INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL QUESTION BANK

Course Title	DIGITAL SIGNAL PROCESSING				
Course Code	AEC012				
Programme	B.Tech			0	
Semester	VI	ECE	0	0	
Course Type	Core				
Regulation	R16				
		Theory			Practical
Course Structure	Lectures	Theory Tutorials	Credits	Practicals	Practical Credits
Course Structure	Lectures 3	Theory Tutorials	Credits 4	Practicals	Practical Credits -
Course Structure Chief Coordinato <mark>r</mark>	Lectures 3 Dr. S Chi	Theory Tutorials 1 ina Venkatesw	Credits 4 varlu, Profess	Practicals - sor, ECE	Practical Credits -

COURSE OBJECTIVES:

2000

The cou I	rse should enable the students to: Provide background and fundamental material for the analysis and processing of digital signals and to familiarize the relationships between continuous-time and discrete-time signals and
	systems.
II	Study fundamentals of time, frequency and z-plane analysis and to discuss the inter-relationships of these analytic method and to study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
III	Introduce a few real-world signal processing applications.
IV	Acquainting FFT algorithm, multi-rate signal processing techniques and finite word length effects.
	FOR

COURSE OUTCOMES (COs):

Course Ou	Course Outcomes:				
CO 1	Interpret, represent and process discrete/digital signals and systems				
CO 2	Understanding of time domain and frequency domain analysis of discrete time signals and systems				
CO 3	Understand DFT for the analysis of digital signals & systems				

CO 4	Demonstrate and analyze DSP systems like FIR and IIR Filter
CO 5	Understand multi rate signal processing of signals through systems

COURSE LEARNING OUTCOMES (CLOs):

CLO 1	Understand how digital to analog (D/A) and analog to digital (A/D) converters operate on a
	signal and be able to model these operations mathematically.
CLO 2	Describe simple non-periodic discrete-time sequences such as the impulse and unit step, and
	perform time shifting and time-reversal operations on such sequences.
CLO 3	Given the difference equation of a discrete-time system to demonstrate linearity, time-
	invariance, causality and stability, and hence show whether or not a given system belongs to the
	important class of causal, LTI systems.
CLO 4	Given the impulse response of a causal LTI system, show whether or not the system is
	bounded-input/bounded-output (BIBO) stable.
CLO 5	Perform time, frequency and Z-transform analysis on signals.
CLOC	From a linear difference equation of a causal LTI system, draw the Direct Form I and Direct
CLU 6	Form II filter realizations.
CLO 7	Knowing the poles and zeros of a transfer function, make a rough sketch of the gain response.
CLO 8	Define the Discrete Fourier Transform (DFT) and the inverse DFT (IDFT) of length N.
CLO 9	Understand the inter-relationship between DFT and various transforms.
CLO 10	Understand the significance of various filter structures and effects of round-off errors.
CLO 11	Understand the fast computation of DFT and appreciate the FFT Processing.
CLO 12	Design of infinite impulse response (IIR) filters for a given specification.
CLO 13	Design of finite impulse response (FIR) filters for a given specification.
CLO 14	Compare the characteristics of IIR and FIR filters.
CLO 15	Understand the tradeoffs between normal and multi rate DSP techniques and finite length word
	effects.
CLO 16	Understand the signal interpolation and decimation, and explain their operation
CLO 17	Explain the cause of limit cycles in the implementation of IIR filters.

TUTORIAL QUESTION BANK

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes	Course learning Outcome Codes
	UN	IT-I			
	REVIEW OF DISCRETE TIM	AE SIGNA	LS AND S	SYSTEMS	
	PART-A (SHORT AN	ISWER QUI	ESTIONS)		•
1	Compare symmetric and anti symmetric signals.	Remember	CO 1	CL01	AEC012.01
2	Discuss about impulse response?	Understand	CO 1	CLO2	AEC012.02
3	Describe an Liner Time Invariant system?	Understand	CO 1	CLO3	AEC012.03
4	List out the operations performed on the signals.	Remember	CO 1	CLO1	AEC012.01
5	State the condition for causality and stability?	Understand	CO 1	CLO2	AEC012.02
6	State the Sampling Theorem	Remember	CO 1	CLO3	AEC012.03
7	Express and sketch the graphical representations of a unit impulse, step and ramp signals	Understand	CO 1	CLO1	AEC012.01
8	List out the Applications of Digital Signal Processing?	Understand	CO 1	CLO2	AEC012.02
9	Describe the causal system and the non- causal system	Understand	CO 1	CLO3	AEC012.03
10	Discuss the advantages of Digital Signal Processing?	Remember	CO 1	CLO1	AEC012.01
11	Explicit about energy and power signals?	Remember	CO 1	CLO2	AEC012.02
12	State the condition for BIBO stable?	Remember	CO 1	CLO3	AEC012.03
13	Describe about Time invariant system and Time variant system.	Understand	CO 1	CL01	AEC012.01
14	Draw the block diagram of Digital Signal Processing	Remember	CO 1	CLO2	AEC012.02
15	Solve the impulse response of a system as $h(k)=a^{k}u(k)$ determine the range of 'a' for which the system is stable.	Understand	CO 1	CLO3	AEC012.03
16	Discuss about memory and memory less system?	Understand	CO 1	CLO1	AEC012.01
17	Sketch the discrete time signal $x(n) = 4 \delta (n+4) + \delta(n) + 2 \delta (n-1) + \delta (n-2)$	Understand	CO 1	CLO2	AEC012.02
18	Prove the following are linear or non linear: a) $y(n) = e^{x(n)}$ b) $y(n) = x^2(n)$ c) $y(n) = ax(n) + b$ d) $y(n) = x(n^2)$	Understand	CO 1	CLO1	AEC012.01
19	Identify a time-variant system. a) $y(n) = e^{x(n)}$ b) $y(n) = x(n^2)$	Understand	CO 1	CLO2	AEC012.02

S. No	QUESTION c) $y(n) = x(n) - x(n-1)$ d) $y(n) = nx(n)$ List out the basic building blocks of realization	Blooms Taxonomy Level Understand	Course Outcomes	Course Learning Outcomes CLO3	Course learning Outcome Codes
20	structures? PART-R (LONG A	NSWER OU	ESTIONS)		112012.05
1	Obtain the impulse response and star response of the	Domomhar		CLO1	AECD07.01
1	causal system given below and discuss on stability: y(n) + y(n-1) - 2y(n-2) = x(n-1)+2x(n-2)	Kemember		CLOI	AECB07.01
2	Test the following systems for linearity, time invariance, causality and stability. i. $y(n) = a^{ x(n) }$ ii. $y(n) = sin(2nfn/F) x(n)$	Understand	CO 1	CLO2	AEC012.02
3	Evaluate the impulse response for the causal system y(n)-y(n-1) = x(n)+x(n-1)	Understand	CO 1	CLO3	AEC012.03
4	Analyze whether the following system is i. Linear ii. Causal iii. Stable iv. Time invariant $y(n) = \log_{10} x(n) $ Justify your answer.	Remember	CO 1	CLO1	AEC012.01
5	Express stable and unstable system test the condition for stability of the first- order system governed by the equation $y(n)=x(n)+bx(n-1)$.	Understand	CO 1	CLO1	AEC012.01
6	A system is described by the difference equation y(n)-y(n-1)-y(n-2) = x(n-1). Assuming that the system is initially relaxed, determine it s unit sample response h(n).	Remember	CO 1	CLO2	AEC012.02
7	Calculate the impulse response and the unit step response of the systems described by the difference equation $y(n) = 0.6y(n-1)-0.08 y(n-2) + x(n)$.	Understand	CO 1	CLO3	AEC012.03
8	The impulse response of LTI system is h(n)= $\{1 \ 2 \ 1-1\}$ Solve the response of the system if input is x(n)= $\{1 \ 2 \ 31\}$	Understand	CO 1	CL01	AEC012.01
9	Obtain the output $y(n)$ of LTI system with impulse response $h(n)=a^n u(n)$. $ a < 1$ When the input is unit input sequence that is $x(n)=u(n)$	Understand	CO 1	CLO2	AEC012.02
10	Obtain impulse response for cascade of two LTI systems having Impulse responses of $H_1(n)=(1/2)^n u(n)$ and $H_2(n)=(1/4)^n u(n)$	Remember	CO 1	CL01	AEC012.01

	OTIESTION	Blooms		Course	Course
G N			Course	Learning	learning
S. No	QUESTION	Taxonomy	Outcomes	Outcomes	Outcome
		Level			Codes
11	Solve the Discrete convolution for the following	Domomhor	CO 1	CLO2	AEC012.02
11	sequences	Kennennber	01	CL02	AEC012.02
	i) $\mathbf{x}(n) = \{1, 2, -1, 1\}; h(n) = \{1, 0, 1, 1\}$				
	ii) u(n)*u(n-3)				
12	Obtain the stability of the system y(n)-(5/2)y(n-1)+y(n-2)=x(n)-x(n-1)	Remember	CO 1	CLO3	AEC012.03
13	Solve the response of the following difference	Understand	CO 1	CL01	AEC012.01
- 11	equation $y(n)-5y(n-1)+6y(n-2)=x(n)$ for $x(n)=n$	** 1 1	GO 1		1.5.0010.01
14	Solve the inverse Z-transform of $z(z+1)$	Understand	CO 1	CL01	AEC012.01
	$X(z) = (z-2)(z-1)^3$ roc $ z > 2$ using partial				
	fraction method.				
15	Calculate the convolution of the pairs of signals by	Understand	CO 1	CLO2	AEC012.02
	means of z-transform $X_1(n)=(1/2)^n u(n), X_2(n)=\cos\pi n$				
16	Obtain the cascade and parallel form realizations for	Understand	CO 1	CLO3	AEC012.03
10	the following systems $Y(n) = -0.1y(n-1) + 0.2y(n-1)$	Chacistana	001	CLOJ	7112012.03
	2) + 3x (n) + 3.6 x (n-1) + 0.6 x (n-2)				
17	Obtain the Direct form II	Remember	CO 1	CLO1	AEC012.01
	y (n) = -0.1 y(n-1) + 0.72 y(n-2) + $0.7x(n) - 0.252$ x(n-2)				
18	Evaluate the direct form- II realization of $H(z) = 8z$ -	Remember	CO 1	CLO2	AEC012.02
	2+5z-1+1 / 7z-3+8z-2+1				
19	Obtain the i) Direct forms ii) cascade iii) parallel form	Understand	CO 1	CLO3	AEC012.02
1	realizations for the following systems $y_{n}(n) = 3/4(n-1) = 1/8 y(n-2) + y(n) + 1/3 y(n-1)$	_		-	
20	Obtain the output $v(n)$ of a filter whose impulse	Understand	CO 1	CLO1	AEC012.01
	response is $h(n) = \{1 \ 1 \ 1\}$ and input signal			0	
	$\mathbf{x}(\mathbf{n}) = \{3 - 1 \ 0 \ 1 \ 3 \ 2 \ 0 \ 1 \ 2 \ 1\}.$ Using overlap save	1	1		
	method	TICAL THIN		ESTIONS)	
	FART-C (FROBLEM SOLVING AND CRI	IICAL IIII		Lono)	1
1	Make a comparison between circular	Apply	CO 1	CLO3	AEC012.03
	convolution and linear convolution. Given		1000		
	that	. 0.	× .		
	$x_1(n) = \{1, -1, -2, 3, -1\}$ and $x_2(n) = \{1, 2, 3\}$	(\ Y			
	Find circular convolution of $x_1(n)$ and $x_2(n)$	<u></u>			
2	Obtain the transfer function and impulse response of	Apply	CO 1	CLO1	AEC012.01
	the system				
	$\begin{bmatrix} \frac{33}{44} & \frac{11}{22} & \frac{11}{22} \\ y(n) & \frac{44}{2} y(n-1) + \frac{88}{22} y(n-2) - y(n) + \frac{33}{22} y(n-1) \end{bmatrix}$				
3	Dbtain the i) Direct forms ii) parallel form realizations	Apply	CO 1	CLO2	AEC012.02
	for the following systems $y(n) = x(n) + 1/3 x(n-1)-1/3$	rr*J			
	x(n-2)				
4	Calculate the range of 'a' and 'b' for which the	Apply	CO 1	CLO3	AEC012.03
	system is stable with impulse response $H(n) = a^n n > 0$				
	b^n n<0				
1 2 3 4	$x(n) = \{3 - 1 \ 0 \ 1 \ 3 \ 2 \ 0 \ 1 \ 2 \ 1\}.$ Using overlap save method $PART-C (PROBLEM SOLVING AND CRI Make a comparison between circular convolution and linear convolution. Given that x_1(n) = \{1, -1, -2, 3, -1\} and x_2(n) = \{1, 2, 3\} Find circular convolution of x_1(n) and x_2(n)Obtain the transfer function and impulse response ofthe system\frac{33}{y(n) - \frac{44}{4}y(n-1) + \frac{11}{88}y(n-2) = x(n) + \frac{33}{3}x(n-1).} Obtain the i) Direct forms ii) parallel form realizationsfor the following systems y (n) = x(n) + 1/3 x(n-1) - 1/5x(n-2)Calculate the range of 'a' and 'b' for which thesystem is stable with impulse responseH(n) = \begin{cases} a^n n \ge 0 \\ b^n n < 0 \end{cases}$	TICAL THIN Apply Apply Apply Apply	CO 1 CO 1 CO 1 CO 1 CO 1 CO 1	ESTIONS) CLO3 CLO1 CLO2 CLO3	AEC012.03 AEC012.01 AEC012.02 AEC012.03

S. No	QUESTION Use the one-sided Z-transform to solve $y(n) n \ge 0$ in the following cases. (a) $y(n) + y(n-1) - 0.25y(n-2) = 0$; $y(-1) = y(-2) = 1$ (b) $y(n) - 1.5y(n-1) + 0.5y(n-2) = 0$; y(-1) = 1; $y(-2) = 0$	Blooms Taxonomy Level Apply	Course Outcomes CO 1	Course Learning Outcomes CLO1	Course learning Outcome Codes AEC012.01
6	Obtain the 1) Direct forms 11) cascade 111) parallel form realizations for the following systems y(n) = 3/4(n-1) - 1/8 y(n-2) + x(n) + 1/3 x(n-1)	Apply	01	CL02	AEC012.02
7	Evaluate the direct form –I cascade and parallel form for y(n)+y(n-1)-4y(n-3)=x(n)+3x(n-2)	Apply	CO 1	CLO3	AEC012.03
8	Given two sequences $x_1(n)$ and $x_2(n)$ of length N obtain expression to compute circular convolution these sequences. List out changes required if circular convolution output same as linear convolution output with example.	Apply	CO 1	CL01	AEC012.01
9	Obtain the transfer function and impulse response of the system $y(n) - \frac{33}{44}y(n-1) + \frac{11}{88}y(n-2) = x(n) + \frac{11}{33}x(n-1).$	Apply	CO 1	CLO2	AEC012.02
10	Impulse response is $h(n) = \{1, 1, 1\}$ and input signal $x(n) = \{2, -1, 0, 1, 4, 2, 0, 1, 2, 1\}$ determine overlap add method.	Apply	CO 1	CLO3	AEC012.03
	UN	IT-II			T
	PART-A(SHORT AN	SWER QUES	STIONS)		N
1	Describe about Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform of a discrete time sequence	Remember	CO 2	CLO4	AEC012.04
2	List out symmetry, frequency shifting, time shifting and linearity properties of Discrete Fourier Transform.	Understand	CO 2	CLO5	AEC012.05
3	Elucidate on 1. Bit reversal order 2. In place computation	Remember	CO 2	CLO6	AEC012.06
4	Elucidate about zero padding and its uses in convolution	Understand	CO 2	CLO4	AEC012.04

	OUESTION	Blooms	Course	Course	Course
C N				Learning	learning
S. No	QUESTION	Taxonomy	Outcomes	Outcomes	Outcome
		Level			Codes
5	Draw Radiy-2 DIT FET and DIF FET	Remember	CO 2	CL05	AEC012.05
5	Butterfly diagrams	Remember	002	CLOS	7112012.05
6	List out the applications of FFT algorithm	Understand	CO 2	CLO6	AEC012.06
		5 D			
7	Distinguish between DTFT a nd DFT with	Remember	CO 2	CLO4	AEC012.04
	examples			0201	1120012101
8	Compare and contrast between Decimation in	Understand	CO 2	CLO5	AEC012.05
	Frequency Transform (DIF) and Decimation				
	in Time (DIT) algorithms				
0		Damamhar	CO 2	CL Q4	AEC012.04
9	DIF FFT algorithm?	Kemember	02	CLO4	AEC012.04
10	Analyze the concept of zero padding where	Understand	CO 2	CLO5	AEC012.05
	the result from linear convolution and				
	circular convolution are same?				
			<u> </u>	~ ~ ~ ~	
11	Describe the disadvantage of direct	Understand	CO 2	CLO6	AEC012.06
	computation of DFT				
12	Compare the DFT and FFT with examples	Remember	CO 2	CLO4	AEC012.04
				-	
10		TT 1 / 1	60.0	CL O.4	450012.04
13	List out the properties of twiddle factor?	Understand	CO 2	CLO4	AEC012.04
	C N	1			
14	Justify the importance of butterfly	Remember	CO 2	CLO5	AEC012.05
	computation for computing of DFT using		Q		
	FFT algorithm?		6		
15		TT. 1	CO 2		450012.00
15	Draw the basic butterfly diagram for DIT	Understand	02	CL06	AEC012.06
	FFT and DIF FFT algorithm.				
16	State Discrete Fourier Transform and Inverse	Remember	CO 2	CLO4	AEC012.04
	DFT of a discrete time sequence				
17	Compute the N-point DFT of $x(n) = a^n$	Understand	CO 2	CLO5	AEC012.05
10		A n=1	CO 2	CLOG	AEC012.0C
18	Establish the relation between DFT and Z	Арріу		CLU6	AEC012.06

S. No 19 20	QUESTION transform. Describe the effect of zero padding on convolution with examples? Describe radix-2 DIF_FET with examples	Blooms Taxonomy Level Understand	Course Outcomes CO 2 CO 2	Course Learning Outcomes CLO4	Course learning Outcome Codes AEC012.04
	PART-B (LONG AN	SWER QUES	STIONS)		
1	List out FFT advantages? Obtain speed improvement factor for calculating the 64 DFT of sequence using direct computation and FFT algorithm?	Remember	CO 2	CLO4	AEC012.04
2	Appraise about overlap add method and overlap save method for filtering of long data Sequences using DFT.	Understand	CO 2	CLO5	AEC012.05
3	Find the DFT of a sequence $x(n) = \{1,2,3,4,4,3,2,1\}$ using DIT FFT algorithms	Understand	CO 2	CLO6	AEC012.06
4	Describe Radix-2 DIT-FFT algorithm. Compare it with DIF-FFT algorithms.	Remember	CO 2	CLO4	AEC012.04
5	Develop an 8 point DIT-FFT algorithm. Draw the signal flow graph.	Understand	CO 2	CLO4	AEC012.04
6	Compute 4-point-DFT of a sequence $x(n) = \{0,1,2,3\}$ using DIT FFT and DIF FFT algorithms	Remember	CO 2	CLO5	AEC012.05
7	Explore the complete DIF FFT for 8-point sequence and draw signal flow graph.	Remembering	CO 2	CLO6	AEC012.06
8	Compare the differences and similarities between DIT and DIF FFT algorithms?	Understanding	CO 2	CLO4	AEC012.04
9	Describe about the concept of frequency sampling for developing discrete Time Fourier Transform.	Understanding	CO 2	CLO5	AEC012.05

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes	Course learning Outcome Codes
10	Describe about radix-2 Fast Fourier transform (FFT)?	Understanding	CO 2	CLO6	AEC012.06
11	Design 8 point DFT Prove any five properties of DFT	Remembering	CO 2	CLO4	AEC012.04
12	Describe overlap add and overlap save methods.	Remember	CO 2	CLO4	AEC012.04
13	How to computing DFT and IDFT steps	Understand	CO 2	CLO5	AEC012.05
14	Distinguish between DFT and IDFT	Understand	CO 2	CLO6	AEC012.06
15	Describ <mark>e 8 point DFT c</mark> ompare to 4 point DFT.	Remember	CO 2	CLO4	AEC012.04
16	Design Butter fly concept with example	Understand	CO 2	CLO4	AEC012.04
17	Find the DFT of a sequence $x(n) = \{1,1,0,0\}$ and find the IDFT of $Y(k) = \{1,0,1,0\}$	Remember	CO 2	CL05	AEC012.05
18	Describe DIT FFT Algorithm with example	Understand	CO 2	CLO6	AEC012.06
19	Describe DIF FFT Algorithm with example	Remember	CO 2	CLO4	AEC012.04
20	List out the merits and demerits of DFT compare to FFT algorithms	Understand	CO 2	CLO5	AEC012.05
	PART-C (PROBLEM SOLVING AND	CRITICAL	THINKING	QUESTION	S)
1	Obtain DFT of finite duration sequence $\mathbf{x}(n) = \{1, 1, 1, 0, 0\}$ illustrate and explain the sampling of Fourier transform of the sequence.	Apply	CO 2	CLO4	AEC012.04
2	Calculate DFT of following sequence $x(n)$ for N=4 and N=8 and plot magnitude of DFT X(k) and comments on results obtained. $x(n) = \begin{cases} 1 & \text{for } 0 \le n \le 2 \\ 1 & \text{for } 0 \le n \le 2 \end{cases}$	Apply	CO 2	CLO5	AEC012.05
	(0 for other wise				

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes	Course learning Outcome Codes			
3	DFT $x(n)$ is $X(k)$ show that $i)DFT of x((-n))_N = x((-k))_N$ ii) DFT of $\left\{x(n)e^{j\frac{\pi in}{N}}\right\} =$ $x((k-l))_N$ iii) DFT of $x^*(n) = x^*(N-k)$	Apply	CO 2	CLO6	AEC012.06			
4	An 8-point sequence is given by $x(n) = \{2,2,2,2,1,1,1,1\}$ compute 8-point DFT of $x(n)$ by Radix-2 DIF Algorithm	Apply	CO 2	CLO4	AEC012.04			
5	Find the IDFT of the sequence $X(K) = \{7, -0.707, -j0.707, -j, 0.707, -j, 0.707, -j, 0.707, 1, 0.707, +j0.707, j, -0.707, +j0.707\}$ using DIT FFT Algorithm	Apply	CO 2	CLO5	AEC012.05			
6	Evaluate the eight-point DFT of the following sequence by using DIT and DIF algorithm $x(n) = 1 \ 0 \le n \le 7$ = o otherwise	Apply	CO 2	CLO4	AEC012.04			
7	Obtain an 8 point DFT of the sequence $x (n) = (1, 0, 1, -1, 1, -1, 0, 1).$	Apply	CO 2	CLO5	AEC012.05			
8	Find the output $y(n)$ of a filter whose impulse response is $h(n) = \{1, 1, 1, 1\}$ and input signal $x(n) = \{3, -1, 0, 1, 3, 2, 0, 1, 2, 1\}$ overlap save method.	Apply	CO 2	CLO6	AEC012.06			
9	The 4-point DFT of 4-point sequence x(n) given by X(k) = { 10, -2+j2, -2, -2-j2 } without computing DFT and IDFT determine DFT of following $x_1(n) = x(n)(-1)^n$ ii) $x_2(n) = x(4-n)$ iii) $x_3(n) = x((n-1))_4 + x((n-2))_4$	Apply	CO 2	CLO4	AEC012.04			
10	Calculate the IDFT using DIF FFT algorithm given that X (k) = $\{4, 1-j2.414, 0, 1-j0.410, 0, 1+j0.414, 0, 1+j2.414\}$.	Apply	CO 2	CLO5	AEC012.05			
	UNIT-II	[
	STRUCUTRE OF IIR FILTERS							

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes	Course learning Outcome Codes
	PART-A (SHORT ANSW)	ER QUESTIC	DNS)		
1	Illustrate the concept of IIR filter and categorize advantages of IIR filter?	Remember	CO 3	CLO7	AEC012.07
2	Distinguish between Analog filter and Digital filters	Remember	CO 3	CLO8	AEC012.08
3	State about IIR digital filter	Understand	CO 3	CLO9	AEC012.09
4	Elucidate LPF, HPF based on frequency response	Remember	CO 3	CLO10	AEC012.10
5	Elucidate BPF, BRF based on frequency response	Understand	CO 3	CLO11	AEC012.11
6	Comparison of LPF, HPF, BPF and BRP	Remember	CO 3	CLO12	AEC012.12
7	Analyze designing of IIR digital filters	Remember	CO 3	CLO7	AEC012.07
8	Describe Analog Low pass filter design	Remember	CO 3	CLO8	AEC012.08
9	Draw impulse response of an ideal lowpass filter.	Remember	CO 3	CLO9	AEC012.09
10	Mention any two procedures for digitizing the transfer function of an analog filter	Remember	CO 3	CLO10	AEC012.10
11	Describe Butterworth Filters	Remember	CO 3	CLO11	AEC012.11
12	Illustrate Chebyshev Filters-Type-1	Understand	CO 3	CLO12	AEC012.12
13	Describe Chebyshev Filters-Type-2	Remember	CO 3	CLO7	AEC012.07
14	Describe IIR Digital Filter Structures	Understand	CO 3	CLO8	AEC012.08
15	Illustrate Direct form IIR Digital filter structure	Remember	CO 3	CLO9	AEC012.09
16	Distinguish between Butterworth filters and Chebyshev-Type-1 Filter	Understand	CO 3	CLO7	AEC012.07
17	Distinguish between the frequency response of Chebyshev-Type-1 and Chebyshev-Type-II	Remember	CO 3	CLO8	AEC012.08
18	Elucidate Analog transformation of prototype LPF to	Remember	CO 3	CLO9	AEC012.09
19	Demonstrate the transformation of analog filters into equivalent digital filters	Remember	CO 3	CLO10	AEC012.10
20	Comparison of IIR and FIR digital filters with real time examples	Remember	CO 3	CLO11	AEC012.11
	PART-B (LONG ANSWE	R QUESTIO	NS)		
1	Describe the Transformation of Analog filters into equivalent digital filters using impulse invariant method	Remember	CO 3	CLO7	AEC012.07
2	Design an analog Butterwoth filter has a -2db passband attenuation at a frequency of 20 rad/sec. and at least -10db stop band attenuation at 30 rad/sec.	Remember	CO 3	CLO8	AEC012.08
3	Develop Analog Low pass Chebyshev Filters including type I and type -II	Understand	CO 3	CLO9	AEC012.09
4	Examine the impulse response and time index , $a1 = 0.5 \text{ b0} = -3 \text{ b1} = 2$ Impulse response Using MATLAB	Remember	CO 3	CLO10	AEC012.10
5	Describe Transformation of Analog filters into	Remember	CO 3	CLO11	AEC012.11

		DI		Course	Course
		Blooms	Course	Learning	learning
S. No	QUESTION	Taxonomy	Outcomes	Outcomes	Outcome
		Level			Codes
					Coues
	equivalent digital filters using Bilinear transformation				
6	Design a 4th order Butterworth-type IIR low-pass	Understand	CO 3	CLO12	AEC012.12
	digital filter is needed with 3dB cut-off at one				
	sixteenth of the sampling frequency fS.				
7	Calculate the impulse-response of the digital filter with H(z) =	Remember	CO 3	CLO7	AEC012.07
	1 - 2 Z - 1				
8	Consider a 1st order Anlog filter with a single pole at	Remember	CO 3	CLO7	AEC012.07
	$s=\alpha$.where $\alpha > 0$, with system function Ha(s)= 1/ α =s				
9	Design a band stop Butterworth and chebyshev type-1	Remember	CO 3	CLO8	AEC012.08
	filter to meet the following specifications i) stop band				
	100 to 600Hz, 11) 20dB attenuation at 200 and 400hz the gain at $\alpha = 0$ is unity iii) the pass hand ripple for				
	chebychev filter is 1.1dB iv) pass band attenuation for				
	Butterworth filter is 3 dB.				
10	IIR discrete time filter design by bilinear	Understand	CO 3	CLO9	AEC012.09
11	Design a second order Butterworth-type IIR lownass	Remember	CO 3	CLO10	AEC012.10
	filter with $\Omega c = \pi / 4$.				
12	Design a Butterworth-type IIR low-pass digital filter	Remember	CO 3	CLO11	AEC012.11
	is needed with 3dB cut-off at one sixteenth of the				
	sampling frequency f s, and a stop-band attenuation of at least 24 dB for all frequencies above f s $/8$		7		
13	Design a 4th order band-pass filter with $\Omega L = \pi / 2$.	Remember	CO 3	CLO12	AEC012.12
	$\Omega u = \pi / 4.$				
	Q				
14	Illustrate the IIR Filter Structures-Direct Form-I and	Remember	CO 3	CLO7	AEC012.07
15	Describe the Artifacts of IIR filters with suitable	Understand	CO 3	CLO8	AEC012.08
	examples		~		
16	Design of a 2nd order IIR low-pass digital filter by	Remember	CO 3	CLO9	AEC012.09
10	the bilinear transform method		000	0207	11120012107
17	IIR discrete time filter design by bilinear	Understand	CO 3	CLO10	AEC012.10
	transformation				
18	Design a second order Butterworth-type IIR lowpass filter with $\Omega c = \pi / 4$.	Remember	CO 3	CL011	AEC012.11
19	A Butterworth-type IIR low-pass digital filter is needed with 3dB cut-off at one sixteenth of the sampling frequency f s, and a stop-band attenuation of at least 24 dB for all frequencies above f s / 8. (i) What order is needed? (b) Design it.	Remember	CO 3	CLO12	AEC012.12

S. No 20 1	QUESTION Design a 4th order band-pass filter with $\Omega L = \pi / 4$, $\Omega u = \pi / 2$. PART-C (PROBLEM SOLVING AND CRI Using MATLAB, design a second order Butterworth- type IIR low-pass filter with $\Omega c = \pi / 4$.	Blooms Taxonomy Level Remember TICAL THIN Apply	Course Outcomes CO 3 KING QUI CO 3	Course Learning Outcomes CLO7 ESTIONS) CLO7	Course learning Outcome Codes AEC012.07
2	Design a 4th order Butterworth-type IIR low-pass digital filter is needed with 3dB cut-off at one sixteenth of the sampling frequency fS.	Apply	CO 3	CLO8	AEC012.08
3	Design a 4th order band-pass IIR digital filter with lower & upper cut-off frequencies at 300 Hz & 3400 Hz when $fS = 8$ kHz.	Apply	CO 3	CLO9	AEC012.09
4	Design a 4th order band-pass IIR digital filter with lower & upper cut-off frequencies at 2000 Hz & 3000 Hz when fS = 8 kHz.	Apply	CO 3	CLO10	AEC012.10
5	Design of IIR filters from analog filters with help of properties	Apply	CO 3	CLO11	AEC012.11
6	Discuss and Explain Steps to design a digital filter using Impulse Invariance	Apply	CO 3	CLO12	AEC012.12
7	Design a 3rd order Butterworth digital filter using Impulse Invariant technique, assume sampling T is 1 sec. and for N is 3	Apply	CO 3	CLO7	AEC012.07
8	Discuss and Explain Bilinear Transformation method, wrapping effect and pre-wrapping ,draw the effect on magnitude response due to warping effect	Apply	CO 3	CLO8	AEC012.08
9	Apply bilinear transformation to $H(s)=2/(s+1)$ (s+2) with T is 1 sec, find $H(z)$.	Apply	CO 3	CLO9	AEC012.09
10	Compare Spectral transformations in Analog domain from a normalized LP analog filters, design filters with diff. frequency transformation in digital domain with Low pass, High pass and Band pass and Band stop	Apply	CO 3	CLO10	AEC012.10
	UNIT-IV SYMMETRIC AND ANTISYM	METRIC F	TR FILTI	ERS	
5 I WIVIE I KIC AND AN I IS I WIVIE I KIC FIK FIL I EKS					
	PART-A(SHORT ANSWE	ER QUESTIO	NS)		
1	Illustrate FIR filter? And categorize the advantages of FIR filter?	Remember	CO 4	CLO12	AEC012.12
2	State the necessary and sufficient condition for the linear phase characteristic of a FIR filter?	Understand	CO 4	CLO13	AEC012.13
3	List the well known design technique for linear phase FIR filter design?	Understand	CO 4	CLO14	AEC012.14

C. No.	OTTESTION	Blooms		Course	Course
		DIOOIIIS	Course	Learning	learning
5. NO	QUESTION	Taxonomy	Outcomes	Outcomes	Outcome
		Level			Codes
4	For What kind of Apply, the symmetrical impulse response can be used?	Understand	CO 4	CLO12	AEC012.12
5	State conditions a finite duration sequence h(n) will yield constant group delay in its frequency response characteristics and not the phase delay?	Understand	CO 4	CLO13	AEC012.13
6	Express Gibbs phenomenon?	Remember	CO 4	CLO14	AEC012.14
7	List out the desirable characteristics of the windows?	Remember	CO 4	CLO12	AEC0127.12
8	Compare Hamming window with Kaiser window.	Remember	CO 4	CLO13	AEC012.13
9	Draw impulse response of an ideal lowpass filter.	Remember	CO 4	CLO14	AEC012.14
10	Illustrate the principle of designing FIR filter using frequency sampling method?	Remember	CO 4	CLO12	AEC012.12
11	Analyze which type of filter is suitable for frequency same?	Understand	CO 4	CLO13	AEC012.13
12	State the effect of truncating an infinite Fourier series into a finite series	Remember	CO 4	CLO14	AEC012.14
13	Justify FIR filters are always stable?	Remember	CO 4	CLO12	AEC012.12
14	Demonstrate the procedure for designing FIR filters using windows.	Remember	CO 4	CLO13	AEC012.13
15	List out disadvantage of Fourier series method ?	Understand	CO 4	CLO14	AEC012.14
16	Draw the frequency response of N point Bartlett window	Remember	CO 4	CLO12	AEC012.12
17	Draw the frequency response of N point Blackman window	Understand	CO 4	CLO13	AEC012.13
18	Draw the frequency response of N point Hanning window	Remember	CO 4	CLO14	AEC012.14
19	What is the necessary and sufficient condition for linear phase characteristics in FIR filter	Remember	CO 4	CLO12	AEC012.12
20	Give the equation specifying Kaiser window.	Understand	CO 4	CLO13	AEC012.13
	PART-B (LONG ANSWE	CR QUESTIO	NS)		
1	Describe about optimized design of FIR filter using	Understand	CO 4	CLO12	AEC012.12
	Parks-McClellan remez algorithm and its limitations.	81	· ·		
2	Compare IIR and FIR filters	Remember	CO 4	CLO13	AEC012.13
3	Design an ideal high pass filter with a frequency respose π π Hd(ejw)=1 for $\overline{4} \le \omega \le \pi 0$ for $ \omega \le \overline{4}$ Find the values of h(n) for N=11.Find H(z).plot magnitude response.	Understand	CO 4	CLO14	AEC012.14
4	Design an ideal band reject filter with a frequency respose $\frac{\pi}{\text{Hd}(\text{ejw})=1}$ for $ \omega \le \overline{3}$ and $ \omega \ge \overline{3}$ o for otherwise Find the values of h(n) for N=11.Find H(z).plot	Understand	0.4	CL012	AEC012.12

	Blooms	Blooms		Course	Course
S No		Toyonomy	Course	Learning	learning
5.110	QUESTION		Outcomes	Outcomes	Outcome
		Level			Codes
	magnitude response.				
5	Design an ideal differentiator	Remember	CO 4	CLO13	AEC012.13
	H(ejw)=j ω -π≤ ω≤π				
	Using a) rectangular window b)Hamming window				
6	with N=8.plot frequency response in both cases.	Un donatan d	CO 4	CL 012	AEC012.12
0	advantages and disadvantages of FIR filters over IIR filters	Understand	CO 4	CL012	AEC012.12
			<u> </u>	<u> </u>	
7	Calculate the frequency response of FIR filter defined by $y(x) = 0.25y(x) y(x + 1) + 25y(x + 2)$. Calculate the	Understand	CO 4	CL013	AEC012.13
	by $y(n)=0.25x(n)+x(n-1)+.25x(n-2)$ Calculate the phase delay and group delay				
8	Illustrate for the use of window sequences in the	Remember	CO 4	CLO14	AEC012.14
	design of FIR filter. Describe the window sequences				
	generally used and compare their properties.				
9	Design an ideal high pass filter with a frequency π	Remember	CO 4	CL012	AEC012.12
	Hd(eiw)=1 for $4 \le \omega \le \pi 0$ for $ \omega \le 4$				
	Find the values of $h(n)$ for N=11.Find H(z).plot				
	magnitude response.				
10	Prove that an FIR filter has linear phase if the unit	Remember	CO 4	CLO13	AEC012.13
	sample response satisfies the condition $h(n) = \pm h(M - 1)$			1.00	
	antisymmetric cases of FIR filter	_		1	
		· · · ·		0	
11	Design a HPF of length 7 with cut off frequency of 2	Remember	CO 4	CLO12	AEC012.12
	rad/sec using Hamming window. Plot the magnitude		- A		
12	and phase response.	Pomombor	CO 4	CL 013	AEC012.13
12	EIR filter using rectangular window	Kemember	0.04	CLUIS	AEC012.15
	The mer using rectangular window	· · · ·	S		
13	Design a high pass filter using hamming window	Remember	CO 4	CLO12	AEC012.12
	with a cut-off frequency of 1.2radians/second and	011			
	N=9	1			
14	Analyze optimized design of FIR filter using Parks-	Remember	CO 4	CLO13	AEC012.13
	McClellan remez algorithm and its limitations.				
15	Describe about optimized design of FIR filter using	Understand	CO 4	CLO14	AEC012.14
	least mean square error method.				
16	Design a tenth order FIR hand nass digital filter with	Understand	CO 4	CLO12	AEC012.12
	lower and upper cut-off frequencies at $\pi/8$ and $\pi/3$				
	respectively.				
17	Design a HPF of length 7 with cut off frequency of 2	Remember	CO 4	CLO13	AEC012.13
1	rad/sec using Hanning window. Plot the magnitude				1

S. No	QUESTION and phase response. Illustrate the principle and procedure for designing FIR filter using Hamming window Design a high pass filter using hanning window with a	Blooms Taxonomy Level Remember Remember	Course Outcomes CO 4 CO 4	Course Learning Outcomes CLO12 CLO13	Course learning Outcome Codes AEC012.12 AEC012.13
20	Illustrate about optimized design of FIR filter using Parks-McClellan remez algorithm and its limitations.	Remember	CO 4	CLO14	AEC012.14
	PART-C (PROBLEM SOLVING AND CRI	TICAL THIN	KING QUI	ESTIONS)	
1	 a) Prove that an FIR filter has linear phase if the unit sample response satisfies the condition h(n)= ± h(M-1-n), n =0,1,, M-Also discuss symmetric and anti symmetric cases of FIR filter. b) Analyze the need for the use of window sequence in the design of FIR filter. Describe the window 	Understand	CO 4	CLO12	AEC012.12
2	Given that for a linear phase filter, its impulse- response must be symmetric about n=N for some N, (i.e. $h[N + n] = h[N-n]$ for all n), why cannot an IIR filter be linear phase?	Understand	CO 4	CLO13	AEC012.13
3	Design an ideal Hilbert transformer having frequency response H (e j ω) = j - $\pi \le \omega$ ≤ 0 - j $0 \le \omega \le \pi$ for N=11 using rectangular window	Remember	CO 4	CLO14	AEC012.14
4	Using frequency sampling method design a band pass filter with following specifications Sampling frequency F=8000Hz , Cut off frequency fc1=1000Hz fc2=3000Hz. Determine the filter coefficients for N=7	Remember	CO 4	CLO12	AEC012.12
5	Design an FIR low pass digital filter using the frequency sampling method for the following specifications (16) Cut off frequency = 1500 Hz Sampling frequency = 1500 Hz Order of the filter N = 10 Filter Length require d L = N+1 = 11	Remember	CO 4	CLO12	AEC012.12
6	Design the first 15 coefficients of FIR filters of magnitude specification is given below H(ejw) =1, $-\pi/2 \le \omega \le \pi/2$ 0, otherwise	Understand	CO 4	CLO13	AEC012.13
7	Design a FIR linear phase digital filter approximating the ideal frequency response	Remember	CO 4	CLO14	AEC012.14

S. No	QUESTION $hd(w)=1; w < \pi/6$ $= \pi/6 < w < \pi$ With T=1 Sec using bilinear transformation .Realize the same in Direct form II Using a rectangular window technique design a lowpass filter with pass band gain of unity, cutoff frequency of 1000 Hz and working at a sampling	Blooms Taxonomy Level Understand	Course Outcomes CO 4	Course Learning Outcomes CLO12	Course learning Outcome Codes AEC012.12		
9	frequency of 5 kHz. The length of the impulse response should be 7 Design a filter with Hd(ej ω) = e- 3 j ω , $\pi/4 \le \omega \le \pi/4$ =0 for $\pi/4 \le \omega \le \pi$	Remember	CO 4	CLO12	AEC012.12		
10	using a Hamming window with N=7. Illustrate optimized design of FIR filter using Parks- McClellan remez algorithm, least mean square error methods and limitations.	Remember	CO 4	CLO13	AEC012.13		
UNIT-V APPLICATIONS OF DSP							
1	Describe about decimation by factor D	Remember	CO 5	CI 015	AEC012.15		
2	Elucidate interpolation by factor I	Understand	CO 5		AEC012.13		
2	Analyza, the spectrum of superparticipation	Understand		CL010	AEC012.10		
3	Analyze the spectrum of exponential signal	Domessiand			AEC012.17		
4	decimated by factor 2.	Kemember	05	CLUIS	AEC01215		
5	Analyze the spectrum of exponential signal interpolated by factor 2	Understand	CO 5	CLO16	AEC012.16		
6	Describe about term up sampling and down sampling	Remember	CO 5	CLO17	AEC012.17		
7	List out the Applications of multi rate DSP	Understand	CO 5	CLO15	AEC012.15		
8	Elucidate does multirate mean?	Understand	CO 5	CLO16	AEC012.16		
9	State the use of multirate DSP?	Understand	CO 5	CLO17	AEC012.17		
10	List out the categories of multirate?	Remember	CO 5	CLO15	AEC01215		
11	Illustrate "decimation" and "down sampling"?	Remember	CO 5	CLO16	AEC012.16		
12	State is the "decimation factor"?	Remember	CO 5	CLO17	AEC012.17		
13	Justify decimate?	Understand	CO 5	CLO15	AEC012.15		
14	Is there a restriction on decimation factors I can use?	Remember	CO 5	CLO16	AEC012.16		
15	List out signals can be down sampled?	Understand	CO 5	CLO17	AEC012.17		
16	Analyze the reason if I violate the Nyquist criteria in down sampling or decimating?	Understand	CO 5	CLO15	AEC012.15		

S. No.	OUESTION	Blooms		Course	Course
		Towonomy	Course	Learning	learning
5. INO	QUESTION		Outcomes	Outcomes	Outcome
		Level			Codes
17	Compare Fixed and Binary floating point number representation?	Understand	CO 5	CLO16	AEC012.16
18	Evaluate How the multiplication & addition are carried out in floating point arithmetic?	Understand	CO 5	CLO17	AEC012.17
19	List out the effects of finite word length in digital filters?	Understand	CO 5	CLO15	AEC012.15
20	List the errors which arise due to quantization process.	Remember	CO 5	CLO16	AEC012.16
	PART-B (LONG ANSWE	R QUESTIO	NS)		
1	Describe the applications of Multirate Digital Signal Processing	Remember	CO 5	CLO15	AEC012.15
2	Consider a signal x(n) = u(n)	Understand	CO 5	CLO16	AEC012.16
	1. Obtain a signal with a decimation factor '3'				
	2. Obtain a signal with a interpolation factor '3'.				
3	solve the expression for decimation by factor D	Understand	CO 5	CLO17	AEC012.17
4	Obtain the expression for interpolation by factor I	Remember	CO 5	CLO15	AEC012.15
5	Elucidate the sampling rate conversion by a factor of I/O and obtain necessary expressions with next block diagram	Understand	CO 5	CLO16	AEC012.16
6	Summarize notes on filter design and implementation	Remember	CO 5	CLO17	AEC0127.17
	for sampling rate conversion	XX 1 . 1	00.5	CL 015	1001015
/	Illustrate the output noise due to A/D conversion of the input x (n).	Understand	05	CLOIS	AEC012.15
8	Describe about (a) Truncation and rounding (b)	Understand	CO 5	CLO15	AEC012.15
9	List out the errors introduced by quantization with	Understand	CO 5	CLO16	AEC012.16
10	i. State the various common methods of	Remember	CO 5	CLO17	AEC012.17
	quantization. ii. Describe the finite word length effects in FIR digital filters		8		
11	Describe the quantization in floating point realization	Remember	CO 5	CLO15	AEC012.15
	 of IIR digital filters. i. Explain the characteristics of limit cycle oscillation with respect to the system described by the difference equation: y(n) = 0.95y(n - 1) + x(n); x(n) = 0 and y(-1) = 13. Determine the dead band range of the system. 	110			
	11. Explain the effects of coefficient quantization in FIR filters				
12	Describe the applications of Multirate Digital Signal Processing	Remember	CO 5	CLO15	AEC012.15
13	Illustrate the concept of coefficient quantization in IIR filter.	Understand	CO 5	CLO16	AEC012.16
14	Evaluate conditions prevent limit cycle oscillations? Explain.	Understand	CO 5	CLO17	AEC012.17

		Blooms	Course	Course	Course
S. No	QUESTION	Taxonomy	Outcome	Outcomes	Outcome
		Level	Outcomes	Outcomes	Outcome
					Codes
15	Discuss in detail the errors resulting from rounding and truncation.	Understand	CO 5	CLO15	AEC012.15
16	Describe about the limit cycle oscillations due to product round off and overflow errors.	Understand	CO 5	CLO16	AEC012.16
17	Describe the characteristics of a limit cycle oscillation with respect to the system described by the equation y(n) = 0.45y(n - 1) + x(n) when the product is quantized to 5 – bits by rounding. The system is excited by an input $x(n) = 0.75$ for $n = 0$ and $x(n) = 0$ for $n \neq 0$. Also determine the dead band of the filter.	Understand	CO 5	CLO17	AEC012.17
18	Elucidate about quantization of analog signals? Derive the expression for the quantization error.	Understand	CO 5	CLO15	AEC012.15
19	Compare cycle oscillations and signal scaling.	Understand	CO 5	CLO16	AEC012.16
20	Illustrate meant by signal scaling? Explain.	Understand	CO 5	CLO17	AEC012.17
	PART-C (PROBLEM SOLVING AND CRI	TICAL TH	INKING Q	UESTIONS)
1.	Describe the decimation process with a neat block diagram.	Remember	CO 5	CLO15	AEC012.15
2.	List out the advantages and drawbacks of multirate digital signal processing	Remember	CO 5	CLO16	AEC012.16
3.	The output of an A/D is fed through a digital system whose system function is $H(z)=1/(1-0.8z-1)$.Calculate the output noise power of the digital system.	Understand	CO 5	CLO17	AEC012.17
4.	The output of an A/D is fed through a digital system whose system function is $H(Z)=0.6z/z-0.6$. Calculate the output noise power of the digital system=8 bits	Remember	CO 5	CLO15	AEC012.15
5.	Explore about quantization effect in ADC of signals. Derive the expression for $Pe(n)$ and SNR.	Remember	CO 5	CLO16	AEC012.16
6.	A digital system is characterized by the difference equation $y(n)=0.95y(n-1)+x(n)$.determine the dead band of the system when $x(n)=0$ and $y(-1)=13$.	Understand	CO 5	CLO17	AEC012.17
7.	Two first order filters are connected in cascaded whose system functions of the individual sections are $H1(z)=1/(1-0.8z^{-1})$ and $H2(z)=1/(1-0.9z^{1})$. Determine the overall output noise power.	Remember	CO 5	CLO15	AEC012.15
8.	Consider a signal $x(n)=sin(\pi n)U(n)$. Obtain a signal with an interpolation factor of '2'	Understand	CO 5	CLO15	AEC012.15
9.	Design a decimator with the following specification D = 5, δp =, 0.025 δs =0.0035, ωs = 0.2 π Assume	Understand	CO 5	CLO16	AEC012.16

S. No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes	Course learning Outcome Codes
	any other required data.				
10.	Illustrate quantization effect in ADC of signals with examples	Remember	CO 5	CLO17	AEC012.17

Prepared By: Dr. S China Venkateswarlu, Professor

HOD, ECE

