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INTRODUCTION 
 
The solution of a given linear network problem requires the formation of a set of equations 

describing the response of the network. The mathematical model so derived, must describe the 

characteristics of the individual network components, as well as the relationship which governs 

the interconnection of the individual components. In the bus frame of reference the variables are 

the node voltages and node currents. 

 
 
The independent variables in any reference frame can be either currents or voltages. 

Correspondingly, the coefficient matrix relating the dependent variables and the independent 

variables will be either an impedance or admittance matrix. The formulation of the appropriate 

relationships between the independent and dependent variables is an integral part of a digital 

computer program for the solution of power system problems. The formulation of the network 

equations in different frames of reference requires the knowledge of graph theory. Elementary 

graph theory concepts are presented here, followed by development of network equations in the 

bus frame of reference. 

ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS 
 
The geometrical interconnection of the various branches of a network is called the topology of the 

network. The connection of the network topology, shown by replacing all its elements by lines is 

called a graph. A linear graph consists of a set of objects called nodes and another set called 

elements such that each element is identified with an ordered pair of nodes. An element is defined as 

any line segment of the graph respective of the characteristics of the components involved. A graph 

in which a 



 
 
 
direction is assigned to each element is called an oriented graph or a directed graph. 

It is to be noted that the directions of currents in various elements are arbitrarily 

assigned and the network equations are derived, consistent with the assigned 

directions. Elements are indicated by numbers and the nodes by encircled numbers. 

The ground node is taken as the reference node. In electric networks the convention 

is to use associated directions for the voltage drops. This means the voltage drop in a 

branch is taken to be in the direction of the current through the branch. Hence, we 

need not mark the voltage polarities in the oriented graph. 

 
 
Connected Graph : This is a graph where at least one path (disregarding 

orientation) exists between any two nodes of the graph. A representative power 

system and its oriented graph are as shown in Fig 1, with: 
 

e = number of elements = 6 l = number of links = e-b = 3 
 

n = number of nodes = 4 Tree = T(1,2,3)   and 
 

b = number of branches = n-1 = 3 Co-tree = T(4,5,6) 
 

 

Sub-graph : sG  is a sub-graph of G if the following conditions are satisfied: 
 

 sG is itself a graph 


 Every node of sG is also a node of G 


 Every branch of sG is  a branch of G 
 
For eg., sG(1,2,3), sG(1,4,6), sG(2), sG(4,5,6), sG(3,4),.. are all valid sub-graphs of 

the oriented graph of Fig.1c. 

 
Loop : A sub-graph L of a graph G is  a loop if 
 

 L is a connected sub-graph of G 


 Precisely two and not more/less than two branches are incident on each node 
 

in L 
 
In Fig 1c, the set{1,2,4} forms a loop, while the set{1,2,3,4,5} is not a valid, although 
 
the set(1,3,4,5) is a valid loop. The KVL (Kirchhoff’s  Voltage Law) for the loop is 
 
stated as follows: In any lumped network, the algebraic sum of the branch voltages 
 
around any of the loops  is zero. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1a. Single line diagram of a power system 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1b. Reactance diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1c. Oriented Graph 



Cutset : It is a set of branches of a connected graph G which satisfies the following 
 
conditions : 
 

 The removal of all branches of the cutset causes the remaining graph to have 

two separate unconnected sub-graphs. 


 The removal of all but one of the branches of the set, leaves the remaining 

graph connected. 

 
 
Referring to Fig 1c, the set {3,5,6} constitutes a cutset since removal of them isolates 

node 3 from rest of the network, thus dividing the graph into two unconnected sub- 
 
graphs. However, the set(2,4,6) is not a valid cutset! The KCL (Kirchhoff’s Current 
 
Law) for the cutset is stated as follows: In any lumped network, the algebraic sum of 

all the branch currents traversing through the given cutset branches is zero. 

 
 
Tree: It is a connected sub-graph containing all the nodes of the graph G, but 

without any closed paths (loops). There is one and only one path between every pair 

of nodes in a tree. The elements of the tree are called twigs or branches. In a graph 

with n nodes, 
 

The number of branches: b = n-1 (1) 
 
For the graph of Fig 1c, some of the possible trees could be T(1,2,3), T(1,4,6), 

T(2,4,5), T(2,5,6), etc. 

 
 
Co-Tree : The set of branches of the original graph G, not included in the tree is 

called the co-tree. The co-tree could be connected or non-connected, closed or open. 

The branches of the co-tree are called links. By convention, the tree elements are 

shown as solid lines while the co-tree elements are shown by dotted lines as shown 

in Fig.1c for tree T(1,2,3). With e as the total number of elements, 
 

The number of links: l = e – b = e – n + 1 (2) 
 
For the graph of Fig 1c, the co-tree graphs corresponding to the various tree graphs 

are as shown in the table below: 
 

Tree T(1,2,3)   T(1,4,6)   T(2,4,5)   T(2,5,6) 
 

Co-Tree   T(4,5,6)   T(2,3,5)   T(1,3,6)   T(1,3,4) 



 
 
 
 
  
Basic loops: When a link is added to a tree it forms a closed path or a loop. Addition 

of each subsequent link forms the corresponding loop. A loop containing only one 

link and remaining branches is called a basic loop or a fundamental loop. These 

loops are defined for a particular tree. Since each link is associated with a basic 

loop, the number of basic loops is equal to the number of links. 
 
Basic cut-sets: Cut-sets which contain only one branch and remaining links are 

called basic cutsets or fundamental cut-sets. The basic cut-sets are defined for a 

particular tree. Since each branch is associated with a basic cut-set, the number of 

basic cut-sets is equal to the number of branches. 

 
 
Examples on Basics of LG Theory: 
 
Example-1: Obtain the oriented graph for the system shown in Fig. E1. Select any 

four possible trees. For a selected tree show the basic loops and basic cut-sets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1a. Single line diagram of Example System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1b. Oriented Graph of Fig. E1a. 



 
 
 
  
For the system given, the oriented graph is as shown in figure E1b. some of the valid 

Tree graphs could be T(1,2,3,4), T(3,4,8,9), T(1,2,5,6), T(4,5,6,7), etc. The basic 

cut-sets (A,B,C,D) and basic loops (E,F,G,H,I) corresponding to the oriented graph 

of Fig.E1a and tree, T(1,2,3,4) are as shown in Figure E1c and Fig.E1d respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E1c. Basic Cutsets of Fig. E1a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E1d. Basic Loops of Fig. E1a. 



 
 
 

  
INCIDENCE MATRICES 

Element–node incidence matrix:  
ˆ
 
A 

 
The incidence of branches to nodes in a connected graph is given by the element-node  

ˆ ˆ 

incidence matrix, A . An element aij of A is defined as under: 
aij  = 1 if the branch-i is incident to and oriented away from the node-j. 

 
= -1 if the branch-i is incident to and oriented towards the node-j.  

 
= 0 if the branch-i is not at all incident on the node-j.  

 
 

Thus the dimension of 
ˆ 

is e  n, where e is the number of elements and n is the 
 

A 
  

number of nodes in the network. For example, consider again the sample system 

with its oriented graph as in fig. 1c. the corresponding element-node incidence 

matrix, is obtained as under: 

 

  Nodes 
0 1 2 3  

  

Elements 
 

      
 

  1 1 -1   
 

  2 1  -1  
 

ˆ 
= 

3 1   -1 
 

A      
 

  4  1 -1  
 

  5   1 -1 
 

  6  1  -1 
 

 

 
It is to be noted that the first column and first row are not part of the actual matrix and 

they only indicate the element number node number respectively as shown. Further, the 

sum of every row is found to be equal to zero always. Hence, the rank of the 

ˆ 
matrix is less than n. Thus in general, the matrix A satisfies the identity: 

 

n  

∑ aij = 0    i = 1,2,…..e. (3) 
j=1 



 
 
 
 
 
 
  
Bus incidence matrix: A 

 

By selecting any one of the nodes of the connected graph as the reference node, the 
ˆ 

corresponding column is deleted from A to obtain the bus incidence matrix, A. The 

dimensions of A are e  (n-1) and the rank is n-1. In the above example, selecting 

node-0 as reference node, the matrix A is obtained by deleting the column 

corresponding to node-0, as under: 

 

 Buses  
1 2 3 

   
 

 

Elements 
   

 

       
 

 1  -1      
 

 2   -1   
A

b Branches 
 

A = 3    -1 =   
 

          

 4  1 -1     
 

 5   1 -1  Al Links 
 

 6  1  -1    
 

 

 

It may be observed that for a selected tree, say, T(1,2,3), the bus incidence matrix 

can be so arranged that the branch elements occupy the top portion of the A-matrix 

followed by the link elements. Then, the matrix-A can be partitioned into two sub 

matrices Ab and Al as shown, where, 

 

(i) Ab is of dimension (bxb) corresponding to the branches and  
 

(ii) Al is of dimension (lxb) corresponding to links.  
 
 

A is a rectangular matrix, hence it is singular. Ab is a non-singular square matrix of 

dimension-b. Since A gives the incidence of various elements on the nodes with 

their direction of incidence, the KCL for the nodes can be written as 
 
    

= 0 
 

(4) 
 

 A
T
  i  

 

where A
T

 is the transpose of matrix A and i is the vector of branch currents. Similarly 
 

for the branch voltages we can write,  
 

  

= A 

 

bus (5) 
 

 

 

E 
 

v 
 



 
 
 
 
 

  
Examples on Bus Incidence Matrix: 
 
Example-2:  For the sample network-oriented graph shown in Fig. E2, by selecting a 

ˆ .  
tree, T(1,2,3,4), obtain the incidence matrices A and A Also show the partitioned 

form of the matrix-A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E2. Sample Network-Oriented Graph 

 

     nodes     
 

  e \ n   0 1 2 3 4   
 

   
1 1  1 0 0 0 

  
 

      

          

   2 1 0  1 0 0   
 

   
3 1 0 0 0 

   
 

ˆ    1  
 

=  Elements 
        

 

A  4 0 0 0  1 1   
 

   
5 0 0 1  1 0 

  
 

     
 

   6 0 1  1 0 0   
 

           
 

   7 0 0 1 0  1  
 

           
 

      buses    
 

   e \ b 1 2 3  4  
 

    
1  1 0 0 

 
0 
 

 

       
         

 

    2 0  1 0  0  
 

    
3 0 0 0 

   
 

     1 
 

 

A = Elements 
        

  4 0 0  1  1   
    

 

    
5 0 1  1 

 

0 
 

 

      
 

    6 1  1 0  0  
 

           
 

    7 0 1 0  1 
 

           
 



 
 
 
  
Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub-

matrices as under: 
 

  buses    
 

b \ b 1 2 3 4  
 

 
1  1 0 0 0 

 
 

   
      

Ab = branches  2 0  1 0 0  
 

 
3 0 0 0 

  
 

  1 
 

      
 

 
4 0 0  1 1 

 
 

  
 

 
    buses   

 

 l \ b 1 2 3 4  
 

  
5 0 1  1 0 

 
 

Al = links    
      

 6 1  1 0 0    
 

  
7 0 1 0 

  
 

 

 
 1 

 

       
 

 

Example-3:  For the sample-system shown in Fig. E3, obtain an oriented graph. By 
ˆ . 

selecting a tree, T(1,2,3,4), obtain the incidence matrices A and A Also show the 

partitioned form of the matrix-A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E3a. Sample Example network 
 

 
Consider the oriented graph of the given system as shown in figure E3b, below. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. E3b. Oriented Graph of system of Fig-E3a. 
 

 

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the incidence 

matrices Ậand A can be obtained as follows: 

 

  e\n 0 1 2 3 4  e\b 1 2 3 4 
 

  1 1 -1     1 -1    
 

ˆ 
 2 1  -1   

A = 

2  -1   
 

= 3 1   -1  3   -1  
 

A            
 

  4 1    -1  4    -1 
 

  5    1 -1  5   1 -1 
 

  6   -1 1   6  -1 1  
 

  7  1 -1    7 1 -1   
 

  8   -1  1  8  -1  1 
 

  9  -1  1   9 -1  1  
 

 
 
 
Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub- 
 
matrices as under: 

 

 e\b 1 2  3 4  e\b 1 2 3 4 
 1 -1      5   1 -1 

Ab = 2  -1    Al = 6  -1 1  

 3    -1   7 1 -1   

 4    -1  8  -1  1 
        9 -1  1  



PRIMITIVE NETWORKS 
 
 
So far, the matrices of the interconnected network have been defined. These 

matrices contain complete information about the network connectivity, the 

orientation of current, the loops and cutsets. However, these matrices contain no 

information on the nature of the elements which form the interconnected network. 

The complete behaviour of the network can be obtained from the knowledge of the 

behaviour of the individual elements which make the network, along with the 

incidence matrices. An element in an electrical network is completely characterized 

by the relationship between the current through the element and the voltage across it. 

 
 
General representation of a network element: In general, a network element may 

contain active or passive components. Figure 2 represents the alternative impedance 

and admittance forms of representation of a general network component. 

 

 

Epp Ep p 
 

ipq  

 

epq   

 (ipq+ jpq) 
 

   

jpq 
 

   
 

vpq = Ep - Eq  

y
pq 

 z
pq  

 ipq ipq 

   

Eq     q Eq     q 
 
 

 

Fig.2  Representation of a primitive network element 
 

(a) Impedance form  (b) Admittance form 



 
 
 
 
 
The network performance can be represented by using either the impedance or the 

admittance form of representation. With respect to the element, p-q, let, 

vpq = voltage across the element p-q, 
 

epq = source voltage in series with the element p-

q, ipq= current through the element p-q, 
 

jpq= source current in shunt with the element p-

q, zpq= self impedance of the element p-q and 

ypq= self admittance of the element p-q. 
 
 

Performance equation: Each element p-q has two variables, vpq and ipq. The 

performance of the given element p-q can be expressed by the performance 

equations as under: 
 
vpq + epq = zpqipq (in its impedance form)  

ipq +  jpq = ypqvpq (in its admittance form) (6) 
 

 

Thus the parallel source current jpq in admittance form can be related to the series 

source voltage, epq in impedance form as per the identity: 
 
jpq = -  ypq epq (7) 
 

 
A set of non-connected elements of a given system is defined as a primitive Network 

and an element in it is a fundamental element that is not connected to any other element. 

In the equations above, if the variables and parameters are replaced by the 

corresponding vectors and matrices, referring to the complete set of elements present in 

a given system, then, we get the performance equations of the primitive network in 

the form as under:  

v + e = [z] i  

i + j  = [y] v (8) 
 

 

Primitive network matrices:  

A diagonal element in the matrices, [z] or [y] is the self impedance zpq-pq  or self 
 

admittance, ypq-pq. An off-diagonal element is the mutual impedance, zpq-rs or mutual 

admittance, ypq-rs, the value present as a mutual coupling between the elements p-q and 

r-s. The primitive network admittance matrix, [y] can be obtained also by 



 

 
 
inverting the primitive impedance matrix, [z]. Further, if there are no mutually 

coupled elements in the given system, then both the matrices, [z] and [y] are 

diagonal. In such cases, the self impedances are just equal to the reciprocal of the 

corresponding values of self admittances, and vice-versa. 

 
 

 

Examples on Primitive Networks: 
 

 

Example-4: Given that the self impedances of the elements of a network referred by 

the bus incidence matrix given below are equal to: Z1=Z2=0.2, Z3=0.25, Z4=Z5=0.1 

and Z6=0.4 units, draw the corresponding oriented graph, and find the primitive 

network matrices. Neglect mutual values between the elements. 

 

 -1 0 0 
 

     

 0 -1 0 
 

A = 

    

0 0 -1 
 

     

 1 -1 0 
 

     

 0 1 -1 
 

     

 1 0 -1 
 

 
 

 

Solution:  

The element node incidence matrix, 
ˆ 

can be obtained from the given A matrix, by 
 

A 
 

pre-augmenting to it an extra column corresponding to the reference node, as under. 
 
 

  1 -1 0 0 
 

      
 

  1 0 -1 0 
 

ˆ 
= 

    
 

1 0 0 -1 
 

A     
 

  0 1 -1 0 
 

      
 

  0 0 1 -1 
 

      
 

  0 1 0 -1 
 



  
Based on the conventional definitions of the elements of A , the oriented graph can 

be formed as under: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E4   Oriented Graph 
 
 
 

 

Thus the primitive network matrices are square, symmetric and diagonal matrices of 

order e=no. of elements = 6. They are obtained as follows. 

 

 0.2 0 0 0 0 0 
 

       
 

 0 0.2 0 0 0 0 
 

[z] = 

       

0 0 0.25 0 0 0 
 

       
 

 0 0 0 0.1 0 0 
 

        

 0 0 0 0 0.1 0 
 

        

 0 0 0 0 0 0.4 
 

 

And 
 

 5.0 0 0 0 0 0 
 

       
 

 0 5.0 0 0 0 0 
 

[y] = 

      
 

0 0 4.0 0 0 0 
 

       
 

 0 0 0 10 0 0 
 

       
 

 0 0 0 0 10 0 
 

        

 0 0 0 0 0 2.5 
 

        



Example-5:  Consider three passive elements whose data is given in Table E5 below. 
 

Form the primitive network impedance matrix. 
 

 

  Table E5   
 

     
 

Element 
Self impedance (zpq-pq) Mutual impedance, (zpq-rs) 

 

    
 

number 
Bus-code, Impedance in Bus-code, Impedance in 

 

(p-q) p.u. (r-s) p.u. 
 

 
 

     
 

1 1-2 j 0.452   
 

     
 

2 2-3 j 0.387 1-2 j 0.165 
 

     
 

3 1-3 j 0.619 1-2 j 0.234 
 

     
 

 
 

 

Solution: 
 

 

 1-2 2-3 1-3 
    

1-2 j 0.452 j 0.165 j 0.234 
    

[z] =  
2-3

 j 0.165 j 0.387 0 

1-3 j 0.234 0 j 0.619 
    

 

Note: 
 

 The size of [z] is e  e, where e= number of elements, 


 The diagonal elements are the self impedances of the elements 


 The off-diagonal elements are mutual impedances between the corresponding 

elements. 


 Matrices [z] and [y] are inter-invertible. 



FORMATION OF YBUS  AND ZBUS 

 

The bus admittance matrix, YBUS plays a very important role in computer aided power 

system analysis. It can be formed in practice by either of the methods as under: 
 

1. Rule of Inspection   
2. Singular Transformation  
3. Non-Singular Transformation  

4. ZBUS Building Algorithms, etc.  

 
The performance equations of a given power system can be considered in three 
different frames of reference as discussed below: 
 
Frames of Reference: 
 
Bus Frame of Reference: There are b independent equations (b = no. of buses) 
relating the bus vectors of currents and voltages through the bus impedance matrix 
and bus admittance matrix: 
 

EBUS = ZBUS IBUS 
 

IBUS  = YBUS EBUS (9) 
 
Branch Frame of Reference: There are b independent equations (b = no. of branches 
of a selected Tree sub-graph of the system Graph) relating the branch vectors of 
currents and voltages through the branch impedance matrix and branch admittance 
matrix: 
 

EBR = ZBR IBR 
 

IBR  = YBR EBR (10) 
 
Loop Frame of Reference: There are b independent equations (b = no. of branches of a 

selected Tree sub-graph of the system Graph) relating the branch vectors of currents and 

voltages through the branch impedance matrix and branch admittance matrix: 
 

ELOOP = ZLOOP ILOOP 
 

ILOOP  = YLOOP ELOOP (11)  
Of the various network matrices refered above, the bus admittance matrix (YBUS) 

and the bus impedance matrix (ZBUS) are determined for a given power system by 
the rule of inspection as explained next. 

 

Rule of Inspection 
 
Consider the 3-node admittance network as shown in figure5. Using the basic branch 

relation: I = (YV), for all the elemental currents and applying Kirchhoff’s Current 
Law principle at the nodal points, we get the relations as under:  

At node 1:  I1 =Y1V1 + Y3 (V1-V3) + Y6 (V1 – V2)  

At node 2:  I2 =Y2V2 + Y5 (V2-V3) + Y6 (V2 – V1)  

At node 3:  0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 – V2) (12) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3  Example System for finding YBUS 
 
 
These are the performance equations of the given network in admittance form and 
they can be represented in matrix form as: 

 

 

I1 
 

= (Y1+Y3 +Y6)-Y6 -Y3 
 

 

 

V1 
 

 

  

    
 

 I2  =  -Y6 (Y2+Y5 +Y6) -Y5    V2    
 

 0  =  -Y3 -Y5 (Y3 +Y4+Y5)    V3   (13) 
 

In other words, the relation of equation (9) can be represented in the form  
 

  IBUS = YBUS EBUS         (14) 
  

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus 

voltage vectors respectively.  
By observing the elements of the bus admittance matrix, YBUS of equation (13), it is 

observed that the matrix elements can as well be obtained by a simple inspection of 
the given system diagram:  

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, 

YBUS, is equal to the sum total of the admittance values of all the elements 
incident at the bus/node i,  
Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance 

matrix, YBUS, is equal to the negative of the admittance value of the 
connecting element present between the buses I and j, if any. 

 

 
This is the principle of the rule of inspection. Thus the algorithmic equations for the 
rule of inspection are obtained as:  

Yii =  yij (j = 1,2,…….n)  

Y
ij 

=
 
- y

ij (j = 1,2,…….n) (15) 



For i = 1,2,….n, n = no. of buses of the given system, yij is the admittance of 

element connected between buses i and j and yii is the admittance of element 
connected between bus i and ground (reference bus). 
 
Bus impedance matrix  
In cases where, the bus impedance matrix is also required, it cannot be formed by 
direct inspection of the given system diagram. However, the bus admittance matrix 
determined by the rule of inspection following the steps explained above, can be 
inverted to obtain the bus impedance matrix, since the two matrices are inter-
invertible. 
 
Note: It is to be noted that the rule of inspection can be applied only to those power 

systems that do not have any mutually coupled elements. 

 

Examples on Rule of Inspection: 

 

Example 6: Obtain the bus admittance matrix for the admittance network shown 

aside by the rule of inspection 
 
 
 

16   -8  -4 YBUS = j  

-8  24   -8 -4   -8  16 
 
 
 
 
 
 
 
 
 

Example 7: Obtain YBUS for the impedance network shown aside by the rule of 

inspection. Also, determine YBUS for the reduced network after eliminating the 
eligible unwanted node. Draw the resulting reduced system diagram. 
 
 
 
 
 

 

 

-9.8 5  4 
 

 
 

YBUS= j  5 -16 10 
 

  4 10 -14 
 

     

 
 
 

ZBUS = YBUS
-1

 
 
 
 
 
 
 
 
 
26 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
New    -1 

YC 
 

YBUS = YA-YBYD 
 

YBUS = j 
 
-8.66 7.86 

 
 

 

 

 

 
 

   7.86 -8.66   
 

        

 
 
 
SINGULAR TRANSFORMATIONS 
 
The primitive network matrices are the most basic matrices and depend purely on 

the impedance or admittance of the individual elements. However, they do not 

contain any information about the behaviour of the interconnected network 

variables. Hence, it is necessary to transform the primitive matrices into more 

meaningful matrices which can relate variables of the interconnected network. 

 

Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS 
 
In the bus frame of reference, the performance of the interconnected network is 

described by n independent nodal equations, where n is the total number of buses (n+1 

nodes are present, out of which one of them is designated as the reference node). For 

example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The 



 
performance equation relating the bus voltages to bus current injections in bus frame 

of reference in admittance form is given by 
 
 IBUS = YBUS EBUS (17) 

Where   EBUS = vector of bus voltages measured with respect to reference bus  

IBUS = Vector of currents injected into the bus   

YBUS = bus admittance matrix 
 
The performance equation of the primitive network in admittance form is given by 
 

i + j = [y] v  

Pre-multiplying by A
t
 (transpose of A), we obtain  

A
t
 i +A

t
 j = A

t
 [y] v (18) 

However, as per equation (4),  

A
t
 i =0,  

 
since it indicates a vector whose elements are the algebraic sum of element currents 

incident at a bus, which by Kirchhoff’s law is zero. Similarly, A
t
 j gives the 

algebraic sum of all source currents incident at each bus and this is nothing but the 

total current injected at the bus. Hence, 
 

 A
t
 j  = IBUS (19) 

Thus from (18) we have, IBUS = A
t
 [y] v (20) 

However, from (5), we have  

 v =A EBUS  

And hence substituting in (20) we get,  

 IBUS = A
t
 [y] A EBUS (21) 

Comparing (21) with (17) we obtain,  

 YBUS = A
t
 [y] A (22) 

 
The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a 

singular transformation of the primitive admittance matrix [y]. The bus impedance 

matrix is given by , 
-1 

ZBUS  = YBUS (23) 
 
Note: This transformation can be derived using the concept of power invariance, 

however, since the transformations are based purely on KCL and KVL, the 

transformation will obviously be power invariant. 



Examples on Singular Transformation: 
 

 

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] and 

obtain the bus admittance matrix by singular transformation. Choose a Tree 

T(1,2,3). The data is given in Table E8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 Fig E8 System for Example-8 

 Table E8: Data for Example-8 

    

Elements  Self impedance Mutual impedance 
    

1  j 0.6 - 
    

2  j 0.5 j 0.1(with element 1) 
    

3  j 0.5 - 
    

4  j 0.4 j 0.2 (with element 1) 
    

5  j 0.2 - 
    

 
 

 

Solution: 
 

 
The bus incidence matrix is formed taking node 1 as the reference bus



  1 0 0  
 

  
0  1 0 

 
 

    
    

 

A =  0 1  1 
 

  
 1 0 0 

 
 

   
 

  1 0   
 

 

 
 1  

     
 

 

The primitive incidence matrix is given by, 
 
 

 j0.6 j0.1 0.0 j0.2 0.0  
 

 
j0.1 j0.5 0.0 0.0 0.0 

 
 

   
      

[z]=  0.0 0.0 j0.5 0.0 0.0  
 

 
j0.2 0.0 0.0 j0.4 0.0 

 
 

  
 

 
0.0 0.0 0.0 0.0 j0.2 

 
 

  
 

 

The primitive admittance matrix [y] = [z]
-1

 and given by, 
 
 

 j2.0833 j0.4167 0.0 j1.0417 0.0  
 

 
j0.4167  j2.0833 0.0  j0.2083 0.0 

 
 

   

     
 

[y]=  0.0 0.0  j2.0 0.0 0.0  
 

 
j1.0417  j0.2083 0.0  j3.0208 0.0 

 
 

  
 

 
0.0 0.0 0.0 0.0  j5.0 

 
 

  
 

 

The bus admittance matrix by singular transformation is obtained as 
 

  j8.0208 j0.2083 j5.0  

YBUS = A
t
 [y] A  =  j0.2083  j4.0833 j2.0  

       
  j5.0 j2.0   j7.0 
       

  j0.2713 j0.1264 j0.2299  

ZBUS  = YBUS
-1

  =  j0.1264 j0.3437 j0.1885

  

       
  j0.2299 j0.1885 j0.3609  
       



SUMMARY 
 
The formulation of the mathematical model is the first step in obtaining the solution 

of any electrical network. The independent variables can be either currents or 

voltages. Correspondingly, the elements of the coefficient matrix will be impedances 

or admittances. 

 
 
Network equations can be formulated for solution of the network using graph 

theory, independent of the nature of elements. In the graph of a network, the tree-

branches and links are distinctly identified. The complete information about the 

interconnection of the network, with the directions of the currents is contained in the 

bus incidence matrix. 

 
 
The information on the nature of the elements which form the interconnected 

network is contained in the primitive impedance matrix. A primitive element can be 

represented in impedance form or admittance form. In the bus frame of reference, 

the performance of the interconnected system is described by (n-1) nodal equations, 

where n is the number of nodes. The bus admittance matrix and the bus impedance 

matrix relate the bus voltages and currents. These matrices can be obtained from the 

primitive impedance and admittance matrices. 



 

FORMATION OF BUS IMPEDANCE MATRIX 
 

[CONTENTS: Node elimination by matrix algebra, generalized algorithms for ZBUS 

building, addition of BRANCH, addition of LINK, special cases of analysis, 
removal of elements, changing the impedance value of an element, examples] 

 

 

NODE ELIMINATION BY MATRIX ALGEBRA 
 
Nodes can be eliminated by the matrix manipulation of the standard node equations. 

However, only those nodes at which current does not enter or leave the network can be 

considered for such elimination. Such nodes can be eliminated either in one group or by 

taking the eligible nodes one after the other for elimination, as discussed next. 

 

CASE-A: Simultaneous Elimination of Nodes: 
 
Consider the performance equation of the given network in bus frame of reference 

in admittance form for a n-bus system, given by: 

 

I
BUS  

= Y
BUS 

E
BUS (1) 

 

Where IBUS and EBUS are n-vectors of injected bus current and bus voltages and 

YBUS is the square, symmetric, coefficient bus admittance matrix of order n. 
 

 
Now, of the n buses present in the system, let p buses be considered for node-

elimination so that the reduced system after elimination of p nodes would be retained 

with m (= n-p) nodes only. Hence the corresponding performance equation would be 

similar to (1) except that the coefficient matrix would be of order m now, i.e., 

 
new 

E
BUS (2) 

 

I
BUS 

= Y
BUS 

 

new 

Where YBUS is the bus admittance matrix of the reduced network and the vectors 

IBUS and EBUS are of order m. It is assumed in (1) that IBUS and EBUS are obtained 

with their elements arranged such that the elements associated with p nodes to be 

eliminated are in the lower portion of the vectors. Then the elements of YBUS also 

get located accordingly so that (1) after matrix partitioning yields, 



 
 

 
 
 

m p  

I 
BUS-m 

m Y 
A 

Y 
B 

 E 
 

     BUS-m 
 

I 
BUS-p 

=
   p Y 

C 
Y 

D 
 E 

 

      BUS-p 
 

(3) 
 

Where the self and mutual values of YA and YD are those identified only with the 

nodes to be retained and removed respectively and YC=YB
t
 is composed of only the 

corresponding mutual admittance values, that are common to the nodes m and p. 

 
 
Now, for the p nodes to be eliminated, it is necessary that, each element of the 

vector IBUS-p should be zero. Thus we have from (3): 

 

I
BUS-m 

= Y
A 

E
BUS-m 

+ Y
B 

E
BUS-p  

I
BUS-p 

= Y
C 

E
BUS-m 

+ Y
D 

E
BUS-p  

= 0
 (4) 

Solving, EBUS-p = - YD
-1

YC EBUS-m (5) 

Thus, by simplification, we obtain an expression similar to (2) as,  

IBUS-m = {YA - YBYD
-1

YC} EBUS-m (6) 

 
Thus by comparing (2) and (6), we get an expression for the new bus admittance 

matrix in terms of the sub-matrices of the original bus admittance matrix as: 
 

new -1 

YC} (7) 

 

Y
BUS = {YA - YBYD 

 

This expression enables us to construct the given network with only the necessary 

nodes retained and all the unwanted nodes/buses eliminated. However, it can be 

observed from (7) that the expression involves finding the inverse of the sub-matrix 

YD (of order p). This would be computationally very tedious if p, the nodes to be 

eliminated is very large, especially for real practical systems. In such cases, it is 

more advantageous to eliminate the unwanted nodes from the given network by 

considering one node only at a time for elimination, as discussed next. 



CASE-B: Separate Elimination of Nodes: 
 
Here again, the system buses are to be renumbered, if necessary, such that the node 

to be removed always happens to be the last numbered one. The sub-matrix YD then 

would be a single element matrix and hence it inverse would be just equal to its own 

reciprocal value. Thus the generalized algorithmic equation for finding the elements 

of the new bus admittance matrix can be obtained from (6) as, 

 

Yij
new

 = Yij
old

 – Yin Ynj / Ynni,j = 1,2,…… n. (8) 

 
Each element of the original matrix must therefore be modified as per (7). Further, 

this procedure of eliminating the last numbered node from the given system of n 

nodes is to be iteratively repeated p times, so as to eliminate all the unnecessary p 

nodes from the original system. 

 
 
Examples on Node elimination: 
 

Example-1: Obtain YBUS for the impedance network shown below by the rule of 

inspection. Also, determine YBUS for the reduced network after eliminating the 

eligible unwanted node. Draw the resulting reduced system diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The admittance equivalent network is as follows: 



 
The bus admittance matrix is obtained by RoI as: 
 

 -9.8 5  4 
YBUS= j 5 -16 10 

 4 10 -14 

 
The reduced matrix after elimination of node 3 from the given system is 
determined as per the equation: 
 

New   -1 

YC 

 
 

YBUS = YA-YBYD  
 

  n/n 1 2 
 

new 
= 

1 -j8.66 j7.86 
 Y

BUS     
 

  2 j7.86 -j8.66 
 

      
 

 

Alternatively, 
 

Yij
new

 = Yij
old

 – Yi3 Y3j / Y33 i,j = 1,2. 

 

Y11 = Y11-Y13Y31/ Y33 = -j8.66 

Y22 = Y22 – Y23Y32/ Y33 = -j8.66 

Y12 = Y21 = Y12 – Y13Y32/Y33 = j7.86 
 

 

Thus the reduced network can be obtained again by the rule of inspection as shown 
be low. 



Example-2: Obtain YBUS for the admittance network shown below by the rule of 

inspection. Also, determine YBUS for the reduced network after eliminating the 

eligible unwanted node. Draw the resulting reduced system diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

n/n 1 2 3 4    
 

1 -j50 0 j20 j10    
 

      

YA YB 

 

YBUS=2 0 -j60 0 j72 = 
 

      

YC YD 

 

3 j20 0 -j72 j50  
 

        
 

4 j10 j72 j50 -j81    
 

        
 

 
 

 
New -1 

YC 

    
 

Y
BUS = YA-YBYD     

 

    n/n 1 2 
 

  new 

= 

1 -j32.12 j10.32 
 

 
Y

BUS    
 

    2 j10.32 -j51.36 
 

       
 

 

Thus the reduced system of two nodes can be drawn by the rule of inspection as 

under: 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ZBUS building 
 

FORMATION OF BUS IMPEDANCE MATRIX 
 
The bus impedance matrix is the inverse of the bus admittance matrix. An alternative 

method is possible, based on an algorithm to form the bus impedance matrix directly 

from system parameters and the coded bus numbers. The bus impedance matrix is 

formed adding one element at a time to a partial network of the given system. The 

performance equation of the network in bus frame of reference in impedance form using 

the currents as independent variables is given in matrix form by 

 

 

 

bus  


 

Z
 bus 

I
 
bus (9) 

 

E 
 

When expanded so as to refer to a n bus system, (9) will be of the form 
 

E1  Z11 I1  Z12 I 2  .......  .Z1k I k ...  Z1n I n  

      

      

Ek 


 

Z
 k1 

I
1  


 

Z
 k 2 

I
 2  ......  Z kk I k   ....  Z kn I n  

      

      
E

n  Z n1 I1  Z n 2 I 2  .........  Z nk I k   .....  Z nn I n (10)  

Now assume that the bus impedance matrix Zbus is known for a partial network of m 

buses and a known reference bus. Thus, Zbus of the partial network is of dimension 

m  m. If now a new element is added between buses p and q we have the following 
 
two possibilities: 



 
(i) p is an existing bus in the partial network and q is a new bus; in this case 

p-q is a branch added to the p-network as shown in Fig 1a, and  
 
(ii) both p and q are buses existing in the partial network; in this case p-q is a 

link added to the p-network as shown in Fig 1b.  
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Fig 1a.  Addition of branch p-q 
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Fig 1b. Addition of link p-q 



If the added element ia a branch, p-q, then the new bus impedance matrix would be 
of order m+1, and the analysis is confined to finding only the elements of the new 
row and column (corresponding to bus-q) introduced into the original matrix. 

 
If the added element ia a link, p-q, then the new bus impedance matrix will remain 
unaltered with regard to its order. However, all the elements of the original matrix 
are updated to take account of the effect of the link added. 
 
 

ADDITION OF A BRANCH 
 
Consider now the performance equation of the network in impedance form with the 
 
added branch p-q, given by 

 

 E1   Z11 
 

    Z
 21 

 


E

2   
 

      

 

 
 

   Z
 p1 

 

E p    

   
   

 
  

    
 

 Em  
Z

 m1 
 

    Z
 q1 

 


E

q   
 

     
 

 
 

Z
12 

Z
1 p 

Z
1m 

Z
 22 

Z
 2 p 

Z
 2m 

Z
 p 2 

Z
 pp 

Z
 pm 

Z
 m 2 

Z
 mp 

Z
 mm 

Z
 q 2 Z qp Z qm 

 
Z

1q 

Z
 2q 

 
Z

 pq 
 
Z

 mq 

Z
 qq 

 
 

 I   
 

 1   
 I

 2 
 

 

   
 

    
 

    
 

 I
 p  (11) 

 

    
 

    
 

 I
 m   

 

    
 

 
I

 q   
 

It is assumed that the added branch p-q is mutually coupled with some elements of the 
 
partial network and since the network has bilateral passive elements only, we have 
 

Vector ypq-rs is not equal to zero and  Zij= Zji i,j=1,2,…m,q (12) 

 

To find Zqi: 
 
The elements of last row-q and last column-q are determined by injecting a current of 
 
1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference 
 
bus-0, as shown in Fig.2. Since all other bus currents are zero, we have from (11) that 
 
Ek = Zki Ii  = Zki  k = 1, 2,…i.…...p,….m, q (13) 

Hence,  Eq = Zqi  ; Ep = Zpi  ………  

Also,  Eq=Ep -vpq ; so that Zqi  = Zpi - vpq    i =1, 2,…i.…...p,….m, ≠q (14) 
 

To find vpq: 
 
In terms of the primitive admittances and voltages across the elements, the current 
 
through the elements is given by 



ipq 
y

pq,pq 
  

 pq,rs
v

pq 
 

 

y  
 

             (15)  
 

y
rs,pq 

    


i

rs   
y

rs,rs 
v

rs   
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Fig.2 Calculation for Zqi 

 

where i pq  is current through element p-q 
 

irs is vector of currents through elements of the partial network 
 

v pq is voltage across element p-q 
 

y pq , pq is self – admittance of the added element 
 

y pq,rs is the vector of mutual admittances between the added elements p-q and 
 

elements r-s of the partial network. 
 

vrs is vector of voltage across elements of partial network. 
 

yrs, pq  is transpose of  y pq,rs . 
 

yrs ,rs is the primitive admittance of partial network. 
 
 

Since the current in the added branch p-q, is zero, i pq   0 . We thus have from (15), 
 

i
 pq  


 

y
 pq , pq 

v
 pq  


 

 

pq ,rs 

 

rs   0 (16) 

 

y v 
 

 
 
 

 

40 



 

Solving, v pq  
 y pq,rs v rs  

or 
   

 

  y
 pq, pq 

   
 

            
 

     

pq,rs 


 
 

r  


 
 

s 


 

   
 

   

 

  

E E 
    

v
 pq  

y   

(17) 
 

      y
 pq, pq 

       
 

                 
 

Using (13) and (17) in (14), we get  
 

         
pq,rs 


 
 

ri  
 

si  
 

 

       

 

 

Z Z 
  

Z
 qi  


 

Z
 pi  

y  
 

                

i  1,2......m; i  q (18) 
 

     y
 pq, pq 

 
 

               
 

To find zqq:  

The element Zqq can be computed by injecting a current of 1pu at bus-q, Iq = 1.0 pu. 

As before, we have the relations as under: 

Ek = Zkq Iq = Zkq  k = 1, 2,…i.…...p,….m, q (19) 

Hence,  Eq = Zqq ; Ep = Zpq  ;  Also, Eq =Ep - vpq ;  so that Zqq  = Zpq - vpq (20) 
 
Since now the current in the added element is ipq  Iq  1.0 , we have from (15) 
 
 

i
 pq 


 

y
 pq , pq 

v
 pq  

  

pq ,rs 

 

rs  1 

 

 y v 
 

Solving,  v pq 1  
   y pq,rs v rs               

 

    y
 pq, pq 

             
 

                    
 

        

pq,rs 


 
 

r  

 

s 


 

  
 

      

 

  

E E 
   

v
 pq 1  

  y 

(21) 
 

       y
 pq, pq  

 

             
 

Using (19) and (21) in (20), we get   
 

   
1  

 
pq,rs 


 
 

rq  


 
 

sq  
 

    

Z Z 
 

Z
 qq  


 

Z
 pq  

y 
 

                          

(22) 
 

          y
 pq, pq 

 
 

               
 

Special Cases  

The following special cases of analysis concerning ZBUS building can be considered 
 
with respect to the addition of branch to a p-network. 
 
Case (a): If there is no mutual coupling then elements of y pq ,rs are zero. Further, if 

p is the reference node, then Ep=0. thus, 
 

 Zpi = 0 i  1,2......m : i  q 
 

And Zpq = 0. 

i  1,2.......m; i  q 
 

Hence, from (18) (22) Zqi = 0 
 

And 
Z

 qq  


 

z
 pq, pq \   (23) 

 



Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18) 
 
and (22), we again have, 
 

Z
 qi  Z pi , i  1,2....m; i  q  

Z
 qq  Z pq 


 

z
 pq , pq (24) 

 

ADDITION OF A LINK 
 
 
Consider now the performance equation of the network in impedance form with the 

added link p-l, (p-l being a fictitious branch and l being a fictitious node) given by 
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It is assumed that the added branch p-q is mutually coupled with some elements of the 

partial network and since the network has bilateral passive elements only, we have 

Vector ypq-rs is not equal to zero and  Zij= Zji i,j=1,2,…m,l. (26) 

 

To find Zli: 
 
The elements of last row-l and last column-l are determined by injecting a current of 

1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the 

reference bus-0, as shown in Fig.3. Further, the current in the added element is made 

zero by connecting a voltage source, el in series with element p-q, as shown. Since 

all other bus currents are zero, we have from (25) that 
 
 Ek = Zki Ii  = Zki  k = 1, 2,…i.…...p,….m, l (27) 

Hence, el = El = Zli  ;  Ep = Zpi ;  Ep = Zpi   ………  

Also, el = Ep - Eq - vpq ;   

So that Zli  = Zpi - Zqi - vpq  i=1,2,…i.…p,...q,….m, ≠l (28) 
 
 
 
 
 



To find vpq: 
 
In terms of the primitive admittances and voltages across the elements, the current 

through the elements is given by 
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   Fig.3 Calculation for Zli 
 

where   ipl is current through element p-q 
 

   

is vector of currents through elements of the partial network 
 

i rs 
 

v
pl is voltage across element p-q 

 

is self – admittance of the added element 
 
is the vector of mutual admittances between the added elements p-q and 
 

elements r-s of the partial network. 
 

vrs is vector of voltage across elements of partial network. 
 

yrs, pl  is transpose of  y pl , rs . 
 

yrs ,rs is the primitive admittance of partial network. 
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Since the current in the added branch p-l, is zero,  ipl   0 . We thus have from (29), 
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Solving, vpl  
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However,                                 
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Using (27), (31) and (32) in (28), we get  
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To find Zll:  

The element Zll can be computed by injecting a current of 1pu at bus-l, Il = 1.0 pu. 

As before, we have the relations as under: 

Ek = Zkl Il = Zkl        k = 1, 2,…i.…...p,…q,….m, l (34) 
 

Hence, el = El = Zll ;  Ep = Zpl  ;  
 

Also, el = Ep - Eq - vpl ;  
 

So that Zll  = Zpl - Zql - vpl   i=1,2,…i.…p,...q,….m, ≠l (35) 
 

Since now the current in the added element is ipl  Il 1.0 , we have from (29) 
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Solving, 
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Using (34), (36) and (37) in (35), we get  
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Special Cases Contd….  

The following special cases of analysis concerning ZBUS building can be considered 
 
with respect to the addition of link to a p-network. 
 

Case (c): If there is no mutual coupling, then elements of 
 

pq,rs are zero. Further, if p 
 

y 
 

is the reference node, then Ep=0. thus,  
 

Z
li Zqi ,   i  1,2....m;i  l  

 

Z
ll 
Z

ql  


 

z
 pq , pq (39) 

 

From (39), it is thus observed that, when a link is added to a ref. bus, then the 
situation is similar to adding a branch to a fictitious bus and hence the following 
steps are followed:  

1. The element is added similar to addition of a branch (case-b) to obtain the 
new matrix of order m+1.   

2. The extra fictitious node, l is eliminated using the node elimination algorithm.  

 

Case (d): If there is no mutual coupling, then elements of 
 

pq,rs  are zero. Further, if p 
 

y 
 

is not the reference node, then   
 

Zli = Zpi - Zqi   
 

Zll = Zpl – Zql – zpq,pq   
 

= Zpp + Zqq – 2 Zpq+ zpq,pq (40) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



UNIT-II 

POWER FLOW STUDIES 
 

MODIFICATION OF ZBUS FOR NETWORK CHANGES 

 
An element which is not coupled to any other element can be removed easily. The 

Zbus is modified as explained in sections above, by adding in parallel with the 

element (to be removed), a link whose impedance is equal to the negative of the 

impedance of the element to be removed. Similarly, the impedance value of an 

element which is not coupled to any other element can be changed easily. The Zbus 

is modified again as explained in sections above, by adding in parallel with the 

element (whose impedance is to be changed), a link element of impedance value 

chosen such that the parallel equivalent impedance is equal to the desired value of 

impedance. When mutually coupled elements are removed, the Zbus is modified by 

introducing appropriate changes in the bus currents of the original network to reflect 

the changes introduced due to the removal of the elements. 

Examples on ZBUS building 
 
Example 1: For the positive sequence network data shown in table below, obtain 

ZBUS by building procedure.  
 

p-q 
Pos. seq. 

 

Sl. No. reactance  

(nodes)  

 
in pu  

  
 

1 0-1 0.25 
 

2 0-3 0.20 
 

3 1-2 0.08 
 

4 2-3 0.06 
 

 
Solution:  
The given network is as shown below with the data marked on it. Assume the 
elements to be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. E1: Example System 
 



Consider building ZBUS as per the various stages of building through the 

consideration of the corresponding partial networks as under: 
 
Step-1: Add element–1 of impedance 0.25 pu from the external node-1 (q=1) to 

internal ref. node-0 (p=0). (Case-a), as shown in the partial network; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

ZBUS
(1)

 =  1    0.25 



Step-2: Add element–2 of impedance 0.2 pu from the external node-3 (q=3) to 

internal ref. node-0 (p=0). (Case-a), as shown in the partial network; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   1 3 

(2)  1 0.25 0 
ZBUS = 3 0 0.2 

 
Step-3: Add element–3 of impedance 0.08 pu from the external node-2 (q=2) to 

internal node-1 (p=1). (Case-b), as shown in the partial network; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  1 3 2 

 

(3) 1 0.25 0 0.25 
 

=  3 0 0.2 0 
 

ZBUS 
 

 2 0.25 0 0.33 
 

 
Step-4: Add element–4 of impedance 0.06 pu between the two internal nodes, 

node-2 (p=2) to node-3 (q=3). (Case-d), as shown in the partial network; 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   1 3 2 l 
  1 0.25 0 0.25 0.25 

(4)  3 0 0.2 0 -0.2 
ZBUS = 2 0.25 0 0.33 0.33 

  l 0.25 -0.2 0.33 0.59 

 
The fictitious node l is eliminated further to arrive at the final impedance matrix as 
under: 

 
   1 3 2 

 

 
(final) 

1 0.1441 0.0847 0.1100 
 

ZBUS =  3 0.0847 0.1322 0.1120  

 
 

  2 0.1100 0.1120 0.1454 
 

 

Example 2: The ZBUS for a 6-node network with bus-6 as ref. is as given below. 

Assuming the values as pu reactances, find the topology of the network and the 
parameter values of the elements involved. Assume that there is no mutual coupling 
of any pair of elements. 
 

 1 2 3 4 5 
1 2 0 0 0 2 

2 0 2 0 2 0 
ZBUS =   

3
 0 0 2 0 0 

4 0 2 0 3 0 

5 2 0 0 0 3 
 
Solution:  
The specified matrix is so structured that by its inspection, we can obtain the 

network by backward analysis through the various stages of ZBUS building and p-
networks as under: 
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Thus the final network is with 6 nodes and 5 elements connected as follows with 
the impedance values of elements as indicated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. E2: Resultant network of example-2 
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Example 3: Construct the bus impedance matrix for the system shown in the figure 
below by building procedure. Show the partial networks at each stage of building 
the matrix. Hence arrive at the bus admittance matrix of the system. How can this 
result be verified in practice? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Solution: The specified system is considered with the reference node denoted by 

node-0. By its inspection, we can obtain the bus impedance matrix by building 
procedure by following the steps through the p-networks as under: 
 
Step1: Add branch 1 between node 1 and reference node. (q =1, p = 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step2: Add branch 2, between node 2 and reference node. (q = 2, p = 0). 
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Step3: Add branch 3, between node 1 and node 3 (p = 1, q = 3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step 4: Add element 4, which is a link between node 1 and node 2. (p = 1, q = 2) 
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Now the extra node-l has to be eliminated to obtain the new matrix of step-4, 
using the algorithmic relation: 
 
 

Yij
new

 = Yij
old

 – Yin Ynj / Ynn i,j = 1,2, 3. 
 
 
 
 
 
 
 
 
 
 
 

 

Step 5: Add link between node 2 and node 3 (p = 2, q=3) 
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Thus, the new matrix is as under: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Node l is eliminated as shown in the previous step: 
 
 
 
 
 
 
 
 
 
 
 
 
Further, the bus admittance matrix can be obtained by inverting the bus 
impedance matrix as under: 
 
 
 
 
 
 
 
 
 
 

As a check, it can be observed that the bus admittance matrix, YBUS can also be 

obtained by the rule of inspection to arrive at the same answer. 
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Example 4: Form the bus impedance matrix for the network shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution:  
Add the elements in the sequence, 0-1, 1-2, 2-3, 0-3, 3-4, 2-4, as per the various 
steps of building the matrix as under: 
 
Step1: Add element 1, which is a branch between node-1 and reference node. 
 
 
 
 
 
 
Step2: Add element 2, which is a branch between nodes 1 and 2. 
 
 
 
 
 
 
 
 

 

Step3: Add element 3, which is a branch between nodes 2 and 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step4: Add element 4, which is a link from node 3 to reference node. 
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Eliminating node l, 
 
 
 
 
 
 
 
 
 
 
 
 

 
Step5: Add element 5, a branch between nodes 3 and 4. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 6: Add element 6, a link between nodes 2 & 4. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Eliminating node l we get the required bus impedance , matrix 
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Example 5: Form the bus impedance matrix for the network data given below. 
 

 Self Impedance Mutual Impedance 

Element Bus zpq, pq Bus zpq, rs 
 p-q (pu) r-s (pu) 

1 1 – 2(1) j0.6   

2 1 – 2(2) j0.4 1 – 2(1) j0.2 

 
Solution:  
Let bus-1 be the reference. Add the elements in the sequence 1-2(1), 1-2(2). Here, 
in the step-2, there is mutual coupling between the pair of elements involved. 
 
 
 
 
 
 
 
 

 
Step1: Add element 1 from bus 1 to 2, element 1-2(1). ( p=1, q=2, p is the 
reference node) 
 
 
 
 
 
Step2: Add element 2, element 1-2(2), which is a link from bus1 to 2, 
mutually coupled with element 1, 1-2(1). 
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Consider the primitive impedance matrix for the two elements given by 
 
 
 
 
 
 
 
Thus the primitive admittance matrix is obtained by taking the inverse of [z] as 
 
 
 
 
 
 
 
 
 
 
 
Thus, 
 
 

 
So that we have, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Thus, the network matrix corresponding to the 2-node, 1-bus network given, is obtained after eliminating the 

extra node-l as a single element matrix, as under: 
 
 
 
 
 
 
 
 
 
 
 
 

 

 INTRODUCTION 
 
 

  

In a three phase ac power system active and reactive power flows from the 

generating station to the load through different networks buses and branches. 

The flow of active and reactive power is called power flow or load flow. Power 

flow studies provide asystematic mathematical approach for determination of 

various bus voltages, there phase angle active and reactive power flows through 



 

different branches, generators and loads under steady state condition. Power 

flow analysis is used to determine the steady state operating condition of a 

power system. Power flow analysis is widely used by power distribution 

professional during the planning and operation of power distribution system. 
 
 
 

There three methods for load flow studies 

mainly 

1. Gauss siedel method 

2. Newton raphson method 

3. Fast decoupled method. 

a. OBJECTIVE OF LOAD FLOW STUDY 
 

  

i. Power flow analysis is very important in planning stages of 

new networks or addition to existing ones like adding new 

generator sites, meeting increase load demand and locating 

new transmission sites. 

ii. The load flow solution gives the nodal voltages and phase 

angles and hence the power injection at all the buses and 

power flows through interconnecting power channels. 

iii. It is helpful in determining the best location as well as 

optimal capacity of proposed generating station, substation 

and new lines. 

iv. It determines the voltage of the buses. The voltage level at 

the certain buses must be kept within the closed 

tolerances. 

v. System transmission loss minimizes. 

vi. Economic system operation with respect to fuel cost to 

generate all the power needed 

vii. The line flows can be known. The line should not be 



 

overloaded, it means, we should not operate the close to 

their stability or thermal limits. 

 BUS CLASSIFICATION 
 

  

 
A bus is a node at which one or many lines, one or many loads and generators 

are connected. In a power system each node or bus is associated with 4 

quantities, such as magnitude of voltage, phage angle of voltage, active or true 

power and reactive power in load flow problem two out of these 4 quantities 

are specified and remaining 2 are required to be determined through the 

solution of equation. Depending on the quantities that have been specified, the 

buses are classified into 3 categories. 

VARIABLES AND BUS CLASSIFICATION 
 

Buses are classified according to which two out of the four variables are specified 
 

 Load bus: No generator is connected to the bus. At this bus the real and 

reactive power are specified.it is desired to find out the volatage 

magnitude and phase angle through load flow solutions.It is required to 

specify only Pd and Qd at such bus as at a load bus voltage can be 

allowed to vary within the permissible values. 

 
 Generator bus or voltage controlled bus: Here the voltage magnitude 

corresponding to the generator voltage and real power Pg corresponds 

to its rating are specified.It is required to find out the reactive power 

generation Qg and phase angle of the bus voltage. 

 
 Slack (swing) bus: For the Slack Bus, it is assumed that the voltage 

magnitude |V| and voltage phase Θ are known,whereas real and reactive 

powers Pg and Qg are obtained through the load flow solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

UNIT-III 

SHORT CIRCUIT ANALYSIS 
 

 Power System Fault Analysis  

 Introduction 

The fault analysis of a power system is required in order to provide information for 
the selection of switchgear, setting of relays and stability of system operation. A 
power  system is not static but changes during operation (switching on or off of 
generators and transmission lines) and during planning (addition of generators and 
transmission lines). Thus fault studies need to be routinely performed by utility 
engineers (such as in the CEB). 

Faults usually occur in a power system due to either insulation failure, flashover, 
physical damage or human error. These faults, may either be three phase in nature 
involving all three phases in a symmetrical manner, or may be asymmetrical where 
usually only one or two phases may be involved. Faults may also be caused by either 
short-circuits to earth or between live conductors, or may be caused by broken 
conductors in one or more phases. Sometimes simultaneous faults may occur 
involving both short-circuit and broken- conductor faults (also known as open-circuit 
faults). 

Balanced three phase faults may be analysed using an equivalent single phase circuit.   
With asymmetrical three phase faults, the use of symmetrical components help to 
reduce the complexity of the calculations as transmission lines and components are 
by and large symmetrical, although the fault may be asymmetrical. 

Fault analysis is usually carried out in per-unit quantities (similar to percentage 
quantities) as they give solutions which are somewhat consistent over different 
voltage and power ratings, and operate on values of the order of unity. 

In the ensuing sections, we will derive expressions that may be used in computer 
simulations by the utility engineers. 

 Equivalent Circuits - Single phase and Equivalent Single Phase Circuits 

In a balanced three phase circuit, since the information relating to one single phase 
gives the information relating to the other two phases as well, it is sufficient to do 
calculations in a single phase circuit. There are two common forms used. These are (i) 
to take any one single phase of the three phase circuit and (ii) to take an equivalent 
single phase circuit to represent the full three phase circuit. 

 

 Single Phase Circuit 
 
 
 

VP =VAS 

EA 

S 

 

Figure 2.1 shows one single phase “AN” of the three phase circuit “ABC N”. Since the 
system is balanced, there is no current in the neutral, and there is no potential drop 

A 

Zs 
IP = IAS 

PT/3 Z 

N 
Figure 2.1 - Single Phase Circuit 



 

across the neutral wire. Thus the star point “S” of the system would be at the same 
potential as  the neutral point “N”. Also, the line current is the same as the phase 
current, the line voltage is 3 times the phase voltage, and the total power is 3 times 
the power in a single phase. 

I = IP = IL, V = VP = VL/3 and S = SP = ST/3 

Working with the single phase circuit would yield single phase quantities, which can 
then be converted to three phase quantities using the above conversions. 

 

 Equivalent Single Phase Circuit 

Of the parameters in the single phase circuit shown in figure 2.1, the Line Voltage and 
the Total Power (rather than the Phase Voltage and one-third the Power) are the 
most important quantities. It would be useful to have these quantities obtained 
directly from the circuit rather than having conversion factors of 3 and 3 
respectively. This is achieved in the Equivalent Single Phase circuit, shown in figure 
2.2, by multiplying the voltage by a factor of 3 to give Line Voltage directly. 

 
 

 
 

EL = 3EA 

 
 
 
 
 

Figure 2.2 - Equivalent Single Phase Circuit 

VL =3VAS 

 

S 

A 

Zs 

I = 3 IL = 3 IAS 

PT Z 

N 



 

The Impedance remains as the per-phase impedance. However, the Line Current gets 
artificially amplified by a factor of 3. This also increases the power by a factor of 

(3)2, which is the required correction to get the total power. 

Thus, working with the Equivalent single phase circuit would yield the required three 
phase quantities directly, other than the current which would be 3 IL. 

 Revision of Per Unit Quantities 

Per unit quantities, like percentage quantities, are actually fractional quantities of a 
reference quantity. These have a lot of importance as per unit quantities of 
parameters tend to have similar values even when the system voltage and rating 
change drastically. The per unit system permits multiplication and division in 
addition to addition and subtraction without the requirement of a correction factor 
(when percentage quantities are multiplied or divided additional factors of 0.01 
or100 must be brought in, which are not in the original equations, to restore the 
percentage values). Per-unit values are written with “pu” after the value. 

For power, voltage, current and impedance, the per unit quantity may be obtained by 
dividing by the respective base of that quantity. 

 

Expressions such as Ohm’s Law can be applied for per unit quantities as well. Since 
Voltage, Current, Impedance and Power are related, only two Base or reference 
quantities can be independently defined. The Base quantities for the other two can be 
derived there from. Since Power and Voltage are the most often specified, they are 
usually chosen to define the independent base quantities. 

Calculation for Single Phase Systems 

If VAbase and Vbase are the selected base quantities of power (complex, active or reactive) 

and voltage respectively, then 

 

 

In a power system, voltages and power are usually expressed in kV and MVA, thus it is 
usual to select an MVAbase and a kVbase and to express them as 

 

 

 



 

 

In these expressions, all the quantities are single phase quantities. 
 

Calculations for Three Phase Systems 

In three phase systems the line voltage and the total power are usually used rather 
than the single phase quantities. It is thus usual to express base quantities in terms of 
these. 

If VA3base and VLLbase are the base three-phase power and line-to-line voltage respectively, 

 

 

It is to be noted that while the base impedance for the three phase can be obtained 
directly from the VA3base and VLLbase (or MVA3base and kVLLbase) without the need of any 
additional factors, the calculation of base current needs an additional factor of 3. 
However this is  not usually a problem as the value of current is rarely required as a 
final answer in power systems calculations, and intermediate calculations can be 

done with a variable 3Ibase. 

Thus in three phase, the calculations of per unit quantities becomes 



 

 

Conversions from one Base to another 

It is usual to give data in per unit to its own rating [ex: The manufacturer of a certain 
piece of equipment, such as a transformer, would not know the exact rating of the 
power system in which the equipment is to be used. However, he would know the 
rating of his equipment]. As different components can have different ratings, and 
different from the system rating, it is necessary to convert all quantities to a common 
base to do arithmetic or algebraic operations. Additions, subtractions, multiplications 
and divisions will give meaningful results only if they are to the same base. This can 
be done for three phase systems as follows. 



 

Transmission Line 

Example: 

A 200 MVA, 13.8 kV generator has a reactance of 0.85 p.u. and is generating 1.15 pu 
voltage. Determine (a) the actual values of the line voltage, phase voltage and 
reactance, and (b) the corresponding quantities to a new base of 500 MVA, 13.5 kV. 

(a) Line voltage = 1.15 * 13.8 = 15.87 kV 

Phase voltage = 1.15 * 13.8/3 = 9.16 kV 

Reactance =  0.85 * 13.82/200 = 0.809 

(b) Line voltage =  1.15 * 13.8/13.5 = 1.176 pu 

Phase voltage  =  1.15 * (13.8/3)/(13.5/3) = 1.176 pu 

Reactance = 0.85 * (13.8/13.5)2/(500/200) = 0.355 

pu 

Per Unit Quantities across Transformers 

When a transformer is present in a power system, although the power rating on 
either side of a transformer remains the same, the voltage rating changes, and so does 
the base voltage across a transformer.  [This is like saying that full or 100% (or 1 pu) 
voltage on the  primary of a 220kV/33 kV transformer corresponds to 220 kV while 
on the secondary it corresponds to 33 kV.] Since the power rating remains 
unchanged, the impedance and current ratings also change accordingly. 

While a common MVA3base can and must be selected for a power system to do 
analysis, a common VLLbase must be chosen corresponding to a particular location (or 
side of transformer) and changes in proportion to the nominal voltage ratio whenever 
a transformer is encountered. Thus the current base changes inversely as the ratio.  
Hence  the impedance base changes as the square of the ratio. 

For a transformer with turns ratio NP:NS, base quantities change as follows. 
 

Quantity Primary Base Secondary Base 

Power (S, P and Q) Sbase Sbase 

Voltage (V) V1base V1base . NS/NP = V2base 

Current (I) Sbase/3V1base Sbase/3V1base . NP/NS = Sbase/3V2base 

Impedance (Z, R and X) 
2/S 

V1base base 

2/S . (N  /N  )2 = V 2/S 
V1base base S P 2base base 

 

Example : 

G 

 
G 

T1 

 
 

 
Figure 2.3 - Circuit for Example T2 

 
 

Load 



 

j0.355 
j0.08 j0.081 j0.138 0.425 + j0.263 

j0.355 

In the single line diagram shown in figure 2.3, each three phase generator G is rated at 
200 MVA, 13.8 kV and has reactances of 0.85 pu and are generating 1.15 pu. 
Transformer T1  is rated at 500 MVA, 13.5 kV/220 kV and has a reactance of 8%. The 
transmission line  has a reactance of 7.8 . Transformer T2 has a rating of 400 MVA, 
220 kV/33 kV and a reactance of 11%. The load is 250 MVA at a power factor of 0.85 
lag. Convert all quantities to a common base of 500 MVA, and 220 kV on the line and 
draw the circuit diagram with values expressed in pu. 

Solution: 

The base voltage at the generator is (220*13.5/220) 13.5 kV, and on the load side is 
(220*33/220) 33 kV. [Since we have selected the voltage base as that corresponding 
to the voltage on that side of the transformer, we automatically get the voltage on the 
other side of the transformer as the base on that side of the transformer and the 
above calculation is in fact unnecessary. 

Generators G 

Reactance of 0.85 pu corresponds 0.355 pu on 500 MVA, 13.5 kV base (see earlier 
example) 

Generator voltage of 1.15 corresponds to 1.176 on 500 MVA, 13.5 kV base 

Transformer T1 

Reactance of 8% (or 0.08 pu) remains unchanged as the given base is the same as the 
new chosen base. 

Transmission Line 

Reactance of 7.8  corresponds to 7.8 * 500/2202 = 0.081 pu 

Transformer T2 

Reactance of 11% (0.11 pu) corresponds to 0.11 * 500/400 = 

0.1375 pu (voltage base is unchanged and does not come into the 

calculations) Load 

Load of 250 MVA at a power factor of 0.85 corresponds to 250/500 = 0.5 pu at a 
power factor of 0.85 lag (power factor angle = 31.79) 

 resistance of load = 0.5 * 0.85  =  0.425 pu 

and reactance of load = 0.5 * sin 31.79 = 0.263 pu 

The circuit may be expressed in per unit as shown in figure 2.4. 
 

1.176 pu 

 

1.176 pu 

Figure 2.4 - Circuit with per unit values 

 



 

 Symmetrical Three Phase Fault Analysis 

A three phase fault is a condition where either (a) all three phases of the system are short- 
circuited to each other, or (b) all three phase of the system are earthed. 

a a 

b b 

c c 

 

This is in general a balanced condition, and we need to only know the 
positive-sequence network to analyse faults. Further, the single line diagram 
can be used, as all three phases carry equal currents displaced by 120o. 

Typically, only 5% of the initial faults in a power system, are three phase 
faults with or without earth. Of the unbalanced faults, 80 % are line-earth and 
15% are double line faults with or without earth and which can often 
deteriorate to 3 phase fault. Broken conductor faults account for the rest. 

 

 

Fault Level Calculations 

In a power system, the maximum the fault current (or fault MVA) that can flow into a 
zero impedance fault is necessary to be known for switch gear solution. This can 
either be the balanced three phase value or the value at an asymmetrical condition. 
The Fault Level defines the value for the symmetrical condition. The fault level is 
usually expressed in MVA (or corresponding per-unit value), with the maximum fault 
current value being converted using the nominal voltage rating. 

MVAbase = 3 . Nominal Voltage(kV) . Ibase (kA) 

MVAFault = 3 . Nominal Voltage(kV) . Isc (kA) 

where 

MVAFault – Fault Level at a given point in MVA 

Ibase – Rated or base line current 

Isc – Short circuit line current flowing in to a 

fault The per unit value of the Fault Level may thus be 

written as 

 
Supply 

side 

3  fault 

 

 

 

 

 
Supply 

side 

3  to earth fault 
 

 

 

 



 

 

The Short circuit capacity (SCC) of a busbar is the fault level of the busbar. The 
strength  of a busbar (or the ability to maintain its voltage) is directly proportional to 
its SCC. An infinitely strong bus (or Infinite bus bar) has an infinite SCC, with a zero 
equivalent impedance and will maintain its voltage under all conditions. 

Magnitude of short circuit current is time dependant due to synchronous generators. 
It is initially at its largest value and decreasing to steady value. These higher fault 
levels tax Circuit Breakers adversely so that current limiting reactors are sometimes 
used. 

The Short circuit MVA is a better indicator of the stress on CBs than the short circuit 
current as CB has to withstand recovery voltage across breaker following arc 
interruption. 

The currents flowing during a fault is determined by the internal emfs of machines in 
the network, by the impedances of the machines, and by the impedances between the  
machines and the fault. 

Figure 2.6 shows a part of a power system, where the rest of the system at two points 
of coupling have been represented by their Thevenin’s equivalent circuit (or by a 
voltage source of 1 pu together its fault level which corresponds to the per unit value 
of the effective Thevenin’s impedance). 



 

 

Zin 

3 

Zf 

V=1 pu V=1 pu 

0.125 pu 0.2 pu 

1 3 2 

0.3 pu 
0.3 pu 

Zf 

V 

Fault Level = 8 pu Fault Level = 5 pu 

 

1 

 
 
 
 
 
 
 
 

Figure 2.6 – Circuit for Fault Level Calculation 

With CB1 and CB2 open, short circuit capacities are 

SCC at bus 1 = 8 p.u. gives Zg1 = 1/8 = 0.125 pu 

SCC at bus 2 = 5 p.u. gives Zg2 = 1/5 = 0.20 pu 

Each of the lines are given to have a per unit impedance of 0.3 pu. 

Z1 = Z2 = 0.3 p.u. 

With CB1 and CB2 closed, what would be the SCCs (or Fault Levels) of the busbars in the 
system ? o 

3 
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
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System Equivalent Circuit Thevenin’s Equivalent at 3 

Figure 2.7a Determination of Short circuit capacities 

This circuit can be reduced and analysed as in figure 2.7b. 
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Figure 2.7b Determination of Short circuit capacity at Bus 3 

Thus, the equivalent input impedance is given by to give Zin as 0.23 pu at bus 3, 

so that the short circuit capacity at busbar 3 is given as 

| SCC3 |= 1/0.23 = 4.35 p.u 

The network may also be reduced keeping the identity of Bus 1 as in figure 2.7c. 
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Figure 2.7c Determination of Short circuit capacity at Bus 1 
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UNIT - IV 

POWER SYSTEM STEADY STATE STABILITY 

ANALYSIS 
 

Stability of power system is its ability to return to normal or stable operating condition 

after been subjected to some of disturbance. Instability means a condition representing 

loss of synchronism or fall out of step. 

The instability of power system is divided into two parts 

1. Steady state stability 

2. Transient stability 

Increase in load is a kind of disturbance to power system. If the increase in load takes 

place gradually and slowly in small steps and the system withstand this change in load 

and operates satisfactorily then this system phenomena is said to be STEADY STATE 

STABILITY. 

Cause of transient disturbances 

1. Sudden change of load. 

2. Switching operation. 

3. Loss of generation. 

4. Fault. 

Due to the following sudden disturbances in the power system, rotor angular difference, 

rotor speed and power transfer undergo fast changes whose magnitude are dependent 

upon the severity of disturbances. 

If the disturbance is so large that the angular difference increases so much which can 

cause the machine out of synchronism. This kind of instability is denoted as transient 

instability. It is a very fast phenomenon it occurs within one second for the generating 

unit closer to the disturbance. 

 
Dynamics Of A Synchronous Machine 

 

The kinetic energy of the rotor at synchronous machine is 



 

KE  
1 

J 2
 

  

106 MJ ( 1) 

2 
sm 

J =rotor moment of inertia in kg-m2 

 

 

g =machine rating(base)in mva(3-phase) 

h =inertia constant in mj/mva or mw-s/mva 

so, 

 

M  
2GH  

GH 
MJ-s/elect.rad ( 4) 

  

 
  

GH 

180 f 

s f 

 
MJ-s/elect.rad ( 5) 

 

Taking G as base, the inertia constant in pu is 
 

M   
H

 

f 

 
s2/elect.rad ( 6) 

 

M  
H

 

180 f 

s2/elect.degree ( 7) 



 

Swing Equation 

The differential equation that relates the angular momentum M, acceleration power Pa and the rotor 

angle  is known as swing equation. Solution of swing equation shows how the rotor angle changes with 

respect time following a disturbance. The plot  Vs t is known as swing curve. The differential equation 

governing the rotor dynamics can then be written as. 

 



 

 

 

 
 
 

Fig.  1 Electrical and mechanical power flow in motor 
 

While the rotor undergoes dynamics as per Equation (9), the rotor speed changes by 

insignificant magnitude for the time period of interest (1s) 

Equation ( 8) can therefore be converted into its more convenient power form by assuming 

the rotor .speed (ωsm). Multiplying both sides of Equation ( 8) by ωsm we can write 

d 2 6 

 

 
Where, 

Jsm
  m 10 

dt2
 

 Pm     Pe  MW ( 9) 

Pm= mechanical power input in MW 

 
Pe=electrical power output in MW; stator copper loss is assumed neglected. 

Rewriting Equation ( 9) 

 

Where 

 
ϴe =angle in rad.(elect.) 



 

 

As it is more convenient to measure the angular position of the rotor with respect to a 

synchronously rotating frame of reference. 
 

Let us 
assume, 

 
  e  st 

 
 

( 13) 

δ is rotor angular displacement from synchronously rotating reference frame, called 

Torque Angle/Power Angle. 

From Equation ( 9) 

d 2 d 2
  e   ( 14) 

dt2 dt2
 

 

Hence Equation ( 11) can be written in terms of   as 

d 2

M 
dt2

 

 Pm  Pe MW ( 15) 

 

Using Equation ( 11) we can also write 

 GH  d 2

  
f   

 
dt2

 

 

 
Dividing throught by G, the MVA rating of the machine 

 

 
 

 
Wher
e 

 
 
H H d 2 





  

d 2

M ( pu) 
dt2

 

 
 

 Pm  Pe 

 
( 17) 

M ( pu)  
f

 , 
f dt2

 

Pm Pe pu 

Equation ( 17) is called as swing equation and it describes the rotor dynamics for a 



 

synchronous machine (generating/motoring). It is a second-order differential equation 

where the damping term (proportional to d 
dt ) is absent because of the assumption of a 

loss less machine and the fact that the torque of damper winding has been ignored. Since 

the electrical power Pe depends upon the sine of angle  the swing equation is a non-linear 

second-order differential equation. 

Multi-Machine System 

In a multi-machine system a common system base must be 

chosen Let 

Gmach=machine rating 

(base) Gsystem=system base 

Equation(18) can then be written as 



Since the machine rotors swings together (coherently or in unison) 

1   2  



 

Adding Equation ( 20) and ( 21) 

H eq 

f 

d 2

dt 
2

 

 
 Pm 

 
- P

e

 

( 22) 

 

Wher
e 

 
Pm  Pm1  Pm2 

Pe  Pe1  Pe2 



 

G G 

Heq  H1  H2 

The two machines swinging coherently are thus reduced to a single machine as in 

Equation (  22), the equivalent inertia in ( 22) can be written as 

H eq  H1mach 
G1mach  H 2mach 

G2mach 

system
 syste
m 

 
( 23) 

 

The above results are easily extendable to any number of machines swinging coherently. 

To solving the swing equation (Equation ( 23), certain simplifying assumptions are usually 

made. These are: 

1. Mechanical power input to the machine (Pm) remains constant during the period of 

electromechanical transient of interest. In other words, it means that the effect of the 

turbine governing loop is ignored being much slower than the speed of the transient. This 

assumption leads to pessimistic result-governing loop helps to stabilize the system. 

2. Rotor speed changes are insignificant-these have already been ignored in formulating 

the swing equation. 

3. Effect of voltage regulating loop during the transient is ignored, as a consequence the 

generated machine emf remains constant. This assumption also leads to pessimistic 

results- voltage regulator helps to stabilize the system. 

Before the swing equation can be solved, it is necessary to determine the dependence of the 

electrical power output (Pe) upon the rotor angle. 

Simplified Machine Model 

For a non-salient pole machine, the per-phase induced emf-terminal voltage equation 

under steady conditions is. 

 
 

E  V  jX d Id 

jX q Iq ; X d

 X q ( 24) 

 
 

 



 

q s 

 

Fig. 3 Simplified machine model. 
 

The machine model corresponding to Eq. ( 26) is drawn in Fig. ( 3) which also applies to a 

 
cylindrical rotor machine 
where 

Power Angle Curve 

/ 
 X / 

 X 
/ 

(transient synchronous reactance). 

For the purposes of stability studies  E  , transient emf of generator motor remains constant 
or  is 

the independent variable determined by the voltage regulating loop but V, the generator 

determined terminal voltage is a dependent variable. Therefore, the nodes (buses) of the 

stability study network to the ernf terminal in the machine model as shown in Fig. 4, while 

the machine 

reactance  ( X d 

) 

is absorbed in the system network as different from a load flow study. 
Further, 

X d 



 

the loads (other than large synchronous motor) will be replaced by equivalent static 

admittances (connected in shunt between transmission network buses and the reference 

bus). 

 

Fig.  4 Simplified Machine studied Network 

 

Fig  5 Power Angle Curve 
 

This is so because load voltages vary during a stability study (in a load flow study, these 

remain constant within a narrow band). The simplified power angle equation is 

 
 
Wher
e 

Pe  Pmax sin ( 27) 

P   
E1  E2

max
 X

 ( 28) 

The graphical representation of power angle equation ( 28) is shown in Fig.  5. The swing 



 

equation ( 27) can now be written as 

H  d 2

f  dt 2
 

 Pm  Pe 

 
pu ( 29) 

It is a non linear second-order differential equation with no damping. 

Machine Connected to Infinite Bus 

Figure  6 is the circuit model of a single machine connected to infinite bus through a line of 

reactance Xe. In this simple case 

X transfer  X d  X e

From Eq ( 30) we get  

Pe 




X transfer 

 
 

sin



 Pmax sin






( 30) 

E V 



 

 

 

Fig.  6 Machine connected to infinite bus bar 
 

The dynamics of this system are described in Eq. ( 15 ) as 
 
 
 
 

Two Machine Systems 

H  d 2

f  dt 2
 

 Pm  Pe 

 

pu ( 31) 

The case of two finite machines connected through a line (Xe) is illustrated in Fig. 5 

where one of the machines must be generating and the other must be motoring. Under 

steady condition, before the system goes into dynamics and the mechanical input/output of 

the two machines is assumed to remain constant at these values throughout the dynamics 

(governor action assumed slow).During steady state or in dynamic condition, the electrical 

power output of the generator must be absorbed by the motor (network being lossless). 

 
 

 

 
Fig.  7 Two machine system 



 

 
 

Thus at all 
time 

 
Pm1  Pm2  Pm 

 
 
( 32) 

 

Pe1  Pem 2  Pe ( 33) 

    

 



 

Steady State Stability 

The steady state stability limit of a particular circuit of a power system is defined as 

the maximum power that can be transmitted to the receiving end without loss of 

synchronism. 

Consider the simple system of Fig.  7 whose dynamics is described by equations 

d 2

M  e 

dt2
 

 Pm  Pe MW ( 40) 

M   
H

 

f 

 
in pu system ( 41) 

 

And,  

Pe 



sin

X d 

 

 Pmax sin





( 42) 

 
 
 

For determination of steady state stability, the direct  axis  reactance (Xd) and, voltage 
behind  Xd 

are used in the above equations. Let the system be operating with steady power transfer of 

Pe0=Pm with torque angle  0 as indicated in the figure. Assume a small increment P in the 

electric power with the input from the prime mover remaining fixed at Pm (governor 

response is slow compared to the  speed  of  energy  dynamics),  causing  the  torque  angle  

to  change  to  ( 0   ) .  

E V 



 

 

 

0 



d 2 

M 

dt 2
 

or 

 Pm  (Pe0  Pe )  Pe 

d 2   P 

M 
dt 2

 

or 

   e  

   0 

  0 ( 43) 

Mp 2  
 Pe 


 

  0 

 

0 

 

Where 

p  
d

 

dt 

The system stability to small change is determined from the characteristic equation. 

Mp2 
 
pe   0 

  0 

Its two roots are 
 

1 

 pe  2 

p  	 

 M 

 

As long as  pe       it positive, the roots are purely imaginary and conjugate and the 

system 

behaviour is oscillatory about 0 . Line resistance and damper windings of machine, which 

have been ignored in the above modelling, cause the system oscillations to decay. The 

system is therefore stable for a small increment in power so long as 





 



0 


 
pe 

  0 

 0 

 

( 44) 

 

When pe      , is negative, the roots are real, one positive and the other negative but of 

equal 

magnitude. The torque angle therefore increases without bound upon occurrence of a small 

power increment (disturbance) and the synchronism is soon lost. The system is therefore 

unstable for 



 

E V 




pe 

    0 

 0 

 
( 45) 

 

pe   is known as synchronizing coefficient. This is also called stiffness (electrical) of 

synchronous machine. 

Assuming |E| and |V| to remain constant, the system is unstable, if 
 

 

E V 
cos  0 

X
 0 

 
 
0  90








( 46) 

 

The maximum power that can be transmitted without loss of stability (steady state) occurs 
for 

0  90




( 47) 

 

 

Pmax    
X ( 48) 

0 



 

 

If the system is operating below the limit of steady stability condition (Eq. 48), it 

may continue to oscillate for a long time if the damping is low. Persistent oscillations are a 

threat to system security. The study of system damping is the study of dynamical stability. 

The above procedure is also applicable for complex systems wherein governor 

action and excitation control are also accounted for. The describing differential equation is 

linerized about the operating point. Condition for steady state stability is then determined 

from the corresponding characteristic equation (which now is of order higher than two). 

It was assumed in the above account that the internal machine voltage |E| remains 

constant (i.e., excitation is held constant). The result is that as loading increases, the 

terminal voltage |Vt| dips heavily which cannot be tolerated in practice. Therefore, we must 

consider the steady state stability limit by assuming that excitation is adjusted for every 

load increase to keep 

|Vt| constant. This is how the system will be operated practically. It may be understood 

that we are still not considering the effect of automatic excitation control. 

Some Comment on Steady State Stability 

Knowledge of steady state stability limit is important for various reasons. A system 

can be operated above its transient stability limit but not above its steady state limit. Now, 

with increased fault clearing speeds, it is possible to make the transient limit closely 

approach the steady state limit. 

As is clear from Eq. ( 50), the methods of improving steady state stability limit of a 

system are to reduce X and increase either or both |E| and |V|. If the transmission lines are 

of sufficiently high reactance, the stability limit can be raised by using two parallel lines 

which incidentally also increases the reliability of the system. Series capacitors are 

sometimes employed in lines to get better voltage regulation and to raise the stability limit 

by decreasing the line reactance. Higher excitation voltages and quick excitation system are 

also employed to improve the stability limit. 

 

 

 

 



 

UNIT-V 

POWER SYSTEM TRANSIENT STATE STABILITY ANALYSIS 

Transient Stability 

 

The dynamics of a single synchronous machine connected to infinite bus bars is governed by 

the nonlinear differential equation 
 

d 2

M  
dt 2 

 Pm  Pe 

where 

Pe  Pmax sin

or 

d 2


( 49) 

M 
dt 

2
 
 Pm  Pmax sin



As said earlier, this equation is known as the swing equation. No closed form 

solution exists for swing equation except for the simple case Pm = 0 (not a practical case) 

which involves 

elliptical integrals. For small disturbance (say, gradual loading), the equation can be 
linearised 

leading to the concept of steady state stability where a unique criterion of stability pe      

 0

could be established. No generalized criteria are available for determining system stability 

with large disturbances (called transient stability). The practical approach to the transient 

stability problem is therefore to list all important severe disturbances along with their 

possible locations 



 

to which the system is likely to be subjected according to the experience and judgement of 

the power system analyst. Numerical solution of the swing equation (or equations for a 

multi- machine case) is then obtained in the presence of such disturbances giving a plot of  

Vs t called the swing curve. If  starts to decrease after reaching a maximum value, it is 

normally assumed that the system is stable and the oscillation of  around the equilibrium 

point will decay and finally die out. As already pointed out in the introduction, important 

severe disturbances are a short circuit or a sudden loss of load. 

For ease of analysis certain assumptions and simplifications are always made (some 

of these have already been made in arriving at the swing equation (Eq.  49). All the 

assumptions are listed, below along with their justification and consequences upon 

accuracy of results. 

 
1. Transmission line as well as synchronous machine resistance is ignored. This leads to 

pessimistic result as resistance introduces damping term in the swing equation which 

helps stability. 

2. Damping term contributed by synchronous machine damper windings is ignored. This 

also leads to pessimistic results for the transient stability limit. 

3. Rotor speed is assumed to be synchronous. In fact it varies insignificantly during the 

course of the stability transient. 

4. Mechanical input to machine is assumed to remain constant during the transient, i.e., 

regulating action of the generator loop is ignored. This leads to pessimistic results. 

5. Voltage behind transient reactance is assumed to remain constant, i.e., action of voltage 

regulating loop is ignored. It also leads to pessimistic results. 

6. Shunt capacitances are not difficult to account for in a stability study. Where ignored, no 

greatly significant error is caused. 

7. Loads are modelled as constant admittances. This is a reasonably accurate 

representation. Note: Since rotor speed and hence frequency vary insignificantly, the 

network parameters remain fixed during a stability study. 

A digital computer programme to compute the transient following sudden 

disturbance can be suitably modified to include the effect of governor action and excitation 

control. 

Preset day power system are so large that even after lumping of machines (Eq.(24)), 



 

the system remains a multi-machine one. Even then, a simple two machine system greatly 

aids the 

understanding of the transient stability problem. It has been shown in that an equivalent 

single machine infinite bus system can be found for a two- machine system (Eq.  45) to (Eq.  

49) 

Upon occurrence of a severe disturbance, say a short circuit, the power transfer 

between machines is greatly reduced, causing the machine torque angles to swing 

relatively. The circuit breakers near the fault disconnect the unhealthy part of the system 

so that power transfer can be partly restored, improving the chances of the system remain 

stable. The shorter the time to breaker operating, called clearing time, the higher is the 

probability of the system being stable. Most of the line faults are transient in nature and get 

cleared on opening the line. Therefore, it is common practice now to employ auto-reclose 

breakers which automatically close rapidly after each of the two sequential openings. If the 

fault still persists, the circuit breakers open and lock permanently till cleared manually. 

Since in the majority of faults the first reclosure will be successful, the chances of system 

stability are greatly enhanced by using autoreclose breakers. 

The procedure of determining the stability of a system upon occurrence of a 

disturbance followed by various switching off and switching on action called a stability 

study. Steps to be followed in stability study are outlined below for single- machine infinite 

bus bar system shown in fig. 6. The fault is assumed to be transient one which is cleared by 

the time of first reclosure. In the case of a permanent fault, this system completely falls 

apart. This will not be the case in a multi-machine system. The steps listed, in fact, apply to 

a system of any size. 

1. From prefault loading, determine the voltage behind transient reactance and the 

torque angle 0 of the machine with reference to the infinite bus. 

2. For the specified fault, determine the power transfer 
equation 

system Pe = 0 for a three-phase fault. 

Pe ( ) during fault. In this 

3. From the swing equation starting with 0 as obtained in step 1, calculate  as a 

function  of time using a numerical technique of solving the nonlinear differential 

equation. 

4. After clearance of the fault, once again determine Pe ( ) 



 

 

Equal Area Criteria for Stability 
 

In a system where one machine is swinging with respect to an infinite bus, it is 

possible to study transient stability by means of a simple criterion, without resorting to the 

numerical solution of a swing equation. 

Consider the equation 

d 2

M 
dt2

 

 
 Pm  Pe 

 
 Pa 

 

( 50) 

 

Pa =accelerating power 

lf the system is unstable  continues to increase indefinitely with time and the 
machine 

loses synchronism. On the other hand, if the system is stable,  (t) performs oscillations 

(nonsinusoidal) whose amplitude decreases in actual practice because of damping terms 

(not included in the swing equation).These two situations are shown in fig. 6. Since the 

system is no- linear, the nature of its response1 [  (t) ] is not unique and it may exhibit 

instability in a fashion different from that indicated in Fig. 6, depending upon the nature 

and severity of disturbance. 

However, experience indicates that the response  
(t) 

in a power system generally falls in the 

two broad categories as shown in the figure. It can easily be visualized now (this has also 

been stated earlier) that for a stables system, indication of stability will be given by 

observation of the first swing where  will go to a maximum and will start to reduce. 

 
 
 
 
 
 
Fig.  8 Plot of δ vs t for stable and unstable system. 

 



 

 

 

Fig. 9 Pe- δ diagram for sudden increase in mechanical input 

The condition of stability can therefore be stated as: the system is stable if the area under 

Pa (accelerating power) -  curve reduces to zero at some value of . In other words, the 

positive (accelerating) area under Pa -  curve must equal the negative (decelerating) area 

and hence the name „equal area‟ criterion of stability. To illustrate the equal area criterion 

of stability, we now consider several types of disturbances that may occur in a single 

machine infinite bus bar system. Figure  9 shows the transient model of a single machine 

tied to infinite bus-bar. The electrical power transmitted is given by 
 

Pe 

d 

sin  Pmax sin

Under steady operating condition 

Pm0  Pe0  Pmax sin 0 

This is indicated by the point a in the Pe -  diagram of Fig.  8. 

Let the mechanical input to the rotor be suddenly increased to Pm1 (by opening the 
steam 

 
valve). The accelerating 
power 

Pa  Pm1  Pe 

 
causes the rotor speed to 
increase 

(  s ) 
 
and 

E V 

X 



 

begins to reduce but the angle continues to increase till at angle  2 , (  

s ) 

once again (state 

point at c. At c), the-decelerating area A2 equals the accelerating area A1, (areas are shaded), 
i.e, 



 Pa d  0 

0 

Since the rotor is decelerating, the speed reduces below 

s 

and the rotor angle begins 
to 

reduce. The state point now traverses 
the 

Pe Vs curve in the opposite direction as indicated by 

arrows in Fig. 8.It is easily seen that the system oscillates about the new steady state point b 

(  1) with angle excursion up to  0 and  2 on the two sides. These oscillations are similar 
to 

the simple harmonic motion of an inertia-spring system except that these are not sinusoidal. 

As the oscillations decay out because of inherent system damping (not modelled), the 

system settles to the new steady state where 

Pm1  Pe  Pmax sin 1 

From Fig. 12.20, areas A1=A2 are given by 

 0 

A1   (Pm1  Pe )d

 0 

or 

 0 

A1   (Pe  Pm1)d

 0 

For the system to be stable, it should be possible to find angle  2 such that A1=A2. As Pm1 is 

increased, a limiting condition is finally reached when A1 equals the area above the Pm1 line 

as shown in Fig  10.Under this condition,  2 acquires the maximum value such that 



 

 

Fig.  10 Limiting case of transient stability with mechanical input suddenly increased 
 

It has thus been shown by use of the equal area criterion that there-is an upper limit to 

sudden increase in mechanical input ( Pm1  Pm0 ), for the system in question to remain stable' 

It may be noted from Fig. 9 that the system will remain stable even though the rotor 
may 

oscillate beyond 


 90 

, so long as the equal area criteria is met. The condition of 



 90 
is 

meant for use in steady state stability only and does not apply to the transient stability case. 
 
 

Effect of Clearing Time on Stability 

Let the system of Fig.  9 be operating with mechanical input Pm at a steady angle of  

(Pm=Pe) as shown by the point a on the Pe Vs  diagram of Fig.  10. If a 3-phase fault occurs 

at the point P of the outgoing radial line, the electrical output of the generator instantly 

reduces to zero, i.e., Pe = 0 and the state point drops to b. The acceleration area A1 begins to 

increase and so does the rotor angle while the state point moves along bc. At time tc 

corresponding to angle c , 

the faulted line is cleared by the opening of the line circuit breaker. The values of tc and 
c 

are 

respectively known as clearing time and, clearing angle. The system once again becomes 

healthy and 
transmits 

Pe  Pmax sin  i.e. the state point shifts to d on the original Pe Vs  curve. 

The rotor now decelerates and the decelerating area A2, begins while the state point moves 



 

 
 

Fig.  10 Limiting case of transient stability with critical angle 
 

The value of clearing time corresponding to a clearing angle can be established only 

by numerical integration except in this simple case. The equal area criterion therefore gives 

only qualitative answer to system stability as the time when the breaker should be opened 

is hard to establish. 

As the clearing of the faulty line is delayed, A1 increases and so does 1 , to find A2=A1 

till 1  max as shown in Fig.  10. For a clearing time (or angle) larger than this value, the 

system would be unstable as A2<A. The maximum allowable value of the clearing time and 

angle for the system to remain stable are known respectively as critical clearing time and 

angle. 

For this simple case (Pe=0 during fault), explicit relationships for c 

(critical) are established below. All angles are in radians. 

(critical) and tc 

 
 

It is easily seen from Fig. 10  
max 

and 
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( 56) 

Pm  Pmax sin0 
( 57) 
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Now 

A1  

and 
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 (Pm   0)d

0 

 
 
 max 

 

 Pm ( cr 

 

  0 ) 

A2   (Pmax  sin  Pm )d

cr 

 Pmax (cos cr    cos m )  Pm ( max    cr ) 

For the system to be stable, A2=A1 which gives 

coscr   
Pm 

Pmax 

(max  0 )  cos




max 

 
 

( 58) 

 

Where 

cr =critical clearing angle. 

Substituting Eq. (58) and (59) in Eq.(60), we get 

cr  cos1[(  2 )sin  cos ] 
 

( 59) 

 

During the period the fault is persisting, the swing equation 
is 

 
d 2  

 
f  

 

dt2
 H 

Pm ; where Pe  0 ( 60) 

 



 

From Eq. ( 61)  
cr 






( 62) 

 

 

Wherecr , is given by the expression of Eq. ( 62) 

An explicit relationship for determining tcr is possible in this case as during the 

faulted condition Pe =0 and so the swing equation can be integrated in closed form. This 

will not be the case in most other situations. 

Consider now a single machine tied to infinite bus through two parallel lines as in Fig.  

11a circuit model of the system is given in Fig.  11b. 

Let us study the transient stability of the system when one of the lines is suddenly 

switched off with the system operating at a steady road. Before switching off, power angle 

curve is given by 
 

PeI 


X d
 X1 X 2

sin  Pmax I sin

Immediately on switching off line 2, power angle curve is given by 
 

PeII 


X d
 X1 X 2

sin  Pmax II sin






Fig.  11 Single machine tied to infinite bus through two parallel lines 
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Fig.  12 Equal area criterion applied to the opening of one of the two lines in parallel 
 

Both these curves are plotted in Fig.  12, wherein PmaxII < PmaxI as ( X d  X 1 )  ( X d  X 1 || X 2 ) 

.The system is operating initially with a steady power transfer Pe=Pm at a torque angle  0  on 

curve I. Immediately on switching off line 2, the electrical operating point shifts to curve II 

(point b). Accelerating energy corresponding to area A1 is put into rotor followed by 

decelerating energy for 1   0 . Assuming that an area A2 corresponding to decelerating 

energy (energy out of rotor) can be found such that A1 = A2, the system will be stable 

and will finally operate at c 

corresponding to  a  new,  rotor  angle  1     1 .  This  is  so  because  a  single  line  offers 

larger 

reactance and larger rotor angle is needed to transfer the same steady power. 

It is also easy to see that if the steady load is increased (line Pm is shifted upward in Fig.  12, a 

limit is finally reached beyond which decelerating area equal to A1 cannot be found and 

therefore, the system behaves as an unstable one, For the limiting case of stability, 1 

maximum value given by 

has 

1   max     c 

This is the same condition as in the previous example. 

We shall assume the fault to be a three-phase one. Before the occurrence of a fault, the 

power angle curve is given by 
 



 

Upon occurrence of a three-phase fault at the generator end of line 2 (see Fig. 15a), 

the generator gets isolated from the power system for purposes of power flow as shown by 

Fig. 15b. Thus during the period the fault lasts, 

PeII=0 

 

The rotor therefore accelerates and angle   increases. Synchronism will be lost 

unless  the fault is cleared in time. 

The circuit breakers at the two ends of the faulted line open at time tc 

(corresponding to angle  c ), the clearing time, disconnecting the faulted line. 

 
The power flow is now restored via the healthy line (through higher line 

reactance X2 in place of Xl || X2), with power angle curve 

 

 

PeII 


X d
 X 1 X 2

sin  Pmax II sin







Fig.  13 Equal area criteria applied to the system, I system is normal, II fault applied, III 

faulted line isolated. 
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Obviously, PmaxII < PmaxI. The rotor now starts to decelerate as shown in Fig.  13. The system 

will be stable if a decelerating area A2 can be found equal to accelerating area A1 before 

reaches the maximum allowable value  max .As area A1 depends upon clearing time tc 

(corresponding to clearing angle  c ), clearing time must be less than a certain value 

(critical clearing time) for the system to be stable. It is to be observed that the equal area 

criterion helps to determine critical clearing angle and not critical clearing time. Critical 

clearing time can be obtained by numerical solution of the swing equation 

It also easily follows that larger initial loading (Pm.) increases A1 for a given clearing angle 

(and time) and therefore quicker fault clearing would be needed to maintain stable 

operation. The power angle curve during fault is therefore given by 
 

PeII 


X II 

sin  Pmax II sin

PeI , PeIII and PeII as obtained above are all plotted in Fig. 1  Accelerating area A1 

corresponding to a given clearing angle  is less in this case then in case  a giving a better  

chance for stable operation. Stable system operation is shown in Fig.  14, wherein it is 

possible 

to find an area A2 equal to A1 for  2   max . As the clearing angle  c is increased, area A1 

increases and to find A2 = A1,  2 increases till it has a value  max , the maximum allowable for 

stability This case of critical clearing angle is shown in Fig.  15 
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Fig. 15 Fault on middle of one line of the system of, case of critical clearing angle 
 


