
 

LECTURE NOTES 

 

ON 

 

 

ENGINEERING MECHANICS  

B. Tech II semester 

 

 

 
 

Prepared By 

Mr. B.D.Y. Sunil 
Assistant Professor 

 

 

 

 

 

 

 

 

 

 
 

DEPARTMENT OF MECHANICAL ENGINEERING 

 INSTITUTE OF AERONAUTICAL ENGINEERING 
(Autonomous) 

Dundigal, Hyderabad - 500 043 

 

 



 

 

SYLLABUS: 

 

UNIT I KINEMATICS OF PARTICLES- RECTILINEAR MOTION 

KINEMATICS OF PARTICLES- RECTILINEAR MOTION 

Motion of a particle–Rectilinear motion–motion curves–Rectangular components of curvilinear motion 

Kinematics of Rigid Body - Types of rigid body motion - Angular motion - Fixed Axis Rotation 

UNIT II KINETICS OF PARTICLE 

KINETICS OF PARTICLE 

Introduction-Definitions of Matter, body, particle, mass, weight, inertia, momentum. Newton’s law of motion. 

Relation Between force & mass. Motion of a particle in rectangular coordinates. 

D’Alembert’sPrinciple.Motion of Lift. Motion of body on an inclined plane. Motion of connected Bodies. 

UNIT III IMPULSE AND MOMENTUM, VIRTUAL WORK 

IMPULSE AND MOMENTUM 

Impulse And Momentum:Introduction- Impact, Momentum, Impulse & Impulsive forces, Units. 

Law of conservation of Momentum, Newton’s law of collision of elastic bodies- coefficient of 

Restitution. Recoil of Gun. Impulse Momentum Equation. 
VIRTUAL WORK:Introduction – Principle of virtual work – Applications – Beams, Lifting machines, 

Simple framed structures. 

UNIT IV WORK ENERGY METHOD 

WORK ENERGY METHOD 

Law of conservation of Energy, Application of Work Energy Method to particle motion and connected 

system- Work energy applied to Connected Systems - Work energy applied to Fixed Axis Rotation 

UNIT V MECHANICAL VIBRATIONS 

MECHANICAL VIBRATIONS 
Definitions and Concepts–Simple Harmonic Motion–Free vibrations,simple and Compound Pendulums – 

Torsion Pendulum – Free vibrations without damping: General cases. 

TEXT BOOKS: 

1 R.C. Hibbler, “Engineering Mechanics”, Prentice Hall, 12
th
 Edition, 2009. 

2 Engineering Mechanics, “Statics and Dynamics”, Ferdinand.L. Singer, Harper International Edition, 

2013. 

3 Engineering Mechanics, S. Timoshenko and D.H. Young, Tata McGraw Hill, 5
th
 Edition, 2013. 

REFERENCES: 

1 S. Bhavikatti, “A Text Book of Engineering Mechanics”, New Age International, 1
st
 Edition, 2012. 

2 A.K Tayal ,“Engineering Mechanics”, Uma Publications, 14
th
 Edition, 2013. 

3 R.K. Bansal “Engineering Mechanics”, Laxmi Publications, 8
th
 Edition, 2013. 

4 Engg. Mechanics, KL Kumar, Tata McGraw Hill, 12
th
 Edition, 2015. 

5 Engg. Mechanics, S.S. Bhavikati& K.G. Rajasekharappa, 8
th
 Edition, 2015. 

6 Basudeb Bhattacharya, “Engineering Mechanics”, Oxford University Press, 2
nd

 Edition, 2014. 

7 K. Vijay Reddy, J. Suresh Kumar, “Singer’s Engineering Mechanics, Statics and Dynamics”, B S 

Publishers, 1
st
 Edition, 2013. 



 

UNIT – I 

KINEMATICS OF PARTICLES- RECTILINEAR MOTION 

 

Motion in a plane: Introduction to polar coordinates 
 

So far we have discussed equilibrium of bodies i.e. we have concentrated only on statics. From 

this lecture onwards we learn about the motion of particles and composite bodies and how it is 

affected by the forces applied on the system. Thus we are now starting study of dynamics. 

 
When we describe the motion of a particle, we specify it by giving its position and velocity as a 

function of time. How the motion changes with time is given by the application of Newton's II
nd

 

Law. One such particle at position    moving with velocity    and acted upon by a force is 

shown in figure 1. The force     gives rise to an acceleration . Notice that in general 

the position, the velocity and the acceleration are not in the same direction. 
 

 

 

 

 
Each of these vectors is specified by giving its component along a set of conveniently chosen 

axes. For a particle moving in a plane, if we choose the Cartesian coordinate system (x-y axes) 

then the position is given by specifying the coordinates (x, y), velocity by its components 

and acceleration by its components . These are related by 

the relationship 



 

 
 

and 
 

 

These expressions are easily generalized to three dimensions by including the z-component  
of the motion also. However, in this lecture we will be focusing on motion in a plane only. 

With these components the equations of motion to be solved are 
 

 

Coupled with the initial conditions solutions of these equations provide the velocity and position 

of a particle uniquely. However, the Cartesian system of coordinates is only one way of 

describing the motion of a particle. There arise many situations where describing the motion in 

some other coordinate system i.e., taking components along some other directions is move 
convenient. One such coordinate system is polar coordinates. In this lecture we discuss the use of 

this system to describe the motion of a particle. To introduce you to polar coordinates and how 
their use may make things easy, we start with the discussion of a particle in a circle. 

 
Consider a particle is moving with a constant angular speed ω in a circle of radius R centered at 
the origin (see figure 2). Its x and y coordinates are given as 

 

 

with both x and y being functions of time (see figure 2). 



 

 

 
 

 

On the other hand, if we choose to give the position of the particle by giving its distance r 
from the origin and the angle Φ that the line from the origin to the particle makes with x-axis 
in the counter-clockwise direction, then the position is given as 

 

 

In this coordinate system, r is a constant and Φ a linear function of t ime. Thus there is only one 

variable that varies with time whereas the other one remains constant. The motion description 

thus is simpler. These co-ordinates are known as the planar polar coordinates. As 

expected, these coordinates are most useful in describing motion when there is some sort of a 

rotational motion. We will therefore find them useful, for example, in discussing motion of 

planets around the sun rotating bodies and motion of rotating objects. 



 

 

 
 

 

So to start with let us set up the unit vectors is polar co-ordinates ( r, Φ ) . Given a point , the 

unit vector is in outward radial direction and has magnitude of unity. The Φ unit vector is also of 

magnitude unity and is perpendicular to and in the direction of increasing Φ (see figure 

3). Obviously the dot product . In term of the unit vectors in x and y direction these are 

given as 
 

 
As is clear from these expression the direction of and Φ is not fixed but depends on the angle 

Φ. On the other hand, it does not depend on r. If we go along a radius, and Φ remain 

unchanged as we move (recall that two parallel vectors of same magnitude are equal). But that 

is not the case if Φ is changed. 

 

The position a of a particle in polar co-ordinates to given by writing 
 

 
As particle moves about, changes. Does the mean that the velocity 



 

 
 

The answer is no. As already discussed is a function of Φ, the angle from the x-axis. Thus as 

a particle moves such that the angle Φ changes with time, the unit vector also changes. Its 

derivative with respect to time is therefore not zero. Thus the correct expression for is 
 

 

Let us now calculate . As already stated, does not change as one moves radically in 

or out. Thus changes only if Φ changes. Let us now calculate this change (figure 4) 
 

 
 

 

As is clear from the figure 
 

 

where the dot on top of a quantity denotes its time derivative. The expression above can also 
be derived mathematically as follows: 



 

 

 

 
 

Thus the velocity of a particle is given as 
 

 

We note that the unit vectors in polar coordinates keep changing as the particle moves because 
they are given by the particles current position. Thus even if a particle were moving with a 

constant velocity, the components of velocity along the radial and the directions will change. Let 
us calculate the velocity of a particle moving in a circle with a constant angular speed. For such 

a particle 
 

 

so the velocity is given as 
 

 

This is a well known result: the velocity of a particle moving in a circle with a constant angular 

speed is in the tangential direction and its magnitude is Rω. How about the acceleration in polar 

coordinates? This is the derivative of with respect to time. Thus 
 

 

As was the case with the unit vector , the unit vector also is a function of the polar angle 

Φ and as such changes as the particle moves about. Thus in calculating the acceleration, time 

derivative of also should be taken into account. From figure 4 it is clear that 
 

This can also be derived mathematically as 



 

 
 

Using this derivative and the chain rule for differentiation, we get 
 

 

You can see that the expression is a little complicated. The complexity of the expression arises 

because the unit vectors are changing as the particle moves. You can check for yourself that for a 

particle moving with a constant velocity, the expression above will give zero acceleration. Despite 

little complicated expressions for the acceleration, employing polar coordinates becomes really 

useful in situations where motion is circular-like as we will see in two standard examples later. Let 

us first go to one familiar example of a particle moving in a circle for which r = R , 

. This gives 
 

 
which is the correct answer for the centripetal acceleration. For this reason is known as 

the centripetal term. Let us now solve an example of mechanics using polar co-ordinates. 

 

Example 1: A bead of mass m can slide without friction on a straight thin wire moving with 

constant angular speed in a horizontal plane (figure 5). If we leave the bead with zero initial 

radial velocity at , we wish to describe its subsequent motion and also find the horizontal 

force applied by the wire on the bead. 



 

 

 
 

 

To see the usefulness of polar coordinates, try to write equations of motion for the bead in the 
Cartesian coordinates. This I leave for you to do. We solve the problem using polar co- 
ordinates. Thus at any instant the acceleration is given by the formula 

 

 

We emphasize that the expression above gives the components of the acceleration along the 

radial and the f directions which are not fixed in space but are changing continuously. It is given 

that  (a constant) which also means that . The acceleration of the bead on the wire 
is therefore 

 

 

Since there is no friction, the wire does not apply any radial force on the bead. Therefore 
 

 

You can check by substitution that the solution for the equation above is 
 

 
where A and B are two constants to be determined from the initial conditions. Differentiating 
the equation above gives 

 

 

Thus acceleration perpendicular to wire is 



 

 
 

So the horizontal force applied by wire is 
 

 

Of course because the unit vectors employed change direction continuously, the force above is 
also in different directions at different times with the magnitude given by the expression 
above. To determinate A and B, we substitute t = 0 in the expressions derived for the radius 
and the radial speed and equate them to their vales given at that time. This gives 

 

This leads to the answer 
 

Example 2: A particle, tied to a string, is moving on a smooth frictionless table in a circle of 

radius r0with an angular speed ω0. The string is pulled in slowly through a hole in the middle of 
the table with constant speed V. We want to find the change in its speed as a function of time 
and also the force required for the string to be pulled (figure 6). 



 

 
 

 
 

 

The mass, when pulled in, is moving under the influence of an inwardly directed radial force 

 . Although the force keeps changing its direction depending upon where the particle is, it 

always remains radial. The expression for the acceleration of the particle in the polar 

coordinates is 
 

 

Since it is given , which means , and the force is only in direction, we have 
 

Since there is no force component in the Φ direction, we have 
 

 

Multiply both sides of this equation by r to get 
 

 

Since , the equation above gives 



 

 

 

The force pulling the string in is therefore 
 

 

In solving this example, we see that for forces in radial direction  , which is 

nothing by a statement of the conservation of angular momentum. We will discuss it more 

later when we study angular momentum. 

 
After introducing the planar polar coordinates, we nor briefly describe what are the other 

coordinate systems in three dimensions. A natural extension of planar coordinates in the 
cylindrical coordinate system. This arises when we add the third-z direction to planar 

polar coordinates. See figure 7. 
 

 

 

 

 
 

The position of a particle is described by with the corresponding unit vectors being 

. In this case the     unit vector is a constant and are given as in the planar 

polar co-ordinates so that 



 

 
 

Thus the expressions for all the quantities are similar to those for planar polar co-ordinates 

except that direction is also added. As a result, 

 

 

We now introduce another set of coordinates, the spherical polar coordinates, in three 

dimensions. A point in these coordinates is specifically by its distance from the centrer , the 

angle θ that the line joining the point to origin makes with the z-axis and the angle Φ that the 

projection of this line on the (xy) plane makes with the x-axis. Thus a point is specified by 

(see figure 8). 
 
 

 
Thus co-ordinates for a point are 

 



 

The unit vectors are given as with 
 

unit vector points in a direction below the (xy) plane making an angle from the (xy) 

plane. So it is given as 
 

 

And is in the (xy) plane and is given as 
 

which is the same as for planar polar coordinates. As is clear, the unit vectors in this case are 
also position dependent and change as the particle position changes. This affects the expression 
for velocities and acceleration when they are expressed in spherical coordinates. 

 

Let us evaluate the time derivatives of geometrically. The unit vector does 

not depend on r but changes with θ . This gives 
 

 

Similarly when θ is fixed and Φ changes, we get 
 

 

When we combine the two results we get 
 

 

which gives 
 

 

Thus the expression for velocity in spherical coordinates is 
 



 

 

We leave the calculation of and the acceleration as an exercise. We end this brief 

introduction to spherical coordinates by noting that spherical polar coordinates can be those of as 

two plane polar coordinates systems : one the plane of radius vector and the z-axis with as 

planar coordinates and the other the (xy) plane with as the planar polar coordinates. 



 

UNIT – II 

KINETICS OF PARTICLE 

 

Motion with constraints 

In this lecture we are going to deal with motion of particles when they move under 
constraints applied on their motion. Of course the motion is determined by Newton 's second 
law i.e., by solving the equation of motion 

 

 

where is the total force – which is the  sum  of  the  externally  applied  and  those  arising  

from other particles as well as the constraints in the system - acting on a body of mass m and is 

producing an acceleration . Recall from lecture 9 that constraints are the restrictions 
applied on the movement of a body by various means and are brought about by constraint forces 

. For example, I may restrict the body to move along a straight wire (see figure 1). In that case 

the component of only along the wire will affect the motion of the mass (if there is no 

friction) and its perpendicular component will be nullified by the normal reaction of the wire, 

which is the constraint force in this case. As another common example of constrained motion 

take the motion of two masses at the end of a rope going over a frictionless pulley (Atwood's 

machine) also shown in figure 1. 
 
 



 

In this case also, the motion of one mass is determined by not only by the gravitational force on 
it alone but also by the weight of the other mass. Thus the two masses are not fully free to move 
under their own weight and the motion is constrained. The constrained is brought about through 
tension in the rope, which is then the constraint force. 

 
We have seen two simple examples of constrained motion. We make an observation that 

constraints can be caused either by restricting the motion externally, as was the case for a 
mass on a wire, or by the presence of other bodies that are themselves moving, as in the 

example of two masses over a pulley. In lecture 9 we had introduced these concepts and 
stopped at that. However, for obtaining the positions and velocities of particles under 

constraints, we wish to express these constraints mathematically and account for them while 
solving the equations of motion. This is what this lecture is going to be about. 

 
Let us start with the example of a mass on a straight wire (say in x direction). The constraint 
that the mass moves only in the x-direction is equivalent to saying that 

 

 

This is how we mathematically express the constraint that the mass moves only along the x-axis. 

As pointed out earlier, to keep the y and the z coordinates of the mass unchanged, the wire 

applied a normal force on the mass to cancel the perpendicular (to the wire) component of the 
applied force so that the net force is along the wire. This normal reaction is the constraint force 

(figure 2). Notice that all that the wire does to the mass, as far as its motion is concerned, is 
represented by this force. 

 

 

 

 
 

. 



 

To study the motion of the mass all I need to look at are only the forces – external and constraint 
forces - acting on the mass. In this case the wire is represented by the normal force that it 

applies. Recall from lecture 4 that such a diagram is called a free-body diagram . The advantage 
of drawing a free-body diagram is that it identifies the relevant quantities to write the equation of 

motion. In the present case the free-body diagram of the mass is given in figure 3. 
 

 

 

 

 

 
Let us now write the equations of motion for the body in terms of its x, y and z -components : 

 

Let us count how many unknown are there? The unknowns are x ,y , z , Ny , and Nz, numbering 

five is given). But there are only three equations. How do we find the other two equations? 

For this recall that the two of the unknowns, Nxand Ny, arise because of the constraints. And it 

is these constraints that provide the two more equations needed for a solution. The constraints 
that y = constant and z = constant imply that 

 

 
With these two additional equations, we now have five equations and five unknowns. Thus 

and we can solve for x ,y , z and Nxand Nyin terms of given parameters of the problem. 

Let us now look at the other problem of two masses hanging on the sides of a frictionless pulley 
(see figure 1), a special case of Atwood's Machine. For simplicity we take the pulley and the rope 

to be massless. Let the masses be m1&m2. In this problem also the motion is in only one direction 
 the vertical direction so we are going to ignore the other two dimensions. In this 
problem the constraint is that the two masses move together and it is effected by the 
rope. As 



 

noted above, the force of constraint therefore is the tension T in the rope. Let us now make their 

free-body diagrams for the two moving masses m1and m2. We measure all distances from the 

ground and let the distance of m1be y1and that of m2is y2. Please see figure 4. 
 
 

 

 
Equation of motion for m1and m2are 

 

The tension T is the same on both sides because rope and pulley both are massless and the 

pulley is also frictionless. These are two equations and there are three unknowns: y1,y2and T . 

The tension T arises because of constraint so the constraint itself provides the desired third 
equation. In this case the constraint is that the length of the rope is constant. This can be 
expressed mathematically as (see figure 4 for meaning of symbols) 

 

 

whereR is the radius of the pulley. Differentiating this equation twice with respect to time gives 
 

 

We now have three equations for three unknowns: 



 

 
 

Solving these equations gives 
 

 

a result that you already know. Thus if m2>m1, m1 accelerates up. 

 
Through these two simple examples, I have identified sequential steps that we take in solving 
a problem involving constraints I now summarize these steps: 

 

 
 

1. Identify the constraints and forces of constraints in the given problem; 

2. Make free body diagrams of different bodies taking part in the motion. Let me 
remind you in making free body diagram take the body and show all the forces - 
applied and those of constraints - on the body; 

3. Write equations of motion for each subsystem/body. At this stage the number of 
equations will be less than the number of variables in the problem; 

4. Write the constraint equations. They will provide the missing equations (This happens 
because each constraint introduces a constraint force which becomes the additional 

unknown); 

5. Solve the equations. 

 

Let us now apply the procedure outlined above to slightly more difficult examples. 

 

 
 
Example 1: There are three massless and frictionless pulleys P1, P2 and P3. P1 and P2 are fixed 
and P3 can move up and down, as shown in figure 5. A massless rope R1 passes over the 

pulleys as shown and two masses m1and m2attached at its ends. A third mass m3 is hanging 
from P3 by a rope R2 of fixed length. Find the acceleration of the three masses. 



 

 
 

 
 

 

In figure 5 we have also shown the distances of different pulleys and masses from the ground, 

with the vertically up direction taken to be positive. The heights h1 and h2 of pulleys P1 and 

P2, respectively, are fixed whereas height yp of pulley P3 can change. We go about solving the 
problem according to the steps given above. 

 

Step 1: We identify two constraints and the forces of constraints as: rope R1 has fixed length 
with the force of constraint being tension T1in the rope. The other constraint is that rope R2 

has fixed length with the tension T2in the rope as the constraint force. Because of massless 

pulleys and ropes and frictionless surfaces T1 is the same throughout rope R1. 

Step 2 : Make free-body diagrams of the subsystems. We consider only those subsystems that 
can move. Thus we make free-body diagram of each mass and the pulley P3 as shown in 

figure 6. 



 

 
 

 
 

 

Step 3 : By looking at the free-body diagrams, write equations of motion for each subsystem. In 
terms of the distances shown in figure 5, we get 

 

 

and because the pulley is massless 
 

 

Thus equations of motion give four equations. However there are six unknowns viz. 

. Their number exceeds the number of equations obtained so far by two. 

 
Step 4 : The additional two equations are provided by the constraint equations. The 
constraint that rope R1 is of fixed length is expressed as (see figure 5 for the variables used) 

 

 

Differentiating this equation twice with respect to time gives 



 

 
 

The second constraint that rope R2 is of fixed is equivalent to 
 

 

which upon differentiating gives 
 

 

Thus the equations that describe the motion of the system fully are: 
 

 

I will leave Step 5 – that is solving the equations - for you to do but give you partial answer. It is 
 

 

I would now like you to try a similar problem but with slight difference. Let us attach the 
centre of the third pulley to a spring of spring constant k (see figure 7). Then find the equations 

of motion for the two masses and solve them. 



 

 

 
 

 

Example 2 :As another example of constrained motion we take a small block of mass m sliding 
down on a cylindrical surface from its top (figure 8). The question we ask is at what angle from 
the horizontal would the mass slide off the surface of the cylinder. 

 
 



 

Since this problem involves motion along a circular path I would use planar polar coordinates. I 
take the origin at the centre of the cylinder and let the x-axis be along the horizontal and y-axis 

along the vertical. Assume that the radius of the cylinder is R . The constraint in this problem is 
that r = constant = R. The corresponding constraint force is the normal reaction N of the 

cylindrical surface on the block. The free-body diagram of the mass on the cylinder is shown in 
figure 9. 

 

 

 

 
We now write the equations of motion in the planar polar coordinates. That gives in the  

direction 
 

 

and in the direction 
 

We again have three variables but only two equations. The third equation is 

provided by the equation of constraint i.e. 

 

r = constant = R 

 

which gives 
 



 

With this the equations to be solved are 
 

To solve these we use 
 

 

Substituting this in the equation for above gives 
 

This when substituted in the equation for leads to 
 

The point when the mass slips off the cylinder is where N becomes zero. So the corresponding 

 is given by 
 

 
 
Example 3: Let us take one more example of constrained motion when two bodies are involved. 

I put a block of mass m on a wedge of mass M with wedge angle θ (see figure 10). The wedge is 
free to move on a frictionless plane. There is no friction also between m and M . We wish to find 

the resulting motion. 



 

 

 
 

 

There are clearly two subsystems, the masses m and M . There are two constraints in the 
system. Constraint one is that the mass m moves along the edge of the wedge so its x and y 
components are not independent. The other constraint is that the wedge moves only in the x 

direction. The constraint forces are obviously the normal reaction N1on mass m by the wedge 

and the normal reaction N2on the wedge by the ground. The free-body diagrams for the two 

subsystems are as shown in figure 11. 
 

 

 
 

Notice that in the free-body diagram of the wedge, there is no mg of block. It is all accounted 

for by N1. To set up the equations of motion, let us choose our co-ordinates system a follows 
(see figure 12): Let the coordinate of the right-hand side lower corner of the wedge be given the 

co-ordinates (x1y1 ) and let the co-ordinates of the block be (x2 y2 ). 



 

 

 
 

 

The equations of motion in terms of these coordinates are: 
 

 

For the six variables - - of the system, we need two more 

equations, which are provided by the constraints equations. These are 
 

 

and 
 
 

 

which gives 
 

 

Thus the equations to be solved are 
 

These equations can now be solved to get all the variables as a function of time. That task is 

left for you. I'll leave you with answers for N1: 



 

 
 

Motion with friction and drag 

 
 

We have been looking at the constrained motion of particles and found that in solving the 

problems we make free-body diagrams and look at the motion of each subsystem independently. 
Then the motion of individual subsystem is linked through constraints that they impose on each 

other. The example that we took were Atwood's machine and a mass sliding on a wedge. 

However, in these examples we neglected a ubiquitous force which is the force of friction. In 

this lecture we take this into account and solve problems involving the friction 

 
We would take into account two kinds of frictional forces - one that arises when two solid bodies 

are in contact and the other that arises when a body is moving through a liquid, the viscous force. 
Let us first consider the case when two solid bodies are moving against each other. A detailed 

discussion about the nature of frictional force and its relationship with the normal reaction has 

already been presented in lecture 6. We start with a review of the main points discussed there. 

 
If there is a tendency between two bodies to slide against each other, or if one body is sliding over a 

surface, the friction between the two bodies resists this motion. Question is whether this is a constant 

force or adjusts itself. It is experimentally observed that the maximum frictional force 

that a surface can apply on an object is 
 

 
whereN is the normal reaction of the surface on the body and µ is the coefficient of friction; its value 
is different for the static and dynamic case. Thus there are two coefficients of friction between two 

surfaces: static coefficient of static friction µsand the coefficient of dynamic friction µk, with the 

latter being smaller than the former. Further, µsis always observed to be less than 1. And the 
direction of frictional force is such that it opposes the motion or the tendency to move. 

 
Let us now take a couple of standard examples involving friction similar to those solved 
in lecture 6. 

 

 
 

Example 1: We put a block of 5kg on top a 10kg block. They are then attached through a 
massless and frictionless pulley to a mass M as shown in figure 1. The coefficient of friction 
between all surfaces for both static and dynamic friction is 0.5. What is the acceleration for (a) M 

= 20kg and (b) M = 40kg ( g = 9.8m/s
2
)? 



 

 

 
 

 

What we should see in solution of this problem is the maximum possible acceleration that the 
5kg block can have, and then solve for the mass M0that will give this acceleration for both the 

5kg and the 10kg blocks. If M is less than M0, both the blocks will move together. On the 

other hand, if M exceeds M0, the blocks will slip on each other. 

To start the calculations I show in figure 2 the free body diagrams of all the masses 
with maximum possible friction 

 

 
 



 

Looking at the 5kg block, we see that 
 

The maximum possible acceleration for the 5kg mass is 
 

 

Let me now calculate M0corresponding to this acceleration. The corresponding equations for 

the 10kg block are 
 

The equation of motion for the mass M then gives M0as follows 

 

Now I answer the question asked in the problem. 

 

(a) For 20 kg mass, let the friction between the blocks be f. Then we have 
 

 

These equations lead to the acceleration of the system as follows 
 

 

(b) M = 40kg. Although I have already shown you that in this case the two blocks will slide on 
each other. Let me show this to you again in another way. Assume that the blocks move 

together. In that case the acceleration of the assembly will be 
 

 

But this is larger than the maximum possible acceleration for the 5kg block, so the assembly 
cannot move together. Under these conditions the equations for the 10kg block and the mass 
M are 

 

 

which gives 



 

 
 

The 5kg mass of course moves with acceleration of only 4.9ms
- 2 

. 

 
 
Example 2: As the second example let me take a hollow cylinder that is rotating about its axis 

with a constant angular speed ω . Because of this rotation a mass m on the wall of the cylinder 
does not slip down (see figure 3). If the coefficient of friction between the cylinder wall and 

the mass is µ, what is the minimum value of w for this to happen? 
 
 

 
 

For the mass not to slip, the maximum possible friction on it should be greater than the actual 

frictional force that holds it against its weight. Since the problem involves rotation we will use 

cylindrical coordinates. The free body diagram of the mass is as given in figure 3. The mass m 
experiences three forces when it is stuck to the wall of the cylinder. These forces are its weight 

mg, the normal reaction N of the cylinder and the frictional force f . In cylindrical coordinates 

the acceleration of the mass is 
 

 

so that 
 

 

Now 



 

 
 

which gives 
 

From this minimum angular speed ωmin is calculated as follows. 

 

Thus . 

So far we have discussed one kind of frictional force where two solid bodies are in contact. We 

now learn to deal with the drag force which is experienced when a body is moving through gas 

or a liquid. This force arises due to viscosity of the fluid. To the lowest order in the velocity 

of the moving body, the drag force is approximated by 
 

 

 
 

 

that is, it is a force in the direction opposite to the velocity and its magnitude is proportional 
to the speed. So the equation of motion in presence of drag force will read 

 

 

If we write it in its component form we have 
 

 

These formulae are valid when the speed of the object is not very large; at large speeds the drag 

force becomes proportional to the square of the velocity. The simplest example of the effect of 



 

drag is the falling raindrops. Although falling from great heights, they do not hit us with 
very large speed because of the drag force on them. 

 
As an object falls vertically through a liquid/gas, the drag force on it increases with its speed. At 
a certain speed - when the drag force equals the weight of the object - it stops accelerating further 

and therefore moves with a constant speed. This speed is known as the terminal speed or 
terminal velocity. Assuming drag force to be linearly dependent on velocity, let us estimate the 

terminal speed of an object when it falls through a liquid of viscosity η. Let the vertically 

downward direction be y, then 
 

 

But the object will stop accelerating, i.e. , after attaining the terminal speed. Thus at 

the terminal speed  
 

which gives 
 

 

That is the terminal speed of the object. To estimate the terminal speed we need to know what k 
is. For a spherical object of radius a moving with low speeds, stokes formula gives the drag force 
to be 

 

 

If the object is made of a material of density ρ, the terminal speed comes out to be 
 

 
Let us estimate what will be the terminal speed of a rain drop of 2mm radius. With the 

viscosity of air , we get 
 

This is too high compared to the observed speeds of about 20 kmphto 5 kmph. Obviously the 

dependence of drag force on raindrops has higher power dependence on their speeds. In this 



 

lecture we will however restrict ourselves to those cases where the drag force depends 

linearly on the speed i.e. . We now solve examples involving such drag force. 

 

Example 3 :An object is thrown in a fluid with initial speed v0. Find its speed and the 

distance traveled by it as a function of time. 

 

Assuming the motion to be in x direction, the equation of motion is 
 

You can easily check that the solution is 
 

So that the speed initially is v0 and it decreases exponentially with time. The plot of speed 

versus time looks like that given below 
 
 

 

 
What about the distance traveled by the object? That is obtained by integrating the speed 
with respect to time and is 



 

 
 

So that the distance traveled looks like 
 
 

 
Thus as , the body will stop after traveling a distance of 

 

 
Of course as , the distance becomes larger and larger. 

 

 
 

Example 4 :We now consider one-dimensional motion of a particle which is moving under 
the influence of a constant applied force in a medium applying a drag force. Motion of a 
particle thrown up or falling down is one such example. The equation of motion in this case is 

 

 

Let us take the force to be F and the initial speed of the particle to be zero. Without the term 

 on the right-hand side, the solution of the equation above was which is, in the 

language of differential equations, the solution of the homogeneous equation i.e., equation with 0 on 

the right-hand side. To get the general solution, we add to the homogeneous solution the 

particular solution corresponding to . The particular solution is 



 

 
 

So that the general solution for the velocity is 
 

Here v0 is some constant (not the initial velocity, which is given to be 0). If we start 

with we get 
 

which gives 
 

 

The plot of velocity versus time looks as follows 
 
 

 

 

 

with the terminal speed being . The next question we ask if the solution goes to the standard 

solution of particle moving with a constant acceleration when k=0. From 



 

 

we get an answer of 0/0 so we have to be careful in taking k = 0 . Recall 

that the solution was obtained by assuming k ≠ 0 because we have been dividing by k . Thus 

for the k=0 case we should take the limit of k → 0 . Doing that we find 
 

 

Now k → 0 gives  which is the correct answer. We now calculate the distance 

x(t) traveled by the object as a function of time. 
 

 

You can see that t → ∞ the distance is given as 
 

 

so at large times it increases linearly with the terminal speed. 

For t → 0 it is 

 
 

This is easily understood as initially there is no drag due to small initial speed and the distance 
is given by the formula for uniform acceleration. Combining the two limiting cases we see that 
the plot of x(t) versus time looks like 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

I'll leave it as an exercise that as k → 0 , we recover the familiar result Also I 

would like you to solve for the velocity and height of a ball thrown up with an initial speed v 

0 when drag of air is taken into account. 

 

Next we analyze the effect of drag on the projectile motion in the gravitational field. In this 

case, we have a projectile shot with initial speed v0 at an angle θ0 from the horizontal and we 
want to find to subsequent motion. The equations of motion are (taking vertically up direction as 
the y-direction) 

 

 

We have already solved these equations above, so the speed and distance in the x-direction 
is given as 

 

 

The equation of motion in the y-direction is 



 

 
 

 

 
 

Its solution with the initial condition is 
 
 

 

I give you an exercise now: find at what time ? Show that this time correctly goes to 
 

when k = 0 . Integrating the speed, we get the height y(t) as a function of time. It is 

given as 
 

 

Now to get the trajectory one calculates x(t) and y(t) separately and plots y versus x . I give you 

some of these for a given but varying k. We take v0 = 100m/s and θ0 = 45º . For no drag 

situation we get the range R = 1010m and the highest point of the projectile to be at h = 254m . 

When a drag coefficient of k = 0.1 is introduced we get R = 495m and h = 175m , a reduction of 

about 50% in the range and 30% in the height. For k = 0.2 we get R = 313m and h = 135m, 

giving a further reduction of about 40% in the range and 20% in the height from the 

corresponding k = 0.1 values. Notice when drag force is introduced, the range gets affected much 

more than the height. The corresponding trajectories are shown below. 

 

 
 

One interesting question we may ask is: for zero drag the maximum range is obtained for θ = 45º. 
If we include drag, should the angle be larger than or less than 45º for obtaining maximum 
range? Since x-component of the velocity is now decreasing one intuitively feels that the 
projectile should be given larger speed in the x-direction for maximum range. Thus the projectile 
should be fired at an angle less than 45º. This is easily understood from the calculations 
presented above. As we saw in those calculations, for k ≠ 0 the motion in y direction does not get 
affected as much as it does in the x-direction. This also suggests that for maximum range we fire 
the projectile at an angle slightly less than 45º giving it a lager velocity in x-direction. One can 
also think of it slightly differently. When the particle is shot up drag force is large (because of 
the initial speed) and also both the gravitational force and drag are working in the same 

direction. So the partial takes longer to move up the same height than it does in coming down. 
Since x-velocity is larger in the beginning, the projectile should cover as much distance as 
possible while ascending than when it is coming down (the x-component may well vanish by 

that time) This implies that θ0 should be smaller than 45º. 



 

What we have done so far is to include the simplest form of drag force in solving for the 
trajectories of motion. However, as the speed increases drag force may also include 
higher powers of velocity i.e. it may take the form 

 

 

where is the unit vector in the direction of the velocity. This is written here to show that force        

is opposite to the velocity vector. In such cases the corresponding differential equation become 

non-linear in v and getting the solution becomes difficult, necessitating the use of numerical 

methods. Some problems though do allow analytic solutions. I end this lecture by giving you 

one such problem to solve. 

 

Exercise :Throw a ball up will initial velocity and let the force of drag be . Find the 

final speed of the ball when it hits the ground. Also find the height that it goes up to. 



 

UNIT – III 

IMPULSE AND MOMENTUM, VIRTUAL WORK 

Momentum 

 

So far we have dealt with motion of single particles. Now we are going to make the situation 

slightly more difficult by letting two or more particles apply forces on one another either by 
coming in contact or from a distance, and see how we can describe their motion. In such a 

situation the motion become much more interesting. Let us take an example of only two 

particles interacting through a spring connected to them, as shown below. 
 
 

 
During their motion any of the following could take place: the distance between them 
may change, 

 
 

or their orientation may change, 
 
 



 

or a combination of both these may occur. Now we wish to develop methods of dealing with 
such situations. We do this gradually by taking one step at a time. In this regard, we start by 
introducing the quantity momentum that plays a very important role in describing motion 
when more than one point particle are involved in the motion. 

 
To understand the importance of momentum, let us do the following experiment. Take a 
cart moving on a frictionless horizontal plane and start putting mass into it; it may be 
dropped vertically in it (see figure 1 below). 

 

 
 

 

 
You will see that the cart starts slowing down. If we wish to keep it moving with the 
same velocity, we find that we have to apply a force on it 

 

Compare this with the standard form of Newton's II
nd 

law where we put 
 

So we see that whether the mass is changed and the velocity kept constant, or the velocity is 
changed and the mass is kept constant, we have to apply a force to a body. Thus in general 

 

 

(We have ignored the second-order term  right now assuming that both the mass and the 

velocity are varying continuously). Therefore 



 

 

 

and this defines for us a quality called the momentum denoted above by . By definition 
 

The force applied on a body or a system of particles is then the rate of change of their total 
momentum, i.e. 

 

 

where now refers to the momentum of the system made up of a collection of particles. In the 

example taken above, we have to apply a force to keep the cart moving with a constant velocity 

because as the mass falls in the cart and starts moving with same velocity as the cart, the total 

momentum of the system - the cart and the mass in it - increases. In writing the definition of the 

momentum above, we have implicitly assumed that all the particles of the system, with total 

mass M, are moving with the same velocity. However, if the system is made up of N particles, 

each one being of different mass mi(i = 1 to N) and also moving with a different velocity  , 

the total momentum of the system will be given as 
 

 

A fundamental property of momentum is now follows from the definition of force in terms of 

momentum. If the total force acting on a system of particles is zero, the total momentum of the 
system does not change with time. To see it clearly let us go back to the two particles connected 

by a spring (see figure 2 below). There we have 
 

 

for particle 1 and 
 

 

for particle 2. Here is the force on particle 1 applied by particle 2. Similarly is the force 

on particle 2 applied by particle 1. By Newton 's third law 



 

 
 

 

This immediately results in 
 

 

So no matter how these particles move - their individual velocities or may change - but as 

long as there is no other force on the system and Newton's third law is obeyed we are going to 

have 
 

 

The equation above expresses the principle of momentum conservation - which is a fundamental 
principle of physics - in its simplest form. 

 
Let us understand this result. If we consider both the particles together as one system, indicated 
by the dashed line enclosing them in the figure above, there is no force on this system. This is 

because although each particle is acted upon by a force applied by the other particle, on the 
system as a whole these two forces act in opposite directions and cancel each other, resulting in a 

zero net force on the system. As such the momentum of the system does not change. Thus we 
conclude: If the net force acting upon a system of two particles vanishes, their total 

momentum does not change with time . Let us now see what happens when we apply forces on 
each particle also. In that case we have 



 

 
 

which gives 
 

 

Again we see that no matter how the individual velocities change, the total momentum 
changes according to the equation 

 

Let us now generalize this result to a system of many particles (say N ). Then we have for the 

i
th 

particle 
 

Where is the external force on the i
th 

particle and is the force applied on i
th 

particle 

due to j
th 

particle. Summing it over igives 
 

Now we can write 
 

 

But by Newton 's third law which when substituted in the equation above gives 



 

 
 

i.e., the total momentum of a system of particles changes due to only the net outside force 

applied on the system; the interaction between particles does not affect their total momentum. 

And if i.e., there is no external force on the system, 
 

 

which means that the total momentum of the system is a constant. That is the statement of 

conservation of momentum. We will see later that when combined with the principle of 
conservation of energy, it becomes a powerful tool for solving problem in mechanics. For the 

time being let us use this principle to develop some intuitive feeling about motion of a collection 
of particles; looking at it as a single mass. 

 
We now introduce you to the concept of the centre of mass (CM). To do this, let us look at 
the equation of motion 

 

 

which is equivalent to 
 

 

Since total mass of a collection of particles remains the same, we can divide and multiply 
the left-hand side of the equation above by the total mass to rewrite it as 

 

 

Since , where is the position of the i
th 

particle, the above equation can also be 

written as 
 



 

Now we introduce the position vector for the centre of mass by writing 
 

 

so that the equation of motion looks as follows 
 

 

Now we interpret this equation: It says that irrespective of the interaction between the particles and 

their relative motion, the centre of mass of a collection of particles would always move as if it were 

a point particle of total mass M moving under the influence of the sum of externally applied forces 

on each particle, i.e., the total external force. I caution you that the equation above does not imply 

that all the particles are moving the same way. All it says is that they move in such a way that the 

motion of their CM is described as if the CM was a particle of mass M. 

 

Let us take an example. 

 

Example 1: Suppose a bomb dropping vertically down explodes in mid air and breaks into three 

parts. Let the mass of the bomb be m and those of three pieces , respectively. If the 

heaviest piece falls 10m to the east and the lightest piece 12m south of where the unexploded 

bomb would have dropped, where does the third piece fall? 

 

Since  the CM keeps on moving - even after the bomb breaks - vertically 

down as if it were a point mass of mass M falling under gravity. Thus the CM hits the ground 

where the unexploded bomb would have fallen. Let us take this point to be the origin with 

east side being the positive x-axis and the north side the positive y-axis. Then 
 

after the bomb pieces having moved for equal times. 

By definition of the centre of mass we have 
 
 

 

With , this gives 
 

 

Relative positions of the three pieces are shown in figure 3 below, with the centre of mass at the 
origin. 



 

 

 
 

You see that having the knowledge about the position of the other two pieces, we have got the 
position of the third piece without the knowing anything about the forces generated during the 
explosion and therefore without solving any equation of motion. That is the power of the 

momentum conservation principle. I will leave it for you to think which component of 

momentum is conserved in this case. Would that component be conserved if drag force were 
included? 

 
Other familiar examples of momentum conservation are a gun recoiling when fired, two 
persons on roller seats pushing each other and consequently moving away from each other. 
Look around and you will find many such examples of momentum conservation. 

 
I now discuss a little about calculation of the centre of mass of a mass distribution. Calculation 

of the centre of mass is similar to calculating the centroid of an area (lecture 7), except that the 
area is now replaced by mass. For finite masses at given positions, the definition of centre of 

mass given above is used directly. For a mass distribution in three-dimensions, we calculate all 
three components of the poison of the centre of mass. These are given as 

 

 

wheredmis a small mass element at the position (x,y,z) in the mass distribution (see figure 4 
below). 



 

 

 
 
 

We are now going to change the topic a bit and ask how we describe a system where a large force 

acts for very short durations. A cricket bat striking a ball, a hammer hitting a nail, a person jumping 

on a floor and coming to sudden stop and a carom striker hitting a coin, or collisions in general, are 

examples of such forces in operation. In these cases it is not meaningful to talk about the force as a 

function of time because the time span over which the force acts is very-very short. Further, the force 

varies a great deal over this short time-interval, as I show in an example below. It is therefore better 

to describe the overall impact of the force in terms of the momentum change it causes to the system. 

This is given by the integral of the force over the time that it operates. 

Thus describes the effect of the force on the system. The integral is known as 
the impulse and denoted by the symbol J. Obviously the momentum change of a system 

equals the impulse given to it. We now discuss these ideas with the help of an example, that of 
a ball hitting a wall or any other hard surface. 

 
Let us ask what happens when a ball hits a wall or we jump on the floor. If the ball hitting 
the wall reflects back, that means that the wall has applied a force on the ball so that 

 

 
If the time of contact between the ball and the wall is seconds then the average force is 

 



 

But the real force varies greatly from the average force. We show that now. Take the model of 
the ball as following Hooke's law so that if it is compressed by x by the wall, it applies a force 
kxon the wall and consequently experiences an equal force in the opposite direction (see figure 
5 below). 

 

 

 
 

 
Since the force on the ball follows Hooke's law, the ball performs a simple harmonic motion, its 

compression is given by , where A is the maximum compression and . 

From time t = 0 , when the ball comes in and touches the wall, it takes  time (half a cycle) 

before leaving the wall. The force during this time is given as 
 

 

 

Since for a hard ball k is very large, . So by the time the ball comes back, the force varies with 

time as shown in the figure 6 below. Here the maximum force Fmax is given by kA 

and  . In the figure we show both Fmax and Faverage . The latter is calculated as 

 

or 



 

 
 

So you see that over this short period force varies a great deal and is hardly ever near the 

average force that we calculated. The discussion above has been in terms of a model of the 

force; the exact force will be different this model and so the variation could be even larger than 

that shown. It is in such situations, when a strong force is applied over a very short time period, 

that it is much more meaningful to talk of the total momentum change of a particle than the force 

 . Further, in such cases, we generally observe only the initial & final momentum 

and are hardly concerned about the finer details. It is this change 
 

 

In the momentum that is known as the impulse. So in the ball rebounding from a hard surface 

with the same speed as it comes in with, the impulse is , where  is the initial momentum 

of the ball. So instead of talking of the force applied by the ball on the surface, we say that the 

ball has imparted momentum to the surface it hit. The amount of momentum transferred is equal 

to the impulse. This has interesting application in calculating the force on a surface when there 

are many-many particles continuously hitting a surface, for example molecules in a vessel 

hitting its walls from inside. 

 
We show two situations in figure 7 below. The upper figure shows the variation of force on a wall 

when particles hit a surface at some time interval. The lower one, on the other hand, shows 



 

the situation when particles hit continuously. In the first case the force on the surface due to the 
particles hitting it varies pretty much like the force due to each particle itself. In the second 
case, however, the force at any instant is given as the sum of the forces applied by each particle 

at that time. This gives an almost constant force Fmany as shown in the figure. The value of this 
force is calculated as follows. Let each particle hitting the surface impart an impulse J to it. If 
on an average there are n particles per second hitting the surface, then in time Δt the momentum 

transferred to the surface will be (nΔt)J. The force Fmany will then be given as 
 

Since , the force above can also be written as 
 

Thus when a stream of particles hits a surface, the force applied by them to the surface equals the 

number of particles striking in time Δt times the average force applied by each one of them, a 
result that you could have anticipated. This is precisely what happens when a jet of water or 

flowing mass hits another object. 



 

 

 
 

 

As an example let us calculate the pressure of a gas filled in a container. Let the mass of each 
molecule be m and let their average speed be v . The number density of the molecules in the gas 
is taken to be n . Now consider a surface of the container perpendicular to the x-axis. (see 

figure 8). 



 

 
 

 
 
 

Each molecule, when reflected from the wall imparts a momentum equal to 2mvxto the wall. 
The average number of molecules hitting are A of the wall per unit time will be half of those 

contained in a cylinder of base area A and height vx (the other half will be moving in the other 

direction). This comes out to be . Thus from the formula derived above the force on 

the wall applied by these molecules is 
 

 

which gives the pressure 
 

 

This is a result you are already familiar with kinetic theory of gases. But now you know how it 

comes out. Having done this problem we now deal with another very interesting application of 
the momentum-force relationship, known as the variable mass problem. 

 

So far we have been dealing with particles of fixed masses. Let us now apply the equation 

  to a problem when the mass of the system under consideration varies with time. The 

most famous example of this is the rocket propulsion. 



 

Let a rocket with mass M at time tbe moving with velocity . A small mass Δm with velocity 

comes and gets stuck with it so that the rocket now has mass M + Δmand moves with a velocity 

(see figure 9 below) after a time interval of Δt. We want to find at what rate does 

the velocity of the rocket increase? We point out that the word rocket has been used here to 

represent any system with variable mass . 
 

 

 

 

 
Let us write the momentum change in time interval Δtand equate this to the total external force on 

the system (that is the sum of external forces acting on M and Δm) times Δt. That gives 
 

 

is nothing but the relative velocity of the mass Δm with respect to the rocket. 

Dividing both sides of the equation above by Δt then leads to 
 

 

We now let Δt → 0 . In this limit also goes to zero for continuously varying mass. 

Further, , the rate of change of the mass of the rocket. Thus the equation for 

the velocity of a rocket is 
 



 

Note that both the mass and velocity are now functions of time. For a rocket 

 so that  . It is this term that provides the thrust to the rocket. As 

pointed out above, although this equation has been derived keeping rocket in mind, it is true 

for any system with variable mass . 

 

 
 

Example: We now solve a simple problem involving the rocket equation. A rocket is fired 

vertically up in a gravitational field. What is its final velocity assuming that the rate of 
exhaust and its relative velocity remain unchanged during the lift off? 

 
The motion of rocket is one-dimensional. We take the vertically up direction to be positive. Then we 

have  where u is a positive number. Therefore the rocket equation takes the form 
 

which gives 
 

 

Here we have taken the initial time and initial velocity both to be zero. Even after the fuel has 
all been burnt, we see if we observe the rocket time t after being fired, its velocity will be given 

by the formula 
 

 

assumingg to be a constant. 

 
Finally, although the momentum-force equation can provide answers for the velocities, I would like 

to urge you to always think about how the internal forces that generate momenta in opposite 

directions are generated. That helps in understanding the underlying physics better. For example 

in the rocket problems, we say that provides the thrust to make the rocket move 

forward. But think about what generates this force? The answer is as follows. In a closed 

container, gas pressure applies force in all directions and these forces cancel each other. But 



 

when a hole is made from where the gas can escape, the force in the opposite direction is 
unbalanced; and that is what makes the rocket move. If you understand this, you should e able 
to answer the following question. If we take a closed box with vacuum inside and punch a hole 
in it. Which way will it move? 

 
We conclude this lecture by summarizing what we have learnt. We studied the conservation of 

momentum and a related concept of the centre of mass. Using momentum, we then calculated 
the force on a surface being hit by a stream of particles, or jet of water. Finally we learnt about 

the variable mass problem and applied it to a rocket taking off. In the coming lecture we will use 
the conservation of momentum principle along with the conservation of energy and see how this 

combination becomes a powerful tool in solving mechanics problems. 



 

UNIT – IV 

WORK ENERGY METHOD 

 

Work and Energy 

 

You have been studying in your school that we do work when we apply force on a body and 

move it. Thus performing work involves both the application of a force as well as displacement 

of the body. We will now see how this definition comes about naturally when we eliminate 
time from the equation of motion. 

 
The question that immediately comes to mind is why should we eliminate time from the equation of 

motion. This is because when we follow the motion of a particle, we are usually interested in 

velocity as a function of position. Secondly, if we write the equation of motion in terms of time 

derivatives, it may make the equation difficult to solve. In such cases eliminating time from the 

equation of motion helps in solving the equation. Let us see this through an example. 

 
 

Example: Consider the motion of a particle in a gravitational field of mass M . 
Gravitational force on a mass m is in the radial direction and is given as 

 

 

Since the force in the radial direction, it is better to write the equation of motion in spherical 

polar coordinates. For simplicity we consider the motion only along the radial direction so 

that the equation of motion is written as 
 

 

As you can see, integrating this equation to get r(t) as a function of time is very difficult. 

 
On the other hand, let us eliminate time from the equation by using chain rule of 
differentiation to get 

 

, 

where is the velocity in the radial direction. This changes the equation of motion to 
 

 
This equation is very easy to integrate and gives as a function of r, which can hopefully be 

further integrated to get r as a function of time. Now we go back to what I had said earlier that 



 

the definition of work and energy arises naturally when we eliminate time from the equation 
of motion. Let us do that first for one dimensional case and analyze the problem in detail. 

 
Work and energy in one dimension 

 

The equation of motion in one-dimension (taking the variable to be x, and the force to be F ) is 
 

 

Let us again eliminate time from the left-hand using the technique used above 
 

 

to get 
 

On integration this equation gives 
 

 

where xi and xf refer to the initial and final positions, and vi and vf to the initial and final 

velocities, respectively. We now interpret this result. We define the kinetic energy of a particle of 
mass m and velocity v to be 

 

 

and the work done in moving from one position to the other as the integral given above 
 

 

With these definitions the equation derived above tells us that work done on a particle 
changes its kinetic energy by an equal amount; this known as the work-energy theorem . 

 
You may ask: how do we know this equation to be true and consistent with our observations? 
This is the question that was asked in the early eighteenth century when it was not clear how 

to define energy, whether as mv or as mv
2
? The problem with the definition as mv is that if two 

particles moving in the opposite directions have their energies canceling each other and if they 



 

collide, they stop and all the energy is lost .On the other hand, defining it proportional to 

v
2
makes their energies add up and noting is lost during collision; the energy just changes form 

but is conserved. Experimental evidence for the latter was found by dropping weights into soft 
clay floors. It was found that by increasing the speed of the weights by a factor of two made 
them sink in a distance roughly four times more; increase in the speed by a factor of three made 

it nine times more. That was the evidence in favor of kinetic energy being proportional to v
2
. 

 
Potential energy: Let us now define another related energy known as the potential energy . This 

defined for a force field that may exist in the space, for example the gravitational field or the 
electric field. Before doing that we first note that even in one dimension, there are many 

different ways in which one can go from point 1 to point 2 . Two such paths are shown in the 
figure below. 

 

 

 
 

 

 

 
On path A the particle goes directly from point 1 to 2 , whereas on path B it goes beyond point 2 
and then comes back. The question we now ask is if the work done is always the same in going 
from point 1 to point 2. This is not always true. For example if there is friction, the work done 
against friction while moving on path B will be more that on path A. If for a force the work done 
depends on the path, potential energy cannot be defined for such forces. On the other hand, if 

the work W12done by a force in going from 1 to 2 is independent of the path, it can be expressed 

as the difference of a quantity that depends only on the positions x1and x2of points 1 and 2 

(Question: If the work done is independent of path, what will be the work done by the force field 

when a particle comes back to its initial position? ). We write this as 
 

 
and call the quantity U(x) the potential energy of the particle. We now interpret this quantity. 

Assume that a particle is in a force field F(x) . We now apply a force on the particle to keep it in 

equilibrium and move it very-very slowly from point 1 to 2. Obviously the force applied by us is 
- F(x) and the work done by us in taking the particle from 1 to 2, while maintaining its 

equilibrium, is 



 

 
 

Thus for a given force field, the potential energy difference U(x2 ) - U(x1 ) between two points is 

the work done by us in moving a particle, keeping it in equilibrium, from 1 to 2 . Note that it is 
the work done by us - and not by the force field - that gives the difference in the potential 
energy. By definition, the work done by the force field is negative of the difference in the 
potential energy. Further, it is the difference in the potential energy that is a physically 
meaningful quantity. Thus is we want to define the potential energy U(x) as a function of x , we 
must choose a reference point where we take the potential energy to be zero. For example in 
defining the gravitational potential energy near the earth's surface, we take the ground level to be 
the reference point and define the potential energy of a mass m at height h as mgh. We could 

equally well take a point at height h0to be the reference point; in that case the potential energy 

for the same mass at height h would be mg(h - h0 ) . Let us now solve another example. 

 

 
Example: A particle is restricted to move along the x-axis and is acted upon by a force 

 
. Find its potential energy. 

 
We first note that the force is always acting towards the positive x-direction. Thus when we 

move the particle, we will have to do positive work when taking it towards the negative 
direction. Thus we expect the potential energy to increase as x becomes more and more 

negative. By definition 
 

Now we choose our reference point. If we choose U(x1 = ∞) = 0 , the potential energy is given as 

 

On the other hand if we choose U(x1 = 0) = 0 , we get 

 



 

The two energies are shifted with respect to one another by a constant so that the difference in 
the potential energy between two points is the same for both the forms, as pointed out earlier. 

The potential energy is lowest for x = ∞ and increases as we move towards left and becomes 
largest for x = - ∞ . This is precisely what we had anticipated above on the basis of the 

meaning of potential energy. 

 
Conservation of energy: Having defined potential energy we now combine it with the 
work energy theorem to come up with another very important conservation principle: that of 
conservation of energy . This is obtained as follows. By the work energy theorem 

 

 

and by definition of the potential energy 
 

 

Combining the two equations we get 
 

 

This equation means that if a particle moves in a force field where the work done by the force 
does not depend on the path taken, the sum of its kinetic and potential energy remains 

unchanged from one point to another. The sum of the kinetic and potential energy is known as 

the total mechanical energy. Thus in a force field for which the potential can be defined, total 
mechanical energy is conserved. Such force fields, where the total mechanical energy is 

conserved, are therefore known as conservative force fields. Thus whereas the example above is 
a conservative force field, frictional force is not. Question: If the potential energy is explicitly 

time-dependent, is the total energy conserved? 

 
We now move on to generalize and discuss these concepts in three-dimensions. 

 

Work and energy in three dimensions 

 

As we already know, work is defined as the scalar product of the force and displacement vector. 

Thus if a particle moves under the influence of a force field  from point 1 to point 2 along the 

path shown below, the total work is calculated as the sum of partial work done when the 

particle moves a vanishingly small distance along the arrows shown below in the figure. 



 

 
 

 

 

 

 

Thus the total work done in gives as 
 

 

whereC(12) indicates that the particle is moving along the curve C from point 1 to 2 . Writing 
the dot product explicitly, we get 

 

whereFi (i = x,y,z) indicates the i
th 

component of the force and x, y and z are varied along 

the curve. Let us do an example of calculating the work in this manner in two-dimensions. 

 

 
 

Example: Consider two force fields (a) , and (b) in the x- 

y plane. Calculate the work done by these forces when a particle moves from the origin to (1,2) 

along the three paths C1, C2 and C3 shown in the figure below. On C1 the particle goes along 

the x-axis first and then moves parallel to the y-axis; on C2 it travels along the y-axis first and 

then parallel to the x-axis and on C3 it moves along the diagonal. 



 

 
 

 
 

 

 

The work done is given by the formula 
 

 

Along C1 y = 0 ,dy = 0 while moving along the x-axis whereas x = 1 and dx = 0 when the 
particle travels parallel to the y-axis. Thus the work done along C1 is 

 

 

Similarly work done along C2 is given as 
 

 
For path C3, we have y = 2x so that dy = 2dx . Therefore we substitute y = 2x in the functions 
giving the force and replace dyby 2dx . As a result, the final integration is over x only with x 
varying from 0 to 1 . Thus the work done is 

 
 

 

We are now ready to work out the work done by force in (a) and (b) (I would like you to 
plot these force fields and leave it as an exercise for you). For the force in (a) we get 



 

 
 

; 

 

; 
 

 

For force (b) on the other hand we get 
 

 

 

 
Thus we see that whereas the force in (a) gives the work to be the same for all three paths, that in 

(b) gives different work along the three paths. Thus the first force field may be conservative 
but the second one is definitely not. 

 
Now let us derive the work-energy theorem in three dimensions. Start from the equation 

of motion  and take the dot product of both sides with the velocity to get 
 

Now integrate both sides with respect to time and use , where is the small distance 

traveled by the particle in time interval dt, to get 
 

 
On integration this leads to 



 

 
 

This equation tells us that when a force makes a particle move along path C from point 1 to 2, 
the work done by the force equals the change in its kinetic energy. This is the work-energy 
theorem in three-dimensions. It is exactly the same as in one dimension except that the work 

done is calculated by moving along a three-dimensional path. 

 

 
 

Potential energy: As is the case in one dimensional motion, potential energy in general can 

be defined only if the work done is path independent. In that case, the work done depends only 
on the end points of the path of travel and can be written as the difference on a quantity that is 

a function of the position vector only. Thus 
 

 

where  is defined as the potential energy. Notice  that  this  time  I  have  not  written  any 
specific path but just the end points with the integral sign because the work is supposed to be 

path-independent. From the definition above, it is also evident that here too the difference in the 

potential energy  between point 1 and point 2 is the work done by us in moving a 

particle slowly, maintaining its equilibrium, from point 1 to point 2. Now following the exactly 

same steps that we did for the one dimensional case, we show that 
 

 

Thus when the potential energy can be defined, the total mechanical energy of a particle  
is conserved . I remind you that the total mechanical energy is the sum of the kinetic and 
the potential energies. In such cases the force is said to be conservative. 

 
By now you may be wondering how can we find out whether a force is conservative or not. Do we 

have to calculate the work done along all possible paths before we can say that the force is 

conservative and therefore the principle of conservation of energy holds good. That certainly would 

be impossible to do. However, there is a much simpler test to check whether a force field is 

conservative or not. I am going to tell you about it without giving the proof. To find out about 

the conservative nature of a force  , we calculate its curl defined as 



 

 
 

Now if the curl of a force field vanishes everywhere, it is a conservative force field. On the other 

hand if the curl of a force field is nonzero, it is not conservative. Let us now apply this test to the 

two force fields for which we calculated the work done along different paths. For the force field 

, the curl is zero everywhere. Hence it is conservative and, as we saw with 

three paths, the work done in this field is indeed path independent. On the other hand, for 

, the curl comes out to be and therefore the force is not conservative. This 

was seen above where the work done along the three paths were all different. We now solve an 

example where knowing the conservative nature beforehand helps us avoid an unnecessary 

calculation. 

 

Example: Take the force field given by and consider a particle 

moving from A to be along the semicircular path ACB (see figure below). Calculate the 

difference in its kinetic energy at B and at A. 
 

 

 

 

 
To calculate the change in the kinetic energy of the particle as it moves from A to B, we should 
calculate the work done by the force in when the particle travels along the semicircle. For this 
we should calculate 

 



 

withy and dycalculated from the equation of the circle . You should try it 

and see for yourself that the integrals become really lengthy. On the other hand, if the force is 

conservative, we can calculate the work done in particle moving along the diameter. The  

latter calculation is much easier. Let us therefore first calculate the curl of the force. It is 
 

 

Thus the work done between any two points is path-independent. We therefore calculate the 
work along the diameter AB. It is 

 

 

Since the work done is independent of the path, it is going to be the same for the 
semicircular path ACB also. 

 
After defining the potential energy and getting the principle of conservation energy, we now 
look a little more at the relationship between the potential energy and the force it gives rise to. 
As a consequence we also discuss what can we learn about the motion of a particle by looking at 
its potential energy curve. 

 
Learning about force and motion from the potential energy 

 
We learnt above about how the force leads to the concept of potential energy. However, it is the 

potential energy that is easier to specify than the force. The reason is very simple: force is a 
vector quantity and as such in specifying it we have to give its three components as a function 

of position. On the other hand, potential energy is a scalar quantity and is easier to write as a 
function of position. For the same reason, many a times it is easier to calculate the potential 

energy than to calculate the force, as we will see in an example below. Thus generally we give 
the potential energy of a particle to tell about the force field in which the particle is moving. In 

this section we discuss what can we learn about the motion of a particle by looking at its 
potential energy. 



 

First we discuss how do we get the force from the potential energy. Let us first look at 
one-dimensional case. Employing the definition of potential energy, we find that for a 
small displacement Δx 

 

 

which means that the force is given by the formula 
 

 

This is the key formula relating the force to the potential energy. On the basis of this formula, 

we can infer a lot about the nature of motion by looking at the potential energy curve. First if 

, then the force is towards the negative x-direction and if , the force is 

towards the positive x-direction. Thus the force is in the direction of decreasing U(x). What if 

? In that case the particle in either on a maximum or a minimum of the potential and 

there is no force on the particle. The particle is therefore in equilibrium. The equilibrium will be 

stable one, that is the particle will come back to the equilibrium point when displaced slightly 

from that point, if it is at the potential energy minimum or equivalently where . On the 

other hand at the maximum of the potential energy, the particle will rush away from that 

point if it is disturbed. Thus at the potential energy maximum, where , the 

equilibrium is unstable. We see that a particle tends to move towards its potential energy 

minimum and move away from its potential energy maximum. All these concepts can be shown 

nicely with a bead moving on a smooth frictionless wire bent in the shape of a curve with many 

maxima and minima and held in the vertical plane (see the figure below). The potential energy 

of the bead is then proportional to the height of the curve and as such the wire itself represents 

the potential energy curve in the figure below. 



 

 

 
 

 

 

Now with a bead sliding over the wire, you can easily check that all the points made above 

about the relationship between the force on the bead and the mathematical properties of the 
potential energy curve are correct. Further the minima and maxima of the curve are clearly 

observed to be stable and unstable equilibrium points, respectively. 

 
In three dimensions the equivalent of the derivative is the gradient operator. Thus the force 

  in two or three dimensions is given as 
 

Thus the force is in the direction opposite to that of increasing U. Further, it vanishes wherever the 

gradient of the potential energy is zero. Individual components of the force are given as 
 

 

A word of caution is needed here. does not mean that if we transform 

to some other co-ordinates system (say spherical) then 



 

 
 

will be correct. This is not even dimensionally correct. To get the correct answer, one 
must properly transform from Cartesian to polar co-ordinates. The result then is 

 

 

Thus in spherical polar coordinate system, the force components are given as 
 

 

Similarly in cylindrical coordinate system the force is related to the potential energy as 
 

With the individual force components 
 

 

Having given you the prescription for obtaining force from the potential energy let us now 
apply it to find the field of an electric dipole using its scalar potential. 

 

 
 

Example: As an application of finding force from the potential, let us calculate the electric 
field due to a dipole. 

 

Let the dipole be situated at the origin along the x-axis. Let the charges -q and +q be separated 

by distance 2a (see figure below) so that the dipole moment is . Then potential and 

field at any point can be calculated by adding the field due to the two charges. Adding the field 

in this case becomes a bit difficult because we have to obtain three components of the field for 

each charge and add them. On the other hand, finding the potential is relatively easy because it 

is a scalar quantity and we obtain it by adding the potential due to two charges. Then the 

gradient gives the field. In the calculation we assume that a → 0 and q is correspondingly very 

large so that their product is finite. We will be using this by keeping term only linear in a and 

neglecting higher orders. 



 

 

 
 

 

The potential (potential energy per unit charge) due the two charges is given as 

 

 

Now taking the gradient we get the three components of the force, which are 
 

 

Similarly 



 

 
 

Combining these results together we get for the field of the dipole 
 

 

I would like you to get the same result by adding the fields of the charges together and 
compare the answers. 

 
In these lectures, we have learnt: the work-energy theorem, definition of potential and its 
relationship with the force field, concept of conservative forces and the principle of 
conservation of energy. I leave these lectures by giving you a few exercises. 

 

 

Exercise 1: Consider one-dimensional motion in a potential U(x). Show that if a particle of 

mass m is displaced slightly from its equilibrium position at a potential energy minimum at x0, it 
will perform simple harmonic oscillations. Find the corresponding frequency. 

 
Exercise 2: Consider two different inertial frames moving with respect to one another with a 
constant velocity. Starting from the work-energy theorem in one frame, prove that it is true in 
the other frame also. 

 
Collisions 

 
 

In the previous two lectures, we have seen that when many particles are interacting, there are 

two conservation systems that are obeyed by them. One, if the net external force on the particles 

is zero, the total angular momentum of the system remains a constant. This is expressed 
mathematically as 

 



 

Further we saw during the motion of a many particle system, one point - its centre of mass - 

moves as if its mass M is equal to the total mass of the system and the total force 

 is being applied on that mass. The CM co-ordinate is defines as 
 

 
And it moves according to the equation 

 

 

Thus if then . That means if the total external force on the system is 

zero, the CM moves with a constant velocity. This is another way of expressing the 

conservation of linear momentum. 

 

The other conservation principle that we saw was that of total energy. Accordingly the total 

energy, which is the sum of their kinetic energy KEi and potential energy PEi , of a system 
of particles remains a constant 

 

As an example of the power of these principles, in this lecture we apply these two principles 

to the problem of two particles of masses m1and m2colliding. 

Before we discuss the problem of two particles colliding, we prove something very important 

and useful: Kinetic energy of a system of particles is equal to the sum of the kinetic energy of 

its centre of mass and kinetic energy of particles with respect to the centre of mass . By kinetic 

energy of the CM we mean its kinetic energy calculated as a point particle of the total mass 

 moving with the velocity of the CM. To see this, substitute in the expression 

for the kinetic energy 
 

 

, where is the velocity of the CM and is the velocity of i
th

particle in the 

CM frame. This gives 



 

 
 

 

Now is the momentum of the CM with respect to the CM and therefore proportional to the 

velocity of the CM with respect to the CM. But the velocity of the CM relative to the CM is 

zero implying that . This immediately gives 
 

= KE of the CM + KE about the CM 

 
This result, that the kinetic energy of a system of particles can be decomposed into KE of the 
CM and KE about the CM, is very important and useful. In a later lecture, we will see that 
the same is true for the angular momentum. 

 
The division of kinetic energy as shown above is useful in learning how energies are shared 

when particles interact with each-other for short periods of time. As an example take explosion 

of a bomb. Since the CM will keep on moving the same way as it was before the explosion - 

because the forces generated are between the pieces of the bomb and therefore have no effect on 

the total momentum of the system - the explosion does not change the kinetic energy of the CM. 

Thus all the energy released in the explosion goes to the kinetic energy of the pieces of the bomb 

with respect to the CM. As another example, consider two particles colliding and getting stuck 

together. Since the CM keeps on moving with the same speed because of momentum 

conservation, the minimum kinetic energy that the masses stuck together have to have is that of 

the centre of mass. Thus the maximum possible energy loss in this case is the sum of their 

kinetic energy relative to their CM (also called the kinetic energy in the CM frame). 

 
We now get back to the problem of two particles colliding. We consider two particles of masses 

m1and m2coming in with velocities , respectively, interacting in a region, and then 

going out with velocities (see figure 1). This is the simplest collision problem. If more 

particles are involved then the problem is going to be move complicated. 



 

 

 
Since 

we assume particles interact only when they are close to each other, they are essentially free 

before and after the collision. Further, the interaction region is very small; thus even if the 

particles are in an external field, the potential energy remains essentially unchanged during the 
collision. Thus we can write 

 

 

where we have added ΔE on the left-hand side to take into account any addition or loss of energy 
during the interaction of particles. For example if the particles generate some energy during 

interaction, ΔE >0 . This will be the case when two particles release some chemical energy. On 
the other hand, ΔE <0 when the particles lose energy during interaction. This is called an 

inelastic collision. ΔE = 0 is the case of elastic collision; here the total kinetic energy before and 
after the collision is the same. If particles interact over a large region, we can take the velocities 

to be in the asymptotic region, where the particles are far apart and therefore the equations above 
are applicable. The discussion so far has been in terms of balancing the energies involved during 

the interaction. 

 
The other conservation principle is that of conservation of momentum. Usually during collision 

the impulse due to collision (internal force if two particles are considered as one system) is 
much larger than any external impulses. So we neglect it and conserve momentum. If the 

external impulse comparable to the internal impulse, it must be taken into account. This could be 
the case when the external force is very large or the particles interact for a long time. For the 

time being though, we will focus on cases where external impulse can be neglected. Thus 
 

The two equations are actually a set of four equations with momentum conservation giving three 

equations, one for each component. However, given , we have to solve for six 

quantities, three components for   and three for . Thus to solve the problem completely, we 



 

need more information, for example the scattering angles. In two dimensions also, the 
conservation equations alone are not enough to solve the problem of finding velocities after 
the collision. This is because now there will be four unknowns - two components for velocity 

of each particle - but only three equation, one from the energy balance and two from 

momentum conservation. Only in one dimension, we can solve the collision problem 
completely because there are two equations and two unknowns. Nonetheless, we can get a lot 

of information about the motion from these two conservation laws as we now discuss. 
 

As the first example, let us consider two particles of masses m1and m2moving with velocities 

, respectively, colliding, getting stuck together to make a particle of mass (m1 +m2 ) 

that moves with velocity . In the process energy ΔE is released. Then moment 

conservation tells us 
 

 

and balancing the energy gives 
 

 

Notice that we have added to ΔE to the left-hand side so that the total final kinetic energy is the 

sum of the total initial kinetic energy and the energy added to the system. Substituting for  

from the momentum conservation equation in the energy equation, we get 
 

 

which on simplification gives 
 

 

The left-hand side of the equation above is definitely positive. On the other hand, the right-hand 
side is negative if ΔE >0 , i.e., the final kinetic energy is larger than the initial kinetic energy. 

So this reaction will not be possible if it is exothermic, i.e., some energy is generated and added 

to the initial kinetic energy. Thus two atoms colliding in free space will not combine to form a 
molecule (in which process the energy is usually released). However if energy is taken away 

from the system, i.e. ΔE <0, then the reaction is possible. This is the information we have got 

purely on the basis of conservation laws. We now go on to discuss collisions as described with 
respect to the CM. We will see that this gives us a lot of insight into the collision problem. 

 
As we had stated earlier, the conservation of momentum implies that the centre of mass moves 

with a constant velocity when there is no external force on the particles. Thus if we attach a 



 

. 

frame to the CM, it will also move with constant velocity and will be an initial frame of 
reference. Let us call this the CM frame. Since it is an inertial frame, we can equally well 
describe a collision process is a CM frame. Observing a collision from the CM frame gives us 

the biggest advantage that the sum of the momenta (the total momentum) is always zero in this 

frame. In this lecture we will be focusing on two particle collisions as described from the CM 
frame. We will see that because of the total momentum being zero, description of a collision in 

this frame becomes simpler. In coming lectures we will see that CM provides a convenient 
origin for studying rotational motion also. 

 
For now, let us look at the two particles collision. As stated above, in the CM frame the total 

momentum is always zero because in this frame the CM does not move. So that the velocities of 
two particles in the CM frame are always in the direction opposite to each other. Further the 

motion remains confined to a plane formed by the lines representing the initial and the final 
velocities directions (keep in mind that the velocities of the two particles at any instant are 

along the same line though opposite in direction). Thus in the CM frame a collision looks as 
shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In figure 2 two particles with masses m1and m2and velocities  and are coming in for a 

collision; they collide and particle 1 goes out with velocity and particle 2 with 

 

In the process particle 1 gets deflected by an angle ΘCM. As stated earlier, even in 

2d there are four unknowns: two components of and two of to be obtained but only three 

equations- one for energy conservation and two for momentum conservation. So the problem 

cannot be solved fully by using conservation principle only. However, if the interaction is 



 

known, then ΘCM and both the velocities after collision can in principle be calculated. Let us 

now see how much can we learn about the motion after collision applying only the conservation 
principles. We will be discussing both the elastic and inelastic collisions. Recall that if the 

kinetic energy remains unchanged in a collision, the collision is elastic; on the other hand, if the 
energy is lost the collision is inelastic. 

 
Let us first focus on an elastic collision and analyze it in the CM frame. As pointed out earlier, 
the velocities of the two particles before and after collision are opposite to each other. Thus 

the relationship between the magnitudes v1C , v2C , v'1Cand v'2Cof the velocities is 

 

 

 

Substituting for and from the first two equations in the last one we get 
 

Thus the velocity vectors of both particles just rotate but do not change in magnitude as the 
partial move out after collision. You have learnt in previous classes that in an elastic collision the 

magnitude of the relative velocity of one particle with respect to the other remains unchanged 
during the collision. In one dimension it means that the speed of approach of two particles is the 

same as their speed of separation. Let us now see how it follows directly from the conservation 
principles. 

 
As we have derived above,  in an elastic collision. If the velocities of 

the two particles are , respectively, in the ground frame, then 

 

 

Similar relationships hold for the velocities after collision i.e. 
 

 

Using these relationships we find that 



 

 
 

Similarly, we have 
 

Thus we see that in an elastic collision 
 

 

We have shown that the magnitude of relative velocity of one particle with respect to 
other remains the same in an elastic collision. 

 
To see the dramatic effects of a nearly elastic collision, take a table-tennis ball (very small mass m), 

put it on a large bouncy ball of mass M (M >> m) , and drop them from a height (see figure 4) on a 

hard floor. You will see that the table-tennis ball bounces back really high after the balls hit the 

ground. Can you work how high will it go if the balls are dropped from a height h? 

Assume that no energy is lost. 
 

 



 

Now we consider a two-particle elastic collision in a plane and analyze it. This could be the 
collision of a striker and a coin on a carom board, for example. It is a two-dimensional case. We 
are going to analyze the motion graphically. First we look at the velocities in the CM frame. If 
we take the initial direction of particle 1 towards +x , the velocities of the two particles before 
and after collision can be shown as done in figure 5. Keep in mind that in an elastic collision, 
the magnitude of the velocities of each particle remains unchanged in the CM frame. However 

the direction of the velocity for each particle changes by an angle ΘCM.as shown in figure 5. 
 

 

 

The picture above shows the angle of scattering in the CM frame. However experiments are done on 

ground - and not in the CM frame. So we should be answering the question: by what angle 

θlabdoes particle 1 scatter in the laboratory frame? Since velocities and in the lab frame are 

given as , the relationship between these velocities can 

be shown as done in figure 6. 



 

 

 
 

 

From figure 6, it is now very easy to see that 
 

 

Similar relationships can also be derived for particle 2. Now if particle 2 was at rest when hit 
by particle 1, then 

 
 

 

This gives 
 

Let us now look at two cases: m1> m2and m1<m2. In the case of m1>m2,θlabcannot be greater 

than a particular angle θmax. This can be either calculated by using the expression above or 

alternatively, graphically as we do. For m1> m2we also have vCM>v1C . Thus a picture 
showing the velocities in the laboratory and the CM frame looks like that in figure 7. 



 

 

 
 

It is clear from figure 7 that the deflection angle of particle 1, when hitting another particle of 

smaller mass, increases as ΘCMincreases from zero. It is maximum when the velocities and 

are perpendicular. If is rotates beyond this angle, deflection starts becoming smaller. 

Thus θmaxis given by the formula 
 

It is clear from the expression above that when a particle hits a lighter particle at rest, it is 
deflected by a small angle. This is reasonable as a light particle can hardy deflect a heavier 
particle. Thus the heavier particle keeps on moving forward even after the collision. On the 
other hand, there is no restriction on the scattering angle when a light particle hits a heavier 

particle at rest i.e. m1<m2. In this case vCM< v1Cand therefore the graphical representation of 
different velocities is as shown in figure 8. 



 

 

 

 

It is clear from the figure that as ΘCMincreases, so does θlab. In this situation, however, there is 

no restriction on the value that θlab can take as ΘCMsweeps angles from 0 to 2π . 

So far we have focused on elastic collisions only and could learn a great deal about them from 

conservation laws for momentum and energy. Such general conclusions are difficult to draw for 

inelastic collisions. As discussed in the beginning of this lecture, for inelastic collisions, we can 
definitely say that the maximum possible loss of energy is equal to the kinetic energy of 

particles in their CM frame. This would occur when the colliding particles get stuck together so 
that their kinetic energy after collision is zero in the CM frame. This concludes our lecture on 

collisions as analyzed using conservation laws. 

 
Rotational dynamics I: Angular momentum 

 

 
 

So far we have applied Newton's laws to point particles and the CM motion for a collection 
of particles. We are now going to look at what happens beyond the motion of the CM, which 
is described by the equation 

 

 

Let us see what else could happen to a body made up of a collection of particles where forces 
are applied at each point (figure 1). The particles are connected with flexible attachments shown 
as lines. 



 

 

 
 

 

 

 

In the figure above, although the CM moves with , the body itself could deform and 

change its orientation. Thus the distances between the particles and the angles between lines 

joining them would change. This is the most general motion that could take place. In the next 

few lectures we want to focus only one of the effects of the force applied. We are going to 

assume that a body only changes its orientation but does not deform. This is achieved by 

keeping the distance between any two particles of the body unchanged. Such a body is known as 

a rigid body . Thus in the example above, if we connect all the particles with each other by rods 

of fixed length, the body will become rigid. This is shown in figure 2. 
 
 

 

 
The only possible motion of such a body is a translation plus a change in its orientation. The 

simplest example of a rigid body is two masses attached at the ends of a rod of fixed length. 
On the other hand, a tin-can partially filled with sand is not a rigid body since the distance 

between two particles keeps on changing with the motion of the can. 



 

As stated above, the most general motion of a rigid body is its translation plus its change of 
orientation. The latter is equivalent to a rotation about a point. The beauty of this decomposition 
is that to get the final position of the body, we can translate any point in the body and then rotate 

the body about that point. Irrespective of which point we choose, the sense and the angle of 

rotation is always the same. Usually this point is taken to be the CM for reasons that will 
become clear later lectures. This general motion is shown below in figure 3, giving two possible 

ways of translating and rotating the body. 
 

 

 

You see that in figure 3 the rigid body has translated and also rotated. On the other hand, if we 

keep one of the points on the body fixed the only thing the body can do is to change its 
orientation (see figure 4). Thus with a point fixed, the only possible motion of a rigid body is 

a rotation. 
 

 

 
 

A question that arises now is how many variables do we need to specify the general motion of 
a rigid body. It requires three variables - x, y and z coordinates of the point that is translated - 

to describe the translation, and three more - angle of rotation about each axis - to represent the 
rotation. You can see that in general a rigid body would require six variables to describe its 



 

motion. However, if one of its points is fixed, three variables are sufficient to specify its 
rotation. So we conclude a rigid body needs six parameters to describe its motion. 

 
For simplicity, in the beginning we are going to focus on rigid moving with its one point fixed. 
Thus it will change only by changing its orientation. We will further simplify the problem by 

considering rotation about an axis fixed in space. In the next step, we will allow the axis to 
translate but without changing its orientation. Finally we will also let the orientation of the 

axis change. Thus we will increase the complexity of the problem gradually. 

 
 

Dynamics of rigid body: The dynamics of a rigid body is best described by considering its 

angular momentum. You can think of angular momentum as the rotational counter part of linear 
momentum. This quantity is central to describing rotational motion of a rigid body. So let us first 

spend some time in understanding this quantity. Although we are introducing angular momentum 

here in the context of rigid bodies, the treatment below is quite general. 

 

For a single particle moving with linear momentum at a distance from the origin the 

angular momentum is defined as 
 

You can immediately see that it is an origin-dependent quantity. If we calculate it with respect to 

some other point, it will come out to be different. If a particle of mass m is moving in a plane 

then using the polar coordinates for it, it is easily shown that its angular momentum is 

. Let us now find out what is the rate of change of angular moment? It is 

calculated below. 
 

 

With  , where is the force on the particle, the equation above 

is simplified to 
 

 

Thus rate of change of angular momentum is equal to the torque applied on the body. From the 

equation above, the law of conservation of angular momentum follows immediately: If the 

applied torque the angular momentum does not change, i.e. it is a constant. The equation 



 

 
 

is the angular momentum equivalent of Newton 's II
nd 

law. Let us now illustrate the 
ideas presented so far with the example of a conical pendulum. 

 

 
 

Example 1: A conical pendulum is like the regular pendulum with a light (mass m = 0 ) rigid 
rod carrying a bob of mass m at one of its ends. The other end is fixed and the bob moves in a 
circle with speed v (see figure 6). We wish to calculate the tension in the rod and the angle θ it 
makes from the vertical by applying the angular momentum-torque equation. 

 

 
Let us first calculate angular momentum about point O . We will use cylindrical co- 
ordinates because of the symmetry of the problem. With respect to O 

 

 

The vector looks as shown in figure 7, when the bob of the pendulum is in the paper plane. 



 

 

 
 

 

So the angular momentum is perpendicular to the rod (take the dot product with 

for mass m and see for yourself) and as the particle rotates the horizontal 

component of are rotates with it and the vertical component remains a constant. Let us now 

apply the equation 
 

We have 
 

 

We now calculate the torque acting on the pendulum. There are two forces, the tension and 

the weight , acting on the particle as shown in figure 8. 



 

 

 
 

 

But passes through O and does not give any torque. Thus 
 

Substituting these in the angular momentum-torque equation then gives 
 

The angular momentum-torque equation therefore gives us the angle θ that the pendulum 
makes with the vertical. How do we find the tension T ? On the other hand, applying Newton 's 
second Law we get 

 

 

giving 
 



 

 

These equations give us both T and θ, but the equation gives only the angular 

relationship. Does this mean that the angular-momentum torque equation is not equivalent to 

Newton 's second law? The answer is that it is. It so happens that in applying the equation about 

O, when cross products are taken, some components of the force do not 

contribute to the torque and drop out of the equation. For example in this case becomes 

zero. To get full solution, therefore, we now apply  about point A. Taking A as the 

origin we have 
 

 

Since all the quantities in are constants, we have 
 

Let us calculate the torque about A. With A as the origin, the forces are given as 
 

Therefore 
 

 

which gives 
 
 

 

Thus applying  about two different points gives exactly the same solution as that obtained 

from . Thus the two ways of solving the problem are equivalent. Through this example I 



 

 

have shown you (a) the origin dependence of , and (b) equivalence of and 

. 

Let me now illustrate conservation of angular momentum by a well known example: that of 

Kepler's Law of equal area concept in equal time. Accordingly, when planets are going around the 

sun, the rate at which their position vector from the sun sweeps the area is a constant. Recall from 

the lecture on polar coordinates that for a particle moving under a radial force, we had 

obtained that is a constant. This is nothing but two times the rate of area sweep by the 

radius vector. We now want to get this law from the conservation of angular momentum. 

 

For a planet, we know that the force is in redial direction. So that the torque 
 

 

Thus 
 

 

Since  , its constancy means 
 

which is Kepler's second law. 

 

After this initial demonstration of  with a single particle, we move on to a system of many 

particles. It is really a system of many particles that we are dealing with in rigid-body dynamics. 

 

Angular Momentum of a collection of particles: If there are many particles then the total 

angular momentum about a point O is the sum of individual angular momenta of each 

particle about O . Thus 
 



 

As for the angular momentum of a single particle, the angular momentum of a many-particle 
system is also origin-dependent. (Question: Under what conditions will the angular 
momentum be independent of the origin?) 

 
Now recall that the kinetic energy for a collection of particles is the sum of the kinetic energy 

of their centre of mass (CM) and the kinetic energy of particles with respect to the CM. 
Interestingly the angular momentum of a many-particle system can be expressed in the same 

manner. Thus the total angular momentum of a collection of particles is equal to the angular 
momentum of the CM plus the angular momentum of particles about the CM. Let us now prove 

it. To do so express the position vector and the velocity of a particle as 
 

 

where  refer to the position and velocity of the CM and the position and 

velocity of i
th 

particle with respect to the CM. Now the total angular momentum can be writes as 
 

 

However, by definition of the CM, . Therefore the second and the last term in the expression 
above do not contribute. The remaining terms are written as 

 

 
where M is the total mass of the system. This is a remarkable result, and as we will see, 
facilitates calculations involving rigid-body dynamics a lot. Keep in mind though that this 
result is true only with for the CM. For an arbitrary point O' in the body, we cannot write 

 



 

because depends explicitly on the definition of the CM. We will later use 

this fact to obtain the parallel axis theorem that you may have learnt in your previous classes. 

The theorem is similar to the transfer theorem of the second-moment of an area. 

 

The relationship also tells us that if the total momentum of a system of 

particles is zero, its angular momentum will be independent of the origin. I leave the 

simple proof for you to work out. 

 
Example: Take a bicycle wheel of radius R rolling along the ground and assume all its mass M is 
concentrated along the rim. If it is rolling without slipping then its motion is as follows: its CM 
moves with speed V along a straight line and the wheel rotates about the CM with angular speed 

 
so that the point on ground is at rest. We want to find its angular momentum in a 

frame stuck to the ground such that the wheel is moving along its x-axis see figure 9). 

 

 
The angular momentum of the wheel about its CM is given as 

 

So angular momentum about the origin O1(see figure 9) would be 

 

On the other hand, if we were to calculate the angular momentum about O2 (see figure 9) 

it would come out to be 



 

 
 

Notice that in both the cases we have added the angular momentum of the CM and that about 
the CM. It is because their directions come out to be the same (negative z direction). One must 

be careful about these things because angular momentum is a vector quantity. Having 
introduced you to the concept of angular momentum, I now discuss about the rate of its change 

for a many-particle system where the particles are interacting with each other also. 

 

 
 

Dynamic of a rigid body; and conservation of angular momentum: Let us now look at 

in the case of a collection of particles which are interacting with each other and are 

also being acted upon by external forces. 
 

 

But  ( s the total force, i.e. the sum of external and internal forces on the 

particle). This gives 
 

 
Before simplifying this equation in terms of the external torque, let us see where does 
this equation lead us for a two particle system shown in figure 10? 



 

 

 
 

 

 

The two particles 1 and 2 shown in figure 10 are external forces , respectively. 

They also interact with each other with particle 2 applying a force on particle 1 and particle 1 

applying a force on particle 2. We assume the forces to be following Newton 'sIII
rd 

law so 

that . Now the rate of change for this system can be written as 
 

Thus the rate of change of angular momentum is equal to only the external torque if 

 or ,i.e. the force between the particles is along the line joining 

them. At this point I would like you to recall that in the case of linear momentum, the rate of 

change on linear momentum equals the total external force, i.e. . For 

angular  momentum  to  satisfy   ,   the   additional condition  of is also 

needed. Fortunately for most of the mechanical applications this is true. Let us now generalize 

this to the case of a many-particle system. For such a system 
 



 

Recall the trick used in the case of linear momentum that 
 

 
so that 

 

 
Under these conditions, i.e. if the force between the particles is along the line joining them , we 
get 

 

 

Thus if then . Thus is the law of conservation of total angular 

momentum. In the next lecture we will do a few example of its application. 

 

 

We now conclude this lecture by listing the following points that we have learnt: 

 
1. A rigid body needs six parameters to describe its general motion; three for translation 

and three for rotation, 

2. Dynamics of rigid body is governed by its angular momentum, 

3. The angular momentum satisfies the equation 
 

under the condition that the internal forces satisfy Newton 's III
rd 

law and an additional 

condition that  



 

4. 
 

Rotational dynamics II: Rotation about a fixed axis 

 
 

We saw in the previous lecture on rigid bodies that a rigid body in general requires six 

parameters to describe its motion, and the dynamic of a rigid body is determined through its 

angular momentum that satisfies the equation , where is the applied torque on 

the body. Further, means that is a constant. 

In this lecture I start with an example of the conservation of angular momentum involving 
two particles. I again show that a direct application of Newton 's laws and a solution through 
the conservation of angular momentum give the same answer. 

 

 

Example 1: There is a rigid massless rod of length bheld at point O carrying a mass m2 at its 

other end. Let the y-coordinate of m2 be a. Another mass m1 comes parallel to the x-axis and 

hits m2 and the two masses get stuck together (see figure 1). Question is at what speed will the 
rod rotate? 

 

 

 

 
 

Let us apply the conservation of angular momentum to the system of two masses about point O. 
This is because the only external force acts at O so the torque about O is zero and therefore the 
angular momentum about O is conserved. Since the particles are moving in the xyplane, their 
angular momentum is going to be in the z direction. So we write the unit vector explicitly and 
work in terms of numbers (both positive and negative) only. Assume that the angular velocity 

of the rod after the mass m1gets stuck with it is ω. To apply angular momentum conservation 
we calculate the angular momentum of the system before and after collision and equate them. 



 

Initial angular momentum about O = m1va 

Final angular momentum = (m1 + m2 )b
2 

ω 

Equating the two gives 
 
 

 

Let us now see if the conventional force analysis also gives the same answer. The incoming 

mass m1comes in with momentum m1v. Now after m2 is hit, it cannot have any movement 

parallel to the rod because the rod is rigid, i.e. the rod is capable of generating enough tension 
(impulse) in it to make the component of momentum parallel to the rod zero. On the other hand, 
there is no force perpendicular to the rod so the momentum component p in that direction 
remains unchanged after the hit. Now 

 
 

 
After the masses get stuck together, p remains the same. Thus the new speed v' acquired by the 
masses will be such that 

 
 

 

This gives 
 

 

which is the same as obtained by angular momentum conservation. Thus again showing 
the equivalence of the two methods. 

 
With all this preparation, let us now start with the simplest motion of a rigid body that is the 

rotation of a rigid body about an axis fixed in space. So the axis is neither translating nor 

rotating. Without any loss of generality, let us call this axis the z-axis. In this case the body has 

only one degree of freedom and the only variable that we need to describe the motion of the body 

is the angle of rotation about the axis. Further, the only relevant component of angular 

momentum in this case is the component along the z-axis. Note that there may be other 

components of angular momentum but their change is accounted for by torques applied on the 

axis to keep it fixed in space. Calculation of such torques will be discussed in later lectures. 

Suffices here is to say that these torques arise out of the constraint forces that enforce the 

constraint of the axis being fixed in space. 



 

Shown in figure 2 is a rigid body rotating about the z-axis with an angular speed ω. Also shown 

there is the position and velocity vector of one of its constituent particles of mass miin a plane 
perpendicular to the rotation axis. We wish to calculate the z component of the angular 
momentum. 

 
 

 

The z component will be given as 
 

For a particle at distance ρifrom the z-axis and its radius vector making an angle Φifrom the 

x-axis 
 

 

so that 
 

 

Calling the moment of inertial about the rotation axis, we can write 
 



 

Depending on the direction of ω, angular momentum about an axis could have negative or 
positive values because it is a vector quantity. The convention we take is the right-hand 
convention; Let the thumb of one's right hand point in the positive z direction; if the rotation 
of the body is in the same (opposite) direction as the fingers, ω is positive (negative). 

 
Having defined the moment of inertia about an axis, we make a few comments on it. First 

thing we notice about it is that it depends on the perpendicular distance of point masses from 
the axis of rotation. So no matter where we take the origin of the coordinate system, the 

moment of inertia of a rigid body about an axis is always going to be the same. Secondly, for 
continuously distribute mass moment of inertia is calculated as the integral 

 

 

whereρ is the perpendicular distance of a small mass element dmtaken in the body (see figure 3). 
 
 

 
 

Finally, for planar objects the moment of inertia is the same as the second moment of an 
area except that the area is replaced by the mass. 

 

We now calculate moment of inertia of some objects. 

 
A rod at an angle from the axis of rotation passing through its centre: This is shown in 
figure 4. The length of the rod is l and its mass m . It is at an angle θ from the axis of rotation. 



 

 

 
 
 

We take a small mass element of length ds at a distance s from the origin. It is at a distance 

from the axis of rotation. Then 

 

 

Thus for a rod rotating about its perpendicular passing through its centreis . 

Exercise: Calculate the moment of inertia of a disc rotating about an axis passing through 
its centre and perpendicular to it. 

 

 
 

Moment of inertia of disc about one of its diameters: Shown in figure 5 is a disc of mass 
M and radius R rotating about its diameter which lies on the y-axis. 



 

 

 
 
 

To calculate the moment of inertia I take a strip of lengths width dx at distance x from the y-axis, 

 
the axis of rotation. Its mass is (see figure 5). Thus 

 

 
The integration can be carried out easily by substituting and gives 

 

 

 

Moment of inertia of a sphere about one of its diameters: A sphere of mass M and radius R 

is shown in figure 6. To calculate its moment of inertia, we take a cylindrical shell of radius ρ 

and thickness dρ (see figure 6). The mass of this shell is given by 



 

 
 

 

 

 
 

 

Therefore the moment of inertia is 
 

 

By substituting , this is an easy integral to perform and gives the result 
 

Let us now recapture what we have done so far. We have looked at the angular momentum of a 
body rotating about a fixed axis. We find that angular momentum LZabout an axis (denoted as 

the z-axis) is given as LZ = IZ ω and, depending upon the sense of rotation, can take positive as 

well as negative values. We have also calculated IZfor some standard objects about an axis. We 

now go on to study the equation of motion satisfied by LZ. The equation satisfied by L Zis 
 



 

where  is the component of the external torque along the axis of rotation.  If  the external 

torque      is zero, the angular momentum is conserved. You can observe the effect of 

conservation of angular momentum easily at home. 

 

Sit on a revolving chair holding a brick (or something similar) in each of your hands and keep 

your arms stretched. Start revolving the chair and then pull your arms in. You will observe that 

you start revolving much faster. This happens because when you pull the arms in, the masses 

that you are holding come closer to the axis of rotation resulting in a reduction in the value of the 

moment of inertia. However, since there is no external torque on the system, the angular 

momentum cannot change. Thus if the moment of inertia decreases, the angular speed must 

increase in order to keep L = Iωconstant. This is precisely what you observe. You should also 

repeat the experiment holding different weights. When do you observe the rotational speed to 

increase the largest? Let us now solve an example of applying the angular momentum 

conservation principle. 

 

 
 

Example: A man starts walking on the edge of a circular platform with a speed v with respect 
to the platform (see figure 7). The platform is free to rotate. What is the rotational speed of the 
platform? Mass of the platform is M , its radius is R and the mass of the man is m . 

 

 

 

Since there is no external torque, the angular momentum of the system about the axis of rotation 
must be conserved. Thus as the man starts walking, the platform starts rotating the other way. 

Since the speed of man with respect to the platform is v , his speed in the ground frame would be 
(v – ωR) . Thus the angular momentum of the man is 

 

 

At the same time, the angular momentum of the platform is 



 

 
 

where the minus sign shows that the angular momentum of the platform is in the direction 

opposite to that of the man's angular momentum. By conservation of angular momentum 

 

 

which gives 
 

 
Having learnt about the angular momentum, its equation of motion and the conservation of 
angular momentum for rotations about a fixed axis, we now discuss the kinetic energy and 

the work-energy theorem for a rigid body rotating with angular speed w about a fixed axis. 

 
Kinetic energy and work-energy theorem for a rigid-body rotating about a fixed axis: The 
kinetic energy of a rigid body rotating with angular speed ω is obtained by calculating the 
energy of small mass element in the body and adding it up. This mass element is rotating in a 
plane perpendicular to the axis of rotation. This gives (using the notation of figure 2) 

 

 

The corresponding work-energy theorem for the motion considered here is that the change in 

kinetic energy is equal to the work done on the body. Let us first calculate the work done on a 

body, which can only rotate about an axis, when an external force is applied on it. To do this, I 

would first like you to prove a result (look at figure 2 for reference): when a body rotates by an 

angle Δθ about an axis in the unit  vector direction , the corresponding change in position of 

a particle in the body at position vector is 
 

 
The total work done on the body by a net external force composed of forces acting at 

each point is 



 

 
 

By using , we can write the work done as 
 

whereτZis the component of the external torque along the axis of rotation. Thus the total 

work done is 
 

 

Now the work energy theorem can be expressed as follows: 
 

 

 

This pretty much concludes what all I have to say about the rotations about a fixed axis. One 

question that may be asked at this point is: Why is it what describing dynamics in term of 
angular momentum, torque etcetera rather than momentum and force is more useful in 

discussing rotational motion. This is because in rotational motion, force, momenta etcetera are 
distributed and taking their moments by considering the angular momenta and torques 

automatically takes care of this distribution. We conclude this lecture by drawing a comparison 
between linear and rotational motion about a fixed axis. 

 

Linear motion Rotational motion about a fixed axis 

Momentum p Angular momentum L 

  

Impulse Impulse 

  

  



 

 

 

This correspondence will help in understanding and getting relationships to solve most of the 
problems involving rotations about a fixed axis, particularly if you have solved many 
problems involving linear momentum. 

 
Rigid body dynamics III: Rotation and Translation 

 
We have seen in the past two lectures how do we go about solving the rigid body dynamics 

problem by considering the rate of change of angular momentum. In the previous lecture, we 
concentrated on rotation about a fixed axis and solved problems involving conservation of 

angular momentum about that axis. In this lecture we consider what happens where an 
external torque is applied and also when the axis is allowed to translate parallel to itself. 

 
Let us first take the case when the axis is stationary and a torque is applied. Take for instance 
your pen or a scale and hold it lightly at one of its ends so as to pivot it there. Raise the other 

end so that the scale is horizontal and then leave it. You will see that the scale swings down. I 
would like to calculate the speed of its CM when the scale is vertical after being released from 

horizontal position (see figure 1). Assume that there is no loss due to friction. In this case I will 
solve this problem in two ways and also comment on a wrong way. 

 

 

 

 

 
I take the mass of the scale to be m and its length l. Then its moment of inertia about one of its 

ends is . 



 

I first solve the problem using energy conservation. Since there is no loss due to friction the total 

mechanical energy is conserved. Therefore the total mechanical energy is conserved. Let us take the 

potential energy to be zero when the scale is horizontal. Since the scale starts with zero initial 

angular speed, its total mechanical energy is zero. When the scale reaches the vertical position, 

its CM has moved down by a distance so its potential energy is  . If its angular speed 

at that position is ω, then by conservation of energy 
 

 

which gives 
 

 

I now solve the problem by a direct application of torque equation. When the scale makes an 
angle θ from the horizontal (see figure 2), the torque on it is given as 

 

 
 

The angular momentum-torque equation then gives 
 



 

 

Substituting and the value of Ifrom above this leads to 
 

 

This equation cannot be integrated with respect to time directly. Recall from the proof of work- 

energy theorem that in such situations we change transform the equation to write it in terms of 
the displacement variable, which is the angle in this case. So we write 

 

to write the equation above as 
 

 

Integrating this equation then gives 
 

 

For this gives the same answer as obtained earlier. If you have noticed, what we 

have done here is actually used the work-energy theorem 

 
You may ask at this point: wouldn't the correct way of solving this problem be to equate 
the kinetic energy of the CM to the change in the potential energy. This would lead to 

 

 

The reason why this answer is incorrect is the following. Recall from our previous lecture that 
the most general motion of a rigid body is a translation plus a rotation. So while it is true that the 

CM is moving, the scale is also rotating at the same time. We represent the combination of the 

two motions as a translation of the CM and a rotation about an axis passing through the CM. 
Why we split the motion of the scale as a combination of the translation of its CM and a rotation 

about the CM - and not that of any other point in the body - will be discussed in detail below. 

For now it is sufficient to say that by doing so the kinetic energy can be written conveniently as 

(KE of the CM plus KE about the CM). So the true K.E of the scale is 



 

 
 

 

 

where is the moment of inertia about the CM. Using the relationship this 

gives the same kinetic energy as that used above in applying the energy conservation method. 

This correct approach then gives the same answer as obtained above. 

 
An interesting problem related to the one solved above is as follows. Sometimes if a book you 

are holding slips out your hand, it usually falls with its upper face down (see figure 3). You can 
try this at home and see for yourself. In fact there is an interesting book which has a title based 

on this observation. It is entitled "Why toast lands jelly side down" and is authored by Robert 
Ehrlich (Universities press, Hyderabad 1999). Let us try to understand this observation. 

 

 

 

 
When the book falls its angular acceleration α immediately after it slips off the hand is 
calculated approximately as given below 

 



 

Here m is the mass of the book and l its length. I call it an approximate expression because in 

our calculation we have assumed the book to be in horizontal position. It will slip off when 

 or for small angles θ ~ µ, where m is the coefficient of friction between the book and 

the hand. Starting with zero initial angular speed, let the angular speed of the book when it slips 

out of the hand be ω . Then 
 

Taking µ = 0.5, g = 10ms
- 2 

and l = 20cm = 0.2m , we get 

ω = 8.7 rad s
- 1

 

After the book has come out of the hands, there is no external torque on it about its CM so it 

falls rotating with a constant angular speed of about 8.7rad s
- 1

. Keep in mind that the sense and 
amount of rotation of a rigid body is the same irrespective of the point about which its rotation is 
considered. So although before slipping out of the hand, I did the calculation for its angular 
speed taking its edge on the hand as the axis, after it comes out of the hand, I consider its motion 
as the translation of its CM and rotation about its CM. Let us stake a typical height of about 1m 
from which the book falls. Then the time it takes to reach the ground is 

 

 

Thus the angle through which the book rotates by the time it reaches the ground is 
 

 
If we add to this angle the initial rotation of θ = µ = 0.5, the angle increases to about 250°. The 
angle of rotation of course varies in a range but it is around 180°.You see that the book has 
just the right angular speed and the time of fall for it to turn by around 180°. That is precisely 
what we observe. 

 
Rotation of a rigid body combined with translation of the axis parallel to itself: 

Let us now introduce translation of the rotational axis parallel to itself - it may even accelerate - 
and ask what kind on motion is going to follow. So for example there may be a rod on a 

horizontal table and is hit by an impulse one end, and we may be interested in its subsequent 

motion. I general it could be a rigid body of general shape on which we apply a force. We split 
the motion into a translation of the CM of the body and rotation about an axis passing through 

the CM. By doing so the equation of motion for the translational motion of the CM is very 
easy. It is 

 



 

Here is the total momentum of the body; M is its mass; the acceleration of the CM and 

 

the total applied force. With this equation we know how the CM of the body 

translates. Next we wish to find the rotation of the body with respect to an axis passing through 

the CM (recall that the most general motion of a rigid body is translation of a point and rotation 

about that point). But the question is: can we apply 
 

 

where  is the angular momentum about the CM and is the  applied  torque  about  

the axis of rotation passing through the CM. I raise this question because in general the CM will 

also be accelerating and therefore with respect to the CM, there will be a fictitious force that may 

also give rise to a fictitious torque which is in addition to the applied torque . 

However, it is easy to see that such a fictitious torque about the CM will always be zero. This 

is because the fictitious force effectively acts at the CM itself. Because of this reason, there is 

one more point about which the torque due to the fictitious force vanishes: this is the point that 

accelerates towards the CM. Thus the equation above can be applied safely about these two 

points. There is also a third point about which the above equation is valid. This is the point that 

does not accelerate at all. Let me now prove these statements. 
 

 

 

 

 
Shown in figure 4 is a rigid body performing a general motion, i.e. it is both translating as well 

as rotating. For convenience we have shown the body in two dimensions. Two points J and iof 
the body are also shown. These points are also moving with the body. We now calculate the rate 

of change of the angular momentum about point J . This is done below. 



 

 
 

where all the terms have their standard meaning and the subscript (iJ) denotes the quantity being 

calculated for point iwith respect to point J . Denoting the velocity and acceleration of point 

iabout the origin O as  , respectively, and that of J as  , we have 
 

 
With , where is the position vector of the CM 

with respect to J , we get 
 

 

If we want the rate of change of the angular momentum to depend only on the applied 
torque calculated about J, we should have 

 

 
That will happen under the following three conditions: 

 

 

I have just shown you that irrespective of the whether point J is accelerating, rotating or 
performing some general motion, the equation 

 

 

can be applied about J if it satisfies one of the three conditions obtained above. Notice that in 

under these conditions the right-hand side has only the externally applied torque. Thus if we 

choose one of these points to apply the angular momentum-torque equation, we do not have to 



 

worry about any fictitious torques arising because we are sitting on an accelerating point. We 
have been applying the angular momentum-torque equation about points satisfying condition I 
above; it includes stationary points also. Of the other two points, it is always safer to apply the 

equation about the CM (condition II ). This is because of the difficulty in ensuring that a point is 

accelerating towards the CM (condition III ), although in some situations it may be easy. We will 
discuss one such case below. We now solve some simple examples to illustrate what we have 

learnt above. 

 
Example 1: A uniform rod of mass m and length l is on a smooth horizontal table (friction = 
0) and is hit at one of its ends so that an impulse J is imparted to it in its perpendicular 
direction (see figure 5). What is its subsequent motion? 

 

 

 

As the rod is hit, its CM will start moving with a velocity 
 

 

At the same time the rod also starts rotating. Although the CM will be accelerating during the 
impact, we can apply the angular momentum-torque equation about it with only external torque 
in the equation. If the angular speed of the rod after the impact is ω, it is given by 

 

 

Note that in the sentence above, I have said 'angular speed of the rod' and not 'angular speed of 

the rod about the CM because the sense and amount of rotation about any point in the body is 
the same, as was discussed in a previous lecture. The position and orientation of the rod some 

time after the impact is also shown in figure 5. 



 

 

 

Example 2: A wheel of mass m and radius R is sliding on a smooth surface (No rolling) with 
speed V. It then hits a very rough surface so that it starts rolling (see figure 6). What is it 
rolling speed? 

 

 

 

 

Let the rolling speed of the wheel be V1 .As soon as the wheel hits the rough surface, it gets an 

impulse J at its point on the surface in the direction opposite to its velocity. This reduces its speed 

and also makes it rotate. It rolls if the speed V1of its CM is equal to ωR, where ω is the rolling 

speed it gains after hitting the rough surface. The change in the CM speed is given by 
 

 

Applying the angular-momentum torque equation about the CM, we get 
 

 

With the condition of rolling, , the above two equations give 
 

I would like you to repeat the same exercise for a disc. 

 
The problem can also be solved by applying conservation of the point of impact on ground, because 
the impulse gives zero torque about that point. The initial angular momentum of the wheel with 
respect to that point is mVR. The final angular momentum is (angular momentum of the CM plus 

angular momentum about the CM). This comes out to be (mV1R + mR
2
ω) . Equating this to mVRand 

using the rolling condition gives the same answer as above. A warning: keep in mind that the torque 
is being taken with respect to the point on ground and not the point 



 

on the wheel that is touching the ground. Doing that will not be correct because at the time 

of impact the point on the wheel is accelerating in the direction opposite to . 

I now solve a problem that involves, in addition to the equations above, energy 
conservation also. 

 
Example 3: A rod of mass m and length l is held making an angle Φ from the horizontal at a 
height h from the floor (see figure 7). When dropped from rest, what will be its linear and 
angular speed after it rebounds from the floor? Assume no energy is lost during the impact 
with the floor. 

 

 
 

 

 
When the rod hits the floor, it receives an impulse J from the ground in the vertically up direction. 

Although the rod is also being acted upon by its weight, we neglect its effect during impact (see 

discussion in the lecture on momentum). Since all the forces are in the vertical direction, the CM of 

the rod also moves only vertically. Before hitting the floor, the speed of the 

CM is and the angular speed of the rod is zero. Let the rebound speed of the CM be V and 

the angular speed of the rod after rebounding be ω. Then similar to the example above, these 

quantities are related as (keep in mind that we are dealing with vector quantities so their signs 

have to be properly accounted for) 
 



 

These are two equations for three unknowns: V, ω andJ. We therefore need one more equation. 
This is provided by energy conservation. We express the kinetic energy of the rod after it 
rebounds as the sum of the kinetic energy of its CM and the kinetic energy about its CM. Thus 
immediately after the impact, energy conservation gives 

 

 

Now we have three equations that can be solved for the three unknowns. This is left for you 
to do. 

 
Question you might now ask is if we could use the principle angular momentum and energy 

conservation directly to solve this problem in a manner similar to what we did at the end of the last 

example. We would like to apply the conservation of angular momentum about the point of impact 

on the ground because torque due to the impulse about this point vanishes. Although there is 

another external force - the weight of the rod - acting on the system, its effect during the impact can 

be ignored because very short duration of impact. Thus we can say that the angular momentum 

about the point of impact is conserved. This gives (left as an exercise for you) 

 

 

This is the same equation that is obtained by combining the first two equations above. Thus 
we obtain the same answer by this method also. 

 

I end this lecture by giving you an exercise. 

 
Exercise: A disc of mass m and radius R is made to roll on a rough surface by applying a force F 
at its centre. If it does not slip on the floor, i.e. it does pure rolling, find its acceleration by 
applying methods developed in this lecture. 

 
Rotational dynamics IV: Angular velocity and angular momentum 

 
In the previous three lectures, we have dealt primarily with rotation about a fixed axis or an axis 

moving parallel to itself. What we saw in those lectures was that dynamics of a rigid body is 

 

described by and in the absence of the angular momentum is a conserved. In the case 

of fixed axis rotation, the relationship between the angular momentum and 

the angular speed was quite straight forward in that and all that was done in those 

problems was to change the magnitude of ω to change L. But the rotational motion is much more 



 

interesting than that. For example is a vector so it could change direction because of applied 

torque with or without its magnitude being affected. How the changing direction of affects the 

orientation of a rigid body is one question we should answer if we wish to understand the 

motion of a rigid body. To start with, I want to point out to you that rotational motion is 

sometimes not what one would expect naively. 

 

You must have played with a top. If it is not spinning and we try to make it stand on its pivot, it 
falls sideways. On the other hand, if it is given a spin and then put on its pivot point, it does not 

fall but starts to move about, what is called precession, a vertical axis passing through its pivot 
point. This is shown in figure 1. Obviously the precession of the top has something to do with 

its spin. 
 

 
 

 

My second observation is from something that is seen in science museums. You can also make 
it easily in your local workshop. Take a track with many soft curves on it and let three different 

shape rollers roll on it. You may want to keep the track slightly tilted so that the rollers roll by 
themselves. Question is which of the rollers will be able to negotiate all the curves. 



 

 

 
 

 

I make the third observation on a rectangular box of sweets (empty of course) or any similar 
box. Put a rubber-band around it so that its lid does not come off. Hold the box at a height with 

one of its faces perpendicular to the vertical, give it a spin and let it drop (see figure 3). Observe 

how its spin changes when it is falling down. You will find that in two out of three possible 
ways of holding the box, its spin will remain essentially unchanged whereas in one case it will 

start wobbling. On the other hand, if the box is dropped without giving it a spin, it comes down 
in the same orientation. What does the spin do to it? We wish to understand this. 

 
 

 

In all three cases we see that when an object is given a spin its motion is very different compared 
to when it is not spinning. This happens because the angular momentum of the object due to its 

spin changes direction during the motion and the orientation of the body changes accordingly. 

So we now really have to get into the vector nature of angular momentum and relate it to the 



 

parameters - the angle and the angular speed / velocity - of the body. I develop this structure of 

three-dimensional rigid-body dynamics step-by-step. The first question we address in this 

development is if the angle of rotation θ can be expressed as a vector ? And if the answer 

is yes, what is its direction? 

 
The answer to the question whether an angle of rotation can be treated as a vector is in the 
negative. This is because it fails to satisfy a fundamental property - that the addition of vectors 

is commutative - of vector addition. Thus if we make two rotations of angles θ1and θ2about two 

different axes, the end results will not be the same if the order of rotations is changed. This is 
depicted in figure 4 where I show a rectangular box that is to be rotated by 90° about the x and 
the y axes. The x and y axes are in the plane of the paper and pass through the centre of the box; 
the z-axis is coming out of the paper. The results are different if (a) I do the rotation about the x- 
axis first and then follow it with a rotation about the y-axis, and (b) I do the rotation about the y- 

axis first and then follow it with a rotation about the x-axis. Thus θ1and θ2 cannot be treated as 

vectors because . 
 

 

 
Mathematically let us take a rod of length l lying along the x-axis with one of its ends at the origin 

so that the (xyz) coordinates of its other end are (l, 0, 0). Keeping its end at the origin fixed, the rod 

is rotated about the x and the y axes in the same manner as the box in figure 4. If rotated about the 

x-axis first the end still has coordinates (l, 0, 0). Now the rotation about the y-axis makes the rod 

align with the z-axis with the new coordinates of its end being (0, 0, - l) . Let us perform the 

rotations in the other order now. The first rotation is performed about the y-axis and makes the rod 

align with the z-axis with the new coordinates of its end being rod (0, 0, - l) 



 

.Now the rotation about the x-axis makes the rod align with the y-axis and the final coordinates 
of its end are (0, l, 0) . Thus we see that two rotations have absolutely different effect on the 
orientation of a body depending on their order. This is demonstrated in figure 5. The 
conclusion therefore is that rotations in general cannot be treated as vectors . 

 

 

 

Although rotations by a finite angle are no vector quantities, rotations by infinitesimal angles 

Δθare. This also makes the derivative a vector quantity. We therefore call this quantity 

angular velocity rather than angular speed. Let me first show you through a simple example  

that infinitesimal rotations do satisfy the commutative property of vector addition and then go 

on to assign a direction to such rotations. 

 

Let me again take a rod lying along the x-axis with one end fixed at the origin and the other at 
(l,0,0). However, this time I consider infinitesimal rotations about the y and the z axes. I do so 
because I want both the rotations to cause change in the orientation of the rod; first rotation 
about the x-axis does not do that. Before I present the calculations, I would like you to recall 
from the first lecture how different components of a vector change when the frame is rotated. I 
would be making use of those relationships now with one change: rotating a vector by an angle 
Δθ about an axis is same as viewing it from a frame rotated by the angle -Δθ about the same axis. 

I perform a rotation of the rod about the y-axis by an angle θy and that about the z-axis by angle 

θz. Let me first consider the case of rotation about the y-axis that is followed by a rotation 
about the z-axis. Rotation of the rod about the y-axis gives the new coordinates of it free end as 



 

 
 

Now rotate the rod about z-axis to get coordinates of its free end as 
 

Let us now do it the other way. Rotation about the z-axis gives 
 

 

Now give a rotation about the y-axis to get 
 

 

When we compare the two boxed results above, we find that the coordinates of the end point of 
the rod come out to be the same. We conclude that two infinitesimal rotations will give the same 
final result irrespective of the order in which they are applied. Thus infinitesimal rotations can be 
treated as vectors . But what about the direction of rotation? To assign a direction, notice that the 

change in the position vector of the end coordinate of the rod considered above can 

be written as 
 

 

where I have written the second line above to emphasize that the order in which infinitesimal 

rotations are performed does not affect the end result of these operations. The equations above 

suggest that an infinitesimal rotation about an axis be assigned a direction parallel to the axis 

following the right hand convention: If the thumb of the right hand points in the direction of the 

infinitesimal rotation, the movement of fingers gives the sense of rotation. With this definition, the 

change in the position vector of a point after it is rotated by an infinitesimal angle Δθabout an 



 

axis in the direction of unit vector (sense of rotation given by right hand convention) is 

given as 
 

 

It is obvious that the vector . The corresponding derivative with respect time is 

called the angular velocity, usually denoted by . Thus 

 

 

I now point out that although the above equation is written for a position vector, there is nothing in 

its derivation that limits it to position vectors only. It is in fact true for any vector as can be easily 

proved by replacing the (xyz) coordinates by the corresponding components of the vector 

in the derivation above. Thus if a vector is given an infinitesimal rotation , its will 

change by 
 

 

This is shown pictorially in figure 6. 
 
 



 

Let us now see how much does a vector change when we apply two infinitesimal rotations 

about two different axes. Let the vector be denoted by  after the first rotation and 

by after the second one. Then we have 
 

thereby showing that for several infinitesimal rotations the final effect can indeed be 
expressed by adding the effect of each one of them. 

 
Next we consider the rate of change of a vector rotating with an angular velocity . It is 

obtained as follows: 
 

 

This is the rate of change of a vector only due to its rotation. If it changes additionally due to 

some other causes, that has to be added to the above change separately. If we take the vector to 

be the position vector , we get the formula 
 

for linear velocity of a particle due to pure rotation of its position vector. 

 

You may ask this point why is it that we want to take as vector quantities. The answer is that 

we in doing our calculations, we should know whether a quantity is a scalar or a vector or 

something else so that mathematical operations on it can be appropriately defined. For example, 

now that we know that is a vector quantity, we can take its components and deal with 

them independently. Let me give you an example. 

 

 

 
Example 1: A ball is given a spin at speed w and then put on a rough floor with  making 

an angle q with the vertical. When the ball eventually rolls, what would be its rolling speed 

(see figure 7)? 



 

 

 
 

 

 

In solving this problem, I make use of the vector nature of and split it into its two components. It 

is the horizontal component that is responsible for making the ball roll. The vertical 

component does not contribute to rolling, as you well know. Further, this component 

eventually goes to zero due to friction. So the question is: if a sphere rotating with angular speed 

is kept on a rough floor with axis of rotation horizontal, what is its find rolling speed. I 

will let you figure that out. The point that is emphasized here is that knowing that is a vector 

quantity helped us to solve the problem easily. 

 
Now that we know is a vector, the next question we ask is: how does change when an external 

torque is applied on a body? So far we have learnt that external torques change angular  

momentum . So to know how changes, we should know the relationship between  

. We derive this relationship next. 

 
Angular momentum of a rigid body rotating with angular velocity : We now derive the 

relationship between the angular momentum of a body rotating in space with one point fixed. 

That means the body is not translating and has only three degrees of freedom. By definition, 

the angular momentum 
 

 

For a rigid body rotating with one point fixed, I have derived above that . With 
 



 

we get 
 

This gives the three components of the angular momentum to be 
 

 

 

 

This is usually written in the matrix form 
 

 

The (3 x 3) matrix in the equation above is known as the moment of inertia tensor. Its 
diagonal terms 

 

 

are the moments of inertia about the x , y and the z -axis, respectively. The off-diagonal terms 
 

 

are known as the products of inertia. The values of the moments and products of inertia 
depend on the set of axes chosen. 



 

So you see that relationship between is quite involved. Luckily, for a rigid body, for 

each point one can find a set of axes about so that products of inertia about that point vanish. 

These are known as the principal axes. Thus for the principal set of axes at a point 
 

 
These axes are attached with the body and rotate with it. However, the principal axes offer an 
advantage when dealing with the angular momentum of a rigid body. At a given time, if I 
calculate the components of the angular momentum by taking the rigid-body to be rotating in the 

principal axes frame at that instant, they turn out to be simply Lx =Ixxωx , Ly =Iyyωyand Lz 

=Izzωz. Thus the angular momentum of the body is given as 
 

at any given instant. It is easily seen from the expression above that in general the angular 

momentum and the angular velocity are not parallel; they will be parallel only if , 

i.e. if all three moments of inertia about the principal axes are equal. This is shown in figure 8 
in two dimensions. 

 
 

 

 
Let me now solve an example. 



 

Example 2: A thin massless rod of length 2l has a point mass m at both its ends. It is rotating 
with angular speed w about a vertical axis passing through its centre and at an angle θ from it, as 
shown in figure 9. Calculate its angular momentum. 

 

 

 

 

 
 

 

 
We will apply the formula for angular momentum derived above. It is easy to see that at the 

centre of the rod, the principal axes are: one axis parallel to the rod and two of them 

perpendicular to it. These are shown in the figure above. Notice that the principal axes rotate 

with the body. The moment of inertia with respect to the principal axes shown in figure 9 are 
 

 
The components of the angular velocity along the principal axes are 

 

 

Thus the angular momentum is given as 
 



 

This is also shown in figure 9. It is clear from the figure that as the body rotates so does its 
angular momentum vector. Thus the angular momentum of the body changes with time 
although its magnitude remains unchanged. 

 

I end this lecture by asking you to solve a similar problem. 

 
Exercise: A rectangular thin sheet of sides a andb is rotating about one of its diagonals (see 

figure 10) with angular speed ω. The mass of the sheet is m. What is its angular momentum? 
Express it in terms of the principal axes unit vectors. 

 
 

 

 
Rotational dynamics V: Kinetic energy, angular momentum and torque in 3-dimensions 

 

 

You learnt in the previous lecture is that the angular velocity is a vector quantity pointing in the 

direction of the axis of rotation. Any vector that is rotating about also changes direction. 

Thus the vector changes even if its magnitude is constant. If the vector is then its rate of 

change purely on the basis of rotation is 
 

 

Thus the velocity of a rotating particle at position from the origin is 
 



 

I also derived the general expression for the angular momentum, which is given as 
 

 

Here are the moments of inertia about the x, y and the z axes, respectively. The off 

diagonal elements like Ixyare the products of inertia. A simplification in the expression above 

arises by employing the principal axes for which the products of inertia vanish. For convenience 

in writing, the principal axes are usually denoted by (1,2,3) instead of (x,y,z). Using this notation 
the angular momentum vector can be written in a simple form as 

 

 

whereω1, ω2and ω3are the components of the angular velocity along the principal axes. I 

now derive the expression for kinetic energy for a rigid body rotating with one point fixed. 

 

 
 

Kinetic energy of a rotating rigid body: I consider a rigid body rotating with angular velocity 

. Its kinetic energy T is calculated as follows 
 

 

Substituting  for of the velocities above and making use of some identities of vector 

products we get 
 

 
In the principal axes therefore 



 

 
 

This is the expression for the kinetic energy in terms of the principal moments of inertia and 

the components of angular velocity along the principal set of axes. Having obtained the general 
expressions for the angular momentum and kinetic energy of a rigid body, we now study the 

dynamics of a rigid body through the angular-momentum torque equation. Along the way I will 
explain the three observations that I had started my previous lecture with. 

 

 
 

Dynamics of a rigid body: Dynamics of a rigid body is governed by the equation 
 

 

and it is this equation that governs everything about the rigid-body rotation. What makes the 

motion of a rigid-body interesting is that there is a fantastic interplay between the angular 

momentum, angular velocity of a rigid body with or without an applied torque. For example if 

the angular velocity and the angular momentum of a rigid body are not parallel, the vector would 

rotate about and that would make change. However, if there is no torque applied on the body, 

angular momentum cannot change. Therefore to compensate the change in arising from its 

rotation, the angular velocity itself must change. Changing would make body rotate 

in a different way and this goes on. It is thus this interplay between and that makes a 

rigid body move in seemingly counterintuitive ways. 

 

As a body rotates, its angular momentum changes on two counts: first because in general  

and are not parallel and therefore rotates about . With 
 

and 
 

 

the rate of change of only due to its rotation about is given as 
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MECHANICAL VIBRATIONS 

If the components ω1,ω2and ω3were also changing, I would have to add an additional term on 

the right-hand side of the expression above to take care of that. This is the second reason for the 

change in angular momentum of the body. For the time being I focus on cases where the 

components of along the principal axis remain unchanged. This in turn implies that the 

magnitude of the angular momentum remains constant during the rotational motion of the 

body. This happens when the applied torque is always perpendicular to the angular momentum. 

Substituting for L1 , L2and L3in the equation above, I get 
 

So at any instant the components of   are 
 

For a geometric interpretation of these equations I urge you to go back to the previous 
lecture and see how we obtained the changes in the coordinates of the end of a rod rotating 
infinitesimally. This gives the components of the torque required to be 

 

 

To apply these equations I start with calculation of torque for the example that we solved at 
the end of the previous lecture. 

 
Example 1: A thin massless rod of length 2l has a point mass m at both its ends. It is rotating 

with angular speed w about a vertical axis passing through its centre and at an angle θ from it, as 
shown in figure 1. If the axis of rotation is held at its two ends by ball bearings, calculate the 

force that the ball bearings apply on the axis. The ball bearings are placed symmetrically from 
the centre of the rod at a distance d each. 



 

 

 
 

 

Recall from the previous lecture that I had taken the principal axes (1,2,3) with (1,2) as shown in 
figure 1 and axis 3 perpendicular to them. The moments of inertia about the principal axes are 

 

 

The angular velocity and the angular momentum of the rod-mass system are 
 

 

and 
 

 
All the parameters - mass m , length l and angle θ - in the equation above are constant so the 
magnitude of the angular momentum is also a constant. As such we can apply the formulae 
given above to get the components of the torque to be applied as 

 



 

 

perpendicular to 

Thus the torque needed to keep the rotating rod in its position is in the direction of principal axis 

3 of the body. As was noted above, the torque is indeed perpendicular to . The torque is 

provided by the forces applied by the bearings. When the rod is in the plane of the paper, as 

shown in the figure, the force would be to the left at the upper end and to the right at the lower 

end of the rod (see figure 1). And their magnitudes will be equal since the CM of the rod has 

zero acceleration. Thus the forces provide a couple equal to . Their magnitude is 
 

There is another method of calculating that we describe now.  has one component 

in the direction of and the other component  

(see figure 2). 
 
 

 

As the rod rotates LVremains unchanged but LHsweeps a circle with angular frequency . The 

rate of change of is therefore the same as that of LH. The magnitude of the latter is ωLH. 

Since at the position shown, the tip of LHis moving out of the paper, the direction of the change 

in LH is also the same. This is the direction of principal axis 3. It thus follows that 
 

 
in the direction of principal axis 3. For completeness I also calculate the kinetic energy of 
the rod-mass system. It is 



 

 
 

I now give you a couple of exercises similar to the problem above. 

 

 
 

Exercise 1: In the problem above, if the axis of rotation passes through a different point than 
the centre of the rod (see figure 3), what will be the forces applied by the bearings with 
everything else remaining the same? ( Hint: the CM is now moving in a circle ) 

 

 

 

 
Exercise 2: For the rotating objects shown below in figure 4, calculate the rate of change of 
their angular momentum by the two methods employed in the example above. 



 

 

 
 
 

If you have followed the example above, and have also done the exercises suggested, then you 

will be in a position to understand the explanation of two of the three observations I started my 
previous lecture with. The two observations were the precession of a spinning top and only 

one roller of the three shown being able to go over a curved track entirely. 

 
Example 2: Let me take the case of the precession of a spinning top. In this case we observe 
that when a spinning top is put on a floor and its lower point is held at one point, it starts 
precessing about the vertical axis (see figure 5) 

 

 

 

I take the mass of the top to be m, its moment of inertia about the spinning axis I , distance of its CM 

from the pivot point l and its spinning rate to be ωs. The top's axis is making an angle θ from the 
vertical. Let us take the rate of precession, i.e. the angular speed at which the top starts to 



 

rotate about the vertical to be Ω. It is observed that Ω is usually much smaller than ωs. So in 

calculating angular momentum we are going to take it as arising from the spin only and neglect any 

contribution of Ω to it. The angular momentum is then along the spin axis of the top and its 

magnitude is , where I is top's moment of inertia about its axis. Further, there is torque 

acting on the top due to its weight. The magnitude of the torque is mglsinθand it is perpendicular 

to the plane formed by the vertical and the spin axis (the direction of ). At the position shown in 

figure 5, the torque is going into the plane of the paper. The problem then reduces to the 

following. A rigid body has an angular momentum and is being acted upon by a torque 

of magnitude mglsinθperpendicular to . What will happen to the body? 

Since the angular momentum is being acted upon by a torque perpendicular to it, it changes 
continuously with time with its magnitude remaining unaffected. Thus it moves on the surface of 
a cone as shown in figure 6. 

 
 

 
 

Let me now calculate the frequency of rotation of vector . For this I again look at the vertical 

LVand horizontal LHcomponents of the angular momentum, as shown in figure 6. The vertical 

component remains unchanged and the horizontal component changes at the rate as the  

 
vector rotates. This gives , which should be equal to the torque. Substituting , I thus 

get 



 

 

 

This is the rate at which the vector rotates. Since is attached to the top, the top also rotates at 

the same rate. is then the rate of precession of the cone. 

As the top precesses, its CM moves in a circle. You may now wonder where does the centripetal 
force for this come from? This is provided by the horizontal reaction or the frictional force at 

the pivot point. Second question you may raise is why is it that the component LHstarts moving 

in a horizontal circle due to the torque while the vertical component does not move in a vertical 
circle. In the actual motion, it does. So in addition to the precession, the axis of the top also 
oscillates up and down with very small amplitude. If you are careful in you observations, you 
will see this motion. This is known as the nutation of the top. In our present treatment, we have 
ignored this motion and solved the problem only to get the precession rate. 

 

I now wish to explore if to get this answer, I could equivalently have used the equations 
 

 

To do this, let me first identify the principal axes of the cone at the pivot point and label them. 
The principal axes are the spin axis and two other axes perpendicular to it. These are shown and 
labeled (1,2,3) in figure 7; in this position axes 1 and 2 are in the plane of the paper and axis 3 
is coming out of it. 

 

 



 

The moments of inertia about the principal axes are . The components of 

at the instant (I take it to be time t = 0 ) shown in figure 7 are 
 

 

Substituting the values of moments of inertia and the angular velocity components in 
the equations for the components of the torque gives 

 

 

This is not the same answer as obtained earlier. Where have we gone wrong? Is the previous 
answer correct or is this answer correct? We will see later that in applying the equations above, 
we have not taken into account the fact that due to the spin of the top, its principal axes also spin 

about axis 1 and that makes the components of along them time-dependent. For now I move 

on to explain the observation about only one of the rollers being able to go over all the curves 

of a track. 

 

 
 

Example 3: If you have performed the experiment, you would have seen that only roller 1 (see 
figure 8) that is tapering down as we move away from its centre is able to go over all the 

curves. Let me now explain that. 
 

 

 

 

As a roller goes over a curve, its centre of mass moves requires a centripetal force to do so. At 
the same time, the angular momentum of the roller also changes direction and that requires a 
torque. Both the centripetal force and the torque are provided by the normal reaction of the track 
on the rollers. These reaction forces on the three rollers are shown in figure 9. 



 

 
 

 
 

 

In analyzing the motion of these rollers, I am taking them to be moving into the paper. Thus the 
direction of their angular momentum is to the left, as shown in the figure. Now if these rollers 

have to make a turn, the normal reactions should provide the required centripetal force in the 

horizontal direction. This rules out the plain cylindrical roller (roller 2) from making any turn 
because both normal reactions on it are in the vertical direction. This leaves the other two 

cylinders for further consideration. For those rollers, the torque of the normal reaction forces 
about the CM should change their angular momentum vector in the appropriate direction. Let 

us look at roller 1 first. 
 
Roller 1: For a left turn, N1< N2 for centripetal force. Therefore the torque generated by them is 

in the direction coming out of the page. As the roller makes a left turn, the associated change in 
its angular momentum also is in the direction coming out of the page, consistent with the torque 

generate. For a right turn by this roller, the centripetal force is to the right so N1>N2 . This 

generates a torque about the CM that goes into the page. For the right turn, the change in the 
angular momentum is also into the page, consistent with the torque generated. Thus for roller 1 , 
the centripetal force and the torque generated are consistent with the centripetal force and the 
change in its angular momentum. Let us now see what happens to roller 3 . 

 

Roller 3: If roller 3 turns left, the centripetal force will be provided correctly if N1>N2 . This 

however gives a torque about the CM that is going into the page. On the other hand, during left 

turn the change in the angular momentum comes out of the page. Thus the torque and the 

change in angular momentum are in opposite directions. Exactly the same situation arises for a 

right turn. Because of this inconsistency, the roller fails to turn at any of the curves. This 

example teaches us about the centre of mass motion combined with angular momentum changes 

about the CM. We now move on to discuss the general form of the equation relating the torque 

and the angular momentum. 



 

The general equation governing rotation of a rigid body: 

Having dealt with situations where components of are constant, we now ask what happens 

when is also changed. For this let me look at the expression for the angular momentum in 
the principal axis frame again. It is 

 

 

I now give a slightly different derivation for the rate of change of . In doing this derivation I 
keep in mind that as a rigid body rotates, the unit vectors along its principal axes also rotate 

and their rate of change is (see previous lecture) 
 

 

Now I differentiate to get 
 

Here the first term is due to the change in the components of along the principal axis and the 

second term is the change in due to its rotation. Notice that we recover the formula derived 

earlier if the components of do not change with time, i.e.  . Let me repeat the 

interpretation of the equation: at any instant we take the body rotating in the principal axes frame at 

that time, i.e. the frame is frozen at its position at that time and the body is taken to be rotating in it. 

To see this geometrically, let me take a two-dimensional case. Shown in figure 10 are the principal 

axes 1 and 2 of a rigid body at times t and (t+ Δt) . In time interval Δtthe body and the 

frame attached to it rotate by an angle , and ω1 and ω2change to ω1+ Δω1 and ω2 + 

Δω2. With these changes let me calculate changes in the components L1and L2in the frame 

frozen at time t . 



 

 

 
 

 

Looking at the figure, where I have shown all the changes that have taken place during the 
time interval Δt, we get in the frame at time t 

 

 

and 
 

 

So the total change in the angular momentum is 
 

 

Dividing both sides by Δtand taking proper limit gives 
 

 

This gives you some idea about where this equation comes from. Of course in a more accurate 

treatment, rotations about the other axes also have to be taken into account. For infinitesimal 
rotations, they can all be added up and give the general equation 



 

 
 

This gives 
 

 

Each one of these rates of change should be equal to the component of the torque in that 
direction .Thus 

 

 

These are the most general equations governing the dynamics of a rigid body and are known as 

Euler's equations. I now use it to explain the third experiment I had suggested in the beginning of 
Lecture 21. 

 

 
 

Example 4: Hold a rectangular box at a height with one of its faces perpendicular to the 
vertical, give it a spin and let it drop (see figure 11). Describe its subsequent rotational motion. 



 

 

 
 

 

This is an example of torque-free ( ) motion because there is no torque on the box about 

its centre of mass. Thus its rotational motion is governed by the equations 
 

For a box similar to the one shown in figure 11 we would generally have I3>I2>I1 . 

Let me first consider the case when the box is given a spin about its principal axis 1. Let me also 

assume that in the process I also disturb it and give it very small angular velocities ω2 and ω3 about 

its axes 2 and 3, respectively. Since both ω2 and ω3 are very small, their product is second-order in 
smallness and will be ignored. The Euler equations and there are then as given below. 

 

The first equation implies that ω1 is a constant. Let me call it the spin rate ω0 . Using this fact 

the other two equations are dealt with as follows. Differentiate equation (II) with respect to time 
to get 

 

 

and substitute for from equation (III) to obtain 



 

 
 

Since I3>I2>I1 , the equation above is of the form 

 

Its solution is of the form 
 

One can similarly get equation for ω3 also and see that it also has similar oscillatory solution. 
This implies that as the box falls down it spins about axis 1 and oscillates about axes 2 and 3. 

Since magnitudes of ω2 and ω3 are small, you see the box fall essentially spinning only. The 
same thing will happen if we give initial spin about axis 3. However something different 

happens when the initial spin is about axis 2. Assuming ω1 and ω3 to be small, in this case the 
Euler equations take the following form right after the release of the box. 

 

The second equation above implies that ω2 is a constant and with I3>I2>I1 , the other 

two equations take the form 
 

 

Solution of these equations is of the form 
 

 

which indicates that right after the release, the angular velocities about axes 1 and 3 will grow 
very fast and take on a large value. Thus the box will start rotating about all three axes and that 

is what you observe. Thus we see that a rigid body is stable when it is given a spin about the 
axes having the smallest or the largest moment of inertia. However, if given a spin about the axis 

with intermediate moment of inertia, it will be unstable. Next I take up the case of precessing top 
that I had not solved by employing Euler's equations earlier. This is an example where a torque 

is also being applied on the system 



 

 

 

Example 5: Apply Euler's equations to a precessing top and get its precession frequency Ω. 

The top has a mass m and is spinning at a rate of ωS (see figure 12). Its centre of gravity is at a 
distance l from the pivot point. 

 

 

 

I have already discussed about the principal axes of the top in example 2 above. 

With the Euler's equations for the top are 
 

Now in applying Euler's equations you have to keep in mind that the top is spinning. As such its 

principle axes 2 and 3 also rotate about axis 1 with angular frequency ωS . So the components of 

angular frequency and torque in the direction of these axes also change with time. Taking time at 
which the position of the top is shown in figure 12 to be t = 0, I draw in figure 13 the position of 
axes 2 and 3 at time t . In this figure, I have neglected the angle W t through which the top and 

therefore the torque vector itself has rotated. In other words I have assumed that . Thus 
the angular velocity and torque are shown where they were at t = 0 . 



 

 

 
 

 

Looking at figure 13, it is clear that the components of the angular velocity and the torque are 
 

Substituting these in the Euler's equation for the top gives 
 

The first of these equations gives ω1= constant = ωS. The other two equations give the 

same answer which is 
 

 

This is the answer that we have seen earlier. In solving the Euler's equations for the top, we made the 

assumption of . Further we assumed that the top only precesses about the vertical. 



 

However, there is no reason why it cannot posses a horizontal angular velocity ΩHalso. 

Assuming the existence of Ω and ΩHand then solving the Euler's equations will give a more 
complete solution for the motion of a spinning top. It in fact gives the nutating motion also. 
You may want to try getting this general solution. 

 
With this lecture I end of the topic of rigid-body rotation. 

 
Harmonic oscillator I: Introduction 

 
Having analyzed the motion of particles in different situations, let us now focus on a very special 

kind of motion: that of oscillations. This is a very general kind of motion seen around you: A partial 

moving around the bottom of a cup, a pendulum swinging, a clamped rod vibrating about its 

equilibrium position or a string vibrating. A good first approximation to these motions is the simple 

harmonic oscillation. Let us see what does that mean? At a stable equilibrium point, the force on a 

body is zero; not only that, as a particle moves away from equilibrium, its potential energy increases 

and it is pulled back towards the equilibrium point. Thus around a stable equilibrium point x0 (for 

simplicity, let me take one-dimensional motion) the potential energy 

   can be written as 
 

Since at an equilibrium point, the force F(x0 )on the particle vanishes, 

 

Further, because Φ(x) has a minimum at x0, this gives 

 

 

Writing   I get 
 

and the corresponding equation of motion for a mass m as 
 

 

As I will show a little later, the solution of this equation is of the form 



 

 
 

and is known as the simple harmonic motion. It is the simplest possible motion about a stable 

equilibrium point. Of course if k = 0 , the force will have higher order dependence on y and the 

motion becomes more complicated. Further, even if , if we include higher order terms, the 

resulting motion will become more complex. It is for this reason that we call the motion above 

simple harmonic motion. We will see that this itself is quite a rich system. A system that 

performs simple harmonic motion is called a simple harmonic oscillator. A prototype if this 

system is the spring-mass system with k being the spring constant and m the mass of the block 

on the spring (figure 1). 
 

 

 

 

 
In these lectures, I will talk about the motion of this system and how it is represented by a phasor 

diagram. I will then introduce damping into the system. The simplest damping is a constant 

opposing force like friction and next level is a damping proportional to the velocity. Then I will 

apply a force on the system and see the motion of force damped and undamped oscillator. Along the 

way, I will solve many examples to show wide applicability of simple harmonic motion. 

 
To start with let us take our prototype system of mass and spring with unstretched length of the 

spring so that equilibrium distance of the mass is . Now when the mass is displaced about 

 by x in the positive direction, the force is in negative direction so that 

 

 
or 

 

 

This is the general equation for simple harmonic oscillator. Recall that in such cases we assume 
a solution of the form 



 

 
 

and substitute it in the equation to get 
 

 

Since this equation is true for all times, we should have 
 

 

Thus there are two solution and . A general solution is then given in terms of a 

linear combination of the two solutions so let us write 
 

 

Since is real it is clear that . Thus 
 

If we take A = AR + iAI, where both AR and AI are real then the solution above takes the form 

 

which alternatively can be written as 
 

 

Another equivalent way of writing the solution is 

 
or 

 
where 

 

 

A is the maximum distance that the mass travels during a simple harmonic oscillation. It is 

known as the amplitude of oscillation. The quantity is known as the phase with Φ being the 

initial phase. All the boxed equations above are equivalent ways of writing the solution for a 



 

harmonic oscillator. The general graph depicting the solution is given in 

figure 2. 
 

 

 

 
Thus A is the maximum distance traveled by the block and gives its initial displacement. 

The constants C and D or A are determined by the initial conditions, i.e. initial 

displacement and velocity of the mass. In general any two conditions are enough to 

determine the constants. 

 

For a displacement 
 

 

the velocity of the mass is given by 
 

Thus the maximum possible magnitude of the velocity is ω0A . The general displacement and 

the corresponding velocity of the mass with respect to time are displayed in figure 3. 



 

 

 
 

It is clear from the figure that for a given displacement, the velocity is such that when 
displacement is at its maximum or minimum, the velocity is zero and when the displacement 
is zero, the velocity has the largest magnitude. This is physically clear. When the spring is 

compressed or stretched to its maximum, the particle is at rest and when the particle passes 
through the equilibrium point, its speed is at its maximum. Let me now solve a few examples. 

 
Example 1: In a spring-mass system k = 16 N/m and m = 1 kg . If the mass is displaced by .05 m 

and released from rest, find its subsequent motion. 
 

 

 

Using the initial conditions I get 

 

x(0)= D = 0 .05m 
 

 

So the solution is with the maximum speed of 0.2m/s . The solution x(t) is 

plotted in figure 4. Also plotted there is the velocity v(t) of the mass as it performs its 

motion. Notice that from the x(t) curve, the velocity can be easily plotted by taking its slope. 



 

 

 

 
 

 

 

 

 

Let me now show you how the solution changes when the initial conditions are different. 
Suppose instead of pulling the mass and releasing it, I give it an initial velocity of .1m/s 
toward the right from the equilibrium. In that case 

 

 

So . Obviously the maximum speed in this case is 0.1m/s, that given in 
the beginning. The solution looks like shown in figure 5. 



 

 

 
 

 

 

 

Third possibility of initial conditions is when I take the mass to a displacement of .05m and 
push it towards the equilibrium point with a speed of .1m/sec. Then 

 

 
. If we wish to express this as 

 

 
 

 

and 
 

 

This gives and . The maximum speed in this case is vmax = 4 

x 0.056 = 0.224m/s . So the graph of the motion looks like that shown in figure 6. 

Thus the solution is 

then 



 

 

 
 
 

From the graph it is very clear that initially the speed of the particle increases in the 
negative direction and then the particle starts slowing down, stopping at the full 
compression of the spring, as is clear from the plot of its displacement. 

 
If in the case studied just now, the mass was thrown out instead of being pushed in, it would 

have a positive velocity to start with but the speed would be decreasing at that moment. Then 
the mass will travel out to its maximum displacement and would then turn back. The general 

plot of displacement and velocity versus time would then look as in figure 7. I will leave it for 
you to work out the numbers for amplitude and initial phase. 



 

 

 
 
 

Example 2: In the second example I show that about any stable equilibrium point, the motion to 

a good degree is simple harmonic. let us take two changes of 10 µC each at a distance of half a 
meter so that is a positive charge of 5 µC is kept at the centre, its experiences no force (see 

figure 8). The 5 µC charge is confined to move along the line joining the two changes. If 
displaced by a small distance from its equilibrium position, what kind of motion does it perform? 

 

 
 

 

 
When the 5 µC is displaced to the right by x, the force on it is 

 

 

In obtaining the force above, we have used the binomial theorem to expand  . Since the 

force is proportional to the displacement and in direction opposite to it, the charge will perform 

simple harmonic motion. 



 

Let me now look at some other examples, going beyond the spring-mass system. 

 

 
 

Example 3: A disc of mass M and radius R is hanging on a will about a point on its periphery 

(see figure 9). If it is displaced from its initial position by small angle  and released, find 

its subsequent motion. 
 

 
 

 

 
This is a case where a rigid body is moving under distributed forces so we use angular 
momentum to describe its motion. The equation of its motion therefore is 

 

 

By transformation theorem, 
 

So the equation of motion becomes 
 

 

This means that in general the motion of the disc would be simple harmonic and will be given as 



 

 
 

The initial conditions in this case give C = 0 and D = θ0. Therefore the solution in the present 

case is . 

 
Example 4: As the final example here, let me take a particle moving in a potential 

 
.The potential has a minimum at x0given by 

 

 
You can yourself check that the second derivative at this point is positive and its value is 8B. For 
very small displacements x about this point we have the change in the potential energy given as 

 

 

which by binomial theorem or the Taylor series expansion leads to 
 

 

This gives an equivalent spring constant of k=8B and frequency of oscillation . 

Having solved these examples I now wish to discuss a very important topic of phase and phase 
difference in a simple-harmonic motion. I will spend some time discussion phasor diagrams 
give a feel for the phase. 



 

Phase and Phase difference in simple harmonic motion :In general the solution of a 
simple harmonic equation is 

 

 

As mentioned earlier A is known as the amplitude and as the phase. is a constant 

depending on the initial conditions and we call it the phase constant. Let us now see how does 

the motion look for different values of the phase constant . The displacement versus time plots 

for different signs of the phase constant are shown in figure 10. 

 

 

For Φ > 0 the motion at t = 0 begin at a value or phase angle that it would have slightly later in the 

case. On the other hand, for Φ < 0 the motion is such that a particular displacement for 

the case is reached at a later time. The motion lags behind the motion. I leave it 

for you to figure out yourself how the corresponding velocities are related. 

 

Let us now at the special case of . In this case I get 
 

 
and for 

 



 

So you see that a phase difference of 180
o
, whether position or negative, means the same thing. 

I would like you to plot the displacement versus time graph for these particular cases. For the 
phases in between you should see for yourself how the displacements at t = 0 are different from 

case. 

 
A good way of visualizing the simple harmonic motion is the phasor or vector diagram. I 
discuss that next. 

 

 
 

Phasor or vector diagram: A nice geometric way of looking at various quantities in a simple 

harmonic motion is the vector or a phasor diagram. You may have seen it in your 12
th 

grade 

while studying AC circuits. Let me show you how we represent  in a geometric 

way. You see that displacement in this case is the x component of a vector making an angle 

ωtfrom the x-axis. Thus the displacement is represented as shown in figure 11. The motion 

described by  is thus given by the projection of a vector of length A, rotating 

counterclockwise at a rate ω, on the x-axis. 
 

 
 

 

 

Let us now see how the velocity and the acceleration will be represented in this scheme? 

The velocity and acceleration are given as 
 



 

The displacement, velocity and acceleration are shown in the phasor diagram in figure 12. A 

general feature that we observe from this phase diagram is that the velocity vector is always  

ahead (measuring counterclockwise) of the displacement vector and the acceleration vector is at 

π (ahead or behind?) the displacement. 
 
 

 
 

So far we have discussed the simple case of  . What about the general case of 

 . This is also equally simple. All we have to do is keep the initial position of 

the vector at t = 0 at an angle Φ from the x-axis and start rotating it from there. The velocity 

vector and the acceleration vector are then going to be given at and π from it, as 

discussed above. This is shown in figure 13. 



 

 

 
 

 

Recall that in the middle of this lecture I had solved a spring-mass problem with different 

initial conditions. I would like you to make the phasor diagram to represent the motion of the 
mass in many different situations like those considered above. Do not solve for x(t) to start 

with, just make the phasor diagram directly to see if you have got a feel for motion under 

different conditions. 

 
Finally in this lecture I look at the energy of a system performing simple harmonic motion. 
The potential energy U(x) and the kinetic energies T are 

 

 

The total energy E is of course a sum of the two. With    this gives 
 

Since   , we get 
 



 

Thus the energy depends on the square of the amplitude. This makes sense because if I stretch a 

spring by A, the energy stored in it is  . On releasing the mass it performs oscillations of 

amplitude A. Thus you see that amplitude A immediately implies a total energy given above. 

 

I have now set up all the basic concepts of simple harmonic motion. In the coming lectures I 
will introduce damping in the system and see how it evolves. 

 

Harmonic oscillator II: damped oscillator 

 

In the previous lecture, I covered some basic aspects of simple harmonic oscillations. 

We considered the equation 
 

 

and saw how its motion is described. A general solution of this equation is 
 

 

I now make the system little more realistic and introduce damping into the system. Let us first 

look at what happens if we introduce friction into the system. I consider again our prototype 
spring-mass system and let there be a constant frictional force f on the mass. This force will 

always oppose the motion so the system will eventually come to a stop. Let us see when does 
it do that? 

 
The simplest way of seeing when he system will stop is the through the consideration of 

energy. But I would like to solve the problem by employing the equation of motion. I will later 
solve it from energy considerations also. Here is one case where I will have to analyze motion 

step by step because as the velocity direction changes, so does the force direction. So let us pull 
the spring out to a distance A and let it move towards the equilibrium point (see figure 1). 

 

 



 

When the block is moving towards the left, equation governing its motion will be 
 

 

In the above, the frictional force f sign is positive because the mass is moving in the negative x 
direction and therefore the frictional force is in positive x direction. This equation can be 
recast into the form 

 

 

We have encountered such kind of equation earlier. It has a homogeneous part  

and an inhomogeneous term on the right-hand side. So the general solution is 
 

 

where 
 

 

Thus 
 

 

With the initial conditions , the solution is 
 

This is the solution when the block is moving to the left. Since 
 

 

so the block will come to a stop when . At that time 



 

 
 

 

So by the time the block comes to a stop it has lost distance from its amplitude. And this loss 

is irrespective of the distance from where the block starts its motion from. This should then also 

happen when the block starts coming back. Let us find that out. On its way back (see figure 2), 

the block follows the equation 
 

 

Notice that the sign of the friction force is now negative. This is because now the block 
is traveling to the right and therefore the friction force acts towards the left (see figure 2). 

 

 

 

Now we have to solve this equation with the initial condition that 
 

 

I leave it as an exercise for you to get the solution. It is 
 

The corresponding velocity is proportional to ω0t, and therefore goes to zero again after a time 

interval of . At that time . Thus every half time the block goes from one 



 

 

extreme to the other, it loses a distance of , and in each cycle it loses a distance of . 

Question is how many cycles does the block complete before it comes to a stop. The block stops 

when its final displacement is  . If it completes n cycles before that, we have 
 

The same result can also be obtained, as I said earlier, by energy methods. If stretched by A the 

total energy of the system is . Let us say that before stopping, the block it compresses the 

spring by A1. Then its energy will be . The loss in the energy is caused by friction. Thus 
 

The total distance moved by the block is (A+A1) and so the energy lost against friction is f(A+A1) 

. Thus the equation transforms to 
 

 

and gives 
 

 

which is the same loss in amplitude over half a cycle as obtained earlier. The rest of the 
analysis is the same as done earlier. 

 
Having dealt with the constant friction case, we now consider the most common example of 
damped oscillations. This is the oscillator where damping force is proportional to the 
velocity i.e., 

 

 
In this case, the equation of motion is 

 



 

 

Writing we get 
 

 

This is the equation for a damped oscillator. The equation is homogeneous in x so we assume a 

solution and substitute it in the equation to get. 

 

which gives 
 

 

So the general solutions are 
 

 

Except in the case when  (we will deal with it later) the behavior of the solution depends 

on the relation magnitude of γ and ω0. Let us first consider the case  . In that case 
 

The general solution then is 
 

 

This is known as a heavily damped oscillator. The coefficients C and D depend on the initial 
conditions. For example if I stretch the spring to a distance A and release the block, let us 
see what happen in this case. By initial conditions 

 



 

This leads to 
 

 

A t → ∞ this solution behaves like . The general solution is displayed in 
figure 3. 

 
 

 

It is clear from the figure that there are no oscillations in this case the block slowly comes to 
rest at x = 0 , i.e. the equilibrium point. I now explore another situation. Suppose we give an 

implies (speed v ) at t = 0 then the boundary conditions are 
 

 

Thus the solution would be 
 

 

In this case the distance versus time graph looks as shown in figure 4. 



 

 

 
 

The figure clearly shows that the block goes out to a maximum distance and then comes back 
and stops at the equilibrium point. So in both the cases studied above the mass does not cross the 
equilibrium point. Next I ask: what if we stretch the mass out to a distance A and give it an 
initial impulse from that point (in negative direction). Then the initial conditions will b 

 

 

Solution in this case comes out to be 
 

 

The solution is plotted schematically in figure 5. 



 

 

 
 

 

It is clear that in this case the particle moves towards the equilibrium point, crosses it, goes a 
distance and comes back. However on its way back it slowly comes to rest at the equilibrium 
point and does not cross it. So in heavy damping cases, the block passes the equilibrium point 
at most once and its distance decays exponentially as . 

 
To summarize, I have covered three cases for the heavy damping situation and got 

 

(i) Spring stretched and block released  

(ii) The block given an initial positive velocity at equilibrium  

(iii) Spring stretched out and the block given a velocity in the negative direction 
 

 
I would now like to tell you about the case when . This is known as the critically damped 

 
case. Obviously this situation arises when . I can easily find solutions for such case if 

I take the limit in the cases of heavy damping just studied. Please note that I cannot 



 

straightaway take  in the expressions above because I am dividing by . 

Taking the limit gives for the three cases studied above 
 

 

As remarked above, the cases we have just discussed correspond to critical damping. In this 

situation  and  . Mathematically, in this case there is only one solution ( 

) that we get from the equation for λ because of its double root. The other solution is found 

to be . That is precisely what we have found by taking appropriate limit. 

Critically damped system and used when we want a system to return to its equilibrium position 
after receiving an impulse, although one is tempted to say that use a heavily damped system 
for this purpose. I would like you to understand this by carrying out the following exercise. 

 

 
 

Exercise :The block on a damped spring-mass system is given an initial velocity v from 

equilibrium. Given a damping coefficient γ, plot the distance versus time graph for the critically 

and heavily damped cases. For ease of calculation take the heavy damping to be very large so 

that  and make appropriate approximations. 

 
Having discussed the heavily and critically damped systems, we move on to lightly 

damped system. In such systems   so that 
 

So the general solution is 

 
(i) 

 
(ii) 

 

(iii) 



 

 
 

Or equivalently 
 

 

 

In case when , it is called very light damping and in such case . 

 
Let us now take a particular can when the block is stretched to distance A and is released from 
rest. I leave the details of the solution to be worked out by you. Here I give the final answer 
which is 

 

 
This solution is plotted schematically in figure 6. Notice how the maximum distance reached 
by the block decreases with time. 

 

 
 

 

When we consider light damping, generally we are dealing with cases where we want the decay 
to be small. Thus within the time that the motion decays, there are many-many oscillations. 

Thus we can then write the displacement as 



 

 
 

 

because implies that . The equation above is interpreted as 

the oscillation taking place with frequency w 0 with time-dependent amplitude . 

Mathematically what this means is that  so there are two time scales in the problem. Let 

me now talk about the energy of the system. Since the amplitude is decreasing with time, the system 

is obviously losing energy. I want to calculate the rate of energy loss in the system. First, 

there and many oscillations over the time interval of , which is also a very large time 

span. Further, the decay of the amplitude is very small over a few periods. This allows us to 

talk in terms of the average energy of the system. What it means is the energy averaged over 

a few cycles around a given instant. I now calculate it. 
 

 

Now use to calculate this energy. It gives 
 

Now taking an average over a few cycles under the approximation that the 
exponentially decaying term be treated as roughly a constant over these cycles and 

neglecting the term proportional to γ
2 

, I get 
 

where angular brackets denote the average energy. So the average energy decays 
exponentially for a lightly damped oscillator. 



 

I now define the quality factor or Q for an oscillator. As mentioned earlier, we are interested in 

systems where ; it is in such cases only that talking about Q makes sense. Q is defined 

as 
 

 

High Q value for an oscillator means that there is very low leakage compared to the store energy. 

 
Finally I summarize the lecture by telling you that we have covered the cases of heavy, critical 

and light damping in this lecture. You must have noticed that I have made a lot of graphs in this 
and the previous lecture. Please do that when you solve a problem. It will give you a feel for the 

system. 

 
Harmonic oscillator III: Forced oscillations 

 

In the previous two lectures, you have learnt about free harmonic oscillator and damped 

harmonic oscillator. In this lecture we study what happens when a harmonic oscillator is 
subjected to a force. The simplest case is when an oscillator is subjected to a constant force F . In 

that case nothing much takes place except that the equilibrium point gets shifted by (F/k). You 

see an example of it when a mass is attached to a vertical spring. Mathematically we write 
 

 
This can be written as 

 

 

for an undamped oscillator and 
 

 

for a damped oscillator. Define a new variable  so that the equation reads (I write 

only the undamped oscillator equation) 
 



 

This is the equation you are well familiar with. From its solution, that for x is written as 

 

 

So the mass oscillates about  . I now take up an oscillator subjected to a time-dependent 

force. 

 

A general time-dependent force F(t) can always be decomposed into its Fourier components like 

so generally we study an oscillator subjected to a force of the form. 

, where and F is the amplitude of the force. Let me start by first 

studying the motion of an undamped oscillator under such a force. 

 

The equation of motion for an undamped oscillator under a time-periodic force is 
 

 

or equivalently 
 

The general solution is a combination of homogeneous part of the equation and a 

particular solution xp. Thus 
 

 
Here you can check that 

 

 

Let me start the oscillator from rest at equilibrium. It starts moving because of the applied force. 

The initial conditions then are . Under these conditions the solution 

comes out to be 
 

 

So the general solution is a combination of motion of two frequencies. The resulting motion 
can be represented on a phasor diagram by adding the two motions vectorially. This shown at t 

= 0 and two other different times in figure 1. 



 

 

 
 
 

As is clear from the figure, at t = 0, the net displacement is zero. As the time progresses, the 

displacement changes with the length of the rotating vector also changing with time. As an 

illustrative example, I take the frequency , and two different frequencies, 

 
for the force. The resulting solutions are shown in figure 2. 



 

 

 
 

So you see from the figure above that the maximum displacement of oscillations keeps 
changing. This is what I had inferred from the phasor diagram also. The motion is still periodic 
and reminds us of the phenomena of beats. 

 
Interesting is the case when  . However, I cannot put it directly in the formula become 

we are dividing by  . So we have to take the limit . Let me substitute in the 

formula or   and take . This leads to 

 

 

Thus the displacement keeps on increasing with time oscillating with the frequency of the 
oscillator. This is the phenomena of resonance. The corresponding plot of displacement is 
shown in figure 3. 



 

 
 

 
 

 

 

 

 

 

 

 

Forced oscillations of an undamped at resonance 

 

Figure 3 

 
Having discussed forced oscillations for undamped oscillator, we now move on to study a damped 

oscillator moving under the influence of a periodic force. The equation of motion then is 
 

 

As earlier, the general solution of this equation is going to the sum of the homogenous 
and inhomogeneous part. So 



 

 
 

 

As the time progresses will make the homogeneous solution die down so finally the only 

solution remaining will be 
 

 

This is known as the steady state solution. Obviously it does not depend on the initial 
conditions. Let us now find this solution. 

 

For the equation of motion 
 

 
I assume a steady state solution of the form But when substituted in the equation, this 

will give rise to a term containing because of in the equation. So a general solution 

should be of the form. 
 

 

When substituted in the equation, this leads to 
 

 

These equations give 
 

 

So the general solution is 



 

 
 

where 
 

 

Thus after reaching steady state, the displacement lags behind the applied force by an angle  

with   and oscillates with an amplitude 
 

The oscillation frequency of steady-state solutions is obviously equal to the frequency of the 
applied force. A typical displacement and its shift with respect to the applied force are shown 
in figure 4. 



 

 

 
 

 

As far as getting the steady state solution for a forced damped oscillator is concerned, we 
are done. What we need to do now is to analyze the solution in different situations. 

 
First of all we notice that irrespective of whether the system is lightly damped or heavily 

damped, it will always oscillate under an applied time-periodic force. Let us first consider 

the case of light damping and see how the amplitude varies with the applied frequency. The 
amplitude as a function of ω is given as 

 

 

This amplitude goes to as . This is nothing but the stretch of the spring under 

a constant force. For very large frequencies  . In between the amplitude has a 

maximum at as is easily seen. So in this case, the amplitude as a function of 

frequency looks as shown in figure 5 for two different values of γ . 



 

 

 
 

 

It is clear from the figure that the amplitude is maximum around  which reminds us of the 

phenomenon of resonance for undamped oscillator. For large γ values the peak shifts to the left 

(lower frequency). 

 

For heavy damping ( ) we do not see any amplitude maximum near but the 

system has large amplitude for low frequencies. A schematic plot of amplitude as a function 

of frequency looks like figure 6. It is evident that only for low frequencies the system 

oscillates with reasonable amplitude. 
 
 



 

What about the phase of the system with respect to the applied force? I leave this as an 
exercise for you to plot the phase of displacement as a function of frequency. 

 

Next I discuss how much power is absorbed by the system to maintain its oscillations. 

 
Power absorption in a forced damped oscillator :Since a damped system has a retardation force 

opposing its motion, it dissipates energy. For it to maintain a steady-state the applied force constantly 

supplies energy to it. It is this power that I now calculate. Power given to the system is 

since I am considering a one dimensional system. Otherwise I would have taken the dot 

product between the force and the velocity. The calculation proceeds as follows 
 

 

 
 

 

Since the average of over a cycle is ½ and that of zero, the average 

the last expression with respect to time over one cycle gives 
 

 

This is the average power being supplied to the system to maintain its steady-state. The same can 

also be obtained by realizing that in steady-state the power given to the system is the same as 

power dissipated by it. Power dissipated is the drag force times 

the velocity. This is therefore calculated as follows: 
 

 

Taking its time average over a cycle then gives the average dissipated power 
 



 

which is the same result as obtained above. The negative sign shows that this is the energy lost, 
and produced heat due to the friction in the system. Since the amplitude of the motion is largest 

when the force has a frequency close to the natural frequency of a system, it is expected that 
the power loss will also be maximum near that frequency. I have plotted the power dissipated 

in a forced damped harmonic oscillator in figure 7. 
 

 

 

 

 

The curve peaks at ω0so the power absorption is indeed maximum at the resonance frequency. 

 
Finally I relate the Q factor of a damped oscillator with the power versus frequency curve 
given above. To do this let us see at what frequency does the power absorption is ½ of its peak 
value. The calculation, in which we make the frequency-dependent factor in the expression for 
power dimensionless and equate it to ½, is given below 

 

 

Solving this equation for the frequency ω under the approximation of light-damping gives 
 



 

 

The frequency width from is known as full width at half 

maximum (FWHM) and its value is γ. Thus the quality factor can also be interpreted as 
 

 

 

This pretty much sums up what I want to tell you about forced oscillations. I want to point out 
that we have focused here strictly on the steady-state solutions for the damped oscillator. 

However, before steady-state is reached, the system goes through transient motion, which is 
also important to understand in designing of systems. 

 

 
 


