
LECTURE NOTES

ON

EMBEDDED SYSTEM DESIGN

B.Tech VI Semester (AUTONOMOUS)

(Regulation: IARE-R16)

(2018-2019)

Mr. N Nagaraju

Assistant professor

INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(AUTONOMOUS)

DUNDIGAL, HYDERABAD - 500043

UNIT-I

EMBEDDED COMPUTING

INTRODUCTION
This chapter introduces the reader to the world of embedded systems. Everything that we

look around us today is electronic. The days are gone where almost everything was manual.

Now even the food that we eat is cooked with the assistance of a microchip (oven) and the

ease at which we wash our clothes is due to the washing machine. This world of electronic

items is made up of embedded system. In this chapter we will understand the basics of

embedded system right from its definition.

DEFINITION OF AN EMBEDDED SYSTEM
 An embedded system is a combination of 3 things:

a. Hardware

b. Software

c. Mechanical Components

And it is supposed to do one specific task only.

 Example 1: Washing Machine

A washing machine from an embedded systems point of view

has:

a. Hardware: Buttons, Display & buzzer, electronic circuitry.

b. Software: It has a chip on the circuit that holds the software which

drives controls & monitors the various operations possible.

c. Mechanical Components: the internals of a washing machine which

actually wash the clothes control the input and output of water, the

chassis itself.

 Example 2: Air Conditioner

An Air Conditioner from an embedded systems point of view has:

a. Hardware: Remote, Display & buzzer, Infrared Sensors, electronic

circuitry.

b. Software: It has a chip on the circuit that holds the software which

drives controls & monitors the various operations possible. The

software monitors the external temperature through the sensors and then

releases the coolant or suppresses it.

c. Mechanical Components: the internals of an air conditioner the motor,

the chassis, the outlet, etc

 An embedded system is designed to do a specific job only. Example: a washing

machine can only wash clothes, an air conditioner can control the temperature

in the room in which it is placed.

 The hardware & mechanical components will consist all the physically visible

things that are used for input, output, etc.

 An embedded system will always have a chip (either microprocessor or

microcontroller) that has the code or software which drives the system.

HISTORY OF EMBEDDED SYSTEM
 The first recognised embedded system is the Apollo

Guidance Computer(AGC) developed by MIT lab.

 AGC was designed on 4K words of ROM & 256 words of RAM.

 The clock frequency of first microchip used in AGC was

1.024 MHz.

 The computing unit of AGC consists of 11 instructions and 16 bit word

logic.

 It used 5000 ICs.

 The UI of AGC is known DSKY(display/keyboard) which resembles a

calculator type keypad with array of numerals.

 The first mass-produced embedded system was guidance computer for the

Minuteman-I missile in 1961.

 In the year 1971 Intel introduced the world's first microprocessor chip

called the 4004, was designed for use in business calculators. It was

produced by the Japanese company Busicom.

EMBEDDEDSYSTEM & GENERAL PURPOSE COMPUTER

The Embedded System and the General purpose computer are at two extremes. The

embedded system is designed to perform a specific task whereas as per definition

the general purpose computer is meant for general use. It can be used for playing

games, watching movies, creating software, work on documents or spreadsheets

etc.

Following are certain specific points of difference between

embedded systems and general purpose computers:

Criteria General Computer

Purpose

Embedded system

Contents It is combination of

generic hardware and a

general purpose OS for

executing a variety of

applications.

It is combination of special purpose

hardware and embedded OS for

executing specific set of applications

Operating

System

It contains general purpose

operating system

It may or may not contain

operating system.

Alterations Applications are alterable

by the user.

Applications are non-alterable by

the user.

Key factor Performance is key factor.

Application specific requirements
are key factors.

Power
Consumption

More Less

Response

Time

Not Critical Critical for some applications

CLASSIFICATION OF EMBEDDED SYSTEM

The classification of embedded system is based on following

criteria's:

 On generation

 On complexity & performance

 On deterministic behaviour

 On triggering

On generation

1. First generation(1G):

 Built around 8bit microprocessor & microcontroller.

 Simple in hardware circuit & firmware developed.
 Examples: Digital telephone keypads.

2. Second generation(2G):

 Built around 16-bit µp & 8-bit µc.

 They are more complex & powerful than 1G µp & µc.

 Examples: SCADA systems

3. Third generation(3G):

 Built around 32-bit µp & 16-bit µc.

 Concepts like Digital Signal Processors(DSPs),

Application Specific Integrated Circuits(ASICs) evolved.

 Examples: Robotics, Media, etc.

4. Fourth generation:

 Built around 64-bit µp & 32-bit µc.
 The concept of System on Chips (SoC), Multicore

Processors evolved.

 Highly complex & very powerful.

 Examples: Smart Phones.

On complexity & performance

1. Small-scale:

 Simple in application need

 Performance not time-critical.

 Built around low performance & low cost 8 or 16 bit

µp/µc.

 Example: an electronic toy

2. Medium-scale:

 Slightly complex in hardware & firmware requirement.

 Built around medium performance & low cost 16 or 32 bit

µp/µc.

 Usually contain operating system.

 Examples: Industrial machines.

3. Large-scale:

 Highly complex hardware & firmware.

 Built around 32 or 64 bit RISC µp/µc or PLDs or Multicore
Processors.

 Response is time-critical.

 Examples: Mission critical applications.

On deterministic behavior

 This classification is applicable for ―Real Time‖ systems.
 The task execution behavior for an embedded system may

be deterministic or non-deterministic.

 Based on execution behavior Real Time embedded

systems are divided into Hard and Soft.

On triggering

 Embedded systems which are ―Reactive‖ in nature can

be based on triggering.

 Reactive systems can be:

 Event triggered

 Time triggered

APPLICATION OF EMBEDDED SYSTEM

The application areas and the products in the embedded domain are

countless.

1. Consumer Electronics: Camcorders, Cameras.

2. Household appliances: Washing machine, Refrigerator.

3. Automotive industry: Anti-lock breaking system(ABS), engine
control.

4. Home automation & security systems: Air conditioners,
sprinklers, fire alarms.

5. Telecom: Cellular phones, telephone switches.

6. Computer peripherals: Printers, scanners.

7. Computer networking systems: Network routers and
switches.

8. Healthcare: EEG, ECG machines.

9. Banking & Retail: Automatic teller machines, point of sales.

10. Card Readers: Barcode, smart card readers.

COMPLEX SYSTEMS AND MICROPROCESSORS

What is an embedded computer system? Loosely defined, it is any device that includes a

programmable computer but is not itself intended to be a general-purpose computer. Thus,

a PC is not itself an embedded computing system, although PCs are often used to build

embedded computing systems. But a fax machine or a clock built from a microprocessor is

an embedded computing system. This means that embedded computing system design is a

useful skill for many types of product design. Automobiles, cell phones, and even

household appliances make extensive use of microprocessors. Designers in many fields

must be able to identify where microprocessors can be used, design a hardware platform

with I/O devices that can support the required tasks, and implement software that performs

the required processing. Computer engineering, like mechanical design or

thermodynamics, is a fundamental discipline that can be applied in many different

domains. But of course, embedded computing system design does not stand alone. Many of

the challenges encountered in the design of an embedded computing system are not

computer engineering—for example, they may be mechanical or analog electrical

problems. In this book we are primarily interested in the embedded computer itself, so we

will concentrate on the hardware and software that enable the desired functions in the final

product.

Embedding Computers

Computers have been embedded into applications since the earliest days of computing.

One example is the Whirlwind, a computer designed at MIT in the late 1940s and early

1950s. Whirlwind was also the first computer designed to support real-time operation and

was originally conceived as a mechanism for controlling an aircraft simulator. Even though

it was extremely large physically compared to today’s computers (e.g., it contained over

4,000 vacuum tubes), its complete design from components to system was attuned to the

needs of real-time embedded computing. The utility of computers in replacing mechanical

or human controllers was evident from the very beginning of the computer era—for

example, computers were proposed to control chemical processes in the late 1940s [Sto95].

A microprocessor is a single-chip CPU. Very large scale integration (VLSI) the acronym is

the name technology has allowed us to put a complete CPU on a single chip since 1970s,

but those CPUs were very simple. The first microprocessor, the Intel 4004, was designed

for an embedded application, namely, a calculator. The calculator was not a general-

purpose computer—it merely provided basic arithmetic functions. However, Ted Hoff of

Intel realized that a general-purpose computer programmed properly could implement the

required function, and that the computer-on-a-chip could then be reprogrammed for use in

other products as well. Since integrated circuit design was (and still is) an expensive and

time consuming process, the ability to reuse the hardware design by changing the software

was a key breakthrough. The HP-35 was the first handheld calculator to perform

transcendental functions [Whi72]. It was introduced in 1972, so it used several chips to

implement the CPU, rather than a single-chip microprocessor. However, the ability to write

programs to perform math rather than having to design digital circuits to perform

operations like trigonometric functions was critical to the successful design of the

calculator. Automobile designers started making use of the microprocessor soon after

single-chip CPUs became available. The most important and sophisticated use of

microprocessors in automobiles was to control the engine: determining when spark plugs

fire, controlling the fuel/air mixture, and so on. There was a trend toward electronics in

automobiles in general—electronic devices could be used to replace the mechanical

distributor. But the big push toward microprocessor-based engine control came from two

nearly simultaneous developments: The oil shock of the 1970s caused consumers to place

much higher value on fuel economy, and fears of pollution resulted in laws restricting

automobile engine emissions. The combination of low fuel consumption and low emissions

is very difficult to achieve; to meet these goals without compromising engine performance,

automobile manufacturers turned to sophisticated control algorithms that could be

implemented only with microprocessors.

Microprocessors come in many different levels of sophistication; they are usually classified

by their word size. An 8-bit microcontroller is designed for low-cost applications and

includes on-board memory and I/O devices; a 16-bit microcontroller is often used for more

sophisticated applications that may require either longer word lengths or off-chip I/O and

memory; and a 32-bit RISC microprocessor offers very high performance for computation-

intensive applications. Given the wide variety of microprocessor types available, it should

be no surprise that microprocessors are used in many ways. There are many household uses

of microprocessors. The typical microwave oven has at least one microprocessor to control

oven operation. Many houses have advanced thermostat systems, which change the

temperature level at various times during the day. The modern camera is a prime example

of the powerful features that can be added under microprocessor control.

Digital television makes extensive use of embedded processors. In some cases, specialized

CPUs are designed to execute important algorithms—an example is the CPU designed for

audio processing in the SGS Thomson chip set for DirecTV [Lie98]. This processor is

designed to efficiently implement programs for digital audio decoding. A programmable

CPU was used rather than a hardwired unit for two reasons: First, it made the system easier

to design and debug; and second, it allowed the possibility of upgrades and using the CPU

for other purposes. A high-end automobile may have 100 microprocessors, but even

inexpensive cars today use 40 microprocessors. Some of these microprocessors do very

simple things such as detect whether seat belts are in use. Others control critical functions

such as the ignition and braking systems. Application Example describes some of the

microprocessors used in the BMW 850i.

Application Example

BMW 850i brake and stability control system

The BMW 850i was introduced with a sophisticated system for controlling the wheels of

the car. An antilock brake system (ABS) reduces skidding by pumping the brakes. An

automatic stability control (ASC_T) system intervenes with the engine during maneuvering

to improve the car’s stability. These systems actively control critical systems of the car; as

control systems, they require inputs from and output to the automobile.

Let’s first look at the ABS. The purpose of an ABS is to temporarily release the brake on a

wheel when it rotates too slowly—when a wheel stops turning, the car starts skidding and

becomes hard to control. It sits between the hydraulic pump, which provides power to the

brakes, and the brakes themselves as seen in the following diagram. This hookup allows

the ABS system to modulate the brakes in order to keep the wheels from locking. The ABS

system uses sensors on each wheel to measure the speed of the wheel. The wheel speeds

are used by the ABS system to determine how to vary the hydraulic fluid pressure to

prevent the wheels from skidding. The ASC _ T system’s job is to control the engine

power and the brake to improve the car’s stability during maneuvers. The ASC _ T controls

four different systems: throttle, ignition timing, differential brake, and (on automatic

transmission cars) gear shifting. The ASC_T can be turned off by the driver, which can be

important when operating with tire snow chains. The ABS and ASC _ T must clearly

communicate because the ASC _ T interacts with the brake system. Since the ABS was

introduced several years earlier than the ASC _ T, it was important to be able to interface

ASC _ T to the existing ABS module, as well as to other existing electronic modules. The

engine and control management units include the electronically controlled throttle, digital

engine management, and electronic transmission control. The ASC _ T control unit has two

microprocessors on two printed circuit boards, one of which concentrates on logic-relevant

components and the other on performance-specific components.

THE EMBEDDED SYSTEM DESIGN PROCESS

This section provides an overview of the embedded system design process aimed at two

objectives. First,it will give us an introduction to the various steps in embedded system

design before we delve into them in more detail. Second, it will allow us to consider the

design methodology itself. A design methodology is important for three reasons. First, it

allows us to keep a scorecard on a design to ensure that we have done everything we need

to do, such as optimizing performance or performing functional tests. Second, it allows us

to develop computer-aided design tools. Developing a single program that takes in a

concept for an embedded system and emits a completed design would be a daunting task,

but by first breaking the process into manageable steps, we can work on automating (or at

least semi automating) the steps one at a time. Third, a design methodology makes it much

easier for members of a design team to communicate. By defining the overall process, team

members can more easily understand what they are supposed to do, what they should

receive from other team members at certain times, and what they are to hand off when they

complete their assigned steps. Since most embedded systems are designed by teams,

coordination is perhaps the most important role of a well-defined design methodology.

Figure summarizes the major steps in the embedded system design process.

In this top–down view, we start with the system requirements. In the next step,

specification, we create a more detailed description of what we want. But the specification

states only how the system behaves, not how it is built. The details of the system’s internals

begin to take shape when we develop the architecture, which gives the system structure in

terms of large components. Once we know the components we need, we can design those

components, including both software modules and any specialized hardware we need.

Based on those components, we can finally build a complete system.

In this section we will consider design from the top–down—we will begin with the most

abstract description of the system and conclude with concrete details. The alternative is a

bottom–up view in which we start with components to build a system. Bottom–up design

steps are shown in the figure as dashed-line arrows. We need bottom–up design because

we do not have perfect insight into how later stages of the design process will turn out.

Decisions at one stage of design are based upon estimates of what will happen later: How

fast can we make a particular function run? How much memory will we need? How much

system bus capacity do we need? If our estimates are inadequate, we may have to

backtrack and amend our original decisions to take the new facts into account. In general,

the less experience we have with the design of similar systems, the more we will have to

rely on bottom-up design information to help us refine the system. But the steps in the

design process are only one axis along which we can view embedded system design. We

also need to consider the major goals of the design:

■ manufacturing cost;

■ performance (both overall speed and deadlines); and

■ power consumption.

We must also consider the tasks we need to perform at every step in the design process. At

each step in the design,we add detail:

■ We must analyze the design at each step to determine how we can meet the

specifications.

■ We must then refine the design to add detail.

■ And we must verify the design to ensure that it still meets all system goals,

such as cost, speed, and so on.

Requirements

Clearly, before we design a system, we must know what we are designing. The initial

stages of the design process capture this information for use in creating the architecture and

components. We generally proceed in two phases: First, we gather an informal description

from the customers known as requirements, and we refine the requirements into a

specification that contains enough information to begin designing the system architecture.

Separating out requirements analysis and specification is often necessary because of the

large gap between what the customers can describe about the system they want and what

the architects need to design the system. Consumers of embedded systems are usually not

themselves embedded system designers or even product designers. Their understanding of

the system is based on how they envision users’ interactions with the system. They may

have unrealistic expectations as to what can be done within their budgets; and they may

also express their desires in a language very different from system architects’ jargon.

Capturing a consistent set of requirements from the customer and then massaging those

requirements into a more formal specification is a structured way to manage the process of

translating from the consumer’s language to the designer’s.

Requirements may be functional or nonfunctional. We must of course capture the basic

functions of the embedded system, but functional description is often not sufficient.

Typical nonfunctional requirements include:

■ Performance: The speed of the system is often a major consideration both for the

usability of the system and for its ultimate cost. As we have noted, performance

may be a combination of soft performance metrics such as approximate time to

perform a user-level function and hard deadlines by which a particular operation

must be completed.

■ Cost: The target cost or purchase price for the system is almost always a

consideration. Cost typically has two major components: manufacturing cost

includes the cost of components and assembly; nonrecurring engineering (NRE)

costs include the personnel and other costs of designing the system.

■ Physical size and weight: The physical aspects of the final system can vary

greatly depending upon the application. An industrial control system for an

assembly line may be designed to fit into a standard-size rack with no strict

limitations on weight. A handheld device typically has tight requirements on both

size and weight that can ripple through the entire system design.

■ Power consumption: Power, of course, is important in battery-powered systems

and is often important in other applications as well. Power can be specified in the

requirements stage in terms of battery life—the customer is unlikely to be able to

describe the allowable wattage.

Validating a set of requirements is ultimately a psychological task since it requires

understanding both what people want and how they communicate those needs. One

goodway to refine at least the user interface portion of a system’s requirements is to build a

mock-up. The mock-up may use canned data to simulate functionality in a restricted

demonstration, and it may be executed on a PC or a workstation. But it should give the

customer a good idea of how the system will be used and how the user can react to it.

Physical, nonfunctional models of devices can also give customers a better idea of

characteristics such as size and weight.

Name

Purpose

Inputs

Outputs

Functions

Performance

Manufacturing cost

Power

Physical size and weight

Requirements analysis for big systems can be complex and time consuming. However,

capturing a relatively small amount of information in a clear, simple format is a good start

toward understanding system requirements. To introduce the discipline of requirements

analysis as part of system design, we will use a simple requirements methodology. Figure

shows a sample requirements form that can be filled out at the start of the project. We can

use the form as a checklist in considering the basic characteristics of the system. Let’s

consider the entries in the form:

■ Name: This is simple but helpful. Giving a name to the project not only simplifies

talking about it to other people but can also crystallize the purpose of the machine.

■ Purpose: This should be a brief one- or two-line description of what the system is

supposed to do. If you can’t describe the essence of your system in one or two lines,

chances are that you don’t understand it well enough.

■ Inputs and outputs: These two entries are more complex than they seem. The

inputs and outputs to the system encompass a wealth of detail: — Types of data:

Analog electronic signals? Digital data? Mechanical inputs? — Data

characteristics: Periodically arriving data, such as digital audio samples?

Occasional user inputs? How many bits per data element? — Types of I/O devices:

Buttons? Analog/digital converters? Video displays?

■ Functions: This is a more detailed description of what the system does. A good

way to approach this is to work from the inputs to the outputs: When the system

receives an input, what does it do? How do user interface inputs affect these

functions? How do different functions interact?

■ Performance: Many embedded computing systems spend at least some time

controlling physical devices or processing data coming from the physical world. In

most of these cases, the computations must be performed within a certain time

frame. It is essential that the performance requirements be identified early since

they must be carefully measured during implementation to ensure that the system

works properly.

■ Manufacturing cost: This includes primarily the cost of the hardware

components. Even if you don’t know exactly how much you can afford to spend on

system components, you should have some idea of the eventual cost range. Cost has

a substantial influence on architecture:A machine that is meant to sell at $10 most

likely has a very different internal structure than a $100 system.

■ Power: Similarly, you may have only a rough idea of how much power the

system can consume, but a little information can go a long way. Typically, the most

important decision is whether the machine will be battery powered or plugged into

the wall. Battery-powered machines must be much more careful about how they

spend energy.

■ Physical size and weight: You should give some indication of the physical size of

the system to help guide certain architectural decisions. A desktop machine has

much more flexibility in the components used than, for example, a lapel mounted

voice recorder.

A more thorough requirements analysis for a large system might use a form similar to

Figure as a summary of the longer requirements document. After an introductory section

containing this form, a longer requirements document could include details on each of the

items mentioned in the introduction. For example, each individual feature described in the

introduction in a single sentence may be described in detail in a section of the specification.

After writing the requirements, you should check them for internal consistency: Did you

forget to assign a function to an input or output? Did you consider all the modes in which

you want the system to operate? Did you place an unrealistic number of features into a

battery-powered, low-cost machine? To practice the capture of system requirements,

Example creates the requirements for a GPS moving map system.

Example

Requirements analysis of a GPS moving map

The moving map is a handheld device that displays for the user a map of the terrain around

the user’s current position; the map display changes as the user and the map device change

position. The moving map obtains its position from the GPS, a satellite-based navigation

system. The moving map display might look something like the following figure.

What requirements might we have for our GPS moving map? Here is an initial list:

■ Functionality: This system is designed for highway driving and similar uses, not

nautical or aviation uses that require more specialized databases and functions. The

system should show major roads and other landmarks available in standard

topographic databases.

■ User interface: The screen should have at least 400_600 pixel resolution. The

device should be controlled by no more than three buttons. A menu system should

pop up on the screen when buttons are pressed to allow the user to make selections

to control the system.

■ Performance: The map should scroll smoothly. Upon power-up, a display should

take no more than one second to appear, and the system should be able to verify its

position and display the current map within 15 s.

■ Cost: The selling cost (street price) of the unit should be no more than $100.

■ Physical size and weight: The device should fit comfortably in the palm of the

hand.

■ Power consumption: The device should run for at least eight hours on four AA

batteries.

Note that many of these requirements are not specified in engineering units—for example,

physical size is measured relative to a hand, not in centimeters. Although these

requirements must ultimately be translated into something that can be used by the

designers, keeping a record of what the customer wants can help to resolve questions about

the specification that may crop up later during design. Based on this discussion, let’s write

a requirements chart for our moving map system:

Specification

The specification is more precise—it serves as the contract between the customer and the

architects. As such, the specification must be carefully written so that it accurately reflects

the customer’s requirements and does so in a way that can be clearly followed during

design. Specification is probably the least familiar phase of this methodology for neophyte

designers, but it is essential to creating working systems with a minimum of designer

effort. Designers who lack a clear idea of what they want to build when they begin

typically make faulty assumptions early in the process that aren’t obvious until they have a

working system. At that point, the only solution is to take the machine apart, throw away

some of it, and start again. The specification should be understandable enough so that

someone can verify that it meets system requirements and overall expectations of the

customer. It should also be unambiguous enough that designers know what they need to

build. Designers can run into several different types of problems caused by unclear

specifications. If the behavior of some feature in a particular situation is unclear from the

specification, the designer may implement the wrong functionality. If global characteristics

of the specification are wrong or incomplete, the overall system architecture derived from

the specification may be inadequate to meet the needs of implementation.

A specification of the GPS system would include several components:

■ Data received from the GPS satellite constellation.

■ Map data.

■ User interface.

■ Operations that must be performed to satisfy customer requests.

■ Background actions required to keep the system running, such as operating the

GPS receiver.

UML, a language for describing specifications, will be introduced later and we will use it

to write a specification. We will practice writing specifications in each chapter as we work

through example system designs. We will also study specification techniques in more later.

Architecture Design

The specification does not say how the system does things, only what the system does.

Describing how the system implements those functions is the purpose of the architecture.

The architecture is a plan for the overall structure of the system that will be used later to

design the components that make up the architecture. The creation of the architecture is the

first phase of what many designers think of as design. To understand what an architectural

description is, let’s look at sample architecture for the moving map of Example Figure

shows sample system architecture in the form of a block diagram that shows major

operations and data flows among them.

This block diagram is still quite abstract—we have not yet specified which operations will

be performed by software running on a CPU, what will be done by special-purpose

hardware, and so on. The diagram does, however, go a long way toward describing how to

implement the functions described in the specification. We clearly see, for example, that

we need to search the topographic database and to render (i.e., draw) the results for the

display. We have chosen to separate those functions so that we can potentially do them in

parallel—performing rendering separately from searching the database may help us update

the screen more fluidly.

Only after we have designed an initial architecture that is not biased toward too many

implementation details should we refine that system block diagram into two block

diagrams: one for hardware and another for software. These two more refined block

diagrams are shown in Figure 1.4.The hardware block diagram clearly shows that we have

one central CPU surrounded by memory and I/O devices. In particular, we have chosen to

use two memories: a frame buffer for the pixels to be displayed and a separate

program/data memory for general use by the CPU. The software block diagram fairly

closely follows the system block diagram, but we have added a timer to control when we

read the buttons on the user interface and render data onto the screen. To have a truly

complete architectural description, we require more detail, such as where units in the

software block diagram will be executed in the hardware block diagram and when

operations will be performed in time. Architectural descriptions must be designed to satisfy

both functional and nonfunctional requirements. Not only must all the required functions

be present, but we must meet cost, speed, power, and other nonfunctional constraints.

Starting out with a system architecture and refining that to hardware and software

architectures

is one good way to ensure that we meet all specifications: We can concentrate on the

functional elements in the system block diagram, and then consider the nonfunctional

constraints when creating the hardware and software architectures. How do we know that

our hardware and software architectures in fact meet constraints on speed, cost, and so on?

We must somehow be able to estimate the properties of the components of the block

diagrams, such as the search and rendering functions in the moving map system. Accurate

estimation derives in part from experience, both general design experience and particular

experience with similar systems. However, we can sometimes create simplified models to

help us make more accurate estimates. Sound estimates of all nonfunctional constraints

during the architecture phase are crucial, since decisions based on bad data will show up

during the final phases of design, indicating that we did not, in fact, meet the specification.

Designing Hardware and Software Components

The architectural description tells us what components we need. The component design

effort builds those components in conformance to the architecture and specification. The

components will in general include both hardware—FPGAs, boards, and so on—and

software modules. Some of the components will be ready-made. The CPU, for example,

will be a standard component in almost all cases, as will memory chips and many other

components. In the moving map, the GPS receiver is a good example of a specialized

component that will nonetheless be a predesigned, standard component. We can also make

use of standard software modules. One good example is the topographic database. Standard

topographic databases exist, and you probably want to use standard routines to access the

database—not only is the data in a predefined format, but it is highly compressed to save

storage. Using standard software for these access functions not only saves us design time,

but it may give us a faster implementation for specialized functions such as the data

decompression phase. You will have to design some components yourself. Even if you are

using only standard integrated circuits, you may have to design the printed circuit board

that connects them. You will probably have to do a lot of custom programming as well.

When creating these embedded software modules, you must of course make use of your

expertise to ensure that the system runs properly in real time and that it does not take up

more memory space than is allowed. The power consumption of the moving map software

example is particularly important. You may need to be very careful about how you read

and write memory to minimize power—for example, since memory accesses are a major

source of power consumption, memory transactions must be carefully planned to avoid

reading the same data several times.

System Integration

Only after the components are built do we have the satisfaction of putting them together

and seeing a working system. Of course, this phase usually consists of a lot more than just

plugging everything together and standing back. Bugs are typically found during system

integration, and good planning can help us find the bugs quickly. By building up the

system in phases and running properly chosen tests, we can often find bugs more easily. If

we debug only a few modules at a time, we are more likely to uncover the simple bugs and

able to easily recognize them. Only by fixing the simple bugs early will we be able to

uncover the more complex or obscure bugs that can be identified only by giving the system

a hard workout. We need to ensure during the architectural and component design phases

that we make it as easy as possible to assemble the system in phases and test functions

relatively independently.

System integration is difficult because it usually uncovers problems. It is often hard to

observe the system in sufficient detail to determine exactly what is wrong— the debugging

facilities for embedded systems are usually much more limited than what you would find

on desktop systems. As a result, determining why things do not stet work correctly and

how they can be fixed is a challenge in itself. Careful attention to inserting appropriate

debugging facilities during design can help ease system integration problems, but the

nature of embedded computing means that this phase will always be a challenge.

FORMALISMS FOR SYSTEM DESIGN

As mentioned in the last section, we perform a number of different design tasks at different

levels of abstraction throughout this book: creating requirements and specifications,

architecting the system, designing code, and designing tests. It is often helpful to

conceptualize these tasks in diagrams. Luckily, there is a visual language that can be used

to capture all these design tasks: the Unified Modeling Language (UML).

UML was designed to be useful at many levels of abstraction in the design process. UML

is useful because it encourages design by successive refinement and progressively adding

detail to the design, rather than rethinking the design at each new level of abstraction.

UML is an object-oriented modeling language. We will see precisely what we mean by an

object in just a moment, but object-oriented design emphasizes two concepts of

importance:

■ It encourages the design to be described as a number of interacting objects, rather than a

few large monolithic blocks of code.

■ At least some of those objects will correspond to real pieces of software or hardware in

the system. We can also use UML to model the outside world that interacts with our

system, in which case the objects may correspond to people or other machines. It is

sometimes important to implement something we think of at a high level as a single object

using several distinct pieces of code or to otherwise break up the object correspondence in

the implementation. However, thinking of the design in terms of actual objects helps us

understand the natural structure of the system. Object-oriented (often abbreviated OO)

specification can be seen in two complementary ways:

■ Object-oriented specification allows a system to be described in a way that closely

models real-world objects and their interactions.

■ Object-oriented specification provides a basic set of primitives that can be used to

describe systems with particular attributes, irrespective of the relationships of those

systems’ components to real-world objects. Both views are useful. At a minimum, object-

oriented specification is a set of linguistic mechanisms. In many cases, it is useful to

describe a system in terms of real-world analogs. However, performance, cost, and so on

may dictate that we change the specification to be different in some ways from the real-

world elements we are trying to model and implement. In this case, the object-oriented

specification mechanisms are still useful. What is the relationship between an object-

oriented specification and an object oriented programming language (such as C++)? A

specification language may not be executable. But both object-oriented specification and

programming languages provide similar basic methods for structuring large systems.

Unified Modeling Language (UML)—the acronym is the name is a large language, and

covering all of it is beyond the scope of this book. In this section, we introduce only a few

basic concepts. In later chapters, as we need a few more UML concepts, we introduce them

to the basic modeling elements introduced here. Because UML is so rich, there are many

graphical elements in a UML diagram. It is important to be careful to use the correct

drawing to describe something—for instance, UML distinguishes between arrows with

open and filled-in arrowheads, and solid and broken lines. As you become more familiar

with the language, uses of the graphical primitives will become more natural to you. We

also won’t take a strict object-oriented approach. We may not always use objects for

certain elements of a design—in some cases, such as when taking particular aspects of the

implementation into account, it may make sense to use another design style. However,

object-oriented design is widely applicable, and no designer can consider himself or herself

design literate without understanding it.

Structural Description

By structural description, we mean the basic components of the system; we will learn how

to describe how these components act in the next section. The principal component of an

object-oriented design is, naturally enough, the object. An object includes a set of

attributes that define its internal state. When implemented in a programming language,

these attributes usually become variables or constants held in a data structure. In some

cases, we will add the type of the attribute after the attribute name for clarity, but we do not

always have to specify a type for an attribute. An object describing a display (such as a

CRT screen) is shown in UML notation in Figure. The text in the folded-corner page icon

is a note; it does not correspond to an object in the system and only serves as a comment.

The attribute is, in this case, an array of pixels that holds the contents of the display. The

object is identified in two ways: It has a unique name, and it is a member of a class. The

name is underlined to show that this is a description of an object and not of a class. A class

is a form of type definition—all objects derived from the same class have the same

characteristics, although their attributes may have different values. A class defines the

attributes that an object may have. It also defines the operations that determine how the

object interacts with the rest of the world. In a programming language, the operations

would become pieces of code used to manipulate the object. The UML description of the

Display class is shown in Figure. The class has the name that we saw used in the d1 object

since d1 is an instance of class Display. The Display class defines the pixels attribute seen

in the object; remember that when we instantiate the class an object, that object will have

its own memory so that different objects of the same class have their own values for the

attributes. Other classes can examine and modify class attributes; if we have to do

something more complex than use the attribute directly, we define a behavior to perform

that function.

A class defines both the interface for a particular type of object and that object’s

implementation. When we use an object, we do not directly manipulate its attributes—we

can only read or modify the object’s state through the operations that define the interface to

the object. (The implementation includes both the attributes and whatever code is used to

implement the operations.) As long as we do not change the behavior of the object seen at

the interface, we can change the implementation as much as we want. This lets us improve

the system by, for example, speeding up an operation or reducing the amount of memory

required without requiring changes to anything else that uses the object.

Clearly, the choice of an interface is a very important decision in object-oriented design.

The proper interface must provide ways to access the object’s state (since we cannot

directly see the attributes) as well as ways to update the state. We need to make the object’s

interface general enough so that we can make full use of its capabilities. However,

excessive generality often makes the object large and slow. Big, complex interfaces also

make the class definition difficult for designers to understand and use properly. There are

several types of relationships that can exist between objects and classes:

■ Association occurs between objects that communicate with each other but have

no ownership relationship between them.

■ Aggregation describes a complex object made of smaller objects.

■ Composition is a type of aggregation in which the owner does not allow access to

the component objects.

■ Generalization allows us to define one class in terms of another.

The elements of a UML class or object do not necessarily directly correspond to statements

in a programming language—if the UML is intended to describe something more abstract

than a program, there may be a significant gap between the contents of the UML and a

program implementing it. The attributes of an object do not necessarily reflect variables in

the object. An attribute is some value that reflects the current state of the object. In the

program implementation, that value could be computed from some other internal variables.

The behaviors of the object would, in a higher-level specification, reflect the basic things

that can be done with an object. Implementing all these features may require breaking up a

behavior into several smaller behaviors—for example, initialize the object before you start

to change its internal state-derived classes.

Unified Modeling Language, like most object-oriented languages, allows us to define one

class in terms of another. An example is shown in Figure, where we derive two particular

types of displays. The first, BW_ display, describes a black and- white display. This does

not require us to add new attributes or operations, but we can specialize both to work on

one-bit pixels. The second, Color_map_display, uses a graphic device known as a color

map to allow the user to select from a

large number of available colors even with a small number of bits per pixel. This class

defines a color_map attribute that determines how pixel values are mapped onto display

colors. A derived class inherits all the attributes and operations from its base class. In this

class, Display is the base class for the two derived classes. A derived class is defined to

include all the attributes of its base class.

This relation is transitive—if Display were derived from another class, both BW_display

and Color_map_display would inherit all the attributes and operations of Display’s base

class as well. Inheritance has two purposes. It of course allows us to succinctly describe

one class that shares some characteristics with another class. Even more important, it

captures those relationships between classes and documents them. If we ever need to

change any of the classes, knowledge of the class structure helps us determine the reach of

changes—for example, should the change affect only Color_map_display objects or should

it change all Display objects?

Unified Modeling Language considers inheritance to be one form of generalization. A

generalization relationship is shown in a UML diagram as an arrow with an open (unfilled)

arrowhead. Both BW_display and Color_map_display are specific

versions of Display, so Display generalizes both of them. UML also allows us to define

multiple inheritance, in which a class is derived from more than one base class. (Most

object-oriented programming languages support multiple inheritance as well.) An example

of multiple inheritance is shown in Figure; we have omitted the details of the classes’

attributes and operations for simplicity. In this case, we have created a Multimedia_display

class by combining the Display class with a Speaker class for sound. The derived class

inherits all the attributes and operations of both its base classes, Display and Speaker.

Because multiple inheritance causes the sizes of the attribute set and operations to expand

so quickly, it should be used with care.

A link describes a relationship between objects; association is to link as class is to object.

We need links because objects often do not stand alone; associations let us capture type

information about these links. Figure 1.9 shows examples of links and an association.

When we consider the actual objects in the system, there is a set of messages that keeps

track of the current number of active messages (two in this example) and points to the

active messages. In this case, the link defines the contains relation. When generalized into

classes, we define an association between the message set class and the message class. The

association is drawn as a line between the two labeled with the name of the association,

namely, contains. The ball and the number at the message class end indicate that the

message set may include zero or more message objects. Sometimes we may want to attach

data to the links themselves; we can specify this in the association by attaching a class-like

box to the association’s edge, which holds the association’s data.

Typically,we find that we use a certain combination of elements in an object or class many

times.We can give these patterns names, which are called stereotypes

in UML. A stereotype name is written in the form <<signal>>. Figure shows a stereotype

for a signal, which is a communication mechanism.

Behavioral Description

We have to specify the behavior of the system as well as its structure. One way to specify

the behavior of an operation is a state machine. Figure shows UML states; the transition

between two states is shown by a skeleton arrow. These state machines will not rely on the

operation of a clock, as in hardware; rather, changes from one state to another are triggered

by the occurrence of events.

An event is some type of action. The event may originate outside the system, such as a user

pressing a button. It may also originate inside, such as when one routine finishes its

computation and passes the result on to another routine. We will concentrate on the

following three types of events defined by UML, as illustrated in Figure.

■ A signal is an asynchronous occurrence. It is defined in UML by an object that is

labeled as a <<signal>>. The object in the diagram serves as a declaration of the

event’s existence. Because it is an object, a signal may have parameters that are

passed to the signal’s receiver.

■ A call event follows the model of a procedure call in a programming language.

■ A time-out event causes the machine to leave a state after a certain amount of

time. The label tm(time-value) on the edge gives the amount of time after which the

transition occurs. A time-out is generally implemented with an

external timer. This notation simplifies the specification and allows us to defer

implementation details about the time-out mechanism. We show the occurrence of all types

of signals in a UML diagram in the same way— as a label on a transition.

Let’s consider a simple state machine specification to understand the semantics of UML

state machines. A state machine for an operation of the display is shown in Figure. The

start and stop states are special states that help us to organize the flow of the state machine.

The states in the state machine represent different conceptual operations. In some cases, we

take conditional transitions out of states based on inputs or the results of some computation

done in the state. In other cases, we make an unconditional transition to the next state. Both

the unconditional and conditional transitions make use of the call event. Splitting a

complex operation into several states helps document the required steps, much as

subroutines can be used to structure code. It is sometimes useful to show the sequence of

operations over time, particularly when several objects are involved. In this case, we can

create a sequence diagram, like the one for a mouse click scenario shown in Figure. A

sequence diagram is somewhat similar to a hardware timing diagram, although the time

flows vertically in a sequence diagram, whereas time typically flows horizontally in a

timing diagram. The sequence diagram is designed to show a particular scenario or choice

of events—it is not convenient for showing a number of mutually exclusive possibilities. In

this case, the sequence shows what happens when a mouse click is on the menu region.

Processing includes three objects shown at the top of the diagram. Extending below each

object is its lifeline, a dashed line that shows how long the object is alive. In this case, all

the objects remain alive for the entire sequence, but in other cases objects may be created

or destroyed during processing. The boxes

along the lifelines show the focus of control in the sequence, that is, when the object is

actively processing. In this case, the mouse object is active only long enough to create the

mouse_click event. The display object remains in play longer; it in turn uses call events to

invoke the menu object twice: once to determine which menu item was selected and again

to actually execute the menu call. The find_region() call is internal to the display object, so

it does not appear as an event in the diagram.

DESIGN PROCESS EXAMPLES

Automatic Chocolate vending machine

Keypad on the top of the machine. LCD display unit on the top of the machine. It displays

menus, text entered into the ACVM and pictograms, welcome, thank and other messages.

Graphic interactions with the machine. Displays time and date. Delivery slot so that child

can collect the chocolate and coins, if refunded. Internet connection port so that owner can

know status of the ACVM sales from remote.

ACVM Hardware units

Microcontroller or ASIP (Application Specific Instruction Set Processor). RAM for storing

temporary variables and stack. ROM for application codes and RTOS codes for scheduling

the tasks. Flash memory for storing user preferences, contact data, user address, user date

of birth, user identification code, answers of FAQs. Timer and Interrupt controller. A

TCP/IP port (Internet broadband connection) to the ACVM for remote control and for

getting ACVM status reports by owner. ACVM specific hardware. Power supply.

ACVM Software components

_ Keypad input read

_ Display

_ Read coins

_ Deliver chocolate

_ TCP/IP stack processing

_ TCP/IP stack communication

Smart Card

Smart card– a plastic card in ISO standard dimensions, 85.60 mm x 53.98 x 0.80 mm.

_ Embedded system on a card.

_ SoC (System-On-Chip).

_ ISO recommended standards are ISO7816 (1 to 4) for host-machine contact based

cards and ISO14443 (Part A or B) for the contact-less cards.

_ Silicon chip is just a few mm in size and is concealed in-between the layers. Its very

small size protects the card from bending

Embedded hardware components

_ Microcontroller or ASIP (Application Specific Instruction Set Processor)

_ RAM for temporary variables and stack

_ ROM for application codes and RTOS codes for scheduling the tasks

_ EEPROM for storing user data, user address, user identification codes, card number and

expiry date

_ Timer and Interrupt controller

_ A carrier frequency ~16 MHz generating circuit and Amplitude Shifted Key (ASK)

_ Interfacing circuit for the I/Os

_ Charge pump

ROM

Fabrication key, Personalization key An utilization lock.

_ RTOS and application using only the logical addresses

Embedded Software

_ Boot-up, Initialisation and OS programs

_ Smart card secure file system

_ Connection establishment and termination

_ Communication with host

_ Cryptography

_ Host authentication

_ Card authentication

_ Addition parameters or recent new data sent by the host (for example, present balance

left).

Smart Card OS Special features

_ Protected environment.

_ Every method, class and run time libraryshould be scalable.

_ Code-size generated be optimum.

_ Memory should not exceed 64 kB memory.

_ Limiting uses of specific data types; multidimensional arrays, long 64-bit integer and

floating points

Smart Card OS Limiting features

_ Limiting uses of the error handlers, exceptions, signals, serialization, debugging and

profiling. [Serialization means process of converting an object is converted into a data

stream for transferring it to network or from one process to another. At receiver end there

is de-serialization Smart Card OS File System and Classes

_ Three-layered file system for the data.

_ Master file to store all file headers.

_ Dedicated file to hold a file grouping and headers of the immediate successor elementary

files of the group.

_ Elementary file to hold the file header and its file data.

_ Fixed-length or variable-file length management

_ Classes for the network, sockets, connections, data grams, character-input output and

streams, security management, digital-certification, symmetric and asymmetric keys-based

cryptography and digital signatures..

Digital Camera

A typical Camera

_ 4 M pixel/6 M pixel still images, clear visual display (ClearVid) CMOS sensor, 7 cm

wide LCD photo display screen, enhanced imaging processor, double anti blur solution and

high-speed processing engine, 10X optical and 20X digital zooms

_ Record high definition video-clips. It therefore has speaker microphone(s) for high

quality recorded sound.

_ Audio/video Out Port for connecting to a TV/DVD player.

Arrangements

_ Keys on the camera.

_ Shutter, lens and charge coupled device (CCD) array sensors

_ Good resolution photo quality LCD display unit

_ Displays text such as image-title, shooting data and time and serial number. It displays

messages. It displays the GUI menu when user interacts with the camera.

_ Self-timer lamp for flash.

Internal units

_ Internal memory flash to store OS and embedded software and limited number of image

files

_ Flash memory stick of 2 GB or more for large storage.

_ Universal Serial Bus (USB), Bluetooth and serial COM port for connecting it to

computer, mobile and printer. LCD screen to display frame view.

_ Saved images display using the navigation keys.

_ Frame light falls on the CCD array, which through an ADC transmits the bits for each

pixel in each row in the frame and for the dark area pixels in each row for offset correction

in CCD signaled light intensities for each row.

_ The CCD bits of each pixel in each row and column are offset corrected by CCD signal

processor (CCDSP).

ASIP and Single purpose processors

_ For Signals compression using a JPEG CODEC and saved in one jpg file for each frame.

_ For DSP for compression using the discrete cosine transformations (DCTs) and

decompression.

_ For DCT Huffman coding for the JPEG compression.

_ For decompression by inverse DCT before the DAC sends input for display unit through

pixel processor.

_ Pixel processor (for example, image contrast, brightness, rotation, translation, color

adjustment)

Digital Camera Hardware units

_ Microcontroller or ASIP (Application Specific Instruction Set Processor)

_ Multiple processors (CCDSP, DSP, Pixel Processor and others)

_ RAM for storing temporary variables and stack

_ ROM for application codes and RTOS codes for scheduling the tasks Timer, Flash

memory for storing user preferences, contact data, user address, user date of birth, user

identification code, ADC, DAC and Interrupt controller

_ The DAC gets the input from pixel processor, which gets the inputs from JPEG file for

the saved images and also gets input directly from the CCDSP through pixel processor or

the frame in present view

_ USB controller Direct Memory Access controller

_ LCD controller

_ Battery and external charging circuit

Digital Camera Software components

_ CCD signal processing for off-set correction

_ JPEG coding

_ JPEG decoding

_ Pixel processing before display

_ Memory and file systems

_ Light, flash and display device drivers

_ LCD, USB and Bluetooth Port device- drivers for port operations for display, printer and

Computer communication control

Light, flash and display device drivers

CCD signal processing

JPEG coding

JPEG decoding

Pixel co-processing

LCD and USB Port device drivers

LCD, Bluetooth COM and USB Port device drivers

UNIT-II

THE 8051 ARCHITECTURE

INTRODUCTION TO MICRO CONTROLLERS

INTRODUCTION:

We have noticed that Microprocessor is just not self-sufficient, and it requires other

components like memory and input/output devices to form a minimum workable system

configuration. To have all these components in a discrete form and to assemble them on a

PCB is usually not an affordable solution for the following reasons:

1) The overall system cost of a microprocessor based system built around a CPU, memory

and other peripherals is high as compared to a microcontroller based system.

2) A large sized PCB is required for assembling all these components, resulting in an

enhanced cost of the system.

3) Design of such PCBs requires a lot of effort and time and thus the overall product

design requires more time.

4) Due to the large size of the PCB and the discrete components used, physical size of the

product is big and hence it is not handy.

5) As discrete components are used, the system is not reliable nor is it easy to trouble-

shoot such a system.

Considering all these problems, Intel decided to integrate a microprocessor along with I/O

ports and minimum memory into a single package. Another frequently used peripheral, a

programmable timer, was also integrated to make this device a self-sufficient one. This

device which contains a microprocessor and the above mentioned components has been

named a microcontroller. A microcontroller is a microprocessor with integrated

peripherals. Design with microcontrollers has the following advantages:

1. As the peripherals are integrated into a single chip, the overall system cost is very low.

2. The size of the product is small as compared to the microprocessor based systems thus

very handy.

3. The system design requires very little efforts and is easy to troubleshoot and maintain.

4. As the peripherals are integrated with a microprocessor, the system is more reliable.

5. Though a microcontroller may have on-chip RAM, ROM and I/O ports, additional

RAM, ROM and I/O ports may be interfaced externally, if required.

6. The microcontrollers with on-chip ROM provide a software security feature which is

not available with microprocessor based systems using ROM/EPROM.

However, in case of a larger system design, which requires more number of I/O

ports and more memory capacity, the system designer may interface external I/O ports and

memory with the system. In such cases, the microcontroller based systems are not so

attractive as they are in case of the small dedicated systems. Figure 17.1 shows a typical

microcontroller internal block diagram.

As a microcontroller contains most of the components required to form a microprocessor

system, it is sometimes called a single chip microcomputer, since it also has the ability to

easily implement simple control functions.

OVERVIEW OF 8051 MICRO CONTROLLER

Let us look at Intel's 8-bit microcontroller family, popularly known as MCS-51

family. The earlier versions of Intel's microcontrollers do not have on-chip EPROM. 8031

was one such microcontroller from Intel, followed by the 8051 family. 8751 was the first

microcontroller version with on-chip EPROM, followed by a number of 8751 versions

with slight modifications. Recently, an electrically programmable and erasable version of

8051, named as 8951, has been introduced. Table shows the comparison between different

versions of 8051. All these members of the 8051 family have identical instruction set and

similar architecture with slight variations as shown in Table.

ARCHITECTURE OF 8051

The internal architecture of 8051 is presented in Fig.

The functional description of each block is presented briefly below.

Accumulator (ACC): The accumulator register (ACC or A) acts as an operand register, in

case of some instructions. This may either be implicit or specified in the instruction.

B Register: This register is used to store one of the operands for multiply and divide

instructions. In other instructions, it may just be used as a scratch pad.

 Program Status Word (PSW): This set of flags contains the status information.

Stack Pointer (SP): This 8-bit wide register is incremented before the data is stored onto

the stack using push or call instructions. This register contains 8-bit stack top address. The

stack may be defined anywhere in the on-chip 128-byte RAM. After reset, the SP register

is initialised to 07. After each write to stack operation, the 8-bit contents of the operand are

stored onto the stack, after incrementing the SP register by one. Thus if SP contains 07 H,

the forthcoming PUSH operation will store the data at address 08H in the internal RAM.

The SP content will be incremented to 08.

Data Pointer (DTPR): This 16-bit register contains a higher byte (DPH) and the lower

byte (DPL) of a 16-bit external data RAM address. It is accessed as a 16-bit register or two

8-bit registers as specified above.

Port 0 to 3 Latches and Drivers: These four latches and driver pairs are allotted to each

of the four on-chip I/O ports. Using the allotted addresses, the user can communicate with

these ports. These are identified as P0, PI, P2 and P3.

Serial Data Buffer: The serial data buffer internally contains two independent registers.

One of them is a transmit buffer which is necessarily a parallel-in serial-out register. The

other is called receive buffer which is a serial-in parallel-out register. The serial data buffer

is identified as SBUF.

 Timer Registers: These two 16-bit registers can be accessed as their lower and upper

bytes. For example, TL0 represents the lower byte of the timing register 0, while TH0

represents higher bytes of the timing register 0. Similarly, TL1 and TH1 represent lower

and higher bytes of timing register 1.

Control Registers: The special function registers IP, IE, TMOD, TCON, SCON and

PCON contain control and status information for interrupts, timers/counters and serial port.

Timing and Control Unit: This unit derives all the necessary timing and control signals

required for the internal operation of the circuit. It also derives control signals required for

controlling the external system bus.

Oscillator: This circuit generates the basic timing clock signal for the operation of the

circuit using crystal oscillator.

Instruction Register: This register decodes the opcode of an instruction to be executed

and gives information to the timing and control unit to generate necessary signals for the

execution of the instruction.

EPROM and Program Address Register: These blocks provide an on-chip

EPROM/PROM and a mechanism to internally address it. Note that EPROM is not

available in all 8051 versions.

RAM and RAM Address Register: These blocks provide internal 128 bytes of RAM and

a mechanism to address it internally.

 ALU: The arithmetic and logic unit performs 8-bit arithmetic and logical operations over

the operands held by the temporary registers TMP1 and TMP2. Users cannot access these

temporary registers.

SFR Register Bank: This is a set of special function registers, which can be addressed

using their respective addresses which lie in the range 80H to FFH.

 Finally, the interrupt, serial port and timer units control and perform their specific

functions under the control of the timing and control unit.

PIN DESCRIPTIONS OF 8051

 8051 is available in a 40-pin plastic and ceramic DIP packages. The pin diagram of

8051 is shown in Fig. 17.3 followed by description of each pin.

REGISTER SET OF 8051

8051 has two 8-bit registers, registers A and B, which can be used to store

operands, as allowed by the instruction set. Internal temporary registers of 8051 are not

user accessible. Including these A and B registers, 8051 has a family of special purpose

registers known as, Special Function Registers (SFRs). There are, in total, 21-bit

addressable, 8-bit registers. ACC (A), B, PSW, PO, PI, P2, P3, IP, IE, TCON and SCON

are all 8-bit, bit-addressable registers. The remaining registers, namely, SP, DPH, DPL,

TMOD, TH0, TL0, TH1, TL1, SBUF and PCON registers are to be addressed as bytes, i.e.

they are not bit-addressable. The registers DPH and DPL are the higher and lower bytes of

a 16-bit register DPTR, i.e. data pointer, which is used for accessing external data memory.

Starting 32-bytes of on-chip RAM may be used as general purpose registers. They have

been allotted addresses in the range from 0000H to 001FH. These 32, 8-bit registers are

divided into four groups of 8 registers each, called register banks. At a time only one of

these four groups, i.e. banks can be accessed. The register bank to be accessed can be

selected using the RS1 and RS0 bits of an internal register called program status word.

 The registers TH0 and TL0 form a 16-bit counter/timer register with H indicating

the upper byte and L indicating the lower byte of the 16-bit timer register T0. Similarly,

TH1 and TLl form the 16-bit count for the timer Tl. The four port latches are represented

by P0, P1, P2 and P3. Any communication with these ports is established using the SFR

addresses to these registers. Register SP is a stack pointer register. Register PSW is a flag

register and contains status information. Register IP can be programmed to control the

interrupt priority. Register IE can be programmed to control interrupts, i.e. enable or

disable the interrupts. TCON is called timer/counter control register. Some of the bits of

this register are used to turn the timers on or off. This register also contains interrupt

control flags for external interrupts 0INT and 1INT . The register TMOD is used for

programming the modes of operation of the timers/counters. The SCON register is a serial

port mode control register and is used to control the operation of the serial port. The SBUF

register acts as a serial data buffer for transmit and receive operations. The PCON register

is called power control register. This register contains power down bit and idle bit which

activate the power down mode and idle mode in 80C51BH. There are two power saving

modes of operation provided in the CHMOS version, namely, idle mode and power down

mode.

 In the idle mode, the oscillator continues to run and the interrupt, serial port and

timer blocks are active but the clock to the CPU is disabled. The CPU status is preserved.

This mode can be terminated with a hardware interrupt or hardware reset signal. After this,

the CPU resumes program execution from where it left off.

 In power down mode, the on-chip oscillator is stopped. All the functions of the

controller are held maintaining the contents of RAM. The only way to terminate this mode

is hardware reset. The reset redefines all the SFRs but the RAM contents are left

unchanged. Both of these modes can be entered by setting the respective bit in an internal

register called PCON register using software.

 All these registers are listed in Table 17.3 along with their SFR addresses and

contents after reset.

IMPORTANT OPERATIONAL FEATURES OF 8051

This section describes the critical special function register formats of 8051.

1. Program Status Word (PSW)

 This bit-addressable register has the following format as shown in Fig. 17.4. The bit

descriptions are presented along with the format.

2. Timer Mode Control Register (TMOD)

 Format of this 8-bit non-bit-addressable register is shown along with its bit

descriptions in Fig. 5.

3. Timer Control Register (TCON)

This bit-addressable register format along with its bit definitions is shown in Fig..

4. Serial Ports Control Register (SCON)

 This 8-bit, bit-addressable register format is shown in Fig.

Power Control Register (PCON)

The format of this non-bit-addressable register is shown in Fig. 17.8.

MEMORY AND I/O ADDRESSING BY 8051

1. Memory Addressing

The total memory of an 8051 system is logically divided into program memory and

data memory. Program memory stores the programs to be executed, while data memory

stores the data like intermediate results, variables and constants required for the execution

of the program. Program memory is invariably implemented using EPROM, because it

stores only program code which is to be executed and thus it need not be written into.

However, the data memory may be read from or written to and thus it is implemented using

RAM.

 Further, the program memory and data memory both may be categorized as on-chip

(internal) and external memory, depending upon whether the memory physically exists on

the chip or it is externally interfaced. The 8051 can address 4 Kbytes on-chip program

memory whose map starts from 0000H and ends at 0FFFH. It can address 64 Kbytes of

external program memory under the control of PSEN signal, whose address map is from

0000H to FFFFH. Here, one may note that the map of internal program memory overlaps

with that of the external program memory. However, these two memory spaces can be

distinguished using the PSEN signal. In case of ROM-less versions of 8051, the PSEN

signal is used to access the external program memory. Conceptually this is shown in Fig.

17.9.

 8051 supports 64 Kbytes of external data memory whose map starts at 0000H and

ends at FFFFH. This external data memory can be accessed under the control of register

DPTR, which stores the addresses for external data memory accesses. 8051 generates RD

and WR signals during external data memory accesses. The chip select line of the external

data memory may be derived from the address lines as in the case of other

microprocessors. Internal data memory of 8051 consists of two parts; the first is the RAM

block of 128 bytes (256 bytes in case of some versions of 8051) and the second is the set of

addresses from 80H to FFH, which includes the addresses allotted to the special function

registers.

 The address map of the 8051 internal RAM (128 bytes) starts from 00 and ends at

7FH. This RAM can be addressed by using direct or indirect mode of addressing.

However, the special function register address map, i.e. from 80H to FFH is accessible

only with direct addressing mode.

 In case of 8051 versions with 256 bytes on-chip RAM, the map starts from 00H and

ends at FFH. In this case, it may be noted that the address map of special function registers,

i.e. 80H to FFH overlaps with the upper 128 bytes of RAM. However, the way of

addressing, i.e. addressing mode, differentiates between these two memory spaces. The

upper 128 bytes of the 256 byte on-chip RAM can be accessed only using indirect

addressing, while the lower 128 bytes can be accessed using direct or indirect mode of

addressing. The special function register address space can only be accessed using direct

addressing. The address map of the internal RAM and SFR is shown in Fig. 17.10.

The lower 128 bytes of RAM whose address map is from 00 to 7FH is functionally

organized in three sections. The address block from 00 to 1FH, i.e. the lowest 32 bytes

which form the first section, is divided into four banks of 8-bit registers, denoted as bank

00, 01, 10 and 11. Each of these banks contains eight 8-bit registers. The stack pointer gets

initialized at address 07H, i.e. the last address of the bank 00, after reset operation. After

reset bank 0 is selected by default but the actual stack data is stored from 08H onwards, i.e.

bank 01, 10 and 11. These bank addressing bits of the register banks are present in PSW, to

select one of these banks at a time. The second section extends from 20H to 2FH, i.e. 16

bytes, which is a bit-addressable block of memory, containing 16 x 8 = 128 bits. Each of

these bits can be addressed using the addresses 00 to 7FH. Any of these bits can be

accessed in two ways. In the first, its bit number is directly mentioned in the instruction

while in the second the bit is mentioned with its position in the respective register byte. For

example, the bits 0 to 7 can be referred directly by their numbers, i.e. 0 to 7 or using the

notations 20.0 to 20.7 respectively. Note that 20 is the address of the first byte of the on-

chip RAM. The third block of internal memory occupies addresses from 30H to 7FH. This

block of memory is a byte addressable memory space. In general, this third block of

memory is used as stack memory. All the internal data memory locations are accessed

using 8-bit addresses under appropriate modes of addressing. Figure 17.11 shows the

categorization of 128 bytes of internal RAM into the different sections.

2. I/O Addressing

Internally, 8051 has two timers, one serial input/output port and four 8-bit, bit-

addressable ports. Some complex applications may require additional I/O devices to be

interfaced with 8051. Such external I/O devices are interfaced with 8051 as external

memory-mapped devices. In other words, the devices are treated as external memory

locations, and they consume external memory addresses. Figure 17.12 shows a system that

has external RAM memory of 16 Kbytes, ROM of 16 Kbytes and one chip of 8255

interfaced externally to an 8051 family microcontroller.

Note that, the maps of external program and data memory may overlap, as the

memory spaces are logically separated in an 8051 system. As the 8255 is interfaced in

external data memory space its addresses are of 16-bits.

ADRESSING MODES OF 8051

ACCESSING MEMORY USING VARIOUS ADDRESSING MODES

We can use direct or register indirect addressing modes to access data stored either

in RAM or registers of the 8051. This topic will be discussed thoroughly in this section.

We will also show how to access on-chip ROM containing data using indexed addressing

mode.

Direct addressing mode

As mentioned in Chapter 2, there are 128 bytes of RAM in the 8051. The RAM has been

assigned addresses 00 to 7FH. The following is a summary of the allocation of these 128

bytes.

1. RAM locations 00 - 1FH are assigned to the register banks and stack.

1. RAM locations 20 - 2FH are set aside as bit-addressable space to save single-

bit data. This is discussed in Section 5.3.

2. RAM locations 30 - 7FH are available as a place to save byte-sized data.

Although the entire 128 bytes of RAM can be accessed using direct addressing

mode, it is most often used to access RAM locations 30 - 7FH. This is due to the fact that

register bank locations are accessed by the register names of RO - R7, but there is no such

name for other RAM locations. In the direct addressing mode, the data is in a RAM

memory location whose address is known, and this address is given as a part of the

instruction. Contrast this with immediate addressing mode, in which the operand itself is

provided with the instruction. The "#" sign distinguishes between the two modes. See the

examples below, and note the absence of the "#" sign.

The above examples should reinforce the importance of the "#" sign in 8051 instructions.

See the following code.

Although it is easier to use the names RQ - R7 than their memory addresses, RAM

locations 3 OH to 7FH cannot be accessed in any way other than by their addresses since

they have no names.

SFR registers and their addresses

Among the registers we have discussed so far, we have seen that RO - R7 are part

of the 128 bytes of RAM memory. What about registers A, B, PSW, and DPTR? Do they

also have addresses? The answer is yes. In the 8051, registers A, B, PSW, and DPTR are

part of the group of registers commonly referred to as SFR (special function registers).

There are many special function registers and they are widely used, as we will discuss in

future chapters. The SFR can be accessed by their names (which is much easier) or by their

addresses. For example, register A has address EOH, and register B has been designated

the address FOH, as shown in Table 5-1. Notice how the following pairs of instructions

mean the same thing.

Table lists the 8051 special function registers (SFR) and their addresses. The following

two points should be noted about the SFR addresses.

1. The special function registers have addresses between 80H and FFH. These

addresses are above 80H, since the addresses 00 to 7FH are addresses of RAM

memory inside the 8051.

2. Not all the address space of 80 to FF is used by the SFR. The unused locations

80H to FFH are reserved and must not be used by the 8051 programmer.

Regarding direct addressing mode, notice the following two points: (a) the address

value is limited to one byte, 00 - FFH, which means this addressing mode is limited to

accessing RAM locations and registers located inside the 8051. (b) if you examine the 1st

file for an Assembly language program, you will see that the SFR registers' names are

replaced with their addresses as listed in Table 5-1.

Table : 8051 Special Function Register (SFR) Addresses

Example 1

Stack and direct addressing mode

Another major use of direct addressing mode is the stack. In the 8051 family, only

direct addressing mode is allowed for pushing onto the stack. Therefore, an instruction

such as "PUSH A" is invalid. Pushing the accumulator onto the stack must be coded as

"PUSH OEOH" where OEOH is the address of register A. Similarly, pushing R3 of bank 0

is coded as "PUSH 03". Direct addressing mode must be used for the POP instruction as

well. For example, "POP 04" will pop the top of the stack into R4 of bank 0.

Example 2

Show the code to push R5, R6, and A onto the stack and then pop them back them into R2,

R3, and B, where register B = register A, R2 = R6, and R3 = R5.

Register indirect addressing mode

In the register indirect addressing mode, a register is used as a pointer to the data. If

the data is inside the CPU, only registers RO and Rl are used for this purpose. In other

words, R2 - R7 cannot be used to hold the address of an operand located in RAM when

using this addressing mode. When RO and Rl are used as pointers, that is, when they

hold the addresses of RAM locations, they must be preceded by the "@" sign, as

shown below.

Notice that RO (as well as Rl) is preceded by the "@" sign. In the absence of the "@"

sign, MOV will be interpreted as an instruction moving the contents of register RO to

A, instead of the contents of the memory location pointed to by RO.

Example 3

Advantage of register indirect addressing mode

One of the advantages of register indirect addressing mode is that it makes accessing data

dynamic rather than static as in the case of direct addressing mode. Example 5-3 shows two

cases of copying 55H into RAM locations 40H to 45H. Notice in solution (b) that there are

two instructions that are repeated numerous times. We can create a loop with those two

instructions as shown in solution (c). Solution (c) is the most efficient and is possible only

because of register indirect addressing mode. Looping is not possible in direct addressing

mode. This is the main difference between the direct and register indirect addressing

modes.

An example of how to use both RO and Rl in the register indirect addressing mode in a

block transfer is given in Example 5.

Limitation of register indirect addressing mode in the 8051

As stated earlier, RO and Rl are the only registers that can be used fo
r
pointers in

register indirect addressing mode. Since RO and Rl are 8 bits wide, their use is limited to

accessing any information in the internal RAM (scratch pad memory of 30H - 7FH, or

SFR). However, there are times when we need to access data stored in external RAM or in

the code space of on-chip ROM. Whether accessing externally connected RAM or on-chip

ROM, we need a 16-bit pointer. In such cases, the DPTR register is used, as shown next.

Indexed addressing mode and on-chip ROM access

Indexed addressing mode is widely used in accessing data elements of look-up table

entries located in the program ROM space of the 8051. The instruction used for this

purpose is "MOVC A, @A+DPTR". The 16-bit register DPTR and register A are used to

form the address of the data element stored in on-chip ROM. Because the data elements are

stored in the program (code) space ROM of the 8051, the instruction MOVC is used

instead of MOV. The "C" means code. In this instruction the contents of A are added to the

16-bit register DPTR to form the 16-bit address of the needed data. See Example 5-6.

Example 6

In this program, assume that the word "USA" is burned into ROM locations starting

at 200H, and that the program is burned into ROM locations starting at 0. Analyze how

the program works and state where "USA" is stored after this program is run.

In the above program ROM locations 200H - 202H have the following contents.

200=('U') 201=('S') 202=('A'')

We start with DPTR = 200H, and A = 0. The instruction "MOVC A, @A+DPTR"

moves the contents of ROM location 200H (200H + 0 = 200H) to register A. Register A

contains 55H, the ASCII value for "U". This is moved to RO. Next, DPTR is incremented

to make DPTR = 201H. A is set to 0 again to get the contents of the next ROM location

201H, which holds character "S". After this program is run, we have RO = 55H, Rl = 53H,

and R2 = 41H, the ASCII values for the characters "U", "S" and "A".

Example 7

Assuming that ROM space starting at 250H contains "America", write a program to

transfer the bytes into RAM locations starting at 40H.

Look-up table and the MOVC instruction

The look-up table is a widely used concept in microprocessor programming. It

allows access to elements of a frequently used table with minimum operations.

Example 8

Write a program to get the x value from PI and send x
2

to P2, continuously.

In addition to being used to access program ROM, DPTR can be used to access

memory externally connected to the 8051. Another register used in indexed addressing

mode is the program counter.

In many of the examples above, the MOV instruction was used for the sake of

clarity, even though one can use any instruction as long as that instruction supports the

addressing mode. For example, the instruction "ADD A, @RO" would add the contents of

the memory location pointed to by RO to the contents of register A. We will see more

examples of using addressing modes with various instructions in the next few chapters.

Indexed addressing mode and MOVX instruction

As we have stated earlier, the 8051 has 64K bytes of code space under the direct

control of the Program Counter register. We just showed how to use the MOVC instruction

to access a portion of this 64K-byte code space as data memory space. In many

applications the size of program code does not leave any room to share the 64K-byte code

space with data. For this reason the 8051 has another 64K bytes of memory space set aside

exclusively for data storage. This data memory space is referred to as external memory and

it is accessed only by the MOVX instruction. In other words, the 8051 has a total of 128K

bytes of memory space since 64K bytes of code added to 64K bytes of data space gives us

128K bytes. One major difference between the code space and data space is that, unlike

code space, the data space cannot be shared between code and data. This is such an

important topic that we have dedicated an entire chapter to it: Chapter 14.

Accessing RAM Locations 30 - 7FH as scratch pad

As we have seen so far, in accessing registers RO - R7 of various banks, it is much

easier to refer to them by their RO - R7 names than by their RAM locations. The only

problem is that we have only 4 banks and very often the task of bank switching and

keeping track of register bank usage is tedious and prone to errors. For this reason in many

applications we use RAM locations 30 - 7FH as scratch pad and leave addresses 8 - 1FH

for stack usage. That means that we use RO - R7 of bank 0, and if we need more registers

we simply use RAM locations 30-7FH. Look at Example 5-10.

Example 10

INTERRUPTS OF 8051

8051 provides five sources of interrupts. 0INT and 1INT are the two external

interrupt inputs. These can either be edge-sensitive or level-sensitive, as programmed with

bits IT0 and IT1 register TCON. These interrupts are processed internally by the flags IE0

and IE1. If the interrupts are programmed as edge-sensitive, these flags are automatically

cleared after the control is transferred to the respective vector. On the other hand, if the

interrupts are programmed level-sensitive, these flags are controlled by the external

interrupts sources themselves. Both timers can be used in timer or counter mode. In counter

mode, it counts the pulses at T0 or T1 pin. In timer mode, oscillator clock is divided by a

pre-scalar (1/32) and then given to the timer. So clock frequency for timer is 1/32th of the

controller operating frequency. The timer is an up-counter and generates an interrupt when

the count has reached FFFFH. It can be operated in four different modes that can be set by

TMOD register.

 The timer 0 and timer 1 interrupt sources are generated by TF0 and TF1 bits of the

register TCON, which are set, if a rollover takes place in their respective timer registers,

except timer 0 in mode 3. When these interrupts are generated, the respective flags are

automatically cleared after the control is transferred to the respective interrupt service

routines.

 The serial port interrupt is generated, if at least one of the two bits RI and TI is set.

Neither of the flags is cleared, after the control is transferred to the interrupt service

routine. The RI and TI flags need to be cleared using software, after deciding, which one of

these two caused the interrupt? This is accomplished in the interrupt service routine.

 In addition to these five interrupts, 8051 also allows single step interrupts to be

generated with help of software. The external interrupts, if programmed level-sensitive,

should remain high for at least two machine cycles for being sensed. If the external

interrupts are programmed edge-sensitive, they should remain high for at least one machine

cycle and low for at least one machine cycle, for being sensed.

 The interrupt structure of 8051 provides two levels of the interrupt priorities for its

sources of interrupt. Each interrupt source can be programmed to have one of these two

levels using the interrupt priority register IP. The different sources of interrupts

programmed to have the same level of priority, further follow a sequence of priority under

that level as shown:

 All these interrupts are enabled using a special function register called interrupt

enable register (IE) and their priorities are programmed using another special function

register called interrupt priority register (IP). Formats of both of these registers are

shown in Fig. 17.13 and Fig. 17.14.

INTERRUPTS

 Interrupt is an input to a processor that indicates the occurrence of an event. In case

of external events, the status of a microprocessor pin is altered. Interrupts are also

generated due to the events occurring inside the machine like timer overflow or

transmission/reception of a byte through the serial port, etc. The processor responds to an

interrupt by saving the current machine status and branching to execute a subprogram

called 'interrupt service subroutine'. When an interrupt occurs, the CPU jumps to the

location associated with that interrupt, in the program memory and starts executing from

there. This location is called 'vector' and the interrupt is called vectored interrupt. After

serving the interrupt, the processor restores the original machine status and continues with

the original program.

INTERRUPTS IN MCS-51

Initializing 8051 Interrupts

 The interrupt enable (IE) register allows the programmer to enable interrupts as

needed. This register IE is bit addressable and is shown in Fig. 6.1. Enable All (EA) bit

allows disabling the whole interrupt operation, if cleared. Thus, it acts as a master control

bit for any of the interrupts. For any particular interrupt to occur, bit EA and the

corresponding bit must be set. For example, in case of serial interrupt, bit EA and bit ES

must be set. ES is the serial port interrupt, useful in serial transmission, if set, enables the

serial interrupts TI or RI Similarly, bits ET1, ET0 are for timer 1 and timer 0 interrupts,

respectively. EX1 and EX0 are external interrupt enable bits for external interrupts 1 and 0,

respectively. Programming Example #6.1 shows initialization of external interrupt 1.

 This instruction will enable the external interrupt 1. If now this is followed by CLR

EA instruction, whole interrupt operation is disabled. To initialize the serial interrupt, one

may load the IE register with 10010000B.

Interrupt Priorities

 Let us consider the case, when more than one interrupts are enabled. User can

program the interrupt priority levels by setting or clearing the bits in SFR called interrupt

priority (IP) register. IP register is also bit addressable. If the bit is set, that particular

interrupt will have high priority.

TIMERS AND COUNTERS

Configure timer/counters as a timer or counter. As seen from Fig. 6.4, the TMOD bit C/ T ,

defines this operation.

A). Mode 0

 In mode 0, the timer is 13-bit wide. This mode is same for timer 0 and timer 1.

When the count overflows, it sets the timer interrupt flag (TF1 for timer 1 and TF0 for

timer 0). To start timer 0, TR0 bit in TCON is required to be set. Using the upper byte TH1

(or TH0) and the lower 5 bits of TL1 (or TL0) forms the 13 bits. This is shown in Fig. 6.5

and Fig. 6.6.

B). Mode 1

 Mode 1 is same as mode 0, except the timers are 16 bits wide. Mode 1 is again the

same for timer 0 and timer 1. The maximum count in this mode is FFFFH. To initialize

timer 1 in mode 1, see Programming Example #6.5.

 If initialized, the timer overflow can generate an interrupt. Consider one such

program segment (Programming Example #6.6) to initialize the timer 1 interrupt. Note that

it is always advisable to initialize the stack pointer before going for a main program,

because the default value of SP 07H may not be suitable in general. This is also the address

of register R7, and if any register bank switching is done, it can overwrite some useful

register contents.

 Note that simply setting only ET1 bit in IE register will not enable the timer

interrupt. In addition, it is necessary to set the EA bit in IE. This program will start timer 1,

and when it overflows, timer 1 interrupt is generated, which will cause the program counter

to jump to the vector location 001B H.

C). Mode 2

This operation is again the same for timer 0 and timer 1. Consider timer 1 in mode

2. Timer register is configured as an 8-bit counter TL1. Overflow from TL1 sets the flag

TF1, and it loads TL1 with the contents of TH1. The software can preload TH1. This mode

of timer 1 or timer 0 thus supports the automatic reload operation. Mode 2 auto-reload

mechanism is shown in Fig. 6.8. Timer control logic is again the same as that of mode 0 or

1.

 Let us now write the initialization program for timer 0 in mode 2 as shown in the

Programming Example #6.7. The program must load TMOD and then the auto-reload

value must be written in the timer high byte. Further, the starting count will also be the

same as that of the reload value in general, but it is not so strict since this is applicable for

the very first overflow.

 However, it is very essential to load the timer high byte with the auto-reload value,

otherwise the timer after each overflow will start from 00H.

 Mode 2 is very commonly used for baud rate generation for serial port operation, or

where a constant frequency square wave output is needed. The frequency or baud rate can

be controlled using the preloaded value in THx register. The maximum delay generated

using mode 2 will be corresponding to the auto-reload value of 00H. Thus, at 12 MHz

clock, this would generate the maximum delay of 256 μs. If one can write an instruction to

toggle any of the port pins, a square wave output on that pin can be seen on the

oscilloscope. Consider this program to generate a 2 kHz (0.5 ms period) square waveform

on pin Pl.0 (Pin 1), as shown in Programming Example #6.8. The reload count will be

corresponding to 0.25mS. At 12 MHz, this will be (256-250) equal to 06H.

 The same program could be written using timer interrupt also. Let us see how to do

it! Note that timer 0 interrupt has been enabled at the time of starting the timer. The timer 0

is initialized in mode 2 or auto-reload mode. TH0 and TL0 both are initialized to the count

06H corresponding to the 2 kHz frequency of square waves. The main program is over

once timer 0 is started. But notice the instruction SJMP $. This instruction is to jump at the

same address and generate an infinite loop. The effect is same as the instruction "LABEL:

SJMP LABEL". This program is shown in the Programming Example #6.9.

 Further, we have written an interrupt service routine (ISR) in which we just

complement the bit Pl.0. The ISR ends with RETI instruction. After the execution of this

instruction, the CPU will again be in the infinite loop, from where it was interrupted. Note

that timer 0, once started, is not made off or on afterwards, which is not needed also due to

auto-reload feature.

D). Mode 3

 In this mode, timer 1 has a passive role of holding its count. In effect, it looks like

as the one who keeps TR1 = 0. Now, timer 0 bytes TH0 and TL0 are used as two separate

timers. Because of this, mode 3 is also called as split timer mode. TH0 is locked into timer

operation and simply counts the machine cycles. After overflowing, it sets the flag TF1.

 TL0 can be configured and controlled by using C/ T , GATE, TR0, INT0, and TF0.

Note that TR1 controls the operation of TH0 timer, now the question remains how to

control timer 1? Timer 1 can be used in a different manner, for any application that does

not require the interrupt operation; like for generating the baud rate for serial port

operation. When timer 0 is in mode 3, one can just control its operation by switching it out

or into its mode 3 using TMOD settings. Thus, in mode 3 it resembles like 8051 having 3

timer/counters.

 Note that in timer mode 3, timer 1 is a 16-bit timer and TH0, TL0 two 8-bit timers.

SERIAL COMMUNICATION

Serial data transmission is very commonly used for digital data communication. Its

main advantage is that the number of wires needed is reduced as compared to that in

parallel communication. 8051 supports a full duplex serial port. Full duplex means, it can

transmit and receive a byte simultaneously. 8051 has TXD and RXD pins for transmission

and reception of serial data respectively. The 8051 serial communication is supported by

RS232 standard. The term "RS" stands for Recommended Standard. Communication

between two microcontrollers and multiprocessor communication is also possible. The start

and stop bits are used to synchronize the serial receivers. The data byte is always

transmitted with least-significant-bit first. For error checking purpose, it is possible to

include a parity bit as well, just prior to the stop bit. Thus, the bits are transmitted at

specific time intervals determined by the baud rate. For error-free serial communication, it

is necessary that the baud rate, the number of data bits, the number of stop bits, and the

presence or absence of a parity bit along with its status be the same at the transmitter and

receiver ends.

 The basic mechanism of serial transmission is that a data byte in parallel form is

converted into serial data stream. Along with some more bits like start, stop and parity bits,

a serial data frame is sent over a line. There are four modes of serial data transmission in

8051. In each of these modes, it is important to decide the baud rate, the way in which

serial data frame is sent and any other information, etc.

 What is common in all these modes is the use of the SFR called "SBUF", for

transmission as well as reception. The data to be transmitted must be transferred to SBUF.

One more SFR that controls the serial communication operation is the serial control

register SCON. Details of SCON are shown in Fig. 6.10. Bits SM0 and SM1 in SCON

define serial port mode. Bit SM2 enables the multiprocessor communication in modes 2

and 3. Transmission is initiated by the execution of any instruction that uses SBUF as the

destination.

Serial Communication Modes

 There are four modes in which 8051 serial port can be configured.

A. Mode 0

 This is also called as shift register mode. Only RXD is the pin through which data

enter or exits. TXD pin outputs the shift clock only. Eight data bits are transmitted or

received. The baud rate is fixed and is totally determined by the system clock frequency. If

fosc is the clock frequency, then fosc/12 will be the baud rate.

 To see exactly how the operation of serial data transfer takes place in mode 0, see

Programming Example #6.11.

B. Mode 1

 In mode 1, 10 bits are transmitted through TXD pin or received through RXD pin.

There is a start bit (0), then 8 data bits (LSB first) and a stop bit (1). This is shown in Fig.

6.12. On receiving, the stop bit goes into RB8 in SCON. The baud rate is variable and is

determined by the timer 1 overflow rate. Therefore, before using this mode, one has to

initialize timer 1. A simple program to initialize serial port in mode 1 is given in

Programming Example #6.12. The baud rate is calculated using the formula:

 Baud rate = 2SMOD/32 x (Timer 1 overflow rate) (6.1)

 If timer 1 is configured in auto-reload mode (or mode 2), with reload value in TH1,

after each overflow, contents of TH1 will be loaded into TL1. This is convenient for

generating baud rate. In this mode, TMOD high nibble will be 0010B. At 12 MHz

oscillator frequency, the timer clocking time is 1μs. Now, the baud rate formula is

simplified to

 Baud rate = [2SMOD/32] x (oscillator frequency) / [12 x (256 - (TH1)] (6.2)

 For example, if TH1 contents are 230D, and SMOD bit in PCON is 0, then the baud

rate at 12 MHz is 1201 baud or 1.2K approximately. To get exactly 1200 baud, the

oscillator frequency must be 11.059 MHz This shows the degree of dependency of the

baud rate on the operating frequency. Thus, to be precise, the actual oscillator frequency

must be measured on the oscilloscope.

 To receive a byte in mode 1, the RI bit in SCON is tested for 1. Similarly, the REN

bit in SCON must be'1'.

 The following Programming Example #6.13 will receive a byte through pin RXD.

C. Mode 2

 In mode 2, 11 bits are transmitted, with a low start bit, then 8 data bits, a 9th bit and

a stop bit T. This is shown in Fig. 6.13.

 The 9th bit is programmable. User program can define 9th bit as TB8 in SCON. It

may be the parity of data byte. On reception, this 9th data bit goes into RB8 in SCON. In

mode 2, the bit SMOD in PCON and the oscillator frequency defines the baud rate and is

given by

 Baud rate = [2SMOD/64] x (oscillator frequency) (6.3)

 Now consider Programming Example #6.14 to initialize the serial port in mode 2.

At 12 MHz oscillator frequency, if SMD bit is 1, then the baud rate will be 375,000 or

375K.

D. Mode3

Again 11 bits are transmitted as shown in Fig. 6.13, this is almost same as mode 2, except

that the baud rate is defined by the timer 1 overflow rate. The baud rate calculations are

exactly same as that of mode 1.

UNIT-III

INTRODUCTION TO EMBEDDED C AND APPLICATIONS

KEYBOARD INTERFACING

Keyboards and LCDs are the most widely used input/output devices of the 8051, and a

basic understanding of them is essential. In this section, we first discuss keyboard

fundamentals, along with key press and key detection mechanisms. Then we show how a

keyboard is interfaced to an 8051.

Interfacing the keyboard to the 8051

At the lowest level, keyboards are organized in a matrix of rows and columns. The CPU

accesses both rows and columns through ports; therefore, with two 8-bit ports, an 8 x 8

matrix of keys can be connected to a microprocessor. When a key is pressed, a row and a

column make a contact; otherwise, there is no connection between rows and columns. In

IBM PC keyboards, a single microcontroller (consisting of a microprocessor, RAM and

EPROM, and several ports all on a single chip) takes care of hardware and software

interfacing of the keyboard. In such systems, it is the function of programs stored in the

EPROM of the microcontroller to scan the keys continuously, identify which one has been

activated, and present it to the motherboard. In this section we look at the mechanism by

which the 8051 scans and identifies the key.

Scanning and identifying the key

Figure 12-6 shows a 4 x 4 matrix connected to two ports. The rows are connected to an

output port and the columns are connected to an input port. If no key has been pressed,

reading the input port will yield 1 s for all columns since they are all connected to high

(Vcc). If all the rows are grounded and a key is pressed, one of the columns will have 0

since the key pressed provides the path to ground. It is the function of the microcontroller

to scan the keyboard continuously to detect and identify the key pressed. How it is done is

explained next.

LCD INTERFACING USING 8051

ADC is the Analog to Digital converter, which converts analog data into digital format;

usually it is used to convert analog voltage into digital format. Analog signal has infinite

no of values like a sine wave or our speech, ADC converts them into particular levels or

states, which can be measured in numbers as a physical quantity. Instead of continuous

conversion, ADC converts data periodically, which is usually known as sampling

rate. Telephone modem is one of the examples of ADC, which is used for internet, it

converts analog data into digital data, so that computer can understand, because computer

can only understand Digital data. The major advantage, of using ADC is that, we noise can

be efficiently eliminated from the original signal and digital signal can travel more

efficiently than analog one. That’s the reason that digital audio is very clear, while

listening.

ADC0808/0809 is a monolithic CMOS device and microprocessor compatible control logic

and has 28 pin which gives 8-bit value in output and 8- channel ADC input pins (IN0-IN7).

Its resolution is 8 so it can encode the analog data into one of the 256 levels (2
8
). This

device has three channel address line namely: ADDA, ADDB and ADDC for selecting

channel. Below is the Pin Diagram for ADC0808:

ADC0808/0809 requires a clock pulse for conversion. We can provide it by using

oscillator or by using microcontroller. In this project we have applied frequency by using

microcontroller.

We can select the any input channel by using the Address lines, like we can select the input

line IN0 by keeping all three address lines (ADDA, ADDB and ADDC) Low. If we want to

select input channel IN2 then we need to keep ADDA, ADDB low and ADDC high. For

selecting all the other input channels, have a look on the given table:

ADC Channel Name ADDC PIN ADDB PIN ADDA PIN

IN0 LOW LOW LOW

IN1 LOW LOW HIGH

IN2 LOW HIGH LOW

IN3 LOW HIGH HIGH

IN4 HIGH LOW LOW

IN5 HIGH LOW HIGH

IN6 HIGH HIGH LOW

IN7 HIGH HIGH HIGH

include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;
sbit oe=P3^6;

sbit sc=P3^4;

sbit eoc=P3^5;
sbit clk=P3^7;

sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;
#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;
sbit en=P2^1;

#define input_port P1 //ADC

int result[3],number;
include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;

sbit oe=P3^6;
sbit sc=P3^4;

sbit eoc=P3^5;

sbit clk=P3^7;
sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;
#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;

sbit en=P2^1;
#define input_port P1 //ADC

int result[3],number;
void timer0() interrupt 1 // Function to generate clock of frequency 500KHZ using Timer 0

interrupt.

{
clk=~clk;

}

void delay(unsigned int count)
{

int i,j;

for(i=0;i<count;i++)

 for(j=0;j<100;j++);
}

void daten()

{
 rs=1;

 rw=0;

 en=1;
 delay(1);

 en=0;

}

void lcd_data(unsigned char ch)
{

 lcdport=ch & 0xF0;

 daten();
 lcdport=ch<<4 & 0xF0;

 daten();

}

void cmden(void)
{

 rs=0;

 en=1;
 delay(1);

 en=0;

}
void lcdcmd(unsigned char ch)

{

 lcdport=ch & 0xf0;

 cmden();
 lcdport=ch<<4 & 0xF0;

 cmden();

}
lcdprint(unsigned char *str) //Function to send string data to LCD.

{

 while(*str)
 {

 lcd_data(*str);

 str++;

 }
}

void lcd_ini() //Function to inisialize the LCD

{

 lcdcmd(0x02);
 lcdcmd(0x28);

 lcdcmd(0x0e);

 lcdcmd(0x01);
}

void show()

{
 sprintf(result,"%d",number);

 lcdprint(result);

 lcdprint(" ");

}
void read_adc()

{

 number=0;
 ale=1;

 sc=1;

 delay(1);
 ale=0;

 sc=0;

 while(eoc==1);

 while(eoc==0);
 oe=1;

 number=input_port;

 delay(1);
 oe=0;

}

void adc(int i) //Function to drive ADC

{
switch(i)

 {

 case 0:
 ADDC=0; // Selecting input channel IN0 using address lines

 ADDB=0;

 ADDA=0;
 lcdcmd(0xc0);

 read_adc();

 show();

 break;
 case 1:

 ADDC=0; // Selecting input channel IN1 using address lines

 ADDB=0;
 ADDA=1;

 lcdcmd(0xc6);

 read_adc();
 show();

 break;

 case 2:

 ADDC=0; // Selecting input channel IN2 using address lines
 ADDB=1;

 ADDA=0;

 lcdcmd(0xcc);

 read_adc();
 show();

 break;

 }
}

void main()

{
 int i=0;

 eoc=1;

 ale=0;

 oe=0;
 sc=0;

 TMOD=0x02;

 TH0=0xFD;
lcd_ini();

lcdprint(" ADC 0808/0809 ");

lcdcmd(192);
lcdprint(" Interfacing ");

delay(500);

lcdcmd(1);

lcdprint("Circuit Digest ");
lcdcmd(192);

lcdprint("System Ready... ");

delay(500);
lcdcmd(1);

lcdprint("Ch1 Ch2 Ch3 ");

 IE=0x82;

 TR0=1;
while(1)

{

 for(i=0;i<3;i++)
 {

 adc(i);

 number=0;
 }

}

}

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to analog

signals. In this section we discuss the basics of interfacing a DAC to the 8051.

Recall from your digital electronics book the two methods of creating a DAC: binary weighted and

R/2R ladder. The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used

in this section, use the R/2R method since it can achieve a much higher degree of precision. The

first criterion for judging a DAC is its resolution, which is a function of the number of binary

inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the

resolution of the DAC since the number of analog output levels is equal to 2″, where n is the

number of data bit inputs. Therefore, an 8-input DAC.

such as the DAC0808 provides 256 discrete voltage (or current) levels of output.

Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are also

16-bit DACs, but they are more expensive.

MC1408 DAC (or DAC0808)

In the MC1408 (DAC0808), the digital inputs are converted to current (Iout), and by connecting a

resistor to the Ioutpin, we convert the result to voltage.

The total current provided by the Iout pin is a function of the binary numbers at the DO – D7 inputs

of the DAC0808 and the reference current (Iref), and is as follows:

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current that must be

applied to pin 14. The Iref current is generally set to 2.0 mA. Figure 13-18 shows the generation of

current reference (setting Iref = 2 mA) by using the

standard 5-V power supply and IK and 1.5K-ohm standard resistors. Some DACs also use the zener

diode (LM336), which overcomes any fluctuation associated

To find the value sent to the DAC for various angles, we simply multiply the Vout voltage by 25.60

because there are 256 steps and full-scale Vout is 10 volts. Therefore, 256 steps /10 V = 25.6 steps

per volt. To further clarify this, look at the following code. This program sends the values to the

DAC continuously (in an infinite loop) to produce a crude sine wave. See Figure 13-19.

UNIT-IV

INTRODUCTION TO REAL – TIME OPERATING SYSTEMS

 Introduction

 A more complex software architecture is needed to handle multiple tasks,

coordination, communication, and interrupt handling – an RTOS architecture

 Distinction:

 Desktop OS – OS is in control at all times and runs applications, OS runs

in different address space

 RTOS – OS and embedded software are integrated, ES starts and activates

the OS – both run in the same address space (RTOS is less protected)

 RTOS includes only service routines needed by the ES application

 RTOS vendors: VsWorks (we got it!), VTRX, Nucleus, LynxOS, uC/OS

 Most conform to POSIX (IEEE standard for OS interfaces)

 Desirable RTOS properties: use less memory, application programming

interface, debugging tools, support for variety of microprocessors,

already-debugged network drivers

What Is an O.S?

 A piece of software

 It provides tools to manage (for embedded systems)

 Processes, (or tasks)

 Memory space

What Is an Operating System?

 What? It is a program (software) that acts as an intermediary between a user of a

computer and the computer hardware.

 Why? Make the use of a computer CONVENIENT and EFFICIENT.

What Is an Operating System?For an Embedded System

 Provides software tools for a convenient and prioritized control of tasks.

 Provides tools for task (process) synchronization.

 Provides a simple memory management system

Abstract View of A System (Embedded System):

Process/Task Concept:

 Process is a program in execution; process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

Multitasking:

Process/Task Concept:

 Task States:

 Running: Instructions are being executed

 Ready: The process is waiting to be assigned to a process

 Blocked: The process is waiting for some event to occur

 terminated: The process has finished execution

 new: The process is being created

Task states:

Tasks and Task States:

 A task – a simple subroutine

 ES application makes calls to the RTOS functions to start tasks, passing to the OS, start

address, stack pointers, etc. of the tasks

 Task States:

 Running

 Ready (possibly: suspended, pended)

 Blocked (possibly: waiting, dormant, delayed)

 [Exit]

 Scheduler – schedules/shuffles tasks between Running and Ready states

 Blocking is self-blocking by tasks, and moved to Running state via other tasks’

interrupt signaling (when block-factor is removed/satisfied)

 When a task is unblocked with a higher priority over the ‘running’ task, the

scheduler ‘switches’ context immediately (for all pre-emptive RTOSs)

Task State Transitions:

 Tasks – 1:

 Issue – Scheduler/Task signal exchange for block-unblock of tasks via function

calls

 Issue – All tasks are blocked and scheduler idles forever (not desirable!)

 Issue – Two or more tasks with same priority levels in Ready state (time-slice,

FIFO)

 Example: scheduler switches from processor-hog vLevelsTask to vButtonTask

(on user interruption by pressing a push-button), controlled by the main() which

initializes the RTOS, sets priority levels, and starts the RTOS

Tasks and Data:

 Each tasks has its won context - not shared, private registers, stack, etc.

 In addition, several tasks share common data (via global data declaration; use of

‘extern’ in one task to point to another task that declares the shared data

 Shared data caused the ‘shared-data problem’ without solutions discussed in Chp4

or use of ‘Reentrancy’ characterization of functions

Semaphores and Shared Data – A new tool for atomicity

 Semaphore – a variable/lock/flag used to control access to shared resource (to

avoid shared-data problems in RTOS)

 Protection at the start is via primitive function, called take, indexed by the

semaphore

 Protection at the end is via a primitive function, called release, also indexed

similarly

 Simple semaphores – Binary semaphores are often adequate for shared data

problems in RTOS

Semaphores and Shared Data – 1:

 RTOS Semaphores & Initializing Semaphores

 Using binary semaphores to solve the ‘tank monitoring’ problem

 The nuclear reactor system: The issue of initializing the semaphore variable in a

dedicated task (not in a ‘competing’ task) before initializing the OS – timing of

tasks and priority overrides, which can undermine the effect of the semaphores

 Solution: Call OSSemInit() before OSInit()

 Semaphores and Shared Data – 2

 Reentrancy, Semaphores, Multiple Semaphores, Device Signaling,

 a reentrant function, protecting a shared data, cErrors, in critical section

 Each shared data (resource/device) requires a separate semaphore for individual

protection, allowing multiple tasks and data/resources/devices to be shared

exclusively, while allowing efficient implementation and response time

 example of a printer device signaled by a report-buffering task, via semaphore

signaling, on each print of lines constituting the formatted and buffered report

semaphores and Shared Data – 3:

 Semaphore Problems – ‘Messing up’ with semaphores

 The initial values of semaphores – when not set properly or at the wrong

place

 The ‘symmetry’ of takes and releases – must match or correspond – each

‘take’ must have a corresponding ‘release’ somewhere in the ES

application

 ‘Taking’ the wrong semaphore unintentionally (issue with multiple

semaphores)

 Holding a semaphore for too long can cause ‘waiting’ tasks’ deadline to be

missed

 Priorities could be ‘inverted’ and usually solved by ‘priority

inheritance/promotion’

message queue :

Two (or more) processes can exchange information via access to a common system message

queue. The sending process places via some (OS) message-passing module a message onto a

queue which can be read by another process (Figure)Each message is given an identification or

type so that processes can select the appropriate message. Process must share a common key in

order to gain access to the queue in the first place (subject to other permissions -- see below).

 Basic Message Passing IPC messaging lets processes send and receive messages, and queue

messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes,

each IPC message has an explicit length. Messages can be assigned a specific type. Because of

this, a server process can direct message traffic between clients on its queue by using the client

process PID as the message type. For single-message transactions, multiple server processes can

work in parallel on transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be initialized (through the

msgget function see below) Operations to send and receive messages are performed by the

msgsnd() and msgrcv() functions, respectively.

When a message is sent, its text is copied to the message queue. The msgsnd() and msgrcv()

functions can be performed as either blocking or non-blocking operations. Non-blocking

operations allow for asynchronous message transfer -- the process is not suspended as a result of

sending or receiving a message. In blocking or synchronous message passing the sending process

cannot continue until the message has been transferred or has even been acknowledged by a

receiver. IPC signal and other mechanisms can be employed to implement such transfer. A

blocked message operation remains suspended until one of the following three conditions occurs:

 The call succeeds.

 The process receives a signal.

 The queue is removed.

Initialising the Message Queue :

The msgget() function initializes a new message queue:

int msgget(key_t key, int msgflg)

It can also return the message queue ID (msqid) of the queue corresponding to the key argument.

The value passed as the msgflg argument must be an octal integer with settings for the queue's

permissions and control flags.

The following code illustrates the msgget() function.

#include <sys/ipc.h>;

#include <sys/msg.h>;

...

key_t key; /* key to be passed to msgget() */

int msgflg /* msgflg to be passed to msgget() */

int msqid; /* return value from msgget() */

...

key = ...

msgflg = ...

if ((msqid = msgget(key, msgflg)) == –1)

 {

 perror("msgget: msgget failed");

 exit(1);

 } else

 (void) fprintf(stderr, “msgget succeeded");

Mailbox:

 Mailbox (for message) is an IPC through a message-block at an OS that can be

used only by a single destined task.

 A task on an OS function call puts (means post and also send) into the mailbox

nly a pointer to a mailbox message

 Mailbox message may also include a header to identify the message-type

specification.

Mailbox IPC features:

•OS provides for inserting and deleting message into the mailbox message- pointer. Deleting

eans message-pointer pointing to Null.

•Each mailbox for a message need initialization (creation) before using the functions in the

scheduler for the message queue and message pointer pointing to null

Mailbox Related Functions at the OS:

Pipe Function:

Pipe

 Pipe is a device used for the interprocess communication

 Pipe has the functions create, connect and delete and functions similar to a device driver

Writing and reading a Pipe:

• A message-pipe─ a device for inserting (writing) and deleting (reading) from that between two

given inter-connected tasks or two sets of tasks.

• Writing and reading from a pipe is like using a C commandfwrite with a file name

to write into a named file, and C command fread with a file nameto read into a named

Pipe function calls:

 Create a pipe

 Open pipe

 Close pipe

 Read from the pipe

 Write to the pipe

 Event Functions:

 Wait for only one event (semaphore or mailboxmessage posting event)

 Event related OS functions can wait for number of events before initiating an action or

wait for any of the predefined set of events

 Events for wait can be from different tasks or the ISRs

Event functions at OS:

Some OSes support and some don’t support event functions for a group of event

Event registers function calls:

 Create an event register

 Delete an event register

 Query an event register

 Set an event register

 Clear an event register

 Each bit I an event register can be used to obtain the states of an event .

 A task can have an event register and other tasks can set/clear the bits in the event

register

Signal:

 one way for messaging is to use an OS function signal ().

 Provided in Unix, Linux and several RTOSes.

 Unix and Linux OSes use signals profusely and have thirty-one different types of

signals for the various events.

 A signal is the software equivalent of the flag at a register that sets on a hardware

interrupt. Unless masked by a signal mask, the signal allows the execution of the

Signal handling function and allows the handler to run just as a hardware interrupt

allows the execution of an ISR

 Signal provides the shortest communication.

Signal management fuction calls:

 Install a signal handler

 Remove an installed signal handler

 Send a signal to another task

 Block a signal from being delivered

 Unblock a blocked signal

 Ignore a signal

Timers:

 Real time clock ─ system clock, on each tick SysClkIntr interrupts

 Based on each SysClkIntr interrupts─ there are number of OS timer functions

 Timer are used to message the elasped time of events for instance , the kernel has to keep

track of different times

The following functions calls are provided to manage the timer

 Get time

 Set time

 Time delay(in system clock)

 Time delay(in sec.)

 Reset timer

Memory management:

Memory allocation:

 Memory allocation When a process is created, the memory manager allocates the

memory addresses (blocks) to it by mapping the process address space.

 Threads of a process share the memory space of the process

Memory Managing Strategy for a system

 Fixed

 blocks allocation

 Dynamic

 blocks Allocation

 Dynamic Page

 Allocation

 Dynamic Data memory Allocation

Interrupt service routine (ISR):

 Interrupt is a hardware signal that informs the cpu that an important event has occurred

when interrupt occured, cpu saves its content and jumps to the ISR

 In RTOS

o Interrupt latency

o Interrupt response

o Interrupt recovery

Mutex:

 Mutex standards for mutual exclusion ,mutex is the general mechanism used for both

rsource synchronization as well as task synchronization

It has following mechanisms

 Disabling the scheduler

 Disabling the interrupts

 By test and set operations

 Using semaphore

UNIT-V

INTRODUCTION TO ADVANCED ARCHITECTURES

SHARC Processor Architectural Overview

Super Harvard Architecture

Analog Devices' 32-Bit Floating-Point SHARC
®
 Processors are based on a Super Harvard

architecture that balances exceptional core and memory performance with outstanding I/O

throughput capabilities. This "Super" Harvard architecture extends the original concepts of

separate program and data memory busses by adding an I/O processor with its associated

dedicated busses. In addition to satisfying the demands of the most computationally intensive,

real-time signal-processing applications, SHARC processors integrate large memory arrays and

application-specific peripherals designed to simplify product development and reduce time to

market.

The SHARC processor portfolio currently consists of four generations of products providing

code-compatible solutions ranging from entry-level products priced at less than $10 to the

highest performance products offering fixed- and floating-point computational power to 450

MHz/2700 MFLOPs. Irrespective of the specific product choice, all SHARC processors provide

a common set of features and functionality useable across many signal processing markets and

applications. This baseline functionality enables the SHARC user to leverage legacy code and

design experience while transitioning to higher-performance, more highly integrated SHARC

products.

Common Architectural Features

 32/40-Bit IEEE Floating-Point Math

 32-Bit Fixed-Point Multipliers with 64-Bit Product & 80-Bit Accumulation

 No Arithmetic Pipeline; All Computations Are Single-Cycle

 Circular Buffer Addressing Supported in Hardware

 32 Address Pointers Support 32 Circular Buffers

 Six Nested Levels of Zero-Overhead Looping in Hardware

 Rich, Algebraic Assembly Language Syntax

 Instruction Set Supports Conditional Arithmetic, Bit Manipulation, Divide & Square

Root, Bit Field Deposit and Extract

 DMA Allows Zero-Overhead Background Transfers at Full Clock Rate Without

Processor Intervention

First Generation SHARC products offer performance to 66 MHz/ 198 MFLOPs and form the

cornerstone of the SHARC processor family. Their easy-to-use Instruction Set Architecture that

supports both 32-bit fixed-point and 32/40-bit floating data formats combined with large memory

arrays and sophisticated communications ports make them suitable for a wide array of parallel

processing applications including consumer audio, medical imaging, military, industrial, and

instrumentation.

Second Generation SHARC products double the level of signal processing performance

(100MHz / 600MFLOPs) offered by utilizing a Single-Instruction, Multiple-Data (SIMD)

architecture. This hardware extension to first generation SHARC processors doubles the number

of computational resources available to the system programmer. Second generation products

contain dual multipliers, ALUs, shifters, and data register files - significantly increasing overall

system performance in a variety of applications. This capability is especially relevant in

consumer, automotive, and professional audio where the algorithms related to stereo channel

processing can effectively utilize the SIMD architecture.

Third Generation SHARC products employ an enhanced SIMD architecture that extends CPU

performance to 450 MHz/2700 MFLOPs. These products also integrate a variety of ROM

memory configurations and audio-centric peripherals design to decrease time to market and

reduce the overall bill of materials costs. This increased level of performance and peripheral

integration allow third generation SHARC processors to be considered as single-chip solutions

for a variety of audio markets.

The fourth generation of SHARC
®
 Processors, now includes the ADSP-21486, ADSP-21487,

ADSP-21488, ADSP-21489 and offers increased performance, hardware-based filter

accelerators, audio and application-focused peripherals, and new memory configurations capable

of supporting the latest surround-sound decoder algorithms. All devices are pin-compatible with

each other and completely code-compatible with all prior SHARC Processors. These newest

members of the fourth generation SHARC Processor family are based on a single-instruction,

multiple-data (SIMD) core, which supports both 32-bit fixed-point and 32-/40-bit floating-point

arithmetic formats making them particularly suitable for high-performance audio applications

Fourth-generation SHARC Processors also integrate application-specific peripherals designed to

simplify hardware design, minimize design risks, and ultimately reduce time to market. Grouped

together, and broadly named the Digital Applications Interface (DAI), these functional blocks

may be connected to each other or to external pins via the software-programmable Signal

Routing Unit (SRU). The SRU is an innovative architectural feature that enables complete and

flexible routing amongst DAI blocks. Peripherals connected through the SRU include but are not

limited to serial ports, IDP, S/PDIF Tx/Rx, and an 8-Channel asynchronous sample rate

converter block. The fourth generation SHARC allows data from the serial ports to be directly

transferred to external memory by the DMA controller. Other peripherals such as SPI,UART and

Two-Wire Interface are routed through a Digital Peripheral Interface (DPI).

Instruction-level parallelism (ILP)

Pipelining can overlap the execution of instructions when they are independent of one another.

This potential overlap among instructions is called instruction-level parallelism (ILP) since the

instructions can be evaluated in parallel.

The amount of parallelism available within a basic block (a straight-line code sequence with no

branches in and out except for entry and exit) is quite small. The average dynamic branch

frequency in integer programs was measured to be about 15%, meaning that about 7 instructions

execute between a pair of branches.

Since the instructions are likely to depend upon one another, the amount of overlap we can

exploit within a basic block is likely to be much less than 7.

To obtain substantial performance enhancements, we must exploit ILP across multiple basic

blocks.

The simplest and most common way to increase the amount of parallelism available among

instructions is to exploit parallelism among iterations of a loop. This type of parallelism is often

called loop-level parallelism.

Example 1

for (i=1; i<=1000; i= i+1)

 x[i] = x[i] + y[i];

This is a parallel loop. Every iteration of the loop can overlap with any other iteration, although

within each loop iteration there is little opportunity for overlap.

Example 2

for (i=1; i<=100; i= i+1){

 a[i] = a[i] + b[i]; //s1

 b[i+1] = c[i] + d[i]; //s2

}

Is this loop parallel? If not how to make it parallel?

Statement s1 uses the value assigned in the previous iteration by statement s2, so there is a loop-

carried dependency between s1 and s2. Despite this dependency, this loop can be made parallel

because the dependency is not circular:

 - neither statement depends on itself;

 - while s1 depends on s2, s2 does not depend on s1.

A loop is parallel unless there is a cycle in the dependencies, since the absence of a cycle means

that the dependencies give a partial ordering on the statements.

To expose the parallelism the loop must be transformed to conform to the partial order. Two

observations are critical to this transformation:

There is no dependency from s1 to s2. Then, interchanging the two statements will not affect the

execution of s2.

On the first iteration of the loop, statement s1 depends on the value of b[1] computed prior to

initiating the loop.

This allows us to replace the loop above with the following code sequence, which makes

possible overlapping of the iterations of the loop:

a[1] = a[1] + b[1];

for (i=1; i<=99; i= i+1){

 b[i+1] = c[i] + d[i];

 a[i+1] = a[i+1] + b[i+1];

}

b[101] = c[100] + d[100];

Example 3

for (i=1; i<=100; i= i+1){

 a[i+1] = a[i] + c[i]; //S1

 b[i+1] = b[i] + a[i+1]; //S2

}

This loop is not parallel because it has cycles in the dependencies, namely the

statements S1 and S2 depend on themselves!

There are a number of techniques for converting such loop-level parallelism into instruction-

level parallelism. Basically, such techniques work by unrolling the loop.

An important alternative method for exploiting loop-level parallelism is the use of vector

instructions on a vector processor, which is not covered by this tutorial.

I2C Bus Protocol

The I2C bus physically consists of 2 active wires and a ground connection. The active wires,

called SDA and SCL, are both bi-directional. SDA is the Serial Data line, and SCL is the Serial

CLock line.

Every device hooked up to the bus has its own unique address, no matter whether it is an MCU,

LCD driver, memory, or ASIC. Each of these chips can act as a receiver and/or transmitter,

depending on the functionality. Obviously, an LCD driver is only a receiver, while a memory or

I/O chip can be both transmitter and receiver.

The I2C bus is a multi-master bus. This means that more than one IC capable of initiating a data

transfer can be connected to it. The I2C protocol specification states that the IC that initiates a

data transfer on the bus is considered the Bus Master. Consequently, at that time, all the other

ICs are regarded to be Bus Slaves.

As bus masters are generally microcontrollers, let's take a look at a general 'inter-IC chat' on the

bus. Let’s consider the following setup and assume the MCU wants to send data to one of its

slaves (also see here for more information; click here for information on how to receive data

from a slave).

First, the MCU will issue a START condition. This acts as an 'Attention' signal to all of the

connected devices. All ICs on the bus will listen to the bus for incoming data.

Then the MCU sends the ADDRESS of the device it wants to access, along with an indication

whether the access is a Read or Write operation (Write in our example). Having received the

address, all IC's will compare it with their own address. If it doesn't match, they simply wait until

the bus is released by the stop condition (see below). If the address matches, however, the chip

will produce a response called the ACKNOWLEDGE signal.

Once the MCU receives the acknowledge, it can start transmitting or receiving DATA. In our

case, the MCU will transmit data. When all is done, the MCU will issue the STOP condition.

This is a signal that the bus has been released and that the connected ICs may expect another

transmission to start any moment.

We have had several states on the bus in our example:

START, ADDRESS, ACKNOWLEDGE, DATA, STOP. These are all unique conditions on the

bus. Before we take a closer look at these bus conditions we need to understand a bit about the

physical structure and hardware of the bus.

Controller Area Network (CAN) interface in embedded systems:

CAN or Controller Area Network or CAN-bus is an ISO standard computer network protocol

and bus standard, designed for microcontrollers and devices to communicate with each other

without a host computer. Designed earlier for industrial networking but recently more adopted to

automotive applications, CAN have gained widespread popularity for embedded control in the

areas like industrial automation, automotives, mobile machines, medical, military and other

harsh environment network applications.

Development of the CAN-bus started originally in 1983 at Robert Bosch GmbH. The protocol

was officially released in 1986. And the first CAN controller chips, produced by Intel and

Philips, introduced in the market in the year of 1987.

Introduction:
The CAN is a "broadcast" type of bus. That means there is no explicit address in the messages.

All the nodes in the network are able to pick-up or receive all transmissions. There is no way to

send a message to just a specific node. To be more specific, the messages transmitted from any

node on a CAN bus does not contain addresses of either the transmitting node, or of any intended

receiving node. Instead, an identifier that is unique throughout the network is used to label the

content of the message. Each message carries a numeric value, which controls its priority on the

bus, and may also serve as an identification of the contents of the message. And each of the

receiving nodes performs an acceptance test or provides local filtering on the identifier to

determine whether the message, and thus its content, is relevant to that particular node or not, so

that each node may react only on the intended messages. If the message is relevant, it will be

processed; otherwise it is ignored.

http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/transmitting-a-byte-to-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/getting-acknowledge-from-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html

How do they communicate?

If the bus is free, any node may begin to transmit. But what will happen in situations where two

or more nodes attempt to transmit message (to the CAN bus) at the same time. The identifier

field, which is unique throughout the network helps to determine the priority of the message. A

"non-destructive arbitration technique" is used to accomplish this, to ensure that the messages are

sent in order of priority and that no messages are lost. The lower the numerical value of the

identifier, the higher the priority. That means the message with identifier having more dominant

bits (i.e. bit 0) will overwrite other nodes' less dominant identifier so that eventually (after the

arbitration on the ID) only the dominant message remains and is received by all nodes.

As stated earlier, CAN do not use address-based format for communication, instead uses a

message-based data format. Here the information is transferred from one location to another by

sending a group of bytes at one time (depending on the order of priority). This makes CAN

ideally suited in applications requiring a large number of short messages (e.g.: transmission of

temperature and rpm information). by more than one location and system-wide data consistency

is mandatory. (The traditional networks such as USB or Ethernet are used to send large blocks of

data, point-to-point from node A to node B under the supervision of a central bus master).

Let us now try to understand how these nodes are interconnected physically, by pointing out

some examples. A modern automobile system will have many electronic control units for various

subsystems (fig1-a). Typically the biggest processor will be the engine control unit (or the host

processor). The CAN standard even facilitates the subsystem to control actuators or receive

signals from sensors. A CAN message never reaches these devices directly, but instead a host-

processor and a CAN Controller (with a CAN transciever) is needed between these devices and

the bus. (In some cases, the network need not have a controller node; each node can easily be

connected to the main bus directly.)

The CAN Controller stores received bits (one by one) from the bus until an entire message block

is available, that can then be fetched by the host processor (usually after the CAN Controller has

triggered an interrupt). The Can transciever adapts signal levels from the bus, to levels that the

CAN Controller expects and also provides a protective circuitry for the CAN Controller. The

host-processor decides what the received messages mean, and which messages it wants to

transmit itself.

It is likely that the more rapidly changing parameters need to be transmitted more frequently and,

therefore, must be given a higher priority. How this high-priority is achieved? As we know, the

priority of a CAN message is determined by the numerical value of its identifier. The numerical

value of each message identifier (and thus the priority of the message) is assigned during the

initial phase of system design. To determine the priority of messages (while communication),

CAN uses the established method known as CSMA/CD with the enhanced capability of non-

destructive bit-wise arbitration to provide collision resolution and to exploit the maximum

available capacity of the bus. "Carrier Sense" describes the fact that a transmitter listens for a

carrier wave before trying to send. That is, it tries to detect the presence of an encoded signal

from another station before attempting to transmit. If a carrier is sensed, the node waits for the

transmission in progress to finish before initiating its own transmission. "Multiple Access"

describes the fact that multiple nodes send and receive on the same medium. All other nodes

using the medium generally receive transmissions by one node. "Collision Detection" (CD)

means that collisions are resolved through a bit-wise arbitration, based on a preprogrammed

priority of each message in the identifier field of a message.

Let us now try to understand how the term "priority" becomes more important in the network.

Each node can have one or more function. Different nodes may transmit messages at different

times (Depends how the system is configured) based on the function(s) of each node. For

example:

1) Only when a system failure (communication failure) occurs.

2) Continually, such as when it is monitoring the temperature.

3) A node may take action or transmit a message only when instructed by another node, such as

when a fan controller is instructed to turn a fan on when the temperature-monitoring node has

detected an elevated temperature.

Note:

When one node transmits the message, sometimes many nodes may accept the message and act

on it (which is not a usual case). For example, a temperature-sensing node may send out

temperature data that are accepted & acted on only by a temperature display node. But if the

temperature sensor detects an over-temperature situation, then many nodes might act on the

information.

CAN use "Non Return to Zero" (NRZ) encoding (with "bit-stuffing") for data communication on

a "differential two wire bus". The two-wire bus is usually a twisted pair (shielded or unshielded).

Flat pair (telephone type) cable also performs well but generates more noise itself, and may be

more susceptible to external sources of noise.

Main Features:

a) A two-wire, half duplex, high-speed network system mainly suited for high-speed applications

using "short messages". (The message is transmitted serially onto the bus, one bit after another in

a specified format).

b) The CAN bus offers a high-speed communication rate up to 1 M bits / sec, for up to 40 feet,

thus facilitating real-time control. (Increasing the distance may decrease the bit-rate).

c) With the message-based format and the error-containment followed, it's possible to add nodes

to the bus without reprogramming the other nodes to recognize the addition or changing the

existing hardware. This can be done even while the system is in operation. The new node will

start receiving messages from the network immediately. This is called "hot-plugging"

d) Another useful feature built into the CAN protocol is the ability of a node to request

information from other nodes. This is called a remote transmit request, or RTR.

e) The use of NRZ encoding ensures compact messages with a minimum number of transitions

and high resilience to external disturbance.

f) CAN protocol can link up to 2032 devices (assuming one node with one identifier) on a single

network. But accounting to the practical limitations of the hardware (transceivers), it may only

link up to 110 nodes on a single network.

g) Has an extensive and unique error checking mechanisms.

h) Has High immunity to Electromagnetic Interference. Has the ability to self-diagnose & repair

data errors.

i) Non-destructive bit-wise arbitration provides bus allocation on the basis of need, and delivers

efficiency benefits that cannot be gained from either fixed time schedule allocation (e.g. Token

ring) or destructive bus allocation (e.g. Ethernet.)

j) Fault confinement is a major advantage of CAN. Faulty nodes are automatically dropped from

the bus. This helps to prevent any single node from bringing the entire network down, and thus

ensures that bandwidth is always available for critical message transmission.

k) The use of differential signaling (a method of transmitting information electrically by means

of two complementary signals sent on two separate wires) gives resistance to EMI & tolerance of

ground offsets.

l) CAN is able to operate in extremely harsh environments. Communication can still continue

(but with reduced signal to noise ratio) even if:

1. Either of the two wires in the bus is broken

2. Either wire is shorted to ground

3. Either wire is shorted to power supply.

CAN protocol Layers & message Frames:

Like any network applications, Can also follows layered approach to the system implementation.

It conforms to the Open Systems Interconnection (OSI) model that is defined in terms of layers.

The ISO 11898 (For CAN) architecture defines the lowest two layers of the seven layers

OSI/ISO model as the data-link layer and physical layer. The rest of the layers (called Higher

Layers) are left to be implemented by the system software developers (used to adapt and

optimize the protocol on multiple media like twisted pair. Single wire, optical, RF or IR). The

Higher Level Protocols (HLP) is used to implement the upper five layers of the OSI in CAN.

CAN use a specific message frame format for receiving and transmitting the data. The two types

of frame format available are:

a) Standard CAN protocol or Base frame format

b) Extended Can or Extended frame format

The following figure (Fig 2) illustrates the standard CAN frame format, which consists of seven

different bit-fields.

a) A Start of Frame (SOF) field - indicates the beginning of a message frame.

b) An Arbitration field, containing a message identifier and the Remote Transmission Request

(RTR) bit. The RTR bit is used to discriminate between a transmitted Data Frame and a request

for data from a remote node.

c) A Control Field containing six bits in which two reserved bits (r0 and r1) and a four bit Data

Length Code (DLC). The DLC indicates the number of bytes in the Data Field that follows.

d) A Data Field, containing from zero to eight bytes.

e) The CRC field, containing a fifteen-bit cyclic redundancy check-code and a recessive

delimiter bit.

f) The Acknowledge field, consisting of two bits. The first one is a Slot bit which is transmitted

as recessive, but is subsequently over written by dominant bits transmitted from any node that

successfully receives the transmitted message. The second bit is a recessive delimiter bit.

g) The End of Frame field, consisting of seven recessive bits.

An Intermission field consisting of three recessive bits is then added after the EOF field. Then

the bus is recognized to be free.

The Extended Frame format provides the Arbitration field with two identifier bit fields. The first

(the base ID) is eleven (11) bits long and the second field (the ID extension) is eighteen (18) bits

long, to give a total length of twenty nine (29) bits. The distinction between the two formats is

made using an Identifier Extension (IDE) bit. A Substitute Remote Request (SRR) bit is also

included in the Arbitration Field.

Error detection & correction:
This mechanism is used for detecting errors in messages appearing on the CAN bus, so that the

transmitter can retransmit message. The CAN protocol defines five different ways of detecting

errors. Two of these works at the bit level, and the other three at the message level.

1. Bit Monitoring.

2. Bit Stuffing.

3. Frame Check.

4. Acknowledgement Check.

5. Cyclic Redundancy Check

1. Each transmitter on the CAN bus monitors (i.e. reads back) the transmitted signal level. If the

signal level read differs from the one transmitted, a Bit Error is signaled. Note that no bit error is

raised during the arbitration process.

2. When five consecutive bits of the same level have been transmitted by a node, it will add a

sixth bit of the opposite level to the outgoing bit stream. The receivers will remove this extra bit.

This is done to avoid excessive DC components on the bus, but it also gives the receivers an

extra opportunity to detect errors: if more than five consecutive bits of the same level occurs on

the bus, a Stuff Error is signaled.

3. Some parts of the CAN message have a fixed format, i.e. the standard defines exactly what

levels must occur and when. (Those parts are the CRC Delimiter, ACK Delimiter, End of Frame,

and also the Intermission). If a CAN controller detects an invalid value in one of these fixed

fields, a Frame Error is signaled.

4. All nodes on the bus that correctly receives a message (regardless of their being "interested" of

its contents or not) are expected to send a dominant level in the so-called Acknowledgement Slot

in the message. The transmitter will transmit a recessive level here. If the transmitter can't detect

a dominant level in the ACK slot, an Acknowledgement Error is signaled.

5. Each message features a 15-bit Cyclic Redundancy Checksum and any node that detects a

different CRC in the message than what it has calculated itself will produce a CRC Error.

Error confinement:

Error confinement is a technique, which is unique to CAN and provides a method for

discriminating between temporary errors and permanent failures in the communication network.

Temporary errors may be caused by, spurious external conditions, voltage spikes, etc. Permanent

failures are likely to be caused by bad connections, faulty cables, defective transmitters or

receivers, or long lasting external disturbances.

Let us now try to understand how this works.

Each node along the bus will be having two error counters namely the transmit error counter

(TEC) and the receive error counter (REC), which are used to be incremented and/or

decremented in accordance with the error detected. If a transmitting node detects a fault, then it

will increments its TEC faster than the listening nodes increments its REC because there is a

good chance that it is the transmitter who is at fault.

A node usually operates in a state known as "Error Active" mode. In this condition a node is

fully functional and both the error count registers contain counts of less than 127. When any one

of the two error counters raises above 127, the node will enter a state known as "Error Passive".

That means, it will not actively destroy the bus traffic when it detects an error. The node which is

in error passive mode can still transmit and receive messages but are restricted in relation to how

they flag any errors that they may detect. When the Transmit Error Counter rises above 255, the

node will enter the Bus Off state, which means that the node doesn't participate in the bus traffic

at all. But the communications between the other nodes can continue unhindered.

To be more specific, an "Error Active" node will transmit "Active Error Flags" when it detects

errors, an "Error Passive" node will transmit "Passive Error Flags" when it detects errors and a

node, which is in "Bus Off" state will not transmit "anything" on the bus at all. The transmit

errors give 8 error points, and receive errors give 1 error point. Correctly transmitted and/or

received messages cause the counter(s) to decrease. The other nodes will detect the error caused

by the Error Flag (if they haven't already detected the original error) and take appropriate action,

i.e. discard the current message.

Let's assume that whenever node-A (for example) on a bus tries to transmit a message, it fails

(for whatever reason). Each time this happens, it increases its Transmit Error Counter by 8 and

transmits an Active Error Flag. Then it will attempt to retransmit the message and suppose the

same thing happens again. When the Transmit Error Counter rises above 127 (i.e. after 16

attempts), node A goes Error Passive. It will now transmit passive error flags on the bus. A

Passive Error Flag comprises 6 recessive bits, and will not destroy other bus traffic - so the other

nodes will not hear the node-A complaining about bus errors. However, A continues to increase

its TEC. When it rises above 255, node-A finally stops and goes to "Bus Off" state.

What does the other nodes think about node A? - For every active error flag that A transmitted,

the other nodes will increase their Receive Error Counters by 1. By the time that A goes Bus Off,

the other nodes will have a count in their Receive Error Counters that is well below the limit for

Error Passive, i.e. 127. This count will decrease by one for every correctly received message.

However, node A will stay bus off. Most CAN controllers will provide status bits and

corresponding interrupts for two states: "Error Warning" (for one or both error counters are

above 96) and "Bus Off".

Bit Timing and Synchronization:

The time for each bit in a CAN message frame is made up of four non-overlapping time

segments as shown below.

The following points may be relevant as far as the "bit timing" is concerned.

1. Synchronization segment is used to synchronize the nodes on the bus. And it will always be of

one quantum long.

2. One time quanta (which is also known as the system clock period) is the period of the local

oscillator, multiplied by the value in the Baud Rate Pre-scaler (BRP) register in the CAN

controller.

3. A bit edge is expected to take place during this synchronization segment when the data

changes on the bus.

4. Propagation segment is used to compensate for physical delay times within the network bus

lines. And is programmable from one to eight time quanta long.

5. Phase-segment1 is a buffer segment that can be lengthened during resynchronization to

compensate for oscillator drift and positive phase differences between the oscillators of the

transmitting and receiving nodes. And is also programmable from one to eight time quanta long.

6. Phase-segment2 can be shortened during resynchronization to compensate for negative phase

errors and oscillator drift. And is the maximum of Phase-segment1 combined with the

Information Processing Time.

7. The Sample point will always be at the end of Phase-seg1. It is the time at which the bus level

is read and interpreted as the value of the current bit.

8. The Information Processing Time is less than or equal to 2 time quanta.

This bit time is programmable at each node on a CAN Bus. But be aware that all nodes on a

single CAN bus must have the same bit time regardless of transmitting or receiving. The bit time

is a function of the period of the oscillator local to each node, the value that is user-programmed

into BRP register in the controller at each node, and the programmed number of time quanta per

bit.

How do they synchronize:

Suppose a node receives a data frame. Then it is necessary for the receiver to synchronize with

the transmitter to have proper communication. But we don't have any explicit clock signal that a

CAN system can use as a timing reference. Instead, we use two mechanisms to maintain

synchronization, which is explained below.

Hard synchronization:

It occurs at the Start-of-Frame or at the transition of the start bit. The bit time is restarted from

that edge.

Resynchronization:

To compensate for oscillator drift, and phase differences between transmitter and receiver

oscillators, additional synchronization is needed. The resynchronization for the subsequent bits

in any received frame occurs when a bit edge doesn't occur within the Synchronization Segment

in a message. The resynchronization is automatically invoked and one of the Phase Segments are

shortened or lengthened with an amount that depends on the phase error in the signal. The

maximum amount that can be used is determined by a user-programmable number of time quanta

known as the Synchronization Jump Width parameter (SJW).

Higher Layer Protocols:

Higher layer protocol (HLP) is required to manage the communication within a system. The term

HLP is derived from the OSI model and its seven layers. But the CAN protocol just specifies

how small packets of data may be transported from one point to another safely using a shared

communications medium. It does not contain anything on the topics such as flow control,

transportation of data larger than CAN fit in an 8-byte message, node addresses, establishment of

communication, etc. The HLP gives solution for these topics.

