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ANALOG COMMUNICATIONS 
IV Semester: ECE 

Course Code Category Hours / Week Credits Maximum Marks 

 

AEC005 
 

Core 
L T P C CIA SEE Total 

3 1 - 4 30 70 100 

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60 

OBJECTIVES: 

The course should enable the students to: 

I. Develop skills for analyzing different types of signals in terms of their properties such as energy, 

power, correlation and apply for analysis of linear time invariant systems. 

II. Analyze various techniques of generation and detection of amplitude modulation (AM), frequency 

modulation (FM) and phase modulation (PM) signals. 

III. Differentiate the performance of AM, FM and PM systems in terms of Power, Bandwidth and SNR 

(Signal-to-Noise Ratio). 

IV. Evaluate Analog Communication system in terms of the complexity of the transmitters and 

receivers. 

UNIT-I SIGNAL ANALYSIS AND LTI SYSTEMS Classes: 10 

Classification of signals and study of Fourier transforms for standard signals, definition of signal 

bandwidth; Systems: Definition of system, classification of systems based on properties, linear time 

invariant  system , impulse, step, sinusoidal  response of a linear time invariant system, transfer function of 

a linear time invariant system, distortion less transmission through a linear time invariant system; system 

bandwidth; Convolution and correlation of signals: Concept of convolution, graphical representation of 

convolution, properties of convolution; Cross correlation ,auto correlation functions and their properties, 

comparison between correlation and convolution. 

UNIT-II AMPLITUDE AND DOUBLE SIDE BAND SUPPRESSED CARRIER 

MODULATION 

Classes: 10 

Introduction to communication system, need for modulation, frequency division multiplexing; Amplitude 

modulation, definition; Time domain and frequency domain description, single tone modulation, power 

relations in amplitude modulation waves; Generation of amplitude modulation wave using ,square law and 

switching modulators; Detection of amplitude modulation waves using square law and envelope detectors; 

Double side band modulation: Double side band suppressed carrier time domain and frequency domain 

description; Generation of double side band suppressed carrier waves using balanced and ring modulators; 

Coherent detection of double side band suppressed carrier modulated waves; Costas loop; Noise in 

amplitude modulation, noise in double side band suppressed carrier. 

UNIT-III SINGLE SIDE BAND AND VESTIGIAL SIDE BAND MODULATION Classes: 08 

Frequency domain description, frequency discrimination method for generation of amplitude modulation 

single side band modulated wave; time domain description; Phase discrimination method for generating 

amplitude modulation single side band modulated waves; Demodulation of single side band waves. 

Noise in single side band suppressed carrier; Vestigial side band modulation: Frequency description, 

generation of vestigial side band modulated wave; Time domain description; Envelope detection of a 

vestigial side band modulation wave pulse carrier; Comparison of amplitude modulation techniques; 

Applications of different amplitude modulation systems. 
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UNIT-IV ANGLE MODULATION Classes: 09 

Basic concepts, frequency modulation: Single tone frequency modulation, spectrum analysis of sinusoidal 

frequency modulation wave, narrow band frequency modulation, wide band frequency modulation, 

transmission bandwidth of frequency modulation wave, phase modulation, comparison of frequency 

modulation and phase modulation; Generation of frequency modulation waves, direct frequency 

modulation and indirect frequency modulation, detection of frequency modulation waves: Balanced 

frequency discriminator, Foster Seeley discriminator, ratio detector, zero crossing detector, phase locked 

loop, comparison of frequency modulation and amplitude modulation; Noise in angle modulation system, 

threshold effect in angle modulation system, pre-emphasis and de-emphasis. 

UNIT-V RECEIVERS AND SAMPLING THEORM Classes: 08 

Receivers: Introduction, tuned radio frequency receiver, super heterodyne receiver, radio frequency 

amplifier, mixer, local oscillator, intermediate frequency amplifier, automatic gain control; Receiver 

characteristics: Sensitivity, selectivity, image frequency rejection ratio, choice of intermediate frequency, 

fidelity; Frequency modulation receiver, amplitude limiting, automatic frequency control, comparison with 

amplitude modulation receiver; Sampling: Sampling theorem, graphical and analytical proof for band 

limited signals, types of sampling, reconstruction of signal from its samples. 
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UNIT I 
         

                     SIGNAL ANALYSIS AND LTI SYSTEMS 
 

WHAT IS A SIGNAL 

 

We are all immersed in a sea of signals. All of us from the smallest living unit, a cell, to the 

most complex living organism (humans) are all time receiving signals and are processing 

them. Survival of any living organism depends upon processing the signals appropriately. 

What is signal? To define this precisely is a difficult task. Anything which carries information 

is a signal. In this course we will learn some of the mathematical representations of the 

signals, which has been found very useful in making information processing systems. 

Examples of signals are human voice, chirping of birds, smoke signals, gestures (sign 

language), fragrances of the flowers. Many of our body functions are regulated by chemical 

signals, blind people use sense of touch. Bees communicate by their dancing pattern. Some 

examples of modern high speed signals are the voltage charger in a telephone wire, the 

electromagnetic field emanating from a transmitting antenna, variation of light intensity in an 

optical fiber. Thus we see that there is an almost endless variety of signals and a large number 

of ways in which signals are carried from on place to another place. In this course we will 

adopt the following definition for the signal: A signal is a real (or complex) valued function 

of one or more real variable(s).When the function depends on a single variable, the signal is 

said to be one dimensional. A speech signal, daily maximum temperature, annual rainfall at a 

place, are all examples of a one dimensional signal. When the function depends on two or 

more variables, the signal is said to be multidimensional. An image is representing the two 

dimensional signal, vertical and horizontal coordinates representing the two dimensions. Our 

physical world is four dimensional (three spatial and one temporal). 

 

1.2 CLASSIFICATION OF SIGNALS 

 

 

As mentioned earlier, we will use the term signal to mean a real or complex valued function 

of real variable(s). Let us denote the signal by x(t). The variable t is called independent 

variable and the value x of t as dependent variable. We say a signal is continuous time signal 

if the independent variable t takes values in an interval. For example t ϵ (−∞, ∞), or tϵ [0, ∞] 

or t ϵ[T0, T1]. 

 

The independent variable t is referred to as time, even though it may not be actually time. For 

example in variation if pressure with height t refers above mean sea level. When t takes vales 

in a countable set the signal is called a discrete time signal. For example t ϵ{0, T, 2T, 3T, 4T, 

...} or t ϵ{...−1, 0, 1, ...} or t ϵ{1/2, 3/2, 5/2, 7/2, ...} etc. For convenience of presentation we 

use the notation x[n] to denote discrete time signal. Let us pause here and clarify the notation 

a bit. When we write x(t) it has two meanings. One is value of x at time t and the other is the 

pairs(x(t), t) allowable value of t. By signal we mean the second interpretation. To keep this 

distinction we will use the following notation: {x(t)} to denote the continuous time signal. 

Here {x(t)} is short notation for {x(t), t ϵ I} where I is the set in which t takes the value. 

Similarly for discrete time signal we will use the notation {x[n]}, where {x[n]} is short for 

{x[n], n_I}. Note that in {x(t)} and {x[n]} are dummy variables i.e. {x[n]} and {x[t]} refer to 

the same signal. Some books use the notation x[·] to denote {x[n]} and x[n] to denote value of 

x at time· x[n] refers to the whole waveform, while x[n] refers to a particular value. Most of 
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the books do not make this distinction clean and use x[n] to denote signal and x[n] to denote a 

particular value. 

 

As with independent variable t, the dependent variable x can take values in a continues set or 

in a countable set. When both the dependent and independent variable take value in intervals, 

the signal is called an analog signal. When both the dependent and independent variables take 

values in countable sets (two sets can be quite different) the signal is called Digital signal. 

When we use digital computers to do processing we are doing digital signal processing. But 

most of the theory is for discrete time signal processing where default variable is continuous. 

This is because of the mathematical simplicity of discrete time signal processing. Also digital 

signal processing tries to implement this as closely as possible. Thus what we study is mostly 

discrete time signal processing and what is really implemented is digital signal processing. 

 

1.3 ELEMENTARY SIGNALS 

 

There are several elementary signals that feature prominently in the study of digital signals 

and digital signal processing. 

(a)Unit sample sequence δ[n]: Unit sample sequence is defined by 
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Unit sample sequence is also known as impulse sequence. This plays role akin to the impulse 

function δ(t) of continues time. The continues time impulse δ(t) is purely a mathematical 

construct while in discrete time we can actually generate the impulse sequence. 

 

(b)Unit step sequence u[n]: Unit step sequence is defined by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exponential sequence: The complex exponential signal or sequence x[n] 

is defined by x[n] = C α
n 

where C and α are, in general, complex numbers. 

 

Real exponential signals: If C and α are real, we can have one of the several type of behaviour 

illustrated below 
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SIMPLE OPERATIONS AND PROPERTIES OF SEQUENCES 

 

2.1 Simple operations on signals 

 

In analyzing discrete-time systems, operations on sequences occur frequently. 

 

Some operations are discussed below. 

 

 

2.1.1 Sequence addition: 

 

Let {x[n]} and {y[n]} be two sequences. The sequence addition is defined as term by term 

addition. Let {z[n]} be the resulting sequence 

 

{z[n]} = {x[n]} + {y[n]}, where each term z[n] = x[n] + y[n]  

We will use the following notation 

 

{x[n]} + {y[n]} = {x[n] + y[n]} 

 

 

2.1.2 Scalar multiplication: 

 

Let a be a scalar. We will take a to be real if we consider only the real valued signals, and 

take a to be a complex number if we are considering complex valued sequence. Unless 

otherwise stated we will consider complex valued sequences. Let the resulting sequence be 

denoted by w[n] 

 

{w[n]} = ax[n] is defined by w[n] = ax[n], each term is multiplied by a We will use the 

notation aw[n] = aw[n] 

 

Note: If we take the set of sequences and define these two operators as addition and scalar 

multiplication they satisfy all the properties of a linear vector space. 

 

2.1.3 Sequence multiplication: 

 

Let {x[n]} and {y[n]} be two sequences, and {z[n]} be resulting sequence 

 

{z[n]} = {x[n]}{y[n]}, where z[n] = x[n]y[n]. 

 The notation used for this will be {x[n]}{y[n]} = {x[n]y[n]} 

 

Now we consider some operations based on independent variable n. 

 

 

2.1.4 Shifting 

 

This is also known as translation. Let us shift a sequence {x[n]} by n0 units, and the resulting 

sequence by {y[n]} 

 

{y[n]} = z−n0({x[n]}) 

where z−n0()is the operation of shifting the sequence right by n0 unit.  

The terms are defined by y[n] = x[n−n)]. We will use short notation {x[n−n0]} 
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2.1.5 Reflection: 

 

Let {x[n]} be the original sequence, and {y[n]} be reflected sequence, then y[n] is defined by 

y[n] = x[−n] 
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We will denote this by {x[n]}. When we have complex valued signals, sometimes we reflect 

and do the complex conjugation, ie, y[n] is defined by y[n] 

S x * [−n], where * denotes complex conjugation. This sequence will be denoted by {x * 

[−n]}. 

We will learn about more complex operations later on. Some of these operations commute, 

i.e. if we apply two operations we can interchange their order and some do not commute. For 

example scalar multiplication and reflection. 
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2.2 SOME PROPERTIES OF SIGNALS: 

 

2.2.1 Energy of a Signal: 

 

The total enery of a signal {x[n]} is defined by 

 

 

 

 

A signal is reffered to as an energy signal, if and only if the total energy of 

 

the signal Ex is finite. An energy signal has a zero power and a power signal has infinite 

energy. There are signals which are neither energy signals nor power signals. For example 

{x[n]} defined by x[n] = n does not have finite power or energy 

 

2.2.2 Power of a signal: 

 

If {x[n]} is a signal whose energy is not finite, we define power of the signal 
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2.2.3 Periodic Signals: 

 

An important class of signals that we encounter frequently is the class of periodic signals. We 

say that a signal {x[n]} is periodic period N, where N is a positive integer, if the signal is 

unchanged by the time shift of N ie., 

 

 

 

 

 

 

 

 

 

 

 

Generalizing this we get {x[n]} = {x[n+kN]}, where k is a positive integer. From this we see 

that {x[n]} is periodic with 2N, 3N, ..... The fundamental period N0 is 

 

the smallest positive value N for which the signal is periodic. The signal illustrated below is 

periodic with fundamental period N0 = 4. {x[n]} By change of variable we can write {x[n]} = 

{x[n +N]} as {x[m − N]} = {x[m]} and then we see that 

 

 

 

for all integer values of k, positive, negative or zero. By definition, period of 

 

a signal is always a positive integer n. Except for a all zero signal all periodic signals have 

infinite energy. They may have finite power. Let {x[n]} be periodic with period N, then the 

power Px is given by 
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2.2.4 Even and odd signals: 

 

A real valued signal {x[n]} is referred as an even signal if it is identical to its time reversed 

counterpart ie, if {x[n]} = {x[−n]} A real signal is referred to as an odd signal if {x[n]} = 

{−x[−n]} An odd signal has value 0 at n = 0 as x[0] = −x[n] = −x[0] 
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The signal {x[n]} is called the even part of {x[n]}. We can verify very easily that {xe[n]} is an 

even signal. Similarly, {x0[n]} is called the odd part of {x[n]} and is an odd signal. When we 

have complex valued signals we use a slightly different terminology.  A  complex  valued  

signal  {x[n]}  is  referred  to  as  a  conjugate symmetric signal if {x[n]} = {x*[−n], where 

x*refers to the complex conjugate of x.Here we do reflection and comple conjugation. If 

{x[n]} is real valuedthis is same as an even signal. A complex signal {x[n]} is referred to as a 

conjugate antisymmetric signal if  {x[n]} = {−x*[−n]}. We can express any complex  

valued signal as sum conjugate symmetric and conjugate antisymmetric signals. We use 

notation similar to above Ev({x[n]}) = {xe[n]} ={1/2(x[n] + x*[−n])} and Od({x[n]}) = {x0[n]} 

= {1/2(x[n] − x∗ [−n])} the {x[n]} = {xe[n]} + {xo[n]}. We can see easily that {xe[n]} is 

conjugate symmetric signal and {xo[n]} is conjugate antisymmetric signal. These definitions 

reduce to even and odd signals in case signals takes only real values. 

 

2.3 PERIODICITY PROPERTIES OF SINUSOIDAL SIGNALS 

 

Let us consider the signal {x[n]} = {cosw0n}. We see that if we replace w0 by (w0 + 2π) we 

get the same signal. In fact the signal with frequency w0}2π ,w0}4π and so on. This situation 

is quite different from continuous time signal {cosw0t,−∞ < t <∞} where each frequency is 

different. Thus in discrete time we need to consider frequency interval of length 2π only. As 

we increase w; 0 to π signal oscillates more and more rapidly. But if we further increase 

frequency from π to 2π the rate of oscillations decreases. This can be seen easily by plotting 

signal cosw0n} for several values of w0. The signal {cosw0n} is not periodic for every value of 

w0. For the signal to be periodic with pe 

riod N >0, we should have 

 

 

 

 

 

 

 

 

 

 

 

 

Thus signal {cosw0n} is periodic if and only if w0=2π is a rational number. Above 

observations also hold for complex exponential signal {x[n]} = {e
jw

0
n
} 

 

2.3.1.Discrete-Time Systems 

 

A discrete-time system can be thought of as a transformation or operator that maps an input 

sequence {x[n]} to an output sequence {y[n]} 

 

 

 

 

 

 

 

By placing various conditions on T(・) we can define different classes of systems. 
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3.BASIC SYSTEM PROPERTIES 

 

3.1 Systems with or without memory: 

 

A system is said to be memory less if the out put for each value of the independent variable at 

a given time n depends only on the input value at time (t) For example system specified by 

the relationship y[n] = cos(x[n]) + z is memory less. A particularly simple memory less 

system is the identity system defined by y[n] = x[n] In general we can write input-output 

relationship for memory less system as y[n] = g(x[n]). Not all systems are memory less. A 

simple example of system with memory is a delay defined by y[n] = x[n − 1] A system with 

memory retains or stores information about input values at times other than the current input 

value. 

 

3.2 Inevitability 

 

A system is said to be invertible if the input signal {x[n]} can be recovered from the output 

signal {y[n]}. For this to be true two different input signals should produce two different 

outputs. If some different input signal produce same output signal then by processing output 

we can not say which input produced the output. Example of an invertible system is 
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That is the system produces an all zero sequence for any input sequence. Since every input 

sequence gives all zero sequence, we can not find out which input produced the output. The 

system which produces the sequence {x[n]} from sequence {y[n]} is called the inverse system. 

In communication system, decoder is an inverse of the encoder. 

 

3.3 Causality 

 

A system is causal if the output at anytime depends only on values of the input at the present 

time and in the past. y[n] = f(x[n], x[n − 1], ...). All memory less systems are causal. An 

accumulator system defined by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For real time system where n actually denoted time causalities is important. Causality is not 

an essential constraint in applications where n is not time, for example, image processing. If 

we case doing processing on recorded data, then also causality may not be required. 

 

3.4 Stability 

 

There are several definitions for stability. Here we will consider bounded input bonded 

output(BIBO) stability. A system is said to be BIBO stable if every bounded input produces a 

bounded output. We say that a signal {x[n]} is bounded if 
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3.5 Time invariance 

A system is said to be time invariant if the behaviour and characteristics of the system do not 

change with time. Thus a system is said to be time invariant if a time delay or time advance in 

the input signal leads to identical delay or advance in the output signal. Mathematically if 
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and so the system is not time-invariant. It is time varying. We can also see this by giving a 

counter example. Suppose input is {x[n]} = {δ[n]} then output is allzero sequence. If the input 

is {δ[n−1]} then output is {δ[n−1]} which is definitely not a shifted version version of all 

zero sequence. 

 

3.6 Linearity 

 

This is an important property of the system. We will see later that if we have system which is 

linear and time invariant then it has a very compact representation. A linear system possesses 

the important property of super position: if an input consists of weighted sum of several 

signals, the output is also weighted sum of the responses of the system to each of those input 

signals. Mathematically let {y1[n]} be the response of the system to the input {x1[n]} and let 

{y2[n]} be the response of the system to the input {x2[n]}. Then the system is linear if: 

1.  Additivity: The response to {x1[n]} + {x2[n]} is {y1[n]} + {y2[n]} 

2. Homogeneity: The response to a{x1[n]} is a{y1[n]}, where a is any real number if we are 

considering only real signals and a is any complex number if we are considering complex 

valued signals. 

 

3. Continuity: Let us consider {x1[n]}, {x2[n]}, ...{xk[n]}... be countably infinite number of 

signals such that lim{ xk[n]} = {x[n]} Let the corresponding output signals be denoted by 

{yn[n]} k→∞ and Lim { yn[n]} ={y[n]} We say that system processes the continuity property 

k→∞ if the response of the system to the limiting input {x[n]} is limit of the responses {y[n]}. 

T( lim{ xk[n]}) = lim T({Xk[n]}) k→∞k→∞ 

 

The additive and continuity properties can be replaced by requiring that We say that system 

posseses the continuity property system is additive for countably infinite number if signals 

i.e. response to{x1[n]}+{x2[n]}+...+{xn[n]}+... is {y1[n]}+{y2[n]}+...+{yk[n]}+....Most of the 

books do not mention the continuity property. They state only finite additivity and 

homogeneity. But from finite additivity we can not deduce c....... additivity. This distinction 

becomes very important in continuous time systems. A system can be linear without being 

time invariant and it can be time invariant without being linear. If a system is linear, an all 

zero input sequence will produce a all zero output sequence. {0} denote the all zero sequence 

,then {0} = 0.{x[n]}.  

If T({x[n]} = {y[n]}) then by homogeneity property T(0.{x[n]}) = 0.{y[n]} 

 

T({0}) = {0} 

 

Consider the system defined by 

 

y[n] = 2x[n] + 3 

 

This system is not linear. This can be verified in several ways. If the input is all zero 

sequence {0}, the output is not an all zero sequence. Although the defining equation is a 

linear equation is x and y the system is nonlinear. The output of this system can be 

represented as sum of a linear system and another signal equal to the zero input response. In 

this case the linear system is y[n] = 2x[n] and the zero-input response is y0[n] = 3 for all n
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systems correspond to the class of incrementally linear system. System is linear in term of 

difference signal i.e if we define {xd[n]} = {x1[n]} − {X2[n]}and {yd[n]} = {y1[n]} − {y2[n]}. 

Then in terms of {xd[n]} and {yd[n]} the system is linear. 

 

4. MODELS OF THE DISCRETE-TIME SYSTEM 

 

First let us consider a discrete-time system as an interconnection of only three basic 

components: the delay elements, multipliers, and adders. The input– output relationships for 

these components and their symbols are shown in Figure below. The fourth component is the 

modulator, which multiplies two or more signals and hence performs a nonlinear operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basic components used in a discrete-time system 
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simple discrete-time system is shown in Figure 5, where input signal x(n)= {x(0), x(1), x(2), 

x(3)} is shown to the left of v0(n)= x(n). The signal v1(n)shown on the left is the signal 

x(n)delayed by T seconds or one sample, so, v1(n)= x(n −1). Similarly, v(2)and v(3)are the 

signals obtained from x(n)when it is delayed by 2T and 3T seconds: v2(n)= x(n − 2)and v3(n)= 

x(n − 3). When we say that the signal x(n)is delayed by T, 2T , or 3T seconds, we mean that 

the samples of the sequence are present T, 2T, or 3T seconds later, as shown by the plots of 

the signals to the left of v1(n), v2(n), and v3(n). But at any given time t = nT , the samples in 

v1(n), v2(n), and v3(n) are the samples of the input signal that occur T,2T , and 3T seconds 

previous to t= nT . For example, at t = 3T , the value of the sample in x(n)is x(3), and the 

values present in v1(n), v2(n)and v3(n)are x(2), x(1), and x(0) respectively.Agood 

understanding of the operation of the discrete-time system as illustrated in above Figure is 

essential in analyzing, testing, and debugging the operation of the system when available 

software is used for the design, simulation, and hardware implementation of the system. 

It is easily seen that the output signal in above Figure is 

 

 

 

 

 

 

where b(0), b(1), b(2), b(3)are the gain constants of the multipliers. It is also easy to see from 

the last expression that the output signal is the weighted sum of the current value and the 

previous three values of the input signal. So this gives us an input–output relationship for the 

system shown in below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          Operations in a typical discrete-time system 
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 Now we consider another example of a discrete-time system, shown in Figure 5. Note that a 

fundamental rule is to express the output of the adders and generate as many equations as the 

number of adders found in this circuit diagram for the discrete-time system. (This step is 

similar to writing the node equations for an analog electric circuit.) Denoting the outputs of 

the three adders as y1(n), y2(n), and y3(n), we get 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic circuit for a discrete-time system. 
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These three equations give us a mathematical model derived from the model shown in above 

that is schematic in nature. We can also derive (draw the circuit realization) the model shown 

in Figure 5 from the same equations given above. After eliminating the internal variables 

y1(n)and y2(n); that relationship constitutes the third model for the system. The general form 

of such an input– output relationship is 

 

 

 

Eq(1) 
 

 

 

or in another equivalent form 

 

 

 

 

 

 

 

 

 

Eq(1) shows that the output y(n)is determined by the weighted sum of the previous N values 

of the output and the weighted sum of the current and previous M + 1 values of the input. 

Very often the coefficient a(0)as shown in Eq(2) is normalized to unity. 

 

5. LINEAR TIME-INVARIANT, CAUSAL SYSTEMS 

 

In this section, we study linear time-invariant causal systems and focus on properties such as 

linearity, time invariance, and causality. 

5.1 Linearity: 

A linear system is illustrated in below figure, where y1(n) is the system output using an input 

x1(n), and y2(n) is the system output using an input x2(n). This Figure illustrates that the 

system output due to the weighted sum inputs αx1(n) + βx2(n) is equal to the same weighted 

sum of the individual outputs obtained from their corresponding inputs, that is 

y(n)=αy1(n) + βy2(n) 

 

where α and β are constants. 

 

For example, assuming a digital amplifier as y(n)=10x(n), the input is multiplied by 10 to 

generate the output. The inputs x1(n) = u(n) and x2(n) =δ(n) generate the outputs y1(n) 

=10u(n) and y2(n) = 10δ(n), respectively. If, as described in below Figure , we apply to the 

system using the combined input x(n), where the first input is multiplied by a constant 2 

while the second input is multiplied by a constant 4, x(n) = 2x1(n) + 4x2(n) =2u(n) + 4δ(n), 
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5.2 Time Invariance 

A time-invariant system is illustrated in Figure below, where y1(n) is the system output for 

the input x1(n). Let x2(n) = x1(n - n0) be the shifted version of x1(n) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by n0 samples. The output y2(n) obtained with the shifted input x2(n) =x1(n - n0)is equivalent 

to the output y2(n) acquired by shifting y1(n) by n0 samples,y2(n) =y1(n - n0).This can simply 

be viewed as the following. If the system is time invariant and y1(n) is the system output due 

to the input x1(n),then the shifted system input x1(n -n0) will produce a shifted system output 

y1(n - n0)by the same amount of time n0. 

 

5.3 Differential Equations and Impulse Responses: 

 

A causal, linear, time-invariant system can be described by a difference equation having the 

following general form: 

 

y(n) + a1y(n - 1) + . . . + aNy(n - N) = b0x(n) + b1x(n -1) + . . . + bMx(n -M) where a1, . . . , aN 

and b0, b1, . . . , bM are the coefficients of the difference equation. It can further be written as 

y(n) = - a1y(n - 1) -. . . - aNy(n - N)+ b0x(n) + b1x(n - 1) + . . . + bMx(n -M) 

 

 

1. FOURIER SERIES COEFFICIENTS OF PERIODIC IN DIGITAL SIGNALS: 
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Let us look at a process in which we want to estimate the spectrum of a periodic digital signal 

x(n) sampled at a rate of fs Hz with the fundamental period T0=NT, as shown in below, where 

there are N samples within the duration of the fundamental period and T = 1/fs is the 

sampling period. For the time being, we assume that the periodic digital signal is band limited 

to have all harmonic frequencies less than the folding frequency fs=2 so that aliasing does not 

occur. According to Fourier series analysis (Appendix B), the coefficients of the Fourier 

series expansion of a periodic signal x(t) in a complex form is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the two-sided line amplitude spectrum jckj is periodic, as shown in 

 

Figure 4.3. We note the following points: 

 

a. As displayed in Figure 4.3, only the line spectral portion between the frequency fs=2 and 

frequency fs=2 (folding frequency) represents the frequency information of the periodic 

signal. 
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b. Notice that the spectral portion from fs=2 to fs is a copy of the spectrum in the negative 

frequency range from _fs=2 to 0 Hz due to the spectrum being periodic for every Nf0 Hz. 

Again, the amplitude spectral components indexed from fs=2 to fs can be folded at the 

folding frequency fs=2 to match the amplitude spectral components indexed from 0 to fs=2 in 

terms of fs _ f Hz, where f is in the range from fs=2 to fs. For convenience, we compute the 

spectrum over the range from 0 to fs Hz with nonnegative indices, that is, 

 

 

 

 

 

c. For the kth harmonic, the frequency is f = kf0 Hz. The frequency spacing between the 

consecutive spectral lines, called the frequency resolution, is f0 Hz 

 

 

7. Discrete Fourier Transform 

 

Now, let us concentrate on development of the DFT. In below Figure shows one way to 

obtain the DFT formula. First, we assume that the process acquires data samples from 

digitizing the interested continuous signal for a duration of T seconds. Next, we assume that a 

periodic signal x(n) is obtained by copying the acquired N data samples with the duration of 

T to itself repetitively. Note that we assume continuity between the N data sample frames. 

This is not true in practice. We will tackle this problem in Section 4.3. We determine the 

Fourier series coefficients using one-period N data samples and Equation (4.5). Then we 

multiply the Fourier series coefficients by a factor of N to obtain 

 

 

 

 

 

 

 

where X(k) constitutes the DFT coefficients. Notice that the factor of N is a constant and does 

not affect the relative magnitudes of the DFT coefficients X(k). As shown in the last plot, 

applying DFT with N data samples of x(n) sampled at a rate of fs (sampling period is T = 

1/fs) produces N complex DFT 
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As we know, the spectrum in the range of -2 to 2 Hz presents the information of the sinusoid 

with a frequency of 1 Hz and a peak value of 2|c1| = 1, which is converted from two sides to 

one side by doubling the spectral value. Note that we do not double the direct-current (DC) 

component. 

PROPERTIES OF DISCRETE FOURIER TRANSFORM 

 

As a special case of general Fourier transform, the discrete time transform shares all 

properties (and their proofs) of the Fourier transform discussed above, except now some of 

these properties may take different forms. In the following, 

we always assume and . 

 

 Linearity













 Time Shifting











Proof: 
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If we let , the above becomes 

 

 

 

 

 

 

 

 

 Time Reversal









 Frequency Shifting











 Differencing


Differencing is the discrete-time counterpart of differentiation. 





 

Proof: 
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 Differentiation in frequency















proof: Differentiating the definition of discrete Fourier transform with respect to , we get 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Convolution Theorems


The convolution theorem states that convolution in time domain corresponds to 

multiplication in frequency domain and vice versa: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recall that the convolution of periodic signals and is 

 



28 
 

Here the convolution of periodic spectra and is similarly defined as 

 

 

 

 

 

 

 

Proof of (a): 

 

 

 

 

 

 

 

 

 

 

 

 

 

roof of (b): 
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 Parseval's Relation
 

 

 

 

 

 

 

 

The circular convolution, also known as cyclic convolution, of two aperiodic functions 

occurs when one of them is convolved in the normal way with a periodic summation of the 

other function. That situation arises in the context of the Circular convolution theorem. The 

identical operation can also be expressed in terms of the periodic summations of both 

functions, if the infinite integration interval is reduced to just one period. That situation arises 

in the context of the discrete-time Fourier transform (DTFT) and is also called periodic 

convolution. In particular, the transform (DTFT) of the product of two discrete sequences is 

the periodic convolution of the transforms of the individual sequences. 

 

For a periodic function xT, with period T, the convolution with another function, h, is also 

periodic, and can be expressed in terms of integration over a finite interval as follows: 

 

For a periodic function xT, with period T, the convolution with another function, h, is also 

periodic, and can be expressed in terms of integration over a finite interval as follows: 

 

 

 

 

 

 

 

 

[2] 

 

where to is an arbitrary parameter, and hT is a periodic summation of h, defined by: 

 

 

 

 

 

 

 

This operation is a periodic convolution of functions xT and hT. When xT is expressed as the 

periodic summation of another function, x, the same operation may also be referred to as a 

circular convolution of functions h and x. 

http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Circular_convolution_theorem_and_cross-correlation_theorem
http://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Periodic_function
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Circular_convolution#cite_note-2
http://en.wikipedia.org/wiki/Periodic_summation
http://en.wikipedia.org/wiki/Periodic_summation
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Discrete sequences 

 

Similarly, for discrete sequences and period N, we can write the circular convolution of 

functions h and x as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

This corresponds to matrix multiplication, and the kernel of the integral transform is a 

circular matrix 

 

 

 If a sequence, x[n], represents samples of a continuous function, x(t), with Fourier 

transform X(ƒ), its DTFT is a periodic summation of X(ƒ). 

 

  Proof: 

 

http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Circulant_matrix
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Definition of the Fourier Transform 

The Fourier transform (FT) of the function f .(x) is the function F(ω) where: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Think of it as a transformation into a different set of basis functions. The Fourier transform 

uses complex exponentials (sinusoids) of various frequencies as its basis functions.(Other 

transforms, such as Z, Laplace, Cosine, Wavelet, and Hartley, use different basic functions). 

 

A Fourier transform A Fourier transform pair is often written 

 

where F is the Fourier transform operator. If f .x/ is thought 

of as a signal (i.e. input data) then we call F(ω)the signal‟s spectrum. If f is thought of as the 

impulse response of a filter (which operates on input data to produce output data) then we call 

F the filter‟s frequency response. (Occasionally the line between what‟s signal and what‟s 

filter becomes blurry). 

 

Example of a Fourier Transform 

 

Suppose we want to create a filter that eliminates high frequencies but retains low frequencies 

(this is very useful in anti aliasing). In signal processing terminology, this is called an ideal 

low pass filter. So we‟ll specify a box-shaped frequency response with cutoff frequency ω C 
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Fourier Transform Properties 
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Convolution Theorem 
The Fourier transform of a convolution of two signals is the product of their 

 

Fourier transforms: . The convolution of two continuous signals f and g is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Delta Functions 
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                     Convolution 

 

Let‟s consider two time series, gi and hi, where the index i runs from −∞ to ∞. The  convolution of these 

two time series is defined as 

 

 ∞  

(g ∗ h)i 

= 

� 

(1) gi−j hj 
j=−∞ 
 

This definition is applicable to time series of infinite length. If g and h are finite, they can be extended to 

infinite length by adding zeros at both ends. After this trick, called zero padding, the definition in Eq. (1) 

becomes applicable. For example, the sum in Eq. (1) becomes 

 n−1  

(g ∗ h)i 

= 

�j 

(2) gi−j hj 
 =0  

 

for the finite  time series h0, . . . , hn−1. 

 

Exercise 1 Convolution is commutative and associative. Prove that g ∗ h = h ∗ g and 

 

1) ∗ (g ∗ h) = (f ∗ g) ∗ h. 

 

Exercise 2 Convolution is distributive over addition. Prove that (g1 + g2) ∗ h = g1 ∗ h + g2 ∗ h. This 

means that filter ing a signal via convolution is a linear operation. 

 

Although g and h are treated symmetrically by the convolution, they generally                             have 

very different natures. Typically, one is a signal that goes on indefinitely in time. The  other is 

concentrated near time zero, and is called a filter. The output of the convolution is also a signal, a filtered 

version of the input signal. 

 

Note that filtering a signal via convolution is a linear operation. This is an important property, because it 

simplifies the mathematics. There are also nonlinear methods of filtering, but they involve more technical 

difficulties. Because of time limitations, this class will cover linear filters only. Accordingly, we will 

discuss only neurobiological examples for which linear models work well. But these examples are 

exceptions to the rule that most everything in biology is nonlinear. Don‟t jump to the conclusion that 

linear models are always sufficient. 

 

In Eq. (2), we chose hi to be zero for all negative i. This is called a causal filter, because g ∗ h is affected 

by h in the present and past, but not in the future. In some contexts, the causality constraint is not 

important, and one can take h−M , . . . , hM to be nonzero, for example. 
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Formulas are nice and compact, but now let‟s draw some diagrams to see how convolution works. To take a 

concrete example, assume a causal filter (h0, . . . , hn−1). Then the ith component of the convolution (g ∗ h)i 

involves aligning g and h this way: 

· · · gi−m−1   gi−m  gi−m+1 · · · gi−2   gi−1 gi 
gi+1   gi+2 · · · 

· · · 0 0 hm−1 · · · h2h1 h0 0 0 · · · 

In words, (g ∗ h)i is computed by looking at the signal g through a window of length 

 

S starting at time i and extending back to time i − m + 1. The weighted sum of the signals in the 

window is taken, using the coefficients given by h. 
                  last is fM2 +N2 . So discarding the first |N1| and last N2 elements of f leaves us with fM1 , . . . , fM2 . This 

is time­aligned with the signal gM1 , . . . , gM2 , and has the same length. 

 

Another motivation for discarding elements at the beginning and end is that they may be corrupted by edge effects. 

If you are really worried about edge effects, you may have to discard even more elements, which will leave f 
shorter than g. 
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  Firing rate 

 

Consider a spike train ρ1, . . . , ρN . One estimate of the probability of firing is 

 

p 
= 

1 

�i ρi (3) N 
 

 

This estimate is satisfactory, as long as it makes sense to describe the whole spike train by a 

single probability that does not vary with time. This is an assumption of statistical 

stationarity. 

 

More commonly, it‟s a better model to assume that the probability varies slowly with time (is 

nonstationary). Then it‟s better to apply something like Eq. (3) to small segments of the spike 

train, rather than to the whole spike train. For example, the formula 

 

pi = (ρi+1 + ρi + ρi−1)/3 (4) 

estimates the probability at time i by counting the number of spikes in three time bins, and 

then dividing by three. In the first problem set, you were instructed to smooth the spike train 

like this, but to use a much wider window. In general, choosing the size of window involves a 

tradeoff. A larger window minimizes the effects of statistical sam­ pling error (like flipping a 

coin many times to more accurately determine its probability of coming up heads). But a 

larger window also reduces the ability to follow more rapid changes in the probability as a 

function of time. 

 

Note that Eq. (4) isn‟t to be trusted near the edges of the signal, as the filter operates on the 

zeros that surround the signal. 

 

There are other methods for estimating probability of firing, many of which can be expressed 

in the convolutional form, 

 

 

There are many different ways to choose w, depending on the particulars of the application. 

Previously we chose w be of length n, with nonzero values equal to 1/n. This is sometimes 

called a “boxcar” filter. MATLAB comes with a lot of other filter shapes. Try typing help 

bartlett, and you‟ll find more information about the Bartlett and other types of windows 

that are good for smoothing. Depending on the context, you might want a causal or a 

noncausal filter for estimating probability of firing. 

 

This is causal, but has infinite  duration. 

 

Exercise 3 Prove that the exponential filter is equivalent to 

 

pi = (1 − γ)pi−1 + γρi 

 

4  Impulse response 

 

Consider the signal consisting of a single impulse at time zero,The convolution of this signal 

with a filter h iswhich is just the filter h again. In other words h, is the response of the filter to 

an impulse, or the impulse response function. If the impulse is displaced from time 0 to time 

i, then the result of the convolution is the filter h, displaced by i time steps. 
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UNIT II 
 

AMPLITUDE MODULATION AND DOUBLE SIDE 

BAND SUPPRESSED CARRIER MODULATION 

 
Objective: 

 

The transmission of information-bearing signal over a band pass communication channel, 

such as telephone line or a satellite channel usually requires a shift of the range of 

frequencies contained in the signal to another frequency range suitable for transmission. A 

shift in the signal frequency range is accomplished by modulation. This chapter introduces 

the definition of modulation, need of modulation, types of modulation- AM, PM and FM, 

Various types of AM, spectra of AM, bandwidth requirements, Generation of AM & DSB-

SC, detection of AM & DSB-SC, and power relations. After studying this chapter student 

should be familiar with the following 

 

 

 1) Need for modulation 

 

     2) Definition of modulation 

        3) Types of modulation techniques – AM, FM, PM 

 

        4) AM definition - Types of AM –Standard AM, DSB, SSB, and VSB 

        5) Modulation index or depth of modulation and % modulation     

            SpectrandBandwidth of all types of AM 

 

6)  Generation of AM wave using Square law modulator & Switching   

     Modulator 

 

7)  Generation of DSB wave using Balanced modulator & Ring modulator 

 

8)  Detection of AM wave using Square law detector & Envelope detector 

 

9)  Detection of DSB wave using Synchronous detection & Costas loop 

 

   10) Power and current relations 

 

   11) Problems 

   12) Frequency Translation 

 

 

Communication is a process of conveying message at a distance. If the 

 

distance is involved is beyond the direct communication,the communication engineering 

comes into the picture. The bran engineering which deals with communication systems is 

known as telecommunication engineering. Telecommunication engineering is classified into 

two types based on Transmission media. They are: 

 

1)Line communication 
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2)Radio communication 

 

In Line communication the media of transmission is a pair of conductors called transmission 

line. In this technique signals are directly transmitted through the transmission lines. The 

installation and maintenance of a transmission line is not only costly and complex, but also 

overcrowds the open space.  

 

 

 

 

 

 

 

 

Modulation: Modulation is defined as the process by which some characteristics (i.e. 

amplitude, frequency, and phase) of a carrier are varied in accordance with a modulating 

wave. 

 

Demodulation is the reverse process of modulation, which is used to get back the original 

message signal. Modulation is performed at the transmitting end whereas demodulation is 

performed at the receiving end. 

         In analog modulation sinusoidal signal is used as carrier where as in 

 

digital modulation pulse train is used as carrier.  

 

Need for modulation: 

 

Modulation is needed in a communication system to achieve the following basic needs 

 

1) Multiplexing 

2) Practicability of antennas 

3) Narrow banding 
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Types of modulation: 

 

 

Continuous wave modulation (CW): When the carrier wave is continuous in nature the 

modulation process is known as continuous wave modulation. 

 

Pulse modulation: When the carrier wave is a pulse in nature the modulation process is 

known as continuous wave modulation 

 

Amplitude modulation (AM): A modulation process in which the amplitude of the carrier is 

varied in accordance with the instantaneous value of the modulating signal. 

 

 

 

Amplitude modulation 

 

Amplitude modulation is defined as the process in which the amplitude of the carrier signal is 

varied in accordance with the modulating signal or message signal. 

 

Consider a sinusoidal carrier signal C (t) is defined as 

 

                      C (t) = AcCos (2π fct + Ɵ) t 

 

For our convenience, assume the phase angle of the carrier signal is zero. An amplitude-

modulated (AM) wave S(t) can be described as function of time is given by 

 

S (t) = Ac [1+kam (t)] cos 2 πfct 

 

Where ka = Amplitude sensitivity of the modulator. 

 

The amplitude modulated (AM) signal consists of both modulated carrier signal and un 

modulated carrier signal. 

There are two requirements to maintain the envelope of AM signal is same as the shape   of 

base band signal. 

 

The amplitude of the kam(t) is always less than unity i.e., |kam(t)|<1  for all „t‟. 

The carrier signal frequency fc is far greater than the highest frequency component W of the 

message signal m (t) i.e., fc>>W 

 

Assume the message signal m (t) is band limited to the interval –W f W 
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The AM spectrum consists of two impulse functions which are located at fc and -fc and 

weighted by Ac/2, two USBs, band of frequencies from fc to fc +W and band of frequencies 

from -fc-W to –fc, and two LSBs, band of frequencies from fc-W to fc and -fc to -fc+W. 

The difference between highest frequency component and lowest frequency component is 

known as transmission bandwidth. i.e., 

 

BT = 2W 

The envelope of AM signal is Ac [1+kam (t)]. 

 

Single-tone modulation: 

 

In single-tone modulation modulating signal consists of only one frequency component 

where as in multi-tone modulation modulating signal consists of more than one frequency 

component. 

 

S (t) = Ac[1+kam(t)]cos 2πfct ………..(i) 

                                            Let m (t) = Amcos 2πfmt 

 

Substitute m (t) in equation (i) 

                                 

                  S (t) = Ac [1+ka Amcos 2π fmt] cos 2π fct 

      

Replace the term ka Am by which is known as modulation index or modulation factor. 

 

Modulation index is defined as the ratio of amplitude of message signal to the amplitude of 

carrier signal. i.e., 

 

= Am/Ac 

 

(In some books modulation index is designated as “m”) 

 

Which can also be expressed in terms of  

Amax and Amin? = (Amax-Amin)/ (Amax+Amin) 

 

Where Amax = maximum amplitude of the modulated carrier signal 

 

Amin = minimum amplitude of the modulated carrier signal 

 

T (t) = Ac cos (2π fct)+Ac /2[cos2 π(fc+fm)t]+ Ac /2[cos2π (fc-fm)t] 

 

               Fourier transform of S (t) is 

 

S (f) =Ac/2[ (f-fc) +  (f+fc)] +Ac /4[ (f-fc-fm) +  (f+fc+fm)] 

 

+ Ac /4[ (f- fc+fm ) +  (f+fc-fm)] 

 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power calculations of single-tone AM signal: 

 

The standard time domain equation for single-tone AM signal is given 

 

T (t) = Accos (2 fct) +Ac /2[cos2 (fc+fm) t] + Ac /2[cos2 (fc-fm) t] 

 

Power of any signal is equal to the mean square value of the signal 

 

Carrier power Pc = Ac
2
/2 

 

Upper Side Band power PUSB = Ac
2  2

/8 

 

Lower Side Band power P LSB = Ac
2  2

/8 

 

Total power PT = Pc + PLSB + PUSB 

 

Total power PT = Ac
2
/2 + Ac

2  2
/8 + Ac

2  2
/8 

 

 

PT = Pc [1+ 
2
/2] 

 

Multi-tone modulation: 

 

In multi-tone modulation modulating signal consists of more than one 

 

frequency component where as in single-tone modulation modulating signal consists of only 

one frequency component. 

 

S (t) = Ac [1+kam (t)] cos 2πfct……….. (i) 

 

Let m (t) = Am1cos 2 fm1t + Am2cos 2 fm2t Substitute m (t) in equation  (i) 



44 
 

 

S (t) = Ac [1+ka Am1cos 2 fm1t+ka Am2cos 2 fm2t] cos 2 fct 

 

 

Replace the term ka Am1 by 1 and Am2 by 2 S (t) = Accos (2 fct) + Ac 1/2[cos2 (fc+fm1) 

t]+Ac 1/2[cos2 (fc-fm1) t] + Ac 2/2[cos2 (fc+fm2) t] + Ac 2/2[cos2 (fc-fm2) t] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transmission efficiency (ᵑ ):- 

 

Transmission efficiency is defined as the ratio of total side band power to the total 

transmitted power. 

 

i.e., =PSB/PT or 
2
/ (2+ 

2
)  

Advantages of Amplitude modulation:- 

 

Generation and detection of AM signals are very easy 

 

It is very cheap to build, due to this reason it I most commonly used in AM radio broad 

casting 
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Disadvantages of Amplitude of modulation:- 

 

                Amplitude modulation is wasteful of power 

 

               Amplitude modulation is wasteful of band width 

 

Application of Amplitude modulation: - AM Radio Broadcasting 

 

Generation of AM waves 

 

There are two methods to generate AM waves 

 Square-law modulator

Switching modulator 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Square-law modulator requires three features: a means of summing the carrier and 

modulating waves, a nonlinear element, and a band pass filter for extracting the desired 

modulation products. Semi-conductor diodes and transistors are the most common   nonlinear 

devices used for implementing square law modulators. The filtering       requirement is 

usually satisfied by using a single or double tuned filters. 

 

When a nonlinear element such as a diode is suitably biased and operated in restricted portion 

of its characteristic curve, that is ,the signal applied to the diode is relatively weak, we find 

that transfer characteristic of diode-load resistor combination can be represented closely by a 

square law : 
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V0 (t) = a1Vi (t) + a2 Vi
2
(t) ……………….(i) 

 

Where a1, a2 are constants 

 

 

Now, the input voltage Vi (t) is the sum of both carrier and message signals i.e.,  

                        Vi (t) =Accos 2πfct+m (t) ……………. (ii) 

 

Substitute equation (ii) in equation (i) we get 

 

         V0 (t) =a1Ac [1+kam (t)] cos2 fct +a1m (t) +a2Ac2cos22 fct+a2m
2
(t)………..(iii)

 

 

Where ka =2a2/a1 

 

Now design the tuned filter /Band pass filter with center frequency fc and pass band 

frequency width 2W.We can remove the unwanted terms by passing this output voltage V0(t) 

through the band pass filter and finally we will get required AM signal. 

 

 

V0 (t) =a1Ac [1+2a2/a1 m (t)] cos2 fct 

 

Assume the message signal m (t) is band limited to the interval –W f W 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AM spectrum consists of two impulse functions which are located at fc & -fc and 

weighted by Aca1/2 & a2Ac/2, two USBs, band of frequencies from fc to fc +W and band of 

frequencies from -fc-W to –fc, and two LSBs, band of frequencies from fc-W to fc & -fc to -

fc+W. 
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Assume that carrier wave C (t) applied to the diode is large in amplitude, so that it swings 

right across the characteristic curve of the diode .we assume that the diode acts as an ideal 

switch, that is, it presents zero impedance when it is forward-biased and infinite impedance 

when it is reverse-biased. We may thus approximate the transfer characteristic of the diode-

load resistor combination by a piecewise-linear characteristic. 

 

The input voltage applied Vi (t) applied to the diode is the sum of both carrier and message 

signals. 

 

 

Vi (t) =Ac cos 2π fct+m (t) …………….(i) 

 

During the positive half cycle of the carrier signal i.e. if C (t)>0, the diode is forward biased, 

and then the diode acts as a closed switch. Now the output voltage Vo (t) is same as the input 

voltage Vi (t) . During the negative half cycle of the carrier signal i.e. if C(t)<0, the diode is 

reverse biased, and then the diode acts as a open switch. Now the output voltage VO (t) is 

zero i.e. the output voltage varies periodically between the values input voltage Vi (t) and 

zero at a rate equal to the carrier frequency fc. 

 

i.e., Vo (t) = [Accos 2π fct+m (t)] P(t)……….(ii) 

 

Where gp(t) is the periodic pulse train with duty cycle one-half and period Tc=1/fc and which 

is given by 

 

           

                      gP(t)= ½+2/ ∑ [(-1)n-1/(2n-1)]cos [2 fct(2n-1)]…………(iii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V0 (t) =Ac/2[1+kam (t)] cos2 fct +m (t)/2+2AC/cos 2πfct……….(iii)  

                                        

                                           Where ka = 4/ AC 

 

Now design the tuned filter /Band pass filter with center frequency fc and pass band 

frequency width 2W.We can remove the unwanted terms by passing this output voltage V0(t) 

through the band pass filter and finally we will get required AM signal. 
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V0 (t) =Ac/2[1+kam (t)] cos2πfct 

 

Assume the message signal m(t) is band limited to the interval –W f W 

 

 

 

 

The AM spectrum consists of two impulse functions which are located at fc & -fc and 

weighted by Aca1/2 & a2Ac/2, two USBs, band of frequencies from fc to fc +W and band of 

frequencies from -fc-W to –fc, and two LSBs, band of frequencies from fc-W to fc & -fc to -

fc+W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demodulation of AM waves: 

 

 

 

There are two methods to demodulate AM signals.  

They are: 

 

                 Square-law detector 

                 Envelope detector 
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Square-law detector:- 

 

 

   A Square-law modulator requires nonlinear element and a low pass filter for extracting the 

desired message signal. Semi-conductor diodes and transistors are the most common 

nonlinear devices used for implementing square law modulators. The filtering requirement is 

usually satisfied by using a single or double tuned filters. When a nonlinear element such as a 

diode is suitably biased and operated in a 

 

restricted portion of its characteristic curve, that is ,the signal applied to the diode is relatively 

weak, we find that transfer characteristic of diode-load resistor combination can be 

represented closely by a square law : 

 

V0 (t) = a1Vi (t) + a2 Vi2 (t) ……………….(i) 

Where a1, a2 are constants 

 

Now, the input voltage Vi (t) is the sum of both carrier and message signals i.e., Vi (t) = Ac 

[1+kam (t)] cos2 fct…………….(ii) 

 

Substitute equation (ii) in equation (i) we get 

 

V0 (t) = a1Ac [1+kam (t)] cos2 fct + 1/2 a2Ac2 [1+2 kam (t) + ka2m2 (t)] 

[cos4 fct]………..(iii) 

 

Now design the low pass filter with cutoff frequency f is equal to the required message signal 

bandwidth. We can remove the unwanted terms by passing this output voltage V0 (t) through 

the low pass filter and finally we will get required message signal. 

 

V0 (t) = Ac2 a2 m (t) 

 

The Fourier transform of output voltage VO (t) is given by VO (f) = Ac2 a2 M (f) 
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Envelope detector is used to detect high level modulated levels, whereas 

 

square-law detector is used to detect low level modulated signals (i.e., below 1v). It is also 

based on the switching action or switching characteristics of a diode. It consists of a diode 

and a resistor-capacitor filter. The operation of the envelope detector is as follows. On a 

positive half cycle of the input signal, the diode is forward biased and the capacitor C charges 

up rapidly to the peak value of the input signal. When the input signal falls below this value, 

the diode becomes reverse biased and the capacitor C discharges slowly through the load 

resistor Rl . The discharging process continues until the next positive half cycle. When the 

input signal becomes greater than the voltage across the capacitor, the diode conducts again 

and the process is repeated. 

 

The charging time constant RsC is very small when compared to the 

 

carrier period 1/fc i.e., RsC << 1/fc 

Where Rs = internal resistance of the voltage source. 

C = capacitor 

fc = carrier frequency 

i.e., the capacitor C charges rapidly to the peak value of the signal. The discharging time 

constant RlC is very large when compared to the 

 

charging time constant i.e., 
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1/fc << RlC << 1/W 

 

 

Where Rl = load resistance value 

 

 

W = message signal bandwidth 

i.e., the capacitor discharges slowly through the load resistor. 

 

Advantages: 

 

It is very simple to design 

It is inexpensive 

Efficiency is very high when compared to Square Lawdetector 

 

Disadvantage: 

 

Due to large time constant, some distortion occurs which isknown 

 

as diagonal clipping i.e., selection of time constant is somewhat difficult 

 

Application: 

 

It is most commonly used in almost all commercial AM Radioreceivers. 

 

Types of Amplitude modulation:- 

 

There are three types of amplitude modulation. 

 They are: 

Double Sideband-Suppressed Carrier(DSB-SC) modulation

Single Sideband(SSB) modulation

Vestigial Sideband(SSB) modulation 

 

 

 

DOUBLE SIDEBAND-SUPPRESSED CARRIER (DSBSC) MODULATION 

 

Double sideband-suppressed (DSB-SC) modulation, in which the transmitted wave consists 

of only the upper and lower sidebands. Transmitted power is saved through the suppression 

of the carrier wave, but the channel bandwidth requirement is same as in AM (i.e. twice the 

bandwidth of the message signal). Basically, double sideband-suppressed (DSB-SC) 

modulation consists of the product of both the message signal m (t) and the carrier signal 

c(t),as follows: 

 

 

S (t) =c (t) m (t) 

 

S (t) =Ac cos (2 fct) m (t) The modulated signal s (t) undergoes a phase reversal whenever 

the message signal m (t) crosses zero. The envelope of a DSB-SC modulated signal is 

different from the message signal. The transmission bandwidth required by DSB-SC 

modulation is the same as that for amplitude modulation which is twice the bandwidth of the 

message signal, 2W. Assume that the message signal is band-limited to the interval –W ≤f≤ 

W 
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Single-tone modulation:- 

 

In single-tone modulation modulating signal consists of only one frequency component 

where as in multi-tone modulation modulating signal consists of more than one frequency 

components. The standard time domain equation for the DSB-SC modulation is given by 

 

   

S (t) =Ac cos (2π fct) m (t)………………… (1) 

 

Assume m (t) =Amcos (2π fmt)……………….. (2) 

 

Substitute equation (2) in equation (1) we will get  

                         

                                  S (t) =Ac Am cos (2π fct) cos (2π fmt) 

 

S (t) = Ac Am/2[cos 2π (fc-fm) t + cos 2π (fc+fm)t]…………… (3) 
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The Fourier transform of s (t) is 

 

                     

 

S (f) =Ac Am/4[δ (f-fc-fm) + δ (f+fc+fm)] + Ac Am/4[δ fc+fm) + 

δ(f+fc+fm)] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power calculations of DSB-SC waves:- 

 

Total power PT = PLSB+PUSB 

Total power PT =Ac2Am2/8+Ac2Am2/8 

Total power PT =Ac2Am2/4 

 

Generation of DSB-SC waves:- 

 

There are two methods to generate DSB-SC waves. They are: 

 

Balanced modulator 

Ring modulator 



55 
 

One possible scheme for generating a DSBSC wave is to use two AM modulators arranged in 

a balanced configuration so as to suppress the carrier wave, as shown in above fig. Assume 

that two AM modulators are identical, except for the sign reversal of the modulating signal 

applied to the input of one of the modulators. Thus the outputs of the two AM modulators can 

be expressed as follows: 

 

S1 (t) = Ac [1+kam (t)] cos 2π fct 

 

and 

S2 (t) = Ac [1- kam (t)] cos 2π fct  

 

Subtracting S2 (t) from S1 (t), we obtain 

 

S (t) = S1 (t) – S2 (t) 

 

 

S (t) = 2Ac kam (t) cos 2 πfct 

 

 

Hence, except for the scaling factor 2ka the balanced modulator output is equalto product of 

the modulating signal and the carrier signal 

 

 

The Fourier transform of s (t) is 

                     

                           S (f) =kaAc [M (f-fc) + M (f+fc)]  

  

Assume that the message signal is band-limited to the interval –W ≤f≤ W 
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One of the most useful product modulator, well suited for generating a DSBSC wave, is the 

ring modulator shown in above figure. The four diodes form ring in which they all point in 

the same way-hence the name. The diodes are controlled by a square-wave carrier c (t) of 

frequency fc, which applied longitudinally by means of to center-tapped transformers. If the 

transformers are perfectly balanced and the diodes are identical, there is no leakage of the 

modulation frequency into the modulator output. 

 

            On one half-cycle of the carrier, the outer diodes are switched to their forward 

resistance rf and the inner diodes are switched to their backward resistance rb .on other half-

cycle of the carrier wave, the diodes operate in the opposite condition. The square wave 

carrier c (t) can be represented by a Fourier series as follows: 

 

∞ 

c (t)=4/π Σ (-1)n-1/(2n-1) cos [2πfct(2n-1)] n=1 

 

When the carrier supply is positive, the outer diodes are switched ON 

 

and the inner diodes are switched OFF, so that the modulator multiplies the message signal 

by +1 When the carrier supply is positive, the outer diodes are switched ON and the inner 

diodes are switched OFF, so that the modulator multiplies the message signal by +1.when the 

carrier supply is negative, the outer diodes are switched OFF and the inner diodes are 

switched ON, so that the modulator multiplies the message signal by -1. Now, the Ring 

modulator output is the product of both message signal m (t) and carrier signal c (t). 

 

S (t) =c (t) m (t) 

∞ 

S (t) =4/π     Σ          (-1) 
n-1

/ (2n-1) cos [2πfct (2n-1)] m (t) 

n=1 

For n=1 

S (t) =4/π cos (2πfct) m (t) 

There is no output from the modulator at the carrier frequency i.e the 

 

modulator output consists of modulation products. The ring modulator is 

 

sometimes referred to as a double-balanced modulator, because it is balanced with respect to 

both the message signal and the square wave carrier signal. The Fourier transform of s (t) is 

 

S (f) =2/π [M (f-fc) + M (f+fc)] 

Assume that the message signal is band-limited to the interval –W ≤f≤ W 
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The base band signal m (t) can be recovered from a DSB-SC wave s (t) by multiplying s(t) 

with a locally generated sinusoidal signal and then low pass filtering the product. It is 

assumed that local oscillator signal is coherent or synchronized, in both frequency and phase 

,with the carrier signal c(t) used in the product modulator to generate s(t).this method of 

demodulation is know as coherent detection or synchronous demodulation. The product 

modulator produces the product of both input signal and local oscillator and the output of the 

product modulator v (t) is given by 

 

v (t) =Áccos (2πfct+Ø) s (t) 

 

v( t) =Áccos (2πfct+Ø) Accos2πfct m (t) 

v (t) =Ac Ác/2 cos(2πfct+Ø) m(t)+ Ac Ác/2 cosØ m(t) 

 

The high frequency can be eliminated by passing this output voltage to the Low Pass Filter. 

Now the Output Voltage at the Low pass Filter is given by v0 (t) = Ac Ác/2 cosØ m (t) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The demodulated signal is proportional to the message signal m (t) when the phase error is 

constant. The Amplitude of this Demodulated signal is maximum when Ø=0, and it is 

minimum (zero) when Ø=±π/2 the zero demodulated signal, which occurs for Ø=±π/2 

represents quadrature null effect of the coherent detector. 

 

Disadvantages. 

First, with conventional AM, carrier power constitutes two thirds or more of the total 

transmitted power .This is a major drawback because the carrier contains no information. 
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Conventional AM systems utilize twice as much bandwidth as needed with SSB systems. 

With SSB transmission, the information contained in the USB is identical the information 

contained in the LSB. Therefore transmitting both sidebands is redundant. 

Consequently, Conventional AM is both power and bandwidth inefficient, which are the two 

predominant considerations when designing modern electronic communication systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Objective: 

Noise is ever present and limits the performance of virtually every system. The presence of 

noise degrades the performance of the Analog and digital communication systems. This 

chapter deals with how noise affects different Analog modulation techniques. After studying 

this chapter the should be familiar with the following 

 

Various performance measures of communication systems SNR calculations for DSB-SC, 

SSB-SC, Conventional AM, FM (threshold effect, threshold extension, pre-emphasis and 

 

deemphasis)and PM. 

Key points: 

 

The presence of noise degrades the performance of the Analog anddigital 

communication systems 

The extent to which the noise affects the performance ofcommunication system is 

measured by the output signal-to-noise power ratio or the probability of error. 

The SNR is used to measure the performance of the Analog communication systems, 

whereas the probability of error is used as a performance measure of digital communication 

systems  

figure of merit =γ= SNRo/SNRi 

 

The loss or mutilation of the message at low predetection SNR is calledas the 

threshold effect. The threshold occurs when SNRi is about 10dB or less. 
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Output SNR : 

 

             So= output signal power 

 

              Si = input signal power 

 

                  fM = base band signal frequency range 

 

                     The input noise is white with spectral density = η/2 You havepreviously 

studiedideal analog communication systems. Our aim here is to compare the performance of 

different analog modulation schemes in the presence of noise.The performance will be 

measured in terms of the signal-to-noise ratio (SNR) at the output of the receiverNote that 

this measure is unambiguous if the message and noise are additive at the receiver output; we 

will see that in some cases this is not so, and we need to resort to approximation methods to 

obtain a result. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Model of an analog communication system. [Lathi, Fig. 12.1] 

 

A model of a typical communication system is shown in Fig. 3.1, where we assume that a 

modulated signal with power PT is transmitted over a channel with additive noise. At the 

output of the receiver the signal and noise powers are PS and PN respectively, and hence, the 

output SNR is SNRo = P S/PN . This ratio can be increased as much as desired simply by 

increasing the transmitted power. However, in practice the maximum value of PT is limited 

by considerations such as transmitter cost, channel capability, interference with other 

channels, etc. In order to make a fair comparison between different modulation schemes, we 

will compare systems having the same transmitted power. 

 

Also,we need a common measurement criterion against which to compare the difference 

mod- ulation schemes. For this, we will use the baseband SNR. Recall that all modulation 

schemes are bandpass (i.e., the modulated signal is centered around a carrier frequency). A 

baseband communi- cation system is one that does not use modulation. Such a scheme is 

suitable for transmission over wires, say, but is not terribly practical. As we will see, 

however, it does allow a direct performance comparison of different schemes. 

 

Baseband Communication System 

 

A baseband communication system is shown in Fig. 3.2(a), where m(t) is the band-limited 

mes- sage signal, and W is its bandwidth. 
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Figure 3.2: Baseband communication system: (a) model, (b) signal spectra at filter input, and 

(c) signal spectra at filter output. [Ziemer & Tranter, Fig. 6.1] 

 

An example signal PSD is shown in Fig. 3.2(b). The average signal power is given by the 

area under the triangular curve marked “Signal”, and we will denote it by P . We assume that 

the additive noise has a double-sided white PSD of No/2 over some bandwidth B > W , as 

shown in Fig. 3.2(b). For a basic baseband system, the transmitted power is identical to the 

message power, i.e., PT = P. 

 

The receiver consists of a low-pass filter with a bandwidth W , whose purpose is to enhance 

the SNR by cutting out as much of the noise as possible. The PSD of the noise at the output 

of the LPF is shown in Fig. 3.2(c), and the average noise power is given by 

 

 

Thus, the SNR at the receiver output is 

SNR baseband =NoW 

 

Notice that for a baseband system we can improve the SNR by:  

(a) increasing the transmitted power,  

(b) restricting the message bandwidth, or 

 (c) making the receiver less noisy. 
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Noise in DSB-SC 

 

The predetection signal (i.e., just before the multiplier in Fig. 3.3) is 

 

x(t) = s(t) + n(t) (3.8) 

 

 

The purpose of the predetection filter is to pass only the frequencies around the carrier 

frequency, and thus reduce the effect of out-of-band noise. The noise signal n(t) after the 

predetection filter is bandpass with a double-sided white PSD of No/2 over a bandwidth of 2W 

(centered on the carrier frequency), as shown in Fig. 2.5. Hence, using the bandpass 

representation 

(2.25) the predetection signal is       

x(t) = [Am(t) + nc 

 

(t)] cos(2πfc t) − n s(t) sin(2πfc(t) 

 

t) (3.9) 

     

After multiplying by 2 cos(2πfct), this becomes 

 

y(t) = 2 cos(2πfct)x(t) 

 

= Am(t)[1 + cos(4πfc t)] + n (t)[1 + cos(4πfc t)] 

    

−ns(t)sin(4πfc(t) 

 

t) (3.10) 

    

where we have used (3.6) and     

2 cos x sin x = sin(2x) (3.11) 

Low-pass filtering will remove all of the 2fc frequency terms, leaving 

y˜(t) = Am(t) + n c(t) (3.12) 

     

The signal power at the receiver output is
 

 

PS = E{A
2
m

2
(t)} = A

2
E{m

2
(t)} = A

2
P (3.13) 

where, recall, P is the power in the message signal m(t). The power in the noise signal nc(t) is 



64 
 

 

 

 

since from (2.34) the PSD of nc(t) is No and the bandwidth of the LPF is W . Thus, for the 

DSB-SC synchronous demodulator, the SNR at the receiver output is 

 

A
2
P 

SNR
o 

=
 2oN W 

 

To make a fair comparison with a baseband system, we need to calculate the transmitted 

power 

We conclude that a DSB-SC system provides no SNR performance gain over a baseband 

system. 

 

It turns out that an SSB system also has the same SNR performance as a 

 

 

After low-pass filtering this becomes 

 

y˜(t) = A + m(t) + nc(t) 

 

Note that the DC term A can be easily removed with a DC block (i.e., a capacitor), and most 

AM demodulators are not DC-coupled. 

 

The signal power at the receiver output is 

 

PS 

 

= E{m2(t)} = P 
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UNIT III 
 

SSB MODULATION AND VESTIGIAL SIDE 

BAND MODULATION 
 

Generation of SSB waves: 

 

Filter method 

Phase shift method 

Third method (Weaver‟s method) 

 

Demodulation of SSB waves: 

 

Coherent detection: it assumes perfect synchronizationbetween the local carrier 

and that used in the transmitter both in frequency and phase. 

 

Effects of frequency and phase errors in synchronous detection-DSB-SC, SSB-SC: 

Any error in the frequency or the phase of the local oscillator signal in the receiver, with 

respect to the carrier wave, gives rise to distortion in the demodulated signal.The type of 

distortion caused by frequency error in the demodulation process is unique to SSB 

modulation systems. In order to reduce the effect of frequency error distortion in telephone 

systems, we have to limit the frequency error to 2-5 Hz.The error in the phase of the local 

oscillator signal results in phase distortion, where each frequency component of the message 

signal undergoes a constant phase shift at the demodulator output. This phase distortion is 

usually not serious with voice communications because the human ear is relatively 

insensitive to phase distortion; the presence of phase distortion gives rise to a Donald Duck 

voice effect. 

 

 

Phase Shift Method for the SSB Generation 

 

Fig. 1 shows the block diagram for the phase shift method of SSB generation . 

 

This system is used for the suppression of lower sideband . 

 

 

This system uses two balanced modulators M1 and M2 and two 90
o
 phase shifting networks as 

shown in fig. 1 . 
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Fig 1: Phase shift method for generating SSB signal 

 

Working Operation 
 

The message signal x(t) is applied to the product modulator M1 and through a 90
o
 phase 

shifter to the product modulator M2 . 

 

Hence, we get the Hilbert transform 

 

 

 

 

 

at the output of the wideband 90
o
 phase shifter . 

 

The output of carrier oscillator is applied as it is to modulator M1 whereas it s passed through 

a 90
o
 phase shifter and applied to the modulator M2 . 
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The outputs of  M1 and M2 are applied to an adder . 

 

 

 

 

Generation of VSB Modulated wave: 

 

To generate a VSB modulated wave, we pass a DSBSC modulated wave through a sideband-

shaping filter. 

 

In commercial AM radio broadcast systems standard AM is used in preference to DSBSC or 

SSB modulation.Suppressed carrier modulation systems require the minimum transmitter 

power and minimum transmission bandwidth.Suppressed carrier systems are well suited for 

point –to-point communications.SSB is the preferred method of modulation for long-distance 

transmission of voice signals over metallic circuits, because it permits longer spacing 

between the repeaters.VSB modulation requires a transmission bandwidth that isintermediate 

between that required for SSB or DSBSC.VSB modulation technique is used in TV 

transmissionDSBSC, SSB, and VSB are examples of linear modulation. In Commercial TV 

broadcasting, the VSB occupies a width of about 1.25MHz, or about one-quarter of a full 

sideband. 

 

Vestigial Side Band Modulation 

 

As mentioned last lecture, the two methods for generating SSB modulated signals suffer 

some problems. The selective–filtering method requires that the two side bands of the 

DSBSC modulated signal which will be filtered are separated by a guard band that allows the 

bandpass filters that are used to have non–zero transition band (so it allows for real filters). 

An ideal Hilbert transform for the phase–shifting method is impossible to build, so only an 

approximation of that can be used. Therefore, the SSB modulation method is hard, if not 

impossible, build. A compromise between the DSBSC modulation and the SSB modulation is 

known as Vestigial Side Band (VSB) modulation. This type of modulation is generated using 

a 

 

similar system as that of the selective–filtering system for SSB modulation. The following 

block diagram shows the VSB modulation and demodulation. 
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The above example for generating VSB modulated signals assumes that the VSB filter 

 

(HVSB( )) that the transition band of the VSB filter is symmetric in a way that adding the part 

that remains in the filtered signal from the undesired side band to the missing part of the 

desired side band during the process of demodulation produces an undusted signal at 

baseband. In fact, this condition is not necessary if the LPF in the demodulator can take care 

of any distortion that happens when adding the different components of the bandpass 

components at baseband. 

 

To illustrate this, consider a baseband message signal m(t) that has the FT shown in the 

following figure. 

 

The DSBSC modulated signal from that assuming that the carrier is 2cos( Ct) (the 2 in the 

carrier is placed there for convenience) is 

 

g DSBSC (t) m(t) cos(Ct) 
 

 

Note that the VSB filter is not an ideal filter with flat transfer function, so it has to appear in 

the equation defining the VSB signal. 

 

Now, let us demodulate this VSB signal using the demodulator shown above but use a non–

ideal filter HLPF( ) (the carrier here is also multiplied by 2 just for convenience) 
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So, this filter must be a LPF that has a transfer function around 0 frequency that is related to 

the VSB filter as given above. To illustrate this relationship, consider the following VSB BPF 

example. 
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Another example follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiplexing: 

 

It is a technique whereby a number of independent signals can be combined into a composite 

signal suitable for transmission over a common channel. There are two types of multiplexing 

techniques 

4. Frequency division multiplexing (FDM) : The technique of separating the signals in 

frequency is called as FDM 

5. Time division multiplexing: The technique of separating the signals in time is called 

as TDM. 
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UNIT-IV 
 

ANGLE MODULATION 
 

Objective: 

 

It is another method of modulating a sinusoidal carrier wave, namely, angle Modulation in 

which either the phase or frequency of the carrier wave is varied according to the message 

signal. After studying this the student should be familiar with the following 

 

o Definition of Angle Modulation 

 

o Types Angle Modulation- FM & PM 

 

o Relation between PM & FM 

 

o Phase and Frequency deviation 

o Spectrum of FM signals for sinusoidal modulation – sideband   

o features, power content. 

 

o Narrow band and Wide band FM 

o BW considerations-Spectrum of a constant BW FM, Carson‟s Rule 

 

o Phasor Diagrams for FM signals 

 

o Multiple frequency modulations – Linearity. 

 

o FM with square wave modulation. 

 

This deals with the generation of Frequency modulated wave and detection of original 

message signal from the Frequency modulated wave. After studying this chapter student 

should be familiar with the following Generation of FM Signals 

i. Direct FM – Parameter Variation Method (Implementation using 

varactor, FET) 

 

ii. Indirect FM – Armstrong system, Frequency Multiplication. 

FM demodulators- Slope detection, Balanced Slope Detection, Phase Discriminator (Foster 

Seely), Ratio Detector. 

 

Angle modulation: there are two types of Angle modulation techniques namely 

 

2. Phase modulation 

3. Frequency modulation 
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Phase modulation (PM) is that of angle modulation in which the angular argument θ (t) is 

varied linearly with the message signal m(t), as shown by 

 

θ(t) =2πfct+kpm(t) 

where 2πfct represents the angle of the unmodulated carrier 

kp represents the phase sensitivity of the modulator(radians/volt). The phase modulated wave 

s(t)=Accos[2πfct+kpm(t)] 

 

Frequency modulation (FM) is that of angle modulation in which the instantaneous 

frequency fi(t) is varied linearly with the message signal m(t), as shown by 

 

fi(t) =fc+kfm(t) 

 

                           Where fc represents the frequency of the unmodulated carrier 

 

kf represents the frequency sensitivity of the modulator(Hz/volt) The frequency modulated 

wave  

s(t)=Accos[2πfct+2πkf otm(t)dt] 

              FM wave can be generated by first integrating m(t) and then using the result as the 

input to a phase modulator 

 

PM wave can be generated by first differentiating m(t) and then using the result as the input 

to a frequency modulator. Frequency modulation is a Non-linear modulation process. Single 

tone FM: 

                                   Consider m(t)=Amcos(2πfmt) 

 

The instantaneous frequency of the resulting FM wave  

                                            fi(t) =fc+kf Amcos(2πfmt) 

 

= fc+ f cos(2πfmt) 

 

                         wheref = kf Am is called as frequency deviation 

 

θ (t) =2π  fi(t)dt 

 

         =2πfct+ f/fm sin(2πfmt) 

 

= 2πfct+β sin(2πfmt) 

 

 

Where β= f/fm= modulation index of the FM wave 

 

When β<<1 radian then it is called as narrowband FM consisting essentially of a carrier, an 

upper side-frequency  component, and a lower side-frequency component. 
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When β>>1 radian then it is called as wideband FM which contains a carrier and an infinite 

number of side-frequency components located symmetrically around the carrier. 

 

The envelope of an FM wave is constant, so that the average power of such a wave dissipated 

in a 1-ohm resistor is also constant. 

 

Plotting the Bessel function of the first kind Jn( ) for different orders n and different 

values of is shown below. 
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 Jn(β) β=1 β=2 β=3  β=4  β=5 β=6   

 n=0 0.7652 0.2239  -0.2601  -0.3971 -0.1776 0.1506   

 n=1 0.4401 0.5767  0.3391  -0.0660 -0.3276 -0.2767   

 n=2 0.1149 0.3528  0.4861  0.3641 0.0466 -0.2429   

 n=3 0.0196 0.1289  0.3091  0.4302 0.3648 0.1148   

 
n=4 0.0025 0.0340 

 
0.1320  0.2811 0.3912 0.3576 

  

    

 n=5 0.0002 0.0070  0.0430   0.1321 0.2611 0.3621   

               

 n=6 0.0000 0.0012  0.0114  0.0491  0.1310 0.2458   

 n=7 0.0000 0.0002  0.0025  0.0152  0.0534  0.1296   

 

n=8 0.0000 0.0000 

 

0.0005 

 

0.0040 0.0184 

   

   0.0565   

 n=9 0.0000 0.0000  0.0001  0.0009 0.0055 0.0212   

 n=10 0.0000 0.0000  0.0000  0.0002 0.0015 0.0070   

 

 

 

Frequency Spectrum of FM: 

 

The FM modulated signal in the time domain is given by: 

 

S(t)=Ac∑
∞

n= -∞ Jn(β)Cos[(ώc+n ώm)t] 

 

From this equation it can be seen that the frequency spectrum of an FM waveform with a 

sinusoidal modulating signal is a discrete frequency spectrum made up of components spaced at 

frequencies of c ± n m 

. 

 

By analogy with AM modulation, these frequency components are called sidebands. 

 

We can see that the expression for s(t) is an infinite series. Therefore the frequency spectrum of 

an FM signal has an infinite number of sidebands. 

 

The amplitudes of the carrier and sidebands of an FM signal are given by the corresponding 

Bessel functions, which are themselves functions of the modulation index. 

 

Specttra off an FM Siignall wiitth Siinusoiidall Modullattiion 

 

 

The following spectra show the effect of modulation index, , on the bandwidth of an FM signal, 

and the relative amplitudes of the carrier and sidebands 
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Carson’s Rule: Bandwidth is twice the sum of the maximum 

 

frequency deviation and the modulating frequency. 

 

BW=2( f+ fm) 

The nominal BW 2 f = 2 βfm 

 

 

Key points: 

 

Generation of FM waves: 

 

1. Indirect FM: This method was first proposed by Armstrong. In this method the 

modulating wave is first used to produce a narrow-band FM wave, and frequency 

multiplication is next used to increase the frequency deviation to the desired level. 

2. Direct FM: In this method the carrier frequency is directly varied in accordance with the 

incoming message signal. 

Detection of FM waves: 

To perform frequency demodulation we require 2-port device that produces an output signal 

with amplitude directly proportional to the instantaneous frequency of a FM wave used as the 

input signal. 

 

Fm detectors 
 

1)Slope detector 

 

2)Balanced Slope detector(Travis detector, Triple-tuned-discriminator) 
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3)Phase discriminator (Foster seeley discriminator or center-tuned discriminator)  

4)Ratio detector PLL demodulator and Quadrature detector 

 

The Slope detector, Balanced Slope detector, Foster seeleydiscriminator, and Ratio 

detector are one forms of tuned –circuit frequency discriminators. 

 

Tuned circuit discriminators convert FM to AM and then demodulatethe AM envelope 

with conventional peak detectors. 

Disadvantages of slope detector – poor linearity, difficulty in tuning,and lack of 

provisions for limiting. 

A Balanced slope detector is simply two single ended slope detectorsconnected in 

parallel and fed 180o out of phase. 

Advantage of Foster-seeley discriminator: output voltage-vs-frequencydeviation curve 

is more linear than that of a slope detector, it is easier to tune. 

Disadvantage of Foster-seeley discriminator: a separate limiter circuitmust precede it. 

Advantage of Ratio detector over Foster seeley discriminator: it isrelatively immune to 

amplitude variations in its input signal. 

 

FM DETECTORS: 

 

FM detectors convert the frequency variations of the carrier back into a replica of the original 

modulating signal. There are 5 basic types of FM detectors: 

 

1. Slope detector 

 

2. Foster-Seely Discriminator 

3. Ratio Detector 

4. Quadrature Detector 

5. Phase-Locked Loop (PLL) detector 
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1. SLOPE DETECTOR 

 

 

The slope detector is the simplest type of FM detector. A schematic diagram of a slope 

detector appears below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The operation of the slope detector is very simple. The output network of an amplifier is 

tuned to a frequency that is slightly more than the carrier frequency + peak deviation. As the 

input signal varies in frequency, the output signal across the LC network will vary in 

amplitude because of the band pass properties of the tank circuit. The output of this amplifier 

is AM, which can be detected using a diode detector. 

 

The circuit shown in the diagram above looks very similar to the last IF amplifier and 

detector of an AM receiver, and it is possible to receive NBFM on an AM receiver by 

detuning the last IF transformer. If this transformer is tuned to a frequency of approximately 1 

KHz above the IF frequency, the last IF amplifier will convert NBFM to AM. 

In spite of its simplicity, the slope detector is rarely used because it has poor linearity. To see 

why this is so, it is necessary to look at the expression for the voltage across the primary of 

the tuned transformer in the sloped detector 
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The voltage across the transformer's primary winding is related to the squareof the frequency. 

Since the frequency deviation of the FM signal is directlyproportional to the modulating 

signal's amplitude, the output of the slopedetector will be distorted. If the bandwidth of the 

FM signal is small, it ispossible to approximate the response of the slope detector by a linear 

function,and a slope detector could be used to demodulate an NBFM signal 

 

 

2. FOSTER-SEELY DISCRIMINATOR 

 

The Foster-Seely Discriminator is a widely used FM detector. The detector consists of a 

special center-tapped IF transformer feeding two diodes. The schematic looks very much like 

a full wave DC rectifier circuit. Because the input transformer is tuned to the IF frequency, 

the output of the discriminator is zero when there is no deviation of the carrier; both halves of 

the center tapped transformer are balanced. As the FM signal swings in frequency above and 

below the carrier frequency, the balance between the two halves of the center-tapped 

secondary are destroyed and there is an output voltage proportional to the frequency 

deviation. 
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The discriminator has excellent linearity and is a good detector for WFM and NBFM signals. Its 

major drawback is that it also responds to AM signals. A good limiter must precede a 

discriminator to prevent AM noise from appearing in the output. 

 

2.RATIO DETECTOR 

 

The ratio detector is a variant of the discriminator. The circuit is similar to the discriminator, but 

in a ratio detector, the diodes conduct in opposite directions. Also, the output is not taken across 

the diodes, but between the sum of the diode voltages and the center tap. The output across the 

diodes is connected to a large capacitor, which eliminates AM noise in the ratio detector output. 

The operation of the ratio detector is very similar to the discriminator, but the output is only 50% 

of the output of a discriminator for the same input signal. 

 

 

 

 

 

 

 

 

 

 

 

 

1. SSB-SC: 

 

So/Si =1/4 

No= ηfM/4 

 

SNRo= Si/ ηfM 

2. DSB-SC: 

So/Si =1/2 

No= ηfM/2 

SNRo= Si/ ηfM 

3. DSB-FC: 

SNRo= {m2/(2+m2)}Si/ ηfM 

 

Figure of merit of FM: 

 

γFM = 3/2β2 

Figure of merit of AM & FM : 

 

γFM/ γAM = 9/2β2 = 9/2 (BFM/BAM)2 

The noise power spectral density at the output of the demodulator in 

PM is flat within the message bandwidth whereas for FM the noise 

power spectrum has a parabolic shape.  
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The modulator filter which emphasizes high frequencies is called thepre-emphasis 

filter(HPF) and the demodulator filter which is the inverse of the modulator filter is called the de-

emphasis filter(LPF). 
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UNIT-V 
 

 

RECEIVERS AND SAMPLING THEORM 
 

 

Introduction 

 

 

This unit centers around basic principles of the super heterodyne receiver. In The article, we will 

discuss the reasons for the use of the super heterodyne and various topics which concern its 

design, such as the choice of intermediate frequency, the use of its RF stage, oscillator tracking, 

band spread tuning and frequency synthesis. Most of the information is standard text book 

material, but put together as an introductory article, it can provide somewhere to start if you are 

contemplating building a receiver, or if you are considering examining specifications with an 

objective to select a receiver for purchase. 

 

TRF Receiver 

 

Early valve radio receivers were of the Tuned Radio Frequency (TRF) type consisting of one or a 

number of tuned radio frequency stages with individual tuned circuits which provided the 

selectivity to separate one received signal from the others. A typical receiver copied from a 1929 

issue of "The Listener In" is shown in Figure 1. Tuned circuits are separated by the radio 

frequency (RF) amplifier stages and the last tuned circuit feeds the AM detector stage. This 

receiver belongs to an era before the introduction of the screen grid valve and it is interesting to 

observe the grid-plate capacity neutralisation applied to the triode RF amplifiers to maintain 

amplifier stability. In these early receivers, the individual tuning capacitors were attached to 

separate tuning dials, as shown in Figure 2, and each of these dials had to be reset each time a 

different station was selected. Designs evolved for receivers with only one tuning dial, achieved 

by various methods of mechanical ganging the tuning capacitors, including the ganged multiple 

tuning capacitor with a common rotor shaft as used today. 

 

The bandwidth of a tuned circuit of given Q is directly proportional to its operational frequency 

and hence, as higher and higher operating frequencies came into use, it became more difficult to 

achieve sufficient selectivity using the TRF 
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Receiver system. 

 
 

 
 

FIGURE: AM RECEIVER 

 

The Super Heterodyne Principle 

 

The super heterodyne (short for supersonic heterodyne) receiver was first evolved by Major 

Edwin Howard Armstrong, in 1918. It was introduced to the market place in the late 1920s and 

gradually phased out the TRF receiver during the 1930s. 

 

The principle of operation in the super heterodyne is illustrated by the diagram in Figure 4. In 

this system, the incoming signal is mixed with a local oscillator to produce sum and difference 

frequency components. The lower frequency difference component called the intermediate 

frequency (IF), is separated from the other components by fixed tuned amplifier stages set to the 

intermediate frequency. The tuning of the local oscillator is mechanically ganged to the tuning of 

the signal circuit or radio frequency (RF) stages so that the difference intermediate frequency is 

always the same fixed value. Detection takes place at intermediate frequency instead of at radio 

frequency as in the TRF receiver  

Superheterodyne Receiver. 
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Use of the fixed lower IF channel gives the following advantages: 

 

1. For a given Q factor in the tuned circuits, the bandwidth is lower making it easier to achieve 

the required selectivity. 

2. At lower frequencies, circuit losses are often lower allowing higher Q factors to be achieved 

and hence, even greater selectivity and higher gain in the tuned circuits. 

3. It is easier to control, or shape, the bandwidth characteristic at one fixed frequency. Filters 

can be easily designed with a desired band pass characteristic and slope characteristic, an 

impossible task for circuits which tune over a range of frequencies. 

4. Since the receiver selectivity and most of the receiver pre-detection gain, are both controlled 

by the fixed IF stages, the selectivity and gain of the super heterodyne receiver are more 

consistent over its tuning range than in the TRF receiver. 
 
 

 
 

Figure : An illustration of how image frequency provides a second mixing product. 
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Second Channel or Image frequency 

 

One problem, which has to be contended within the super heterodyne receiver, is its ability to 

pick up a second or imago frequency removed from the signal frequency by a value equal to 

twice the intermediate frequency. 

To illustrate the point, refer Figure 5. In this example, we have a signal frequency of 1 MHz 

which mix to produce an IFof 455kHz. A second or image signal, with a frequency equal to 1 

MHz plus (2 x 455) kHz or 1.910 MHz, can also mix with the 1.455 MHz to produce the 455 

kHz. 

 

Reception of an image signal is obviously undesirable and a function of the RF tuned 

 

circuits (ahead of the mixer), is to provide sufficient selectivity to reduce the image sensitivity of 

the receiver to tolerable levels. 

Choice of intermediate frequency 

Choosing a suitable intermediate frequency is a matter of compromise. The lower the IF used, 

the easier it is to achieve a narrow bandwidth to obtain good selectivity in the receiver and the 

greater the IF stage gain. On the other hand, the higher the IF, the further removed is the image 

frequency from the signal frequency and hence the better the image rejection. The choice of IF is 

also affected by the selectivity of the RF end of the receiver. If the receiver has a number of RF 

stages, it is better able to reject an image signal close to the signal frequency and hence a lower 

IF channel can be tolerated. 

 

Another factor to be considered is the maximum operating frequency the receiver. Assuming Q 

to be reasonably constant, bandwidth of a tuned circuit is directly proportional to its resonant 

frequency and hence, the receiver has its widest RF bandwidth and poorest image rejection at the 

highest frequency end of its tuning range. 

 

A number of further factors influence the choice of the intermediate frequency: 

 

 

1. The frequency should be free from radio interference. Standard intermediate frequencies have 

been established and these are kept dear of signal channel allocation. If possible, one of these 

standard frequencies should be used. 

 

2. An intermediate frequency which is close to some part of the tuning range of the receiver is 

avoided as this leads to instability when the receiver is tuned near thefrequency of the IF 

channel. 

 

3. Ideally, low order harmonics of the intermediate frequency (particularly second and third 

order) should not fall within the tuning range of the receiver. This requirement cannot always be 

achieved resulting in possible heterodyne whistles at certain spots within the tuning range. 

 

4. Sometimes, quite a high intermediate frequency is chosen because the channel must pass very 

wide band signals such as those modulated by 5 MHz video used in television. In this case the 

wide bandwidth circuits are difficult to achieve unless quite high frequencies are used. 
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5. For reasons outlined previously, the intermediate frequency is normally lower than the RF or 

signal frequency. However, there we some applications, such as in tuning the Low Frequency 

(LF) band, where this situation could be reversed. In this case, there are difficulties in making the 

local oscillator track with the signal circuits. 

 

Some modern continuous coverage HF receivers make use of the Wadley Loop or a synthesised 

VFO to achieve a stable first oscillator source and these have a first intermediate frequency 

above the highest signal frequency. The reasons for this will be discussed later. 

 

Standard intermediate frequencies 

 

Various Intermediate frequencies have been standardised over the years. In the early days of the 

superheterodyne, 175 kHz was used for broadcast receivers in the USA and Australia. These 

receivers were notorious for their heterodyne whistles caused by images of broadcast stations 

other than the one tuned. The 175 kHz IF was soon overtaken by a 465 kHz allocation which 

gave better image response. Another compromise of 262kHz between 175 and 465 was also used 

to a lesser extent. The 465 kHz was eventually changed to 455 kHz, still in use today. 

 

 

In Europe, long wave broadcasting took place within the band of 150 to 350 kHz and a more 

suitable IF of 110 kHz was utilised for this band. 

 

The IF of 455 kHz is standard for broadcast receivers including many communication receivers. 

Generally speaking, it leads to poor image response when used above 10 MHz. The widely used 

World War 2 Kingsley AR7 receiver used an IF of 455 kHz but it also utillised two RF stages to 

achieve improved RF selectivity and better image response. One commonly used IF for 

shortwave receivers is 1.600 MHz and this gives a much improved image response for the HF 

spectrum. 

 

Amateur band SSB HF transceivers have commonly used 9 MHz as a receiver intermediate 

frequency in common with its use as a transmitter intermediate frequency. This frequency is a 

little high for ordinary tuned circuits to achieve the narrow bandwidth needed in speech 

communication; however, the bandwidth in the amateur transceivers is controlled by specially 

designed ceramic crystal filter networks in the IF channel. 

 

Some recent amateur transceivers use intermediate frequencies slightly below 9 MHz. A 

frequency of 8.830 MHz can be found in various Kenwood transceivers and a frequency of 

8.987.5 MHz in some Yaesu transceivers. This change could possibly be to avoid the second 

harmonic of the IF falling too near the edge of the more recently allocated 18 MHz WARC band. 

(The edge of the band is 18.068 MHz). 

 

General coverage receivers using the Wadley Loop, or a synthesised band set VFO, commonly 

use first IF channels in the region of 40 to 50 MHz 
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An IF standard for VHF FM broadcast receivers is 10.7 MHz In this case, the FM deviation used 

is 75 kHz and audio range is 15 kHz. The higher IF is very suitable as the wide bandwidth is 

easily obtained with good image rejection. A less common IF is 4.300 MHz believed to have 

been used in receivers tuning the lower end of the VHF spectrum. 

 

As explained earlier, a very high intermediate frequency is necessary to achieve the wide 

bandwidth needed for television and the standard in Australia is the frequency segment of 30.500 

to 30.6.000 MHz 

 

Multiple Conversion Super Heterodyne Receiver 

 

In receivers tuning the upper HF and the VHF bands, two (or even more) IF channels are 

commonly used with two (or more) stages of frequency conversion. The lowest frequency IF 

channel provides the selectivity or bandwidth control that is needed and the highest frequency IF 

channel is used to achieve good Image rejection. A typical system used in two meter FM amateur 

transceivers is shown in Figure 6. In this system, IF channels of 10.7 MHz and 455 kHz are used 

with double conversion. The requirement Is different to that of the wideband FM broadcasting 

system as frequency deviation is only 5 kHz with an audio frequency spectrum limited to below 

2.5 kHz. Channel spacing is 25 kHz and bandwidth is usually limited to less than 15 kHz so that 

the narrower bandwidth 455 kHz IF channel is suitable. Some modern HF SSB transceivers use a 

very high frequency IF channel such as 50 MHz. Combined with this, a last IF channel of 455 

KHz is used to provide selectivity and bandwidth control. Where there is such a large difference 

between the first and last intermediate frequency, three stages of conversion and a middle 

frequency IF channel are needed. This is necessary to prevent on image problem initiating in the 

50 MHz IF channel due to insufficient selectivity in that channel. For satisfactory operation, the 

writer suggests a rule of thumb that the frequency ratio between the RF channel and the first IF 

channel, or between subsequent IF channels, should not exceed a value of 10. 

 

 

The RF Amplifier 

 

A good receiver has at least one tuned RF amplifier stage ahead of the first mixer. As discussed 

earlier, one function of the RF stage is to reduce the image frequency level into the mixer. The 

RF stage also carries out a number of other useful functions: 

 

1. The noise figure of a receiver is essentially determined by the noise generated in the first stage 

connected to the aerial system. Mixer stages are inherently more noisy than straight amplifiers 

and a function of the RF amplifier is to raise the signal level into the mixer so that the signal to 

noise ratio is determined by the RF amplifier characteristics rather than those of the mixer. 

 

2. There Is generally an optimum signal Input level for mixer stages. If the signal level is 

increased beyond this optimum point, the levels of inter modulation products steeply increase 

and these products can cause undesirable effects in the receiver performance. If the signal level is 

too low, the signal to noise rate will be poor. A function of the RF amplifier is to regulate the 

signal level into the mixer to maintain a more constant, near optimum, level. To achieve this 
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regulation, the gain of the RF stage is controlled by an automatic gain control system, or a 

manual gain control system, or both. 

 

3. Because of its non-linear characteristic, the mixer is more prone to cross modulation 

 

from a strong signal on a different frequency than is the RF 

amplifier. The RF tuned circuits, ahead of the mixer, help to reduce the level of the unwanted 

signal into the mixer input and hence reduce the susceptibility of the mixer to cross-modulation. 

 

4. If, by chance, a signal exists at or near the IF, the RF tuned circuits provide attenuation to that 

signal. 

 

5. The RF stage provides isolation to prevent signals from the local oscillator reaching the aerial 

and causing interference by being radiated. 

 

 

Oscillator Tracking 

 

Whilst the local oscillator circuit tunes over a change in frequency equal to that of the RF 

circuits, the actual frequency is normally higher to produce the IF frequency difference 

component and hence less tuning capacity change is needed than in the RF tuned circuits. Where 

a variable tuning gang capacitor has sections of the same capacitance range used for both RF and 

oscillator tuning, tracking of the oscillator and RF tuned circuits is achieved by capacitive 

trimming and padding. 

 

                    Figure shows a local oscillator tuned circuit (L2,C2) ganged to an RF tuned circuit 

(Ll,Cl) with Cl and C2 on a common rotor shaft. The values of inductance are set so that at the 

centre of the tuning range, the oscillator circuit tunes to a frequency equal to RF or signal 

frequency plus intermediate frequency. 

A capacitor called a padder, in series with the oscillator tuned circuit, reduces the maximum 

capacity in that tuning section so that the circuit tracks with the RF section near the low 

frequency end of the band. 

 

Small trimming capacitors are connected across both the RF and oscillator tuned circuits to 

adjust the minimum tuning capacity and affect the high frequency end of the band. The oscillator 

trimmer is preset with a little more capacity than the RF trimmer so that the oscillator circuit 

tracks with RF trimmer near the high frequency end of the band. 

 

Curve A is the RF tuning range. The solid curve B shows the ideal tuning range required for the 

oscillator with a constant difference frequency over the whole tuning range. Curve C shows what 

would happen if no padding or trimming were applied. Dotted curve B shows the correction 

applied by padding and trimming. Precise tracking is achieved at three points in the tuning range 

with a tolerable error between these points. 
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Figure : Tracking Circuit 

 

A capacitor called a padder, in series with the oscillator tuned circuit, reduces the maximum 

capacity in that tuning section so that the circuit tracks with the RF section near the low 

frequency end of the band. 

 

Small trimming capacitors are connected across both the RF and oscillator tuned circuits to 

adjust the minimum tuning capacity and affect the high 

 

frequency end of the band. The oscillator trimmer is preset with a little more capacity than the 

RF trimmer so that the oscillator circuit tracks with RF trimmer near the high frequency end of 

the band. 

 

Curve A is the RF tuning range. The solid curve B shows the ideal tuning range required for the 

oscillator with a constant difference frequency over the whole tuning range. Curve C shows what 

would happen if no padding or trimming were applied. Dotted curve B shows the correction 

applied by padding and trimming. Precise tracking is achieved at three points in the tuning range 

with a tolerable error between these points. 

 

 

Where more than one band is tuned, not only are separate inductors required for each band, but 

also separate trimming and padding capacitors, as the degree of capacitance change correction is 

different for each band. 

 

The need for a padding capacitor can be eliminated one band by using a tuning gang capacitor 

with a smaller number of plates in the oscillator section than in the RF sections. If tuning more 
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than one band, the correct choice of capacitance for the oscillator section will not be the same for 

all bands and padding will still be required on other bands. 

 

Alignment of the tuned circuits can be achieved by providing adjustable trimmers and padders. 

In these days of adjustable magnetic cores in the inductors, the padding capacitor is likely to be 

fixed with the lower frequency end of the band essentially set by the adjustable cores. 

 

OSCILLATOR STABILITY 

 

The higher the input frequency of a receiver, the higher is the first local oscillator frequency and 

the greater is the need for oscillator stability. A given percentage frequency drift at higher 

frequencies amounts to a larger percentage drift in IF at the detector. Good stability is 

particularly important in a single sideband receiver as a small change in signal frequency is very 

noticeable as a change in the speech quality, more so than would be noticeable in AM or FM 

systems. 

 

Frequency stability in an oscillator can be improved by care in the way it is designed and built. 

Some good notes on how to build a stable variable frequency oscillator were prepared by Draw 

Diamond VK3XU, and published in Amateur Radio, January 1 1998. 

One way to stabilize a receiver tunable oscillator is to use an automatic frequency control (AFC) 

system. To do this, a frequency discriminator can be operated from the last IF stage and its 

output fed back via a low pass filter (or long time constant circuit) to a frequency sensitive 

element in the oscillator. Many of today's receivers and transceivers also make use of phase 

locked loop techniques to achieve frequency control. 

Where there are several stages of frequency conversion and the front end is tuned, the following 

oscillator stages, associated with later stage conversion, are usually fixed in frequency and can be 

made stable by quartz crystal control. In this case, receiver frequency stability is set by the first 

oscillator stability. 

 

One arrangement, which can give better stability, is to crystal lock the first oscillator stage but 

tune the first IF stage and second oscillator stage as shown in Figure. In this case, the RF tuned 

circuits are sufficiently broadband to cover a limited tuning range (such as an amateur band) but 

selective enough to attenuate the image frequency and other possible unwanted signals outside 

the tuning range. This is the method used when a converter Is added to the front end of a HF 

receiver to tune say the two meter band. 

 

The RF circuits in the converter are fixed, the converter oscillator is crystal locked and the HF 

receiver RF and first oscillator circuits become the tunable first IF stage and second tunable 

oscillator, respectively. Since the HF receiver tunable oscillator is working at a lower frequency 

than the first oscillator in the converter, the whole system is inherently more stable than if the 

converter oscillator were tuned. As stated earlier, the system is restricted to a limited tuning 

range and this leads to a discussion on band spread tuning and other systems incorporating such 

ideas as the Wadley Loop.
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Superheterodyne AM Radio Receiver 

 

Since the inception of the AM radio, it spread widely due to its ease of use and more importantly, 

it low cost. The low cost of most AM radios sold in the market is due to the use of the full 

amplitude modulation, which is extremely inefficient in terms of power as we have seen 

previously. The use of full AM permits the use of the simple and cheap envelope detector in the 

AM radio demodulator. In fact, the AM demodulator available in the market is slightly more 

complicated than a simple envelope detector. The block diagram below shows the construction 

of a typical AM receiver and the plots below show the signals in frequency–domain at the 

different parts of the radio. 
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Description of the AM Superheterodyne Radio Receiver 

 

Signal a(t) at the output of the Antenna: The antenna of the AM radio receiver receives the 

whole band of interest. So it receives signals ranging in frequency from around 530 kHz to 1650 

kHz as shown by a(t) in the figure. Each channel in this band occupies around 10 kHz of 

bandwidth and the different channels have center frequencies of 540, 550, 560, …. , 1640 kHz. 

 

Signal b(t) at the output of the RF (Radio Frequency) Stage: The signal at the output of the 

antenna is extremely week in terms of amplitude. The radio cannot process this signal as it is, so 

it must be amplified. The amplification does not amplify the whole spectrum of the AM band 

and it does not amplify a single channel, but a range of channels is amplified around the desired 

channel that we would like to receive. The reason for using a BPF in this stage although the 

desired channel is not completely separated from adjacent channels is to avoid possible 

interference of some channels later in the demodulation process if the whole band was allowed to 

pass (assume the absence of this BPF and try demodulating the two channels at the two edges of 

the AM band, you will see that one of these cannot be demodulated). Also, the reason for not 

extracting the desired channel alone is that extracting only that channel represents a big 

challenge since the filter that would have to extract it must have a constant bandwidth of 10 kHz 

and a center frequency in the range of 530 kHz to 1650 kHz. Such a filter is extremely difficult 
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to design since it has a high Q–factor (center frequency/bandwidth) let alone the fact that its 

center frequency is variable. Therefore, the process of extracting only one channel is left for the 

following stages where a filter with constant center frequency may be used. Note in the block 

diagram above that the center frequency of the BPF in the RF stage is controlled by a variable 

capacitor with a value that is modified using a knob in the radio (the tuning knob). 

 

Signal c(t) at the output of the Local Oscillator: This is simply a sinusoid with a variable 

frequency that is a function of the carrier frequency of the desired channel. The purpose of 

multiplying the signal b(t) by this sinusoid is to shift the center frequency of b(t) to a constant 

frequency that is called IF (intermediate frequency). Therefore, assuming that the desired 

channel (the channel you would like to listen to) has a frequency of fRF and the IF frequency that 

we would like to move that channel to is  fIF, one choice for the frequency of the local oscillator 

is to be fRF + fIF. The frequency of the local oscillator is modified in the radio using a variable 

capacitor that is also controlled using the same tuning knob as the variable capacitor that controls 

the center frequency of the BPF filter in the RF stage. The process of controlling the values of 

two elements such as two variable capacitors using the same knob by placing them on the same 

shaft is known as GANGING. 

 

Signal d(t) at the output of the Multiplier (Usually called frequency converter or mixer): The 

signal here should contain the desired channel at the constant frequency fIF regardless of the 

original frequency of the desired channel. Remember that this signal does not only contain the 

desired channel but it contains also several adjacent channels and also contain images of these 

channels at the much higher frequency  2fRF + fIF (since multiplying by a cosine shifts the 

frequency of the signal to the left and to the right). When this type of radios was first invented, a 

standard was set for the value for the IF frequency to be 455 kHz. There is nothing special about 

this value. A range of other values can be used. 

 

Signal e(t) at the output of the IF Stage: Now that the desired channel is located at the IF 

frequency, a relatively simple to create BP filter with BW of 10 kHz and center frequency of  fIF 

can be used to extract only the desired channel and reject all adjacent channels. This filter has a 

constant Q factor of about 455/10 = 45.5 (which is not that difficult to create), but more 

importantly has a constant center frequency. Therefore the output of this stage is the desired 

channel alone located at the IF frequency. This stage also contains a filter that amplifies the 

signal to a level that is sufficient for an envelope detector to operate on. 

 

Signal f(t) at the output of the Envelope Detector: The signal above is input to an envelope 

detector that extracts the original unmodulated signal from the modulated signal and also rejects 

any DC that is present in that signal. The output of that stage becomes the original signal with 

relatively low power. 

 

Signal g(t) at the output of the Audio Stage (Power Amplifier): Since the output of the envelope 

detector is generally weak and is not sufficient to drive a large speaker, the use of an amplifier 

that increases the power in the signal is necessary. Therefore, the output of that stage is the 

original audio signal with relatively high power that can directly be input to a speaker. 
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Section 6:  Sampling & Reconstruction     

  

This section is concerned with digital signal processing systems capable of operating on 

analogue signals which must first be sampled and digitised.  The resulting digital signals often 

need to be converted back to analogue form or “reconstructed”.  Before starting, we review 

some facts about analogue signals. 

 

6.1. Some analogue signal theory: 

 

1.  Given an analogue signal xa(t),  its analogue Fourier Transform Xa(j) is its spectrum where 

 is the frequency in radians per second.  Xa(j) is complex but we often concentrate on the 

modulus |Xa(j)|. 

 

2.   An analogue unit impulse (t) may be visualised as a very high (infinitely high in theory) 

very narrow (infinitesimally narrow) rectangular pulse, applied starting at time t=0, with area 

(height in volts times width in seconds) equal to one volt-second.  The area is the impulse 

strength.  We can increase the impulse strength by making the pulse we visualise higher for a 

given narrowness.  The “weighted” impulse then becomes A(t) where A is the new impulse 

strength.  We can also delay the weighted impulse  by  seconds to obtain A(t-).  An upward 

arrow labelled with “A” denotes an impulse of strength A. 

 

6.2 Sampling an analogue signal 

 

Given an analogue signal xa(t) with Fourier Transform Xa(j), consider what happens when we 

sample xa(t) at intervals of T seconds to obtain the discrete time signal {x[n]} defined as the 

sequence:  

                           { ...,x[-1],  x[0],  x[1],  x[2],  x[3], ... } 

with the underlined sample occurring at time t=0.  It follows that x[1] = xa(T), x[2] = xa(2T), etc. 

The sampling rate is 1/T Hz or 2/T radians/second. 

 

Define a new analogue signal xS(t) as follows: 

 

x ts

n

( )    x [n ]  ( t - n T )

 



  



 

 
           = sampleT{x(t)} 

 

where (t) denotes an analogue impulse.  As illustrated in Figure 1, xs(t) is a succession of 

delayed impulses, each impulse being multiplied by a sample value of {x[n]}.  The Fourier 

transform of xs(t) is: 

                  

nT j-

n

 tj-

n

 tj-

n

s

e ]n[x    =           

dt  e  nT)-(t    ]n[x    =           

dt e nT)-(t ]n[x  )j(X



























 





 

x[-1]  x[0]   
x[1]  

x[2]  
x[3]   

x[4]    
t     

T    

xs(t)  

Fig. 1 
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If we replace   by  T, this expression is ready  known to us as the discrete time Fourier 

transform (DTFT) of {x[n]}.  

 

6.3. Relative frequency:  Remember that   is „relative frequency‟ in units of “radians per 

sample”.  It is related to ordinary frequency,  in radians/second, as follows:- 

                            =  T   =   /fs where fs is the sampling rate in Hertz. 

 

6.4 Discrete time Fourier transform (DTFT) related to Fourier Transform: 

The DTFT of {x[n]} is therefore identical to the Fourier transform (FT) of the analogue signal 

xS(t) with  denoting T.  

 

6.5. Relating the DTFT of {x[n]} to the FT of xa(t): 

 

What we really want to do is relate the DTFT of {x[n]} to the Fourier Transform (FT) of the 

original analogue signal xa(t). To achieve this we quote a convenient form of the 'Sampling 

Theorem': 

 

 Given any signal xa(t) with Fourier Transform Xa(j), the Fourier Transform of  

             xS(t) = sampleT{xa(t)}  is  XS(j) = (1/T)repeat2/T{Xa(j)}. 

 

 By 'sampleT{xa(t)}' we mean a series of impulses at intervals T each weighted by the 

appropriate value of xa(t) as seen in fig 1. 

 By 'repeat2/T{Xa(j)}' we mean (loosely speaking) Xa(j) repeated at frequency intervals of 

2/T. This definition will be made a bit more precise later when we consider 'aliasing'. 

This theorem states that Xs(j) is equal to the sum of an infinite number of identical copies of 

Xa(j) each scaled by 1/T and shifted up or down in frequency by a multiple of 2/T radians per 

second, i.e. 

    
   ))T/2( j(X

T

1
  ))T/2( j(X

T

1
  )j(X

T

1
  )j(X aaas

 
This equation is valid for any analogue signal xa(t).   

 

6.6: Significance of the Sampling Theorem: 

 

For an analogue signal xa(t) which is band-limited to a frequency range between -/T and +/T 

radians/sec (fs/2 Hz) as illustrated in Figure 2, Xa(j) is zero for all values of  with    

/T. It follows that 

                       Xs(j)  =  (1/T) Xa(j)     for    -/T  <   < /T                      

 

 

-/T  /T   

 

Xa(j )  



   
/T  2/T   

Xs(j) 

Fig. 2 

-/T -2/T 
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This is because Xa(j( - 2/T)), Xa(j( + 2/T) and Xa(j) do not overlap.  Therefore if we take 

the DTFT of  {x[n]} (obtained by sampling xa(t)), set =/T to obtain XS(j), and then remove 

everything outside /T radians/sec and multiply by T, we get back the original spectrum 

Xa(j) exactly;  we have lost nothing in the sampling process.  From the spectrum we can get 

back to xa(t) by an inverse FT.  We can now feel confident when applying DSP to the sequence 

{x[n]} that it truly represents the original analogue signal without loss of fidelity due to the 

sampling process.  This is a remarkable finding of the “Sampling Theorem”. 

 

6.7: Aliasing distortion  

In Figure 3, where Xa(j) is not band-limited to the frequency range -/T to /T, overlap occurs 

between Xa(j(-2/T)), Xa(j) and Xa(j(+2/T)).  Hence if we take Xs(j) to represent 

Xa(j)/T  in this case for 

 -/T < < /T, the representation will not be accurate, and Xs(j) will be a distorted version of 

Xa(j)/T.  This type of distortion, due to overlapping in the frequency domain, is referred to as 

aliasing distortion. 

 

 The precise definition of 'repeat2/T{X(j)}' is "the sum of an infinite number of 

identical copies of Xa(j) each scaled by 1/T and shifted up or down in frequency by a multiple 

of 2/T radians per second".  It is only when Xa(j) is band-limited between /T that our 

earlier 'loosely speaking' definition strictly applies.  Then there are no 'overlaps' which cause 

aliasing. 

 

The properties of X(e
j

), as deduced from those of Xs(j) with = T, are now summarised. 

 

6.8: Properties of DTFT of {x[n]} related to Fourier Transform of xa(t): 

 

 (i)  If {x[n]} is obtained by sampling xa(t) which is bandlimited to fs/2 Hz (i.e. 2/T 

radians/sec),  

      at fs (= 1/T) samples per second then 

       X(e 
j 

)  =  (1/T) Xa(j)    for    -  <    (= T)   <                

       Hence X(e
j

) is closely related to the analogue frequency spectrum of xa(t) and is referred 

to  

       as the "spectrum" of  {x[n]}. 

 

(ii)  X(e 
j 

) is the Fourier Transform of an analogue signal xs(t) consisting of a succession of  

      impulses at intervals of T = 1/fs seconds multiplied by the corresponding elements of {x[n]}. 

 

6.9: Anti-aliasing filter:  To avoid aliasing distortion, we have to low-pass filter xa(t) to band-

limit the signal to fS/2 Hz.  It then satisfies “Nyquist sampling criterion”. 

 

-/T  /T        

X(j)|

  

   /T  2/T   

Xs(j) 

Fig. 3  

-/T -2/T 
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Example:    xa(t) has a strong sinusoidal component at 7 kHz.  It is sampled at 10 kHz without 

an anti-aliasing filter.  What happens to the sinusoids? 

 

Solution: 

                    

|Xa(j2   f )|

f

5kHz-5kHz  10kHz-10 k



 
 

                 

|DTFT|

f5 kHz-5 k--10 k 10 k  
 

It becomes a 3 kHz (=10 – 7kHz) sine-wave & distorts the signal. 

 

6.10: Reconstruction of xa(t):   
Given a discrete time signal {x[n]}, how can we reconstruct an analogue signal xa(t), band-

limited to fs/2 Hz, whose Fourier transform is identical to the DTFT of {x[n]} for frequencies 

in the range -fs/2 to fs/2?   

Ideal reconstruction:  In theory, we must first reconstruct xs(t) (requires ideal impulses) and 

then filter using an ideal low-pass filter with cut-off /T radians/second.  

In practice we must use an approximation to xs(t) where each impulse is approximated by a 

pulse of finite voltage and non-zero duration:- 

 

 

 

 

 

 

 

The easiest approach in practice is to use a "sample and hold" (sometimes called “zero order 

hold”) circuit to produce a voltage proportional to (1/T)x(t) at t = mT, and hold this fixed until 

the next sample is available at t = (m+1)T.  This produces a “staircase” wave-form as illustrated 

below.  The effect of this approximation may be studied by realising that the sample and hold 

approximation could be produced by passing xs(t) through a linear circuit, which we can call a 

sample and hold filter, whose impulse response is as shown below:- 

 

 

 

 

 

x[n] (t)    

 t  

x[n]/ t    

T     

x[n]/T   Voltage   

t     

T  

2
   

4
   3

   1
  

2/T    

4/T    3/T   

1/T   
t   

V
   

T  T  

1/T   

t   

h(t)   Impulse resp. of  
“sample+hold”    
crt.                      
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A graph of the gain-response of the sample & hold circuit shows that the gain at  = 0 is 0 dB, 

and the gain at /T is 20 log10(2/) = -3.92 dB.  Hence the reconstruction of xa(t) using a sample 

and hold approximation to xs(t) rather than xs(t) itself incurs a frequency dependent loss (roll-

off) which increases towards about 4 dB as  increases towards /T.  This is called the „sample 

& hold roll-off‟ effect.  In some cases the loss is not too significant and can be disregarded.  In 

other cases a compensation filter may be used to cancel out the loss.  

 

6.11: Quantisation error:  The conversion of the sampled voltages of xa(t) to binary numbers 

produces a digital signal that can be processed by digital circuits or computers.  As a finite 

number of bits will be available for each sample, an approximation must be made whenever a 

sampled value falls between two voltages represented by binary numbers or quantisation levels.   
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An m bit uniform A/D converter has 2
m

 quantisation levels,  volts apart.  Rounding the true 

samples of {x[n]} to the nearest quantisation level for each sample produces a quantised 

sequence { x [n]} with elements: 

                   x [n]  =  x[n]  +  e[n]     for all n. 

Normally e[n] lies between -/2 and +/2, except when the amplitude of x[n] is too large for the 

range of quantisation levels.  

Ideal reconstruction (using impulses and an fs/2 cut-off ideal low-pass filter) from x [n] will 

produce the analogue signal xa(t) + e(t) instead of xa(t), where e(t) arises from the quantisation 

error sequence {e[n]}. Like xa(t), e(t) is bandlimited to  fs/2 by the ideal reconstruction filter.  

{e[n]} is the sampled version of e(t).  Under certain conditions, it is reasonable to assume that if 

samples of xa(t) are always rounded to the nearest available quantisation level, the 

corresponding samples of e(t) will always lie between -/2 and +/2 (where  is the difference 

between successive quantisation levels), and that any voltage in this range is equally likely 

regardless of xa(t) or the values of any previous samples of e(t).  It follows from this assumption 

that at each sampling instant t = mT, the value e of e(t) is a random variable with zero mean and 

uniform probability distribution function.  It also follows that the power spectral density of e(t) 

will show no particular bias to any frequency in the range -fs/2 to fs/2 will therefore be flat as 

shown below:- 
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In signal processing, the 'power' of an analogue signal is the power that would be dissipated in a 

1 Ohm resistor when the signal is applied to it as a voltage.  If the signal were converted to 

sound, the power would tell us how loud the sound would be.  It is well known that the power of 

a sinusoid of amplitude A is A
2
/2 watts. Also, it may be shown that the power of a random 

(noise) signal with the probability density function shown above is equal to 
2
/12 watts.  We 

will assume these two famous results without proof.   

A useful way of measuring how badly a signal is affected by quantisation error (noise) is to 

calculate the following quantity: 

dB.  
power noiseon quantisati

power signal
log 10 = (SQNR) ratio noiseon quantisati  toSignal

10 









 
Example:  What is the SQNR if the signal power is (a) twice and (b) 1,000,000 times the 

quantisation noise power? 

Solution:  (a) 10 log10(2) = 3 dB.     (b) 60 dB. 

 

To make the SQNR as large as possible we must arrange that the signal being digitised is large 

enough to use all quantisation levels without excessive overflow occurring.  This often requires 

that the input signal is amplified before analogue-to-digital (A/D) conversion.   

 

Consider the analogue-to-digital conversion of a sine-wave whose amplitude has been amplified 

so that it uses the maximum range of the A/D converter.   Let the number of bits of the 

uniformly quantising A/D converter be m and let the quantisation step size  be  volts.  The 

range of the A/D converter is from  

-2
m-1
 to +2

m-1
 volts and therefore the sine-wave amplitude is 2

m-1
 volts.   

The power of this sine-wave is (2
m-1
)

2
 / 2 watts and the power of the quantisation noise is 


2
/12 watts.  Hence the SQNR is:- 
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= 1.8 + 6m dB.   ( i.e. approx 6 dB per bit) 

 

This simple formula is often assumed to apply for a wider range of signals which are 

approximately sinusoidal. 

 

Example:  (a) How many bits are required to achieve a SQNR of 60 dB with sinusoidally 

shaped signals amplified to occupy the full range of a uniformly quantising  A/D converter? 

(b) What SQNR is achievable with a 16-bit uniformly quantising A/D converter applied to 

sinusoidally shaped signals? 

Solution:  (a) About ten bits.    (b) 97.8 dB.   
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6.12 Block diagram of a DSP system for analogue signal processing 

 

       

anti-aliasing

Analogue

filter

Analogue

sample

& hold

Analogue

to

digital

converter
Digital

processor

Digital

to

analogue

converter

S/H

effect

compensatn

Analogue

reconstr-

-unction

filter

xa(t)

ya(t)

Control

Output

Input

 
 

Antialiasing LPF: Analogue low-pass filter with cut-off  fS/2 to remove (strictly, to sufficiently 

attenuate) 

                            any spectral energy which would be aliased into the signal band. 

Analogue S/H:    Holds input steady while  A/D conversion process takes place. 

A/D convertr:     Converts from analogue voltages to binary numbers of  specified word-length. 

    Quantisation error incurred.  Samples taken at fS Hz. 

Digital processor:  Controls S/H and ADC to determine fS  fixed by a sampling clock connected 

via an  

      input port.  Reads samples from  ADC when available, processes them & outputs 

     to DAC.  Special-purpose DSP devices (microprocessors) designed specifically for this  

     type of processing. 

D/A convertr:      Converts from binary numbers to analogue voltages.  "Zero order hold" or 

"stair-case  

     like" waveforms normally produced. 

S/H compensation: Zero order hold reconstruction multiplies spectrum of output by sinc( f/fS)  

    Drops to about 0.64 at fS/2.  Lose up to -4 dB. 

    S/H filter compensates for this effect by boosting the spectrum as it approaches fS/2.   

    Can be done digitally before the DAC or by an analogue filter after the DAC. 

Reconstruction LPF: Removes "images" of -fs/2 to fs/2 band produced by S/H reconstruction.   

    Specification similar to that of input filter.  

 

Example: Why must analogue signals be low-pass filtered before they are sampled? 

If {x[n]} is obtained by sampling xa(t) at intervals of T, the DTFT  X(ej) of {x[n]} is 

(1/T)repeat2/T{Xa(j)}.   This is equal to the FT of xS(t) = sampleT(xa(t)) 

If xa(t) is bandlimited between /T then Xa(j) =0 for || > /T.   

It follows that X(ej) = (1/T)Xa(j) with =T.  No overlap. 

We can reconstruct xa(t) perfectly by producing the series of weighted impulses xS(t) & low-

pass filtering. No informatn is lost.  In practice using pulses instead of impulses give good 

approximation. 

Where xa(t) is not bandlimited between /T then overlap occurs & XS(j) will not be identical 

to Xa(j) in the frequency range fs/2 Hz.  Lowpass filtering xS(t) produces a distorted  

(aliased) version of xa(t).  So before sampling we must lowpass filter xa(t) to make sure that it is 

bandlimited to /T i.e. fS/2 Hz  
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6.13. Choice of sampling rate:  Assume we wish to process xa(t) band-limited to   F Hz.   F 

could be 20 kHz, for example. 

In theory, we could choose fS = 2F Hz. e.g. 40 kHz.  There are two related problems with this 

choice. 

(1) Need very sharp analogue anti-aliasing filter to remove everything above F Hz. 

(2) Need very sharp analogue reconstruction filter to eliminate images (ghosts): 

 

To illustrate problem (1), assume we sample a musical note at 3.8kHz (harmonics at 7.6, 11.4, 

15.2, 19, 22.8kHz etc.  See figure below.  Music bandwidth F=20kHz sampled at 2F = 40 kHz. 

Need to filter off all above F without affecting harmonics below F. Clearly a very sharp („brick-

wall‟) low-pass filter would be required and this is impractical (or impossible actually). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The consequences of not removing the musical harmonics above 20kHz (i.e. at 22.8, 26.6 and  

30.4 kHz) by low-pass filtering would that they would be „aliased‟ and become sine-waves at 

40-22.8 = 17.2 kHz, 40-26.6 = 13.4 kHz, and 40-30.4 = 9.6 kHz.  These aliased frequencies are 

not harmonics of the fundamental 3.8kHz and will sound „discordant‟.  Worse, if the 3.8 kHz 

note increases for the next note in a piece of music, these aliased tones will decrease to strange 

and unwanted effect. 

 

To illustrate problem (2) that arises with reconstruction when fS = 2F, consider the graph below. 

 

Xs(j6.284f)

Hz-F 2FF

REMOVEREMOVE

fs/2-fs/2

f

 
Again it is clear that a „brick-wall filter is needed to remove the inmages (ghosts) beyond F 

without affecting the music in the frequency range F .  

 

Effect of increasing the sampling rate: 

  

|Xa(j2f)| 

Hz 

  -F 
  F=20kHz 

REMOVE 
REMOVE 

  
=fs/2 =-fs/2 

  

f 

3.8kHz 
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Slightly over-sampling:  Consider effect on the input antialiasing filter requirements if the music 

bandwidth remains at F = 20kHz, but instead of sampling at fS = 40 kHz we „slightly over-

sample‟ at 

44.1kHz. See the diagram below.  To avoid input aliasing, we must filter out all signal 

components above fS/2 = 22.05 kHz without affecting the music within 20kHz. 

We have a „guard-band‟ from 20 to 22.05 kHz to allow the filter‟s gain response to „roll off‟ 

gradually. 

So the analogue input filter need not be „brick-wall‟. 

It may be argued that guard-band is 4.1kHz as the spectrum between 22.05 and 24.1kHz gets 

aliased to the range 20-22.05kHz which is above 20kHz.  Once the signal has been digitised 

without aliasing, further digital filtering may be applied to efficiently remove any signal 

components between 20 kHz and 22.05 kHz that arise from the use of a simpler analogue input 

antialiasing filter. 

 

 

 

                              

Xs(j6.28f)

Hz-F
2F

F

REMOVEREMOVE

fs/2
-fs/2

f

 
Analogue filtering is now easier.  To avoid aliasing, the analog input filter need only remove 

everything above fS - F  Hz.   For HI-FI, it would need to filter out everything above 24.1 kHz 

without affecting 0 to 20 kHz. 

 

Higher degrees of over-sampling:   Assume we wish to digitally process signals bandlimited to 

F Hz and that instead of taking 2F samples per second we sample at twice this rate, i.e. at 4F 

Hz.   

The anti-aliasing input filter now needs to filter out only components above 3F (not 2F) without 

distorting 0 to F.  Reconstruction  is also greatly simplified as the images start at  3F as 

illustrated below. These are now easier to remove without affecting the signal in the frequency 

range   F. 
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Therefore over-sampling clearly simplifies analogue filters.  But what is the effect on the 

SQNR? 

Does the SQNR (a) reduce, (b) remain unchanged or (c) increase ? 
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As  and m remain unchanged the maximum achievable SQNR Hz is unaffected by this 

increase in sampling rate.  However, the quantisation noise power is assumed to be evenly 

distributed in the frequency range  fS/2, and fS has now been doubled.  Therefore the same 

amount of quantisation noise power is now more thinly spread in the frequency range 2F Hz 

rather than F Hz.  

 

           

Power spectral density of noise

F- F

f

fs = 2F

 
 

Power spectral density of noise

F- F

f

2F-2F
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It would be a mistake to think that the reconstruction low-pass filter must always have a cut-off 

frequency equal to half the sampling frequency.   The cut-off frequency should be determined 

according to the bandwidth of the signal of interest, which is F in this case.   The 

reconstruction filter should therefore have cut-off frequency F Hz. Apart from being easier to 

design now, this filter will also in principle remove or significantly attenuate the portions of 

quantisation noise (error) power between F and 2F. 

Therefore, assuming the quantisation noise power to be evenly distributed in the frequency 

domain, setting the cut-off frequency of the reconstruction low-pass filter to F Hz can remove 

about half the noise power and hence add 3 dB to the maximum achievable SQNR.   

Over-sampling can increase the maximum achievable SQNR and also reduces the S/H 

reconstruction roll-off effect.  Four times and even 256 times over-sampling is used.  The cost is 

an increase in the number of bits per second (A/D converter word-length times the sampling 

rate), increased cost of processing, storage or transmission and the need for a faster A/D 

converter.  Compare the 3 dB gained by doubling the sampling rate in our example with what 

would have been achieved by doubling the number of ADC bits m.  Both result in a doubling of 

the bit-rate, but doubling m increases the max SQNR by 6m dB i.e. 48 dB if an 8-bit A/D 

converter is replaced by a (much more expensive) 16-bit A/D converter.  The following table 

illustrates this point further for a signal whose bandwidth is assumed to be 5 kHz. 

 

m fS Max SQNR bit-rate 

10 10 kHz 60 dB 100 k 

10  20 kHz 63 dB 200 k 

12 10 kHz 72 dB 120 k 

 

Conclusion: Over-sampling simplifies the analogue electronics, but is less economical with 

digital processing/storage/transmission resources. 
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6.14. Digital anti-aliasing and reconstruction filters.  We can get the best of both worlds by 

sampling at a higher rate, 4F say, with an analogue filter to remove components beyond 3F, 

and then applying a digital filter to the digitised signal to remove components beyond   F.  The 

digitally filtered signal may now be down-sampled (“decimated”) to reduce the sampling rate to 

2F.  To do this, simply omit alternate samples. 

To reconstruct: “Up-sample” by placing zero samples between each sample: 

       e.g.      { …, 1, 2, 3, 4, 5, …}    with    fS = 10 kHz 

becomes {…, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0,  …}  at 20 kHz. 

This creates images (ghosts) in the DTFT of the digital signal.  These images occur from F to 

2F and can be removed by a digital filter prior to the A/D conversion process.  We now have a 

signal of bandwidth F sampled at fS = 4F rather than 2F.  Reconstruct as normal but with the 

advantages of a higher sampling rate. 

 

6.15: Compact Disc (CD) format:   

 

Compact discs store high-fidelity (hi-fi) sound of 20 kHz bandwidth sampled at 44.1 kHz.  Each 

of the two stereo channels is quantised to 16-bits per sample, and is given another 16-bits for 

errors protection.  Music therefore stored at 44100 x 32=1.4112Mbytes/s (with FEC). 

A recording studio will over-sample & use a simple analogue input filter.  Once the signal has 

been digitised at a sampling rate much higher than the required 44.1 kHz, a digital antialiasing 

filter may be applied to band-limit the signal to the frequency range 20 kHz.  So if the simple 

analogue input filter has not quite removed all the energy above 20 kHz, this energy is now 

removed (i.e. very strongly attenuated) digitally. 

So now we have a digitised signal that is definitely well band-limited within 20 kHz.  But it is 

sampled at a much higher rate than can be stored on the CD.  It must be „down-sampled‟ 

(decimated) to 44.1 kHz for storing on the CD.  If you think about it, all that is necessary is to 

omit samples; i.e. if the sampling rate is four times 44.1 kHz (=196.4 kHz) , we just take one 

sample, discard 3, take 1, discard 3, and so on.  You are actually sampling a digital signal and it 

works because of the sampling theorem.  If you are not convinced, consider the 196.4 kHz 

sampled version being ideally converted back to analogue and then sampling this 20 kHz 

bandwidth analogue signal at 44.1 kHz.  But you don‟t actually need to do the D to A 

conversion and resampling as exactly the same result is obtained by omitting samples. 

 

Most CD players “up-sample” the digital signal read from the CD by inserting zeros to obtain a 

signal sampled at say 88.2, 176.4 kHz or higher.  Inserting zeros is not good enough by itself.  It 

creates images (ghosts) in the spectrum represented by the „up-sampled‟ digital signal.  It is as 

though you have produced an analogue version of xs(t) = sampleT{xa(t)} with spikes at 44.1 

kHz, and then resampled this at say 176.4 kHz (4 times up-sampling) without removing images 

between 88.2 kHz.  Actually you haven‟t produced this analogue signal, but the effect is the 

same.  So these images created within the digital signal by „up-sampling‟ must be removed by 

digital filtering.  The digital filter is a digital „reconstruction filter‟ and its requirements are the 

same as for an analogue reconstruction filter; i.e . it must remove spectral energy outside the 

range 20 kHz without affecting the music in the range 20 kHz.  Fortunately this filtering task 

is much easier to do digitally than with an analogue filter. 

After the digital filtering, we have a 20 kHz bandwidth music sampled not at 44.1 kHz, but now 

at a higher rate, say 176.4 kHz or higher.  We apply it in the normal way to a „digital to 

analogue converter‟ (DAC) with staircase reconstruction.  The DAC may have to be a bit faster 

than that needed for a 44.1kHz sampling rate.   

The DAC output will have to be low-pass filtered by an analogue reconstruction filter required 

to remove images (ghosts) without affecting the 20kHz music.  But the ghosts are now much 
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higher in frequency.  In fact with four times over-sampling, the first ghost starts at 192.4 – 20 

kHz which is 172.4 kHz.  This gives us a considerable „guard-band‟ between 20 kHz and 172.4 

kHz allowing the analogue low-pass reconstruction filter‟s response to fall off quite gradually.  

A simple analogue reconstruction filter is now all that is required.   

In conclusion, with up-sampling, the reconstruction filtering is divided between the digital and 

the analogue processing and simplifies the analalogue processing required at the expense of a 

faster DAC.  An added advantage with over-sampling is that the „sample & hold‟ effect (up to 4 

dB attenuation) that occurs without up-sampling is now greatly reduced because effectively 

shorter pulses (closer to impulses) are being used because of the four times faster DAC. Four, 8 

or 16 times over-sampling was commonly used with 14-bit and 16 bit D/A converters. For 8-

times over-sampling seven zeros are inserted between each sample.   

 

“Bit-stream” converters  up- (over-) sample to such a degree (typically 256) that a one-bit ADC 

is all that is required.  This produces high quantisation noise, but the noise is very thinly spread 

in the frequency-domain.  Most of it is filtered off by very simple analogue reconstruction filter. 

For 256 times over-sampling the gain in SQNR is only 3 x 8 = 24 dB.  This is not enough if a 1-

bit D/A converter is being used.  Some more tricks are needed, for example noise-shaping 

which distributes the noise energy unevenly in the frequency-domain with greater spectral 

density well above 20 kHz where the energy will be filtered off. 

 

Example: A DSP system for processing sinusoidal signals in the range 0 Hz to 4 kHz samples at 

20 kHz with an 8-bit ADC.  If the input signal is always amplified to use the full dynamic range 

of the ADC, estimate the SQNR in the range 0 to 4 kHz.  How would the SQNR be affected by 

decreasing fS to 10 kHz and replacing the 8-bit ADC by a 10-bit device?    Are there any 

disadvantages in doing this?  

 

Example: We have discussed how to change the sampling rate of a digitised signal by the 

insertion or removal of samples before or after digital filtering. Consider how you could change 

the sampling rate from 8 kHz to 10 kHz and also vice-versa.   Then consider how you would up-

sample from a 16kHz sampling rate to 44.1 kHz.  All this must be done without perceived 

changes in duration or pitch; i.e. you can‟t just increase or decrease the clock speed without 

modifying the samples.. 
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