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CONTROL SYSTEMS 

IV Semester: ECE 

Course Code Category Hours / Week Credits Maximum Marks 

AEE009 Core 
L T P C CIA SEE Total 

3 1 - 4 30 70 100 

Contact Classes: 45 Tutorial Classes:15 Practical Classes: Nil Total Classes: 60 
 

OBJECTIVES:  

The course should enable the students to: 

I. Organize modeling and analysis of electrical and mechanical systems. 

II. Evaluate systems by applying block diagrams, signal flow graphs to study the time response. 

III. Demonstrate the analytical and graphical techniques to study the stability to design the control 

system. 

IV. Illustrate the frequency domain and state space analysis. 
 

UNIT-I INTRODUCTION AND MODELING OF PHYSICAL SYSTEMS Classes: 08 

Control systems: Introduction, open loop and closed loop systems, examples, comparison, mathematical 

models and differential equations of physical systems, concept of transfer function, translational and 

rotational mechanical systems, electrical systems, force voltage and force current analogy.  
 

UNIT - II 
BLOCK DIAGRAM REDUCTION AND TIME RESPONSE 

ANALYSIS 
Classes: 10 

Block Diagrams: Block diagram representation of various systems, block diagram algebra, characteristics 

of feedback systems, servomotors, signal flow graph, Mason‘s gain formula; Time response analysis: 

Standard test signals, shifted unit step, ramp and impulse signals, shifting theorem, convolution integral, 

impulse response, unit step response of first and second order system, time response specifications, steady 

state errors and error constants. 

UNIT - III STABILITY ANALYSIS AND CONTROLLERS Classes: 09 

Concept of stability: Necessary and sufficient conditions for stability, Routh‘s and Routh Hurwitz 

stability criterions. 
 

Root locus technique: Introduction, root locus concept, construction of root loci, graphical determination 

of ‗k‘ for specified damping ratio, relative stability, effect of adding zeros and poles on stability. 

Controllers: Proportional, derivative and proportional derivative, proportional integral and PID 

controllers. 

UNIT - IV FREQUENCY DOMAIN ANALYSIS  Classes: 10 

Frequency domain analysis: Introduction, frequency domain specifications, stability analysis from Bode 

plot, polar plot, Nyquist plot, calculation of gain margin and phase margin, determination of transfer 

function, correlation between time and frequency response.  

UNIT - V STATE SPACE ANALYSIS AND COMPENSATORS Classes: 08 

State Space Analysis: Concept of state, state variables and state model, derivation of state models from 

block diagrams, diagonalization, solving the time invariant state equations, state transition matrix and 

properties, concept of controllability and observability; Compensators: Lag, lead, lag lead networks. 
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CHAPTER 1 

CONTROL SYSTEM MODELING 

1.1 Basic elements of control system 

In recent years, control systems have gained an increasingly importance in the 

development and advancement of the modern civilization and technology. Figure shows the 

basic components of a control system. Disregard the complexity of the system; it consists of an 

input (objective), the control system and its output (result). Practically our day-to-day activities 

are affected by some type of control systems. There are two main branches of control systems: 

1) Open-loop systems and 

2) Closed-loop systems. 

 

 

 

 

 

               Basic Components of Control System 

 

1.2 Open-loop systems: 

The open-loop system is also called the non-feedback system. This is the simpler of the 

two systems. A simple example is illustrated by the speed control of an automobile as shown in 

Figure 1-2. In this open-loop system, there is no way to ensure the actual speed is close to the 

desired speed automatically. The actual speed might be way off the desired speed because of the 

wind speed and/or road conditions, such as uphill or downhill etc. 

 

 

 

 

 

 

 Basic Open Loop System 

 

Closed-loop systems: 

The closed-loop system is also called the feedback system. A simple closed-system is 

shown in Figure 1-3. It has a mechanism to ensure the actual speed is close to the desired speed 

automatically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIT-I
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Transfer Function 

 A simpler system or element maybe governed by first order or second order differential 

equation. When several elements are connected in sequence, say “n” elements, each one with 

first order, the total order of the system will be nth order  

 In general, a collection of components or system shall be represented by nth order 

differential equation. 

 

 

 

 

 In control systems, transfer function characterizes the input output relationship of 

components or systems that can be described by Liner Time Invariant Differential Equation 

 In the earlier period, the input output relationship of a device was represented 

graphically. 

 In a system having two or more components in sequence, it is very difficult to find 

graphical relation between the input of the first element and the output of the last element. This 

problem is solved by transfer function 

 

Definition of Transfer Function: 

Transfer function of a LTIV system is defined as the ratio of the Laplace Transform of 

the output variable to the Laplace Transform of the input variable assuming all the initial 

condition as zero. 

Properties of Transfer Function: 

 The transfer function of a system is the mathematical model expressing the differential  

             equation that relates the output to input of the system. 

 The transfer function is the property of a system independent of magnitude and the nature    

             of the input. 

 The transfer function includes the transfer functions of the individual elements. But at the  

             same time, it does not provide any information regarding physical structure of the   

             system. 

 The transfer functions of many physically different systems shall be identical. 

 If the transfer function of the system is known, the output response can be studied for  

             various types of inputs to understand the nature of the system. 

 If the transfer function is unknown, it may be found out experimentally by applying  

             known inputs to the device and studying the output of the system. 

 

How you can obtain the transfer function (T. F.): 

 Write the differential equation of the system. 

 Take the L. T. of the differential equation, assuming all initial condition to be zero. 

 Take the ratio of the output to the input. This ratio is the T. F. 

 

Mathematical Model of control systems 

A control system is a collection of physical object connected together to serve an objective. The 

mathematical model of a control system constitutes a set of differential equation. 
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1. Mechanical Translational systems 

The model of mechanical translational systems can obtain by using three basic elements 

mass, spring and dashpot. When a force is applied to a translational mechanical system, it is 

opposed by opposing forces due to mass, friction and elasticity of the system. The force acting 

on a mechanical body is governed by Newton‘s second law of motion. For translational systems 

it states that the sum of forces acting on a body is zero. 

 

Force balance equations of idealized elements: 

Consider an ideal mass element shown in fig. which has negligible friction and elasticity. 

Let a force be applied on it. The mass will offer an opposing force which is proportional to 

acceleration of a body. 

 
Let f = applied force 

      fm =opposing force due to mass 

      Here fm α M d
2
 x / dt

2 

 

By Newton‘s second law, f = f m= M d
2
 x / dt

2
 

 

Consider an ideal frictional element dash-pot shown in fig. which has negligible mass and 

elasticity. Let a force be applied on it. The dashpot will be offer an opposing force which is 

proportional to velocity of the body. 

 

 

 

 

 

 

 

Let f = applied force 

f b = opposing force due to friction 

Here, f b α B dx / dt 

 

By Newton‘s second law, f = fb = M d x / dt 

Consider an ideal elastic element spring is shown in fig. This has negligible mass and friction. 
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Let f = applied force 

f k = opposing force due to elasticity 

Here, f k α x  

By Newton‘s second law, f = f k = x 

 

Mechanical Rotational Systems: 

The model of rotational mechanical systems can be obtained by using three elements, 

moment of inertia [J] of mass, dash pot with rotational frictional coefficient [B] and torsional 

spring with stiffness[k]. 

When a torque is applied to a rotational mechanical system, it is opposed by opposing 

torques due to moment of inertia, friction and elasticity of the system. The torque acting on 

rotational mechanical bodies is governed by Newton‘s second law of motion for rotational 

systems. 

 

Torque balance equations of idealized elements 

Consider an ideal mass element shown in fig. which has negligible friction and elasticity. 

The opposing torque due to moment of inertia is proportional to the angular acceleration. 

 
Let T = applied torque 

Tj =opposing torque due to moment of inertia of the body 

Here Tj= α J d
2
 θ / dt

2 

By Newton‘s law 

T= Tj = J d
2
 θ / dt

2 

 

Consider an ideal frictional element dash pot shown in fig. which has negligible moment of 

inertia and elasticity. Let a torque be applied on it. The dash pot will offer an opposing torque is 

proportional to angular velocity of the body. 

 
Let T = applied torque 

Tb =opposing torque due to friction 

Here Tb = α B d / dt (θ1- θ2) 

By Newton‘s law 

T= Tb = B d / dt (θ1- θ2) 
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. Consider an ideal elastic element, torsional spring as shown in fig. which has negligible 

moment of inertia and friction. Let a torque be applied on it. The torsional spring will offer an 

opposing torque which is proportional to angular displacement of the body 

 
Let T = applied torque 

Tk =opposing torque due to friction 

Here Tk α K (θ1- θ2) 

By Newton‘s law 

T = Tk = K (θ1- θ2) 

 

Modeling of electrical system 

 Electrical circuits involving resistors, capacitors and inductors are considered. The 

behaviour of such systems is governed by Ohm‘s law and Kirchhoff‘s laws 

 Resistor: Consider a resistance of ‘R‘ Ω carrying current ‘i‘ Amps as shown in Fig (a), 

then the voltage drop across it is v = R I 

 
 Inductor: Consider an inductor ―L‘ H carrying current ‗i‘ Amps as shown in Fig (a), 

then the voltage drop across it can be written as v = L di/dt 

 
 

 

 Capacitor: Consider a capacitor ‘C‘ F carrying current ‘i‘ Amps as shown in Fig (a), 

then the voltage drop across it can be written as v = (1/C)∫ i dt 

 
 

 

Steps for modeling of electrical system 

 Apply Kirchhoff‘s voltage law or Kirchhoff‘s current law to form the differential 

equations describing electrical circuits comprising of resistors, capacitors, and inductors. 

 Form Transfer Functions from the describing differential equations. 

 Then simulate the model. 
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Example 

 
R1 i(t) + R2 i(t) + 1/ C ∫ i(t) dt = V1(t) 

R2 i(t) + 1/ C ∫ i(t) dt = V2(t) 

 

Electrical systems 

LRC circuit. Applying Kirchhoff‘s voltage law to the system shown. We obtain the 

following equation; 

Resistance circuit 

 
L(di /dt) + Ri + 1/ C ∫ i(t) dt =ei …………………….. (1) 

 

1/ C ∫ i(t) dt =e0 ……………………………………….. (2) 

Equation (1) & (2) give a mathematical model of the circuit. Taking the L.T. of equations 

(1)&(2), assuming zero initial conditions, we obtain 

 

 
Armature-Controlled dc motors 

The dc motors have separately excited fields. They are either armature-controlled with 

fixed field or field-controlled with fixed armature current. For example, dc motors used in 

instruments employ a fixed permanent-magnet field, and the controlled signal is applied to the 

armature terminals. 

 

Consider the armature-controlled dc motor shown in the following figure. 
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Ra = armature-winding resistance, ohms 

La = armature-winding inductance, henrys 

ia = armature-winding current, amperes 

if = field current, a-pares 

ea = applied armature voltage, volt 

eb = back emf, volts 

θ = angular displacement of the motor shaft, radians 

T = torque delivered by the motor, Newton*meter 

J = equivalent moment of inertia of the motor and load referred to the motor shaft kg.m2 

f = equivalent viscous-friction coefficient of the motor and load referred to the motor shaft. 

Newton*m/rad/s 

T = k1 ia ψ where ψ is the air gap flux, ψ = kf if , k1 is constant 

For the constant flux 

 
Where Kb is a back emf constant -------------- (1) 

The differential equation for the armature circuit 

 
The armature current produces the torque which is applied to the inertia and friction; hence 

 

 
Assuming that all initial conditions are condition are zero/and taking the L.T. of equations (1), 

(2) & (3), we obtain 

   Kps θ (s) = Eb (s) 

  (Las+Ra ) Ia(s) + Eb (s) = Ea (s) (Js
2
 +fs) 

   θ (s)  = T(s) = K Ia(s) 

The T.F can be obtained is 

 
 

Analogous Systems 

Let us consider a mechanical (both translational and rotational) and electrical system as shown in 

the fig. 
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From the fig (a) 

We get M d
2
 x / dt

2  
 +  D d x / dt + K x = f 

 

From the fig (b)
 
  

We get M d
2
 θ / dt

2  
 +  D d θ / dt + K θ = T 

 

From the fig (c)
 
  

 

We get L d
2
 q / dt

2  
 +  R d q / dt + (1/C) q = V(t) 

 

Where q = ∫i dt 

They are two methods to get analogous system. These are (i) force- voltage (f-v) analogy 

and (ii) force-current (f-c) analogy 

 
 

Force –Voltage Analogy 

Force – Current Analog 
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Problem 

1. Find the system equation for system shown in the fig. And also determine f-v and f-i 

analogies 

 
For free body diagram M1  

 
For free body diagram M2 

            (2) 

Force –voltage analogy 

 
From eq (1) we get 

 
From eq (2) we get 

    …..(4) 

From eq (3) and (4) we can draw f-v analogy 
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Force–current analogy 

 
From eq (1) we get 

……..(5) 

From eq (2) we get 

 …………(6) 

From eq (5) and (6) we can draw force-current analogy 

 
The system can be represented in two forms: 

 Block diagram representation 

 Signal flow graph 

 

Block diagram 

A pictorial representation of the functions performed by each component and of the flow 

of signals. 

Basic elements of a block diagram 

 Blocks 

 Transfer functions of elements inside the blocks 

 Summing points 

 Take off points 

 Arrow 

 

Block diagram 

A control system may consist of a number of components. A block diagram of a system 

is a pictorial representation of the functions performed by each component and of the flow of 

signals.  

 

The elements of a block diagram are block, branch point and summing point. 
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Block 

In a block diagram all system variables are linked to each other through functional 

blocks. The functional block or simply block is a symbol for the mathematical operation on the 

input signal to the block that produces the output. 

 
Summing point 

Although blocks are used to identify many types of mathematical operations, operations 

of addition and subtraction are represented by a circle, called a summing point. As shown in 

Figure a summing point may have one or several inputs. Each input has its own appropriate plus 

or minus sign. 

A summing point has only one output and is equal to the algebraic sum of the inputs. 

 
A takeoff point is used to allow a signal to be used by more than one block or summing point. 

The transfer function is given inside the block 

• The input in this case is E(s) 

• The output in this case is C(s) 

 C(s) = G(s) E(s) 

 
 

Functional block – each element of the practical system represented by block with its T.F. 

Branches – lines showing the connection between the blocks 

Arrow – associated with each branch to indicate the direction of flow of signal 

Closed loop system 

Summing point – comparing the different signals 

Take off point – point from which signal is taken for feed back 

 

 

UNIT-II
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Advantages of Block Diagram Representation 

 Very simple to construct block diagram for a complicated system 

 Function of individual element can be visualized 

 Individual & Overall performance can be studied 

 Over all transfer function can be calculated easily. 

 

 

Disadvantages of Block Diagram Representation 

 No information about the physical construction 

 Source of energy is not shown 

 

Simple or Canonical form of closed loop system 

 
R(s) – Laplace of reference input r(t) 

C(s) – Laplace of controlled output c(t) 

E(s) – Laplace of error signal e(t) 

B(s) – Laplace of feed back signal b(t) 

G(s) – Forward path transfer function 

H(s) – Feed back path transfer function 

 

Block diagram reduction technique 

Because of their simplicity and versatility, block diagrams are often used by control 

engineers to describe all types of systems. A block diagram can be used simply to represent the 

composition and interconnection of a system. Also, it can be used, together with transfer 

functions, to represent the cause-and-effect relationships throughout the system. Transfer 

Function is defined as the relationship between an input signal and an output signal to a device. 
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Block diagram rules 

Cascaded blocks 

 
Moving a summer beyond the block 

 
Moving a summer ahead of block 

 
 

Moving a pick-off ahead of block 

 
Moving a pick-off behind a block 

 
Eliminating a feedback loop 
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Cascaded Subsystems 

 
 

 

Parallel Subsystems 

 
 

Feedback Control System 

 
 

Procedure to solve Block Diagram Reduction Problems 

Step 1: Reduce the blocks connected in series 

Step 2: Reduce the blocks connected in parallel 

Step 3: Reduce the minor feedback loops 

Step 4: Try to shift take off points towards right and Summing point towards left 

Step 5: Repeat steps 1 to 4 till simple form is obtained 

Step 6: Obtain the Transfer Function of Overall System 
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Problem 1 

 

Obtain the Transfer function of the given block diagram 

 
 

Combine G1, G2 which are in series 

 
Combine G3, G4 which are in Parallel 

 
Reduce minor feedback loop of G1, G2 and H1 
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Transfer function 

 
 

 

 

 

2. Obtain the transfer function for the system shown in the fig 

 
Solution 

 
 

 

3. Obtain the transfer function C/R for the block diagram shown in the fig 
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Solution 

The take-off point is shifted after the block G2 

 
 

Reducing the cascade block and parallel block 

 
Replacing the internal feedback loop 

 
Equivalent block diagram 

 
Transfer function 
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Signal Flow Graph Representation 

Signal Flow Graph Representation of a system obtained from the equations, which shows 

the flow of the signal 

 

Signal flow graph 

A signal flow graph is a diagram that represents a set of simultaneous linear algebraic 

equations. By taking Laplace transfer, the time domain differential equations governing a control 

system can be transferred to a set of algebraic equation in s-domain. A signal-flow graph consists 

of a network in which nodes are connected by directed branches. It depicts the flow of signals 

from one point of a system to another and gives the relationships among the signals. 

 

Basic Elements of a Signal flow graph 

Node - a point representing a signal or variable. 

Branch – unidirectional line segment joining two nodes. 

Path – a branch or a continuous sequence of branches that can be traversed from one node to 

another node. 

Loop – a closed path that originates and terminates on the same node and along the path no node 

is met twice. 

Nontouching loops – two loops are said to be nontouching if they do not have a common node. 

 

Mason’s gain formula 

The relationship between an input variable and an output variable of signal flow graph is 

given by the net gain between the input and the output nodes is known as overall gain of the 

system. Mason‘s gain rule for the determination of the overall system gain is given below. 

 
Where M= gain between Xin and Xout 

Xout =output node variable 

Xin= input node variable 

N = total number of forward paths  

Pk= path gain of the kth forward path 

∆=1-(sum of loop gains of all individual loop) + (sum of gain product of all possible 

combinations of two nontouching loops) – (sum of gain products of all possible combination of 

three nontouching loops) 
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Problem 
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CHAPTER 2 

TIME RESPONSE ANALYSIS 

 

Introduction 

 After deriving a mathematical model of a system, the system performance analysis can be done 

in various methods. 

 In analyzing and designing control systems, a basis of comparison of performance of various 

control systems should be made. This basis may be set up by specifying particular test input 

signals and by comparing the responses of various systems to these signals. 

 The system stability, system accuracy and complete evaluation are always based on the time 

response analysis and the corresponding results. 

 Next important step after a mathematical model of a system is obtained. 

 To analyze the system‘s performance. 

 Normally use the standard input signals to identify the characteristics of system‘s response 

 Step function 

 Ramp function 

 Impulse function 

 Parabolic function 

 Sinusoidal function 

 

Time response analysis 

It is an equation or a plot that describes the behavior of a system and contains much 

information about it with respect to time response specification as overshooting, settling time, 

peak time, rise time and steady state error. Time response is formed by the transient response and 

the steady state response. 

Time response = Transient response + Steady state response 

 

Transient time response (Natural response) describes the behavior of the system in its first 

short time until arrives the steady state value and this response will be our study focus. If the 

input is step function then the output or the response is called step time response and if the input 

is ramp, the response is called ramp time response ... etc. 

 

Classification of Time Response 

 Transient response 

 Steady state response 

y(t) = yt(t) + yss(t) 

 

Transient Response 

The transient response is defined as the part of the time response that goes to zero as time 

becomes very large. Thus yt(t) has the property 

Lim yt(t) = 0 

t -->∞ 

The time required to achieve the final value is called transient period. The transient 

response may be exponential or oscillatory in nature. Output response consists of the sum of 

forced response (form the input) and natural response (from the nature of the system).The 

transient response is the change in output response from the beginning of the response to the 
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final state of the response and the steady state response is the output response as time is 

approaching infinity (or no more changes at the output). 

 
 

Steady State Response 

The steady state response is the part of the total response that remains after the transient 

has died out. For a position control system, the steady state response when compared to with the 

desired reference position gives an indication of the final accuracy of the system. If the steady 

state response of the output does not agree with the desired reference exactly, the system is said 

to have steady state error. 

 

Typical Input Signals 

 Impulse Signal 

 Step Signal 

 Ramp Signal 

 Parabolic Signal 
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Time Response Analysis & Design 

Two types of inputs can be applied to a control system. 

Command Input or Reference Input yr(t). 

Disturbance Input w(t) (External disturbances w(t) are typically uncontrolled variations in the 

load on a control system). 

In systems controlling mechanical motions, load disturbances may represent forces. 

In voltage regulating systems, variations in electrical load area major source of disturbances. 

 

Test Signals 

 

Input r(t) R(s) 

Step Input A A/s 

Ramp Input At A/s
2
 

Parabolic Input At
2
 / 2 A/s

3
 

Impulse Input δ(t) 1 
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Transfer Function 

 One of the types of Modeling a system 

 Using first principle, differential equation is obtained 

 Laplace Transform is applied to the equation assuming zero initial conditions 

 Ratio of LT (output) to LT (input) is expressed as a ratio of polynomial in s in the transfer 

function. 

 

Order of a system 

 The Order of a system is given by the order of the differential equation governing the 

system 

 Alternatively, order can be obtained from the transfer function 

 In the transfer function, the maximum power of s in the denominator polynomial gives 

the order of the system. 

 

Dynamic Order of Systems 

 Order of the system is the order of the differential equation that governs the dynamic 

behaviour 

 Working interpretation: Number of the dynamic elements / capacitances or holdup 

elements between a 

 manipulated variable and a controlled variable 

 Higher order system responses are usually very difficult to resolve from one another 

 The response generally becomes sluggish as the order increases. 

 

System Response 

First-order system time response 

  

 -state 

Second-order system time response 

 Transient 

 -state 

First Order System 

Y s / R(s) = K / (1+ K+sT) = K / (1+sT) 

 

Step Response of First Order System 

Evolution of the transient response is determined by the pole of the transfer function at 

s=-1/t where t is the time constant 

Also, the step response can be found: 

 

Impulse response  K / (1+sT) Exponential 

Step response  (K/S) – (K / (S+(1/T))) Step, exponential 

Ramp response (K/S
2
)-(KT / S)- (KT / (S+1/T)) Ramp, step, exponential 
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Second-order systems 

LTI second-order system 

 
 

Second-Order Systems 
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Second order system responses 

Overdamped response: 

Poles: Two real at 

-σ1 - -σ2 

Natural response: Two exponentials with time constants equal to the reciprocal of the pole 

location 

C( t)= k1 e
-σ1

+ k2 e
-σ2

  

Poles: Two complex at 

 

Underdamped response: 

-σ1±jWd 

 

Natural response: Damped sinusoid with an exponential envelope whose time constant is equal 

to the reciprocal of the pole‘s radian frequency of the sinusoid, the damped frequency of 

oscillation, is equal to the imaginary part of the poles 

 

Undamped Response: 
 Poles: Two imaginary at 

±jW1 

Natural response: Undamped sinusoid with radian frequency equal to the imaginary part of the 

poles 

C(t) = Acos(w1t-φ) 

 

Critically damped responses: 

Poles: Two real at 

Natural response: One term is an exponential whose time constant is equal to the reciprocal of 

the pole location. Another term product of time and an exponential with time constant equal to 

the reciprocal of the pole location. 

 

Second order system responses damping cases 
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Second- order step response 

Complex poles 

 
 

Steady State Error 

Consider a unity feedback system 

Transfer function between e(t) and r(t) 

 
 

 

Output Feedback Control Systems 

 
Feedback only the output signal 

– Easy access 

– Obtainable in practice 

 

PID Controllers 

 

Proportional controllers 

– pure gain or attenuation 
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Integral controllers 

– integrate error 

 

Derivative controllers 

– differentiate error 

Proportional Controller 

U = Kp e 

 Controller input is error (reference output) 

 Controller output is control signal 

 P controller involves only a proportional gain (or attenuation) 

Integral Controller 

 Integral of error with a constant gain 

 Increase system type by 1 

 Infinity steady-state gain 

 Eliminate steady-state error for a unit step input 

Integral Controller 

 

Derivative Control 

 

 Differentiation of error with a constant gain 

 Reduce overshoot and oscillation 

 Do not affect steady-state response 

 Sensitive to noise 
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Controller Structure 

 Single controller 

 P controller, I controller, D controller 

 Combination of controllers 

 PI controller, PD controller 

 PID controller 

 

Controller Performance 

 P controller 

 PI controller 

 PD Controller 

 PID Controller 

 

Design of PID Controllers 

 Based on the knowledge of P, I and D 

 – trial and error 

 – manual tuning 

 – simulation 

 

Design of PID Controllers 

 Time response measurements are particularly simple. 

 A step input to a system is simply a suddenly applied input - often just a constant voltage 

applied through a switch. 

 The system output is usually a voltage, or a voltage output from a transducer measuring 

the output. 

 A voltage output can usually be captured in a file using a C program or a Visual Basic 

program. 

 You can use responses in the time domain to help you determine the transfer function of a 

system. 

 First we will examine a simple situation. Here is the step response of a system. This is an 

example of really "clean" data, better than you might have from measurements. The input 

to the system is a step of height 0.4. The goal is to determine the transfer function of the 

system. 

 

Impulse Response of A First Order System 

 The impulse response of a system is an important response. The impulse response is the 

response to a unit impulse. 

 The unit impulse has a Laplace transform of unity (1).That gives the unit impulse a 

unique stature. If a system has a unit impulse input, the output transform is G(s), where 

G(s) is the transfer function of the system. The unit impulse response is therefore the 

inverse transform of G(s), i.e. g(t), the time function you get by inverse transforming 

G(s). If you haven't begun to study Laplace transforms yet, you can just file these last 

statements away until you begin to learn about Laplace transforms. Still there is an 

important fact buried in all of this.  
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 Knowing that the impulse response is the inverse transform of the transfer function of a 

system can be useful in identifying systems (getting system parameters from measured 

responses). 

In this section we will examine the shapes/forms of several impulse responses. We will start 

with simple first order systems, and give you links to modules that discuss other, higher order 

responses. 

A general first order system satisfies a differential equation with this general form 

 

If the input, u(t), is a unit impulse, then for a short instant around t = 0 the input is 

infinite. Let us assume that the state, x(t), is initially zero, i.e. x(0) = 0. We will integrate both 

sides of the differential equation from a small time, , before t = 0, to a small time, after t = 0. 

We are just taking advantage of one of the properties of the unit impulse. 

 

The right hand side of the equation is just Gdc since the impulse is assumed to be a unit 

impulse - one with unit area. Thus, we have: 

 

We can also note that x(0) = 0, so the second integral on the right hand side is zero. In 

other words, what the impulse does is it produces a calculable change in the state, x(t), and this 

change occurs in a negligibly short time (the duration of the impulse) after t = 0 That leads us to 

a simple strategy for getting the impulse response. Calculate the new initial condition after the 

impulse passes. Solve the differential equation - with zero input - starting from the newly 

calculated initial condition. 
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CHAPTER 4 

STABILITY ANALYSIS 

 

Stability 

A system is stable if any bounded input produces a bounded output for all bounded initial 

conditions. 

 
Basic concept of stability 

 
Stability of the system and roots of characteristic equations 

 
Characteristic Equation 

Consider an nth-order system whose the characteristic equation (which is also the denominator 

of the transfer function) is 

a(S) = S
n
+a1 S

n-1
+ a2 S

n-2
+……+ an-1 S

1
+ a0 S

0
 

 

 

 

Routh Hurwitz Criterion 

Goal: Determining whether the system is stable or unstable from a characteristic equation 

in polynomial form without actually solving for the roots Routh’s stability criterion is useful for 

determining the ranges of coefficients of polynomials for stability, especially when the 

coefficients are in symbolic (non numerical) form. 

To find K mar & ω 

A necessary condition for Routh’s Stability 

UNIT-III
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 A necessary condition for stability of the system is that all of the roots of its characteristic 

equation have negative real parts, which in turn requires that all the coefficients be 

positive. 

 A necessary (but not sufficient) condition for stability is that all the coefficients of the 

polynomial characteristic equation are positive & none of the co-efficient vanishes. 

 Routh’s formulation requires the computation of a triangular array that is a function of 

the coefficients of the polynomial characteristic equation. 

 A system is stable if and only if all the elements ofthe first column of the Routh array are 

positive 

Method for determining the Routh array 

Consider the characteristic equation 

a(S) =1X S
n
+a1 S

n-1
+ a2 S

n-2
+……+ an-1 S

1
+ a0 S

0
 

Routh array method 

Then add subsequent rows to complete the Routh array 

Compute elements for the 3rd row: 

 
 

Given the characteristic equation, 

 
Is the system described by this characteristic equation stable? 

Answer: 

 All the coefficients are positive and nonzero 

 Therefore, the system satisfies the necessary condition for stability 

 We should determine whether any of the coefficients of the first column of the Routh 

array are negative. 
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S
6
:  1 3 1 4 

         S
5
:        4      2      4      0  

     S
4
:      5/2        0       4  

         S
3
:        2     -12/5     0  

     S
2
:        3      4  

         S
1
:   -76 /15     0 

     S
0
:       4  

The elements of the 1st column are not all positive. Then the system is unstable 

 

Special cases of Routh’s criteria: 

 

Case 1: All the elements of a row in a RA are zero 

 Form Auxiliary equation by using the co-efficient of the row which is just above the row 

of zeros. 

 Find derivative of the A.E. 

 Replace the row of zeros by the co-efficient of dA(s)/ds 

 Complete the array in terms of these coefficients. 

 analyze for any sign change, if so, unstable 

 no sign change, find the nature of roots of AE 

 non-repeated imaginary roots - marginally stable 

 repeated imaginary roots – unstable 

 

Case 2:  

 First element of any of the rows of RA is 

 Zero and the same remaining row contains atleast one non-zero element 

 Substitute a small positive no. ‗ε‘ in place of zero and complete the array. 

 Examine the sign change by taking Lt ε = 0 

 

Root Locus Technique 

 Introduced by W. R. Evans in 1948 

 Graphical method, in which movement of poles in the s-plane is sketched when some 

parameter is varied The path taken by the roots of the characteristic equation when open 

loop gain K is varied from 0 to ∞ are called root loci 

 Direct Root Locus = 0 < k < ∞ 

 Inverse Root Locus = - ∞ < k < 0 

Root Locus Analysis: 

 

 The roots of the closed-loop characteristic equation define the system characteristic 

responses 

 Their location in the complex s-plane lead to prediction of the characteristics of the time 

domain responses in terms of: 

 damping ratio ζ, 

 natural frequency, wn 

 damping constant σ, first-order modes 

 Consider how these roots change as the loop gain is varied from 0 to∞ 
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Basics of Root Locus: 

 Symmetrical about real axis 

 RL branch starts from OL poles and terminates at OL zeroes 

 No. of RL branches = No. of poles of OLTF 

 Centroid is common intersection point of all the asymptotes on the real axis 

 Asymptotes are straight lines which are parallel to RL going to ∞ and meet the RL at ∞ 

 No. of asymptotes = No. of branches going to ∞ 

 At Break Away point , the RL breaks from real axis to enter into the complex plane 

 At BI point, the RL enters the real axis from the complex plane 

 

Constructing Root Locus: 

 Locate the OL poles & zeros in the plot 

 Find the branches on the real axis 

 Find angle of asymptotes & centroid 

  Φa= ±180º(2q+1) / (n-m) 

 ζa = (Σpoles - Σzeroes) / (n-m) 

 Find BA and BI points 

 Find Angle Of departure (AOD) and Angle Of Arrival (AOA) 

 AOD = 180º- (sum of angles of vectors to the complex pole from all other poles) + (Sum 

of angles of vectors to the complex pole from all zero) 

 AOA = 180º- (sum of angles of vectors to the complex zero from all other zeros) + (sum 

of angles of vectors to the complex zero from poles) 

 Find the point of intersection of RL with the imaginary axis. 

 

Application of the Root Locus Procedure 

Step 1: Write the characteristic equation as 

1+ F(s)= 0 

Step 2: Rewrite preceding equation into the form of poles and zeros as follows 

 
Step 3: 

 Locate the poles and zeros with specific symbols, the root locus begins at the open-loop 

poles and ends at the open loop zeros as K increases from 0 to infinity 

 If open-loop system has n-m zeros at infinity, there will be n-m branches of the root locus 

approaching the n-m zeros at infinity 

Step 4: 

 The root locus on the real axis lies in a section of the real axis to the left of an odd 

number of real poles and zeros 

Step 5: 

 The number of separate loci is equal to the number of open-loop poles 

Step 6: 

 The root loci must be continuous and symmetrical with respect to the horizontal real axis 
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Step 7: 

 The loci proceed to zeros at infinity along asymptotes centered at centroid and with 

angles 

 
Step 8: 

 The actual point at which the root locus crosses the imaginary axis is readily evaluated by 

using Routh‘s criterion 

Step 9: 

 Determine the breakaway point d (usually on the real axis) 

Step 10: 

 Plot the root locus that satisfy the phase criterion 

 
Step 11: 

Determine the parameter value K1 at a specific root using the magnitude criterion 

 
 

Nyquist Stability Criteria:  

The Routh-Hurwitz criterion is a method for determining whether a linear system is 

stable or not by examining the locations of the roots of the characteristic equation of the system. 

In fact, the method determines only if there are roots that lie outside of the left half plane; it does 

not actually compute the roots. Consider the characteristic equation. 

To determine whether this system is stable or not, check the following conditions 

 
1. Two necessary but not sufficient conditions that all the roots have negative real parts are 

a) All the polynomial coefficients must have the same sign. 

b) All the polynomial coefficients must be nonzero. 

2. If condition (1) is satisfied, then compute the Routh-Hurwitz array as follows 
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Where the ai’S are the polynomial coefficients, and the coefficients in the rest of the table are 

computed using the following pattern 

 

 

 

 

 
3. The necessary condition that all roots have negative real parts is that all the elements of the  

     first column of the array have the same sign. The number of changes of sign equals the    

     number of roots with positive real parts. 

4. Special Case 1: The first element of a row is zero, but some other elements in that row are  

    nonzero. In this case, simply replace the zero elements by " ", complete the table development,  

    and then interpret the results assuming that " " is a small number of the same sign as the  
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    element above it. The results must be interpreted in the limit as ε to 0. 

5. Special Case 2: All the elements of a particular row are zero. In this case, some of the roots of  

    the polynomial are located symmetrically about the origin of the s-plane, e.g., a pair of purely  

    imaginary roots. The zero rows will always occur in a row associated with an odd power of s.  

    The row just above the zero rows holds the coefficients of the auxiliary polynomial. The roots    

    of the auxiliary polynomial are the symmetrically placed roots. Be careful to remember that  

    the coefficients in the array skip powers of s from one coefficient to the next. 

 Let P = no. of   poles of q(s)-plane lying on Right Half of s-plane and encircled by s-plane 

contour. 

Let Z = no. of zeros of q(s)-plane lying on Right Half of s-plane and encircled by s-plane 

contour. 

For the CL system to be stable, the no. of zeros of q(s) which are the CL poles that lie in the right 

half of s-plane should be zero. That is Z = 0, which gives N = -P. 

Therefore, for a stable system the no. of ACW encirclements of the origin in the q(s)-plane by 

the contour Cq must be equal to P. 

 

Nyquist modified stability criteria 

 We know that q(s) = 1+G(s)H(s) 

Therefore G(s)H(s) = [1+G(s)H(s)] – 1 

 The contour Cq, which has obtained due to mapping of Nyquist contour from s-plane to 

q(s)-plane (ie)[1+G(s)H(s)] -plane, will encircle about the origin. 

 The contour CGH, which has obtained due to mapping of Nyquist contour from s-plane 

to G(s)H(s) -plane, will encircle about the point (-1+j0). 

 Therefore encircling the origin in the q(s)-plane is equivalent to encircling the point -1+j0 

in the G(s)H(s)-plane. 
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Problem 

Sketch the Nyquist stability plot for a feedback system with the following open-loop transfer 

function 

 

 

 

 

 

 

 
Section de maps as the complex image of the polar plot as before 
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Relative stability 

The main disadvantage of a Bode plot is that we have to draw and consider two different 

curves at a time, namely, magnitude plot and phase plot. Information contained in these two plots 

can be combined into one named polar plot. The polar plot is for a frequency range of 0<w<α . 

while the Nyquist plot is in the frequency range of - α<w<α. The information on the negative 

frequency is redundant because the magnitude and real part of G( jw) an are even functions. In 

this section. We consider how to evaluate the system performance in terms of relative stability 

using a Nyquist plot. The open-loop system represented by this plot will become unstable 

beyond a certain value. As shown in the Nyquist plot of Fig. the intercept of magnitude 'a on the 

negative real axis corresponds lost phase shift of - 180° and - 1 represents the amount of increase 

in gain that can be tolerated before closed-loop system tends toward instability. As 'a' approaches 

(-1+ j0) point the relative stability is reduced; the gain and phase margins are represented as 

follows in the Nyquist plot. 

 

Gain margin 

As system gain is increased by a factor 1/a, the open loop magnitude of G ( jw)H( jw) 

will increase by a factor a( 1/a) = 1 and the system would be driven to instability. Thus, the gain 

margin is the reciprocal of the gain at the frequency at which the phase angle of the Nyquist plot 

is - 180
0
. The gain rnargin, usually measured in dB, is a positive quantity given by 

GM = -20log a dB 

 
Phase Margin фm 

Importance of the phase margin has already in the content of Bode. Phase margin is 

defined as the change in open-loop phase shift required al unity gain to make a closed loop 

system unstable. A closed-loop system will be unstable if the Nyquist plot encircles -1 +j0 point. 

Therefore, the angle required to make this system marginally stable in a closed loop is the phase 
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margin .In order to measure this angle, we draw a circle with a radius of 1, and find the point of 

intersection of the Nyquist plot with this circle, and measure the phase shift needed for this point 

to be at an angle of 1800. If may be appreciated that the system having plot of Fig with larger 

PM is more stable than the one with plot of Fig. 
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CHAPTER 3 

FREQUENCY RESPONSE ANALYSIS 

 

Frequency Response 

 

The frequency response of a system is a frequency dependent function which expresses 

how a sinusoidal signal of a given frequency on the system input is transferred through the 

system. Time-varying signals at least periodical signals —which excite systems, as the reference 

(set point) signal or a disturbance in a control system or measurement signals which are inputs 

signals to signal filters, can be regarded as consisting of a sum of frequency components. Each 

frequency component is a sinusoidal signal having certain amplitude and a certain frequency. 

(The Fourier series expansion or the Fourier transform can be used to express these frequency 

components quantitatively.) The frequency response expresses how each of these frequency 

components is transferred through the system. Some components may be amplified, others may 

be attenuated, and there will be some phase lag through the system. 

The frequency response is an important tool for analysis and design of signal filters (as 

low pass filters and high pass filters), and for analysis, and to some extent, design, of control 

systems. Both signal filtering and control systems applications are described (briefly) later in this 

chapter. The definition of the frequency response — which will be given in the next section — 

applies only to linear models, but this linear model may very well be the local linear model about 

some operating point of a non-linear model. The frequency response can found experimentally or 

from a transfer function model. It can be presented graphically or as a mathematical function. 

 

 

 
 

 

 

UNIT-IV
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Bode plot 

• Plots of the magnitude and phase characteristics are used to fully describe the frequency 

response 

• A Bode plot is a (semilog) plot of the transfer function magnitude and phase angle as a 

function of frequency. 

The gain magnitude is many times expressed in terms of decibels (dB) 

db = 20 log 10 A 

 

BODE PLOT PROCEDURE: 

There are 4 basic forms in an open-loop transfer function G(jω)H(jω) 

 Gain Factor K 

 (jω)±p factor: pole and zero at origin 

 (1+jωT)±q factor 

 Quadratic factor 

1+j2ζ(W / Wn)-(W
2
 / Wn

2
) 

 

Gain margin and Phase margin 

Gain margin: 

The gain margin is the number of dB that is below 0 dB at the phase crossover frequency  

(ø=-180º). It can also be increased before the closed loop system becomes unstable 

Term Corner Frequency Slope db /dec Change in slope 

20/jW ----- -20  

1/ (1+4jW) WC1=1/4 = 0.25 -20 -20-20=-40 

1/(1+j3w)       wc2=1/3=0.33 -20 -40-20=-60 

 

 

Phase margin: 

The phase margin is the number of degrees the phase of that is above -180º at the gain 

crossover frequency 

 

Gain margin and Phase margin 
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Bode Plot – Example 

For the following T.F draw the Bode plot and obtain Gain cross over frequency (wgc) , 

Phase cross over frequency , Gain Margin and Phase Margin. 

G(s) = 20 / [s (1+3s) (1+4s)] 

Solution: 

The sinusoidal T.F of G(s) is obtained by replacing s by jw in the given T.F 

G(jw) = 20 / [jw (1+j3w) (1+j4w)] 

Corner frequencies:  

wc1= 1/4 = 0.25 rad /sec ; 

wc2 = 1/3 = 0.33 rad /sec 

Choose a lower corner frequency and a higher Corner frequency 

wl= 0.025 rad/sec ;  

wh = 3.3 rad / sec 

Calculation of Gain (A) (MAGNITUDE PLOT) 

A @ wl ; A= 20 log [ 20 / 0.025 ] = 58 .06 dB 

A @ wc1 ; A = [Slope from wl to wc1 x log (wc1 / wl ] + Gain (A)@wl 

= - 20 log [ 0.25 / 0.025 ] + 58.06 

= 38.06 dB 

A @ wc2 ; A = [Slope from wc1 to wc2 x log (wc2 / wc1 ] + Gain (A)@ wc1 

= - 40 log [ 0.33 / 0.25 ] + 38 

= 33 dB 

A @ wh ; A = [Slope from wc2 to wh x log (wh / wc2 ] + Gain (A) @ wc2 

= - 60 log [ 3.3 / 0.33 ] + 33 

=-27 dB 

Calculation of Phase angle for different values of frequencies [PHASE PLOT] 

Ø = -90
O
- tan 

-1
 3w – tan 

-1
 4w 

When 

Frequency in rad / sec Phase angles in Degree 

w=0 Ø= -90 
0
 

w = 0.025 Ø= -99
0 

w = 0.25 Ø= -172
0
 

w = 0.33 Ø= -188
0
 

w =3.3 Ø= -259
0
 

w =∞ Ø= -270
0
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 Calculations of Gain cross over frequency 

The frequency at which the dB magnitude is Zero  

wgc = 1.1 rad / sec 

 

 Calculations of Phase cross over frequency 
The frequency at which the Phase of the system is - 180o 

wpc = 0.3 rad / sec 

 Gain Margin 

The gain margin in dB is given by the negative of dB magnitude of G(jw) at phase cross 

over frequency 

GM = - { 20 log [G( jwpc )] = - { 32 } = -32 dB 

 

 Phase Margin 

Ґ = 180
0
+ Øgc= 180

0
 + (- 2400

o
) = -60

0 

 

 Conclusion 

For this system GM and PM are negative in values. Therefore the system is unstable in 

nature. 
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Polar plot 

 

To sketch the polar plot of G(jω) for the entire range of frequency ω, i.e., from 0 to 

infinity, there are four key points that usually need to be known: 

(1) the start of plot where ω = 0, 

(2) the end of plot where ω = ∞, 

(3) where the plot crosses the real axis, i.e., Im(G(jω)) = 0, and 

(4) where the plot crosses the imaginary axis, i.e., Re(G(jω)) = 0. 

 

BASICS OF POLAR PLOT: 

 The polar plot of a sinusoidal transfer function G(jω) is a plot of the magnitude of G(jω) 

Vs the phase of G(jω) on polar co-ordinates as ω is varied from 0 to ∞. 

(ie) |G(jω)| Vs angle G(jω) as ω → 0 to ∞. 

 Polar graph sheet has concentric circles and radial lines. 

 Concentric circles represents the magnitude. 

 Radial lines represents the phase angles. 

 In polar sheet 

+ve phase angle is measured in ACW from 0
0
 

-ve phase angle is measured in CW from 0
0  

 

PROCEDURE 

 Express the given expression of OLTF in (1+sT) form. 

 Substitute s = jω in the expression for G(s)H(s) and get G(jω)H(jω). 

 Get the expressions for | G(jω)H(jω)| & angle G(jω)H(jω).  

 Tabulate various values of magnitude and phase angles for different values of ω ranging 

from 0 to ∞. 

 Usually the choice of frequencies will be the corner frequency and around corner 

frequencies. 

 Choose proper scale for the magnitude circles. 

 Fix all the points in the polar graph sheet and join the points by a smooth curve. 

 Write the frequency corresponding to each of the point of the plot. 

 

MINIMUM PHASE SYSTEMS: 

 Systems with all poles & zeros in the Left half of the s-plane – Minimum Phase 

Systems. 

 For Minimum Phase Systems with only poles 

 Type No. determines at what quadrant the polar plot starts. 

 Order determines at what quadrant the polar plot ends. 

 Type No. → No. of poles lying at the origin 

 Order → Max power of‘s’ in the denominator polynomial of the transfer function. 

GAIN MARGIN 

 Gain Margin is defined as “the factor by which the system gain can be increased to drive 

the system to the verge of instability”. 

 For stable systems, 

ωgc< ωpc 

Magnitude of G(j )H(j ) at ω=ωpc < 1 
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GM = in positive dB 

More positive the GM, more stable is the system. 

 For marginally stable systems, 

ωgc = ωpc 

magnitude of G(j )H(j ) at ω=ωpc = 1 

GM = 0 dB 

For Unstable systems, 

ωgc> ωpc 

magnitude of G(j )H(j ) at ω=ωpc > 1 

GM = in negative dB 

Gain is to be reduced to make the system stable 

 

Note: 

 If the gain is high, the GM is low and the system’s step response shows high overshoots 

and long settling time. 

 On the contrary, very low gains give high GM and PM, but also causes higher ess, higher 

values of rise time and settling time and in general give sluggish response. 

 Thus we should keep the gain as high as possible to reduce ess and obtain acceptable 

response speed and yet maintain adequate GM & PM. 

 An adequate GM of 2 i.e. (6 dB) and a PM of 30 is generally considered good enough as 

a thumb rule. 

At w=w pc , angle of G(jw )H(jw ) = -180
0
 

 Let magnitude of  G(jw)H(jw ) at w = wpc be taken a B 

 If the gain of the system is increased by factor 1/B, then the magnitude of  G(jw)H(j w) at 

w = wpc becomes B(1/B) = 1 and hence the G(jw)H(jw) locus pass through -1+j0 point 

driving the system to the verge of instability. 

 GM is defined as the reciprocal of the magnitude of the OLTF evaluated at the phase 

cross over frequency. 

GM in dB = 20 log (1/B) = - 20 log B 

PHASE MARGIN 

Phase Margin is defined as “ the additional phase lag that can be introduced before the 

system becomes unstable”. 

 ‘A’ be the point of intersection of G(j )H(j ) plot and a unit circle centered at the origin. 

Draw a line connecting the points ‘O’ & ‘A’ and measure the phase angle between the 

line OA and 

+ve real axis. 

This angle is the phase angle of the system at the gain cross over frequency. 

Angle of G(jwgc)H(jw gc) =φ gc 

If an additional phase lag of φ PM is introduced at this frequency, then the phase angle 

G(jwgc)H(jw gc) will become 180 and the point ‘A‘ coincides with (-1+j0) driving the system to 

the verge of instability. 

This additional phase lag is known as the Phase Margin. 

γ= 180
0
 + angle of G(jwgc)H(jw gc) 

γ= 180
0 

+ φ gc 

[Since φ gc is measured in CW direction, it is taken as negative] 

For a stable system, the phase margin is positive. 

 A Phase margin close to zero corresponds to highly oscillatory system. 
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 A polar plot may be constructed from experimental data or from a system transfer 

function 

 If the values of w are marked along the contour, a polar plot has the same information as 

a bode plot. 

 Usually, the shape of a polar plot is of most interest. 

 

Nyquist Plot: 

The Nyquist plot is a polar plot of the function 

 
 

The Nyquist stability criterion relates the location of the roots of the characteristic 

equation to the open-loop frequency response of the system. In this, the computation of closed-

loop poles is not necessary to determine the stability of the system and the stability study can be 

carried out graphically from the open-loop frequency response. Therefore experimentally 

determined open-loop frequency response can be used directly for the study of stability. When 

the feedback path is closed. The Nyquist criterion has the following features that make it an 

alternative method that is attractive for the analysis and design of control systems. 1. In addition 

to providing information on absolute and relative. 

Nyquist Plot Example 

Consider the following transfer function 
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Change it from “s” domain to “jw” domain: 

 
Find the magnitude and phase angle equations: 

 
Evaluate magnitude and phase angle at ω= 0+ and ω = +∞ 

 

                                                      
 

Draw the nyquist plot: 

 
Frequency domain specifications 

 The resonant peak Mr is the maximum value of jM(jw)j. 

 The resonant frequency !r is the frequency at which the peak resonance Mr occurs. 

 The bandwidth BW is the frequency at which(jw) drops to 70:7% (3 dB) of its zero-

frequency value. 



EC- 6405  CONTROL SYSTEM ENGINEERING   
 

Page 44 of 116 
SCE    ELECTRONICS AND COMMUNICATION ENGINEERING 

 
 Mr indicates the relative stability of a stable closed loop system. 

 A large Mr corresponds to larger maximum overshoot of the step response. 

 Desirable value: 1.1 to 1.5 

 BW gives an indication of the transient response properties of a control system. 

 A large bandwidth corresponds to a faster rise time. BW and rise time tr are 

inversely proportional. 

 BW also indicates the noise-filtering characteristics and robustness of the system. 

 Increasing wn increases BW. 

 BW and Mr are proportional to each other. 

Constant M and N circles 

Consider a candidate design of a loop transfer function L( jω) shown on the RHS. 
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Evaluate T( jω) from L( jω) in the manner of frequency point by frequency point. 

Alternatively, the Bode plot of L( jω) can also be show on the complex plane to form its Nyquist 

plot. 

 
M circles (constant magnitude of T) 

In order to precisely evaluate |T( jω)| from the Nyquist plot of L( jω), a tool called M circle is 

developed as followed. 

Let L( jω)=X+jY, where X is the real and Y the imaginary part . Then 

 
Rearranging the above equations, it gives 

X2(1-M2)-2M2X-M2+(1-M2)Y2 = 0 

That is, all (X, Y) pair corresponding to a constant value of M for a circle on the complex plane. 

Therefore, we have the following (constant) M circles on the complex plane as shown below. 

 
N circles (constant phase of T) 
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Similarly, it can be shown that the phase of T( jω) be 

 
It can be shown that all (X, Y) pair which corresponds to the same constant phase of T 

(i.e., constant N) forms a circle on the complex plane as shown below. 

 
Example 

Nyquist plot of L( jω), and M-N circles of T( jω) 
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Nichols Chart 

The Nyquist plot of L( jω) can also be represented by its polar form using dB as 

magnitude and degree as phase. 
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And ll L( jω) which corresponds to a constant α( jω) can be draw as a locus of M circle 

on this plane as shown below. 

 
Combining the above two graphs of M circles and N circles, we have the Nicholas chart 

below. 
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TYPES OF COMPENSATION 

 Series Compensation or Cascade Compensation 

This is the most commonly used system where the controller is placed in series with the 

controlled process. 

Figure shows the series compensation 

 
Feedback compensation or Parallel compensation 

 This is the system where the controller is placed in the sensor feedback path as shown in 

fig. 

 

 

 
State Feedback Compensation 

This is a system which generates the control signal by feeding back the state variables 

through constant real gains. The scheme is termed state feedback. It is shown in Fig. 

 

  The compensation schemes shown in Figs above have one degree of freedom, since there 

is only one controller in each system. The demerit with one degree of freedom controllers is that 

the performance criteria that can be realized are limited. 

That is why there are compensation schemes which have two degree freedoms, such as: 

(a) Series-feedback compensation 

(b) Feed forward compensation 
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Series-Feedback Compensation 

Series-feedback compensation is the scheme for which a series controller and a feedback 

controller are used. Figure 9.6 shows the series-feedback compensation scheme. 

 
 

 

Feed forward Compensation 

The feed forward controller is placed in series with the closed-loop system which has a 

controller in the forward path Orig. 9.71. In Fig. 9.8, Feed forward the is placed in parallel with 

the controller in the forward path. The commonly used controllers in the above-mentioned 

compensation schemes are now described in the section below. 
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Lead Compensator 

It has a zero and a pole with zero closer to the origin. The general form of the transfer 

function of the load compensator is 

 

 

 

 

 

 

 

 

 

 

 
Subsisting 

 
Transfer function 

 
 

Lag Compensator 

It has a zero and a pole with the zero situated on the left of the pole on the negative real 

axis. The general form of the transfer function of the lag compensator is 

 



EC- 6405  CONTROL SYSTEM ENGINEERING   
 

Page 52 of 116 
SCE    ELECTRONICS AND COMMUNICATION ENGINEERING 

 
Therefore, the frequency response of the above transfer function will be 

 

 

 

 

 
Now comparing with 
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Therefore 

 
Lag-Lead Compensator 

The lag-lead compensator is the combination of a lag compensator and a lead 

compensator. The lag-section is provided with one real pole and one real zero, the pole being to 

the right of zero, whereas the lead section has one real pole and one real came with the zero 

being to the right of the pole. 

The transfer function of the lag-lead compensator will be 

 
The figure shows lag lead compensator 
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The above transfer functions are comparing with  

 
Then 
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Therefore 
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CHAPTER 5 

STATE VARIABLE ANALYSIS  

 

State space representation of Continuous Time systems 

The state variables may be totally independent of each other, leading to diagonal or 

normal form or they could be derived as the derivatives of the output. If them is no direct 

relationship between various states. We could use a suitable transformation to obtain the 

representation in diagonal form. 

 

Phase Variable Representation 

It is often convenient to consider the output of the system as one of the state variable and 

remaining state variable as derivatives of this state variable. The state variables thus obtained 

from one of the system variables and its (n-1) derivatives, are known as n-dimensional phase 

variables. 

In a third-order mechanical system, the output may be displacement x1, x1= x2= v   and x2 

= x3 = a  in the case of motion of translation or angular displacement θ 1 = x1, x1= x2= w  

and x2 = x3 = α if the motion is rotational, Where v v,w,a, α respectively, are velocity, angular 

velocity acceleration, angular acceleration. 

 

Consider a SISO system described by nth-order differential equation. 

 
Where 

 
u is, in general, a function of time. 

The nth order transfer function of this system is 

 
With the states (each being function of time) be defined as 

 
Equation becomes 

 

 
Using above Eqs state equations in phase satiable loan can he obtained as 

 
Where 

UNIT-V
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Physical Variable Representation 

In this representation the state variables are real physical variables, which can be 

measured and used for manipulation or for control purposes. The approach generally adopted is 

to break the block diagram of the transfer function into subsystems in such a way that the 

physical variables can he identified. The governing equations for the subsystems can he used to 

identify the physical variables. To illustrate the approach consider the block diagram of Fig. 

 
One may represent the transfer function of this system as 

  
Taking H(s) = 1, the block diagram of can be redrawn as in Fig. physical variables can be 

speculated as x1=y, output, x2 =w= θ the angular velocity x3 = Ia the armature current in a 

position-control system. 

 
Where 

 
The state space representation can be obtained by 

 

 
And 

 
 

Solution of State equations 

Consider the state equation n of linear time invariant system as, 

 
The matrices A and B are constant matrices. This state equation can be of two types, 

1. Homogeneous and 

2. Non homogeneous 
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Homogeneous Equation 

If A is a constant matrix and input control forces are zero then the equation takes the form, 

 
Such an equation is called homogeneous equation. The obvious equation is if input is zero, In 

such systems, the driving force is provided by the initial conditions of the system to produce the 

output. For example, consider a series RC circuit in which capacitor is initially charged to V 

volts. The current is the output. Now there is no input control force i.e. external voltage applied 

to the system. But the initial voltage on the capacitor drives the current through the system and 

capacitor starts discharging through the resistance R. Such a system which works on the initial 

conditions without any input applied to it is called homogeneous system. 

Non homogeneous Equation 

If A is a constant matrix and matrix U(t) is non-zero vector i.e. the input control forces 

are applied to the system then the equation takes normal form as, 

 
Such an equation is called non homogeneous equation. Most of the practical systems 

require inputs to dive them. Such systems arc non homogeneous linear systems. The solution of 

the state equation is obtained by considering basic method of finding the solution of 

homogeneous equation. 

Controllability and Observability 

More specially, for system of Eq.(1), there exists a similar transformation that will 

diagonalize the system. In other words, There is a transformation matrix Q such that 

 

 

 
Notice that by doing the diagonalizing transformation, the resulting transfer function between 

u(s) and y(s) will not be altered. 

Looking at Eq.(3), if                         is uncontrollable by the input u(t), since, xk(t) is 

characterized by the mode           by the equation. 
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Transfer function from State Variable Representation 

A simple example of system has an input and output as shown in Figure 1. This class of 

system has general form of model given in Eq.(1). 

 
where, (y1, u1) and (y2,u2) each satisfies Eq,(1). 

Model of the form of Eq.(1) is known as linear time invariant (abbr. LTI) system. 

Assume the system is at rest prior to the time t0=0, and, the input u(t) (0 t <∞) produces the 

output y(t) (0 t < ∞), the model of Eq.(1) can be represented by a transfer function in term of 

Laplace transform variables, i.e.: 
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State space representation for discrete time systems 

The dynamics of a linear time (shift)) invariant discrete-time system may be expressed in terms 

state (plant) equation and output (observation or measurement) equation as follows 

 
Where x(k) an n dimensional slate rector at time t =kT. an r-dimensional control (input) 

vector y(k). an m-dimensional output vector ,respectively, are represented as 
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The parameters (elements) of A, an nX n (plant parameter) matrix. B an nX r control 

(input) matrix, and C An m X r output parameter, D an m X r parametric matrix are constants for 

the LTI system. Similar to above equation state variable representation of SISO (single output 

and single output) discrete-rime system (with direct coupling of output with input) can be written 

as 

 
Where the input u, output y and d. are scalars, and b and c are n-dimensional vectors. 

The concepts of controllability and observability for discrete time system are similar to the 

continuous-time system. A discrete time system is said to be controllable if there exists a finite 

integer n and input mu(k); k [0,n 1] that will transfer any state (0) x
0
 =  bx(0)  to the state x

n
 at k 

= n  n. 

 

Sampled Data System 

When the signal or information at any or some points in a system is in the form of 

discrete pulses. Then the system is called discrete data system. In control engineering the discrete 

data system is popularly known as sampled data systems. 

 
Sampling Theorem 

A band limited continuous time signal with highest frequency fm hertz can be uniquely 

recovered from its samples provided that the sampling rate Fs is greater than or equal to 2fm 

samples per seconds. 

Sample & Hold 

 
The Signal given to the digital controller is a sampled data signal and in turn the 

controller gives the controller output in digital form. But the system to be controlled needs an 

analog control signal as input. Therefore the digital output of controllers must be converters into 

analog form. 

This can be achieved by means of various types of hold circuits. The simplest hold 

circuits are the zero order hold (ZOH). In ZOH, the reconstructed analog signal acquires the 

same values as the last received sample for the entire sampling period. 
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The high frequency noises present in the reconstructed signal are automatically filtered 

out by the control system component which behaves like low pass filters. In a first order hold the 

last two signals for the current sampling period. Similarly higher order hold circuit can be 

devised. First or higher order hold circuits offer no particular advantage over the zero order hold. 

 

 

 

 

 

 

 

 

 

 

 

 

 


