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UNIT-I 

ELECTROSTATICS 
 

Coordinate Systems: 

 

In order to describe the spatial variations of the quantities, appropriate coordinate system is 

required. 

A point or vector can be represented in a curvilinear coordinate system that may be orthogonal or 

non-orthogonal. 

 

- A way of addressing the points in the space ,,,, 

- An orthogonal system is one in which the coordinates are mutually perpendicular 

to each other. 

- The different co-ordinate system available are: 

- Cartesian or Rectangular. 

- Circular cylindrical. 

- Spherical. 

- Elliptical Cylindrical. 

- Hyperbolic Cylindrical. 

- Parabolic Cylindrical. 

The choice depends on the geometry of the application 

The frequently used and hence discussed herein are 

Rectangular Co-ordinate system.(Example: Cube, Cuboids) 

Cylindrical Co-ordinate system.(Example : Cylinder) 

Spherical Co-ordinate system.(Example : Sphere) 

A set of 3 scalar values that define position and a set of unit vectors that define direction form a co-

ordinate system. 

The 3 scalar values used to define position are called co-ordinates. All coordinates are defined 

with respect to an arbitrary point called the origin. 
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Cartesian Co-ordinate System / Rectangular Co-ordinate      

System (X, Y, Z) 

 

A Vector in Cartesian system is represented as 

(Ax, Ay, Az) 

Or 

A = Axax+ Ayay+ Azaz 

Where ax, ay and az are the unit vectors in x, y, z direction respectively. 

Range of the variables: 

It defines the minimum and the maximum value that x, y and z can have in Cartesian system. 

-∞ < x,y,z < ∞ 

 

Differential Displacement / Differential Length (dl): 

It is given as dl = dxax + dyay + dzaz 

Differential length for a surface is given as: 

dl = dxax + dyay --- ( For XY Plane or Z Constant 

Plane). dl = dyay + dzaz, ---( For YZ Plane or X 

Constant Plane). dl = dxax + dzaz ---( For XZ Plane or 

Y Constant Plane). Differential length for a line parallel 

to x, y and z axis are respectively given as: 

dl = dxax ---( For a line parallel to x-

axis). dl = dyay ---( For a line Parallel 

to y-axis). dl = dzaz, ---( For a line 

parallel to z-axis). Differential Normal 

Surface ds): 

The differential surface (area element) is defined as  

ds = ds an 



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 4 

 

where an is the unit vector perpendicular to the 

surface. For the 1st figure, ds = dydz ax 

2nd figure, 

ds = dxdz ay 

3rd figure, 

ds = dxdy az 

Differential surface is basically a cross product between two parameters of the surface. For 

example, consider the first figure. The surface has two differential lengths, one is dy and dz. The 

differential surface (ds) is hence given as: 

dS = dy * dz 

= |dy| |dz| sinAB an 

=|dy| |dz| an 

Where an is the unit vector normal to both dy and dz 

i.e. an = ay * az = ax 

In other words the differential surface element (ds) has an area equal to product dydz, and a normal 

vector that points in ax direction. 

Differential Volume element (dv) 

The differential volume element (dv) can be expressed in terms of the triple product. 

dv = dx . (dy * dz) 

Consider a cubical surface having dimension x * y * z. The differential volume (dv) of the cubical 

surface is given as the triple product of the dimensions. 

dv = dx . (dy * dz) 

= dx ax . (dy dz a xsin θ AB ) 

= dx ax . (dy dz a x) 

= dx dy dz 

Where dy and dz are mutually perpendicular to each other. Therefore the angle between them is 

90
o
. 

 

ax.ax= 1 ax.ay= 0 ax.az= 0 

 

ay.ax= 0 ay.ay= 1 ay.az= 0 

 

az.ax= 0 az.ay= 0 az.az= 1 

 

One thing to remember is that, the three parameters of Cartesian 
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coordinate system i.e. X, Y, Z are all mutually 

perpendicular to each other. 

Therefore ax, ay and az are all mutually perpendicular to each other. 

 

Circular Cylindrical Co-ordinate System... 

 

A Vector in Cylindrical system is represented as 

(Aρ, Aυ, Az) 

or 

A = Aρaρ+ Aυaυ+ Azaz 

Where aρ, aυand az are the unit vectors in ρ, υ and z direction respectively. 

The physical significance of each parameter of cylindrical coordinates: 

- The value ρ indicates the distance of the point from the z-axis. It is the radius of the cylinder. 

- The value υ, also called the azimuthal angle, indicates the rotation angle around the z-

axis. It is basically measured from the x axis in the x-y plane. It is measured anti-

clockwise. 

- The value z indicates the distance of the point from z-axis. It is the same as in the 

Cartesian system. In short, it is the height of the cylinder. 

 Range of the variables: 

It defines the minimum and the maximum value that ρ, υ and z can have in Cartesian system. 

0 ≤ ρ < ∞ 

0 ≤ υ < 2π 

-∞ <  z < ∞ 

Cylindrical System - Unit vectors: 

Since the co-ordinate system is orthogonal, the unit vectors aρ, aυ and az are 

mutually perpendicular to each other. 

- aρ points in the direction of increasing ρ, i.e aρ points away from the z-axis. 

- aυ points in the direction of increasing υ (anticlockwise). 

- az points in the direction of increasing z. 

 

Introduction to Co-Ordinate System: 

Line, surface and volume integrals: 

In electromagnetic theory, we come across integrals, which contain vector functions. Some representative 

integrals are listed below:  
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n the above integrals, and respectively represent vector and scalar function of space coordinates. C,S and V 

represent path, surface and volume of integration. All these integrals are evaluated using extension of the usual 

one-dimensional integral as the limit of a sum, i.e., if a function f(x) is defined over arrange a to b of values of x, 

then the integral is given by  

.................................(1.42) 

where the interval (a,b) is subdivided into n continuous interval of lengths . 

Line Integral: Line integral is the dot product of a vector with a specified C; in other words it is the 

integral of the tangential component along the curve C.  

 
 

Fig 1.14: Line Integral 

As shown in the figure 1.14, given a vector around C, we define the integral as the line 

integral of E along the curve C.  

f the path of integration is a closed path as shown in the figure the line integral becomes a closed line integral and 

is called the circulation of around C and denoted as as shown in the figure 1.15. 
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Fig 1.15: Closed Line Integral 

 

Surface Integral : 

Given a vector field , continuous in a region containing the smooth surface S, we define the surface integral or 

the flux of through S as as surface integral over surface S. 

 

Fig 1.16 : Surface Integral 

 

Volume Integrals: 
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We define or as the volume integral of the scalar function f(function of spatial coordinates) over 

the volume V. Evaluation of integral of the form can be carried out as a sum of three scalar volume 

integrals, where each scalar volume integral is a component of the vector  

The Del Operator :  

The vector differential operator was introduced by Sir W. R. Hamilton and later on developed by P. G. Tait.  

Mathematically the vector differential operator can be written in the general form as:  

                      .................................(1.43) 

In Cartesian coordinates:  

                  ................................................(1.44) 

In cylindrical coordinates:  

                 ...........................................(1.45) 

and in spherical polar coordinates:  

                 .................................(1.46) 

Gradient of a Scalar function:  

Let us consider a scalar field V(u,v,w) , a function of space coordinates.  

 

Gradient of the scalar field V is a vector that represents both the magnitude and direction of the maximum space 

rate of increase of this scalar field V.  
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Fig 1.17 : Gradient of a scalar function 

By our definition of gradient we can write:  

                                       ...............................................(1.47) 

Also we can write, 

............................(1.51) 

By comparison we can write, 

....................................................................(1.52) 

Hence for the Cartesian, cylindrical and spherical polar coordinate system, the expressions for gradient can be 

written as:  

In Cartesian coordinates: 

...................................................................................(1.53) 

In cylindrical coordinates:  
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..................................................................(1.54) 

and in spherical polar coordinates:  

..........................................................(1.55) 

Divergence theorem : 

 

Divergence theorem states that the volume integral of the divergence of vector field is equal to the net outward 

flux of the vector through the closed surface that bounds the volume. Mathematically,  

Proof:  

 

Let us consider a volume V enclosed by a surface S . Let us subdivide the volume in large number of cells. Let 

the k
th
 cell has a volume  and the corresponding surface is denoted by Sk. Interior to the volume, cells have 

common surfaces. Outward flux through these common surfaces from one cell becomes the inward flux for the 

neighboring cells. Therefore when the total flux from these cells are considered, we actually get the net outward 

flux through the surface surrounding the volume. Hence we can write:  

 

In the limit, that is when and the right hand of the expression can be written as . 

Hence we get , which is the divergence theorem.  

Curl of a vector field: 

We have defined the circulation of a vector field A around a closed path as  

Curl of a vector field is a measure of the vector field's tendency to rotate about a point. Curl , also written as 

is defined as a vector whose magnitude is maximum of the net circulation per unit area when the area 

tends to zero and its direction is the normal direction to the area when the area is oriented in such a way so as to 

make the circulation maximum.  
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Therefore, we can write: 

......................................(1.68) 

This can be written as in three coordinate systems 

In Cartesian coordinates:  

In Cylindrical coordinates, . 

In Spherical polar coordinates,  

Stoke's theorem : 

It states that the circulation of a vector field around a closed path is equal to the integral of over the 

surface bounded by this path. It may be noted that this equality holds provided and are continuous on 

the surface.  

i.e, 

                                                        

Proof:Let us consider an area S that is subdivided into large number of cells as shown in the figure 1.21. 
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Fig 1.21: Stokes theorem 

Let k
th
cell has surface area and is bounded path Lk while the total area is bounded by path L. As seen from 

the figure that if we evaluate the sum of the line integrals around the elementary areas, there is cancellation along 

every interior path and we are left the line integral along path L. Therefore we can write,  

   ..............(1.83) 

As 0  

.                                 .............(1.84) 

which is the stoke's theorem.  

Coulomb’s law:  

 

Coulomb's Law states that the force between two point charges Q1and Q2 is directly proportional to the product of 

the charges and inversely proportional to the square of the distance between them.  

Point charge is a hypothetical charge located at a single point in space. It is an idealised model of a particle 

having an electric charge.  
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Mathematically, ,where k is the proportionality constant.  

In SI units, Q1 and Q2 are expressed in Coulombs(C) and R is in meters. 

Force F is in Newtons (N) and , is called the permittivity of free space.  

(We are assuming the charges are in free space. If the charges are any other dielectric medium, we will use 

instead where is called the relative permittivity or the dielectric constant of the medium). 

Therefore  

As shown in the Figure 1 let the position vectors of the point charges Q1and Q2 are given by and . Let 

represent the force on Q1 due to charge Q2.  

 
Fig 1: Coulomb's Law  

The charges are separated by a distance of . We define the unit vectors as  

and  

can be defined as . Similarly the force on Q1 due to charge Q2 

can be calculated and if represents this force then we can write  

When we have a number of point charges, to determine the force on a particular charge due to all other 

charges, we apply principle of superposition. If we have N number of charges Q1,Q2,.........QN located 
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respectively at the points represented by the position vectors , ,......  , the force experienced by a 

charge Q located at is given by,  

 

Electric Field Intensity: 

The electric field intensity or the electric field strength at a point is defined as the force per unit charge. 

That is  

or,  

The electric field intensity E at a point r (observation point) due a point charge Q located at (source 

point) is given by:  

 

For a collection of N point charges Q1 ,Q2 ,.........QN located at , ,...... , the electric field intensity at 

point is obtained as  

 

Field due to Different Types of Charges: 

Eelectric filed due to a continuous distribution of charges.: 

In figure 2.2 we consider a continuous volume distribution of charge r(t) in the region denoted as the 

source region.  

For an elementary charge , i.e. considering this charge as point charge, we can write the 

field expression as: 
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When this expression is integrated over the source region, we get the electric field at the point P due to 

this distribution of charges. Thus the expression for the electric field at P can be written as:  

 

Similar technique can be adopted when the charge distribution is in the form of a line charge density or 

a surface charge density.  

 

 

 

Electric Flux Density: 

 

Electric field intensity or simply ‗Electric field' gives the strength of the field at a particular point. The electric 

field depends on the material media in which the field is being considered. The flux density vector is defined to 

be independent of the material media (as we'll see that it relates to the charge that is producing it).For a linear 

isotropic medium under consideration; the flux density vector is defined as:   

 

We define the electric flux Y as  

 

Consider a point charge at the origin: 



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 16 

 

 

Electric Flux Density of a Point Charge  

Assume from symmetry the form of the field 

 

 Construct a family of Gaussian surfaces 

 

Evaluate the total charge within the volume     enclosed by each Gaussian surface 

 

For each Gaussian surface, evaluate the integral 

 

 

 

 

Solve for D on each Gaussian surface 

 

 

Consider a spherical shell of uniform charge density: 
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Gauss's Law: 

Gauss's law is one of the fundamental laws of electromagnetism and it states that the total electric flux through a 

closed surface is equal to the total charge enclosed by the surface.  

 

Fig 1: Gauss's Law 

Let us consider a point charge Q located in an isotropic homogeneous medium of dielectric constant e. The flux 

density at a distance r on a surface enclosing the charge is given by  
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If we consider an elementary area ds, the amount of flux passing through the elementary area is given by  

 

But , is the elementary solid angle subtended by the area at the location of Q. Therefore we 

can write  

For a closed surface enclosing the charge, we can write  

which can seen to be same as what we have stated in the definition of Gauss's Law.  

 

 

Application of Gauss's Law: 

Gauss's law is particularly useful in computing or where the charge distribution has some symmetry. We 

shall illustrate the application of Gauss's Law with some examples.  

1.An infinite line charge  

As the first example of illustration of use of Gauss's law, let consider the problem of determination of the electric 

field produced by an infinite line charge of density rLC/m. Let us consider a line charge positioned along the z-

axis as shown in Fig. 2(a). Since the line charge is assumed to be infinitely long, the electric field will be of the 

form as shown in Fig. 2(b) .  

If we consider a close cylindrical surface as shown in Fig. 2.4(a), using Gauss's theorm we can write,  

 

Considering the fact that the unit normal vector to areas S1 and S3 are perpendicular to the electric field, the 

surface integrals for the top and bottom surfaces evaluates to zero. Hence we can write,  
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Fig 2: Infinite Line Charge 

 

2.  Infinite Sheet of Charge  

As a second example of application of Gauss's theorem, we consider an infinite charged sheet covering the x-z 

plane as shown in figure 3. 

Assuming a surface charge density of for the infinite surface charge, if we consider a cylindrical volume 

having sides placed symmetrically as shown in figure 5, we can write:  
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Fig 3: Infinite Sheet of Charge 

It may be noted that the electric field strength is independent of distance. This is true for the infinite plane of 

charge; electric lines of force on either side of the charge will be perpendicular to the sheet and extend to infinity 

as parallel lines. As number of lines of force per unit area gives the strength of the field, the field becomes 

independent of distance. For a finite charge sheet, the field will be a function of distance.  

 

3.  Uniformly Charged Sphere  

Let us consider a sphere of radius r0 having a uniform volume charge density of rv C/m
3
. To determine 

everywhere, inside and outside the sphere, we construct Gaussian surfaces of radius r < r0 and r > r0 as shown 

in Fig. 4(a) and Fig. 4(b).  

For the region ; the total enclosed charge will be  
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Fig 4: Uniformly Charged Sphere 

By applying Gauss's theorem,  

 

Therefore 

 

For the region ; the total enclosed charge will be  

 

By applying Gauss's theorem,  

 

Electrostatic Potential: 

In the previous sections we have seen how the electric field intensity due to a charge or a charge distribution can 

be found using Coulomb's law or Gauss's law. Since a charge placed in the vicinity of another charge (or in other 

words in the field of other charge) experiences a force, the movement of the charge represents energy exchange. 

Electrostatic potential is related to the work done in carrying a charge from one point to the other in the presence 

of an electric field.  

Let us suppose that we wish to move a positive test charge from a point P to another point Q as shown in the 

Fig. 1. 
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The force at any point along its path would cause the particle to accelerate and move it out of the region if 

unconstrained. Since we are dealing with an electrostatic case, a force equal to the negative of that acting on the 

charge is to be applied while moves from P to Q. The work done by this external agent in moving the charge 

by a distance is given by:  

 

Fig 1: Movement of Test Charge in Electric Field 

 

The negative sign accounts for the fact that work is done on the system by the external agent.  

 

The potential difference between two points P and Q, VPQ, is defined as the work done per unit charge, i.e.  

 

It may be noted that in moving a charge from the initial point to the final point if the potential difference is 

positive, there is a gain in potential energy in the movement, external agent performs the work against the field. If 

the sign of the potential difference is negative, work is done by the field.  

We will see that the electrostatic system is conservative in that no net energy is exchanged if the test charge is 

moved about a closed path, i.e. returning to its initial position. Further, the potential difference between two 

points in an electrostatic field is a point function; it is independent of the path taken. The potential difference is 

measured in Joules/Coulomb which is referred to as Volts.  

Let us consider a point charge Q as shown in the Fig. 2  
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Fig 2: Electrostatic Potential calculation for a point charge 

Further consider the two points A and B as shown in the Fig. 2.9. Considering the movement of a unit positive 

test charge from B to A , we can write an expression for the potential difference as:  

 

It is customary to choose the potential to be zero at infinity. Thus potential at any point ( rA = r) due to a point 

charge Q can be written as the amount of work done in bringing a unit positive charge from infinity to that point 

(i.e. rB = 0).  

 

Or, in other words, 

 

Let us now consider a situation where the point charge Q is not located at the origin as shown in Fig. 2.10.  
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Fig 2.10: Electrostatic Potential due a Displaced Charge 

The potential at a point P becomes  

 

So far we have considered the potential due to point charges only. As any other type of charge distribution can be 

considered to be consisting of point charges, the same basic ideas now can be extended to other types of charge 

distributionalso.  

Let us first consider N point charges Q1, Q2,.....QN located at points with position vectors , ,...... . The 

potential at a point having position vector can be written as:  

 

 

 

 

Potential Field Due To Different Types of Charges: 

For continuous charge distribution, we replace point charges Qn by corresponding charge elements or 

or depending on whether the charge distribution is linear, surface or a volume charge distribution and 

the summation is replaced by an integral. With these modifications we can write:  
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For line charge,  

For surface charge,  

For volume charge,  

It may be noted here that the primed coordinates represent the source coordinates and the unprimed coordinates 

represent field point.  

Further, in our discussion so far we have used the reference or zero potential at infinity. If any other point is 

chosen as reference, we can write:  

 

where C is a constant. In the same manner when potential is computed from a known electric field we 

can write:  

 

 

 

 

 
 

 

 

 

Potential Gradient: The potential difference is however independent of the choice of reference then  
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We have mentioned that electrostatic field is a conservative field; the work done in moving a charge from one 

point to the other is independent of the path. Let us consider moving a charge from point P1 to P2 in one path and 

then from point P2 back to P1 over a different path. If the work done on the two paths were different, a net 

positive or negative amount of work would have been done when the body returns to its original position P1. In a 

conservative field there is no mechanism for dissipating energy corresponding to any positive work neither any 

source is present from which energy could be absorbed in the case of negative work. Hence the question of 

different works in two paths is untenable; the work must have to be independent of path and depends on the 

initial and final positions.  

Since the potential difference is independent of the paths taken, VAB = - VBA , and over a closed path, 

 

Applying Stokes's theorem, we can write:  

 

from which it follows that for electrostatic field,  

 

Any vector field that satisfies is called an irrotational field.  

From our definition of potential, we can write  

 

 

 

from which we obtain,  

 

From the foregoing discussions we observe that the electric field strength at any point is the negative of the 

potential gradient at any point, negative sign shows that is directed from higher to lower values of . This 

gives us another method of computing the electric field, i. e. if we know the potential function, the electric field 

may be computed. We may note here that that one scalar function contain all the information that three 
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components of carry, the same is possible because of the fact that three components of are interrelated by 

the relation .  

Dipole field due to Dipole : 

An electric dipole consists of two point charges of equal magnitude but of opposite sign and separated by a small 

distance.  

As shown in figure 1, the dipole is formed by the two point charges Q and -Q separated by a distance d , the 

charges being placed symmetrically about the origin. Let us consider a point P at a distance r, where we are 

interested to find the field.  

 

Fig 1: Electric Dipole 

The potential at P due to the dipole can be written as:  

 

When r1 and r2>>d, we can write and .  

Therefore, 

 

We can write, 
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The quantity is called the dipole moment of the electric dipole. 

Hence the expression for the electric potential can now be written as:  

 

It may be noted that while potential of an isolated charge varies with distance as 1/r that of an electric dipole 

varies as 1/r
2
 with distance. If the dipole is not centered at the origin, but the dipole center lies at , the 

expression for the potential can be written as:  

 

The electric field for the dipole centered at the origin can be computed as  

 

is the magnitude of the dipole moment. Once again we note that the electric field of electric dipole varies 

as 1/r
3
 where as that of a point charge varies as 1/r

2
. 

 

 

 

 

Energy Density in Electrostatic Field: 

Electrostatic Energy and Energy Density 
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We have stated that the electric potential at a point in an electric field is the amount of work required to bring a 

unit positive charge from infinity (reference of zero potential) to that point. 

 To determine the energy that is present in an assembly of charges, let us first determine the amount of work 

required to assemble them. Let us consider a number of discrete charges Q1, Q2,......., QN are brought from infinity 

to their present position one by one.  

Since initially there is no field present, the amount of work done in bring Q1 is zero. Q2 is brought in the presence 

of the field of Q1, the work done W1= Q2V21 where V21 is the potential at the location of Q2 due to Q1. Proceeding 

in this manner, we can write, the total work done 

 

Had the charges been brought in the reverse order, 

                                                                                                                      

Therefore, 

          

                                                                                                                   

Here VIJ represent voltage at the I
th
 charge location due to J

th
 charge. Therefore, 

 

Or,  

If instead of discrete charges, we now have a distribution of charges over a volume v then we can write, 

 

where is the volume charge density and V represents the potential function. 

 Since, , we can write 
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Using the vector identity, 

, we can write 

 

In the expression , for point charges, since V varies as and D varies as , the term V varies 

as while the area varies as r
2
. Hence the integral term varies at least as and the as surface becomes large 

(i.e. ) the integral term tends to zero.  

Thus the equation for W reduces to 

 

, is called the energy density in the electrostatic field 
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Illustrative Problems: 

1. Consider a vector function given by . Find and over the region defined 

by ,  and . Is the divergence theorem satisfied? 

 Solution:  

   Given .  

   As shown in Figure 1 (next slide) , the closed cylindrical surface can be split into three surfaces S 1 S 2and S 3  

 

                                            

 

                                                       Figure 1 

 Since the unit vector perpendicular to S 1 & S 3 are directed along & - , the contribution from the 1 st and 3 

rd integrals are zero. 

   
 

                                         
 

                                        

  has only component. 
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Since , the divergence theorem is satisfied. 

2. Given . Compute and over the area S as shown in the figure 2 

below. 

 

Figure 2 

 

Solution:  

                                               
 

In cylindrical coordinate; the curl of a vector A is given by 
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Convection and Conduction Currents: - 

 Current (in amperes) through a given area is the electric charge passing through the area per unit time  

Current 
d Q

I
d t

  

 Current density is the amount of current flowing through a surface, A/m
2
, or the current through a unit 

normal area at that point  

 Current density  

I
J

S




  

 Where 

.
S

I J d S   

 Depending on how the current is produced, there are different types of current density  

 Convection current density  

 Conduction current density  

 Displacement current density  

- Current generated by a magnetic field  

Convection current density  

 Does not involve conductors and does not obey Ohm‘s law  

 Occurs when current flows through an insulating medium such as liquid, gas, or vacuum  
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v v y

Q y
I S S v

t t
 

 
     

   

 Where v is the velocity vector of the fluid 

y v y

I
J v

S



 

  

Conduction current density  

 Current in a conductor  

 Obeys Ohm‘s law  

 Consider a large number of free electrons travelling in a metal with mass (m), velocity (v), and scattering 

time (time between electron collisions), τ 

m v
F q E


  

 

 The carrier density is determined by the number of electrons, n, with charge, e  

v
n e  

 

 Conduction current density can then be calculated as  

2

v

n e
J v E E

m


   

 

 Where σ is the conductivity of the conductor. This relationship between current concentration and 

electric field is known as Ohm‘s Law.  

Continuity Equation and Relaxation Time: - 

 Due to the principle of charge conservation, the time rate of decrease of charge within a given volume 

must be equal to the net outward current flow through the closed surface of the volume.  

 Thus, the current coming out of the closed surface is 

.
in

o u t
S

d Q
I J d S

d t
  

 

 Where Qin is the total charge enclosed by the closed surface. Invoking divergence theorem 
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. .
v

S

J d S Jd v   
 

 But, 

in v

v
v v

d Q dd
d v d v

d t d t d t


     

 

 From the above three equations, we can write as 

.

.

v

v v

v

J d v d v
t

J
t






  




 



 

 

 which is called the continuity of current equation.  

 The continuity equation is derived from the principle of conservation of charge and essentially states that 

there can be no accumulation of charge at any point. For steady currents, 
0

v

t




 and hence 

. 0J  showing that the total charge leaving a volume is the same as the total charge entering it. 

Relaxation time 

 Utilizing the continuity equation and material properties such as permittivity and conductivity, one can 

derive a time constant (in seconds) by which to measure the relaxation time associated with the decay of 

charge from the point at which it was introduced within a material to the surface of that material. 

 We start with Ohm‘s and Gauss‘ Laws  

J E  

.
v

E



 

 

. J .
v v

E
t

 





     

  

0
v v

t

  




 

  

v

v

t 

 

 
 
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0
ln ln

v v

t
 


  

 

0

r

t

T

v v
e 




 

r
T






 

 
0v

 is the initial charge density. The relaxation time(Tr) is the time it takes a charge placed in the interior 

of a material to drop by e
-1

 (=36.8%) of its initial value.  

 For good conductors Tr is approx. 2*10
-19

 s.  

 For good insulators Tr can be days  
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Poisson’s and Laplace’s Equations: - 

 We have determined the electric field 𝐸 in a region using Coulomb‘s law or Gauss law when the charge 

distribution is specified in the region or using the relation E V    when the potential V is specified 

throughout the region. 

 However, in practical cases, neither the charge distribution nor the potential distribution is specified only 

at some boundaries. These types of problems are known as electrostatic boundary value problems. 

 For these type of problems, the field and the potential V are determined by using Poisson‘s equation or 

Laplace‘s equation. 

 Laplace‘s equation is the special case of Poisson‘s equation. 

 For the Linear materials Poisson‘s and Laplace‘s equation can be easily derived from Gauss‘s equation  

v
D     

 But, 

D E  

 Putting the value of 𝐷 in Gauss Law, 

v
E     

 From homogeneous medium for which ε is a constant, we write 

v
E




    

 Also, E V    

 Then the previous equation becomes, 

.
v

V



     

or 

2 v
V




    

 This equation is known as Poisson‘s equation which state that the potential distribution in a region 

depend on the local charge distribution. 

 In many boundary value problems, the charge distribution is involved on the surface of the conductor for 

which the free volume charge density is zero, i.e., 
v

 ƍ=0. In that case, Poisson‘s equation reduces to, 

2
0V   

 This equation is known as Laplace‘s equation. 

 

Laplace Equation in Three Coordinate System 

In Cartesian coordinates: 
2 2 2

2

2 2 2

V V V
V

x y z

  
   

  
 

In cylindrical coordinates 
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2 2

2

2 2 2

1 1
0

V V V
V

z


    

    
     

    

 

In spherical coordinates: 
2

2 2

2 2 2 2

1 1 1
s in 0

s in s in

V V V
V r

r r r r r


    

       
       

       

 

 

Application of Laplace’s and Poisson’s Equation 

 Using Laplace or Poisson‘s equation we can obtain: 

 Potential at any point in between two surfaces when potential at two surfaces are given. 

 We can also obtain capacitance between these two surfaces. 

General Procedure for solving Laplace or Poisson Equation: 
 

 Solve Laplace or Poisson equations for V by (a) direct substitution for single variable or (b) by method of 

separation of variables for more than one variable. The solution at this point is not unique because of the 

integration constants  

 Apply the boundary conditions to determine the integration constants giving a unique solution for V. 

Having found V, find E V   and D E . 

 If desired find the charge Q induced on a conductor surface using 
s

s

Q d S E   and
s n

D   where 

Dn is the component of D normal to the conductor. If necessary the capacitance between two conductors 

can be found using 
Q

C
V

 . 
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Capacitance: - 

 Capacitance is an intuitive characterization of a capacitor. It tells you, how much charge a capacitor can 

hold for a given voltage. 

 The property of a capacitor to ‗store electricity‘ may be called its capacitance. 

 A capacitor essentially consists of two conducting surfaces separated by a layer of an insulating medium 

called dielectric. The conducting surfaces may be in the form of either circular (or rectangular) plates or 

be of spherical or cylindrical shape.  

 Generally speaking, to have a capacitor we must have two (or more) conductors carrying equal but 

opposite charges. 

 
Figure 1. Charge carriers of conductor with opposite polarity. 

 

 This implies that all the flux lines leaving one conductor must necessarily terminate at the surface of the 

other conductor. The conductors are sometimes referred to as the plates of the capacitor. The plates may 

be separated by free space or a dielectric. 

 Suppose we give Q coulomb of charge to one of the two plates of capacitor, the potential difference V is 

established between the two plates, then its capacitance is 

a b

Q
C

V
  

 The capacitance C is a physical property of the capacitor and in measured in farads (F). 

 

 The charge Q on the surface of the plate and the potential difference Vab between the plates can be 

represented in terms of electric field 

.E d S Q   

.

b

a b a b

a

V V V E d l     

 Therefore, the capacitance C can be written as  

.

.

b

a b

a

E d SQ
C

V
E d l


 






 

 From the above expression, Capacitance can be obtained for any given two-conductor capacitance by 

following either of these methods: 

 Assuming Q and determining V in terms of Q (involving Gauss's law)  

 Assuming V and determining Q in terms of V (involving solving Laplace's equation) 

 In this lecture we will discuss the former method and capacitance can be determined using later method 

in the following lectures. 
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 The following steps used for finding the capacitance by using former method. 

 Choose a suitable coordinate system.  

 Let the two conducting plates carry charges + Q and — Q. 

 Determine E using Coulomb's or Gauss's law and find V from .E d l .  

 Finally, obtain C from 
Q

C
V

  

 Now, we will apply this procedure to determine the capacitance of some important two-conductor 

configurations. 

Parallel-Plate Capacitor: - 

 A parallel-plate capacitor consisting of two plates each of area A m
2 

separated by a thickness d meters of 

a medium of relative permittivity εr is shown in Figure 2. Assume the charge of + Q coulomb and - Q 

coulomb is distributed on top and bottom plates, respectively. So that the charge density is given by  

S

Q

A
   

 
Figure 2. Parallel plate conductors. 

 If the space between the plates is filled with a homogeneous dielectric with permittivity εr and we ignore 

flux fringing at the edges of the plates, then the flux passing through the medium is Q   coulomb and 

flux density is given by the medium is 

. .
n S

S S

D d A Q d A      

n S
D   

 But, we know 

D E  

 

 From the above relation, we can write the charge density in terms of electric field as 
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S
E




  

 Where, 
S

Q

A
  , then the above equation modifies to  

Q
E

A
  

 Also, from the relation between electric field and electric potential, we write 

0

.

d

V E d l E d   

Q
V d

A
  

 Thus, the parallel plate capacitor 
Q

C
V

  can be written as 

 

Q A
C

Q d
d

A





   

 This formula offers a means of measuring the dielectric constant εr of a given dielectric. By measuring 

the capacitance C of a parallel-plate capacitor with the space between the plates filled with the dielectric 

and the capacitance Co with air between the plates, we find εr from 

 

0

r

C

C
   

Coaxial Capacitor: - 

 This is essentially a coaxial cable or coaxial cylindrical capacitor. Consider length l of two coaxial 

conductors of inner radius a and outer radius b (b > a) as shown in Figure 3.  

 

Figure 3: Cylindrical conductors. 
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 Let the space between the conductors be filled with a homogeneous dielectric with permittivity ε. We 

assume that inner and outer conductors, respectively, carry +Q and -Q uniformly distributed on them. By 

applying Gauss's law to an arbitrary Gaussian cylindrical surface of radius ρ (a < ρ < b), we obtain 

. .

S S

Q D d A E d A       

2

0 0

.

( 2 )

l

S

Q E d A E d d l

Q E l



   

 

 



  
 

 Neglecting flux fringing at the cylinder ends, the potential difference between the inner and outer 

conductors can be written as  

.
2

a

b

Q d
V E d r

l



  





      

 ln
2

a

b

Q

l


 
  
 

 

 ln
2

a

b

Q
V

l



  
 

 

       ln ln ln ln
2 2

Q Q
V a b b a

l l 
       
   

 

ln
2

Q b
V

l a 

 
  

 

 

 Thus, the capacitance of a coaxial cylinder is given by 

2

ln ln
2

Q Q l
C

Q b bV

l a a

 

 

  
   
   
   

 

 

Figure 4. Spherical conductor 
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Spherical Capacitor:- 

 This is the case of two concentric spherical conductors. Consider the inner sphere of radius a and outer 

sphere of radius b(b> a) separated by a dielectric medium with permittivity ε as shown in Figure 4.  

 

 We assume charges +Q and -Q on the inner and outer spheres, respectively. By applying Gauss's law to 

an arbitrary Gaussian spherical surface of radius r(a<r<b), we obtain 

 

. .

S S

Q D d A E d A     
 

2
2

0 0

2

. s in

( 4 )

S

Q E d A E r d d

Q E r

 

    

 

 



  
 

 Therefore, 

2

Q
E

4 r 
  

 The potential difference between the inner and outer sphere can be written as  

2

Q
.

4

a

b

d r
V E d l

r





      

Q 1

4

a

b
r

 
  

 
 

 

Q 1 1

4
V

a b 

 
  

 

 

 Thus, the capacitance of a spherical capacitor is given by 

4

1 1Q 1 1

4

Q Q
C

V

a ba b

 

 

  
 

 
 

 

 By letting b ∞, 4C a  which is the capacitance of a spherical capacitor whose outer plate is 

infinitely large. Such is the case of a spherical conductor at a large distance from other conducting 

bodies—the isolated sphere. 

 



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 45 

 

Poisson’s and Laplace’s Equations: - 

 The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine V, E, D, and 

ρs due to charges in the presence of conductors.  

 Method of images replaces the original boundary by an appropriate image charges. These equivalent 

charges are at the image positions of the original charges, and are called image charges, and this method 

is called the method of images  

 
Figure 1. Point charge and its Image charge. 

 By this method, we avoid solving Poisson's or Laplace's equation but rather utilize the fact that a 

conducting surface is an equipotential. 

 Although the method does not apply to all electrostatic problems, it can reduce a formidable problem to a 

simple one.  

 In applying the image method, two conditions must always be satisfied 

 The image charge(s) must be located in the conducting region. 

 The image charge(s) must be located such that on the conducting surface(s) the potential is zero or constant. 

 The first condition is necessary to satisfy Poisson's equation, and the second condition ensures that the 

boundary conditions are satisfied. Let us now apply the image theory to two specific problems. 

A Point Charge Above a Grounded Conducting Plane: - 

 Consider a point charge Q placed at a distance d from a perfect conducting plane of infinite extent as in 

Figure. 

 

Figure 2. Point charge at a distance d on z-axis 

 

 The electric field at point P (x, y, z) is given by 

E E E
 

   

3 3

0 0

Q R Q R

4 R 4 R
E

   

 

 


   

 The distance vectors R+ and R- are given by 
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     

     

R , , 0 , 0 , , ,

R , , 0 , 0 , , ,

x y z d x y z d

x y z d x y z d





   

    

 

 So, the electric field becomes 

3 3

2 2 2 2 2 20 2 2

( ) ( )Q

4
( ) ( )

x y z x y z
x a y a z d a x a y a z d a

E

x y z d x y z d
 

 
      

 
 

         
    

 

 It should be noted that when z = 0, E has only the z-component, confirming that E is normal to the 

conducting surface. 

 The potential at P is easily obtained from using .V E d l




    

 Thus  

V V V
 

   

0 0

Q Q

4 R 4 R
V

   
 


   

1 1

2 2 2 2 2 20 2 2

Q 1 1

4
( ) ( )

V

x y z d x y z d
 

 

 
 

 

         
    

 

 The surface charge density of the induced charge can also be obtained from E as 

0 0S n z
D E 


   

3

2 2 2 2

Q d 1

2
x y d



 

  


 

   
  

 

 The total induced charge on the conducting plane is 

 

3

2 2 2 2

Q d

2
i S

d x d y
Q d S

x y d




 

 

 

  
 

 

   
  

    

 By changing variables, 
2 2 2

x y d x d y d d       

2

3
0 0

2 20 2

Q d

2
i

d d
Q

d

  







 
 

   

 Above integration will give 

Q
i

Q    

 as expected, because all flux lines terminating on the conductor would have terminated on the image 

charge if the conductor were absent. 
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A Line Charge above a Grounded Conducting Plane: - 

 Consider an infinite charge with density 
l

  C/m located at a distance d from the grounded conducting 

plane z = 0. The infinite line charge 
l

  may be assumed to be at x = 0, z = d and the image charge 

density -
l

  at x = 0, z = -d so that the two are parallel to the y-axis. 

 The electric field at point P (x, y, z) is given by 

E E E
 

   

0 1 0 2
4 4

l l
E

 

     
   

 The distance vectors 
1

  and 
2

  are given by 

     

     

1

2

, , 0 , , , 0 ,

, , 0 , , , 0 ,

x y z y d x z d

x y z y d x z d





   

    

 

 So, the electric field becomes 

2 2 2 2

0

( ) ( )

2 ( ) ( )

l x z x z
xa z d a xa z d a

E
x z d x z d





    
  

    

 

 It should be noted that when z = 0, E has only the y-component, confirming that E is normal to the 

conducting surface. 

 The potential at P is easily obtained from using .V E d l




    

 Thus  

V V V
 

   

1 1

0 0

ln ln
2 2

l l
V

 
 

   


    

1

0 2

ln
2

l
V

 

  
   

 Substituting  
1 1

  and 
2 2

   , the above equation modifies to 

1

2 2 2

2 2

0

( )
ln

2 ( )

l
x z d

V
x z d





  
   

  

 

 The surface charge density of the induced charge can also be obtained from E as 

 
0 0S n z

D E 


   

2 2
( )

l
d

x d




 


 

 The total induced charge on the conducting plane (z=0) is 

 

2

2 2

2

l

i S

d d x
d x

x d
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 By letting, tanx d  , the above equation becomes 
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 Above integration will give 

i l
    

as expected. 
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UNIT – II 

MAGNETOSTATICS 

 
Magnetic Scalar and Vector Potentials:  

In studying electric field problems, we introduced the concept of electric potential that simplified the computation 

of electric fields for certain types of problems. In the same manner let us relate the magnetic field intensity to a 

scalar magnetic potential and write:  

...................................(1)  

From Ampere's law , we know that  

 

......................................(2)  

Therefore, ............................(3)  

 

But using vector identity, we find that is valid only where . Thus the scalar 

magnetic potential is defined only in the region where . Moreover, Vm in general is not a single valued 

function of position.  

                               

This point can be illustrated as follows. Let us consider the cross section of a coaxial line as shown in fig 1.  

In the region ,    and  
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Fig. 1: Cross Section of a Coaxial Line 

If Vm is the magnetic potential then, 

 

 

If we set Vm = 0 at then c=0 and  

 

 

We observe that as we make a complete lap around the current carrying conductor , we reach again but Vm this 

time becomes  

 

We observe that value of Vm keeps changing as we complete additional laps to pass through the same point. We 

introduced Vm analogous to electostatic potential V. But for static electric fields, and , 

whereas for steady magnetic field wherever but even if along the path of 

integration.  

We now introduce the vector magnetic potential which can be used in regions where current density may be zero 

or nonzero and the same can be easily extended to time varying cases. The use of vector magnetic potential 

provides elegant ways of solving EM field problems.  

Since and we have the vector identity that for any vector , , we can write .  

 

Here, the vector field is called the vector magnetic potential. Its SI unit is Wb/m. Thus if can find of a given 

current distribution, can be found from through a curl operation.  
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We have introduced the vector function and related its curl to . A vector function is defined fully in terms of 

its curl as well as divergence. The choice of is made as follows. 

 ...........................................(4) 

By using vector identity, .................................................(5) 

   .........................................(6)                          

Great deal of simplification can be achieved if we choose .  

Putting , we get which is vector poisson equation.  

In Cartesian coordinates, the above equation can be written in terms of the components as  

 ......................................(7a)  

 

 ......................................(7b)  

 

  ......................................(7c)  

The form of all the above equation is same as that of  

 ..........................................(8) 

for which the solution is 

   ..................(9)  

In case of time varying fields we shall see that , which is known as Lorentz condition, V being the 

electric potential. Here we are dealing with static magnetic field, so .  

By comparison, we can write the solution for Ax as  

  ...................................(10)  
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Computing similar solutions for other two components of the vector potential, the vector potential can be written 

as 

.......................................(11)  

This equation enables us to find the vector potential at a given point because of a volume current density . 

Similarly for line or surface current density we can write 

                                 ...................................................(12)  

 

                                  respectively. ..............................(13)  

The magnetic flux through a given area S is given by         

 

                                                .............................................(14)      

Substituting        

            

                                 .........................................(15)  

Vector potential thus have the physical significance that its integral around any closed path is equal to the 

magnetic flux passing through that path.  

Forces due to Magnetic Fields, Ampere’s Force Law: 

 

Magnetic field due to a solenoid and a toroid: 

A solenoid is essentially a long current loop with closely packed circular turns. The length of the solenoid is very 

large compared to  the diameter of the turns. In diagram shown below, current enters the page from the top and 

goes behing the page at the bottom.  It leads to addition of the magnetic field due to the turns inside the solenoid 

and cancellation outside.  
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The magnetic field can be calculated by Ampere‘s law and it gives, 

Field inside = , where n is the number of turns per unit length of the solenoid.  The field outside thec 

solenoid is zero.  The same result can be obtained by use of Biot Savart‘s law, which is left as an exercise. 

A toroid looks like a doughnut with a central hole and current carrying wires wound over its core.  The core is 

usually made of iron or some such magnetic metal.  

 

 

Take a circular loop of radius r concentric with the toroid. The amount of current  enclosed  by the loop is NI 

where  N is the total number of turns and I is the current in each turn. By Ampere‘s law, the field is given by 

 

 

where in the last step we have explicitly shown that the field is cuircumferential.  The field outside the toroid is 

zero because the Amperian loop would enclose zero current as current both goes in and comes out through the 

loop. Likewise, inside the hole the field would also be zero as it would not thread any current. Note that unlike in 

the case of a solenoid, the field is not uniform. 

Force Between Current Loops 

We have seen that a magnetic field exerts a force on a moving charge. Since a current loop contains moving 

charge, it follows that such a loop would experience a force in a magnetic field.  Further, since the magnetic field 

in which a loop experiences a force must have its origin in another current source, two 

current carrying circuits would exert force on each other.  

Consider two such circuits, numbered 1 and 2.  

 

 

 

r 

 
O 
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Consider the field due to the current element   in circuit 1. At a position , the field is given by Biot 

Savart‘s law, 

 

The  net magnetic field at this point is given by summing over the contribution due to all elemental current 

comprising the circuit.  Since the circuit 2 contains moving charges, the element    experiences a force due to 

this field which is given by . By summing over all the current elements in circuit 2, we get the force 

exerted by circuit 1 on circuit 2 is given by 

 

This is a very clumsy expression and can be evaluated only in cases of simple geometry.  

By symmetry it follows that the force on circuit 1 due to current in circuit 2 is given by 

 

 

Inductances and Magnetic Energy: 

Inductance and Inductor:  

 

Resistance, capacitance and inductance are the three familiar parameters from circuit theory. We have already 

discussed about the parameters resistance and capacitance in the earlier chapters. In this section, we discuss about 

the parameter inductance. Before we start our discussion, let us first introduce the concept of flux linkage. If in a 

coil with N closely wound turns around where a current I produces a flux and this flux links or encircles each 

of the N turns, the flux linkage is defined as . In a linear medium, where the flux is proportional to the 

current, we define the self inductance L as the ratio of the total flux linkage to the current which they link.  

   

i.e.,            ...................................(4.47)  

To further illustrate the concept of inductance, let us consider two closed loops C1 and C2 as shown in the figure 

1, S1 and S2 are respectively the areas of C1 and C2 . 
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Fig 1 

If a current I1 flows in C1 , the magnetic flux B1 will be created part of which will be linked to C2 as shown in 

Figure 4.10.  

 

In a linear medium, is proportional to I 1. Therefore, we can write 

         

where L12 is the mutual inductance. For a more general case, if C2 has N2 turns then 

         

and      

or            

i.e., the mutual inductance can be defined as the ratio of the total flux linkage of the second circuit to the current 

flowing in the first circuit. 

As we have already stated, the magnetic flux produced in C1 gets linked to itself and if C1 has N1 turns then 

, where is the flux linkage per turn. 

Therefore, self inductance 

  =        

As some of the flux produced by I1 links only to C1 & not C2. 
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Further in general, in a linear medium, and  

 Inductance per unit length of a very long solenoid: 

 

Let us consider a solenoid having n turns/unit length and carrying a current I. The solenoid is air cored. 

 
 

        Fig 2: A long current carrying solenoid 

The magnetic flux density inside such a long solenoid can be calculated as 

 

                                                                   

where the magnetic field is along the axis of the solenoid. 

 If S is the area of cross section of the solenoid then 

 

                                                              

 

The flux linkage per unit length of the solenoid 

 

                                                             

   

The inductance per unit length of the solenoid     
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Inductance of an N turn toroid carrying a filamentary current I. 

  

 
                                     Fig 3: N turn toroid carrying filamentary current I.  

 

Solution: Magnetic flux density inside the toroid is given by  

 

                                                                  

 

Let the inner radius is 'a' and outer radius is 'b'. Let the cross section area 'S' is small compared to the mean radius 

of the toroid  

Then total flux 

     

and flux linkage  

        

The inductance  

    

Energy stored in Magnetic Field: 
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So far we have discussed the inductance in static forms. In earlier chapter we discussed the fact that work is 

required to be expended to assemble a group of charges and this work is stated as electric energy. In the same 

manner energy needs to be expended in sending currents through coils and it is stored as magnetic energy. Let us 

consider a scenario where we consider a coil in which the current is increased from 0 to a value I. As mentioned 

earlier, the self inductance of a coil in general can be written as 

 

or       

If we consider a time varying scenario, 

        

We will later see that is an induced voltage.  

is the voltage drop that appears across the coil and thus voltage opposes the change of current. 

Therefore in order to maintain the increase of current, the electric source must do an work against this induced 

voltage. 

               .                        

 

                                       &   (Joule)  

 

which is the energy stored in the magnetic circuit. 
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Maxwell‘s Equations: For Steady Fields in Point Form and Integral Form:  

 

In our study of static fields so far, we have observed that static electric fields are produced by electric charges, 

static magnetic fields are produced by charges in motion or by steady current. Further, static electric field is a 

conservative field and has no curl, the static magnetic field is continuous and its divergence is zero. The 

fundamental relationships for static electric fields among the field quantities can be summarized as: 

                           (5.1a) 

                           (5.1b) 

For a linear and isotropic medium, 

                              (5.1c) 

Similarly for the magnetostatic case 

                               (5.2a) 

                           (5.2b) 

                              (5.2c)  

It can be seen that for static case, the electric field vectors and and magnetic field vectors and form 

separate pairs. 

In this chapter we will consider the time varying scenario. In the time varying case we will observe that a 

changing magnetic field will produce a changing electric field and vice versa.  

We begin our discussion with Faraday's Law of electromagnetic induction and then present the Maxwell's 

equations which form the foundation for the electromagnetic theory.  
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Faraday's Law of electromagnetic Induction: 

Michael Faraday, in 1831 discovered experimentally that a current was induced in a conducting loop when the 

magnetic flux linking the loop changed. In terms of fields, we can say that a time varying magnetic field produces 

an electromotive force (emf) which causes a current in a closed circuit. The quantitative relation between the 

induced emf (the voltage that arises from conductors moving in a magnetic field or from changing magnetic 

fields) and the rate of change of flux linkage developed based on experimental observation is known as Faraday's 

law. Mathematically, the induced emf can be written as  

Emf =     Volts                           (1) 

where is the flux linkage over the closed path. 

A non zero may result due to any of the following:  

(a) time changing flux linkage a stationary closed path. 

(b) relative motion between a steady flux a closed path.  

(c) a combination of the above two cases. 

The negative sign in equation (1) was introduced by Lenz in order to comply with the polarity of the induced 

emf. The negative sign implies that the induced emf will cause a current flow in the closed loop in such a 

direction so as to oppose the change in the linking magnetic flux which produces it. (It may be noted that as far as 

the induced emf is concerned, the closed path forming a loop does not necessarily have to be conductive).  

If the closed path is in the form of N tightly wound turns of a coil, the change in the magnetic flux linking the coil 

induces an emf in each turn of the coil and total emf is the sum of the induced emfs of the individual turns, i.e.,  

Emf =      Volts                                (2) 

By defining the total flux linkage as  

                                        (3) 

The emf can be written as  

Emf =                                 (4) 

Continuing with equation (1), over a closed contour 'C' we can write 
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Emf =                               (5) 

where is the induced electric field on the conductor to sustain the current. 

Further, total flux enclosed by the contour 'C ' is given by  

                                         (6) 

Where S is the surface for which 'C' is the contour.  

From (5) and using (6) in (1) we can write 

                        (7) 

By applying stokes theorem 

we can write  

                                        (8) 

which is the Faraday's law in the point form  

Transformer EMF: We have said that non zero can be produced in a several ways. One particular case is 

when a time varying flux linking a stationary closed path induces an emf. The emf induced in a stationary closed 

path by a time varying magnetic field is called a transformer emf . 

As shown in figure 1, a transformer consists of two or more numbers of coils coupled magnetically through a 

common core. Let us consider an ideal transformer whose winding has zero resistance, the core having infinite 

permittivity and magnetic losses are zero.  
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Fig 1: Transformer with secondary open 

These assumptions ensure that the magnetization current under no load condition is vanishingly small and can be 

ignored. Further, all time varying flux produced by the primary winding will follow the magnetic path inside the 

core and link to the secondary coil without any leakage. If N1 and N2 are the number of turns in the primary and 

the secondary windings respectively, the induced emfs are  

                                (9a)  

                                 (9b) 

(The polarities are marked, hence negative sign is omitted. The induced emf is +ve at the dotted end of the 

winding.)  

                                  (10) 

i.e., the ratio of the induced emfs in primary and secondary is equal to the ratio of their turns. Under ideal 

condition, the induced emf in either winding is equal to their voltage rating. 

                                (11) 

where 'a' is the transformation ratio. When the secondary winding is connected to a load, the current flows in the 

secondary, which produces a flux opposing the original flux. The net flux in the core decreases and induced emf 

will tend to decrease from the no load value. This causes the primary current to increase to nullify the decrease in 

the flux and induced emf. The current continues to increase till the flux in the core and the induced emfs are 

restored to the no load values. Thus the source supplies power to the primary winding and the secondary winding 

delivers the power to the load. Equating the powers 
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                                     (12) 

                       (13) 

Further,  

                              (14) 

i.e., the net magnetomotive force (mmf) needed to excite the transformer is zero under ideal condition.  

Motional EMF: Let us consider a conductor moving in a steady magnetic field as shown in the fig 2. 

        

Fig 2 

If a charge Q moves in a magnetic field , it experiences a force 

                                        (15) 

This force will cause the electrons in the conductor to drift towards one end and leave the other end positively 

charged, thus creating a field and charge separation continuous until electric and magnetic forces balance and an 

equilibrium is reached very quickly, the net force on the moving conductor is zero.  

can be interpreted as an induced electric field which is called the motional electric field  

                                   (16) 

If  the moving conductor is a part of the closed circuit C, the generated emf around the circuit is . 

This emf is called the motional emf. 
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UNIT – III 

UNIFORM PLANE WAVES 
 

Reflection/ Refraction of Plane waves 

 

A plane wave is a wave of constant frequency and amplitude with wavefronts that are an infinitely long straight 

line. Plane waves travel in the direction perpendicular to the wavefronts. Although they are a mathematical 

abstraction, many physical waves approximate plane waves far from their source.              Consider the figure 

given below which shows incident and reflected wave fronts when a plane wave fronts travels towards a plane 

reflecting surface. 

 

From the figure we define Reflection and Refraction. 

 

Reflection: 

It is the change in direction of a wavefront at an interface between two different media so that the wave front 

returns into the medium from which it originated.                      

 

The laws of reflections are verified using Huygens‘s Principle. The incident ray, the reflected ray and normal to 

the reflecting surface lie in one plane which is perpendicular to the reflecting surface. The angle of incidence 

equals angle of reflection. 

 

 

 
 

 
Refraction: 

 

When a wave travels from one medium to another at a specific angle other than 90
0
 or 0

0
, the line of the travel of 

the wave changes at the interface because of a change in wave velocity. This phenomenon is called refraction. 

 

Refraction is the bending of waves when passes through a different medium.Reflection is the process in which 

light waves falls on a surface and bounces back. 

 

In refraction, the sine of angle between the incident ray and normal maintains a constant ratio with the sine of 

angle of refracted ray and normal. Snell’s Law of refraction is proved using Huygens‘s principle 

 

The incident ray, the refracted ray and the normal to the refracting surface lie in the same plane. 

 

Snell’s Laws 
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1. Law of reflection 

2. Law of refraction 

 

 

 

   

 

Law of reflection 

According to this law, sine of angle of incidence is equal to the sine of angle of reflection. 

 

or 

 

 

Law of refraction 

According to this law, 
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where  ‗n‘ is the refractive index and it is defined as the ratio of speed of light in free space to the speed of light 

in medium.i.e  

and 

 

 

 

Therefore               

 

Finally we write, 

 

 

When a plane wave propagating in a homogeneous medium encounters an interface with a different medium, a 

portion of the wave is reflected from the interface while the remainder of the wave is transmitted. The reflected 

and transmitted waves can be determined by enforcing the fundamental electromagnetic field boundary 

conditions at the media interface.   

The proportion of reflection and transmission depends on the constitutive parameters of the media such as η, ε, μ, 

and σ.There are two cases of the incidence by which the uniform plane wave is incident at the boundary. 

I. Normal Incidence 

II. Oblique Incidence 

Normal Incidence 

When a uniform plane wave incidences normally to the boundary between the two media, it is known as 

normal incidence. 

Oblique Incidence 

When a uniform plane wave incidences obliquely to the boundary between the two media, it is known as 

oblique incidence. 
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Reflection of a Plane Wave at Normal Incidence - Dielectric Boundary : 

 

In case of plane wave in air incident normally upon the surface of conductor the wave is entirely reflected. Since 

there can be no loss within a perfect conductor ,none of the energy is observed. As a result amplitude of E and H 

in the reflected and incident are  same and only difference is in the direction of power flow. 

The expression of incident wave 

Ete
-jβx 

The expression for reflected wave  

Ere
jβx 

Er  must be determined from boundary conditions tangential component of E must be continuous across the 

boundary and E is zero within the conductor. The tangential  component of E just outside the conductor must also 

be zero. The amplitude of reflected electric field strength is equal to that of the of the incident electric field 

strength, but its phase has been reversed on reflection. 

Er=-Et 

 

 

 

 

 

The resultant electric field strength at any point a distance –x  from the x=0 plane will be the sum of field 

strengths of the incident and reflected waves at that point and will be given by  

ET(x)= Eie
-jβx

+ Ere
jβx

 

= Ei(e
-jβx

- e
jβx

) 

=-2j Eisinβx 

E᷃T(x,t)=Re{-2jEtsinβx e
jωt

} 
If Et is chosen to be real 

E᷃T(x,t)=2Etsinβx sinωt 
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The incident and reflected waves combine to produce a standing wave. The magnitude of electric field varies 

sinusoidally with distance from the reflecting plane.it has a maximum value of twice the electric field strength of 

the incident wave at distance from the surface that are odd multiples of a quarter wavelength 

The magnetic field strength must be reflected without reversal of phase. If both magnetic and electric field 

strengths were reversed, there would be no reversal of direction of energy propagation. The amplitude of 

reflected electric field strength is equal to that of the of the incident electric field strength, but its phase has been 

same on reflection 

HT(x)= Hie
-jβx

+ Hre
jβx

 

= Hi(e
-jβx

+ e
jβx

) 

=2Hicosβx 
If Ht is chosen to be real 

῀HT(x,t)=Re{HT(x)e
jωt

} 

            =2Hicosβx cosωt 
The incident and reflected waves combine to produce a standing wave. The magnitude of magnetic field varies 

sinusoidally with distance from the reflecting plane.it has a maximum value at the surface of the conductor and at 

multiples of a half wavelength from the surface where as the zero points occur at odd multiples of a quarter 

wavelength from the surface. From the boundary conditions for H it follows that there must be a surface current 

of Js amperes per  meter such that Js=Ht(at x=0) 

That ET and HT are 90 degrees apart in time phase ,replacing –j by its equivalent e
-j(π /2) 

 and combining this with 

e
jωt 

term to give 
ωt-(

 
π/2)] 

E᷃T(x,t)=Re{2Etsinβx e
-j(π /2) 

 e
jωt

} 

         =2Etsinβx cos(ωt-π/2) 
Like HT=2Hicosβx cosωt   shows that ET and HT differ in time phase by π /2 radians
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Reflection of a Plane Wave Normal Incidence  - Conducting  Boundary: 

Consider a uniform plane wave striking interface between perfect dielectric and perfect conductor. 

 

 

 

For medium 2 the intrinsic impedance is 0. i.e   . 

Therefore, the transmission coefficient is given by 

 

And the reflection coefficient is given by 

 

From the values of transmission coefficient and reflection coefficient, it is clear that the wave is totally reflected 

and there is no transmitted wave in medium 2. 

Since magnitude of reflection coefficient is equal to one, the entire power is reflected from the conducting 

boundary. 

This case is exactly identical to the Transmission Line with the short circuit load. 

We therefore have two waves with equal amplitude travelling in opposite directions. Therefore in dielectric 

medium, we get Standing waves. The electric field becomes zero in the planes which are parallel to the conducting 

boundary and are located at distances which are multiple of λ/2. 
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Standing Waves 

Standing wave is also known as stationary wave. 

It occurs when incident wave combines with reflected wave. 

Two sine waves with the same Amplitude, Wavelength and Frequency travelling in opposite directions will 

interfere and produce a combined wave . The waveform of the combined waves, on average has No Net 

Propagation of Energy and is known as standing wave. 

 

 



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 71 

 

In the above figure red wave represents incident wave, and blue wave represents reflected wave. 

A standing wave pattern is an interference phenomenon. It is formed as the result of the perfectly timed 

interference of two waves passing through the same medium. A standing wave pattern is not actually a wave; 

rather it is the pattern resulting from the presence of two waves (sometimes more) of the same frequency with 

different directions of travel within the same medium.  

Standing wave is denoted by E1s. 

It is given by 

 

Problem: 

A uniform plane wave in air is normally incident on an infinitely thick slab. If the refractive index of glass slab is 

1.5, then find the percentage of the incident power that is reflected from the air – glass interface. 

Sol. 
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Reflection of a Plane Wave Oblique Incidence - Conducting Boundary (Perpendicular Polarization) 

 We have discussed the case of normal incidence where electromagnetic wave traveling in a lossless medium 

impinges normally at the interface of a second medium. In this section we shall consider the case of oblique 

incidence. As before, we consider two cases 

 When the second medium is a perfect conductor. 

 When the second medium is a perfect dielectric. 

A plane incidence is defined as the plane containing the vector indicating the direction of propagation of the 

incident wave and normal to the interface. We study two specific cases when the incident electric field Ei is 

perpendicular to the plane of incidence (perpendicular polarization) and Ei is parallel to the plane of incidence 

(parallel polarization). For a general case, the incident wave may have arbitrary polarization but the same can be 

expressed as a linear combination of these two individual cases. 

Oblique Incidence at a plane conducting boundary 

i. PerpendicularPolarization 

 

 

As the EM field inside the perfect conductor is zero, the interface reflects the incident plane wave. axi 

 

And ax  respectively represent the unit vector in the direction of propagation of the incident and reflected 

waves Ɵi  is the angle of incidence and Ɵr is the angle of reflection. 

We find that 

 

 

 

 

Since the incident wave is considered to be perpendicular to the plane of incidence, which for the present case 

happens to be xz plane, the electric field has only y-component.  

 

 

 

 

 

Therefore, 

The corresponding magnetic field is given by 
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Direction of propagation of reflected wave 

 

 

Reflected wave inside medium 1 

 

 

Boundary condition at z=0 

 

 

1 1
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Total field in medium 1, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflection of a Plane Wave Oblique Incidence -Conducting Boundary (Parallel Polarization) 

In this case also axi and axr are given by equations above. Here Hi and Hr have only y component 

 

With reference to above fig  the field components can be written as:  

 

Direction of propagation of incident wave 
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Incident wave inside medium 1, 

 

 

 

 

 

 

 

Direction of propagation of reflected wave 

 

 

 

Reflected wave inside medium 1 

 

 

 

 

 

Boundary condition at z=0 
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Hence the total field in medium 1,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once again, we find a standing wave pattern along z for the x and y components of  E and H,while an on uniform 

plane wave propagates along x with a phase velocity Since, for this propagating wave, magnetic field is in 

transverse direction, such waves are called transverse magnetic or TM waves 
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Oblique incidence: Interface between dielectric media: 

 We will consider the problem of a plane wave obliquely incident on a plane interface between two dielectric 

media.  

 If a plane wave is incident at an angle from medium 1. The interface plane defines the boundary between the 

media. The plane of incidence contains the propagation vector and is both perpendiculars to the interface 

plane and to the phase planes of the wave.  

 We will first consider two particular cases (polarizations) of this problem as follows: 

 The electric field is in the x-z plane (parallel polarization)  

 The electric field is in normal to the x-z plane (perpendicular polarization) 

 Any arbitrary incident plane wave can be expressed as a linear combination of these two principal 

polarizations. The plane of incidence is that plane containing 

 The normal vector to the interface and 

 The direction of propagation vector of the incident wave 

 Perpendicular Polarization The electric field is perpendicular to the plane of incidence and the magnetic 

field is parallel to the plane of incidence. The fields are configured as in the Transverse Electric (TE) modes.  

 Parallel Polarization The magnetic field is perpendicular to the plane of incidence and the electric field is 

parallel to the plane of incidence. The fields are configured as in the Transverse Magnetic (TM) modes.  

 

Fig.1 Oblique incidence of plane EM wave at a media interface. 

Perpendicular polarization (TE): 

 In this case, electric field vector is perpendicular to the x-z plane, hence, it will have component along the y-

axis. Since the electric field is transversal to the plane of incidence. 
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 Let us assume that the incident wave propagates with a propagation vector 
1 1

i i
   (loss less medium) in 

the x-z plane and makes an angle 
i

  (incident propagation vector) with the normal. 

 Using direction cosines the direction of propagation of incidence wave can be written as 
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 Similarly the direction of propagation of reflected  wave (-ve z direction) and transmitted wave can be 

written as  can be written as 
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 The electric field phasors for the perpendicular polarization can be written as  
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 Similarly the magnetic field phasors can be obtained by using the relation 
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At the boundary interface (z=0) equating the tangential components of electric field and magnetic field. The 

electric field has tangential Ey component, but the magnetic field has x- and z- components and tangential 

component of magnetic field is only x- component at the interface. 
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 If Ex and Hy are to be continuous at the interface z = 0 for all x, then, this x variation must be the same on 

both sides of the equations (also known as phase matching condition) 
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 Now we can simplify above two equations by applying Snell‘s  
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 The above two equations has two unknowns τ and Г and it can be solved easily as follows 
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 For normal incidence, it is a particular case and put 
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     
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Parallel polarization (TM): 

 Assume the wave is propagating obliquely along an arbitrary direction ar  and the electric field vector is 

parallel to the plane of incidence (x-z plane) and the magnetic field vector is normal to the plane of 

incidence 

 

 

  

 Let us assume that the incident wave propagates with a propagation vector 
1 1

i i
   (loss less medium) in 

the x-z plane and makes an angle 
i

  (incident propagation vector) with the normal. 

 Using direction cosines the direction of propagation of incidence wave can be written as 
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 Similarly the direction of propagation of reflected  wave (-z direction ) and transmitted wave can be 

written as  can be written as 
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 The Magnetic  field phasors for the perpendicular polarization can be written as  
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 Similarly the electric  field phasors can be obtained by using the relation 
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 At the boundary interface (z=0) equating the tangential components of magnetic field and electric field. The 

magnetic field has tangential Hy component, but the electric field has x- and z- components and tangential 

component of electric field is only x- component at the interface. 
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 If Ex and Hy are to be continuous at the interface z = 0 for all x, then, this x variation must be the same on 

both sides of the equations (also known as phase matching condition) 
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 Follows Snell's law  

i r
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BREWSTER ANGLE 

Before going to Brewster angle we have to know the difference between polarized wave and unpolarized waves. 

For unpolarized waves the electric fields are in many directions as shown in figure, e.g. unpolarized light  
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Where as in polarized waves the electric field vector is either vertical or horizontal as shown in figure below. 

 

We can convert unpolarized light into polarized light by passing the light through a polarizing filter. 
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When unpolarized wave is incident obliquely at Brewster angle θB, only the component with perpendicular 

polarization (Horizontal polarization) will be reflected, while component with parallel polarization will not be 

reflected. 

It is also called as Polarizing angle. 

At Brewster angle, the angle between reflected ray and refracted ray is 90
0
. 

It is denoted by θB. 

It is given by  
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Application: 

Polaroid sunglasses:  The polarization axes of the lenses are vertical as the glare usually comes from reflection 

off horizontal surfaces. 

 

 

CRITICAL ANGLE 

When light travels from one medium to another it changes speed and is refracted. If the light rays are travelling 

for a less dense material to a dense medium they are refracted towards the normal and if they are travelling from 

a dense to less dense medium they are refracted away from the normal.  

For total internal reflection to occur the light must travel from a dense medium to a less dense medium (e.g. glass 

to air or water to air). 

As the angle of incidence increases so does the angle of refraction. When the angle of incidence reaches a value 

known as the critical angle the refracted rays travel along the surface of the medium or in other words are 

refracted to an angle of 90°. The critical angle for the angle of incidence in glass is 42°. 

 

When the angle of incidence of the light ray reaches the critical angle (42
0
) the angle of refraction is 90

0
. The 

refracted ray travels along the surface of the denser medium in this case the glass. 
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According to the law of refraction, 
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TOTAL INTERNAL REFLECTION 

When the angle of incidence of the light ray is greater than the critical angle then no refraction takes place. 

Instead, all the light is reflected back into the denser material in this case the glass. This is called total internal 

reflection. 

 

SURFACE IMPEDANCE 

It is defined as the ratio of the tangential component of the electric field to the surface current density at the 

conductor surface. 

It is given by 

 

Where   is the tangential component parallel to the surface of the conductor. 

And  is the surface current density. 
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Poynting vector and theorem: 

• Electromagnetic waves transport throughout space the energy and momentum arising from a set of 

charges and currents (the sources). 

• If the electromagnetic waves interact with another set of charges and currents in a receiver, information 

(energy) can be delivered from the sources to another location in space. 

• The energy and momentum exchange between waves and charges and currents is described by the 

Lorentz force equation. 

 

Derivation of Poynting‘s Theorem 

• Poynting‘s theorem concerns the conservation of energy for a given volume in space. 

            Poynting‘s theorem is a consequence of Maxwell‘s equations 

 

 Time-Domain Maxwell‘s curl equations in differential form 

 

 

• Recall a vector identity 

  

 

 

 

 

 

 

 

 

 

• For simple, lossless media, we have 
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• Hence, we have the form of Poynting‘s theorem valid in simple, lossless media: 

 

 

 

 

 

 

Physical Interpretation of the Terms in Poynting‘s Theorem 
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            represents the flow of instantaneous power out of the volume V through the surface S 
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We define a new vector called the (instantaneous) Poynting vector as  

 Poynting vector has units of W/m
2
.  

 The Poynting vector has the same direction as the direction of propagation. 

 The Poynting vector at a point is equivalent to the power density of the wave at that point. 

Time-Average Poynting Vector 

• The time-average Poynting vector can be computed from the instantaneous Poynting vector as 

  

 

• The time-average Poynting vector can also be computed as 

 

 

    dttrS
T

rS

p
T

p

av 

0

,
1

   *

Re
2

1
HErS

av

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Power Loss in a Conductor: 
 

The resistance of the slab along the direction of the current  is  
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
dR= ρl/A = I/σ dz 

 
The ohmic loss in the slab is  

 
 

dW=|I(Z)|
2
dR 

 

Substituting for I(z) we get  
 
 
 

dW=|σE0e
-γz

dz|
2
 (1/ σdz) 

 
 

=σ|E0|
2
 e

-2az
dz 

 
 

 
The total loss per unit area of the conductor surface therefore is  

 
                     W=  ᶴ σ|E0|

2 
e

-2az
dz 

 
                         = σ|E0|

2
[e

-2az
/-2α] 

 
 
 
                 W= σ|E0|

2
/2α   = σ/2α(|γ

2 
|/ σ

2
) |Js|

2
 

 
 
         Substituting for γ and α , the loss per unit area of the conducting surface is  
                                             W=Rs|Js|

2
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The power loss is proportional to the surface resistance which increases with frequency and decreases with 

conductivity. Higher the conductivity lesser the loss and for ideal conductor when the conductivity is 

infinite the ohmic loss is zero. 

 

PROBLEMS: 

1. A uniform plane wave is travelling at a velocity 2.5*10
5
 m/s having wavelength λ=0.25nm in a non 

magnetic good conductor .calculate the frequency of the wave and the conductivity of the medium 

1.6*10
5
 simen/m. 

 Solution formulae: 

                  1.f=(υ/λ) 

                  2.υ=(ω/β) 

                  3.β=2πf/υ 

 

2. A 300MHZ uniform plane wave propagates through fresh water for which μr=1,εr=78,σ =0                  

Find attenuation constant, phase constant, wavelength , intrinsic impedance.  

Solution Formulae: 

                 1.Phase constant β=ω √ με 

                 2.η=√μ/ε 

 

3. Find the skin depth and surface resistance of a copper conductor at 100MHz having conductivity 

σ=5.8*10
7
  , μr=100. 

 

Solution Formulae: 

               Skin depth s=√ (2/ωμσ) 

 

4. For a wave travelling in air the electric field is given by E=6cos(ωt-βz)ax at frequency 10MHZ calculate 

β,H and average pointing vector . 

 

Solution Formulae: 

       β=2π/λ 

       λ=υ/f 

       E/H=√μ/ε 

       H=(E/η0) 
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UNIT – IV 

TRANSMISSION LINES CHARACTERISTICS 

 

Transmission Lines  and Types: 

Definition: Any  physical structure that will guide an electromagnetic wave place to place is called a  

Transmission Line. 

Types of Transmission Lines:- 

 

        1)Open wire line 

        2)Coaxial cable 

        3)Waveguide s a)Rectangular 

    b)Circular 

         4)Optical Fibre Cable 

 

Open wire line: 

A transmission line consisting of two spaced parallel wires supported by insulators, at the proper distance to give 

adesired value of surge impedance. Also known as open-wire feeder. Open wire cable is a two-conductor flat 

cable used as a balanced transmission line to carry radio frequency (RF) signals. It is constructed of two stranded 

copper or copper-clad steel wires, held a precise distance apart by a plastic (usually polyethylene) ribbon. The 

uniform spacing of the wires is the key to the cable's function as a transmission line; any abrupt changes in 

spacing would reflect some of the signal back toward the source. The plastic also covers and insulates the wires. 

 

Fig: Open wire line 

Coaxial cable: 

Coaxial cable, or coax  is a type of electrical cable that has an inner conductor surrounded by a tubular insulating 

layer, surrounded by a tubular conducting shield. Many coaxial cables also have an insulating outer sheath or 

jacket. The term coaxial comes from the inner conductor and the outer shield sharing a geometric axis. Coaxial 

cable was invented by English engineer and mathematician Oliver Heaviside, who patented the design in 1880. 

Coaxial cable differs from other shielded cables because the dimensions of the cable are controlled to give a 

precise, constant conductor spacing, which is needed for it to function efficiently as a transmission line. 
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Fig: Coaxial cable 

Waveguide: 

A waveguide is a structure that guides waves, such as electromagnetic waves or sound, with minimal loss of 

energy by restricting expansion to one dimension or two. There is a similar effect in water waves constrained 

within a canal, or guns that have barrels which restrict hot gas expansion to maximize energy transfer to their 

bullets. Without the physical constraint of a waveguide, wave amplitudes decrease according to the inverse 

square law as they expand into three dimensional space. 

There are different types of waveguides for each type of wave. The original and most common meaning is a 

hollow conductive metal pipe used to carry high frequency radio waves, particularly microwaves. 

The geometry of a waveguide reflects its function. Slab waveguides confine energy in one dimension, fiber or 

channel waveguides in two dimensions. The frequency of the transmitted wave also dictates the shape of a 

waveguide: an optical fiber guiding high-frequency light will not guide microwaves of a much lower frequency. 

As a rule of thumb, the width of a waveguide needs to be of the same order of magnitude as the wavelength of the 

guided wave. 

 

Fig: wave guide 

 

Optical Fibre: 

An optical fiber or optical fibre is a flexible, transparent fiber made by drawing glass (silica) or plastic to a 

diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light 

between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit 

transmission over longer distances and at higher bandwidths (data rates) than wire cables. Fibers are used instead 
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of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic 

interference, a problem from which metal wires suffer excessively. Fibers are also used for illumination and 

imaging, and are often wrapped in bundles so that they may be used to carry light into, or images out of confined 

spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, 

some of them being fiber optic sensors and fiber lasers. 

 

Fig: optical fibre 

 

 

At low frequencies, the circuit elements are  Lumped  voltage and current waves affect the entire  circuit at the 

same time. 

At microwave frequencies Voltage and   current waves do not affect the entire circuit at the same time 

The circuit must be broken down into unit sections within  which the circuit elements are considered to be 

lumped 

Basic Transmission Line: 

It is convenient to describe a transmission line in terms of  its line parameters, which are  

1)Resistance per unit length  R, 

2)Inductance per unit length L,  

3)Conductance per unit  length G,  

4)Capacitance per unit length C. 

For Each Line 

LC = με      and G/C  =σ/ε 
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The line parameters R, L, G, and C are not discrete or lumped but distributed as shown in  Figure.  

 

Fig: Basic Transmission line 

 

 

Transmission line Equations: 

 If we are familiar with low frequency circuits and the circuit consists of lumped impedance elements (R, L, 

C), we treat all lines(wires) connecting the various circuit elements as perfect wires, with no voltage drop and 

no impedance associated to them. 

 This is a reasonable procedure as long as the length of the wires is much smaller than the wavelength of the 

signal and at any given time, the measured voltage and current are the same for each location on the same 

wire. 

 Let us try to explore what happens, when the signal propagates as a wave of voltage and current along the 

line at sufficiently high frequencies 

 For sufficiently high frequencies, wavelength is comparable to the length of a conductor, so the positional 

dependence impedance properties (position dependent voltage and current) of wire cannot be neglected, 

because it cannot change instantaneously at all locations 

 Consider a uniform transmission line is a ―distributed circuit‖ that we can describe as a cascade of identical 

cells with infinitesimal length. So, our first goal is to represent the uniform transmission line as a distributed 

circuit and determine the differential voltage and current behavior of an elementary cell of the distributed 

circuit. 

 Once that is known, we can find a global differential equation that describes the entire transmission line by 

considering a cascaded network (subsections) of these equivalent models.  

 In order to analyze the transmission wave behavior and positional dependence impedance properties, the line 

possess a certain series inductance and resistance. In addition, there is a shunt capacitance between the 
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conductors, and even a shunt conductance if the medium insulating the wires is not perfect. We use the 

concept of shunt conductance, rather than resistance, because it is more convenient for adding the parallel 

elements of the shunt. 

 We can represent the uniform transmission line with the distributed circuit below (general lossy line) and the 

impedance parameters L, R, C, and G represent: 

 

 L = series inductance per unit length  

 R = series resistance per unit length 

  C = shunt capacitance per unit length 

  G = shunt conductance per unit length. 

 

 
 Each cell of the distributed circuit will have impedance elements with values: Ldz, Rdz, Cdz, and Gdz, 

where dz is the infinitesimal length of the cells 

 Let us assume a differential length dz of transmission line ,V(z),I(z) are voltage and current at point P 

and V(z)+dV, I(z)+dI are voltage and  current at point Q 

 

 The series inductance determines the variation of the voltage from input to output of the cell, according 

to the sub-circuit below 

 
 Similarly, the shunt admittance determines the variation of the voltage and current from input to output 

of the cell shown below 
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 For a differential length dz of transmission line ,the series impedance and shunt admittance  of the 

elemental length can be written as 

 

( )

( )

R j L d z

G j C d z

 

 
 

 The corresponding circuit voltage and current equation is 

 

( )V d V V I R j L d z         (1) 

( )I d I I V G j C d z         (2) 

 From which we obtain a first order differential equation 

( )
d V

I R j L
d z

        (3) 

( )
d I

V G j C
d z

        (4) 

 We have a system of coupled first order differential equations that describe the behavior of voltage and 

current on the transmission line  

 It can be easily obtained by a set of uncoupled equations by differentiating equation (3) and (4) with 

respect to the coordinate z  

2

2
( )

d V d I
R j L

d zd z
       (5) 

2

2
( )

d I d V
G j C

d zd z
       (6) 

 Substitute equation (4) in equation (5) and   equation (3) in equation (6), we obtain the second order 

differential equations 

2

2
( ) ( )

d V
G j C R j L V

d z
       (7) 

2

2
( ) ( )

d I
G j C R j L I

d z
        (8) 

 These equations can be written in terms of propagation constant γ 
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2

2

2

d V
V

d z
       (9) 

2

2

2

d I
I

d z
       (10) 

 

 Let the constant term γ can be represented as propagation constant, which is written as  

( )( )j G j C R j L         
 

 γ is the complex propagation constant, which is function of frequency 

 α is the attenuation constant in nepers per unit length, β is the phase constant in radians per unit length 

 

 The solution of the second order transmission line equation is  
z z

V a e b e
   

     (11) 

z z
I ce d e

   
     (12) 

 Where, a, b, c, and d  are the constants 

 Equation (11) and (12) represent the standard solutions of the wave equations, which are similar to the 

solution of uniform plane wave equations.  

 The terms 
z

e
 

 and 
z

e
 

 can be represented as backward and forward wave along z-direction. 
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Determination of the constant terms: 

 

 Let the solutions of the transmission line wave equations can written as  

z z
V a e b e

   
         (1) 

z z
I ce d e

   
         (2) 

 To determine the constants a,b,c, and d , the above equations can be written in terms of hyperbolic 

functions, where substitute  

c o s h c o s h
z

e z z


         (3) 

c o s h c o s h
z

e z z
 

         (4) 

 Substitute equation (3) and (4) in equations (1),(2) 

(co sh co sh ) (co sh co sh )V a z z b z z          (5) 

(co sh co sh ) (co sh co sh )I c z z d z z          (6) 

 

( ) co sh ( ) s in hV a b z a b z          (7) 

( ) co sh ( ) s in hI c d z c d z          (8) 

 The constants a+b, a-b, c+d, and c-d can be replaced by another constant terms A, B,C, and D 

respectively. 

 So, the equations (7) and (8) can be written as  

co sh s in hV A z B z         (9) 

co sh s in hI C z D z         (10) 

 In order to reduce the four constant terms to two constant terms, we write the relation between V and I by 

considering the following basic differential equations 

( )
d V

I R j L
d z

          (11) 

( )
d I

V G j C
d z

          (12) 

 Substitute equation (9) in equation (11) 

( co sh s in h )
( )

d A z B z
I R j L

d z

  
       (13) 

 Differentiating equation (13) in terms of z, we obtain  

( s in h co sh ( )A z B z I R j L           (14) 

 From the above equation(14) the current I can be written in terms of constants A and B as  

( s in h c o s h
( )

A z B z I
R j L


    

 
   (15) 

 Where γ is propagation constant, which is ( )( )G j C R j L        and substitute in equation (15), 

we obtain 
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( )( )
( s in h co sh

( )

G j C R j L
A z B z I

R j L

   
    

 
  (16) 

 The equation can be simplified and written as  

 
( )

( s in h co sh
( )

G j C
A z B z I

R j L

 
    

 
     

0

1
( s in h c o s hA z B z I

Z
         (17) 

 Where 
0

Z  is another constant and can be called as characteristic impedance along the line 

0

( )

( )

R j L
Z

G j C

 


 
 

 Form equation (9) and equation (17) the solution of voltage and current wave equation in terms of 

constants A and B can be re written as 

 

co sh s in hV A z B z         (18) 

0

1
( s in h c o s h )I A z B z

Z
          (19) 

 Now the constants A and B can be obtained by applying initial conditions of the transmission line at Z=0 

 Let Vs and Is be the source voltage and current respectively. At the source end, Z=0 the voltage V= Vs, 

current I= Is, then the equations (18) and (19) can be simplified as  

 

c o sh (0 ) s in h (0 )
s

V A B           

0

1
( s in h (0 ) c o s h (0 ))

s
I A B

Z
           

 

s
V A  

0s
I Z B   

 Substitute A and B values in equation (18) and equation (19), we obtain 

0
c o s h s in h

s s
V V z I Z z         (20) 

0

s in h c o s h
s

s

V
I z I z

Z
          (21) 

 These equations are called transmission line equations. The can represent voltage and current at any point 

z from the source voltage and current. 
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Infinite Transmission Line: 

 

If a line of infinite length is considered then all the power fed into it will be absorbed. The reason is as we move 

away from the input terminals towards the load, the current and voltage will decrease along the line and become 

zero  at an infinite distance, because the voltage drops  across the inductor and current leaks through the 

capacitor. By considering this hypothetical line of infinite line an important terminal condition is formed. 

Let Vs be the sending end voltage and Is be the sending end current and Zs be the input impedance which is given 

by  

 

Current at any point distance x from sending end is given by  

 

The value of c & d can now determined by considering an infinite line. 

At the sending end x=0 and I =Is. 

 

At the receiving end, I=0 and  x=∞. 

 

 

 

 

 

 

The above equation gives current at any point of an infinite line. 
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And  

Similarly the above equation gives voltage at any point of an infinite line. 

 

 

Infinite line is equivalent to a finite line terminated in its Zo  

When a finite length of line is joined with a similar kind of infinite line, their total input impedance is same as 

that of infinite line itself, because they together make one infinite line however the infinite line alone presents an 

impedance Zo at its input PQ because the input impedance of an infinite line is Zo. 

It is therefore concluded that a finite line has an impedance Zo when it is terminated in Zo. 

Or A finite line terminated by its Zo behaves as an infinite line. 

Let a finite length of ‗l‘ is terminated by its characteristic impedance Zo and is having voltage and current VR and 

IR at terminating end. 

Therefore                             

 

 

 

Dividing VR by IR we will get the value of ZO. 

 

Multiplying right hand side numerator and denominator by ZO we get, 
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Therefore 

 

But is the input impedance of the line( ) 

Therefore  

Thus the input impedance of a finite line terminated in its characteristic impedance is the characteristic 

impedance of the line. Since the input impedance of an infinite line is the characteristic impedance of the line. 

 

Therefore a finite line terminated in its ZO is equivalent to an infinite line as both will have an input impedance of 

ZO. 
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CHARACTERISTIC IMPEDANCE AND PROPAGATION CONSTANT: 

Equivalent-circuit model of transmission line section: 

 

)/( mR  , )/( mHL , )/( mSG , )/( mFC  

Transmission line equations: In higher-frequency range, the transmission line model is utilized to analyze EM 

power flow. 


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t
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z

i

t

i
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z
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Set v(z,t)=Re[V(z)e
jωt

], i(z,t)=Re[I(z)e
jωt

] 


















)()(
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zVCjG
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dI
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




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


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2

zIzICjGLjR
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zId

zVzVCjGLjR
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zVd





 

 

where γ=α+jβ= ))(( CjGLjR  
zzzz

eIeIzIeVeVzV
 


0000

)(,)(  

 

 

Characteristic impedance: Z0=
CjG

LjR

CjG

LjR

I

V

I

V
































0

0

0

0  

Note: 

1. International Standard Impedance of a Transmission Line is Z0=50Ω. 

2. In transmission-line equivalent-circuit model, G≠1/R. 
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The ratio of Forward Voltage and Current waves is always Z0 , and the ratio of the Backward Voltage and 

Current waves is always - Z0 . The parameters γ and Z0 completely define the voltage and current behaviour on a 

transmission line. These two parameters are related to R, L, G, and C, and the frequency of the signal. In 

transmission line analysis knowledge of γ  and Z0 is adequate and the explicit knowledge of R, L, G, C is rarely 

needed. 

 

 

Eg. A d-c generator of voltage and internal resistance is connected to a lossy transmission line characterized by a 

resistance per unit length R and a conductance per unit length G. (a) Write the governing voltage and current 

transmission-line equations. (b) Find the general solutions for V(z) and I(z). 

(Sol.) (a) RGCjGLjR  ))((0   

)(
)(

),(
)(

2

2

2

2

zRGI
dz

zId
zRGV

dz

zVd
  

(b) 
zRGzRGzRGzRG

eIeIzIeVeVzV



0000

)(,)(  

Lossless line (R=G=0): 

0,,
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,,0
00000
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Low-loss line (R<<ωL, G<<ωC): 
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Distortionless line (R/L=G/C): 

C

L
Z
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L

C
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L

C
j

p


0
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1
,,)(   

Large-loss line (ωL<<R, ωC<< G): 
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
 

 

GROUP VELOCITY AND PHASE VELOCITY 

PHASE VELOCITY 

A single (infinite) wave is described by the expression cos(ωt − kx) or sin[ 2π λ (x − vt)] or equivalent. The 

pattern travels with a velocity (actually a speed)  

vp = λ T = fλ = ω/k vp is what matters with interference. 

 

GROUP VELOCITY 

An infinite wave is unrealistic. A real wave has to have beginning and end. The overall shape is called the 

envelope. Various shapes are possible - abrupt or gentle. vg = dω /dk is the velocity of the envelope. 

Illustration  

Consider two waves almost in step.  

They have ω1, k1 and ω2, k2 (and λ1, λ2...)  

Write the means and differences ω = ω1+ω2/ 2 , k = k1+k2 /2  

∆ω = ω1−ω2 /2 , ∆k = k1−k2/ 2  

the original quantities can be expressed in terms of these ω1 = ω + ∆ω, ω2 = ω − ∆ω etc  

Adding the two waves gives a total wave  

e 
i(ω1t−k1x

) + e 
i(ω2t−k2x)

  

This can be written  

e 
i(ωt+∆ωt−kx−∆kx)

 + e 
i(ωt−∆ωt−kx+∆kx)

  

Take out a common factor:  

e 
i(ωt−kx)

 (e 
i(∆ωt−∆kx)

 + e 
i(−∆ωt+∆kx)

 )  

Remembering cosθ = e 
iθ
+e 

−iθ
 /2  
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this is 2cos(∆ωt − ∆kx)e 
i(ωt−kx)

 The first term is clearly the envelope. It has small wavenumber and frequency and 

so a long wavelength and period. It travels with velocity vg = ∆ω/∆k. This generalises vg = dω/ dk  

 Finding vg often vp is known from measurements or from basic principles. Take the expression for vp and write 

ω/k for vp in it. Turn all the λ and f etc terms into ω and k. Then differentiate with respect to k. This gives an 

expression involving dω /dk from which vg can be extracted. 

 As a trivial example, suppose vp is constant (i.e. independent of wavelength) with value c. Then ω = ck and  

LOSS LESS LINE: 

A transmission line is said lo be lossless if the conductors of the line are perfect (σc  =∞) and the 

dielectric medium separating them is lossless (σ= 0). 

R = 0 = G 

 This is a necessary condition for a line to be lossless. 

 Thus for such a line, the following Parameters are 

  Propagation Constant ϒ=jβ = jω √(LC) 

  Attenuation Constant α=0 

  Phase Constant β= ω √(LC) 

  Velocity ϑ =ω/β 

Then X0 =0    Z0= R0=√L/C 

Distortion Less Line: 

A transmission line has a distributed inductance on each line and a distributed capacitance between the 

two conductors. We will consider the line to have zero series resistance and the insulator to have infinite 

resistance (a zero conductance or perfect insulator). 

A signal normally consists of a band of frequencies; wave amplitudes of  different frequency components 

will be attenuated differently in a lossy line as α is  frequency dependent. This results in distortion. 

A distortion less line is one in which the attenuation constant α is frequency  independent while the phase 

constant β is linearly dependent on frequency. From the  general expression for α and β [in eq. (10)], a 

distortion less line results if the line  parameters are such that 

       R/L = G/C  

Thus for a distortion less line 

 ϒ = √[RG(1+jωL/R)(1+jωC/G)] 

We know that 
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 ϒ = α + jβ 

 then 

  α =√RG 

  β = ω √(LC) 

Impedance of the line is  

  ZO  =  

Resistance 

  Ro  =  =   XO=  0 

 Phase Velocity: 

  ϑ =ω/β  = 1/  

The phase velocity is independent of frequency because the phase constant β  Linearly depends on 

frequency. We have shape distortion of signals unless α and u are  independent of frequency. u and Zo  

remain the same as for lossless lines. 

A lossless line is also a distortion less line, but a distortion less line is not necessarily  lossless. Although 

lossless lines are desirable in power transmission, telephone lines  are required to be distortion less. 
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DISTORTION LESS LINE: 

 A transmission line is said to be distortion less if the attenuation constant ‗ ‘ is frequency independent, 

white the phase constant is linearly dependent of frequency. From the general equations of , the 

distortionless line results, if the line parameters are such that, 

 =  

Z0 =  

    =  =     

 = P =  

 

P = (1+j ) 

 =   =  

VP =  =  =  [phase velocity] 

CONCLUSIONS: 

 The phase velocity is independent of frequency because, the phase constant of  linearly 

depends upon frequency. We have distortions of signals unless  & Vp are independent of 

frequency. 

 Both VP and Z0 remains the same for loss less line. 

 A loss less line is also a distortion less line, but a distortion less line is not necessarily loss less. 

Loss less lines are desirable in power transmission telephone lines are to b distortion less. 

  VP =    
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Condition for Minimum Attenuation: 

 = ,  

From the equation the attenuation of a line is expressed by attenuation constant DC as 

   

It is observed that   depends on the four primary constants in addition to the frequency. The Value of L for 

minimum attenuation.  

Let us assume the three line constants C,G and R including   are constant and only L may be varied . 

Therefore, differentiating above value of   , W.R.T    L and equating it to zero, we get  

 

 =    = 0 

By  cross multiplying 

 = 0 

 

 L   =  

After cancellation remaining terms are 

L
2

 = C  

  Squaring on both sides 

L
2 
( ) = C ( ) 

L
2

=  

LG = CR 

 

 

 =  
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The condition is similar to the distortion less line. Therefore, the value of  obtained in above equation is some 

for line with minimum attenuation. From the final equation if only L is variable, the attenuation is minimum 

when L =  H/km. 

This result is important because, in practice, L is normally less than desired value and hence the attenuation of a 

line can be reduced by increasing L artificially. 

 

LOADING OF TRANSMISSION LINES: loading is a method of increasing the series inductance of a line by 

the addition of external inductance its purpose is to improve the performance of the line by reducing attenuation 

and distortion  

TYPES OF LOADING: 

1. Continuous loading (iron wire) 

2. Lumped loading(copper wire ) 

 

1. In this type of iron bar or other magnetic material is wound to the bar to be load. This increasing 

permeability of surrounding medium and thereby increasing conducting. 

 This is measured at and increase in inductance up to 65mH/km. 

 It is quite expensive. Furthermore eddy current and hysteresis loses in the magnetic material 

increase the primarily loss, 

The inductance of a line can be increased by the introduction of loading coil of uniform intervals. This 

method of loading is more convenient. 

LOADED LINES 

    The  delay and frequency distortion is introduced by a cable. Let us consider a typical 16 gauge paper insulated 

cable pair whose line parameters: 

   R = 42.1ohms/km 

   G = 1.5  mhos/km 

  C = 0.062 µF/km 

  L = 1 mH/km. 

Therefore,  =  - 42.1 X  

   =  = 0.0242 X  

 

Thus,   >>  . 

 Hence,  distortion less and minimum attenuation conditions as expressed by and are not satisfied. 

  However, both the conditions can be approached in four ways: 

(i) Reduce R. this will decrease the attenuation but will require large conductors, which in 

turn causes an increase in cable size and cost. Reduction of T will also lower | |. 
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(ii) Increase G. this can be accomplished by lowering conductor insulation or by introducing 

shunt conductance along the line. This is a poor solution because it increases losses. 

Increasing G also lowers | |. 

(iii) Decrease C . This will increase the spacing between conductor, resulting increase of cable 

size and cost. Decreasing C increases | | although lower . 

(iv)            Increase L. this decreases  and reduces distortion and hence offers the    best 

approach to achieve distortion less and minimum attenuation condition 

 

LOADING: 

The advantage of loading is not so great – on open wire line which have an appreciable inductance of their own 

and so have much less distortion than cable. As a result the practice of loading open wire line has been 

abandoned. the loading practice is, therefore normally restricted to cables only. There are three type of loading in 

practice this day: 

(i) Continuous loading.  A type of iron or some other magnetic material as numeral is wound round the 

conductor to be loaded thus increasing the permeability of the surrounding medium and thereby 

increasing inductance. This method can give an increase in inductance upto about 65 mH per km but, 

it is quite expensive due to laborious construction. Therefore, continuous loading is used only on 

ocean cables, where the problem of making water – tight joints at loading points renders lumped 

loading difficult. Furthermore, repair of a creak in the cable would normally result in alteration in the 

loading coil spacing for that section resulting in irregularity. 

(ii) Patch loading. This type of loading employs sections of continuously loaded cable separated by section 

of unloaded cable in the way the advantage of continuous loading is obtained but the cost is greatly 

reduced. In fact, in submarine cable, it has been found unnecessary to use continuous loading over 

the entire cable to obtain the required reduction in attenuation and desired result without continuous 

loading over the entire length of the cable .the typical length for the section is normally quarter 

kilometer. 

(iii) Lumped loading. the inductance of a line can also be increased by the introduction of loading coil or 

uniform intervals. This is called lumped loading. As already explained in Art 5.6 that a lumped 

loaded line behaves as a low pass filter. This method of loading is more convenient than continuous 

loading provided that a limited frequency ranged upto fc  the loading coils have a certain resistance 

and thus, increasing total effective inductance increases R. 

Problem 1: 

An air line has characteristic impedance of 70Ω and a phase constant of 3Rafm at 100MHz calculate the 

inductance per meter and capacitance per meter of the line . 

   

Solution: 

  Air line is nothing but loss less line. 

For loss less line, 

   R = 0, G = 0 

Z0 =   = β = j   

P = j   
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Vp =  

 =   =  

 

C =  

C  =  = 68.PF/m. 

Z0 =   , L = = (68.2X10
-12

) 

= 334.2nH/m 

 

Problem 2: 

 

1. A distortion less line has Z0 =60  X=20mvP/m, VP=0.6C, where c is the speed of line in vacuum. Find 

R, L, G, C, and λ at 100MHz. 

   =  

Z0 =  

 =    =  

VP=  

Rc = GL 

G =  

 =   =  

  =  

R =   Z0 = 1.2Ω/m 

 λ     =   = 1.8m 

Vp 
Z

0 =  

C =  = 92.59pF/m 

G =  = 0.33 = 333µs/m 

 =L =333nH/m. 
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Problem 3: 

 

Calculate Primary constants for loop kilometer are R = 196Ω, C=0.09mF, L=0.71mH and leakage conductance is 

negligible. Calculate intrinsic impedance and propagation constant for  

f =  Hz    Z = R+j L 

 = f        = 196+ (2000) (0.7mH)                                  

=                              = 196+j(1.4)  

                                    Z = 196.00 0.40 

y = G+j  

=j (2000)(0.09)mf) 

0.18 j  

Y = 0.18  

Z0 =  

Z0 =  

     =  

     = 32.98  

     = 32.98  

P =  

   =  

   = 5.93  

 

 

Problem1: 

An open wire transmission line terminated in its characteristic impedance has the following primary constant at 

1KHz. R=6 Ω/km,L=2 mH/km,G=0.5 uƱ,C=0.005 uF/km. Calculate the phase velocity and attenuation in 

decibels suffered by a signal in a length of 100 kms. 

Problem2: 

The primary constants of a cable are R=80 Ω/km,L=2 mH /km and G=0.3 uƱ /km.C=0.01 uF/km. Calculate the 

secondary constants at a frequency of 1KHz. 

Problem3: 

A generator of 1V, 1 KHz supplies power to a 100 km long line terminated in Zo and having the following 

constants, R = 10.4 Ω/km, L  = 0.00367 H/km, G = 0.8x10
-6

 Ʊ/km and C = 0.00835x10
-6

 F/km. Calculate Zo , 

attenuation constant α , phase constant β, wavelength λ and velocity V.  
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Problem3: 

A loss less transmission line has 115 Ω characteristic impedance. The line is terminated in a load impedance of 

100-j250 Ω. The maximum voltage measured on the line is 120V. Find the maximum current and minimum 

voltage on the line. 
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UNIT – V 

UHF TRANSMISSION LINES AND APPLICATIONS 
 

Input Impedance Relations:- 

 Let the voltage and current transmission line equations at any point on the line from the source 

end can be written as  

0

0

c o s h s in h

s in h c o s h

s s

s

s

V V z I Z z

V
I z I z

Z

   

    

 

 Suppose, a transmission line, which is terminated with some load impedance ZR at a distance ‗l 

‗from the load and the voltage and current at the terminating end can be written as VR and IR 

respectively. 

 So that at z= l, the voltage and current can be written as  

0

0

c o s h s in h

s in h c o s h

R s s

s

R s

V V l I Z l

V
I l I l

Z

   

    

 

 Now the load impedance from the terminating point can be written as  

0

0

c o s h s in h

s in h c o s h

s sR

R

sR
s

V l I Z lV
Z

VI
l I l

Z

  
 

   

 

 By taking the cross multiplication the above equation can be written as  

0

0

s in h co sh co sh s in h
s

R s s s

V
Z l I l V l I Z l

Z

 
        

 

 

 Take the current IS on both sides, the above equation can be written as  

0

0

s in h co sh co sh s in h
s s

s R s

s s

V V
I Z l l I l Z l

I Z I

   
          

   

 

 Now the ratio of s

s

V

I
 can be written as the source impedance or input impedance (Zin or ZS). So, 

the above equation can be modified as  
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   0 0 0
sinh cosh cosh sinh

R s s
Z Z l Z l Z Z l Z l         

 Modify the above equation by separating ZS terms, 

   0 0 0
sinh cosh cosh sinh

R s s
Z Z l Z l Z Z l Z l         

   0 0 0 0
sinh cosh cosh sinh

s s R
Z Z l Z l Z Z l Z Z l        

 

 

0

0

0

s in h co sh

co sh s in h

R

s

R

Z l Z l
Z Z

Z l Z l

  


  
 

 Where ZS is the source impedance, which is also called input impedance. So, the input 

impedance can be written as  

 

 

0

0

0

s in h co sh

co sh s in h

R

in s

R

Z l Z l
Z Z Z

Z l Z l

  
 

  
 

 The above expression can be written in terms of hyperbolic tan functions as 

 

 

0

0

0

tan h

tan h

R

in s

R

Z l Z
Z Z Z

Z Z l

 
 

 
 

 The above expression represents input impedance of a general transmission, which is terminated 

with load impedance at a distance ‗l’ from the source end. 

 Now, consider a special case, If the line is lossless line (attenuation constant α=0) the 

propagation constant γ can be written as  

0j j         

 So, the input impedance can be written as  

 

 

0

0

0

tan h

tan h

R

in s

R

Z j l Z
Z Z Z

Z Z j l

 
 

 
 

 The hyperbolic tan function tanhjβl can be written as tan h tan hj l j l   , therefore the input 

impedance can be written as  

 

 

0

0

0

tan

tan

R

in s

R

jZ l Z
Z Z Z

Z jZ l

 
 

 
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 We, now express some special cases from the above general lossless line input impedance 

relations. 

Case i: When the line is terminated with characteristics impedance, i.e. ZR=Z0, 

 

 

0 0

0 0

0 0

tan

tan
in

jZ l Z
Z Z Z

Z jZ l

 
 

 
 

 So, the line is terminated with characteristic impedance, the input impedance is equal to the 

characteristic impedance. This condition is called matched load condition, which means that 

there are no reflections from the load. 

Case ii: When the line is terminated with open circuited, i.e. ZR=infinity (∞), 

 

 

0

0

0

tan

tan

R

in

R

jZ l Z
Z Z

Z jZ l

 


 
 

 Take ZR common from the above expression, the equation reduces to  

0

0

0

ta n 1

ta n

R

in O C

R

Z
j l

Z
Z Z Z

Z
j l

Z

 
  

 
 

 
  

 

 

0

1

ta n
in O C

Z Z Z
j l

 


 

0
c o t

in O C
Z Z jZ l     

Case iii: When the line is terminated with short circuited, i.e. ZR=0, 

 

 

0

0

0

tan

tan

R

in

R

jZ l Z
Z Z

Z jZ l

 


 
 

Substitute ZR= 0 in the above expression, the equation reduces to  

0
ta n

in S C
Z Z jZ l    

Note: If the line is terminated with open circuit or short circuit, the input impedance can be purely 

imaginary. Depending on the value of length of the line, it may  be capacitive or inductive. 

 Moreover, from the short circuit and open circuit impedance relations, the characteristic 

impedance can be written as  
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0

0
( ta n )

ta n
O C S C

Z
Z Z jZ l

j l
 


 

2

0

0

O C S C

O C S C

Z Z Z

Z Z Z





 

 From the above relation, it can be concluded, the characteristic impedance of the line can be 

measured from open and short circuit Transmission line. 

Transmission Line with Load Impedance: - 

 In previous lecture, we have derived the expression for input impedance of a transmission line, if the 

source voltage and source current is known to us.  

 In this lecture, we are deriving similar expression, if we know the reinitiating voltage and current, 

instead of source voltage and current.  

 To derive the input impedance expression, consider a basic transmission line, which is terminated at 

a distance l, with known terminating voltage and current. 

 The voltage and current equations, which was derived in our previous lectures with two unknown 

constants can be rewritten here as 

0

c o s h s in h

1
( s in h c o s h )

V A z B z

I A z B z
Z

   

    

 

 Where, A and B are constants, Z0 is the characteristic impedance. 

 Now the terminating voltage and current at a distance z=lcan be written as 

0

c o s h s in h

1
( s in h c o s h )

R

R

V A l B l

I A l B l
Z

   

    

 

 To derive the constants A and B, the above voltage and current equations can be multiplied with 

c o sh l  and s in h l , respectively and add the resultant equations. Then, we get the constants A as  

2

2

0

c o sh c o sh s in h c o sh

1
s in h ( s in h s in h c o sh )

R

R

V l A l B l l

I l A l B l l
Z

     

      
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2 2

0
cosh sinh cosh sinh cosh sinh sinh cosh

R R
V l Z I l A l B l l A l B l l            

 

2 2

0
cosh sinh (cosh sinh )

R R
V l Z I l A l l      

 

 Therefore, 

0
c o s h s in h

R R
V l Z I l A   

 

 Similarly, the constant B can be obtained by multiplying voltage equation with s in h l  and current 

equation with c o sh l , and adding both the equations, we obtain B as  

2 2

0
sinh cosh sinh cosh cosh sinh cosh sinh

R R
V l Z I l A l l B l A l l B l            

 

2 2

0
cosh sinh (cosh sinh )

R R
V l Z I l B l l      

 

0
c o sh s in h

R R
V l Z I l B   

 

 Substituting the values of A and B in the basic equation, we obtain voltage and current at any point 

from the terminating point, which can be written as 

0

0

c o sh ( ) s in h ( )

s in h ( ) c o sh ( )

R

R

R

R

V
V V l z l z

Z

V
I l z I l z

Z

     

     

 

 Where, l z is the distance from the terminating end. 

 Now from the above expressions, the input impedance z=0 can be written as 

0

0

c o s h ( 0 ) s in h ( 0 )

s in h ( 0 ) c o s h ( 0 )

S R R

R

S R

V V l I Z l

V
I l I l

Z

     

     

 

0

0

c o s h s in h

s in h c o s h

S R R

RS
R

V V l I Z l

VI
l I l

Z

  


  

 

 

 

0

0

0

tan h

tan h

R

in

R

Z l Z
Z Z

Z Z l

 


 
 

Illustrative problem 
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A source with 50  source impedance drives a 50  transmission line that is 1/8 of wavelength long, terminated 

in a load ZL = 50 – j25 . Calculate: 

(i)The reflection coefficient, ГL, (ii) VSWR, (iii) The input impedance seen by the source. 

Solution: The given problem can be represented with the following figure 

 

(i) The reflection coefficient, 
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(ii) VSWR 
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(iii)The input impedance seen by the source, Zin 

To calculate input impedance, it needs to calculate the electrical length,
2

8 4
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Reflection and Reflction Coefficient: - 

 Consider a transmission line terminated in a load of impedance ZR, which is not equal to the characteristic 

impedance, the incident wave from the source will be reflected at the termination. 

 The phenomenon of wave being reflected from termination is called reflection. 

 So, in general, there will be forward and backward waves going in the line. Hence, the general 

transmission line consists of both incident and reflection waves. These can be written from the solutions 

of transmission line wave equations as 

 
0

1

z z

z z

V a e b e

I b e a e
Z

   

   

 

 

 

 Where, ,
z z

e e
   

 are the reflected and incident waves, respectively. 

 Now the reflection coefficient is defined as the ratio of reflected voltage/current to the incident 

voltage/current. From the above equations, the voltage and current reflection coefficient can be written 

as, 

 

z

z

z

z

a e

b e

a e

b e

 

 

 

 

 

  

 

 To determine the constants in the reflection coefficient expressions shown above, we have to consider the 

voltage and current from termination. So, the distance measured from termination in opposite direction 

can be expressed as x=-z, the expressions can be simplified as  

 

 
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x x

x x

V a e b e
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Z

  
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 Now at the load point i.e. x=0, the voltage V=VR and current I=IR. So, the above equations can be 

simplified as 

 
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R
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I b a
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 Solving the above two equations, we obtain  
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Similarly, 
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 Substitute these equations on voltage or current reflection coefficient expression 

z

z
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 

 
  , we obtain 

0

0

0

0

2

2

2

2

zR R

V
zR R

zR R

I
zR R

V I Z
e

V I Z
e

V I Z
e

V I Z
e

 

 

 

 



 




  


 

 The above equations can be simplified as 
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 Where, R

R

V

I
is the load impedance ZR, therefore the voltage/current reflection coefficient becomes 
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 From the above expression it can be observed that the reflection coefficient completely depends on load 

impedance and characteristic impedance. 

 For a lossless line, the reflection coefficient can be expressed as 
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 Now the magnitude of the voltage/current reflection coefficient can be expressed as  

0

/
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R

V I

R
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
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
 

 Now, we will consider some special cases for reflection coefficient 

Case i: When the line is terminated with characteristics impedance, i.e. ZR=Z0, 

0 0

0 0

0
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
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 So, the line is terminated with characteristic impedance, the magnitude of reflection coefficient equal to 

zero. This condition is called matched load condition, which means that there are no reflections from the 

load. 

Case ii: When the line is terminated with open circuited, i.e. ZR=infinity (∞), 

0

0

1

1

1

R

R

Z

Z

Z

Z



  



 

Case iii: When the line is terminated with short circuited, i.e. ZR=0, 
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 If the line is terminated with open circuit or short circuit, the magnitude of reflection coefficient is equal 

to one. Which indicate the complete wave is reflected from the terminating point. The Table below shows 

the behavior of voltage and current at the end of an open circuited or shorted transmission line 

Table 1: Reflection properties of open and shorted transmission lines 

Transmission Line 

Termination 

Effect on voltage Effect on current 

open circuit 100% reflection no phase shift 100% reflection 180 deg phase shift 

short circuit 100% reflection 180 deg phase shift 100% reflection no phase shift 

 

Standing Wave Ratio: - 

 When a transmission line (cable) is terminated by an impedance that does not match the characteristic 

impedance of the transmission line, not all of the power is absorbed by the termination.  

 Part of the power is reflected back down the transmission line. So that the forward (or incident) signal 

mixes with the reverse (or reflected) signal cause a standing wave pattern along the transmission line. 

 The standing wave pattern along the transmission line is as shown in Figure 1. So, the degree of 

voltage/current mismatch on the transmission line can be measured by a quantity called standing wave 

ratio(SWR). This can be measured either voltage/current or power using standing wave ratio meter.  

 

Figure 1. Standing wave pattern representation from incident and reflected wave 

 The voltage SWR can be defined as the ratio of maximum voltage to minimum voltage  along the line. 

m ax

m in

V
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V
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 Where, 
m a x

V ,
m in

V  are the maximum and minimum voltages of the standing waves.  

 The maximum voltage occurs when the incident and reflected waves are added and minimum voltage 

occurs when the incident and reflected waves are subtracted. Therefore, the SWR can be written in terms 

of incident and reflected voltages as  

m a x

m in

i r
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 But, we know the ratio r

i

V

V
is the reflection coefficient .  

 Now the VSWR in terms of reflection coefficient can be written as  

1

1
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 Similarly, the reflection coefficient in terms of SWR can be written as  
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
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 Now, we will consider some special cases for SWR 

Case i: When the reflection coefficient 0  , 
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Case ii: When the reflection coefficient  1   , 
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Illustrative Problem 

A source with 50  source impedance drives  a 50  transmission line that is 1/8 of wavelength long, terminated 

in a load ZL = 50 – j25 . Calculate: 

(i)The reflection coefficient, ГL,(ii) VSWR,    (iii) The input impedance seen by the source. 

Solution:The given problem can be represented with the following figure 

 

(i) The reflection coefficient, 
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(ii) VSWR 
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(iii)The input impedance seen by the source, Zin 

Tocalculate  input impedance ,it needs to calculate the electrical length, 
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UHF Lines as Circuit Elements: - 

 The lossless transmission lines at ultra-high frequency considered as circuit elements from the special 

cases of   

 A short at the load, 

 An open at the load. 

 We know the short circuited and open circuited input impedance are purely imaginary. Those short 

circuited and open circuited impedance equations can be rewritten as below. 

0

0
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c o t
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Z jZ l

Z jZ l
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 As the distance l increases from terminating point, the short and open circuit impedance changes and is 

purely reactive. Depending on the length of the line, the impedance can be either inductive or capacitive. 

 Now to study the effect on the length of short circuit and open circuit line, the following special cases 

with different length are studied. 

  

Case i: When the length of the line is less than quarter wavelength 0
8

l
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 
Therefore, for first quarter wave length 

0
8

l
 

  
 

, the short-circuited line acts as inductive and open 

circuited line acts as capacitive 
 

Case ii: When the length of the line is greater than quarter wavelength, but less than half wave 

length
4 2
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 
Therefore, for length 4 2

l
  
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 

, the short-circuited line acts as capacitive and open circuited line acts 

as inductive. 
 

Case iii: When the length of the line is equal to quarter wavelength 
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 
Therefore, for quarter wave length 4

l
 

 
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, the short-circuited line looks like a parallel resonant circuit 

(parallel resonant circuit impedance is infinity at resonance frequency) and open circuited line looks like 

a series resonant circuit (series resonant circuit impedance zero at resonance frequency)
 

Case iv: When the length of the line is equal to a half wavelength 
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 
Therefore, for half wave length 2

l
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 
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, the short-circuited line looks like a series resonant circuit 

(series resonant circuit impedance zero at resonance frequency) and open circuited line looks like a series 

resonant circuit (parallel resonant circuit impedance is infinity at resonance frequency)
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Note: -These conditions repeat with multiple one-quarter or one-half wavelengths line. 

Impedance Transformation: - 

 A transmission line terminated with some impedance, ZR, other than the characteristic impedance, Z0, 

input impedance of a transmission line depends on its length, terminating impedance, which is given by 
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 Where γ is the line propagation constant 

 Thus, to match the input impedance to deliver maximum power to the load, a short section of 

transmission line is added to the main transmission line.  

 The important short section transmission lines with different lengths are studied here.  

 In many situations, the transmission line will have no appreciable loss along the length of the line. So, the 

effect of these short section transmission lines, are studied for a lossless line.  

 For a lossless line, the attenuation constant is zero and the propagation constant reduces jβ, so that the 

input impedance relation reduces to  
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 Now the important short length of transmission lines are considered with different cases 

Case (i) Eight wavelength transmission line 
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https://en.wikipedia.org/wiki/Characteristic_impedance
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Case (ii) Quarter wavelength transmission line 
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 Which can be called as quarter-wave impedance transformer. 

 In other words, if the transmission line is precisely one-quarter wavelength long, the input impedance is 

inversely proportional to the load impedance. 

 

 Suppose a 50 Ω line needs to be matched to a 100 Ω load. So that, to eliminate reflections we insert a 
4


 

section of transmission line with 70.7Ω characteristic impedance to act as an impedance transformer 

Case (iii) Half wavelength transmission line 
2

l
 

 
 

 

Let 
2

l


  ,    then l    

So that, 

 

 

0

0

0

tan

tan

R

in

R

jZ Z
Z Z

Z jZ

 


 
 

0

0

R

in R

Z
Z Z Z

Z
 

 



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 

130 

 

 A  
2


 length line transfers the load impedance to the source end. 

 

Impedance Matching: - 

 Impedance matching is one of the important aspects of high frequency circuit analysis.  

 When UHF line is terminated with load impedance which is not equal to characteristics impedance, a 

mismatch occurs.  

 To avoid reflections and power loss from transmission line sections impedance matching techniques can 

be used. There are various impedance matching techniques which are discussed in the following:  

Quarter Wavelength Transformer 

 A quarter wave length of line is generally used  

 For matching a resistive load to a transmission line  

 For matching two resistive loads 

 For matching two transmission lines with unequal characteristic impedances  

 

 
Figure 1 Quarter wave length of line for different cases 

 

 By the introduction of the quarter wavelength transmission line acting as a transformer and perfectly 

matched in between the three cases mentioned above. That is the impedance seen towards right at A 

(Figure 1), and impedance seen towards left at B should be same. 

 For the transformer we have two parameters to control, the characteristic impedance of the transformer 

section, and the length of the transformer section. 

 Let us assume that the characteristic impedance of the transformer section is
0 x

Z . So, for quarter wave 

length, the transformer inverts the normalized impedance. Therefore, the impedance seen at A towards 

right in Figure (a) would be 
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 For matching at A,
A

Z , should be equal to 
0

Z .i.e. 
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 Two resistive impedances can be matched by a section of a transmission line which is quarter-

wavelength long and has characteristic impedance equal to the geometric mean of the two resistances. 

 The quarter wavelength transfer is commonly used at the junction of two transmission lines of unequal 

characteristic impedances.  

Disadvantages 

 This technique needs special line of characteristics impedance for every pair of resistances to be matched. 

 To add quarter wave length, we have to cut the main transmission line 

 To avoid the above disadvantages other methods can be used, which are either open or short circuited 

transmission line attached at some position parallel to main transmission line. Those techniques are 

called stub matching. 

Stub Matching- 

The main advantage of this stub matching is  

 The length and characteristic impedance remains same 

 Since the stub is added in shunt, there is no need to cut the main line 

 The susceptance of the stub can be adjusted for perfect matching 

The choice of open or shorted stub may depend in practice on a number of factors.  

 A short-circuited stub is less prone to leakage of electromagnetic radiation and is somewhat easier to 

realize. 

 Open circuited stub may be more practical for certain types of transmission lines, for example microstrips 

where one would have to drill the insulating substrate to short circuit the two conductors of the line. 

 Moreover, based on the number of parallel stubs connected to the line stub matching techniques can be 

classified into two types 

 Single-Stub Matching Technique 

 Double Stub Matching Technique 

 

Single stub matching: - 

 In this section, a short-circuited section (stub) of a transmission line connected in parallel to the main 

transmission line (Figure 2). since the stub is connected in parallel, so it is easy to deal with admittance 

analysis instead of impedance.  

 There are two design parameters for single stub matching: 

 The location of the stub with reference to the load can be represented as dstub 

 The length of the stub line Lstub 
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Figure 2. Stub matching technique 

 For proper impedance matching, the admittance at the location of the stub can be written as 

 
0
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1
(d ) Y

A s tu b s tu b
Y Y Y

Z
     

 Which is show in in Figure 3. 

 

Figure 3. Admittance of location and length of stub 

Location of the stub:- 

 To determine the length and location of the short circuited stubs, consider the input impedance of a 

lossless transmission line and convert it to admittance. 
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 Let the input impedance of the loss line can be written as  
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 Converting the impedance into admittance, 

0

0

0

ta n

ta n

R

in

R

Y jY l
Y Y

Y jY l









 

 The normalized admittance can be written as  
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 Separating the real and imaginary parts by rationalizing  
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For no reflection, at a distance l=dstub the real part of the admittance is unity. 

That is  
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 Therefore, the location of short circuited stub is  
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At this location the imaginary part of susceptance
s

b  of 
in

y  can be written as 
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 Therefore, at length dstub the input admittance is  
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1
in s

y jb   

 If short circuited stub added parallelly at this point with susceptance equl to 
s

jb , then the admittance 

becomes perfectly matched 

 That is  
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 Therefore, matching is achieved  

0in
Y Y  

Length of the stub: - 

 Now to determine the length of the short-circuited stub, which was represented in Figure 2, consider the 

short-circuited stub impedance and convert in to admittance. 

 That is  

0
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 The required normalized suspetance of the short circuited stub 
s

b can be written as 
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Equating this with  
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 Converting into impedance, 
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 Therefore, the length of short circuited stub is  
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 Any load impedance can be matched to the line by using single stub technique. The drawback of this 

approach is that if the load is changed, the location of insertion may have to be moved.  

 

 

 

 

Smith Chart-Configuration and Applications: 

• For complex transmission line problems, the use of the formulae becomes increasingly difficult and 

inconvenient. An indispensable graphical method of solution is the use of Smith Chart.  



IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 

137 

 

 

 

• The Smith Chart is used for analyzing and   designing transmission-line circuits. 

• Impedances represented by normalized values, Z0.  

• Reflection coefficient is 

 

• Normalized load admittance is 

• Horizontal line: The horizontal line running through the center of the Smith chart represents either the 

resistive ir the conductive component. Zero resistance or conductance is located on the left end and 

infinite resistance or conductance is located on the right end of the line. 

• Circles of constant resistance and conductance: Circles of constant resistance are drawn on the Smith 

chart tangent to the right-hand side of the chart and its intersection with the centerline. These circles of 

constant resistance are used to locate complex impedances and to assist in obtaining solutions to 

problems involving the Smith chart. 

• Lines of constant reactance: Lines of constant reactance are shown on the Smith chart with curves that 

start from a given reactance value on the outer circle and end at the right-hand side of the center line.  

 

 

K

K
z






1

1

L

less)(dimension   
1

11

L

L

K

K

z
y








IARE                                 Electromagnetic Theory and Transmission Lines                                             Page | 

138 

 

 
Fig. Smith Chart (location of maxima and minima) 

 

 

The types of problems for which Smith charts are used include te following: 

 

1) Plotting a complex impedance on a Smith chart  

 

2) Finding VSWR for a given load 

 

3) Finding the admittance for a given impedance 

 

4) Finding  the  input impedance of a transmission line terminated in a short or open. 

 

5) Finding the  input impedance at any distance from a load ZL. 

 

6) Locating the first maximum and minimum from any load 

 

7) Matching   a  transmission line to a load with a single series stub. 

 

8) Matching a transmission line with a single parallel stub 

 

9) Matching  a   transmission line to a load with two parallel stubs. 
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Plotting a Complex Impedance: 

• To locate a complex impedance, Z = R+-jX or admittance Y = G +- jB on a Smith chart, normalize the 

real and imaginary part of the complex impedance.  

 

• Locating the value of the normalized real term on the horizontal line scale locates the resistance circle 

. 

•  Locating the normalized value of the imaginary term on the outer circle locates the curve of constant 

reactance.  

 

• The intersection of the circle and the curve locates the complex impedance on the Smith chart. 

 

 

Finding the VSWR for a given load: 

 

• Normalize the load and plot its location on the Smith chart. 

 

• Draw a circle with a radius equal to the distance between the 1.0 point and the location of the normalized 

load and the center of the Smith chart as the center. 

 

• The intersection of the right-hand side of the circle with the horizontal resistance line locates the value of 

the VSWR. 

 

 

Finding the Input Impedance at any Distance from the Load: 

 

• The load impedance is first normalized and is located on the Smith chart. 

 

• The VSWR circle is drawn for the load. 

 

• A line is drawn from the 1.0 point through the load to the outer wavelength scale. 

 

• To locate the input impedance on a Smith chart of the transmission line at any given distance from the 

load, advance in clockwise direction from the located point, a distance in wavelength equal to the 

distance to the new location on the transmission line. 

 

 

Power Loss: 

 

 

• Return Power Loss: When an electromagnetic wave travels down a transmission line and encounters a 

mismatched load or a discontinuity in the line, part of the incident power is reflected back down the line.  

 

• The return loss is defined as: 

   Preturn = 10 log10 Pi/Pr 

    Preturn = 20 log10 1/G 

 

• Mismatch Power Loss: The term mismatch loss is used to describe the loss caused by the reflection due 

to a mismatched line. It is defined as 

    Pmismatch = 10 log10 Pi/(Pi - Pr)  
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