EUCTION FOR LIBERT

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

TURORIAL QUESTION BANK

Course Title	COMPUTER ORGANIZATION						
Course Code	AEC010						
Programme	B.Tech						
Semester	V ECE						
Course Type	Core						
Regulation	IARE - R16						
	Theory Practical					cal	
Course Structure	Lectures	Tutorials	Cr	edits	Laboratory	Credits	
	3	1		4	-	-	
Chief Coordinator	Mr. N V Krishna Rao, Assistant Professor						
	Mr. P Anjaiah, Assistant Professor Ms. G Nishwitha, Assistant Professor Ms. B VijayaDurga, Assistant Professor						

COURSE OBJECTIVES:

The course	e should enable the students to:
Ι	Understand the basic structure and operation of a digital computer.
П	Understand the operation of the arithmetic unit including the algorithms & implementation of fixed- point and floating-point addition, subtraction, multiplication & division.
III	Interpret the different types of control and the concept of pipelining.
IV	To study the different ways of communicating with I/O devices and standard I/O interfaces and RISC and CISC processors.
V	To study the hierarchical memory system including cache memories and virtual memory.

COURSE OUTCOMES:

CO 1	Ability to understand the concepts of associated with the computer system design and data representation.
CO 2	Explore the concepts associated with the fixed point arithmetic operations and algorithms.
CO 3	Understand the concepts of Control design of a computer.
CO 4	Ability to learn the concepts associated with the memory organization.
CO 5	Explore the concepts of System Organization including types of interrupts and processors.

COURSE LEARNING OUTCOMES:

AEC010.01	Describe the various components like input/output units, memory unit, control unit, arithmetic logic unit connected in the basic organization of a computer.
AEC010.02	Understand the concepts associated with the computer organization.
AEC010.03	Describe various data representations and explain how arithmetic and logical operations are performed by computers.
AEC010.04	Understand instruction types, addressing modes and their formats in the assembly language programs.
AEC010.05	Describe the implementation of fixed point and floating point addition, subtraction operations.
AEC010.06	Describe the various major algorithmic techniques (Robertson algorithm, booth's algorithm, non-restoring division algorithm).
AEC010.07	Describe the pipeline processing concept with multiple functional units.
AEC010.08	Understand the concept of the modified booth's algorithm.
AEC010.09	Understand the connections among the circuits and the functionalities in the hardwired control unit.
AEC010.10	Describe the design of control unit with address sequencing and microprogramming Concepts.
AEC010.11	Describe the concepts CPU control unit, Pipeline control, instruction pipeline.
AEC010.12	Understand the functionality of super scalar processing and Nano programming.
AEC010.13	Understand the concept of memory hierarchy and different typed of memory chips.
AEC010.14	Describe the concepts of magnetic surface recording, optical memories
AEC010.15	Understand the cache and virtual memory concept in memory organization.
AEC010.16	Describe the hardware organization of associate memory and understand the read and write operations.
AEC010.17	Understand the various bus control interfaces and system control interfaces.
AEC010.18	Describe the various interrupts (Vectored Interrupts, PCI interrupts, Pipeline interrupts).
AEC010.19	Understand the functionally of RISC and CISC processors.
AEC010.20	Describe the concepts of superscalar and vector processor.

TUTORIAL QUESTION BANK

S. No.QuestionsTaxonomy LevelOutcomes OutUNIT – IGroup - A (Short Answer Questions)1Define Computer Architecture?UnderstandCO 1AECO2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	ning
LevelOutUNIT – IGroup - A (Short Answer Questions)1Define Computer Architecture?UnderstandCO 1AECO2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO11Dimensional control of CPU organization?Network of the pictorial representation of CPU organization?Network of the pictorial representation of CPU organization?	B
UNIT – IGroup - A (Short Answer Questions)1Define Computer Architecture?UnderstandCO 1AECO2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	come
Group - A (Short Answer Questions)1Define Computer Architecture?UnderstandCO 1AECO2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	
1Define Computer Architecture?UnderstandCO 1AECO2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO11OfDefinition of CPU organization?RememberCO 1AECO	
2Define Computer Organization?RememberCO 1AECO3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.01
3Describe the basic functional units of a computer?RememberCO 1AECO4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.02
4List out the limitations of computers?UnderstandCO 1AECO5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.01
5Illustrate the generations of a computer?RememberCO 1AECO6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.02
6Discuss about VLSI era?RememberCO 1AECO7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.02
7Describe the system representation?RememberCO 1AECO8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.01
8Demonstrate the register level components?UnderstandCO 1AECO9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.01
9Demonstrate the Processor level components?UnderstandCO 1AECO10Show the pictorial representation of CPU organization?RememberCO 1AECO	10.02
10 Show the pictorial representation of CPU organization? Remember CO 1 AECO	10.02
	10.02
11 Give some examples for fixed point representation? Understand CO 1 AECO	10.03
12 Give some examples for floating point representation? Understand CO 1 AECO	10.03
13 List out the instruction types? Understand CO 1 AECO	10.03
14 Describe the instruction formats? Understand CO 1 AECO	10.03
15 List out the types of addressing modes? Understand CO 1 AECO	10.03
16 Write the need for different addressing modes? Remember CO 1 AECO	10.04
17 Write short notes for Register Addressing Mode? Understand CO 1 AECO	10.04
17 Write short notes for Direct Addressing Mode? Understand CO 1 AECO 18 Write short notes for Direct Addressing Mode? Understand CO 1 AECO	10.04
10 Write short notes for Indirect Addressing Mode? Remember CO 1 AECO	10.04
20 What is software and hardware? Understand CO 1 AECO	10.04
Crown - B (Long Answer Questions)	10.04
1 Define about digital computer? Discuss briefly on various Understand CO 1 AEC	010.01
types of computer?	10.01
2 Explain the functional organization of a digital computer Remember CO 1 AEC	10.01
and explain the function of each element of a computer?	10.01
3 Illustrate the diagram for connection between the processor Remember CO 1 AEC	10.01
and the memory and explain basic operational concepts of	10.01
computer?	
4 Explain about various formats of instructions? Understand CO 1 AECO	010.04
5 Explain the issues to be considered in accumulator based Understand CO 1 AECO	010.04
CPU with respect to programming considerations.	
instruction set?	
6 Explain VLSI technology and describe how does it influence Remember CO 1 AECO	010.01
the design and application of both special purpose and genera	
purpose computers?	
7 Discuss about system representation? Understand CO 1 AEC	010.01
8 What are the different levels of system design and explain Understand CO 1 AECO	010.02
each level?	
9 Explain the various Instruction types with examples. Remember CO 1 AEC	010.03
10 Demonstrate the representation of fixed point numbers in Understand CO 1 AECO	010.03
computers?	
11 Describe the register level components in system design? Understand CO 1 AECO	010.01
12 Describe the Processor level components in system design? Remember CO 1 AECO	010.01
13 Demonstrate the representation of floating point numbers in Understand CO 1 AECO	010.03
computers?	
14 Explain different types of addressing modes with suitable Understand CO 1 AECO	010.04
examples	
15 Show how can the following operation be performed using: Remember CO 1 AECO	010.04
a) three address instruction	
b) two address instruction	
c) one address instruction	
d) zero address instruction $X = (A + B)^* (C + D)$	

16	Compare RISC and CISC?	Understand	CO 1	AEC010.04
17	Explain i) ROM ii) PROM iii) EPROM iv) EEPROM.	Understand	CO 1	AEC010.02
18	Explain the speed up features of modern computers?	Understand	CO 1	AEC010.01
19	Explain about VLSI era?	Remember	CO 1	AEC010.01
20	Describe error correction and error detection?	Understand	CO 1	AEC010.02
	Group - C (Analytical Ques	tions)		
1	An instruction A is stored at location 300 with its adder	Remember	CO 1	AEC010.04
	field at 301. The adder field has value 400. A process			
	register R1contains the number 200. Evaluate the effective			
	address if addressing mode of instruction is			
	1. Direct			
	2. Immediate Relative			
2	Calculate The amount of ROM needed to implement a 4	Remember	CO 1	AEC010.02
	bit multiplier?			
3	Explain the issues to be considered in accumulator based	Understand	CO 1	AEC010.04
	CPU with Respect to programming considerations,			
	instruction set.			
	Explain VLSI technology and describe how does it	Understand	CO 1	4.5.0010.01
4	influence the design and application of both special			AEC010.01
5	purpose and general purpose computers?	D 1	CO 1	AEC010.04
5	An instruction A is stored at location 300 with its adder	Remember	COT	AEC010.04
	register Pl contains the number 200 Evaluate the effective			
	address if addressing mode of instruction is			
	1 RegisterIndirect			
	2 Index with R1 as Index Reg			
6	Show how can the following operation be performed	Understand	CO 1	AEC010.04
Ű	using:	Chicologiano	001	1120010101
	a) three address instruction			
	b) two address instruction			
	c) one address instruction			
	zero address instruction $Z = (P * Q) / (K - M)$			
7	Explain about different types of memories in the primary	Remember	CO 1	AEC010.04
	and secondary memories with advantages and			
	disadvantages			
8	Explain the evolution of computers with diagrams in detail	Remember	CO 1	AEC010.04
	and write their limitations of one another.	D 1	<u> </u>	AEC010.04
9	Explain the block diagram of basic computer and different	Remember	01	AEC010.04
10	What is memory address register (MAP) and memory data	Domomhor	CO 1	AEC010.04
10	register (MDR) and Describe the IEEE standard for	Kemeniber	COT	AEC010.04
	floating point numbers for single precision number			
	Crown - A (Short Answer Ou	estions)		
1	State the various processing of nineline	Remember	<u>CO 2</u>	AFC010.07
2	Discuss regarding parallel processing	Remember	$\frac{002}{002}$	AEC010.07
3	Differentiate between restoring and non-restoring division	Understand	<u> </u>	AEC010.06
5	algorithm	Chaerstand	002	
4	Write short notes on the following:	Understand	CO 2	AEC010.07
	CPU-IOP communication Micro program sequencer			
	floating point arithmetic (addition and multiplication)			
5	Discuss in brief about floating point arithmetic operations	Remember	CO 2	AEC010.05
6	What is pipelining?	Understand	CO 2	AEC010.07
7	What is branch penalty?	Understand	CO 2	AEC010.06
8	Define branch delay slot?	Remember	CO 2	AEC010.06
9	Define speculative execution?	Understand	CO 2	AEC010.07
10	What is a branch instruction?	Understand	CO 2	AEC010.07
11	Define underflow and overflow?	Understand	CO 2	AEC010.07
12	What is a floating point representation system?	Remember	CO 2	AEC010.05

13	What is meant by multiplexer and demulplexer?	Remember	CO 2	AEC010.05
14	What is encoder and decoder ?	Remember	CO 2	AEC010.05
15	Explain the functionality of half adder with an example?	Remember	CO 2	AEC010.05
16	Define Full Adder with an example	Remember	CO 2	AEC010.05
17	What is combinational circuit and sequential circuit	Remember	CO 2	AEC010.05
18	Define Asynchronous Sequential Circuits?	Remember	CO 2	AEC010.05
19	What is Carry Look-ahead Adder?	Remember	CO 2	AEC010.05
20	What is Sequential ALU's?	Remember	CO 2	AEC010.05
	Group - B (Long Answer Qu	estions)		
1	Draw the black diagram of hardware for addition and subtraction?	Remember	CO 2	AEC010.05
2	Draw the floating point addition subtraction unit neatly and explain the operation?	Remember	CO 2	AEC010.05
3	Compare sequential ALU in terms of architecture, overhead application and latency?	Understand	CO 2	AEC010.05
4	Explain the Booths multiplication algorithm with an example	Understand	CO 2	AEC010.06
5	Derive an algorithm in flow chart form for non restoring algorithm method of fixed point binary division	Remember	CO 2	AEC010.06
6	Explain pipeline conflicts and discuss the remedies for those conflicts.	Understand	CO 2	AEC010.07
7	Illustrate the signed magnitude, signed 1's complement, and signed 2's complement for the decimal number 14.	Remember	CO 2	AEC010.05
8	Convert the following decimal numbers with the indicated bases to decimal. i. (12121)3 ii. (4310)5 iii. (50)7	Understand	CO 2	AEC010.05
9	Calculate the subtraction with the following unsigned decimal numbers by taking the 10's complement of the subtrahend. 123900:090657:100000:000000	Understand	CO 2	AEC010.05
10	Calculate the arithmetic operations $(+42) + (-13)$ and $(-42) - (-13)$ in binary using signed 2's complement representation for negative numbers	Understand	CO 2	AEC010.05
11	Calculate the arithmetic operations $(+70) + (+80)$ and $(-70) + (-80)$ with binary numbers in signed 2's complement representation. Use eight bits to accommodate each number together with its sign. Show that overflow Occurs in both cases.	Remember	CO 2	AEC010.05
12	Show the number (+46.5)10 as a floating-point binary number with 24 bits.	Understand	CO 2	AEC010.05
13	Explain in detail regarding the Instruction pipelining with various stages along with the pictorial representation?	Remember	CO 2	AEC010.07
14	Evacuate regarding the following Two stage pipelining Four segment CPU pipeline Six stage pipelining	Understand	CO 2	AEC010.07
15	Explain the 2's complement multiplication using Robertson's algorithm with an example	Understand	CO 2	AEC010.06
16	Illustrate Modified Booth's algorithm with an example	Remember	CO 2	AEC010.08
17	Describe the various Floating Point Formats with examples.	Understand	$CO \overline{2}$	AEC010.05
18	Explain algorithm for floating point addition and subtraction?	Remember	CO 2	AEC010.05
19	Use booth's algorithm to multiply -5 and 5.	Understand	CO 2	AEC010.06
20	What is Control Unit Function?	Understand	<u>CO</u> 2	AEC010.06
	Group - C (Analytical Quest	tions)		
1	Explain Booth's multiplication algorithm for signed 2's complement numbers in details, with a suitable example and give the hard ware requirement.	Understand	CO 2	AEC010.06

2	Discuss step by step Addition operation performance on t	Understand	CO 2	AEC010.05
	he following data			
	3.25 x 10 ** 3			
	+ 2.63 x 10 ** -1			
				1 2 2 2 1 2 2 2
3	Discuss step by step Multiplication operation performance	Understand	CO 2	AEC010.05
	on the following data $2.0 \times 10^{+1}$			
	$5.0 \times 10^{-44} \text{ I}$			
4	Explain how subtraction and division operation is	Remember	CO 2	AEC010.05
	performed in floating point arithmetic operations	remember	002	1112010.05
5	With a help of flow chart explain the booth algorithm and	Remember	CO 2	AEC010.06
_	show the step by step multiplication process for 15×12 .			
6	Show the difference between combinational and sequential	Remember	CO 2	AEC010.06
	circuits with an example			
7	What is Multiplexer? And Define Demultiplexer?	Remember	CO 2	AEC010.06
8	With a help of flow chart explain the modified booth	Remember	CO 2	AEC010.06
	algorithm and show the step by step multiplication process			
	for 16×10			
9	Explain how subtraction and division operation is	Remember	CO 2	AEC010.06
	performed in floating point arithmetic operations with an			
10	example?	D 1	GO 3	10010.06
10	Design the decoder and encoder circuits with an example	Remember	CO 2	AEC010.06
		a t: a m a)		
1	Group - A (Snort Answer Que	Stions)	CO 2	AEC010.11
2	What is a hardware control unit?	Understand	<u> </u>	AEC010.11
2	What is control store?	Understand	$\frac{003}{003}$	AEC010.09
	What is the purpose of WMEC signal?	Understand	$\frac{003}{003}$	AEC010.11
5	What is static branch prediction?	Remember	$\frac{003}{003}$	AEC010.09
6	What is dynamic branch prediction?	Remember	$\frac{003}{003}$	AEC010.09
7	Draw a block diagram of control signal for register MDR?	Understand	<u> </u>	AEC010.09
8	What are the actions needed to execute the instruction Move	Remember	CO 3	AEC010.09
Ū	R1 R2?			
9	What is a hardware control unit?	Remember	CO 3	AEC010.08
10	What is micro routine?	Understand	CO 3	AEC010.10
11	What is control store?	Remember	CO 3	AEC010.10
12	Write control signals for storing a word in memory.	Understand	CO 3	AEC010.09
13	What is the necessity of grouping signals?	Understand	CO 3	AEC010.09
				-
14	What is nano programming?	Remember	CO 3	AEC010.12
15	What is the superscalar processor?	Remember	<u>CO 3</u>	AEC010.12
16	What is the function of dispatch unit?	Understand	<u>CO 3</u>	AEC010.12
17	What is dynamic prediction?	Understand	<u>CO 3</u>	AEC010.12
18	Define data hazard?	Kemember	<u> </u>	AEC010.12
19	Define structural hazard?	Understand	<u> </u>	AEC010.12
20	Define control hazard?	Kemember	$\frac{003}{002}$	AEC010.11
21	what is letch instruction Discuss about fatch operand?	Domombar	<u> </u>	AEC010.12
22	Discuss about retch operation:	Understand	<u> </u>	AEC010.11
23	What do you mean by out of order execution? Is it	Remember	$\frac{003}{003}$	ΔEC010.10
24	Desirable?	KUIIUUU	005	ALC010.11
25	Define Pipeline Hazards?	Remember	CO 3	AEC010.11
26	What is a pipe stage and instruction pipeline?	Remember	<u> </u>	AEC010.12
	Grown - R (Long Answer One	stions)	200	1120010.12
1	Explain the operation of address sequencer in a micro	Remember	CO 3	AEC010.12
	programmed control unit.		200	
2	Emplain mine and anomaring with a set also tal.	Damanahan	CO 2	AEC010.12

3	Draw the block diagram of a complete processor?	Understand	CO 3	AEC010.10
4	Explain in detail the decoding and encoding function of	Understand	CO 3	AEC010.09
	hardwired control unit?			
5	Compare hardwired control unit and micro programmed	Remember	CO 3	AEC010.10
	control unit			
6	Discuss about the design of hardwired control unit for two's	Understand	CO 3	AEC010.09
	complement multiplier			
7	What are the advantages of hardwired control unit? What	Remember	CO 3	AEC010.10
	are the disadvantages?			
				• •
8	Describe Nano programming in detail with example?	Remember	CO 3	AEC010.12
9	Explain in detail regarding the implementation requirements	Understand	CO 3	AEC010.12
	of the pipeline			
10	Give a detailed sketch on instruction pipeline and its	Understand	CO 3	AEC010.12
	operations along with a flow chart and timing diagram			
11	Explain instruction pipeline conflicts and their remedies	Understand	CO 3	AEC010.12
12	Write a note about: Instruction pipeline and pipeline	Remember	CO 3	AEC010.12
	performance?			
13	Discuss the various hazards that might arise in a pipeline.	Remember	CO 3	AEC010.12
	What are the remedies commonly adopted to			
	overcome/minimize the sehazards.			
14	Explain the various approaches used to deal with conditional	Remember	CO 3	AEC010.12
	pipelining?			
15	Explain various factors that reduce the performance of the	Remember	CO 3	AEC010.12
	pipeline and how they can be overcome.			
16	What is the relationship between instructions (assembly	Understand	CO 3	AEC010.12
	code) and micro operations?			
17	Write a note about: superscalar processing and nano	Remember	CO 3	AEC010.12
	programming?			
18	The stage delays in a 4-stage pipeline are 800, 500, 400 and	Understand	CO 3	AEC010.11
	300 picoseconds. The first stage (with delay 800			
	picoseconds) is replaced with a functionally equivalent			
	design involving two stages with respective delays 600 and			
	350 picoseconds. Find percentage of the throughput increase			
	of the pipeline?			
19	Consider a non-pipelined processor with a clock rate of 2.5	Understand	CO 3	AEC010.11
	gigahertz and average cycles per instruction of four. The			
	same processor is upgraded to a pipelined processor with			
	five stages; but due to the internal pipeline delay, the clock			
	speed is reduced to 2 gigahertz. Assume that there are no			
	stalls in the pipeline. Find the speed up achieved in this			
20	The instruction ningling of a DISC product the	Underster 1	<u> </u>	AEC010.11
20	I ne instruction pipeline of a KISC processor has the	Understand	003	AEC010.11
	IDIOWING stages: Instruction Fetch (IF), Instruction Decode			
	(ID), Operation Feich (OF), Perform Operation (PO) and Write heals (WP). The IE, ID, OF and WP stores take 1			
	while back (WB). The IF, ID, OF and WB stages take I			
	of 100 instructions. In the PO stage 40 instructions take 3			
	clock cycles each 35 instructions take 2 clock cycles each			
	and the remaining 25 instructions take 1 clock cycles each			
	Assume that there are no data hazards and no control			
	hazards Find the number of clock cycles required for			
	completion of execution of the sequence of instructions?			
	Groun - C (Analytical Ones	tions)	l	<u> </u>
1	The control memory in Fig. 7-2 has 4096 words of 24 bits	Remember	CO 3	AEC010.10
1	each.	Remember		112010.10
	1 How many hits are there in the control			
	addressregister?			
	2 How many bits are there in each of the four inputs			
	shown going into themultipleyers?			

	fixed-point numbers in the pipeline?			
	a_0 a_1 b_3 b_2 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_2 b_3 b_3 b_2 b_3 b_3 b_2 b_3 b_3 b_2 b_3			
	a b b b b b b b b b b b c c c c c c c c c c c c c			
4	 Consider the multiplication of two 40x 40 matrices using a vector processor. i. How many product terms are there in each inner product and how many inner products must be evaluated? ii. How many multiply-add operations are 	Kemember	03	AEC010.13
5	needed to calculate the product matrix? Consider a computer with four floating-point pipeline processors. Suppose that each processor uses a cycle time of 40 ns. How long will it take to perform 400 floating - point operations? Is there a difference If the same4000peratlons is carried out using a single pipeline processor with a cycle time of 10ns?	Remember	CO 3	AEC010.13
6	Instruction execution in a processor is divided into 5 stages, Instruction Fetch (IF), Instruction Decode (ID), Operand Fetch (OF), Execute (EX), and Write Back (WB). These stages take 5, 4, 20, 10 and 3 nanoseconds (ns) respectively. A pipelined implementation of the processor requires buffering between each pair of consecutive stages with a delay of 2 ns. Two pipelined implementations of the processor are contemplated: (i) a naive pipeline implementation (NP) with 5 stages and (ii) an efficient pipeline (EP) where the OF stage is divided into stages OF1 and OF2 with execution times of 12 ns and 8 ns respectively. Find the speedup (correct to two decimal places) achieved by EP over NP in executing 20 independent instructions with no hazards ?	Understand	CO 3	AEC010.11

7	Consider a 3 GHz (gigahertz) processor with a three-stage pipeline and stage latencies τ_1 , τ_2 , τ_3 and such that $\tau_1 = 3\tau_2/4 = 2\tau_3$. If the longest pipeline stage is split into two pipeline stages of equal latency, Find the new frequency in GHz, ignoring delays in the pipeline registers.	Understand	CO 3	AEC010.11
8	An instruction pipeline has five stages, namely, instruction fetch (IF), instruction decode and register fetch (ID/RF), instruction execution (EX), memory access (MEM), and register writeback (WB) with stage latencies 1 ns, 2.2 ns, 2 ns, 1 ns, and 0.75 ns, respectively (ns stands for nanoseconds). To gain in terms of frequency, the designers have decided to split the ID/RF stage into three stages (ID, RF1, RF2) each of latency 2.2/3 ns. Also, the EX stage is split into two stages (EX1, EX2) each of latency 1 ns. The new design has a total of eight pipeline stages. A program has 20% branch instructions which execute in the EX stage in the new design. The IF stage stalls after fetching a branch instruction until the next instruction pointer is computed. All instructions other than the branch instruction have an average CPI of one in both the designs. The execution times of this program on the old and the new design are P and Q nanoseconds, respectively. Find the value of P/Q ?	Understand	CO 3	AEC010.11
9	Consider an instruction pipeline with five stages without any branch prediction: Fetch Instruction (FI), Decode Instruction (DI), Fetch Operand (FO), Execute Instruction (EI) and Write Operand (WO). The stage delays for FI, DI, FO, EI and WO are 5 ns, 7 ns, 10 ns, 8 ns and 6 ns, respectively. There are intermediate storage buffers after each stage and the delay of each buffer is 1 ns. A program consisting of 12 instructions I ₁ , I ₂ , I ₃ ,, I ₁₂ is executed in this pipelined processor. Instruction I ₄ is the only branch instruction and its branch target is I ₉ . If the branch is taken during the execution of this program, Find the time (in ns) needed to complete the program ?	Understand	CO 3	AEC010.11
10	Consider a CPU where all the instructions require 7 clock cycles to complete execution. There are 140 instructions in the instruction set. It is found that 125 control signals are needed to be generated by the control unit. While designing the horizontal microprogrammed control unit, single address field format is used for branch control logic. What is the minimum size of the control word and control address register?	Understand	CO 3	AEC010.11
	UNIT - IV			
	Group - A (Short Answer Que	estions)		
1	What is magnetic surface recording?	Understand	CO 4	AEC010.13
2	How CAM is different from read / writes memory?	Understand	CO 4	AEC010.14
3	Define address space and memory space.	Understand	CO 4	AEC010.14
4	Differentiate between memory mapped I/O and isolated mapped I/O	Remember	CO 4	AEC010.14
5	Mention the types of memory?	Remember	CO 4	AEC010.14
6	What is a memory unit called as RAM?	Understand	CO 4	AEC010.14
7	What are the characteristic of semiconductor RAM memories?	Understand	CO 4	AEC010.14

8	Compare SRAMs DRAMs?	Understand	CO 4	AEC010.14
9	Give memory hierarchy?	Remember	CO 4	AEC010.14
10	What is multilevel hierarchy?	Understand	CO 4	AEC010.14
11	Define memory cycle time?	Remember	CO 4	AEC010.14
12	Define rotational latency?	Understand	CO 4	AEC010.15
13	Give the bit representation by phase encoding?	Understand	CO 4	AEC010.15
14	Define system space?	Remember	CO 4	AEC010.15
15	Define user space?	Understand	CO 4	AEC010.15
16	Write formula for calculating the average access time experienced by the processor in a system with two levels of caches?	Understand	CO 4	AEC010.15
17	Define address space and memory space.	Remember	CO 4	AEC010.15
18	Explain various types of interrupts in brief.	Understand	CO 4	AEC010.15
19	Define Read access time ?	Remember	CO4	AEC010.15
20	Define Destructive readout(DRO) ?	Remember	CO4	AEC010.15
	Group - B (Long Answer Ques	stions)		
1	What is Cache and Virtual memory in detail?	Remember	CO 4	AEC010.14
2	Draw the block diagram of an association memory and explain its operation in terms of match logic, read and write operations.	Understand	CO 4	AEC010.14
3	Explain DMA transfer in detail with all relevant block diagrams.	Understand	CO 4	AEC010.14
4	Explain the internal organization of memory chip?	Understand	CO 4	AEC010.14
	Write short notes on :	Remember	CO 4	AEC010.14
5	 Optical Memory Associative Memory 			
6	Draw the organization of the serial access memory unit and explain its accessing mechanism?	Remember	CO 4	AEC010.14
7	Explain memory hierarchy and memory types?	Understand	CO 4	AEC010.15
8	 Write notes on: 1. Virtual Memory 2. Memory Interleaving 3. Associative Memory 4. Optical Memory 	Understand	CO 4	AEC010.15
9	Explain the organization of RAM in detail?	Remember	CO 4	AEC010.15
10	Explain the operation of associative cache memories?	Understand	CO 4	AEC010.15
11	Discuss the various memory types and mention its advantages?	Remember	CO 4	AEC010.15
12	Analyze the memory hierarchy in terms of speed, size and Cost ?	Remember	CO4	AEC010.15
13	Explain the Address Translation in Virtual Memory ?	Understand	CO4	AEC010.15
14	Design 64k X 16 memory chip using 16k X 8 memory chips ?	Understand	CO4	AEC010.15
15	Define Auxiliary memory? Discuss with neat diagrams?	Remember	CO4	AEC010.15
16	Compare the parameters size, speed and cost per bit in the hierarchy ?	Remember	CO4	AEC010.15
17	Compare and contrast between Asynchronous DRAM and Synchronous DRAM ?	Understand	CO4	AEC010.15
18	Draw the internal organization of a SRAM cell and explain the read and write operation.	Remember	CO4	AEC010.15
19	Explain in detail about associative mapping technique ?	Remember	CO4	AEC010.15
20	Write formula for calculating the average access time experienced by the processor in a system with two level of caches?	Understand	CO4	AEC010.15

Group - C (Analytical Questions)				
1	Criticize the following statement :"Using the faster processing chip results in a corresponding increase in the performance of computer even if the main memory speed remains the same"	Understand	CO 4	AEC010.13
2	An 8-bit computer has a 16-bit address bus. The first 15 lines of the address are used to select a bank of 32K bytes of memory. The high- order bit of the address is used to select a register which receives the contents of the data bus. Explain how this configuration can be used to extend the memory capacity of the system to eight banks of 32K bytes each, for a total of 256K bytes of memory.	Understand	CO 4	AEC010.15
3	The access time of a cache memory is 100 ns and that of main memory 1000 ns. It is estimated that 80 percent of the memory requests are for read and the remaining 20 percent for write. The hit ratio for read accesses only is 0.9. A Write-through procedure is used i) What is the average access time of the system considering only memory read cycle? ii) What is the average access time of the system for both read and write requests? iii) What is the hit ratio taking into consideration the write cycles?	Understand	CO4	AEC010.13
4	A two way set associative cache memory uses blocks of four words. The cache can accommodate a total of 2048 words from the main memory. The main memory size is 128 K*32 i) Formulate all pertinent information required to construct the cache memory ii) What is the size of the cache memory	Remember	CO4	AEC010.13
5	Consider a main memory built with SDRAM chips. Data are transferred in burst lengths of 8. Assume that 32 bits of data are transferred in parallel. If a 400-MHz clock is used, how much time does it take to transfer: (a) 32 bytes of data (b) 64 bytes of data What is the latency in each case?	Remember	CO4	AEC010.13
6	Consider a processor running a program. 30% of the instructions of which require a memory read or write operation if the cache bit ratio is 0.95 for instructions and 0.9 for data. When a cache bit occurs for instruction or for data, only one clock is needed while the cache miss penalty is 17 clocks to read/write on the main memory. Work out the time saved by using the cache, given the total number of instructions executed is 1 million	Understand	CO4	AEC010.13
7	 A computer uses RAM chips of 1024 × 1 capacity. a) How many chips are needed, and how should their address lines be connected to provide a memory capacity of 1024 bytes? b) How many chips are needed to provide a memory capacity of 16K bytes? Explain in words how the chips are to be connected to the address bus 	Understand	CO4	AEC010.13
8	Using the 64Mb DRAM as basic component, design a 256Mx32bit DRAM.	Understand	CO4	AEC010.13
9	a) Draw the logic diagram of all the cells of one word in an associative memory. Include the read and write logic of Fig.	Understand	CO 4	AEC010.16

	c) If a page consists of 21< words, how many pages			
	and blocks are there in the system?			
10	A computer employs RAM chips of 256 x 8 and ROM	Understand	CO 4	AEC010.13
	chips of 1024 x 8. The computer system needs 2K bytes of			
	RAM, 4K bytes of ROM, and four interface units, each			
	with four registers. A memory- mapped 1/0 configuration			
	is used. The two highest-order bits of the address bus are			
	assigned to for KAIVI, of for KOIVI, and fo for interface			
	a) How many RAM and ROM chins are needed?			
	b) Draw a memory-address man for the system			
	c) Give the address range in heradecimal for RAM			
	ROM. and interface			
	UNIT - V			
	Group - A (Short Answer Ou	estions)		
1	Write features of RISC.	Remember	CO 5	AEC010.19
2	Write briefly about multi processor.	Understand	CO 5	AEC010.19
3	What is memory manned I/O?	Understand	CO 5	AFC010.18
	What is program controlled I/Ω^2	Understand	CO 5	AEC010.18
5	What are the various mechanism for implementing i/o	Remember	CO 5	AEC010.18
5	operation?	Remember	005	ALCOID.10
6	When the privilege exception arises?	Remember	CO 5	AEC010.18
7	What are the 2 independent mechanisms for controlling	Understand	CO 5	AEC010.18
	Interrupt request?	D 1		AEC010.17
8	Differentiate intra and inter system communication?	Remember	CO 5	AEC010.17
9	What you mean by bus arbitration?	Keinember	CO 5	AEC010.17
10	What is DMA controller?	Understand	CO 5	AEC010.17
12	What are the three types of buses?	Remember	CO 5	AEC010.17
12	What is Synchronous and asynchronous?	Understand	CO 5	AEC010.17
13	What is PCI interrupts?	Dilderstand	CO 5	AEC010.18
14	bus arbitration?	Kennennber	05	AEC010.18
15	What is meant by multiprocessor?	Understand	CO 5	AEC010.18
16	What is operating system?	Understand	CO 5	AEC010.20
17	Define deadlock?	Remember	CO 5	AEC010.20
18	Define advantages and disadvantages of bus organization?	Remember	CO 5	AEC010.17
19	Define availability in fault tolerance?	Understand	CO 5	AEC010.18
20	Distinguish the reliability and availability?	Understand	CO 5	AEC010.18
	Group - B (Long Answer Que	estions)		
1	Discuss SIMD processor organization	Remember	CO 5	AEC010.19
_	Write a short notes on the following:	Remember	CO 5	AEC010.19
2	1. RISC/CISC –Differentiate			
	2. Stored program organization			
3	Discuss the DMA operation with neat diagram in detail?	Understand	CO 5	AEC010.17
4	Write notes on: DMA and I/O interfaces.	Understand	CO 5	AEC010.17
5	What is fault tolerance? Give all the details regarding its function?	Remember	CO 5	AEC010.20
6	Write notes on:	Remember	CO 5	AEC010.20
	1. Multiprogramming			
	2. Multiprocessing			
7	Write a note sketch explain hoe data transfer can be carried	Understand	CO 5	AEC010.17
	out using DMA?			
8	Write notes on polling.	Remember	<u>CO 5</u>	AEC010.17
9	What is meant by cache coherence problem, explain in	Remember	CO 5	AEC010.18
1	I detall.		1	1

10	Write notes on:	Remember	CO 5	AEC010.17
	1.SynchronousI/O			
	2.AsynchronousI/O			
11	Write a short notes on differences between RISC/CISC	Remember	CO 5	AEC010.19
12	Write a short notes on Stored program organization	Remember	CO 5	AEC010.17
13	Write notes on Vectored Interrupts.	Remember	CO 5	AEC010.18
14	Explain in detail the various aspects involved in fault tolerance.	Understand	CO 5	AEC010.18
15	Describe system bus structure for multiprocessors	Remember	CO 5	AEC010.19
16	Describe cache coherence and why is it important in shared memory multiprocessor systems? How can the problem be solved with a snoopy cache controller?	Remember	CO 5	AEC010.19
17	Determine the number of clock cycles that it takes to process 200 task in a six segment pipeline.	Understand	CO 5	AEC010.18
18	Explain in detail about DMA driven data transfer technique.	Remember	CO 5	AEC010.16
19	Describe the characteristics of super scalar and vector processing.	Remember	CO 5	AEC010.20
20	Describe about pipeline? Explain arithmetic pipeline.	Remember	CO 5	AEC010.18
	Group - C (Analytical Ques	stions)		•
1	Consider a computer without priority interrupt hardware. Any one of many sources can interrupt the computer, and any interrupt request results in storing the return address and branching to a common interrupt routine. Explain how a priority can be established in the interrupt service program.	Remember	CO 5	AEC010.18
2	What programming steps are required to check when a source interrupts the computer while it is still being serviced by a previous interrupt request from the same source?	Understand	CO 5	AEC010.18
3	Write the RISC I instructions in assembly language that will cause a jump to address 3200 if the Z (zero) status bit is equal to 1. a. Using immediate mode b. Using a relative address mode (assume that PC =3400)	Remember	CO 5	AEC010.19
4	 Write a program to evaluate the arithmetic statement: X = (A - B + C* (D * E - f)) / (G + H*K) a. Using a general register computer with three address instructions. b. Using a general register computer with two address instructions. 	Understand	CO 5	AEC010.18
5	 Write a program to evaluate the arithmetic statement: X = (A - B + C* (D * E - f)) / (G + H*K) 1. Using an accumulator type computer withone address instructions. 2. Using a stack organized computer with zero-address operation instructions. 	Understand	CO 5	AEC010.18
6	What are the three different mechanism commonly used in bus arbitration and What are the various mechanism for implementing i/o operation?	Remember	CO 5	AEC010.16
7	What is the advantage of two-wired hand shaking method and detailed about data transfer between source and destination.	Remember	CO 5	AEC010.16
8	Write short notes on: 1. Kernel 2. Mutual exclusion	Remember	CO 5	AEC010.19

9	What programming steps are required to check when a source interrupts the computer while it is still being serviced by a previous interrupt request from the same source?	Remember	CO 5	AEC010.18
10	Write about the following concepts : a. RISC pipeline b. Vector processing c. Array processors	Remember	CO 5	AEC010.18

Prepared by: Mr. N V Krishna Rao, Assistant Professor

HOD, ECE