lc u r l a g r a d
2

d iv a a   

 

SOLVED PROBLEMS 

 



 1: Prove that (f xg)is solenoidal. 

Sol:  We know that div ( a x b ) = bcurlaacurlb ..   

Take a=f and b= g 

Then div (f x g) = g. curl (f) - f. curl (g)=0 ( ) 0 ( )cu r l f cu r l g    
 
  

f g    is solenoidal. 

 

2:Prove that (i)  ( ) 2 ( . )d iv r a b b a    (ii)  ( . )cu r l r a b b a   where a  and b  are constant 

vectors. 

Sol: (i)  

   [( . ) ( .. ) ]d iv r a b d iv r b a a b r     

    

  rbaabrdiv )..().(   

 

        . . . . . .r b d iv a a g ra d r b a b d iv r r g ra d a b      
   

 

0).(,3,0  bagradrdivadivhaveWe  

      

   

 

   

   

 

0 . . 3 .

. . 3 .

. . 3 .

. . 3 .

. 3 . 2 .

2 .

d iv r a b a g r a d r a a a

i
a r b a b

x

r
a i b a b

x

a i i b a b

a b a b a b

b a

    


 




 



 

   

 







 

(ii)       . .c u r l r a b c u r l r b a a b r    
 

 

   

   

   

. .

. .

0 . 0

c u r l r b a c u r l a b r

r b c u r l a g ra d r b a

r b a c u r l a

 

  

    

 

b a    Since  .g ra d r b = b  

3: Prove that .
2

.
3

r
rr

r 











  

Sol: We have 




















 

r

r

x
i

r

r
..  

 =
2 3

1 1 1
. .

r x r
i r i i x

r x r r r r

       
          

       

 

 =
rrr

r
r

ii
r

2131
.

1 2

3
  

 





 .
r

r

  
     

  

2
i

x r

   
  

   
 =

2 3 3

2 2 2
.

x r
i x i

r r r r

     
     

   
  

 

 

 

 

 

 

4: Find (Ax), if A = yz
2

i - 3xz
2

j +2xyz k and  = xyz. 

 

Sol : We have 

 

Ax= 
2 2

3 2

i j k

y z x z x y z

x y z



  

  

 

 

= 2 2 2 2
( 3 ) (2 ) ( ) (2 ) ( ) ( 3 )i xz xyz j yz xyz k yz xz

x y z x y x

         
          

         

 

= i (-6xz-2xz)- j (2yz-2yz)+ k (z
2
+3z

2
)= -8xz i -0 j +4z

2
k  

 (Ax), = (-8xz i +4z
2

k )xyz = -8x
2
yz

2
i +4xyz

3
k  

 

Vector Integration 

 

Line integral:- (i)


 rdF

c

. is called Line integral of 


F  along c  

Note : Work done  by


F along a curve c is 


 rdF

c

.  

 

 

PROBLEMS 

 

1. If 


F (x
2
-27) 



i -6yz 


j +8xz
2 



k , evaluate  d


r from the point (0,0,0) to the point (1,1,1) along the 

Straight line from (0,0,0) to (1,0,0), (1,0,0) to (1,1,0) and (1,1,0) to (1,1,1). 

Solution : Given 


F = (x
2
-27)



i  -6yz


j +8xz
2



k  

Now  r = ix + jy + kz  rd d x i + jyd + kdz  



F . rd  = (x
2
-27)dx – (6yz)dy +8xz

2
dz 

 

(i) Along the straight line from O = (0,0,0) to A = (1,0,0) 

Here y =0 =z and dy=dz=0. Also x changes from 0 to 1. 







O A

  



F . rd = 

1

o

(x
2
-27)dx = 

1

0

3

27
3










 x

x
= 

3

80
27

3

1 
  

 

(ii) Along the straight line from A = (1,0,0) to B = (1,1,0) 

Here x =1, z=0   dx=0, dz=0. y changes from 0 to 1. 

A B

  


F . rd = 




1

0

0)6(

y

dyyz  

(iii) Along the straight line from B = (1,1,0) to C = (1,1,1) 

x =1 =y 


 dx=dy=0 and z changes from 0 to 1. 

B C

  



F . rd = 




1

0

2
8

z

dzxz 




1

0

2
8

z

dzxz

3 1

0

8 8

3 3

z 
 

 

 



C

iiiiii )()()(



F . rd  = 
3

88
 

2. If 


F =(5xy-6x
2
)



i +(2y-4x)


j , evaluate 
C



F . rd  along the curve C in xy-plane y=x
3
from (1,1) to 

(2,8). 

Solution : Given 


F =(5xy-6x
2
)



i +(2y-4x)


j ,-------(1) 

Along the curve y=x
3
, dy =3x

2
 dx 



F =(5x
4
-6x

2
)



i +(2x
3
-4x)



j , [Putting y=x
3
 in (1)] 

           d r = idx + jdy = idx  +3x
2
dx 



j  

.



F d r = [(5x
4
-6x

2
)



i +(2x
3
-4x)



j ]. 2
 d x 3 x d x ji







 
 

 

= (5x
4
 – 6x

2
) dx+(2x

3
 – 4x)3x

3
dx 

 = (6x
5
+5x

4
-12x

3
 -6x

2
)dx 

Hence 


3
xy



F . rd =  

2

1

2345
)61256( dxxxxx  

=  
6 5 4 3

2
6 5 4 3

1

6 . 5 . 1 2 . 6 . 3 2
6 5 4 4

x x x x
x x x x

 
       

 

 

 = 16(4+2-3-1) – (1+1-3-2) = 32+3 = 35 

3. Find the work done by the force 


F  = iz + jx + ky , when it moves a particle along the arc of the 

curve 


r  = cost 


i  + sint j -t k from t = 0 to t = 2  

Solution : Given force 


F  = z


i + x j  +y k and the arc is 


r  = cost 


i  + sin t j -t k  



i.e., x = cost, y= sin t, z = -t 

 d r = (-sin t 


i  +cost j - k )dt 

 .



F d r = (-t 


i +cost j +sin t k ). (-sin t 


i  + cost j - k )dt = (t sin t + cos
2
 t – sin t)dt 

Hence work done = 

2

0

  .



F d r  = 

2

0

  (t sin t + cos
2
 t – sin t ) dt 

  =  

2 2 2

2

0

0 0 0

1 co s 2
( co s ) ( s in ) s in

2

t
t t t d t d t t

  

 
       dt  

  =  







2

0

2

0

2

0
cos

2

2sin

2

1
)(cos2 t

t
tt 








  

  =   2)11()2(
2

1
)11(2   

PROBLEMS 

 

1 : Evaluate F.n d S  where F  = zi + xj  3y
2
zk and S is the surface x

2
 + y

2
 = 16 included in the 

first octant between z = 0 and z = 5. 

Sol.   The surface S is x
2
 + y

2
 = 16 included in the first octant between z = 0 and z = 5. 

Let  = x
2
 + y

2
 = 16 

Then    = i j k 2 x i 2 y j
x y z

  
   

  
 

   unit normal  
2 2

x i y j
n   (  x  +  y  =  1 6 )

4

  
 

 
  

Let R be the projection of S on yz-plane 

Then  
S

F.n d S  = 
R

d yd z
F.n

n  . i
  ……………. * 

Given  F  = zi + xj   3y
2
zk 

 
1

F  . n ( x z x y )
4

   

and  
x

n  . i
4

  

In yz-plane, x = 0, y = 4 

In first octant, y varies from 0 to 4 and z varies from 0 to 5. 

 
S

F.n d S  = 
4 5

z 0y 0

x z x y d yd z

x4

4



 
 
 

   



   = 
4 5

z 0y 0

( y z ) d z  d y


   

   = 90. 

2 : If F  = zi + xj   3y
2
zk, evaluate 

S

F.nd S where S is the surface of the cube bounded by x = 

0, x = a, y = 0, y= a, z = 0, z = a. 

Sol.  Given that S is the surface of the x = 0, x = a, y = 0, y = a, z = 0, z = a,  and F  = zi + xj   

3y
2
zk we need to evaluate

S

F.nd S . 

O A

S
R

Q

y

C

P

B

X

 

(i) For OABC 

Eqn is z = 0 and dS = dxdy 

 n  k   

S
1

F.nd S  = 
a

x 0

 
a

y 0

  (yz) dxdy = 0 

(ii) For PQRS 

Eqn is z = a and dS = dxdy 

n  k  

2
S

F.n d S  =  
4

aa

x 0 y 0

a
y (a )d y  d x

2 

   

(iii) For OCQR 

Eqn is x = 0,  and n  i  , dS = dydz 

3
S

F.n d S  = 
aa

z 0y 0

4 x z d yd z  0


   

(iv) For ABPS 

Eqn is x = a,  and n  i  , dS = dydz 

3
S

F.nd S  =  
aa

4

z 0y 0

4 a z d z d y  2 a


   

 



(v) For OASR 

Eqn is y = 0,  and n  j  , dS = dxdz 

5
S

F.n d S  = 
aa

2

z 0y 0

y d z d x 0


   

(vi) For PBCQ 

Eqn is y = a,  and n  j  , dS = dxdz 

6
S

F.nd S  = 
aa

2

z 0y 0

y d z d x 0


   

From (i) – (vi) we get 

6
S

F.nd S  = 0 + 

4

a

2
 + 0 + 

4

2 a  + 0   a4 = 

4

3a

2
 

VOLUME INTEGRALS 

Let V be the volume bounded by a surface 


 fr (u,v). Let 


F (


r ) be a vector point function define 

over V. Divide V into m sub-regions of volumes 
mp

VVVV  ....,....,
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Let Pi (


r i ) be a point in i
V .Then form the sum Im = 

1

( ) .

m

i i

i

F r V





  Let m   in such a way that 

i
V shrinks to a point,. The limit of Im if it exists, is called the volume integral of 



F (


r ) in the 

region V is denoted by dvrF

V



 )( or .dvF

V




 

Cartesian form : Let   1 2 3
F r F i F i F k

   

   where F1, F2, F3 are functions of x,y,z. We know that  

dv = dx dy dz. The volume integral given by 

1 2 3
( )

v

F d v F i F i F k

   

      dx dy dz = 
1

i F



   dxdydz +
2

j F



   dxdydz +
3

k F



   dxdydz 

 

 



 

 

Vector Integral Theorems 
 

Introduction  

 

In this chapter we discuss three important vector integral theorems: (i) Gauss divergence 

theorem, (ii) Green‟s theorem in plane and (iii) Stokes theorem. These theorems deal with 

conversion of  

(i) 
S



nF . ds into a volume integral where S is a closed surface. 

(ii) 
C



rdF .  into a double integral over a region in a plane when C is a closed curve in 

the plane and. 



(iii) 
S

( )A



  .


n ds into a line integral around the boundary of an open two sided 

surface. 
 

I. GAUSS’S DIVERGENCE THEOREM 

(Transformation between surface integral and volume integral) 

 Let S be a closed surface enclosing a volume V. If 


F is a continuously differentiable vector 

point function, then 

.

V s

d iv F d v F n

 

   dS 

When 


n is the outward drawn normal vector at any point of S. 

 

 
 

SOLVED PROBLEMS 

 

1) Verify Gauss Divergence theorem for  taken over the surface of 

the cube bounded by the planes x = y = z = a and coordinate planes.  

Sol: By Gauss Divergence theorem we have 

.

S V

F nd S d iv F d v   

 

 
3 3 3 3 5

2 3

0

0 0 0 0

( )
3 3 3 3 3

a a a a

aa a a a a
a d yd z a y d z a a d z a a a

       
              

       
    ……(1) 

Verification: We will calculate the value of .

S

F nd S  over the six faces of the cube. 

(i) For S1 = PQAS; unit outward drawn normal  

x=a; ds=dy dz; 0≤y≤a, 0≤z≤a  

  

3 3
. s inF n x y z a y z c e x a       

1

3

0 0

. (a )

a a

S z y

F nd S y z d y d z

 

       

 

 

 



(ii) For S2 = OCRB; unit outward drawn normal  

x=0; ds=dy dz; 0≤y≤a, y≤z≤a  

 

 

 

(iii) For S3 = RBQP; Z = a; ds = dxdy;  

0≤x≤a, 0≤y≤a  

 

3

3

0 0

. . . . .( 4 )

a a

S y x

F nd S a d x d y a

 

       

(iv) For S4 = OASC; z = 0; , ds = dxdy; 

0≤x≤a, 0≤y≤a  

 

 

(v) For S5 = PSCR; y = a; , ds = dzdx; 

0≤x≤a, 0≤z≤a  

 

 

2

0

0

( 2 )

a

a

z

x

a x z d x




  

 

(vi) For S6 = OBQA; y = 0; , ds = dzdx; 

0≤x≤a, 0≤y≤a  

 

 

 



 

 

 

 

2.Compute over the surface of the sphere x
2
+y

2
+z

2
 = 1 

Sol: By divergence theorem .

S

F nd S =  

 

  

 
2 2 2

1 2 ( )V i j k x y z x i y j z k
x y y


   

         
   

 

  Unit normalvector = n =
2 2 2

2 ( )

2

x i y j z k
x i y j z k

x y z

 
  

 

 Since 2 2 2
x y z  =1 

 .F n =
2 2 2

.( ) ( ) (a ) .( )F x i y j z k a x b y c z x i b y j c z k x i y j z k           

i.e., F a x i b y j c z k   .F a b c     

Hence by Gauss Divergence theorem,  

 

 

 

3)By transforming into triple integral, evaluate  where S is 

the closed surface consisting of the cylinder x
2
+y

2
 = a

2
 and the circular discs z= 0 , z= b.  

Sol: Here  

2 2 231 2
3 , ,

FF F
x x x

x y z

 
  

  
 

2 2 2 231 2
. 3 5

FF F
F x x x x

x y z

 
       

  
 



 

 

By Gauss Divergence theorem,  

31 2

1 2 3

FF F
F d yd z F d zd x F d xd y d xd yd z

x y z

  
     

   
      

3 2 2 2
( 5

s

x d yd z x yd zd x x zd xd y x d xd yd z         

2 2

2 2

2

0

5

a a x b

a zy a x

x d xd yd z



   

     

2 2

2

0 0 0

2 0

a a x b

z

x d x d y d z





    [Integrand is even function] 

 

 

 

[Put sin cosx a dx a d      when 
2

x a


   and 0 0 ]x     



  =  

 

 

4: Applying Gauss divergence theorem, Prove that  

Sol: Let  we know that div  

By Gauss divergence theorem, .

v

F nd S d iv F d v   

 

 

5: Show that where S is the surface of the sphere 

x
2
+y

2
+z

2
=1.  

Sol: Take  

31 2
FF F

d iv F
x y

a
z

b c
 

   
 

 


 

By Gauss divergence theorem,  

 

4
. ( )

3
s

F nd S a b c


     

6: Using Divergence theorem, evaluate  

x
2
+y

2
+z

2
=a

2
 

Sol: We have by Gauss divergence theorem, .

s v

F nd S d iv F d v   

L.H.S can be written as  in Cartesian form  

Comparing with the given expression, we have F1=x, F2=y, F3=z 

Then 31 2
3

FF F
d iv F

x y z

 
   

  
 

3 3

v v

d iv F d v d v V     

Here V is the volume of the sphere with radius a.  

34

3
V a   

Hence  



7: Apply divergence theorem to evaluate ( ) ( ) ( )

s

x z d yd z y z d zd x x y d xd y       S is the surface 

of the sphere x
2
+y

2
+z

2
=4 

Sol: Given ( ) ( ) ( )

s

x z d yd z y z d zd x x y d xd y       

Here F1 = x+z, F2 = y+z, F3= x+y 

31 2
1, 1, 0

FF F

x y z

 
  

  
and 31 2

1 1 0 2
FF F

x y z

 
     

  
 

By Gauss Divergence theorem,  

31 2

1 2 3

s V

FF F
F d yd z F d zd x F d xd y d xd yd z

x y z

  
     

   
      

 

 

 

8: Evaluate  over the tetrahedron bounded by x=0, y=0, z=0 

and the plane x+y+z=1.  

Sol: Given F = , then div. F = y+2y = 3y 

11 1

0 0 0

. 3

x yx

s v x y z

F nd S d iv F d v y d x d y d z

 

  

        

 

 

 

9: Use divergence theorem to evaluate .

s

F d S  where F =x
3
i+y

3
j+z

3
k and S is the surface of the 

sphere x
2
+y

2
+z

2
 = r

2
 

Sol: We have  

3 3 3 2 2 2
. ( ) (y ) (z ) 3 ( )V F x x y z

x y z

  
     

  
  

∴By divergence theorem,  



 =
2 2 2

3( )

v

x y z d xd yd z     

 

 

 

4 4

0 0 0 0

3 s in ( 2 0 ) 6 s in

a a

r r

r d rd r d d r

 



     

  

 
    

 
     

 

 

10: Use divergence theorem to evaluate  where  and S is the 

surface bounded by the region x
2
+y

2
=4, z=0 and z=3.  

Sol: We have 

2 2
. ( 4 ) ( 2 ) (z ) 4 4 2d iv F F x y y z

x y z

  
        

  
 

 

 

 

 

 

 



 

2
2 4

2 0

2 1 2 1 2 (0 )

x

d y d x





 

   

 
 

   

[Since the integrans in forst integral is even and in 2
nd

 integral it is on add function] 

 

2 2

2 2

2 0

4 2 4 4 2 2 4x d x x d x



       

 

 

 

11: Verify divergence theorem for  over the surface S of the solid cut off by 

the plane x+y+z=a in the first octant.  

Sol; By Gauss theorem, .

s v

F nd S d iv F d v   

 

1, 1, 1
x y z

g r a d i i j k
x

  




  
  

  


    




 

 

Let R be the projection of S on xy-plane 

Then the equation of the given plane will be x+y=a   y=a-x 

Also when y=0, x=a 

 

.
.

.s R

F nd x d y
F nd S

n k

     

 
=  

 



 
 

4

3 2 2 3

0

5 2
. 3 2 ,

3 3 4

a

s

a
F nd S x a x a x a d x

 
       

 
   on simplification…(1) 

Given 2 2 2
F x i y j z k    

d iv
2 2 2

( ) ( ) ( ) 2 ( )F x y z x y z
x y z

  
     

  
 

N ow

0 0 0

. 2 ( )

a x ya a x

x y z

d iv F d v x y z d x d y d z

 

  

     
 

 

 

 

 

 

 

 
Hence from (1) and (2), the Gauss Divergence theorem is verified.  

 

 

12: Verify divergence theorem for 2x
2
y i -y

2
j +4xz

2
k taken over the region of first octant of the 

cylinder y
2
+z

2
=9 and x=2.  

(or) Evaluate . ,

s

F nd S  where F =2x
2
y i -y

2
j +4xz

2
k and S is the closed surface of the region in the 

first octant bounded by the cylinder y
2
+z

2
 = 9 and the planes x=0, x=2, y=0, z=0 

Sol: Let F =2x
2
y i -y

2
j +4xz

2
k  

. 
2 2 2

( 2 ) ( ) ( 4 ) 4 2 8F x y x z x y y x z
x y z

  
      

  
 



 

 

 

 

 

 

 

2
2

2

0

1 8 ( ) 7 2 1 8 ( 2 4 ) 3 6 ( 4 ) 3 6 1 4 4 1 8 0 ...(1)
2

x
x x

 
          

 
 

 

.

s

F nd S =

1

.

s

F nd S +

2

.

s

F nd S +……+

5

.

s

F nd S  

 



Where S1 is the face OAB, S2 is the face CED, S3 is the face OBDE, S4 is the face OACE and S5 is 

the curved surface ABDC.  

(i) On 
1

: 0 ,S x n i   . 0F n  H en ce

1

.

s

F nd S  

(ii) On 
2

: 2 ,S x n i  . 8F n y   

2
2

2

9
3 9 3 2

0 0 0 0

. 8 8
2

z
z

s

y
F nd S yd yd z d z




 
    

 
     

 

    (iii)    On 
3

: 0, .S y n j   . 0F n  H en ce

3

.

s

F nd S  

 

(v) On 
2 2

2 2

5 2 2 2 2

( ) 2 2
: 9 ,

3( ) 4 94 4

y z y j z k y j z k y j z k
S y z n

y z y z

    
     

  

 

3 3
4

.
3

y x z
F n

 
 and 

21
. 9

3 3

z
n k y    

Hence  

 

 

 = 180 … … (2) 

Hence the Divergence theorem is verified from the equality of (1) and (2).  

 

 

13: Use Divergence theorem to evaluate  
2

. .x i y j z k nd s   Where S is the surface bounded by 

the cone x
2
+y

2
=z

2
 in the plane z = 4.  

Sol: Given S is the surface bounded by the cone x
2
+y

2
=z

2
 in the 

plane z = 4.  



Let  

 

 

N ow
2

. ( ) ( ) ( ) 1 1 2 2 (1 )F x y z z z
x y z

  
        

  
 

On the cone, 2 2 2
x y z  and z=4 

2 2
1 6x y   

 

 

 

2

2

4 1 6 4

1 6

0

0 0 0

2 [ 4 8 ] 2 1 2 [ ]

x

x
d x d y y d x




       

 

[ 4 s in 4 co s .p u tx d x d     A lso 0 0x    a n d 4
2

x


   ] 

2 2

2 2

0 0

. 9 6 4 4 1 s in c o s 9 6 4 c o s

V

F d v d d

 

                

 

 

 

 

14: Use Gauss Divergence theorem to evaluate S is the 

closed surface bounded by the xy-plane and the upper half of the sphere x
2
+y

2
+z

2
=a

2
 

above this plane. 

Sol: Divergence theorem states that  



 

Here 
2 2 2

. ( ) ( ) ( 2 ) 4F y z z x z z
x y z

  
    

  
 

. 4

s V

F d s zd xd yd z       

Introducing spherical polar coordinates s in co s , s in s in ,x r y r      

cosz r  then 2
d x d y d z r d rd d   

2

2

0 0 0

. 4 ( co s )( s in )

a

s r

F d s r r d rd d

 

 

   

  

       

 

 

 

 

 

15: Verify Gauss divergence theorem for  taken over the cube bounded by  

x = 0, x = a, y= 0, y = a, z = 0, z = a.  

Sol: We have  

3 3 3 2 2 2
. ( ) ( ) ( ) 3 3 3F x y z x y z

x y z

  
      

  
 

 

 

 

 

 



 

 

 

To evaluate the surface integral divide the closed surface S of the cube into 6 parts.  

i.e.,  S1 : The face DEFA      ; S4 : The face OBDC 

 S2 : The face AGCO     ; S5 : The face GCDE 

 S3 : The face AGEF   ; S6: The face AFBO 

 

 

 
1

3 3 3

0 0

. .

a a

s z y

F nd s a i y j z k id y d z

 

        

 

 

 

 

   
2

3 3

0 0

. . 0

a a

s z y

F nd s y j z k i d yd z

 

        

 

   

3

3 3 3 3 3 4

0

0 0 0 0 0

. .

a a a a a

a

s z x z x

F nd s x i a j z k jd xd z a d xd z a a d z a z

   

             

5
a  

 

 

 

 



 

 

 

 

 

T h e Gauss divergence theorem is verified. 

 

II. GREEN’S THEOREM IN A PLANE 

 

(Transformation Between Line Integral and Surface Integral ) [JNTU 2001S]. 

If S is Closed region in xy plane bounded by a simple closed curve C and if M and N are continuous 

functions of x and y having continuous derivatives in R, then 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Where C  is traversed in the positive(anti  clock-wise) direction 

 

 

 SOLVED PROBLEMS 

1: Verify Green‟s theorem in plane for    where C is the region 

bounded by y=   and y=  . 

Solution: Let  M=3 -  and N=4y-6xy. Then 

,  



 

 

We have by Green‟s theorem, 

.

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Now   1 6 6

R R

N M
d xd y y y d xd y

x y

  
   

  
   

                                                    =1 0

R

yd xd y =10
2

2

1 1 2

0 0

1 0
2

x
x

x xy x x

y
yd yd x d x

 

 
  

 
    

                                                     =5        ….(1) 

Verification: 

     We can write the line integral along c 

=[line integral along y= (from O to A) + [line integral along =x(from A to O)] 

= + (say) 

Now     =  

                 =  

And             
0 0

3
2 22

2

1 1

1 5
3 8 4 6 3 1 1 2

22

l x x d x x x d x x x d x

x

 
       

 
 
   

 

From(1) and (2), we have  .

C R

N M
M d x N d y d xd y

x y

  
   

  
   

Hence the verification of the Green‟s theorem. 

 

2:  Evaluate by Green‟s theorem   where C  is the triangle enclosed by 

the lines y=0, x= ,  

Solution :  Let M=y-  Then 



=1 and       =-  

 By Green‟s  theorem  .

C R

N M
M d x N d y d xd y

x y

  
   

  
   

( s in ) co s ( 1 s in )

c R

y x d x xd y x d xd y            

                                                            =-  

                                                           = -  

                                                           =  

                                                                =  

2

0

0

2
c o s 1( c o s )x x x x x d x








         

                                                                 =  

                                                                  =

 

 

3:  Evaluate by Green‟s theorem for   where C is the rectangle 

with vertices ,  

Solution:  Let M=    

  

By Green‟s theorem,    .

C R

N M
M d x N d y d xd y

x y

  
   

  
    

2
( co sh ) ( s in ) (co s s in h )

c R

x y d x y x d y x y d xd y         

   

=  

                                                                          =
0

(co s co sh 1 1)

x

x d x





   

                                                                          =  

 

4:  A Vector  field is given by (s in ) (1 c o s )F y i x y j    

Evaluate the line integral over the circular path + , z=0 

(i) Directly  (ii) By using Green‟s theorem  

Solution :   (i) Using the line integral                            

 

 



 

                     = s in co s ( s in )

c c

yd x x yd y xd y d x y xd y       

Given Circle is + . Take x=a  and y=a  so that dx=-a  and  

dy=a  and  

 

                                 =  

                                =0+ 2 21
4 . .

2 2
a a


  

(ii)Using Green‟s theorem 

Let M=  and N=x  Then 

=   and       =  

By Green‟s theorem, 

C R

N M
M d x N d y d xd y

x y

  
   

  
   

s in (1 co s ) ( co s 1 co s )

c R

yd x x y d y y y d xd y d xd y           

                                                                    = 
2

(

R

d A A a a rea     of  circle=
2

)a  

We observe that the values obtained in (i) and (ii) are same to that Green‟s theorem is verified. 

 

5: Show that area bounded by a simple closed curve C is given by  and hence find the 

area of  

(i)The ellipse x= co s ,a y b s in 

2 2

2 2
( . ) 1

x y
i e

a b
   

(ii )The Circle x=  

Solution: We have by Green‟s theorem     
C R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=-y and N=x so that  

2 2

c R

xd y yd x d xd y A    where A is the area of the surface. 

 

(i)For  the ellipse x=  and y=  and  

=  

                   =  



(ii)Put  a=b to get area of the circle A=  

 

 

6: Verify Green‟s theorem for   where C is bounded by y=x and  

y=  

Solution:By Green‟s theorem, we have 
C R

N M
M d x N d y d xd y

x y

  
   

  
    

 

Here M=xy +  and N=  

 

The line y=x and the parabola y=  intersect at O  and A  

Now  

1 2

......(1)

c c c

M d x N d y M d x N d y M d x N d y                             …..(1) 

Along   the line integral is  

1 1

1

2 4 2 2 3 4 3 3 4

0

[ ( ) ] ( ) ( 2 ) (3 )

c c c

M d x N d y x x x d x x d x x x x d x x x d x            

=   =                                 …….(2) 

 

Along   from  to  the line integral is  

2 2

2 2
( . )

c c

M d x N d y x x x d x x d x      

                               = =0-1=-1       ….(3) 

From (1), (2) and (3), we have 

                                                                                                       

…(4) 

Now  

R

N M
d xd y

x y

  
 

  
   = ( 2 2 )

R

x x y d xd y    

  =  



                                                  =  =                                                                  

….(5) 

From
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 

Hence the verification of the Green‟s  theorem. 

 

 7: Using Green‟s theorem evaluate Where “C” is the closed 

curve of the region bounded by   y=   and  

 

Solution: 

 

The two parabolas   are intersecting at O and P(1,1) 

Here M=2xy-    and N=   +  

 

Hence  

By Green‟s theorem 
c

M d x N d y =
R

N M

x y

  
 

  
  dxdy 

i.e.,
2

1

2 2 2

0

( 2 ) ( ) (0 ) 0

x

c x y x

x y x d x x y d y d x d y

 

        

8: Verify Green‟s theorem for  where c  is the region bounded 

by x=0, y=0 and x+y=1.                                    

Solution : By Green‟s theorem, we have 

c R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=3  and N=4y-6xy 



 

1 6
M

y
y


  


 and 6

N
y

x


 


 

Now  ...(1)

c O A A B B C

M d x N d y M d x N d y M d x N d y M d x N d y           

Along OA, y=0      

 

Along AB, x+y=1   and x=1-y and y varies from 0 to 1. 

A B

M d x N d y  = 
1

2 2

0

[3( 1) 8 ]( ) [ 4 6 ( 1)]y y d y y y y d y       

  =  

                           =  

                          =  

Along BO, x=0  and limits of y are from 1 to 0 

.     

 from (1), we have   

Now  

1 1

0 0

( 6 1 6 )

x

R x y

N M
d xd y y y d xd y

x y



 

  
    

  
     

                                                 =10  

                                                =5  

                                                =- =  

From (2) and (3), we have  
c R

N M
M d x N d y d xd y

x y

  
   

  
    

Hence the verification of the Green‟s  Theorem. 

 



9: Apply Green‟s theorem to evaluate  

the boundary of the area enclosed by the x-axis and upper half of the circle  

 

Solution : Let M=  and N=  Then 

 

 

c R

N M
M d x N d y d xd y

x y

  
   

  
    

2 2 2 2
[( 2 ) ( ) ] ( 2 2 )

c R

x y d x x y d y x y d xd y        

 =2 ( )

R

x y d y   

                                                =2  

[Changing to polar coordinates (r, , r varies from 0 to a and  varies from 0 to ] 

2 2 2 2 2

0 0

[( 2 ) ( ) ] 2 (co s s in )

a

c

x y d x x y d y r d r d



           

 =2.  

 

 

10: Find the area of the Folium of Descartes  

Theorem.                                                                             

Solution: from Green‟s theorem, we have 

 

By Green‟s theorem, Area = 
1

( )
2

x d y y d x  

Considering the loop of folium Descartes(a>0) 



       Let x=
2

3 3

3 3
, ,

1 1

a t a t
y T h e n

t t


 
3

3

1

d a t
d x d t

d t t

  
   

  

and 
2

3

3

1

d a t
d y d t

d t t

  
   

  

 

The point of intersection of the loop is 
3 3

, 1
2 2

a a
t

 
  

 

 

Along OA, t varies from 0 to1. 

 

                                      =

   

1 3 2 3

2 23 3
3 3

0

1 3 3 ( 2 ) 3 3 (1 2 )

2 1 11 1

a t a t t a t a t
d t

t tt t

    
  

    
      
    

  

                                        =  

1 12 2 5 2 2 3

3 3 3 3

0 0

9 9 (1 )

2 (1 ) 2 (1 )

a t t a t t
d t d t

t t

 
 

 
   

                                        =  [Put 1+  

                                                                                             L.L. : x=1, U.L.:x=2] 

                                         =
2 22 2 2 2

2 2 2

1 1

9 9 1 3
. .

2 3 6 4

a t d x a a
d x sq

x t x
   units(a>0). 

11: Verify  Green‟s theorem in the plane for  

Where C  is square with vertices (0,0), (2,0), (2,2), (0,2).                                                        

Solution: The Cartesian form of Green‟s theorem in the plane is  

c R

N M
M d x N d y d xd y

x y

  
   

  
    

Here M=  and N=  

 - 3  and  

 

Evaluation of  



   To Evaluate , we shall take C in four different segments viz (i) 

along OA(y=0) (ii) along AB(x=2) (iii) along BC(y=2) (iv) along CO(x=0). 

(i)Along OA(y=0) 

                                                    …..(1) 

(ii)Along  AB(x=2) 

[  

                                                                  =                   

….(2) 

(iii)Along BC(y=2) 

[  

                                                                 =

2
3

2

0

8 4 0
4 1 6 .... . .(3 )

3 3 3

x
x

   
       

  

 

(iv)Along CO(x=0) 

[            …..(4) 

Adding(1),(2),(3) and (4), we get 

   
2 3 2 8 1 6 4 0 8 2 4

2 8
3 3 3 3 3

c

x x y d x y x y d y                                          …(5) 

Evaluation of  
R

N M
d xd y

x y

  
 

  
   

Here x ranges from 0 to 2 and y ranges from 0 to 2. 

R

N M
d xd y

x y

  
 

  
  =

2 2

2

0 0

( 2 3 )y xy d xd y    

                                      =  

                                       =  
2

2
2 2 3

0

0

( 4 6 ) 2 2y y d y y y      

                                       =-8+16=8                                                                                     …(6) 

From (5) and (6), we have 

c R

N M
M d x N d y d xd y

x y

  
   

  
    

Hence the Green‟s theorem is verified. 

 

 

 



 

 

III. STOKE’S THEOREM 

          (Transformation between Line Integral and Surface Integral)                      [JNTU 2000] 

         Let S be a open surface bounded by a closed, non intersecting curve C. If   is any 

differentieable vector point function then =

 direction and  

 

PROBLEMS: 

1: Prove by Stokes theorem, Curl grad =  

Solution: Let S be the surface enclosed by a simple closed curve C. 

 

 

                                              =  .

c

i
j k id x jd y k d z

x y z

     
    

   
  

                                               =  
p

c

d x d y d z d
x y z

  
 

   
    

   
   where P is any point on C. 

  

2: prove that 
s

c u r l . . g

c s

f d S f d r cu r l ra d f d S      

Solution: Applying Stokes theorem to the function  

   . .

c s

f d r cu r l f nd s g ra d f cu r l f d s          

. . .

c c

cu r l f d s f d r f d s          

3: Prove that  

Solution: By Stokes Theorem, 

  . .

c s

f f d r cu r lf f n     .
s

d s fcu r l f f f n      d s  

0. 0[ 0nd s cu rl f     and 0 ]f f     

4: Prove that  . .

c

f g d r f g nd s       

Solution: By Stokes Theorem, 

     . lg .

c s s

f g d r f g nd s f g fcu r ra d g nd s               

                        =   .f g nd s   ( ) 0c u r l g ra d g 
 
   



 

 

5: Verify Stokes theorem for , Where S is the circular disc 

 

Solution: Given that . The boundary of C of S is a circle in xy plane. 

We use the parametric co-ordinates x=cos  

dx=-sin  and dy =cos  

 

                          =  

                          = =  

                          =  

                           =2 =2  

Now  

 

We have ( . )k n d s d x d y and R is the region on xy-plane 

.  

Put x=r cos  

r is varying from 0 to 1 and 0  

 . .rdr d  

L.H.S=R.H.S.Hence the theorem is verified. 

6: If ( 2 ) ,F y i x x z j x y k    evaluate   .

s

F nd s  . Where S is the surface of sphere 

 

Solution: Given  

    By Stokes Theorem, 

. = .

c

F d r   

 Above the xy plane the sphere is  

 

Put x=a cos ,y=asin  

 



                                          =  

7: Verify Stokes theorem for  over the upper half surface of the 

sphere bounded by the projection of the xy-plane.                                   

Solution: The boundary C of S is a circle in xy plane i.e =1, z=0 

The parametric equations are x=  

 

2 2

1 2 3
. ( 2 )

c c c

F d r F d x F d y F d z x y d x yz d y y zd z          

                  =  

2 2 2

2

0 0 0

( 2 co s s in ) s in s in s in 2d d d

  

               

                    =  

                    =  

Again  =  

. =  

Where R is the projection of S on xy plane and  

      Now  

                                     = 2 =  

 Stokes theorem is verified. 

 

8: Verify Stokes theorem for the function   integrated round the square in the plan 

z=0 whose sides are along the lines x=0, y=0, x=a, y=a. 

Solution: Given  

 

 



 

By Stokes Theorem, . = .

c

F d r  

Now = y 

L.H.S.= . = ( . )

s s

y n k d s yd xd y   

 and R is the region bounded for the square. 

.  

R.H.S. =
2

. ( )

C C

F d r x d x xyd y    

But   

(i)Along  OA: y=0, z=0, dy=0, dz=0 

 

(ii)Along AB:x=a, z=0,dx=0,dz=0 

3

0

1
.

2

a

A B

F d r a yd y a    

(iii)Along BC: y=a,z=0,dy=0,dz=0 

 

(iv)Along CO: x=0, z=0, dx=0, dz=0 

 

Adding   

Hence the verification. 

 9: Apply Stokes theorem, to evaluate ( )

c

yd x zd y xd z  where c is the curve of intersection of the 

sphere  and x+z=a.           

Solution : The intersection of the sphere  the plane x+z=a. is a circle in the 

plane x+z=a.  with AB as diameter. 

Equation of the plane is x+z=a  

O A O B a   i.e., ( , 0 , 0 )A a  and B=(0,0,a) 

 Length of the diameter AB
2 2

0a a   =a  

       Radius of the circle, r=  

        Let  



 

=  

Let  be the unit normal to this surface.  

Then s=x+z-a, S = i k  

Hence   

                               =- ds =  

                                =-  

10: Apply the Stoke‟s theorem and show that  is any vector and S =

 

Solution: Cut the surface if the Sphere  Let denotes its 

upper and lower portions a C, be the common curve bounding both these portions. 

1 2

. . .

s s s

cu r l F d s F d s F d s      

Applying Stoke‟s theorem, 

1 2

. . . 0

s s s

cu r l F d s F d R F d R      

The 2
nd

 integral curl  is negative because it is traversed in opposite direction to first integral. 

The above result is true for any closed surface S. 

11: Evaluate by Stokes theorem   where C is the boundary 

of the triangle with vertices (0,0,0), (1,0,0) and (1,1,0). 

Solution: Let   

Then  

By Stokes theorem,  

  



  

Where S is the surface of the triangle OAB which lies 

in the xy plane. Since the z Co-ordinates of O,A and B  

Are zero. Therefore . Equation of OA is y=0 and  

that  of OB, y=x in the xy plane. 

= 2  

 

ds=curl  

  the  

                     = OA   AB=
1 1

1 1
2 2
    

 

12: Use Stoke‟s theorem to evaluate  over the surface of the paraboloid  

2 2
1, 0z x y z    where  

Solution : By Stoke‟s theorem  

. . ( ) .( )

s c c

cu r l F d s F d r y i z j x k id x jd y k d z         

                 =
c

y d x (Since z=0,dz=0) ……(1) 

Where C  is the circle  

The parametric equations of the circle are x=  

 

Hence (1) becomes  

2 2 2

2 2

0 0 0

1
. s in ( s in ) s in 4 s in 4

2 2
s

c u r l F d s d d d



 

 


       

 

                

13: Verify Stoke‟s theorem for  taken round the rectangle bounded by the 

lines x=  

Solution: Let ABCD be the rectangle whose vertices are (a,0), (a,b), (-a,b) and (-a,0). 

Equations of AB, BC, CD and DA are x=a, y=b, x=-a and y=0. 

We have to prove that  

 

                  =  

                   =          …..(1)      



 

(i) Along AB, x=a, dx=0 

 from (1),  

(ii)Along BC, y=b, dy=0 

 from (1), 
3

2 2 2
( )

3

a
x a

B C x a x a

x
x b d x b x


 

 

 
    

 
  =  

(iii) Along CD, x=-a, dx=0 

 from (1),

0
0 2

2
2 2

2
C D y b y b

y
a yd y a a b

 

 
    

 
   

(iv)Along DA, y=0, dy=0 

 from (1), 

3 3

2 2

3 3

a
x a

D A x a x a

x a
x d x



   

 
   

 
   

(i)+(ii)+(iii)+(iv) gives  

-- +                                          ….(2) 

Consider  

Vector Perpendicular to the xy-plane is  

=  

Since the rectangle lies in the xy plane, 

and ds =dx dy 

 

                               =  = 4  
0 0

4 2

a
b b

y ya

y x d y a y d y

 

    



                                =                                                                    …..(3) 

Hence from (2) and (3), the Stoke‟s theorem is verified. 

14: Verify Stoke‟s theorem for  where S is the surface of the 

cube x =0, y=0, z=0, x=2, y=2,z=2 above the xy plane.                       

Solution: Given  where S is the surface of the cube. 

x=0, y=0, z=0, x=2, y=2, z=2 above the xy plane.  

By Stoke‟s theorem, we have  

=  

 

                                               …..(1) 

To find  

 . (dx  

             =   

Sis the surface of the cube above the xy-plane 

 

 

Along  

  ……..(2) 

Along  

  ……. .(3) 

Along  

=  

22

0 0

4 4 8d y y      ……(4) 

Along  

.    …..(5) 

Above the surface When z=2 

Along     ….(6) 

Along y changes from 0 to 2 

 

2
2 2 2

2

0

0 0 0

. ( 2 4 ) 2 4 4 8 1 2
2

y
F d r y d y y

 
       

 
      ….(7)   

Along x changes from 2 to 0 

                                                                                                         ….(8) 



Along y changes from 2 to 0. 

 

0
0 2

0

2

2 2

( 2 4 ) 2 4 1 2
2

y
y y

 
     

 
                                                           …..(9) 

       (2)+(3)+(4)+(5)+(6)+(7)+(8)+(9) gives 

                                     …..(10) 

By Stokes theorem, We have 

= ds=-4 

Hence Stoke‟s theorem is verified. 

 

15: Verify the Stoke‟s  theorem for  and surface is the part of the sphere  

 

Solution: Given   over the surface  

We have to prove =  

. (y =ydx + zdy + xdz 

 

Let x=  

 [  

                        =  

                         =  

                       =-                                                           …..(1) 

Curl = (  

Unit normal vector =  

Substituting the spherical polar coordinates, we get  

 

 

 

22

0 0

. s in co s s in s in co s s incu r l F nd s d d




 

       

 

       

                              =  

                              =-2  

                               =                                                                …..(2) 

From (1) and (2), we have 



 

‟s theorem is verified. 

16: Verify Stoke‟s theorem for  
2 2

2F x y i xy j    over the box bounded by the planes 

x=0,x=a,y=0,y=b.                                                                             

 

Solution : 

 

Stoke”s theorem states that      . .

c s

F d r C u r l F nd s   

Given  

Curl =

2 2

( 0 , 0 ) (0 , 0 ) ( 2 2 ) 4

2 0

i j k

i j k y y y k
x y z

x y x y

       
  



 

R.H.S=  . 4 .

s s

C u r l F nd s y k n d s   

Let R be the region bounded by the rectangle 

 

2

2

0 0 0 00

. 4 4 2 1
2

b
a b a a

s x y x x

y
C u r l F nd s y d x d y d x b d x

   

 
   

 
      

                              =2 2a  

To  Calculate L.H.S 

 

Let  O= and  

          C=(0,b) are the vertices of the rectangle. 

(i)Along the line OA 

y=0; dy=0, x ranges from 0 to a. 

 



(ii)Along the line AB 

x=a; dx=0, y ranges from 0 to b. 

=a  

(iii)Along the line BC 

y=b; dy=0, x ranges from a to 0 

0
0 3 3

2 2 2 2
. ( ) 0

3 3
B C x a a

x a
F d r x y d x b x b a



   
        

   
   

=a  

(iv) Along the line CO 

x=0,dx=0,y changes from b to 0 

 =

0

2 0

y b

xyd y



  

Adding these four values 

 =  =  

 

 L.H.S  =   R.H.S 

Hence the verification of the stoke‟s theorem. 

17: Verify Stoke‟s theorem for =  – 2xy  taken round the rectangle bounded by  

x= , y=0,y=a. 

 

Solution:  

 

    Curl  =  = -4y  

For the given surface S,  

 



  

Now   =  

                                        = 
0

4

a b

y x b

y d x d y

  

 
 

 
   

                                       =  
0

4

ba

b

x y d y



  

                                  =  = 2 2

0

4 4 .... . . . .(1)
a

b y a b   
 

 

  =  

 =  

Along DA , y=0,dy=0   =0 ( . 0 )F d r   

Along AB, x=b,dx=0 

 = = 2 2

0

a

b y a b   
 

 

Along BC,y=a,dy=0 

 = =  

 

Along CD, x=-b,dx=0 

 = =
0

2 2

a

b y a b   
 

. 

  = 0 =   -------(2) 

From (1),(2)  =  

Hence the theorem is verified. 

 

19: Using Stroke‟s theorem evaluate the integral   where 

=2 +3  -(2x+z  and C is the boundary of the triangle whose vertices are 

(0,0,0),(2,0,0),(2,2,0). 

Solution: 

Curl  =    = 2  + (6x-4y)  

 



Since the z-coordinate of each vertex of the triangle is zero , the triangle lies in the xy-plane . 

  =k 

(Curl = 6x-4y 

Consider the triangle in xy-plane . 

Equation of the straight line OB is y=x. 

By Stroke‟s theorem  

. ( ) .

c s

F d r cu r l F nd s    

              =         =  

            =      
2

2

0

0

6 2
x

x

xy y d x



 
   =   

          =  

2
3

0

4
3

x 

 
 

   =  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

UNIT-V 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

1. THE GAMMA FUNCTION 

 
The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive 
integer to x!, where x is any real number. (With limited exceptions, the discussion that follows will 
be restricted to positive real numbers.) Such an extension does not seem reasonable, yet, in certain 

ways, the gamma function defined by the improper integral 
 
 
 
 
 
meets the challenge. This integral has proved valuable in applications. However, because it cannot 

be r presented through elementary functions, establishment of its properties take some effort. Some 
of the important ones are outlined below. 

 

The gamma function is convergent for x > 0.  It follows from eq.(1) that 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a fundamental recurrence relation for gamma functions. It can also be written as 

Γ(x) = (x − 1)Γ(x − 1). 

 
A number of other results can be derived from this as follows: If x = n, a positive integer, i.e. if n ≥ 

1, then 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: 
 
 
 
 
 
 
 
 
 
 
 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Negative values of x 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



    
 

Example: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Review of Properties of Power Series 
 

A power series  in (x-a) is an infinite series of the form 

c0+ c1 (x-a) + c2 (x-a)
2
 +- - - - = n

n

on

)ax(c 




  (6.1) 

Series of (6.1) is also called a power series centered  at a. The power series centered at a=0 is 

often referred as the power series,  that is, the series n

n

on

xc




 A power series centered at a is 

called convergent  at a specified value of x if its sequence of partial sums SN(x) =

n

n

N

on

)ax(c 


, that is, {SN (x)} is convergent. In other words the limit of {SN (x)} exists. If 

the limit does not exist the power series is called divergent.  The set of points x at which the 

power series is convergent is called the interval of convergence of the power series.  For R 

>o, a power series n

n

on

)ax(c 




 converges if ax  <R and diverges if ax  >R. If the series 



converges only at a then R=0, and if it converges for all  x then R=. ax  <R is equivalent to 

a-R<x<a+R. A power series may or may not converge at the end points a-R and a+R of this 

interval.  

A power series is called absolutely convergent if the series 






on

n

n
)ax(c  converges. A power 

series converges absolutely within its interval of convergence. By the Ratio test a power series 

centered at a, series given in (6.1) is absolutely convergent if L= x-a 
n

lim

n

1n

c

c
  is less than 

1, that is, L <1, the series diverges if L>1, and test fails if L=1. A power series defines a 

function f(x)= n

n

on

)ax(c 




whose domain is the interval of convergence of the series. If the 

radius of convergence R>o, then f is continuous, differentiable and integrable on the interval 

(a-R, a+R). Moreover f‟(x) and f(x)dx can be found by term  by  term differentiation and 

integration. Convergence at an endpoint may be either lost by differentiation or gained through 

integration.  

 

Let y = n

n

on

xc




  

     y' = 1n

n

on

xnc






   

    y” = 2n

n

on

xc)1n(n






  

We observe that the first term in y' and first two terms in y' are zero. Keeping this in mind we 

can write  

    

                                          y' = 1n

n

1n

xnc






                                            

                                          y'' = 2n

n

2n

xc)1n(n






  
  

 

 

Identity property:  If n

n

on

)ax(c 




 =0, R>o for all x in the interval of convergence, then 

cn=0 for all n.  
 

 

 
 

 

 

Analytic at a point:   

 

(6.2) 



A function f is analytic at a point a if it can be represented by a power series in x-a with a 

positive or infinite radius of convergence. A power series where cn= 
!n

)a(f
)n(

, that is, the series 

of the type 
n

)n(

n

on

)ax(
!n

)a(f
c 





  is called the Taylor series. If a=o then Taylor series is called 

Maclaurin series. In calculus it is shown that e
x
, cos x, sin x,  ln (x-1) can be written in the form 

of a power series more precisely in the form of Maclaurin series. For example 

.|x|for

- - - -
!6

x

!4

x

!2

x
1xcos

- - - -
!5

x

!3

x
xxsin

- - - -
!2

x
x1e

642

53

2

x









 

 

Arithmetic of Power Series:  

 

Two power series can be combined through the operation of addition, multiplication, and 

division. The procedures for power series are similar to those by which two polynomials are 

added, multiplied, and divided. For example:  

- - - -
30

x

3

x
xx

- - - -x
24

1

12

1

120

1
- - - -x

6

1

6

1
x

2

1

6

1
xx)1(

- - - -
5040

x

120

x

6

x
x- - - -

24

x

6

x

2

x
x1xsine

53

2

5432

753432

x





























































 

Since the power series for e
x
 and sin x converge for x<,  the product series converges on 

the same interval.  

 

Shifting the Summation Index: In order to discuss power series solutions of differential 

equations it is advisable to learn combining two or more summations as a single summation. 

 

 

6.2  Solution about Ordinary Point : 

 

We look for power series solution of linear second-order differential equation about a special 

point:  

0y)x(a
dx

dy
)x(a

dx

yd
)x(a

012

2

2
    (6.4)  

where a2 (x)  0. 

 

 



This can be put into the standard form  

0y
)x(a

)x(a

dx

dy

)x(a

)x(a

dx

yd

2

0

2

1

2

2

  

or 0y)x(Q
dx

dy
)x(P

dx

yd

2

2

    (6.5)  

 

A point xo is said to be an ordinary point of the differential equation (6.4) if P(x) and Q (x) of 

(6.5) are analytic at xo, that is, P(x) and are Q(x) represented by a power series. A point that is 

not an ordinary point is called a singular point.  

A solution of the form y = n

on

0n

)xx(c 




 is  said to be a solution about the ordinary point 

x0. 

 

 

Power series solution about an ordinary point:  

 

Let     y= n

n

0n

xc




  and substitute values of y, in y"
dx

dy
,y'

dx

dy

2

2

          (6.5) 

Combine series as in Example 6.1, and then equate all coefficients to the right hand side of the 

equation to determine the coefficients cn. We illustrate the method by the following examples. 

We also see through these examples how the single assumption that y= n

n

0n

xc




 leads to two 

sets of coefficients, so we have two distinct power series y1 (x) and y2(x) both expanded about 

the ordinary point x=0. The general solution of the differential equation is y=C1y1(x)+C2y2(x), 

infact it can been shown that C1=c o and C2=c1. 

The differential equation 0xy
dx

yd

2

2

  is known as Airy‟s equation and used in the study of 

diffraction of light, diffraction of radio waves around the surface of the earth, aerodynamics 

etc. We discuss here power series solution of this equation around  its ordinary point x=0. 

Example 6.2  Write the general solution of Airy‟s equation y'+xy=0.  

Solution: In view of the remark, two power series solutions centred at 0, convergent for x < 

exist. By substituting y= n

n

on

xc




, y  = 2n

n

2n

xc)1n(n






  into Airy‟s differential equation we 

get  

y''+xy= 2n

n

2n

x)1n(nc







n

n

0n

xcx




 ,  

= 2n

n

2n

x)1n(nc






  1n

n

0n

xc






    (6.6) 

As seen in the solution of Example 6.1, (6.6) can be written as y''+xy=2c2+


1k

[(k+1) 

(k+2)ck+2+ck-1]x
k
=0  (6.7) 



Since (6.7) is identically zero, it is necessary that coefficient of each power of x be set equal to 

zero, that is,  

2c2=0 (It is the coefficient y x
0
) and  

(k+1)(k+2) ck+2+ck-1=0, k=1,2,3 - - - -- - - -..  (6.8) 

The above holds in view of the identity property. It is clear that c2=0. The expression in (6.8) is 

called a recurrence relation  and it determines the ck in such a manner that we can choose a 

certain subset of the set of coefficients to be non-zero. Since (k+1)(k+2)0 for all values of k, 

we can solve (6.8) for ck+2 in terms of ck-1. 

ck+2= - - - - -,3,2,1k,
)2k)(1k(

c
1k




     (6.9) 

For k=1, c3 = - 
3.2

c
o  

For k = 2, c4 = - 
4.3

c
o  

For k= 3, c5 = - 
5.4

c
2  = 0  as c2=0 

For k= 4, c6 = - 
6.5

c
3  = 

0
c

.6.5.3.2

1
 

For k= 5, c7 = - 
1

4
c

7.6.4.3

1

7.6

c



 

For k= 6. c8 = - 0
8.7

c
5



 as c5=0 

For k= 7. c9 = - 
0

6
c

.9.8.6.5.3.2

1

9.8

c
  

For k = 8, c10 = - 
1

7
c

10.8.7.6.4.3

1

10.9

c
  

For k = 9, c11= - 
11.10

c
8  0 as c8=0 

and so on,  

Substituting the coefficients just obtained into y= n

n

0n

xc




 

=c0+c1x+c2x
2
+c3x

3
+c4x

4
+c5x

5
+c6x

6
+c7x

7
+c8x

8
+c9x

9
+c10x

10
- - - - 

we get  

y=c0+c1x+0 

- - - -0x
10.9.7.6.4.3

c
x

.9.8.6.5.3.2

c
0x

7.6.4.3

c
x

6.5.3.2

c
0x

4.3

c
x

3.2

c 101907160413o
  

After grouping the terms containing co and the terms containing c1, we obtain 

y=c0y1(x)+c1y2(x), where  

y1(x)=1- - - - -x
9.8.6.5.3.2

1
x

6.5.3.2

1
x

3.2

1 963
  

= 1+


1k

k3

k

x
)k3)(1k3(- - - -3.2

)1(




 



y2(x) = x - - - - -x
10.9.7.6.4.3

1
x

7.6.4.3

1
x

4.3

1 1074
  

= x+


1k

 
1

k3

k

x
)1k3)(k3(- - - -4.3

)1( 




 

Since the recursive use of (6.9) leaves c0 and c1 completely undetermined, they can be chosen 

arbitrarily.  

y=c0y1(x)+c1y2(x) is the general solution of the Airy‟s equation.  

 

 

Example 6.3 : Find two power series solutions of the differential equation y"-xy=0 about the 

ordinary point x=0. 

Solution: Substituting y  = n

n

0n

xc




 into the differential equation we get 

 y"-xy= 












0n

1n

n

2n

n

2n

xcxc)1n(n  

=  












1k

k

1k

k

0k
2k

xcxc)1k)(2k(  

= 2c2 +
k

1k

1k

2k
x]cc)1k)(2k[(








  

Thus c2 = 0, 

 (k+2)(k+1)ck+2 –ck-1= 0 

and  

....3,2,1k,c
)1k)(2k(

1
c

1k2k






 

Choosing co= 1 and c1=0 we find 

180

1
c,0cc,

6

1
c

6543
  and so on. 

For c0=0 and c1=1 we obtain 

504

1
c,,0cc,

12

1
c,0c

76543
  and so on. Thus two solutions are 

y1 = and- - - -x
180

1
x

6

1
1

63
  

- - - -x
504

1
x

12

1
xy

74

2


 
 

 
 

 

6.3 Solutions about Regular Singular Points – The Method of Frobenius: 



A singular point x0 of (6.4) is called a regular singular point of this equation  if the 

functions p(x) = (x-xo) P(x) and q(x)=(x-xo)
2
Q(x) are both analytic at x0. A singular point that 

is not regular is said to be on irregular singular point  of the equation. This means that one or 

both of the functions p(x)=(x-x0) P(x) and q(x) = (x-x0)
2
Q(x) fail to be analytic at x0. 

In order to solve a differential equation given by (6.4) about a regular singular point we 

employ the following theorem due to Frobenius.  

 

Theorem 6.1 (Frobenius Theorem)  

If x=x0 is a regular singular point of the differential equation (6.4), then there exists at least one 

solution of the form y=(x-xo)
r
 













0n

rn

on

n

on

on

)xx(c)xx(c where r is constant to be 

determined. The series will converge at least on some interval 0<x-x0<R.  

 

The method of Frobenius:   
 

 

Finding series solutions about a regular singular point x0, is similar to the method of previous 

section  in which we substitute y= rn

on

on

)xx(c






  into the given differential equation and 

determine the unknown coefficients cn by a recurrence relation. However, we have an 

additional task in this procedure. Before  determining coefficients we must find unknown 

exponent r. Equate to 0 the coefficient of the lowest power of x. This equation is called the 

indicial equation  and determines the value(s) of the index r.  

 

If r is found to be number that is not a  non negative integer, then the corresponding solution 

 y= rn

on

on

)xx(c






  is not a power series. For the sake of simplicity we assume that the 

regular singular point is x=0. 

 

 

Example 6.4  Apply the Method of Frobenius to solve the differential equation 2x y"+3y‟-y=0 

about the regular singular point x=0. 

Solution: Let us assume that the solution is of the form  



 y= rn

n

on

xc






  then  

 y' = 1rn

n

on

x)rn(c






  

 y"= ,x)1rn)(rn(c
2rn

n

on







  

Substituting these values of y', y' and y'' into 2x y''+3 y'-y=0, we get  

3x)1rn)(rn(c
1rn

n

on








 







1rn

n

on

x)rn(c  .0xc
rn

n

on








    

Shifting the index in the third series and combing the first two yields )rn(c
n

on






1rn
x)1r2n2(


   - 1rn

1n

on

xc








 =0 

Writing the term corresponding to n=0 and combining the terms for n/ into one series,  

cor(2r+1)x
r-1

+ )rn(c[
n

1n







(2n+2r+1)-cn-1]x
n+r-1 

= 0
 

Equating the coefficients of x
r-1

 to zero yields the indicial equation  

c0r(2r+1)=0 

Since c0 0, either r=0 or =  - 
2

1
 

Hence two linearly independent solutions of the given differential equation have the form  

y1 = F0 (x) = andxc
n

n

on






 

y2 = F
2/1
(x) =x

-1/2
 n

n
*

on

xc




 

Since cn(n+r) (2n+2r+1) -cn-1=0 for all n  1, we have the following information on the 

coefficients for the two series:  

(i)  co is arbitrary, and for n1, cn= 
1n

c
)1n2(n

1



 

(ii)       c
*
o is arbitrary, and for n1,cn

*
= 

*

1n
c

)1n2(n

1



 

Iteration of the formula for cn yields 

n=1, c1 = 
!3

c2
c

3.2.1

2
c

3.1

1
0

00
  

n= 2, c2=
!5

c2
c

5.3.2

1
c

5.2

1
0

2

01
  

n= 3, c3 = 
!7

c2

!5

c2

7.3

1
c

7.3

1
0

3

0

2

2
  

Each term of cn was multiplied by 
2

2
 to make the denominator (2n+1)!. The general form of cn 

is then  



 cn = 
)!1n2(

c2
0

n


 

Similarly, the general form of cn
*
is found to be cn

*
 = 

)!n2(

c2
0

n

. 

The two solutions are  

y1=co
 



 on

n

)!1n2(

2
x

n
,y2= co

*
x

-1/2  n

n

on

x
)!n2(

2





 

y2  is  not a power series. 

 

 

Example 6.5 Apply the method of Frobenius to obtain two linearly independent series solution 

of the differential equation  2x y" – y'+2y= 0 about a regular singular point x=0 of the 

differential equation.  

Solution: Substituting y = ,xc
rn

n

on







   y' = 1rn

n

on

x)rn(c






  and   

y"= 

1rn

on

n
x)1rn)(rn(c






   

into the differential equation and collecting terms, we obtain 

2x y''- y'+2y=(2r
2
-3r)c0x

r-1
+



1k

 [2(k+r-1)(k+r)ck -(k+r)ck+2ck-1]x
k+r-1

=0, 

which implies that 

2r
2
-3r=r(2r-3)=0 

and 

(k+r)(2k+2r-3)ck+2ck-1=0. 

The indicial roots are r=0 and r=
2

3
.For r=0 the recurrence relation is ck = - 

)3k2(k

c2
1k



  , k= 

1,2,3, - - - - 

and c1 = 2c0, c2= - 2c0, c3= 
9

4
c0 



For r= 
2

3
 the recurrence relation is ck =  - 

k)3k2(

c2
1k



  , k=1,2,3,- - - - and  

c1= - 
.03020

c
945

4
c,c

35

2
c,c

5

2
  

The general solution is y = C1 (1+2x-2x
2
+

9

4
x

3
+- - - - )+C2 x

3/2
 (1-

5

2
+

35

2
x

2
-

945

4
x

3
+- - - -) 

 

6.4 Bessel's equation:  
 

x
2
 y''+x y'+(x

2
-v

2
)y=0      (6.10) 

 

(6.10) is called Bessel's equation. 

 

Solution of Bessel's Equation: 
 

 

Because x=0 is a regular singular point of Bessel's equation we know that there exists at least 

one solution of the form y= rn

n

on

xc






 .  Substituting the last expression into (6.10) gives  

x
2
 y"+x y'+(x

2
-v

2
)y= rn

n
on

x)1rn)(rn(c






 + rn

n

on

x)rn(c






 + 2rn

n

on

xc






  

-v
2 rn

n

on

xc






  = c0(r
2
-r+r-v

2
)x

r
 

+x
r
 2n

n

on

rn2

n

1n

xcxx]v)rn()1rn)(rn[(c










   

= 







 on

2n

n

rn22

n
1n

r
r

22

0
xcxx]v])rn[(cxx)vr(c  (6.11) 

From (6.11) we see that the indicial equation is r
2
-v

2
=0, so the indicial roots are r1=v and r2 = -

v. When r1=v, (6.11) becomes  

x
v 2n

n

on

vn

n

1n

xcxx)v2n(nc










        

=x
v










  











2n 0n

2n

n

n

n1
xcx)v2n(ncxc)v21(  

=x
v

0x]cc)v22k)(2k[(xc)v21(

0k

2k

k2k1










 








 

 

Therefore by the usual argument we can write (1+2v)c1=0 and  

(k+2) (k+2+2v)ck+2+ck=0 



or ck+2= - - - -,2,1,0k,
)v22k)(2k(

c
k
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The choice c1=0 in (6.12) implies c3=c5=c7= - - - - = 0, so for k=0,2,4, - - - - we find, after 

letting k +2 = 2n,  
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It is standard practice to choose c0 to be specific value – namely. 

   c0 = 
)v1(2

1

v


 

where  (1+v) is the gamma function. (See Appendix) Since this latter function  possesses the 

convenient property  (1+) = (), we can reduce the indicated product in the denominator 

of (6.14) to one term.  

For example: 

 (1+v+1)= (1+v)  (1+v) 

 (1+v+2)= (2+v)  (2+v)= (2+v)(1+v)(1+v). 

Hence we can write (6.14) as  
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for n=0,1,2, - - - -  

 

 

 

 

 

Bessel Function of the First Kind:  

Using the coefficients c2n just obtained and r=v, a series solution of (6.10) is y=
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If v0,  the series converges at least on the interval [o, ). Also, for the second exponent r2= -v 

we obtain, in exactly the same manner, 
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The functions Jv(x) and J-v(x) are called Bessel functions of the first kind of order v and –v, 

respectively. Depending on the value of v, (6.16) may contain negative powers of x and hence 

converge on (0,  ).* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPECIAL FUNCTIONS 
 

                                                
 



Introduction 
 

Many Differential equations arising from physical problems are linear but have variable 

coefficients and do not permit a general analytical solution in terms of known functions. Such 

equations can be solved by numerical methods (Unit – I), but in many cases it is easier to find a 

solution in the form of an infinite convergent series. The series solution of certain differential 

equations give rise to special functions such as Bessel‟s function, Legendre‟s polynomial. 

These special functions have many applications in engineering. 

 

Series solution of the Bessel Differential Equation 
Consider the Bessel Differential equation of order n in the form 
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where n is a non negative real constant or parameter. 

We assume the series solution of (i) in the form 
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Substituting these in (i) we get, 
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Grouping the like powers, we get 
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Now we shall equate the coefficient of various powers of x to zero 

Equating the coefficient of x
k
 from the first term and equating it to zero, we get 
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which is a contradiction to k =  n. 
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If k = +n, (iv) becomes 
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Now putting r = 1,3,5, ….., (odd vales of n) we obtain, 
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Similarly a5, a7, ….. are equal to zero. 

i.e.,  a1 = a5 = a7 = …… = 0 

Now, putting r = 2,4,6, ……( even values of n) we get, 
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Similarly we can obtain a6, a8, …  

We shall substitute the values of ,,,,
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aaaa in the assumed series solution, we get 

)xaxaxaxaa(xxay
4

4

3

3

2

210

k

0r

rk

r






  

Let y1 be the solution for k = +n 
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This is a solution of the Bessel‟s equation. 

Let y2 be the solution corresponding to k = - n. Replacing n be – n in (v) we get 
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The complete or general solution of the Bessel‟s differential equation is y = c1y1 + c2y2, where 

c1, c2 are arbitrary constants. 

Now we will proceed to find the solution in terms of Bessel‟s function by choosing 
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and let us denote it as Y1. 
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We have the result  (n) = (n – 1) (n – 1) from Gamma function 

Hence, (n + 2)  = (n + 1) (n + 1) and  

 (n + 3)  = (n + 2) (n + 2) = (n + 2) (n + 1) (n + 1) 

Using the above results in Y1, we get 
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which can be further put in the following form 
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This function is called the Bessel function of the first kind of order n and is denoted by Jn(x). 

Thus 
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Further the particular solution for k = -n ( replacing n by –n ) be denoted as J-n(x). Hence the 

general solution of the Bessel‟s equation is given by y = AJn(x) + BJ-n(x), where A and B are 

arbitrary constants. 

 

Properties of Bessel’s function 
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, where n is a positive integer. 

 

Proof:  By definition of Bessel‟s function, we have 
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But gamma function is defined only for a positive real number. Thus we write (2) in the 

following from 
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Let r – n = s or r = s + n. Then (3) becomes 
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We know that (s+1) = s! and (s + n)! = (s+n+1) 
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Comparing the above summation with (1), we note that the RHS is Jn(x). 
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Proof : By definition, 
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Recurrence Relations: 

Recurrence Relations are relations between Bessel‟s functions of different order. 

Recurrence Relations 1:   )x(Jx)x(Jx
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Recurrence Relations 3:  )x(J)x(J
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Recurrence Relations 5: )x(J)x(J
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This recurrence relation is another way of writing the Recurrence relation 2. 

Recurrence Relations 6: )x(J
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This recurrence relation is another way of writing the Recurrence relation 1. 
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Using the results (1/2) =  and (n) = (n – 1) (n–1), we get 
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Putting n = - 1/2, we get 
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Using the results (1/2) =  and (n) = (n – 1) (n–1) in (2), we get 
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2. Prove the following results : 
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Solution : 

 

We prove this result using the recurrence relation  )x(J)x(J
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Generating Function for Jn(x) 

To prove that 
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If we collect the coefficient of t
n
 in the product, they are 
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Similarly, if we collect the coefficients of t
–n

 in the product, we get J–n(x). 

Thus, 
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Result:   
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Proof :  
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Thus,   
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Problem 6: Show that  

(a)  
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(b) 
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Solution : 

 

We know that   
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Since )x(J)1()x(J
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, we have 
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Let t = cos + i sin so that t
p
 = cosp + i sinp and 1/t

p
 = cosp - i sinp.  

From this we get, t
p
 + 1/t

p
 = 2cosp and t

p
 – 1/t

p
 = 2i sinp 

Using these results in (1), we get 
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Since e
ixsin

 = cos(xsin) + i sin(xsin), equating real and imaginary parts in (2) we get, 
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  ----- (4) 

These series are known as Jacobi Series. 

 

 Now multiplying both sides of (3) by cos n and both sides of (4) by sin n and 

integrating each of the resulting expression between 0 and , we obtain 
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Here we used the standard result 
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From the above two expression, in general, if n is a positive integer, we get 
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(b) Changing  to (/2)  in (3), we get 
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Integrating the above equation w.r.t  from 0 to , we get 
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Thus, 
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(c) Squaring (3) and (4) and integrating w.r.t.  from 0 to  and noting that m and n being 

integers 
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Orthogonality of Bessel Functions 

 
 



If  and  are the two distinct roots of Jn(x) = 0, then   
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Proof:  

 

We know that the solution of the equation 
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)v = 0 -------- (2) 

are u = Jn(x) and v = Jn(x) respectively. 

  

 Multiplying (1) by v/x and (2) by u/x and subtracting, we get 
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Now integrating both sides from 0 to 1, we get 

       
1x

//
1

0

//
1

0

22
uvvuuvvuxdxxuv


   ------- (3) 

Since u = Jn(x),     )x(J
dx

)x(d
)x(J

)x(d

d
)x(J

dx

d
u

/

nnn

/






   

Similarly v = Jn(x) gives   )x(J)x(J
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If  and  are the two distinct roots of Jn(x) = 0, then  Jn() = 0 and Jn() = 0, and hence (4) 

reduces to   
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This is known as Orthogonality relation of  Bessel functions. 

 

 When  = , the RHS of (4) takes 0/0 form. Its value can be found by considering  as 

a root of Jn(x) = 0 and  as a variable approaching to . Then (4) gives 
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Applying L‟Hospital rule, we get 
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We have the recurrence relation )x(J)x(J
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Thus, (5) becomes    
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