LECTURE NOTES
ON

EMBEDDED SYSTEM DESIGN

B.Tech VI Semester (AUTONOMOUS)
(Regulation: IARE-R16)

(2018-2019)

Mr. N Nagaraju
Assistant professor

e 0 00

INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING

(AUTONOMOUS)
DUNDIGAL, HYDERABAD - 500043

UNIT-I
EMBEDDED COMPUTING

INTRODUCTION

This chapter introduces the reader to the world of embedded systems. Everything that we
look around us today is electronic. The days are gone where almost everything was manual.
Now even the food that we eat is cooked with the assistance of a microchip (oven) and the
ease at which we wash our clothes is due to the washing machine. This world of electronic
items is made up of embedded system. In this chapter we will understand the basics of
embedded system right from its definition.

DEFINITION OF AN EMBEDDED SYSTEM
e Anembedded system is a combination of 3things:

a. Hardware
b. Software
c. Mechanical Components

And it is supposed to do one specific task only.

e Example 1: Washing Machine

A washing machine from an embedded systems point of view
has:

a.
b.

Hardware: Buttons, Display & buzzer, electroniccircuitry.

Software: It has a chip on the circuit that holds the software which
drives controls & monitors the various operations possible.

Mechanical Components: the internals of a washing machine which
actually wash the clothes control the input and output of water, the
chassis itself.

e Example 2: Air Conditioner

An Air Conditioner from an embedded systems point of view has:

a.

b.

Hardware: Remote, Display & buzzer, Infrared Sensors, electronic
circuitry.

Software: It has a chip on the circuit that holds the software which
drives controls & monitors the various operations possible. The
software monitors the external temperature through the sensors and then
releases the coolant or suppresses it.

Mechanical Components: the internals of an air conditioner the motor,
the chassis, the outlet, etc

e Anembedded system is designed to do a specific job only. Example: a washing
machine can only wash clothes, an air conditioner can control the temperature
in the room in which it is placed.

e The hardware & mechanical components will consist all the physically visible

things that are used for input, output, etc.

e An embedded system will always have a chip (either microprocessor or
microcontroller) that has the code or software which drives the system.

HISTORY OF EMBEDDED SYSTEM

e The first recognised embedded system is the Apollo
Guidance Computer(AGC) developed by MIT lab.

e AGC was designed on 4K words of ROM & 256 words of RAM.

e The clock frequency of first microchip used in AGC was
1.024 MHz.

e The computing unit of AGC consists of 11 instructionsand 16 bit word
logic.

e It used 5000 ICs.

e The Ul of AGC is known DSKY (display/keyboard) which resembles a
calculator type keypad with array of numerals.

e The first mass-produced embedded system was guidance computer for the
Minuteman-I missile in1961.

e In the year 1971 Intel introduced the world's first microprocessor chip
called the 4004, was designed for use in business calculators. It was
produced by the Japanese company Busicom.

EMBEDDEDSYSTEM & GENERAL PURPOSE COMPUTER

The Embedded System and the General purpose computer are at two extremes. The
embedded system is designed to perform a specific task whereas as per definition
the general purpose computer is meant for general use. It can be used for playing
games, watching movies, creating software, work on documents or spreadsheets
etc.

Following are certain specific points of difference between
embedded systems and general purpose computers:

Criteria General Computer Embedded system
Purpose
Contents It is combination of | It is combination of special purpose

generic hardware and a | hardware and embedded OS for
general purpose OS for | executing specific set of applications
executing a variety of

Operating It contains general purpose | It may or may not contain
System operating system operating system.
Alterations Applications are alterable | Applications are non-alterable by

by the user. the user.

are key factors.

Key factor Performance is key factor. | Application specific requirements

Power More Less

Consumption

Response Not Critical Critical for some applications
Time

CLASSIFICATION OF EMBEDDEDSYSTEM

The classification of embedded system is based on following
criteria’s:

» On generation

» On complexity & performance

» On deterministic behaviour

» Ontriggering

On generation
1. Firstgeneration(1G):
= Built around 8bit microprocessor & microcontroller.
= Simple in hardware circuit & firmware developed.
- Examples: Digital telephone keypads.

2. Second generation(2G):
= Built around 16-bit pp & 8-bit pic.
= They are more complex & powerful than 1G pp & pc.
- Examples: SCADA systems

3. Third generation(3G):
= Built around 32-bit pp & 16-bit pc.
- Concepts like Digital Signal Processors(DSPs),

Application Specific Integrated Circuits(ASICs) evolved.
- Examples: Robotics, Media, etc.

4. Fourth generation:
= Built around 64-bit pp & 32-bit pc.
= The concept of System on Chips (SoC), Multicore
Processors evolved.
= Highly complex & very powerful.
- Examples: Smart Phones.

On complexity & performance
Small-scale:
Simple in application need
Performance not time-critical.
Built around low performance & low cost 8 or 16bit
Up/pC.

=

= Example: an electronic toy

2. Medium-scale:

= Slightly complex in hardware & firmwarerequirement.

= Built around medium performance & low cost 16 or 32 bit
Hp/pc.

= Usually contain operating system.

= Examples: Industrial machines.

3. Large-scale:

= Highly complex hardware & firmware.

= Built around 32 or 64 bit RISC pp/uc or PLDs or Multicore
Processors.

= Response is time-critical.

- Examples: Mission critical applications.

On deterministic behavior

= This classification is applicable for “Real Time” systems.

= The task execution behavior for an embedded system may
be deterministic or non-deterministic.

- Based on execution behavior Real Time embedded
systems are divided into Hard and Soft.

On triggering

- Embedded systems which are “Reactive” in nature can
be based on triggering.
- Reactive systems can be:
v Event triggered
v Time triggered

APPLICATION OF EMBEDDED SYSTEM
The application areas and the products in the embedded domain are
countless.

1.
2.
3.

4.

5.
6. Computer peripherals: Printers, scanners.
7.

8.

9.

Consumer Electronics: Camcorders, Cameras.

Household appliances: Washing machine, Refrigerator.
Automotive industry: Anti-lock breaking system(ABS), engine
control.

Home automation & security systems: Air conditioners,
sprinklers, fire alarms.

Telecom: Cellular phones, telephone switches.

Computer networking systems: Network routers and
switches.

Healthcare: EEG, ECG machines.

Banking & Retail: Automatic teller machines, point ofsales.

10. Card Readers: Barcode, smart card readers.

COMPLEX SYSTEMS AND MICROPROCESSORS

What is an embedded computer system? Loosely defined, it is any device that includes a
programmable computer but is not itself intended to be a general-purpose computer. Thus,
a PC is not itself an embedded computing system, although PCs are often used to build
embedded computing systems. But a fax machine or a clock built from a microprocessor is
an embedded computing system. This means that embedded computing system design is a
useful skill for many types of product design. Automobiles, cell phones, and even
household appliances make extensive use of microprocessors. Designers in many fields
must be able to identify where microprocessors can be used, design a hardware platform
with 1/0 devices that can support the required tasks, and implement software that performs
the required processing. Computer engineering, like mechanical design or
thermodynamics, is a fundamental discipline that can be applied in many different
domains. But of course, embedded computing system design does not stand alone. Many of
the challenges encountered in the design of an embedded computing system are not
computer engineering—for example, they may be mechanical or analog electrical
problems. In this book we are primarily interested in the embedded computer itself, so we
will concentrate on the hardware and software that enable the desired functions in the final
product.

Embedding Computers

Computers have been embedded into applications since the earliest days of computing.
One example is the Whirlwind, a computer designed at MIT in the late 1940s and early
1950s. Whirlwind was also the first computer designed to support real-time operation and
was originally conceived as a mechanism for controlling an aircraft simulator. Even though
it was extremely large physically compared to today’s computers (e.g., it contained over
4,000 vacuum tubes), its complete design from components to system was attuned to the
needs of real-time embedded computing. The utility of computers in replacing mechanical
or human controllers was evident from the very beginning of the computer era—for
example, computers were proposed to control chemical processes in the late 1940s [St095].

A microprocessor is a single-chip CPU. Very large scale integration (VVLSI) the acronym is
the name technology has allowed us to put a complete CPU on a single chip since 1970s,
but those CPUs were very simple. The first microprocessor, the Intel 4004, was designed
for an embedded application, namely, a calculator. The calculator was not a general-
purpose computer—it merely provided basic arithmetic functions. However, Ted Hoff of
Intel realized that a general-purpose computer programmed properly could implement the
required function, and that the computer-on-a-chip could then be reprogrammed for use in
other products as well. Since integrated circuit design was (and still is) an expensive and
time consuming process, the ability to reuse the hardware design by changing the software
was a key breakthrough. The HP-35 was the first handheld calculator to perform
transcendental functions [Whi72]. It was introduced in 1972, so it used several chips to
implement the CPU, rather than a single-chip microprocessor. However, the ability to write
programs to perform math rather than having to design digital circuits to perform
operations like trigonometric functions was critical to the successful design of the
calculator. Automobile designers started making use of the microprocessor soon after
single-chip CPUs became available. The most important and sophisticated use of

microprocessors in automobiles was to control the engine: determining when spark plugs
fire, controlling the fuel/air mixture, and so on. There was a trend toward electronics in
automobiles in general—electronic devices could be used to replace the mechanical
distributor. But the big push toward microprocessor-based engine control came from two
nearly simultaneous developments: The oil shock of the 1970s caused consumers to place
much higher value on fuel economy, and fears of pollution resulted in laws restricting
automobile engine emissions. The combination of low fuel consumption and low emissions
is very difficult to achieve; to meet these goals without compromising engine performance,
automobile manufacturers turned to sophisticated control algorithms that could be
implemented only with microprocessors.

Microprocessors come in many different levels of sophistication; they are usually classified
by their word size. An 8-bit microcontroller is designed for low-cost applications and
includes on-board memory and 1/0O devices; a 16-bit microcontroller is often used for more
sophisticated applications that may require either longer word lengths or off-chip 1/0 and
memory; and a 32-bit RISC microprocessor offers very high performance for computation-
intensive applications. Given the wide variety of microprocessor types available, it should
be no surprise that microprocessors are used in many ways. There are many household uses
of microprocessors. The typical microwave oven has at least one microprocessor to control
oven operation. Many houses have advanced thermostat systems, which change the
temperature level at various times during the day. The modern camera is a prime example
of the powerful features that can be added under microprocessor control.

Digital television makes extensive use of embedded processors. In some cases, specialized
CPUs are designed to execute important algorithms—an example is the CPU designed for
audio processing in the SGS Thomson chip set for DirecTV [Lie98]. This processor is
designed to efficiently implement programs for digital audio decoding. A programmable
CPU was used rather than a hardwired unit for two reasons: First, it made the system easier
to design and debug; and second, it allowed the possibility of upgrades and using the CPU
for other purposes. A high-end automobile may have 100 microprocessors, but even
inexpensive cars today use 40 microprocessors. Some of these microprocessors do very
simple things such as detect whether seat belts are in use. Others control critical functions
such as the ignition and braking systems. Application Example describes some of the
microprocessors used in the BMW 850i.

Application Example

BMW 850i brake and stability control system

The BMW 850i was introduced with a sophisticated system for controlling the wheels of
the car. An antilock brake system (ABS) reduces skidding by pumping the brakes. An
automatic stability control (ASC_T) system intervenes with the engine during maneuvering
to improve the car’s stability. These systems actively control critical systems of the car; as
control systems, they require inputs from and output to the automobile.

Let’s first look at the ABS. The purpose of an ABS is to temporarily release the brake on a
wheel when it rotates too slowly—when a wheel stops turning, the car starts skidding and
becomes hard to control. It sits between the hydraulic pump, which provides power to the
brakes, and the brakes themselves as seen in the following diagram. This hookup allows
the ABS system to modulate the brakes in order to keep the wheels from locking. The ABS

system uses sensors on each wheel to measure the speed of the wheel. The wheel speeds
are used by the ABS system to determine how to vary the hydraulic fluid pressure to
prevent the wheels from skidding. The ASC _ T system’s job is to control the engine
power and the brake to improve the car’s stability during maneuvers. The ASC _ T controls
four different systems: throttle, ignition timing, differential brake, and (on automatic
transmission cars) gear shifting. The ASC_T can be turned off by the driver, which can be
important when operating with tire snow chains. The ABS and ASC _ T must clearly
communicate because the ASC _ T interacts with the brake system. Since the ABS was
introduced several years earlier than the ASC _ T, it was important to be able to interface
ASC _ T to the existing ABS module, as well as to other existing electronic modules. The
engine and control management units include the electronically controlled throttle, digital
engine management, and electronic transmission control. The ASC _ T control unit has two
microprocessors on two printed circuit boards, one of which concentrates on logic-relevant
components and the other on performance-specific components.

sensor Sensor
L] o [_]
Hydraulic 5
um
Brake pump Brake
Brake ‘ ABS Brake
[] L1
Sensor Sensor

THE EMBEDDED SYSTEM DESIGN PROCESS

This section provides an overview of the embedded system design process aimed at two
objectives. First,it will give us an introduction to the various steps in embedded system
design before we delve into them in more detail. Second, it will allow us to consider the
design methodology itself. A design methodology is important for three reasons. First, it
allows us to keep a scorecard on a design to ensure that we have done everything we need
to do, such as optimizing performance or performing functional tests. Second, it allows us
to develop computer-aided design tools. Developing a single program that takes in a
concept for an embedded system and emits a completed design would be a daunting task,
but by first breaking the process into manageable steps, we can work on automating (or at
least semi automating) the steps one at a time. Third, a design methodology makes it much
easier for members of a design team to communicate. By defining the overall process, team
members can more easily understand what they are supposed to do, what they should
receive from other team members at certain times, and what they are to hand off when they
complete their assigned steps. Since most embedded systems are designed by teams,
coordination is perhaps the most important role of a well-defined design methodology.
Figure summarizes the major steps in the embedded system design process.
In this top—down view, we start with the system requirements. In the next step,

~Requirements 5
C:____ e BS Ny

Tup-dniurn \: Bottom-up
design | design

~

—— ——
:::___Speciﬁcaﬂml_ ___>‘

s

v |

S —_— F

< Architecture :‘*/\;

Y

— ——— #

- = Ea
< Components >g‘

Y]

. o ’
 System integratiuri)/

specification, we create a more detailed description of what we want. But the specification
states only how the system behaves, not how it is built. The details of the system’s internals
begin to take shape when we develop the architecture, which gives the system structure in
terms of large components. Once we know the components we need, we can design those
components, including both software modules and any specialized hardware we need.
Based on those components, we can finally build a complete system.

In this section we will consider design from the top—down—we will begin with the most
abstract description of the system and conclude with concrete details. The alternative is a
bottom—up view in which we start with components to build a system. Bottom-up design
steps are shown in the figure as dashed-line arrows. We need bottom-up design because
we do not have perfect insight into how later stages of the design process will turn out.
Decisions at one stage of design are based upon estimates of what will happen later: How
fast can we make a particular function run? How much memory will we need? How much
system bus capacity do we need? If our estimates are inadequate, we may have to
backtrack and amend our original decisions to take the new facts into account. In general,
the less experience we have with the design of similar systems, the more we will have to
rely on bottom-up design information to help us refine the system. But the steps in the
design process are only one axis along which we can view embedded system design. We
also need to consider the major goals of the design:

m manufacturing cost;

m performance (both overall speed and deadlines); and

m power consumption.
We must also consider the tasks we need to perform at every step in the design process. At
each step in the design,we add detail:

m We must analyze the design at each step to determine how we can meet the

specifications.

m We must then refine the design to add detail.

m And we must verify the design to ensure that it still meets all system goals,
such as cost, speed, and so on.

Requirements

Clearly, before we design a system, we must know what we are designing. The initial
stages of the design process capture this information for use in creating the architecture and
components. We generally proceed in two phases: First, we gather an informal description
from the customers known as requirements, and we refine the requirements into a
specification that contains enough information to begin designing the system architecture.
Separating out requirements analysis and specification is often necessary because of the
large gap between what the customers can describe about the system they want and what
the architects need to design the system. Consumers of embedded systems are usually not
themselves embedded system designers or even product designers. Their understanding of
the system is based on how they envision users’ interactions with the system. They may
have unrealistic expectations as to what can be done within their budgets; and they may
also express their desires in a language very different from system architects’ jargon.
Capturing a consistent set of requirements from the customer and then massaging those
requirements into a more formal specification is a structured way to manage the process of
translating from the consumer’s language to the designer’s.

Requirements may be functional or nonfunctional. We must of course capture the basic
functions of the embedded system, but functional description is often not sufficient.
Typical nonfunctional requirements include:
m Performance: The speed of the system is often a major consideration both for the
usability of the system and for its ultimate cost. As we have noted, performance
may be a combination of soft performance metrics such as approximate time to
perform a user-level function and hard deadlines by which a particular operation
must be completed.
m Cost: The target cost or purchase price for the system is almost always a
consideration. Cost typically has two major components: manufacturing cost
includes the cost of components and assembly; nonrecurring engineering (NRE)
costs include the personnel and other costs of designing the system.
m Physical size and weight: The physical aspects of the final system can vary
greatly depending upon the application. An industrial control system for an
assembly line may be designed to fit into a standard-size rack with no strict
limitations on weight. A handheld device typically has tight requirements on both
size and weight that can ripple through the entire system design.
m Power consumption: Power, of course, is important in battery-powered systems
and is often important in other applications as well. Power can be specified in the
requirements stage in terms of battery life—the customer is unlikely to be able to
describe the allowable wattage.

Validating a set of requirements is ultimately a psychological task since it requires
understanding both what people want and how they communicate those needs. One
goodway to refine at least the user interface portion of a system’s requirements is to build a
mock-up. The mock-up may use canned data to simulate functionality in a restricted
demonstration, and it may be executed on a PC or a workstation. But it should give the

customer a good idea of how the system will be used and how the user can react to it.
Physical, nonfunctional models of devices can also give customers a better idea of
characteristics such as size and weight.

Name

Purpose

Inputs

Outputs

Functions

Performance

Manufacturing cost

Power

Physical size and weight

Requirements analysis for big systems can be complex and time consuming. However,
capturing a relatively small amount of information in a clear, simple format is a good start
toward understanding system requirements. To introduce the discipline of requirements
analysis as part of system design, we will use a simple requirements methodology. Figure
shows a sample requirements form that can be filled out at the start of the project. We can
use the form as a checklist in considering the basic characteristics of the system. Let’s
consider the entries in the form:

m Name: This is simple but helpful. Giving a name to the project not only simplifies
talking about it to other people but can also crystallize the purpose of the machine.
m Purpose: This should be a brief one- or two-line description of what the system is
supposed to do. If you can’t describe the essence of your system in one or two lines,
chances are that you don’t understand it well enough.

m Inputs and outputs: These two entries are more complex than they seem. The
inputs and outputs to the system encompass a wealth of detail: — Types of data:
Analog electronic signals? Digital data? Mechanical inputs? — Data
characteristics: Periodically arriving data, such as digital audio samples?
Occasional user inputs? How many bits per data element? — Types of 1/O devices:
Buttons? Analog/digital converters? Video displays?

m Functions: This is a more detailed description of what the system does. A good
way to approach this is to work from the inputs to the outputs: When the system
receives an input, what does it do? How do user interface inputs affect these
functions? How do different functions interact?

m Performance: Many embedded computing systems spend at least some time
controlling physical devices or processing data coming from the physical world. In
most of these cases, the computations must be performed within a certain time
frame. It is essential that the performance requirements be identified early since
they must be carefully measured during implementation to ensure that the system
works properly.

m Manufacturing cost: This includes primarily the cost of the hardware
components. Even if you don’t know exactly how much you can afford to spend on
system components, you should have some idea of the eventual cost range. Cost has
a substantial influence on architecture:A machine that is meant to sell at $10 most
likely has a very different internal structure than a $100 system.

m Power: Similarly, you may have only a rough idea of how much power the
system can consume, but a little information can go a long way. Typically, the most
important decision is whether the machine will be battery powered or plugged into
the wall. Battery-powered machines must be much more careful about how they
spend energy.

m Physical size and weight: You should give some indication of the physical size of
the system to help guide certain architectural decisions. A desktop machine has
much more flexibility in the components used than, for example, a lapel mounted
voice recorder.

A more thorough requirements analysis for a large system might use a form similar to
Figure as a summary of the longer requirements document. After an introductory section
containing this form, a longer requirements document could include details on each of the
items mentioned in the introduction. For example, each individual feature described in the
introduction in a single sentence may be described in detail in a section of the specification.
After writing the requirements, you should check them for internal consistency: Did you
forget to assign a function to an input or output? Did you consider all the modes in which
you want the system to operate? Did you place an unrealistic number of features into a
battery-powered, low-cost machine? To practice the capture of system requirements,
Example creates the requirements for a GPS moving map system.

Example

Requirements analysis of a GPS moving map

The moving map is a handheld device that displays for the user a map of the terrain around
the user’s current position; the map display changes as the user and the map device change
position. The moving map obtains its position from the GPS, a satellite-based navigation
system. The moving map display might look something like the following figure.

User's current
- — 7 position

User's lat/long position
S

scotch Road |

b
y

T

!

EN

lat: 40 13 long: 32 19

What requirements might we have for our GPS moving map? Here is an initial list:
m Functionality: This system is designed for highway driving and similar uses, not
nautical or aviation uses that require more specialized databases and functions. The

system should show major roads and other landmarks available in standard
topographic databases.

m User interface: The screen should have at least 400_600 pixel resolution. The
device should be controlled by no more than three buttons. A menu system should
pop up on the screen when buttons are pressed to allow the user to make selections
to control the system.

m Performance: The map should scroll smoothly. Upon power-up, a display should
take no more than one second to appear, and the system should be able to verify its
position and display the current map within 15 s.

m Cost: The selling cost (street price) of the unit should be no more than $100.

m Physical size and weight: The device should fit comfortably in the palm of the
hand.

m Power consumption: The device should run for at least eight hours on four AA
batteries.

Note that many of these requirements are not specified in engineering units—for example,
physical size is measured relative to a hand, not in centimeters. Although these
requirements must ultimately be translated into something that can be used by the
designers, keeping a record of what the customer wants can help to resolve questions about
the specification that may crop up later during design. Based on this discussion, let’s write
a requirements chart for our moving map system:

Mame GPS maoving map

Purpose Consumer-grade moving map for driving use

Inputs Power button, two control buttons

Outputs Back-it LCD display 400 x 600

Functions Uses S-receiver GPS system: three user-selectable resolu-
tions; atways displays current latitude and longitude

Performance Updates screen within 0.25 seconds upon movement

Manufacturing cost $30

Power 100 mwW

Physical size and weight Mo more than 27 % 6, " 12 ounces

Specification

The specification is more precise—it serves as the contract between the customer and the
architects. As such, the specification must be carefully written so that it accurately reflects
the customer’s requirements and does so in a way that can be clearly followed during
design. Specification is probably the least familiar phase of this methodology for neophyte
designers, but it is essential to creating working systems with a minimum of designer
effort. Designers who lack a clear idea of what they want to build when they begin
typically make faulty assumptions early in the process that aren’t obvious until they have a
working system. At that point, the only solution is to take the machine apart, throw away
some of it, and start again. The specification should be understandable enough so that
someone can verify that it meets system requirements and overall expectations of the
customer. It should also be unambiguous enough that designers know what they need to
build. Designers can run into several different types of problems caused by unclear
specifications. If the behavior of some feature in a particular situation is unclear from the
specification, the designer may implement the wrong functionality. If global characteristics

of the specification are wrong or incomplete, the overall system architecture derived from
the specification may be inadequate to meet the needs of implementation.

A specification of the GPS system would include several components:

m Data received from the GPS satellite constellation.

m Map data.

m User interface.

m Operations that must be performed to satisfy customer requests.

m Background actions required to keep the system running, such as operating the

GPS receiver.
UML, a language for describing specifications, will be introduced later and we will use it
to write a specification. We will practice writing specifications in each chapter as we work
through example system designs. We will also study specification techniques in more later.

Architecture Design

The specification does not say how the system does things, only what the system does.
Describing how the system implements those functions is the purpose of the architecture.
The architecture is a plan for the overall structure of the system that will be used later to
design the components that make up the architecture. The creation of the architecture is the
first phase of what many designers think of as design. To understand what an architectural
description is, let’s look at sample architecture for the moving map of Example Figure
shows sample system architecture in the form of a block diagram that shows major
operations and data flows among them.

This block diagram is still quite abstract—we have not yet specified which operations will
be performed by software running on a CPU, what will be done by special-purpose
hardware, and so on. The diagram does, however, go a long way toward describing how to
implement the functions described in the specification. We clearly see, for example, that
we need to search the topographic database and to render (i.e., draw) the results for the
display. We have chosen to separate those functions so that we can potentially do them in
parallel—performing rendering separately from searching the database may help us update
the screen more fluidly.

GPS
receiver

Search
engine

Renderer Display

User interface

Database |

o,

Only after we have designed an initial architecture that is not biased toward too many
implementation details should we refine that system block diagram into two block
diagrams: one for hardware and another for software. These two more refined block
diagrams are shown in Figure 1.4.The hardware block diagram clearly shows that we have
one central CPU surrounded by memory and I/O devices. In particular, we have chosen to
use two memories: a frame buffer for the pixels to be displayed and a separate

program/data memory for general use by the CPU. The software block diagram fairly
closely follows the system block diagram, but we have added a timer to control when we
read the buttons on the user interface and render data onto the screen. To have a truly
complete architectural description, we require more detail, such as where units in the
software block diagram will be executed in the hardware block diagram and when
operations will be performed in time. Architectural descriptions must be designed to satisfy
both functional and nonfunctional requirements. Not only must all the required functions
be present, but we must meet cost, speed, power, and other nonfunctional constraints.
Starting out with a system architecture and refining that to hardware and software
architectures
A

- Frame CPU
buffer
Display Y
— GPS receiver
Memory [—
— Panel 1/O
Bus '
Hardware
Liatahase —= Renderer —= Pixels
search
e T User i
L T0EUE Y e [T et

Software
is one good way to ensure that we meet all specifications: We can concentrate on the
functional elements in the system block diagram, and then consider the nonfunctional
constraints when creating the hardware and software architectures. How do we know that
our hardware and software architectures in fact meet constraints on speed, cost, and so on?
We must somehow be able to estimate the properties of the components of the block
diagrams, such as the search and rendering functions in the moving map system. Accurate
estimation derives in part from experience, both general design experience and particular
experience with similar systems. However, we can sometimes create simplified models to
help us make more accurate estimates. Sound estimates of all nonfunctional constraints
during the architecture phase are crucial, since decisions based on bad data will show up
during the final phases of design, indicating that we did not, in fact, meet the specification.

Designing Hardware and Software Components

The architectural description tells us what components we need. The component design
effort builds those components in conformance to the architecture and specification. The
components will in general include both hardware—FPGAs, boards, and so on—and
software modules. Some of the components will be ready-made. The CPU, for example,
will be a standard component in almost all cases, as will memory chips and many other
components. In the moving map, the GPS receiver is a good example of a specialized
component that will nonetheless be a predesigned, standard component. We can also make
use of standard software modules. One good example is the topographic database. Standard
topographic databases exist, and you probably want to use standard routines to access the
database—not only is the data in a predefined format, but it is highly compressed to save
storage. Using standard software for these access functions not only saves us design time,
but it may give us a faster implementation for specialized functions such as the data
decompression phase. You will have to design some components yourself. Even if you are
using only standard integrated circuits, you may have to design the printed circuit board
that connects them. You will probably have to do a lot of custom programming as well.
When creating these embedded software modules, you must of course make use of your
expertise to ensure that the system runs properly in real time and that it does not take up
more memory space than is allowed. The power consumption of the moving map software
example is particularly important. You may need to be very careful about how you read
and write memory to minimize power—for example, since memory accesses are a major
source of power consumption, memory transactions must be carefully planned to avoid
reading the same data several times.

System Integration

Only after the components are built do we have the satisfaction of putting them together
and seeing a working system. Of course, this phase usually consists of a lot more than just
plugging everything together and standing back. Bugs are typically found during system
integration, and good planning can help us find the bugs quickly. By building up the
system in phases and running properly chosen tests, we can often find bugs more easily. If
we debug only a few modules at a time, we are more likely to uncover the simple bugs and
able to easily recognize them. Only by fixing the simple bugs early will we be able to
uncover the more complex or obscure bugs that can be identified only by giving the system
a hard workout. We need to ensure during the architectural and component design phases
that we make it as easy as possible to assemble the system in phases and test functions
relatively independently.

System integration is difficult because it usually uncovers problems. It is often hard to
observe the system in sufficient detail to determine exactly what is wrong— the debugging
facilities for embedded systems are usually much more limited than what you would find
on desktop systems. As a result, determining why things do not stet work correctly and
how they can be fixed is a challenge in itself. Careful attention to inserting appropriate
debugging facilities during design can help ease system integration problems, but the
nature of embedded computing means that this phase will always be a challenge.

FORMALISMS FOR SYSTEM DESIGN

As mentioned in the last section, we perform a number of different design tasks at different
levels of abstraction throughout this book: creating requirements and specifications,
architecting the system, designing code, and designing tests. It is often helpful to
conceptualize these tasks in diagrams. Luckily, there is a visual language that can be used
to capture all these design tasks: the Unified Modeling Language (UML).

UML was designed to be useful at many levels of abstraction in the design process. UML
is useful because it encourages design by successive refinement and progressively adding
detail to the design, rather than rethinking the design at each new level of abstraction.
UML is an object-oriented modeling language. We will see precisely what we mean by an
object in just a moment, but object-oriented design emphasizes two concepts of
importance:

m It encourages the design to be described as a number of interacting objects, rather than a
few large monolithic blocks of code.

m At least some of those objects will correspond to real pieces of software or hardware in
the system. We can also use UML to model the outside world that interacts with our
system, in which case the objects may correspond to people or other machines. It is
sometimes important to implement something we think of at a high level as a single object
using several distinct pieces of code or to otherwise break up the object correspondence in
the implementation. However, thinking of the design in terms of actual objects helps us
understand the natural structure of the system. Object-oriented (often abbreviated OO)
specification can be seen in two complementary ways:

m Object-oriented specification allows a system to be described in a way that closely
models real-world objects and their interactions.

m Object-oriented specification provides a basic set of primitives that can be used to
describe systems with particular attributes, irrespective of the relationships of those
systems’ components to real-world objects. Both views are useful. At a minimum, object-
oriented specification is a set of linguistic mechanisms. In many cases, it is useful to
describe a system in terms of real-world analogs. However, performance, cost, and so on
may dictate that we change the specification to be different in some ways from the real-
world elements we are trying to model and implement. In this case, the object-oriented
specification mechanisms are still useful. What is the relationship between an object-
oriented specification and an object oriented programming language (such as C++)? A
specification language may not be executable. But both object-oriented specification and
programming languages provide similar basic methods for structuring large systems.

Unified Modeling Language (UML)—the acronym is the name is a large language, and
covering all of it is beyond the scope of this book. In this section, we introduce only a few
basic concepts. In later chapters, as we need a few more UML concepts, we introduce them
to the basic modeling elements introduced here. Because UML is so rich, there are many
graphical elements in a UML diagram. It is important to be careful to use the correct
drawing to describe something—for instance, UML distinguishes between arrows with
open and filled-in arrowheads, and solid and broken lines. As you become more familiar
with the language, uses of the graphical primitives will become more natural to you. We
also won’t take a strict object-oriented approach. We may not always use objects for
certain elements of a design—in some cases, such as when taking particular aspects of the

implementation into account, it may make sense to use another design style. However,
object-oriented design is widely applicable, and no designer can consider himself or herself
design literate without understanding it.

Structural Description

By structural description, we mean the basic components of the system; we will learn how
to describe how these components act in the next section. The principal component of an
object-oriented design is, naturally enough, the object. An object includes a set of
attributes that define its internal state. When implemented in a programming language,
these attributes usually become variables or constants held in a data structure. In some
cases, we will add the type of the attribute after the attribute name for clarity, but we do not
always have to specify a type for an attribute. An object describing a display (such as a
CRT screen) is shown in UML notation in Figure. The text in the folded-corner page icon
is a note; it does not correspond to an object in the system and only serves as a comment.
The attribute is, in this case, an array of pixels that holds the contents of the display. The
object is identified in two ways: It has a unique name, and it is a member of a class. The
name is underlined to show that this is a description of an object and not of a class. A class
is a form of type definition—all objects derived from the same class have the same
characteristics, although their attributes may have different values. A class defines the
attributes that an object may have. It also defines the operations that determine how the
object interacts with the rest of the world. In a programming language, the operations
would become pieces of code used to manipulate the object. The UML description of the
Display class is shown in Figure. The class has the name that we saw used in the d1 object
since d1 is an instance of class Display. The Display class defines the pixels attribute seen
in the object; remember that when we instantiate the class an object, that object will have
its own memory so that different objects of the same class have their own values for the
attributes. Other classes can examine and modify class attributes; if we have to do
something more complex than use the attribute directly, we define a behavior to perform

that function.
Pixels is d1: Display Object name: class name
a 2-D array
* pixels: array| | of pixels Attributes

elements
menu_items

An object in UML notation.

Display

| @
pixels
elements ' | Attributes
Pixels is menu_items |

a 2-I array

mouse_click()
draw_box()

-
Operations

A class defines both the interface for a particular type of object and that object’s
implementation. When we use an object, we do not directly manipulate its attributes—we
can only read or modify the object’s state through the operations that define the interface to
the object. (The implementation includes both the attributes and whatever code is used to
implement the operations.) As long as we do not change the behavior of the object seen at
the interface, we can change the implementation as much as we want. This lets us improve
the system by, for example, speeding up an operation or reducing the amount of memory
required without requiring changes to anything else that uses the object.

Clearly, the choice of an interface is a very important decision in object-oriented design.
The proper interface must provide ways to access the object’s state (since we cannot
directly see the attributes) as well as ways to update the state. We need to make the object’s
interface general enough so that we can make full use of its capabilities. However,
excessive generality often makes the object large and slow. Big, complex interfaces also
make the class definition difficult for designers to understand and use properly. There are
several types of relationships that can exist between objects and classes:

m Association occurs between objects that communicate with each other but have
no ownership relationship between them.

m Aggregation describes a complex object made of smaller objects.

m Composition is a type of aggregation in which the owner does not allow access to
the component objects.

m Generalization allows us to define one class in terms of another.

The elements of a UML class or object do not necessarily directly correspond to statements
in a programming language—if the UML is intended to describe something more abstract
than a program, there may be a significant gap between the contents of the UML and a
program implementing it. The attributes of an object do not necessarily reflect variables in
the object. An attribute is some value that reflects the current state of the object. In the
program implementation, that value could be computed from some other internal variables.
The behaviors of the object would, in a higher-level specification, reflect the basic things
that can be done with an object. Implementing all these features may require breaking up a
behavior into several smaller behaviors—for example, initialize the object before you start
to change its internal state-derived classes.

Unified Modeling Language, like most object-oriented languages, allows us to define one
class in terms of another. An example is shown in Figure, where we derive two particular
types of displays. The first, BW_ display, describes a black and- white display. This does
not require us to add new attributes or operations, but we can specialize both to work on
one-bit pixels. The second, Color_map_display, uses a graphic device known as a color
map to allow the user to select froma

Display
pixels
objects L— Base class
menu_items
pixel()
set_pixel{)
mouse_click()
draw_box{)
Fa) [\—\1
Generalization
BW._display Color_map_display

color_map

Derived classes

large number of available colors even with a small number of bits per pixel. This class
defines a color_map attribute that determines how pixel values are mapped onto display
colors. A derived class inherits all the attributes and operations from its base class. In this
class, Display is the base class for the two derived classes. A derived class is defined to
include all the attributes of its base class.

This relation is transitive—if Display were derived from another class, both BW_display
and Color_map_display would inherit all the attributes and operations of Display’s base
class as well. Inheritance has two purposes. It of course allows us to succinctly describe
one class that shares some characteristics with another class. Even more important, it
captures those relationships between classes and documents them. If we ever need to
change any of the classes, knowledge of the class structure helps us determine the reach of
changes—for example, should the change affect only Color_map_display objects or should
it change all Display objects?

Unified Modeling Language considers inheritance to be one form of generalization. A
generalization relationship is shown in a UML diagram as an arrow with an open (unfilled)
arrowhead. Both BW_display and Color_map_display are specific

I~

Speaker —— Baseclass — Display

Multimedia_display

Derived class

versions of Display, so Display generalizes both of them. UML also allows us to define
multiple inheritance, in which a class is derived from more than one base class. (Most
object-oriented programming languages support multiple inheritance as well.) An example
of multiple inheritance is shown in Figure; we have omitted the details of the classes’
attributes and operations for simplicity. In this case, we have created a Multimedia_display
class by combining the Display class with a Speaker class for sound. The derived class
inherits all the attributes and operations of both its base classes, Display and Speaker.
Because multiple inheritance causes the sizes of the attribute set and operations to expand
so quickly, it should be used with care.

A link describes a relationship between objects; association is to link as class is to object.
We need links because objects often do not stand alone; associations let us capture type
information about these links. Figure 1.9 shows examples of links and an association.
When we consider the actual objects in the system, there is a set of messages that keeps
track of the current number of active messages (two in this example) and points to the
active messages. In this case, the link defines the contains relation. When generalized into
classes, we define an association between the message set class and the message class. The
association is drawn as a line between the two labeled with the name of the association,
namely, contains. The ball and the number at the message class end indicate that the
message set may include zero or more message objects. Sometimes we may want to attach
data to the links themselves; we can specify this in the association by attaching a class-like
box to the association’s edge, which holds the association’s data.

Typically,we find that we use a certain combination of elements in an object or class many
times.We can give these patterns names, which are called stereotypes

message 1]]5g1: message

setl: message set

msg=msgl |
length=1102 | | messageset
msg2: message _~| count=2
message ’_ffﬁ
msg = msg2 x’f
length = 2114
Links between objects
message _contains | message set
msg: ADPCM_stream 0.* 1| count: integer
length: integer

Assoclation between classes
Links and association.

State -

L
N

~
=g

vy

Name T

in UML. A stereotype name is written in the form <<signal>>. Figure shows a stereotype
for a signal, which is a communication mechanism.

Behavioral Description

We have to specify the behavior of the system as well as its structure. One way to specify
the behavior of an operation is a state machine. Figure shows UML states; the transition
between two states is shown by a skeleton arrow. These state machines will not rely on the
operation of a clock, as in hardware; rather, changes from one state to another are triggered

by the occurrence of events.

Signal event
declaration

=<signal=> mouse_click (x,y,button)
MName mouse_click *
\ (x,y,button) g
leftiorright: button b]
// X, v position \\
Signal event

e

(‘\| draw_box(10,5,3,2,blue) (
C

Parameters o

Event

| e d
s
Call event
p————————————— II_,.-'—'\\
w tmitime-value) |
e | f
J N

Time-out event

An event is some type of action. The event may originate outside the system, such as a user
pressing a button. It may also originate inside, such as when one routine finishes its
computation and passes the result on to another routine. We will concentrate on the
following three types of events defined by UML, as illustrated in Figure.

m A signal is an asynchronous occurrence. It is defined in UML by an object that is
labeled as a <<signal>>. The object in the diagram serves as a declaration of the
event’s existence. Because it is an object, a signal may have parameters that are
passed to the signal’s receiver.

m A call event follows the model of a procedure call in a programming language.

m A time-out event causes the machine to leave a state after a certain amount of
time. The label tm(time-value) on the edge gives the amount of time after which the
transition occurs. A time-out is generally implemented with an

Start state

mouse_click(x,ybutton)/ region = ment/

find_region(region) which_menu(i) call menufi}
i p - N Stop state |
Er SOTE i !
T Region Got menu - Called menu | = {
~| found item =\ item “"'1'\#(. \
b . N J

region = drawing/

find_object(objid) highlight(objid)

(.
Found object ——— Eizﬁt?éhmd
| — —

external timer. This notation simplifies the specification and allows us to defer
implementation details about the time-out mechanism. We show the occurrence of all types
of signals in a UML diagram in the same way— as a label on a transition.

Let’s consider a simple state machine specification to understand the semantics of UML
state machines. A state machine for an operation of the display is shown in Figure. The
start and stop states are special states that help us to organize the flow of the state machine.
The states in the state machine represent different conceptual operations. In some cases, we
take conditional transitions out of states based on inputs or the results of some computation
done in the state. In other cases, we make an unconditional transition to the next state. Both
the unconditional and conditional transitions make use of the call event. Splitting a
complex operation into several states helps document the required steps, much as
subroutines can be used to structure code. It is sometimes useful to show the sequence of
operations over time, particularly when several objects are involved. In this case, we can
create a sequence diagram, like the one for a mouse click scenario shown in Figure. A
sequence diagram is somewhat similar to a hardware timing diagram, although the time
flows vertically in a sequence diagram, whereas time typically flows horizontally in a
timing diagram. The sequence diagram is designed to show a particular scenario or choice
of events—it is not convenient for showing a number of mutually exclusive possibilities. In
this case, the sequence shows what happens when a mouse click is on the menu region.
Processing includes three objects shown at the top of the diagram. Extending below each
object is its lifeline, a dashed line that shows how long the object is alive. In this case, all
the objects remain alive for the entire sequence, but in other cases objects may be created
or destroyed during processing. The boxes

Object ﬁ— m: Mouse ‘ dl: Display m: Menu
L ——— | T — _'_‘—

. I
mouse_click (x,y,button) '
| - : o1 which_menufi) L

-
L

T

Focus of call_menu(i)

control

Y

Lifeline

T
|
|

along the lifelines show the focus of control in the sequence, that is, when the object is
actively processing. In this case, the mouse object is active only long enough to create the
mouse_click event. The display object remains in play longer; it in turn uses call events to
invoke the menu object twice: once to determine which menu item was selected and again
to actually execute the menu call. The find_region() call is internal to the display object, so
it does not appear as an event in the diagram.

DESIGN PROCESS EXAMPLES
Automatic Chocolate vending machine

Diagrammatic representation of ACVM

Keyvpad for user LCD Display or Touch Screen for

Interface user

Mechanical Microcontroller based USB Wireless

Com Sorter hardware Modem
RTOS Software

Keypad on the top of the machine. LCD display unit on the top of the machine. It displays
menus, text entered into the ACVM and pictograms, welcome, thank and other messages.
Graphic interactions with the machine. Displays time and date. Delivery slot so that child
can collect the chocolate and coins, if refunded. Internet connection port so that owner can
know status of the ACVM sales from remote.

ACVM Hardware units

Microcontroller or ASIP (Application Specific Instruction Set Processor). RAM for storing
temporary variables and stack. ROM for application codes and RTOS codes for scheduling
the tasks. Flash memory for storing user preferences, contact data, user address, user date
of birth, user identification code, answers of FAQs. Timer and Interrupt controller. A

TCP/IP port (Internet broadband connection) to the ACVM for remote control and for
getting ACVM status reports by owner. ACVM specific hardware. Power supply.

ACVM Software components
_ Keypad input read

_ Display

_ Read coins

_ Deliver chocolate

_ TCP/IP stack processing

_ TCP/IP stack communication

Smart Card

Smart card— a plastic card in ISO standard dimensions, 85.60 mm x 53.98 x 0.80 mm.
_ Embedded system on a card.

_ SoC (System-On-Chip).

_ ISO recommended standards are 1SO7816 (1 to 4) for host-machine contact based
cards and 1SO14443 (Part A or B) for the contact-less cards.

_ Silicon chip is just a few mm in size and is concealed in-between the layers. Its very
small size protects the card from bending

Embedded hardware components in a contact less smart card

An Embedded Systam
Contactdess Smart Card Compaonenis

RAM RO EEFROM
{Temporary (Application {Application
Wariahlas) and RTOS) Variablas)
r 1]
| |
T |
Data, Address, Caontrol Internal Buses I 1 \deniifcations
| , :
Account Number, Expiry Date, Gard Number [Data Flaw
P i
i

gz

r

i

i

Processor i

Interfacing
]

Timer and 16 MHz Charge Circuit
Ierrupt Cantrallar """'F'_l'u'di-' P!-Im?l
Shifted Circit
Kuy Modulaior 0
Circuit =t
lransceiver F\l.'.lannu
on Silicon

System Power Supply

Embedded hardware components

_ Microcontroller or ASIP (Application Specific Instruction Set Processor)

_ RAM for temporary variables and stack

_ ROM for application codes and RTOS codes for scheduling the tasks

_ EEPROM for storing user data, user address, user identification codes, card number and
expiry date

_ Timer and Interrupt controller

_ A carrier frequency ~16 MHz generating circuit and Amplitude Shifted Key (ASK)
_ Interfacing circuit for the 1/Os
_ Charge pump

ROM
Fabrication key, Personalization key An utilization lock.
_ RTOS and application using only the logical addresses

Embedded Software
_ Boot-up, Initialisation and OS programs
_ Smart card secure file system
_ Connection establishment and termination
_ Communication with host
_ Cryptography
_Host authentication
_ Card authentication
Addition parameters or recent new data sent by the host (for example, present balance
Ieft)
Smart Card OS Special features
_ Protected environment.
_ Every method, class and run time libraryshould be scalable.
_ Code-size generated be optimum.
_ Memory should not exceed 64 kB memory.
Limiting uses of specific data types; multidimensional arrays, long 64-bit integer and
floatlng points

Smart Card OS Limiting features

Limiting uses of the error handlers, exceptions, signals, serialization, debugging and
proflllng [Serialization means process of converting an object is converted into a data
stream for transferring it to network or from one process to another. At receiver end there
is de-serialization Smart Card OS File System and Classes
_ Three-layered file system for the data.
_ Master file to store all file headers.

Dedicated file to hold a file grouping and headers of the immediate successor elementary
files of the group.
_ Elementary file to hold the file header and its file data.
_ Fixed-length or variable-file length management

Classes for the network, sockets, connections, data grams, character-input output and
streams, security management, digital-certification, symmetric and asymmetric keys-based
cryptography and digital signatures..

Digital Camera

Digital camera hardware components

LCD or Touch Keys
scltreti:n the frame ADC D
View J e
1 l
DAC Microcontroller . CCD coprocessor and
7 ASIP (DSP) CODEC
Pixel processor —* " [()
Microcontroller. Timer. Embedded Software
DMAC in Memory
I : ’
b T Flash Memory
USB Port Bluetooth COM
' '

Computer

A typical Camera

4 M pixel/6 M pixel still images, clear visual display (ClearVid) CMOS sensor, 7 cm
wide LCD photo display screen, enhanced imaging processor, double anti blur solution and
high-speed processing engine, 10X optical and 20X digital zooms

Record high definition video-clips. It therefore has speaker microphone(s) for high
quallty recorded sound.
_ Audio/video Out Port for connecting to a TV/DVD player.

Arrangements
_ Keys on the camera.
_ Shutter, lens and charge coupled device (CCD) array sensors
_ Good resolution photo quality LCD display unit
_ Displays text such as image-title, shooting data and time and serial number. It displays
messages. It displays the GUI menu when user interacts with the camera.
_ Self-timer lamp for flash.

Internal units

Internal memory flash to store OS and embedded software and limited number of image
files
_ Flash memory stick of 2 GB or more for large storage.

Universal Serial Bus (USB), Bluetooth and serial COM port for connecting it to
computer mobile and printer. LCD screen to display frame view.
_ Saved images display using the navigation keys.

Frame light falls on the CCD array, which through an ADC transmits the bits for each
plxel in each row in the frame and for the dark area pixels in each row for offset correction
in CCD signaled light intensities for each row.

_ The CCD bits of each pixel in each row and column are offset corrected by CCD signal
processor (CCDSP).

ASIP and Single purpose processors

_ For Signals compression using a JJEG CODEC and saved in one jpg file for each frame.
_ For DSP for compression using the discrete cosine transformations (DCTs) and
decompression.

_ For DCT Huffman coding for the JPEG compression.

_ For decompression by inverse DCT before the DAC sends input for display unit through
pixel processor.

_ Pixel processor (for example, image contrast, brightness, rotation, translation, color
adjustment)

Digital Camera Hardware units

_ Microcontroller or ASIP (Application Specific Instruction Set Processor)

_ Multiple processors (CCDSP, DSP, Pixel Processor and others)

_ RAM for storing temporary variables and stack

_ ROM for application codes and RTOS codes for scheduling the tasks Timer, Flash
memory for storing user preferences, contact data, user address, user date of birth, user
identification code, ADC, DAC and Interrupt controller

_ The DAC gets the input from pixel processor, which gets the inputs from JPEG file for
the saved images and also gets input directly from the CCDSP through pixel processor or
the frame in present view

_ USB controller Direct Memory Access controller

__ LCD controller

_ Battery and external charging circuit

Digital Camera Software components

_ CCD signal processing for off-set correction

_JPEG coding

_ JPEG decoding

_ Pixel processing before display

_ Memory and file systems

_ Light, flash and display device drivers

_ LCD, USB and Bluetooth Port device- drivers for port operations for display, printer and
Computer communication control

Light, flash and display device drivers

CCD signal processing

JPEG coding

JPEG decoding

Pixel co-processing

LCD and USB Port device drivers

LCD, Bluetooth COM and USB Port device drivers

UNIT-II
THE 8051 ARCHITECTURE

INTRODUCTION TO MICRO CONTROLLERS

INTRODUCTION:
We have noticed that Microprocessor is just not self-sufficient, and it requires other

components like memory and input/output devices to form a minimum workable system

configuration. To have all these components in a discrete form and to assemble them on a

PCB is usually not an affordable solution for the following reasons:

1) The overall system cost of a microprocessor based system built around a CPU, memory
and other peripherals is high as compared to a microcontroller based system.

2) A large sized PCB is required for assembling all these components, resulting in an
enhanced cost of the system.

3) Design of such PCBs requires a lot of effort and time and thus the overall product
design requires more time.

4) Due to the large size of the PCB and the discrete components used, physical size of the
product is big and hence it is not handy.

5) As discrete components are used, the system is not reliable nor is it easy to trouble-

shoot such a system.

Considering all these problems, Intel decided to integrate a microprocessor along with 1/0
ports and minimum memory into a single package. Another frequently used peripheral, a
programmable timer, was also integrated to make this device a self-sufficient one. This
device which contains a microprocessor and the above mentioned components has been
named a microcontroller. A microcontroller is a microprocessor with integrated
peripherals. Design with microcontrollers has the following advantages:
1. As the peripherals are integrated into a single chip, the overall system cost is very low.
2. The size of the product is small as compared to the microprocessor based systems thus
very handy.
3. The system design requires very little efforts and is easy to troubleshoot and maintain.
4. As the peripherals are integrated with a microprocessor, the system is more reliable.
5. Though a microcontroller may have on-chip RAM, ROM and 1/O ports, additional
RAM, ROM and I/O ports may be interfaced externally, if required.

6. The microcontrollers with on-chip ROM provide a software security feature which is
not available with microprocessor based systems using ROM/EPROM.

However, in case of a larger system design, which requires more number of 1/0
ports and more memory capacity, the system designer may interface external 1/0O ports and
memory with the system. In such cases, the microcontroller based systems are not so
attractive as they are in case of the small dedicated systems. Figure 17.1 shows a typical
microcontroller internal block diagram.

As a microcontroller contains most of the components required to form a microprocessor
system, it is sometimes called a single chip microcomputer, since it also has the ability to

easily implement simple control functions.

OVERVIEW OF 8051 MICRO CONTROLLER
Let us look at Intel's 8-bit microcontroller family, popularly known as MCS-51

family. The earlier versions of Intel's microcontrollers do not have on-chip EPROM. 8031
was one such microcontroller from Intel, followed by the 8051 family. 8751 was the first
microcontroller version with on-chip EPROM, followed by a number of 8751 versions
with slight modifications. Recently, an electrically programmable and erasable version of
8051, named as 8951, has been introduced. Table shows the comparison between different
versions of 8051. All these members of the 8051 family have identical instruction set and

similar architecture with slight variations as shown in Table.

ARCHITECTURE OF 8051

The internal architecture of 8051 is presented in Fig.

The functional description of each block is presented briefly below.

Accumulator (ACC): The accumulator register (ACC or A) acts as an operand register, in
case of some instructions. This may either be implicit or specified in the instruction.

B Register: This register is used to store one of the operands for multiply and divide
instructions. In other instructions, it may just be used as a scratch pad.

Program Status Word (PSW): This set of flags contains the status information.

Stack Pointer (SP): This 8-bit wide register is incremented before the data is stored onto

the stack using push or call instructions. This register contains 8-bit stack top address. The

stack may be defined anywhere in the on-chip 128-byte RAM. After reset, the SP register
is initialised to 07. After each write to stack operation, the 8-bit contents of the operand are
stored onto the stack, after incrementing the SP register by one. Thus if SP contains 07 H,
the forthcoming PUSH operation will store the data at address 08H in the internal RAM.
The SP content will be incremented to 08.

PO.0 - PO.7

P20-P27

!
_sa

oM
R —_—

o ey § may vl
AN
N—]
—

]

|
|
|
|
I
|
I
|
|
I
I
!
|
|
I
|
[
[
|
|
Stack Progra :
> m
Register 2 Painter dr. Q—_ I
TMP2 TMP1 Regster f
|
|
: <": I
% Buffer (ﬁ) |
I
|
|
PC '
Incrementer <::> :
[
|
lStar;rupé, _IS_erial :
. ort and Timer Program
Blocks Counter <E> :
PSEN <L | |
ALE <i| Timi 5% 7 !
ming | 52 | L i
EA —J—)—I Cgﬂgnl g'gj <‘ v DPTR Q :
RST —> |
! Port 1 Port 3 r
! Latch Latch ||
| Oscil- |
| lator |
! |
! Port 1 Port 3 !
: Drivers __:> Drivers :
|

]
h.l_ P1.0-P17

P3.0-P3.7

Fig. 17.2 805/ Block Diagram (Intel Corp.)

Data Pointer (DTPR): This 16-bit register contains a higher byte (DPH) and the lower
byte (DPL) of a 16-bit external data RAM address. It is accessed as a 16-bit register or two

8-bit registers as specified above.

Port 0 to 3 Latches and Drivers: These four latches and driver pairs are allotted to each

of the four on-chip 1/0 ports. Using the allotted addresses, the user can communicate with
these ports. These are identified as PO, PI, P2 and P3.
Serial Data Buffer: The serial data buffer internally contains two independent registers.
One of them is a transmit buffer which is necessarily a parallel-in serial-out register. The
other is called receive buffer which is a serial-in parallel-out register. The serial data buffer
is identified as SBUF.
Timer Registers: These two 16-bit registers can be accessed as their lower and upper
bytes. For example, TLO represents the lower byte of the timing register 0, while THO
represents higher bytes of the timing register 0. Similarly, TL1 and TH1 represent lower
and higher bytes of timing register 1.
Control Registers: The special function registers IP, IE, TMOD, TCON, SCON and
PCON contain control and status information for interrupts, timers/counters and serial port.
Timing and Control Unit: This unit derives all the necessary timing and control signals
required for the internal operation of the circuit. It also derives control signals required for
controlling the external system bus.
Oscillator: This circuit generates the basic timing clock signal for the operation of the
circuit using crystal oscillator.
Instruction Register: This register decodes the opcode of an instruction to be executed
and gives information to the timing and control unit to generate necessary signals for the
execution of the instruction.
EPROM and Program Address Register: These blocks provide an on-chip
EPROM/PROM and a mechanism to internally address it. Note that EPROM is not
available in all 8051 versions.
RAM and RAM Address Register: These blocks provide internal 128 bytes of RAM and
a mechanism to address it internally.
ALU: The arithmetic and logic unit performs 8-bit arithmetic and logical operations over
the operands held by the temporary registers TMP1 and TMP2. Users cannot access these
temporary registers.
SFR Register Bank: This is a set of special function registers, which can be addressed
using their respective addresses which lie in the range 80H to FFH.

Finally, the interrupt, serial port and timer units control and perform their specific

functions under the control of the timing and control unit.

PIN DESCRIPTIONS OF 8051
8051 is available in a 40-pin plastic and ceramic DIP packages. The pin diagram of
8051 is shown in Fig. 17.3 followed by description of each pin.

Ny
P1.0C] 1 40 [J Vec
P11 2 39 [J P0.0 (ADy)
P1.2 3 38 [0 PO0.1 (ADy)
P1.3[] 4 37 [7] P0.2 (ADy)
P14 5 36 [J P0.3 (AD3)
P1.5[] 6 35 [J P0.4 (ADy)
P1.6] 7 34 3 P0.5 (ADs)
P1.7[] 8 33 [0 P0.6 (ADg)
RESET[] 9 8051 32 [J PO.7 (ADy)
RXD P3.0[] 10 31 [EA/Vpp
TXD P3.1[] 11 30 [ALE/PROG
INTo P3.2] 12 29 [1 PSEN
INT, P3.3[] 13 28 [P2.7(A4s)
ToP3.4(] 14 27 [P2.6(Aq4)
T,P35] 15 26 [1 P2.5(Aq3)
WRP36[] 16 25 [P2.4(Aq2)
RDP3.7[7] 17 24 [P2.3Aqy
XTAL,] 18 23 [P22Aq
XTAL,] 19 22 [P2.1Ag
Vss (] 20 21 [J P2.0As

Fig. 17.3 8051 Pin Configuration (Intel Corp.)

V. Thisisa+5 V supply voltage pin
V, This is a return pin for the supply.

RESET The reset input pin resets the 8051, only when it goes high for two or more machine cycles.
For a proper reinitialization after reset, the clock must be running.

ALE/PROG The address latch enable output pulse indicates that the valid address bits are available
on their respective pins. This ALE signal is valid only for external memory accesses. Normally, the
ALE pulses are emitted at a rate of one-sixth of the oscillator frequency. This pin acts as program pulse
input during on-chip EPROM programming. ALE may be used for external timing or clocking purpose.
One ALE pulse is skipped during each access to external data memory.

EA IV pp External access enable pin, if tied low, indicates that the 8051 can address external program

memory. In other words, the 8051 can execute a program in external memory, only if EA is tied low.

For execution of programs in internal memory, the FA must be tied high. This pin also receives 21
volts for programming of the on-chip EPROM.

PSEN Program store enable is an active-low output signal that acts as a strobe to read the external
program memory. This goes low during external program memory accesses.

Port 0 (P0.0-P0.7) Port O is an 8-bit bidirectional bit addressable I/O port. This has been allotted an
address in the SFR address range. Port 0 acts as multiplexed address/data lines during external memory

access, i.c. when EA is low and ALE emits a valid signal. In case of controllers with on-chip EPROM,
Port 0 receives code bytes during programming of the internal EPROM. .,

Port 1 (P1.0-P1.7) Port 1 acts as an 8-bit bidirectional bit addressable port. This has been allotted an
address in the SFR address range.

Port 2 (P2.0-P2.7) Port 2 acts as 8-bit bidirectional bit addressable 1/0 port. It has been allotted an
address in the SFR address range of 8051. During external memory accesses, port 2 emits higher eight
bits of adress (Ag-A,;s) which are valid, if ALE goes high and EA is low. P2 also receives higher order
address bits during programming of the on-chip EPROM.

Port 3 (P3.0-P3.7) Port 3 is an 8-bit bidirectional bit addressable I/O port which has been allotted an
address in the SFR address range of 8051. The port 3 pins also serve the alternative functions as listed in
the Table 17.2.

XTAL, and XTAL, There is an inbuilt oscillator which derives the necessary clock frequency for the
operation of the controller. XTAL, is the input of amplifier and XTAL, is the output of the amplifier. A
crystal is to be connected externally between these two pins to complete the feedback path to start
oscillations. The controller can be operated on an external clock. In this case the external clock is fed to
the controller at pin XTAL, and XTAL, pin should be grounded. Commercially available versions of
8051 run on 12 MHz to 16 MHz frequency.

REGISTER SET OF 8051
8051 has two 8-bit registers, registers A and B, which can be used to store

operands, as allowed by the instruction set. Internal temporary registers of 8051 are not
user accessible. Including these A and B registers, 8051 has a family of special purpose
registers known as, Special Function Registers (SFRs). There are, in total, 21-bit
addressable, 8-bit registers. ACC (A), B, PSW, PO, PI, P2, P3, IP, IE, TCON and SCON
are all 8-bit, bit-addressable registers. The remaining registers, namely, SP, DPH, DPL,
TMOD, THO, TLO, TH1, TL1, SBUF and PCON registers are to be addressed as bytes, i.e.
they are not bit-addressable. The registers DPH and DPL are the higher and lower bytes of
a 16-bit register DPTR, i.e. data pointer, which is used for accessing external data memory.
Starting 32-bytes of on-chip RAM may be used as general purpose registers. They have
been allotted addresses in the range from 0000H to 001FH. These 32, 8-bit registers are
divided into four groups of 8 registers each, called register banks. At a time only one of

these four groups, i.e. banks can be accessed. The register bank to be accessed can be

selected using the RS1 and RSO bits of an internal register called program status word.

The registers THO and TLO form a 16-bit counter/timer register with H indicating
the upper byte and L indicating the lower byte of the 16-bit timer register TO. Similarly,
TH1 and TLI form the 16-bit count for the timer TI. The four port latches are represented
by PO, P1, P2 and P3. Any communication with these ports is established using the SFR
addresses to these registers. Register SP is a stack pointer register. Register PSW is a flag
register and contains status information. Register IP can be programmed to control the
interrupt priority. Register IE can be programmed to control interrupts, i.e. enable or
disable the interrupts. TCON is called timer/counter control register. Some of the bits of

this register are used to turn the timers on or off. This register also contains interrupt

control flags for external interrupts INTo and INTi. The register TMOD is used for
programming the modes of operation of the timers/counters. The SCON register is a serial
port mode control register and is used to control the operation of the serial port. The SBUF
register acts as a serial data buffer for transmit and receive operations. The PCON register
is called power control register. This register contains power down bit and idle bit which
activate the power down mode and idle mode in 80C51BH. There are two power saving
modes of operation provided in the CHMOS version, namely, idle mode and power down
mode.

In the idle mode, the oscillator continues to run and the interrupt, serial port and
timer blocks are active but the clock to the CPU is disabled. The CPU status is preserved.
This mode can be terminated with a hardware interrupt or hardware reset signal. After this,
the CPU resumes program execution from where it left off.

In power down mode, the on-chip oscillator is stopped. All the functions of the
controller are held maintaining the contents of RAM. The only way to terminate this mode
is hardware reset. The reset redefines all the SFRs but the RAM contents are left
unchanged. Both of these modes can be entered by setting the respective bit in an internal
register called PCON register using software.

All these registers are listed in Table 17.3 along with their SFR addresses and

contents after reset.

IMPORTANT OPERATIONAL FEATURES OF 8051

This section describes the critical special function register formats of 8051.

1.

Program Status Word (PSW)

This bit-addressable register has the following format as shown in Fig. 17.4. The bit

descriptions are presented along with the format.
2. Timer Mode Control Register (TMOD)

Format of this 8-bit non-bit-addressable register is shown along with its bit

descriptions in Fig. 5.
3. Timer Control Register (TCON)

This bit-addressable register format along with its bit definitions is shown in Fig..

4. Serial Ports Control Register (SCON)
This 8-bit, bit-addressable register format is shown in Fig.
D7 Ds Ds D4 Ds D Dy By
CY | AC| FO | RSy | RSy | OV | — P
cY D, Carry Flag.
AC Dy Awuxiliary carry Flag.
FO Dy Flag 0 is available to the user for general purpose.
RS, Dy Register Bank selector bit 1.
RSg D3 Register Bank selector bit 0.

The value presented by RSy and RS, bits select the corresponding register bank as shown below.

RS, | RSp Register Bank Address
0 0 0 00H-07H
0 1 t 08H-0FH
1 ¢ 2 10H-17H
1 1 3 18H-1FH
Qv D2 Overf_low Flag.
—_ D; User definable flags {Reserved for future use)
P Dg Parity flag is set/cleared by hardware in each instruction cycle

to indicate an odd/even number of ‘1’ bits in the accumulator

Fig. 17.4 Format of PSW (Intel Corp.)

Ds Ds D4 Ds Dz D1 . DO

the standard Timer O

D
EGATE| C/T | M1 ‘ MO ‘ GATE‘ c/T ‘ M1 ‘ MO J
: TIMER 1 TIMER O
GATE When TRx {in TCON) |.s set and GATE = 1 TIMER/COUNTERX will run only while
INTx pin is high (hardware control). When GATE = O, TIMEFVCOUNTEF!X will run
only while TRx = 1 (software control).
Cc/T Timer or Counter selector is cleared for Timer operation (input from internal system
. clock) and is set for Counter operation (input from Tx input pin).
M1 Mode selector bit.
MO Mode selector bit.
M1 MO Operating Modes
0 o 0 13-bit Timer (MCB-48 compatible)
o] 1 1 16-bit Timer/Counter
1 o 2 B8-bit Auto-Reload Timer/Counter
1 1 3 (Timer 0) TLO is an 8-bit Timer/Counter controlled b
3

|
"

control bits, THO is an 8-bit Timer and is controlled Ey Timer 1 control bits.
(Timer 1) Timer/Counter 1 stopped

Fig. I7 5 Format of TMOD Register (Intel C.'orp)

TF1

TR1
TFO

TRO
IE1

IT1

IEQ

ITO

D, Dg D; D, D, D, D, Dy
TF1 TR1 TFO TRO [E1 T IEQ iT0
D, Timer 1 overflow flag—This is set by hardware when the Timer/Counter1 overflows, and is
cleared by hardware as processor vectors to the interrupt service routine.
D Timer 1 run control bit—This is set/cleared by software to tum Timer/Counter1 on/off.
Ds Timer 0 overfiow flag—This is set by hardware when the Timer/Counter 0 overflows, and is
cleared by hardware as processor vectors to the service routine.
D, Timer 0 run control bit—This is set/cleared by software to turn Timer/Counter1 on/off.
D, External Interrupt1 edge flag—This is set by hardware when external interrupt edge is
detected, and is cleared by hardware when the interrupt is processed.
D, Interrupt1 type control bit—This is set/cleared by software to specify famng edgefiow level
triggered external Interrupt.
Dy External Interrupt0 edge flag—This is set by hardware when external Interrupt edge is
detected, and is.cleared by hardware when the interrupt is processed.
Dy Interrupt0 type control bit—This is set/cleared by software to specify falfing edgeflow level

triggered external Interrupt.

Fig. 17.6 Format of TCON Register (Intel Corp.)

>, Db Db D D, D D D

!SMU|8M1‘SM2{HENITBB'HBB'T1|H1 [

SM, D; Serial Port mode specifier.
SM1 Ds Serial Port mode specifier.

SM, SM, Mode Description Baud Rate
0 Q 0 SHIFT REGISTER Fos /12
0 1 1 8-Bit UART Variable
1 0 2 9-Bit UART Fosc-/64 OR
Fose-/32
1 1 3 9-Bit UART Variable
SMz2 Dg This enables the multiprocessor communication feature in modes 2 and 3. In mode 2 or 3, if

SM2is set to 1 then R1 wili not be activated, if the received 9th data bit (RB8) is 0.
In mode 1, if SM2 = 1 then R1 will not be activated, if a valid stop bit was not received.
In mode 0, SM2 shouid be 0.

REN Dy This is set/cleared by software to enable/disable reception.

TB8 Dy This selects the 9th bit that will be transmitted in modes 2 and 3. This is set/cleared by
software. :

RB8 D, In modes 2 and 3, this is the 9th data bit that was received. In mode 1, if SM2 = 0, RB8
is the stop bit that was received. In mode 0, RB8 is not used.

™ D, Transmit interrupt flag—This is set by hardware at the end of the 8th bit time in mode 0,
or at the beginning of the stop bit in the other modes. This must be cleared by software.

R1 Dy Receive interrupt flag—This is set by hardware at the end of the 8th bit time in mode 0,

or halfway through the stop bit time in the other modes excepting the case where SM2 is
set. This must be cleared by software.

Fig. 17.7 Format of SCON Register (Intel Corp.)

Power Control Register (PCON)
The format of this non-bit-addressable register is shown in Fig. 17.8.

D, Ds Ds D4 D, D, D, Do
[smoo | - T - - 1GF1|GFO|PDJ DL |

SMOD D, Double baud rate bit. If timer 1 is used to generate baud rate, the baud rate is doubled
when the Serial Port is used in modes 1, 2, or 3.

- D¢, D5, D, Not implemented, reserved for future use.

GF1 Dy General purpose flag bit.

GFO - D, General purpose flag bit.

PD D, Power Down bit—Setting this bit activates Power Down Operation in the 80C51BH. (This
is avallable anly in CHMQS.)

iDL Dy Idle Mode bit—Setting this bit activates Idle Mode Operation in the 80C51BH. (This is
available only in CHMQOS.)

Fig. 17.8 Format of PCON Register (Intel Corp.)

MEMORY AND /O ADDRESSING BY 8051
1. Memory Addressing

The total memory of an 8051 system is logically divided into program memory and

data memory. Program memory stores the programs to be executed, while data memory

stores the data like intermediate results, variables and constants required for the execution
of the program. Program memory is invariably implemented using EPROM, because it
stores only program code which is to be executed and thus it need not be written into.
However, the data memory may be read from or written to and thus it is implemented using
RAM.

Further, the program memory and data memory both may be categorized as on-chip
(internal) and external memory, depending upon whether the memory physically exists on
the chip or it is externally interfaced. The 8051 can address 4 Kbytes on-chip program
memory whose map starts from 0000H and ends at OFFFH. It can address 64 Kbytes of

external program memory under the control of PSEN signal, whose address map is from
0000H to FFFFH. Here, one may note that the map of internal program memory overlaps
with that of the external program memory. However, these two memory spaces can be

distinguished using the PSEN signal. In case of ROM-less versions of 8051, the PSEN
signal is used to access the external program memory. Conceptually this is shown in Fig.
17.9.

8051 supports 64 Kbytes of external data memory whose map starts at 0000H and
ends at FFFFH. This external data memory can be accessed under the control of register
DPTR, which stores the addresses for external data memory accesses. 8051 generates RD
and WR signals during external data memory accesses. The chip select line of the external
data memory may be derived from the address lines as in the case of other
microprocessors. Internal data memory of 8051 consists of two parts; the first is the RAM
block of 128 bytes (256 bytes in case of some versions of 8051) and the second is the set of
addresses from 80H to FFH, which includes the addresses allotted to the special function
registers.

The address map of the 8051 internal RAM (128 bytes) starts from 00 and ends at

7FH. This RAM can be addressed by using direct or indirect mode of addressing.
However, the special function register address map, i.e. from 80H to FFH is accessible

only with direct addressing mode.

FFFFH
External Memory
EA=0
PSEN = 0 —
PSEN
1000H
B / \ 1
OFFFH OFFFH
4 k internal External
P Overlap
On-chip Mamaory Memory
EFPROM - o ﬁbg‘F?:?:DI—? to
EA =1 EA =0
0000 o000

T On chip EPROM may be 8 k/16 Kk in some versions of 8051

Fig. 1 7.9 Program Memory Map of an 805 [System

In case of 8051 versions with 256 bytes on-chip RAM, the map starts from 00H and
ends at FFH. In this case, it may be noted that the address map of special function registers,
i.e. 80H to FFH overlaps with the upper 128 bytes of RAM. However, the way of
addressing, i.e. addressing mode, differentiates between these two memory spaces. The
upper 128 bytes of the 256 byte on-chip RAM can be accessed only using indirect
addressing, while the lower 128 bytes can be accessed using direct or indirect mode of
addressing. The special function register address space can only be accessed using direct
addressing. The address map of the internal RAM and SFR is shown in Fig. 17.10.

Not available in all
the versions of 8051

FF l FF 4 dSFR
Upper indiract Direct addresses
128 bytes Addressing Addressing OJ&;I:.?
_ Mode anly Mode only 1aapper
80 f 80 of RAM
7F SFR Bank
Lower Direct and
128 bytes Indirect
Addressing
Mode
00

Fig. 17.10 [nternal Data Memory of 805 |
The lower 128 bytes of RAM whose address map is from 00 to 7FH is functionally

organized in three sections. The address block from 00 to 1FH, i.e. the lowest 32 bytes
which form the first section, is divided into four banks of 8-bit registers, denoted as bank
00, 01, 10 and 11. Each of these banks contains eight 8-bit registers. The stack pointer gets
initialized at address 07H, i.e. the last address of the bank 00, after reset operation. After
reset bank 0 is selected by default but the actual stack data is stored from 08H onwards, i.e.
bank 01, 10 and 11. These bank addressing bits of the register banks are present in PSW, to
select one of these banks at a time. The second section extends from 20H to 2FH, i.e. 16
bytes, which is a bit-addressable block of memory, containing 16 x 8 = 128 bits. Each of
these bits can be addressed using the addresses 00 to 7FH. Any of these bits can be
accessed in two ways. In the first, its bit number is directly mentioned in the instruction

while in the second the bit is mentioned with its position in the respective register byte. For

example, the bits 0 to 7 can be referred directly by their numbers, i.e. 0 to 7 or using the
notations 20.0 to 20.7 respectively. Note that 20 is the address of the first byte of the on-
chip RAM. The third block of internal memory occupies addresses from 30H to 7FH. This
block of memory is a byte addressable memory space. In general, this third block of
memory is used as stack memory. All the internal data memory locations are accessed
using 8-bit addresses under appropriate modes of addressing. Figure 17.11 shows the
categorization of 128 bytes of internal RAM into the different sections.

7FH '
80 bytes Section 3
30H
Bank Select =
bits in PSW 2FH 16 bytes Section 2, i.e. 128 bit
addressable using
Jv _ 20H _| addresses 0-7F
11 1FH
L 18H
o 1 fon
= 32 bytes
OFH Section 1
01 08H 4 banks of 8, 8-bit
L Registers Rg — Ry each
07H
Bank 00 | 00H

Fig. 17.11 Functional Description of Internal Lower |28 Bytes of RAM
2. 1/0 Addressing

Internally, 8051 has two timers, one serial input/output port and four 8-bit, bit-
addressable ports. Some complex applications may require additional 1/O devices to be
interfaced with 8051. Such external 1/O devices are interfaced with 8051 as external
memory-mapped devices. In other words, the devices are treated as external memory
locations, and they consume external memory addresses. Figure 17.12 shows a system that
has external RAM memory of 16 Kbytes, ROM of 16 Kbytes and one chip of 8255
interfaced externally to an 8051 family microcontroller.

Note that, the maps of external program and data memory may overlap, as the
memory spaces are logically separated in an 8051 system. As the 8255 is interfaced in

external data memory space its addresses are of 16-bits.

Ag—Aqa

16 Kbyte
EPROM

Do -D;

0000-
3FFFH

Ag - A7
(o]

74373
LATCH

||I’—\

0000-
3FFFH

»»\}V\L ﬂ VM

Yo
2:4 Mt
DMUX

L5

-

[

2

FOOOH-
FOO3H

Yo
DMUX
Gs
Az Ay Ag
Ao
As
Az

Gy

HH u

Ats—

Fig. 17.12 Interfacing External Memory and I/O with 8051

ADRESSING MODES OF 8051

ACCESSING MEMORY USING VARIOUS ADDRESSING MODES

We can use direct or register indirect addressing modes to access data stored either
in RAM or registers of the 8051. This topic will be discussed thoroughly in this section.
We will also show how to access on-chip ROM containing data using indexed addressing

mode.

Direct addressing mode

As mentioned in Chapter 2, there are 128 bytes of RAM in the 8051. The RAM has been
assigned addresses 00 to 7FH. The following is a summary of the allocation of these 128
bytes.

1. RAM locations 00 - 1FH are assigned to the register banks and stack.

1. RAM locations 20 - 2FH are set aside as bit-addressable space to save single-
bit data. This is discussed in Section 5.3.

2. RAM locations 30 - 7FH are available as a place to save byte-sized data.

Although the entire 128 bytes of RAM can be accessed using direct addressing
mode, it is most often used to access RAM locations 30 - 7FH. This is due to the fact that
register bank locations are accessed by the register names of RO - R7, but there is no such
name for other RAM locations. In the direct addressing mode, the data is in a RAM
memory location whose address is known, and this address is given as a part of the
instruction. Contrast this with immediate addressing mode, in which the operand itself is
provided with the instruction. The "#" sign distinguishes between the two modes. See the
examples below, and note the absence of the "#" sign.

MOV RO, 40H ;save content of RAM location 40H in RO
MOV S5&H, A ;save content of A in RAM location S6H
MOV R4, TFH ;move contents of RAM location 7FH to R4

As discussed earlier, RAM locations O to 7 are allocated to bank O registers
RO - R7. These registers can be accessed in two ways, as shown below.

MOV &, d ;is same as

MOV A,R& ;which means copy R4 into A

MOV AT ;i same as

MOV A, RT pwhich means copy E7 into A
MOV A, 2 ;is the same as
MOV A,R2 ;which means copy R2 into A
MOV A,O ;is the same as

MOV A,RO ;which means copy RO into A

The above examples should reinforce the importance of the "#" sign in 8051 instructions.
See the following code.

MOV R2,45 ;R2 with value 5
MOV A,2 ;copy R2 to A {(A=R2=05)
MOV B, 2 ;eopy R2 to B (B=R2=05)
MOV 7,2 ;copy R2 to R7
;since "MOV R7,R2" is invalid

Although it is easier to use the names RQ - R7 than their memory addresses, RAM
locations 3 OH to 7FH cannot be accessed in any way other than by their addresses since
they have no names.

SFR registers and their addresses

Among the registers we have discussed so far, we have seen that RO - R7 are part
of the 128 bytes of RAM memory. What about registers A, B, PSW, and DPTR? Do they
also have addresses? The answer is yes. In the 8051, registers A, B, PSW, and DPTR are
part of the group of registers commonly referred to as SFR (special function registers).
There are many special function registers and they are widely used, as we will discuss in
future chapters. The SFR can be accessed by their names (which is much easier) or by their
addresses. For example, register A has address EOH, and register B has been designated
the address FOH, as shown in Table 5-1. Notice how the following pairs of instructions
mean the same thing.

MOV QEOQH,#55H ;is the same as

MOV A, #55H ;which means load 55H intc A (A=55H)
MOV OFQH,#25H ;is the same as

MOV B, #2SH ;which means load 25H into B (B=25H)
MOV QEQH,RZ ;13 the same as

MOV A,RZ ;which means copy R2 into A

MY LFIR VRS ;25 the same as

MCV 2.3 ;which means copy RO into B

A as

copy reg A to Pl

2 ;i the same
M2T OEDE A ;which means

Table lists the 8051 special function registers (SFR) and their addresses. The following
two points should be noted about the SFR addresses.

1. The special function registers have addresses between 80H and FFH. These
addresses are above 80H, since the addresses 00 to 7FH are addresses of RAM
memory inside the 8051.

2. Not all the address space of 80 to FF is used by the SFR. The unused locations
80H to FFH are reserved and must not be used by the 8051 programmer.

Regarding direct addressing mode, notice the following two points: (a) the address
value is limited to one byte, 00 - FFH, which means this addressing mode is limited to
accessing RAM locations and registers located inside the 8051. (b) if you examine the 1st
file for an Assembly language program, you will see that the SFR registers' names are
replaced with their addresses as listed in Table 5-1.

Write code to send 55H to ports P1 and P2, using (a) their names, (b} their addresses.

Solution:

(a) MOV A,#55H ;A=5SH
MOV P1,A ;P1=55H
MOV P24 ;P2=5EEH

{b) From Table 5-1, P1 address = 90H: P2 address = AOH

MOV A, #55H ;BA=55H
MOV 90H,A i PL=55H
MOV OAOH,A 1 P2=55H

Table : 8051 Special Function Register (SFR) Addresses

Symbol Name Address
ACCH Accumulator OEQH
B* B register OFOH
PSW#* Program status word 0DOH
SP Stack pointer 81H
DPTR Data pointer 2 bytes

DPL Low byte 82H

DPH High byte S83H
PO* Port) 80H
Pl* Port 1 90H
p2* Port 2 0AOH
p3* Port 3 0BOH
[p* Interrupt priority control OBEH
IE* Interrupt enable control JABH
TMOD Timer/counter mode control 89H
TCON* Timer/counter control 88H
T2CON* Timer/counter 2 control (0C8H
T2MOD Timer/counter mode control 0CSH
THO Timer/counter) high byte SCH
TLD Timer/counter low byte SAH
THI Timer/counter 1 high byte EDH
TL1 Timer/counter 1 low byte 8BH
TH2 Timer/counter 2 high byte O0CDH
TL2 Timer/counter 2 low bvte O0CCH
RCAPZH T/C 2 capture register high byte O0CBH
RCAP2L T/C 2 capture register low byte 0CAH
SCON* Serial control 98H
SBUF Serial data buffer 99H
PCON Power control 87H

* Bit-addressable

Example 1

Stack and direct addressing mode

Another major use of direct addressing mode is the stack. In the 8051 family, only
direct addressing mode is allowed for pushing onto the stack. Therefore, an instruction
such as "PUSH A" is invalid. Pushing the accumulator onto the stack must be coded as
"PUSH OEOH" where OEOH is the address of register A. Similarly, pushing R3 of bank 0
is coded as "PUSH 03". Direct addressing mode must be used for the POP instruction as

well. For example, "POP 04" will pop the top of the stack into R4 of bank 0.

Example 2

Show the code to push R5, R6, and A onto the stack and then pop them back them into R2,
R3, and B, where register B = register A, R2 = R6, and R3 = R5.

Solution:

PUSH 05 ;push RS onto stack

PUSH 06 ;push R6 onto stack

PUSH 0EOH ;push register A onto stack

BOFP OQFO0H ipop top of stack into register B
;now register B = register A

POP 02 ipop top of stack into R2
;now R2 = R6

POP 03 ;pop top of stack into R3

;now R3 = RS

Register indirect addressing mode

In the register indirect addressing mode, a register is used as a pointer to the data. If
the data is inside the CPU, only registers RO and RI are used for this purpose. In other
words, R2 - R7 cannot be used to hold the address of an operand located in RAM when
using this addressing mode. When RO and RI are used as pointers, that is, when they
hold the addresses of RAM locations, they must be preceded by the @' sign, as
shown below.

MOV A,@RQO :move contents of RAM location whose
;address is held by RO into A

MOV @R1,B ;move contents of B into RAM location
iwhose address is held by R1

Notice that RO (as well as RI) is preceded by the @' sign. In the absence of the "@"
sign, MOV will be interpreted as an instruction moving the contents of register RO to
A, instead of the contents of the memory location pointed to by RO.

Example 3

Write a program to copy the value 55H into RAM memory locations 40H to 45H using
{a) direct addressing mode,

(b} register indirect addressing mode without a loop. and

{c) with a loop.

Solution:
{a)
MOV A, #55H ;load A with wvalue 55H
MOV 40H, A ;copy A to RAM location 40H
MOV 41H, A ;oopy A to RAM location 41H
MOV 42H, A ;copy A to RAM location 42H
MOV 43H, & ;ocopy A to RAM location 43H
MOV 44H,2A jcopy A to RAM location 44H
{b)
MOV A, #5SH ;load A with walue 55H
MOV RO, #40H iload the pointer. RO=20H
MOV @RO, A ;oopy A to RAM location RO points to
INC RO iincrement pointer. MNow RO=41H
MOV @RO, A ;ocopy A to RAM location RO points to
ims RO jincrement pointer. Now RO=42H
MOV @RO, A jcopy A to RAM location RO points to
INC RO jincrement pointer. Now RO=43H
MOV @RO, A joopy A bo RAM location RO points to
INC RO ;increment pointer. Now RO0O=44H
MOV @RO, A
()
MOV A, #55 ;A=55H

MOV RO, #40H ; load pointer. R0=40H, RAM address
MOV R2,#05 ;load counter, R2=5

AGATIN: MOV @RO, A ;copy 55H to RAM location RO points to
INC RO ;increment RO pointer
DJINZ R2, AGAIN i loop until counter = zZero

Advantage of register indirect addressing mode

One of the advantages of register indirect addressing mode is that it makes accessing data
dynamic rather than static as in the case of direct addressing mode. Example 5-3 shows two
cases of copying 55H into RAM locations 40H to 45H. Notice in solution (b) that there are
two instructions that are repeated numerous times. We can create a loop with those two
instructions as shown in solution (c). Solution (c) is the most efficient and is possible only
because of register indirect addressing mode. Looping is not possible in direct addressing
mode. This is the main difference between the direct and register indirect addressing

modes.

Example 54

Write a program to clear 16 RAM locations starting at RAM address 60H.

Solution:
CLR A 1A=0
Mov R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16 (10 in hex)
AGAIN: MOV BR1,A ;clear RAM location Rl points to
INC R1 jincrement R1 pointer

DJINZ R7,AGAIN ;loop until counter = zero

An example of how to use both RO and RI in the register indirect addressing mode in a
block transfer is given in Example 5.

Example 5-5

Write a program to copy a block of 10 bytes of data from RAM locations starting at 35H
to RAM locations starting at 60H.

Solution:
MOV RO, #35H isource pointer
MOV R1,%60H ;destination peointer
MOV R3,#10 ;ocounter
BACK: MOV A,&R0 ;get a byte from source
MOV @R, A jcopy it to destination
INC RO ;increment source pointer
INC Rl ;increment destination pointer

DJNZ R3,BACK ;keep doing it for all ten bytes

Limitation of register indirect addressing mode in the 8051

As stated earlier, RO and RI are the only registers that can be used fo' pointers in
register indirect addressing mode. Since RO and RI are 8 bits wide, their use is limited to
accessing any information in the internal RAM (scratch pad memory of 30H - 7FH, or
SFR). However, there are times when we need to access data stored in external RAM or in
the code space of on-chip ROM. Whether accessing externally connected RAM or on-chip
ROM, we need a 16-bit pointer. In such cases, the DPTR register is used, as shown next.

Indexed addressing mode and on-chip ROM access

Indexed addressing mode is widely used in accessing data elements of look-up table
entries located in the program ROM space of the 8051. The instruction used for this
purpose is "MOVC A, @A+DPTR". The 16-bit register DPTR and register A are used to
form the address of the data element stored in on-chip ROM. Because the data elements are
stored in the program (code) space ROM of the 8051, the instruction MOVC is used
instead of MOV. The "C" means code. In this instruction the contents of A are added to the
16-bit register DPTR to form the 16-bit address of the needed data. See Example 5-6.

Example 6

In this program, assume that the word "USA" is burned into ROM locations starting
at 200H, and that the program is burned into ROM locations starting at 0. Analyze how
the program works and state where "USA" is stored after this program is run.

Solution:
ORG 0COOH ;burn into ROM starting at 0
MOV DPTR, #200H ;DPTR=200H look-up table address
CLRE R ;elear A(A=0)
MOVC A,@A+DPTR ;get the char from code space
MOV RO,A ;2ave 1t in RO
INC DPTR ;DPTR=201 pointing to next char
CLR & ;clear A(R=0)
MOVC A, @3A+DPTR ;get the next char
MOV R1,A ;save it in R1
INC DPTR ;DPTR=202 pointing to next char
CLR & iolear A(A=D)
MOVC A, @A+DPTR ;get the next char
MOV R2,A ;save it in R2

HERE : 5JMF HERE ;stay here

;Data is burned into code space starting at 200H
ORG 200H

MYDATA : DE “USA"
END ;end of program

In the above program ROM locations 200H - 202H have the following contents.
200=('U") 201=('S") 202=('A")

We start with DPTR = 200H, and A = 0. The instruction "MOVC A, @ A+DPTR"
moves the contents of ROM location 200H (200H + 0 = 200H) to register A. Register A
contains 55H, the ASCII value for "U". This is moved to RO. Next, DPTR is incremented
to make DPTR = 201H. A is set to 0 again to get the contents of the next ROM location

201H, which holds character "S". After this program is run, we have RO = 55H, Rl = 53H,
and R2 = 41H, the ASCII values for the characters "U", "S" and "A".

Example 7

Assuming that ROM space starting at 250H contains "America", write a program to
transfer the bytes into RAM locations starting at 40H.

Solution:
;i {a) This method uses a counter
QRG [slalnalnl

MOW DPTR, #MYDATA ; load ROM pointer

MO RO, #40H
MO RZ2,#7

BRACE : CLER B
MOWVC A, @A+DPTR

;load RAM pointer

;load counter

;B = 0

smove data from code space

MO @R0, A ssave it in RAM

INC DETR ; increment ROM pointer
INC RO increment RAM pointer
DJNZ R2, BACH ;loop until countexr=0
HERE : SJMP HERE
o —m———— On-chip code space used for storing data
ORG 250H

MYDATA: DB
END

"AMERTICAY

; (b)) This method uses null char for end of string
ORG QOO0
MO DPTR, #MYDATR ;load ROM pointer
o BO,H40H ;i load RAM pointer
BARCK « CLR Py s A=0
MOWVC A, @+DPTR smowve data from code space
JZ HERE ;exit if null character
MO @R, A ;isave it in RAM
IMC DPTR rincrement ROM pointer
INC RO ;increment RAM pointer
SJIMEP BACEK i loop
SJIMEP HERE

P ——— On-chip code space used for storing data

"HAMERTICA™ , O rnotice mnmall char for

;end of string
EMNLD

Motice the null character. 0, indicating the end of the string. and how we use the
JZ instruction to detect that.

Look-up table and the MOVC instruction

The look-up table is a widely used concept in microprocessor programming. It
allows access to elements of a frequently used table with minimum operations.

Example 8

Write a program to get the x value from Pl and send x? to P2, continuously.

Solution:
ORG O
MOV DPTR, #300H ilocad lock-up table address
MOV &,#0FFH ;A=FF
MOV P1,A ;econfigure P1 as input port
BACK: MOV A, P1 ;get X
MOVC &, ®A+DPTR ;get X squared from table
MOV P2,A ;issue it to P2
SJMP BACK jkeep doing it
ORG 300H

XEQR_TARELE:
DE &'1'4'9‘15I25]35;49!64,81
END

Notice that the first instruction could be replaced with “MCV DPTR, #XSQR_TABLE”

Example 5-9

Answer the following questions for Example 5-8.

(a) Indicate the content of ROM locations 300 - 309H.

(b} At what ROM location is the square of 6, and what value should be there?
{c) Assume that Pl has a value of 9: What value is at P2 {in binary)?

Solution:

(a) All values are in hex.

300 = {(00) 301 = {0OL1) 202 = (04) 303 = {0%)
304 = {10) 4 = 4 = 16 = 10 in hex

3205 = (139) 5 = 58 = 25 = 19 in hex

306 = {(z24) & = & = 36 = 24H

307 = {321} 208 = {(40) 309 = (51}

(b) 306H; it is 24H

{c) 01010001 B, which is S1H and 81 in decimal (92 = 81).

In addition to being used to access program ROM, DPTR can be used to access
memory externally connected to the 8051. Another register used in indexed addressing
mode is the program counter.

In many of the examples above, the MOV instruction was used for the sake of

clarity, even though one can use any instruction as long as that instruction supports the
addressing mode. For example, the instruction "ADD A, @RO" would add the contents of
the memory location pointed to by RO to the contents of register A. We will see more
examples of using addressing modes with various instructions in the next few chapters.

Indexed addressing mode and MOV X instruction

As we have stated earlier, the 8051 has 64K bytes of code space under the direct
control of the Program Counter register. We just showed how to use the MOVC instruction
to access a portion of this 64K-byte code space as data memory space. In many
applications the size of program code does not leave any room to share the 64K-byte code
space with data. For this reason the 8051 has another 64K bytes of memory space set aside
exclusively for data storage. This data memory space is referred to as external memory and
it is accessed only by the MOV X instruction. In other words, the 8051 has a total of 128K
bytes of memory space since 64K bytes of code added to 64K bytes of data space gives us
128K bytes. One major difference between the code space and data space is that, unlike
code space, the data space cannot be shared between code and data. This is such an
important topic that we have dedicated an entire chapter to it: Chapter 14.

Accessing RAM Locations 30 - 7FH as scratch pad

As we have seen so far, in accessing registers RO - R7 of various banks, it is much
easier to refer to them by their RO - R7 names than by their RAM locations. The only
problem is that we have only 4 banks and very often the task of bank switching and
keeping track of register bank usage is tedious and prone to errors. For this reason in many
applications we use RAM locations 30 - 7FH as scratch pad and leave addresses 8 - 1FH
for stack usage. That means that we use RO - R7 of bank 0, and if we need more registers
we simply use RAM locations 30-7FH. Look at Example 5-10.

Example 10

Write a program to toggle P a total of 200 times. Use RAM location 32H to hold
your counter value instead of registers R0 - R7.

Solution:

MOV PLl,#55H ;P1l=55H

MOV 324, #200 ;load counter value into BAM loc 322h
LOP1:CPL Pl ;toggle P1

ACALL DELAY

DJNEZ 32H,LOPl ;repeat 200 times

INTERRUPTS OF 8051

8051 provides five sources of interrupts. INTo and INT: are the two external
interrupt inputs. These can either be edge-sensitive or level-sensitive, as programmed with
bits 1T and 1T, register TCON. These interrupts are processed internally by the flags IEo
and IE;. If the interrupts are programmed as edge-sensitive, these flags are automatically
cleared after the control is transferred to the respective vector. On the other hand, if the
interrupts are programmed level-sensitive, these flags are controlled by the external
interrupts sources themselves. Both timers can be used in timer or counter mode. In counter
mode, it counts the pulses at Ty or T, pin. In timer mode, oscillator clock is divided by a
pre-scalar (1/32) and then given to the timer. So clock frequency for timer is 1/32th of the
controller operating frequency. The timer is an up-counter and generates an interrupt when
the count has reached FFFFH. It can be operated in four different modes that can be set by
TMOD register.

The timer 0 and timer 1 interrupt sources are generated by TF, and TF; bits of the
register TCON, which are set, if a rollover takes place in their respective timer registers,
except timer 0 in mode 3. When these interrupts are generated, the respective flags are
automatically cleared after the control is transferred to the respective interrupt service
routines.

The serial port interrupt is generated, if at least one of the two bits Rl and TI is set.
Neither of the flags is cleared, after the control is transferred to the interrupt service
routine. The RI and T1 flags need to be cleared using software, after deciding, which one of
these two caused the interrupt? This is accomplished in the interrupt service routine.

In addition to these five interrupts, 8051 also allows single step interrupts to be
generated with help of software. The external interrupts, if programmed level-sensitive,
should remain high for at least two machine cycles for being sensed. If the external
interrupts are programmed edge-sensitive, they should remain high for at least one machine
cycle and low for at least one machine cycle, for being sensed.

The interrupt structure of 8051 provides two levels of the interrupt priorities for its
sources of interrupt. Each interrupt source can be programmed to have one of these two
levels using the interrupt priority register IP. The different sources of interrupts

programmed to have the same level of priority, further follow a sequence of priority under

that level as shown:

All these interrupts are enabled using a special function register called interrupt
enable register (IE) and their priorities are programmed using another special function
register called interrupt priority register (IP). Formats of both of these registers are
shown in Fig. 17.13 and Fig. 17.14.

ET2
ES
ET1

ETO
EX0

D, D Ds D, Dy D, D, Do
EA - ET2 ES ET1 EX1 ETO EX0
b, - This disables all interrupts. If EA = 0, no interrupt will be acknowledged. If EA =1,
each interrupt source is individually enabled or disabled by setting or clearing its
enable bit.
Dg Not implemented, reserved for future use. User software should not write 1sto
reserved bits. These bits may be used in future MCS-51 products to invoke
new features. In that case, the reset or inactive value of the new bit will be 0,
and its active value will be 1.
Ds This enables or disables Timer 2 overflow or capture interrupt (8052 only).
D, This enables or disables the serial port interrupt.
Dy This enables or disables the Timer 1 overflow interrupt.
D, This enables or disables external Interrupt 1.
D, This enables or disables the Timer 0 overflow interrupt.
D, This enables or disables external Interrupt 0.

Fig. 17.13 Format of IE Register

- - PT2 PS PT1 PX1 PTO | PX0

If the bitis 0, the corresponding interrupt is disabled. If the bit is 1 the correspanding interrupt is
enabled.

- D, Not implemented, reserved for future use.”

- Dg Not implemented, reserved for future use.”

PT2 Ds This defines the Timer 2 interrupt priority level (8052 only).
PS D, This defines the Serial Port interrupt priority level.

PT1/PTO D3/Dy This defines the Timer 1/Timer O interrupt priority level.
PX1/PX0 D,/D, This defines External INT1/INTO priority level.

* The software should not write 1s to reserved bits. These bits may be used in future MCS-51
products to invoke new features. In that case, the reset or inactive value of the new bit will be 0,
and its active value will be 1.

Fig. 17.14 Format of IP Register

INTERRUPTS
Interrupt is an input to a processor that indicates the occurrence of an event. In case

of external events, the status of a microprocessor pin is altered. Interrupts are also
generated due to the events occurring inside the machine like timer overflow or
transmission/reception of a byte through the serial port, etc. The processor responds to an
interrupt by saving the current machine status and branching to execute a subprogram
called 'interrupt service subroutine’. When an interrupt occurs, the CPU jumps to the
location associated with that interrupt, in the program memory and starts executing from
there. This location is called 'vector' and the interrupt is called vectored interrupt. After
serving the interrupt, the processor restores the original machine status and continues with
the original program.

INTERRUPTS IN MCS-51

_(MCS-51 supports five vectored interrupt sources. These are external interrupt 0, external
interrupt 1, timer/counter O interrupt, timer/counter 1 interrupt and serial port interrupts. When
an interrupt is generated, the program counter (PC) is pushed onto a stack. Vectored address is
loaded in the program counter. As the vectoring takes place, that particular interrupt flag
corresponding to the interrupt source (e.g. external interrupt 1) is cleared by the hardware. In
MCS-51, these flags are bits IEQ, IE1, TFO, TF1, RI and TL

The program now starts executing from the vectored location. This subroutine is called as
the interrupt service subroutine (ISS). The ISS ends with RETI instruction. The interrupt
vector locations in 8051 are spaced out at every 8 bytes, so technically it is possible to put ISS
there if it were no longer than 8 bytes, including RETI instruction. Otherwise and in almost all
the cases, a jump instruction is written at the vectored address\(i” bytes maximum), and the
remaining part ISS is located somewhere else{ The vector addresses are listed in the following
Table 6.1 in the order of priority. Consider the external interrupt 1. Assume that this interrupt
is initialized properly in program. While the CPU is busy with the main program, if a ‘1’ to ‘0’
transition occurs at pin number 12, (INTO pin), the program counter (PC) current contents are
stored onto the stack and the PC is then loaded with the vectored address 0003H. Thus, the
next instruction at 0003H would be fetched and executed. Now there are only 8 bytes available
to write the interrupt service subroutine, as seen above. Therefore, normally a JMP instruction
is written at this vectored location 0003H. The interrupt service subroutine lying somewhere
else in the program memory, ends with RETI instruction. This RETI instruction will get the
program counter contents from the stack and the CPU will again start executing from where
the main program was interrupted. Thus, any external event, which causes a change in the
status of the interrupt pin, can be taken care of by the interrupt service subroutine. The
external interrupts may be configured as either level-triggered or edge-triggered. If the interrupt
is level-triggered, the signal must stay low until the interrupt is generated. In case of an edge-
triggered interrupt, a transition from high to low at the interrupt pin is sufficient. It is further
necessary that proper settings in the SFR called interrupt enable (IE) register is made to
initialize the MCS-51 interrupts.)
Table 6.1 Interrupts in 8051

Highest

“ H=mo=mT

Lowest ’

Initializing 8051 Interrupts
The interrupt enable (IE) register allows the programmer to enable interrupts as

needed. This register IE is bit addressable and is shown in Fig. 6.1. Enable All (EA) bit
allows disabling the whole interrupt operation, if cleared. Thus, it acts as a master control
bit for any of the interrupts. For any particular interrupt to occur, bit EA and the

corresponding bit must be set. For example, in case of serial interrupt, bit EA and bit ES

must be set. ES is the serial port interrupt, useful in serial transmission, if set, enables the
serial interrupts T1 or RI Similarly, bits ET1, ETO are for timer 1 and timer O interrupts,
respectively. EX1 and EXO are external interrupt enable bits for external interrupts 1 and 0,
respectively. Programming Example #6.1 shows initialization of external interrupt 1.

r IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.O

ET1 EnablelDrsable timer interrupt 1; 0 = Disable, 1 = Enable

(Provided EA = 1)
EX1 Enable/Disable external |nlerrupt 1, 0 = Disable, 1= Enabie

(Provided EA = 1) _

This instruction will enable the external interrupt 1. If now this is followed by CLR

EA instruction, whole interrupt operation is disabled. To initialize the serial interrupt, one
may load the IE register with 10010000B.

Interrupt Priorities
Let us consider the case, when more than one interrupts are enabled. User can

program the interrupt priority levels by setting or clearing the bits in SFR called interrupt
priority (IP) register. IP register is also bit addressable. If the bit is set, that particular

interrupt will have high priority.

A high-priority interrupt can interrupt the low-priority interrupt, but a high-priority interrupt
will not be interrupted by the interrupt having low priority. Now, if the request of interrupts of
two different priority levels occur simultaneously, naturally the interrupt having the high
priority will be served. However, if the same priority level interrupts request simultaneously,
then within each priority level there is a polling structure due to the inherent priority in the
order shown in Table 6.1 by the arrow. Note that the priority within level structure is used
only to distinguish the requests of the same priority levels. Programming Example #6.2 shows
the assignment of interrupt priority to timer 1 interrupt.

- Programming Examp]e #6 2
T Ass1gn1ng Interrupt Priorities
MOV 1E, #1000 IEOOH 2 Enab]e EXT and ETl
SETB PTl st i T1mer 1 interrupt has thh priority.

) e %

The first instruction enables both interrupts, namely, the external interrupt 1 and the timer 1
interrupt. The instruction SETB PT1 assigns high priority to the timer interrupt. So, if both of
them request simultaneously, then the timer interrupt will be served. However, let us see what
happens when one more instruction is added to this program. This is shown in Programming
Example #6.3. Both external interrupt 1 and timer] interrupt have the same priorities. Now, if
either interrupt requests occur simultaneously, the external interrupt will be served as per the
priority order mentioned in the Table 6.1 and Fig. 6.2.

[IP.7 IP.6 IP.5 IP.4 1P.3 1P.2 P4 IP.O
X ‘ X \ PT2 L PS ‘ PT1 PX1 PTO ‘ PX0
P4 | P8 | serial interrupt priority
IP.3 PT1 Timer 1 interrupt
P2 PX1 External interrupt 4
P1 ~|. PTO Timer O-interrupt -

_Fig. 6.2 Interrupt Priority Register (Bit Addressable)

3 Programming Example #6.3 _ :
; Assigning lnuer Upt Priorities . : 5 4
MOV IE, #1000 1100H ‘Enable EX1 and ETL
SETE PTl = ; .T1mer 1 interrupt has high pmomty
SETR PR SRy, ;External fnterrupt also has high prmr:ty,:

TIMERS AND COUNTERS
== On-chip timing/counting facility has proved the capabilities of the micrcontrollers for

implementing the real time applications. These include pulse counting, frequency measurement,
pulse width measurement, baud rate generation, etc. Having sufficient number of timer/counters
may be a need in a certain design application, As seen in the first chapter, 8051 has two 16-bit
timer/counters. Before discussing 8051 timer/counters, it is necessary to see the exact difference
between a timer and a counter. A timer counts machine cycles and provides a reference time
delay or a clock. A machine cycle of 8051 consists of 12 oscillator periods or the counting rate
is 1/12 of the oscillator frequency. At 12 MHz, the clocking period will be equal to 1 ps. Let us
now see, the counting function. A counter of 8051 is incremented in response to a transition from
‘1’ to ‘0’ at its corresponding external pin (either TO or T1). Thus, the counter output will be a count
or a number representing the occurrence of such ‘1’ to ‘0’ transitions at the external pin. For
counting ‘function, 8051 takes 2 machine cycles or 24 oscillator periods to detect a ‘1’ to ‘0’
transition at Pin TO or T1. When a timer or counter overflows from FFFFH to 0000H, it sets a
flag and generates an interrupt. The 16 bits of timer are referred as higher byte THx and the
lower byte TLx. Thus, TH1 is the higher byte of timer 1 and TL1 is the lower byte of timer 1.
‘x” can be 0 orl (or 2 in case of 8032/52).

Timer/Counter Modes

There are four timer modes in 8051. A timer or counter function and modes are selected by
writing appropriate bits in the SFR, called the timer mode register (TMOD), whereas the
control of timer/counter operation is done through the SFR, called the timer control register
(TCON). These SFRs are shown in Figs. 6.3 and 6.4. Now, the question is how exactly to

TCON.7 TCON.6 TCON.5 TCON.4 TCON.3 TCON.2 TCON.1 TCON.O0

TF1 TR TFO | TRO | IET T €0 | ITo
.".'t WA : of ,, . 4, "_ 1) TN v 3 &
TCON.4 | TRo | Timer 0 run control bit

TCON.3 1E1 Interrupt 1

Configure timer/counters as a timer or counter. As seen from Fig. 6.4, the TMOD bit C/'_l',
defines this operation.

TMOD.7 TMOD.6 TMOD.5 TMOD.4 TMOD.3 TMOD.2 TMOD.1 TMOD.0

GATE | of M1 MO Gate o M1 MO

G ; 0 = Timer, 1 = Counter
M1 MO M1 MO
Timer Mode is 0 0 Mode 0
dgtermlned by 0 1 Mode 1

|

| these bits 0

Mace 2.
Mode 3

Fig. 64 Timer Mode Control Register (TMOD) -

A). Mode 0
In mode 0, the timer is 13-bit wide. This mode is same for timer 0 and timer 1.

When the count overflows, it sets the timer interrupt flag (TF1 for timer 1 and TFO for
timer 0). To start timer 0, TRO bit in TCON is required to be set. Using the upper byte TH1
(or THO) and the lower 5 bits of TL1 (or TLO) forms the 13 bits. This is shown in Fig. 6.5
and Fig. 6.6.

VT 12
1/12

i =

CT =0

— f——b To Timer/Counters
Pin Tx TG’T =1 _
From Timer Control Logic

ﬂges C/%bltinTMOD Decides Timer or Counter Operauon

TH1 TLA

i e e e s o g O e L e B e

_ Upper 8 bits of TH1 W, « Lower 5 bits of TL1 ,

I s]

7 Sy

12 13-Bit Timer in Mode 0 Do

i A e D] o o o e S e

Fig. 6.6 Mode 0, 13-bit Timer/Counter

Prcgramm1ng Examp1e 6. 4 _

InitfaTizfng ‘timer 1 in’ mode 0"

Y TMOD, 3 1000 0000 B .
imer 1 in mode 0, Timer 0 in mode 0, both are canf1gured as t1ma
imer 1 1is controlled by the externa] P1n 13 INTl {Note GATE-l
reas the system clock clacks timer O:

ETB PRI e SR a e E fmer 1Y
‘o3 Start timer 0

; Stop timer 1

; Infinite loop

Programming Example #6.4 initializes timer 1 in mode 0. In the above program, timer 1 is
configured as a timer in mode 0. Observe that bit TMOD.7 in TMOD is set to 1. This is the
GATE bit. If this is set to 1 and TRI1 is 1, then the timer 1 is controlled by the external input at
Pin 13 (INT1). This can be seen from Fig. 6.7. When GATE is 0, then, it is only TR1 which
enables the timer.

GATE P TR1 TN Timer Control
P> —
INTI Pin
[Fig. 67 Timer Control Logicin Mode Oor1

B). Mode 1
Mode 1 is same as mode 0, except the timers are 16 bits wide. Mode 1 is again the

same for timer 0 and timer 1. The maximum count in this mode is FFFFH. To initialize

timer 1 in mode 1, see Programming Example #6.5.

Prﬂgrammﬂng Examp?e #6 5 :

Initializing timerl in ﬂOdE 10 Bl g _
MOU TMO # 0001 0000 B e ;_T1mer 1-1in mode 1 - P
3£T5?TR1T Saiil e R Sl As the GATE it 15 zero, TRL can fu%]y.;f
__' i “+control the timer operat1on-" e
: HS R S ': Hence to start t1mer l TRI is set_tc
s;SJHP $ R R g 4 Infinite Joop ° -

If |n|t|aI|zed the tlmer overflow can generate an mterrupt Con3|der one such

program segment (Programming Example #6.6) to initialize the timer 1 interrupt. Note that
it is always advisable to initialize the stack pointer before going for a main program,
because the default value of SP 07H may not be suitable in general. This is also the address
of register R7, and if any register bank switching is done, it can overwrite some useful

register contents.

regrammxng Example #6.6 _
regram to- 1n1t1a?1ze timer 1 mode 1 '
- #54H e : ,,;'In1t1allze the stack pownter
ﬁ 0001 0000 B _»“;'_- s Timerl in mode 1 - i
: oy Enable timer 1. 1nterrupt
3 Start timer 1
SapdEndblesall
LT A e S R S S R A 1oop (Jump here)
wR R
Note that simply setting only ET1 bit in IE register will not enable the timer

interrupt. In addition, it is necessary to set the EA bit in IE. This program will start timer 1,
and when it overflows, timer 1 interrupt is generated, which will cause the program counter
to jump to the vector location 001B H.

C). Mode 2
This operation is again the same for timer 0 and timer 1. Consider timer 1 in mode

2. Timer register is configured as an 8-bit counter TL1. Overflow from TL1 sets the flag
TF1, and it loads TL1 with the contents of TH1. The software can preload TH1. This mode
of timer 1 or timer O thus supports the automatic reload operation. Mode 2 auto-reload
mechanism is shown in Fig. 6.8. Timer control logic is again the same as that of mode 0 or
1.

TU[e Overflow Interrupt

>~ TF1 —
Reload
TH1

Fig. 6. 8 Mode 2 Auto-reload Mechanism of Timer

Let us now write the initialization program for tlmer 0 in mode 2 as shown in the
Programming Example #6.7. The program must load TMOD and then the auto-reload
value must be written in the timer high byte. Further, the starting count will also be the
same as that of the reload value in general, but it is not so strict since this is applicable for
the very first overflow.

However, it is very essential to load the timer high byte with the auto-reload value,

otherwise the timer after each overflow will start from 00H.

'&gramm1ng Examp1e %6 ? - : : : :
iﬂ]izing timer 0 in mode SRR ; : R
: ol o ad TMOG for twmer 0 in mode 2
.Load THO with preset value to be re?oade
Start1ng count = preset va]ue i
Start timer D - -

MGU TLU
S£TB TRB

Mode 2 ié very commonly used for baud rate generation for serial port operation, or
where a constant frequency square wave output is needed. The frequency or baud rate can
be controlled using the preloaded value in THx register. The maximum delay generated
using mode 2 will be corresponding to the auto-reload value of O0H. Thus, at 12 MHz
clock, this would generate the maximum delay of 256 ps. If one can write an instruction to
toggle any of the port pins, a square wave output on that pin can be seen on the
oscilloscope. Consider this program to generate a 2 kHz (0.5 ms period) square waveform
on pin PLO (Pin 1), as shown in Programming Example #6.8. The reload count will be
corresponding to 0.25mS. At 12 MHz, this will be (256-250) equal to 06H.

06H: Preload: ?Ge for B kHz square waves
.=,6H Start1ng value intimer reg1ster TLG
Start twmer e . :

Togg1e bit Pl 0

“',ESJMP'LOQP

¢ R : R R R A A
The same program could be written using timer interrupt also. Let us see how to do

it! Note that timer O interrupt has been enabled at the time of starting the timer. The timer 0
is initialized in mode 2 or auto-reload mode. THO and TLO both are initialized to the count
06H corresponding to the 2 kHz frequency of square waves. The main program is over
once timer 0 is started. But notice the instruction SIMP $. This instruction is to jump at the
same address and generate an infinite loop. The effect is same as the instruction "LABEL.:

SJMP LABEL". This program is shown in the Programming Example #6.9.

0n p1n Pl 0 of port 1 (Use of lnterrupf)
"_ :_Ma1n program is at ST RT

CAUISRfs At INT Tra :
:-In1t1a11ze the stack pﬁ1nter

¢ Timer 0 in mode 2 (Auto-reloadmode)
Preload value for 2 kHz square waves
Starting value in timer register TLO:
Start timer 0 . - :
'Inf1ﬂ?te 1oop ere

T 06H
vl 053‘_

s e

Furtheri we have ertten an interrupt service routlne (ISR) in WhICh we just
complement the bit PL.0. The ISR ends with RETI instruction. After the execution of this
instruction, the CPU will again be in the infinite loop, from where it was interrupted. Note
that timer O, once started, is not made off or on afterwards, which is not needed also due to
auto-reload feature.

D). Mode 3

In this mode, timer 1 has a passive role of holding its count. In effect, it looks like
as the one who keeps TR1 = 0. Now, timer 0 bytes THO and TLO are used as two separate
timers. Because of this, mode 3 is also called as split timer mode. THO is locked into timer

operation and simply counts the machine cycles. After overflowing, it sets the flag TF1.

TLO can be configured and controlled by using C/ T, GATE, TR0, INTO, and TFO.
Note that TR1 controls the operation of THO timer, now the question remains how to
control timer 1? Timer 1 can be used in a different manner, for any application that does
not require the interrupt operation; like for generating the baud rate for serial port
operation. When timer 0 is in mode 3, one can just control its operation by switching it out
or into its mode 3 using TMOD settings. Thus, in mode 3 it resembles like 8051 having 3
timer/counters.

Note that in timer mode 3, timer 1 is a 16-bit timer and THO, TLO two 8-bit timers.

TRO —| Timer
GATE —>{ Control

INTO —= Logic
fosc/12 - Interrupt
¥ CT =0 o

- — TLO ~ TFO [——>
T0 Pin fem=1 -

= Interrupt
fosc/12 J(—»{ THO]——» TR e
TR1

Fig. 6.9 Timer/Counter in Mode 3

SERIAL COMMUNICATION

Serial data transmission is very commonly used for digital data communication. Its
main advantage is that the number of wires needed is reduced as compared to that in
parallel communication. 8051 supports a full duplex serial port. Full duplex means, it can
transmit and receive a byte simultaneously. 8051 has TXD and RXD pins for transmission
and reception of serial data respectively. The 8051 serial communication is supported by
RS232 standard. The term "RS" stands for Recommended Standard. Communication
between two microcontrollers and multiprocessor communication is also possible. The start
and stop bits are used to synchronize the serial receivers. The data byte is always
transmitted with least-significant-bit first. For error checking purpose, it is possible to
include a parity bit as well, just prior to the stop bit. Thus, the bits are transmitted at
specific time intervals determined by the baud rate. For error-free serial communication, it
is necessary that the baud rate, the number of data bits, the number of stop bits, and the
presence or absence of a parity bit along with its status be the same at the transmitter and
receiver ends.

The basic mechanism of serial transmission is that a data byte in parallel form is
converted into serial data stream. Along with some more bits like start, stop and parity bits,
a serial data frame is sent over a line. There are four modes of serial data transmission in
8051. In each of these modes, it is important to decide the baud rate, the way in which

serial data frame is sent and any other information, etc.

SCON.7 SCON.6 SCON.5 SCON.4 SCON.3 SCON.2 SCON.1 SCON.0

L SMO I SMA1] SM2 1! REN B8 RB8 Tl Rl J

Bit SCON

address| bit Description

9FH SM0 |
Serial Communications Mode

9EH SM1

9DH SM2 In modes 2 and 3, if set, this will enable multiprocessor
communication

9CH REN {Receive enable) Enables serial reception

gBH TB8 This is the 9th data bit that is transmitted in modes 2 and 3

9th data bit that is received in modes 2 and 3. It is not used
9AH RB8 in mode 0. In mode 1, if SM2 = 0, then RBA is the stop bit
that is received,

99H T Transmit interrupt flag, set by hardware, must be cleared by
software

98H RI Receive interrupt flag, set by hardware, must be cleared by
software

SMO SM1 MODE Description Baud Rate

0 0 0 8-bit Shift register mode | f,,./12

0 1 1 8-bit UART variable (set by timer 1)

1 0 2 9-bit UART f,5c/164 Or £, /32

1 1 3 9-bit UART variable (set by timer 1)

L. y

Fig. 6.10 Serial Control Register (SCON)

R e i

What is common in all these modes is the use of the SFR called "SBUF", for

transmission as well as reception. The data to be transmitted must be transferred to SBUF.
One more SFR that controls the serial communication operation is the serial control
register SCON. Details of SCON are shown in Fig. 6.10. Bits SM0O and SM1 in SCON
define serial port mode. Bit SM2 enables the multiprocessor communication in modes 2
and 3. Transmission is initiated by the execution of any instruction that uses SBUF as the

destination.

0 e i o o s b 4

LSB: Most significant bit LSB: Least significa;t bit

Serial Communication Modes
There are four modes in which 8051 serial port can be configured.
A. Mode 0

This is also called as shift register mode. Only RXD is the pin through which data
enter or exits. TXD pin outputs the shift clock only. Eight data bits are transmitted or
received. The baud rate is fixed and is totally determined by the system clock frequency. If
fosc 1S the clock frequency, then fosc/12 will be the baud rate.

To see exactly how the operation of serial data transfer takes place in mode 0, see
Programming Example #6.11.

_3f ﬁQ§rﬁmm1hg EkampTe'#S'll“”

OCOH "« : "; Program starts at OGGOH
' N, #0090 OOGGB Mode B v
: the_data byte to be transmztted in SBQF

MOV SBUF. #44H Transmit 0100 0100 mnary S
.> ter transmission, TL flag in SCON will be set by hardware th1scanbe
tested for assuring the fransmiss1on operatlcn

Here JNB TI Here

5 Wait t111 311'8 bfts are tfénémﬁttéd
Remember A f1ag must be c]eared

R AR e

B Mode 1

In mode 1, 10 bits are transmitted through TXD pin or received through RXD pin.
There is a start bit (0), then 8 data bits (LSB first) and a stop bit (1). This is shown in Fig.
6.12. On receiving, the stop bit goes into RB8 in SCON. The baud rate is variable and is
determined by the timer 1 overflow rate. Therefore, before using this mode, one has to
initialize timer 1. A simple program to initialize serial port in mode 1 is given in
Programming Example #6.12. The baud rate is calculated using the formula:
Baud rate = 2SMOD/32 x (Timer 1 overflow rate) (6.1)

s B e 717 ol Ol Wl A W [mﬂ'fsmnbito]

; Serial port in mode 1 ;
; Timer 1 in auto-reload mode
; Baud. rate =1200 at 12 MHz

; Start timer

wait’t11l the transmission is over:
; Reset bit TI after transmission |

If tlmer 1 [conflgured in auto reload mode (or mode 2), with reload value in TH1,

after each overflow, contents of TH1 will be loaded into TL1. This is convenient for
generating baud rate. In this mode, TMOD high nibble will be 0010B. At 12 MHz
oscillator frequency, the timer clocking time is lus. Now, the baud rate formula is
simplified to
Baud rate = [2SMOD/32] x (oscillator frequency) / [12 x (256 - (TH1)] (6.2)

For example, if TH1 contents are 230D, and SMOD bit in PCON is 0, then the baud
rate at 12 MHz is 1201 baud or 1.2K approximately. To get exactly 1200 baud, the
oscillator frequency must be 11.059 MHz This shows the degree of dependency of the
baud rate on the operating frequency. Thus, to be precise, the actual oscillator frequency
must be measured on the oscilloscope.

To receive a byte in mode 1, the RI bit in SCON is tested for 1. Similarly, the REN
bit in SCON must be'l".

The foIIowmg Programmlng Example #6.13 will receive a byte through pln RXD.

‘Serial port mode 1 and REN

SMOD is. 0 after RESET
_f;jTimer 1 in mode 2:

s Baud rate 1.2k at 12 MHZ
' Start t1mer o Sy

St Ready to receive it S :
~Wait till a byte is received m:-S-BU
Ges. the recewecﬁ byte m accummat"

’“‘u_._._ R Lo e
C. Mode 2

In mode 2, 11 bits are transmitted, with a low start bit, then 8 data bits, a 9th bit and
a stop bit T. This is shown in Fig. 6.13.

The 9th b|t is programmable User prograrh can deflne 9th blt as TBS in SCON It
may be the parity of data byte. On reception, this 9th data bit goes into RB8 in SCON. In
mode 2, the bit SMOD in PCON and the oscillator frequency defines the baud rate and is
given by

Baud rate = [2SMOD/64] x (oscillator frequency) (6.3)

Now consider Programming Example #6.14 to initialize the serial port in mode 2.
At 12 MHz oscillator frequency, if SMD bit is 1, then the baud rate will be 375,000 or
375K.

Fregramm$ng Examp}e #6 14 Liguil

i Inwtfa?azwng the seria? port 1n mode 2
CLR'TL : :
MOV SCON, #1000 00008 s Ser1al port mode 5
‘SETB SMOD SMOD-l and baud rate-375K at 12 MHZ

| D. M'ode3

Again 11 bits are transmitted as shown in Fig. 6.13, this is almost same as mode 2, except
that the baud rate is defined by the timer 1 overflow rate. The baud rate calculations are

exactly same as that of mode 1.

UNIT-I1I
INTRODUCTION TO EMBEDDED C AND APPLICATIONS

KEYBOARD INTERFACING

Keyboards and LCDs are the most widely used input/output devices of the 8051, and a
basic understanding of them is essential. In this section, we first discuss keyboard
fundamentals, along with key press and key detection mechanisms. Then we show how a
keyboard is interfaced to an 8051.

Interfacing the keyboard to the 8051

At the lowest level, keyboards are organized in a matrix of rows and columns. The CPU
accesses both rows and columns through ports; therefore, with two 8-bit ports, an 8 x 8
matrix of keys can be connected to a microprocessor. When a key is pressed, a row and a
column make a contact; otherwise, there is no connection between rows and columns. In
IBM PC keyboards, a single microcontroller (consisting of a microprocessor, RAM and
EPROM, and several ports all on a single chip) takes care of hardware and software
interfacing of the keyboard. In such systems, it is the function of programs stored in the
EPROM of the microcontroller to scan the keys continuously, identify which one has been
activated, and present it to the motherboard. In this section we look at the mechanism by
which the 8051 scans and identifies the key.

Scanning and identifying the key

Figure 12-6 shows a 4 x 4 matrix connected to two ports. The rows are connected to an
output port and the columns are connected to an input port. If no key has been pressed,
reading the input port will yield 1 s for all columns since they are all connected to high
(Vo). If all the rows are grounded and a key is pressed, one of the columns will have 0
since the key pressed provides the path to ground. It is the function of the microcontroller
to scan the keyboard continuously to detect and identify the key pressed. How it is done is

explained next.

]
;
i

Vo

4.7k
3 2 1 0
Yol "y vl e 4.7k
Do & £ 2 = AN~
T 4 3] J 5 4
N % RS B s DU
EyJ A |o 8
. % IR R e I
F E |le |c
% B3 s s B
D3
Port 1 Y Yy v °Y
(Out)

D3 D2 D1 DO | pono
{In)

Ground all rows

5

Read all columns

Read all columns

-4

Wait for debounce

|

Read all columns

Any ke
down?

Ground next row

l

Read all columns

Find which key
is pressed

l

Get scan code
from table

l

iKeyboard subroutine. This program sends the ASCII code
;for pressed key to PO0.1
:P1L.0-F1.3 connected to rows P2.0-P2.2 connected to columnns

1l

JVER:

JVERL:

A0W_0:
ROW _1:
ROW 2:

0W_3:
FIND:

MOV
MOV
MCV
ANL
CJINE
ACALL
MOV

CJINE
SJMP
ACALL
MOV

CJNE
SJIMP
MOV
MOV

CJINE
Mov
MoV

CINE
MOV
MOV

CINE
MOV
MoV
ANL
CINE
LJMP

Mowv
SJTMP
MOV
SJMP
MoV
SJMF
MOV
RRC

INC

P2, #0FFH ;make P2 an input port
Pl, #0 ;ground all rows at once
A, P2 ;read all col. ensure all keys open

A,#00001111B
A,#00001111B,K1
DELAY

A,P2

A, #00001111B
A,#00001111B,OVER
K2

DELAY

A, P2

A,#00001111B
A,#00001111B,0VER]1
K2

P1,#11111110B

A, P2

A,#00001111B
A,#00001111B,ROW_0O
P1,#11111101B
A,P2

A, #00001111B

A, #00001111B,ROW_1
P1,#11111011B

A, P2

A, #00001111B
A,#00001111B,ROW 2
P1,#11110111BE

A, P2

A,#00001111B
A,#00001111B,ROW_3
K2

DPTR, #KCODEOQ
FIND

DPTR, #KCODE1
FIND

DPTR, #KCODE2
FIND

DPTR, #KCODE3
A

MATCH

DPTR

;masked unused bits

;check til all keys released
;eall 20 ms delay

;see if any key is pressed
;mask unused bits

;key pressed, await closure
jcheck if key pressed
;walt 20 ms debounce time
:check key closure

:mask unused bits

;key pressed, find row

;if none, keep polling
jground row 0

;read all columns

;mask unused bits

ikey row 0, find the col.
jground row 1

;read all columns

smask unused bits

;key row 1, find the col.
;ground row 2

iread all columns

;mask unused bits

;key row 2, find the col.
;jground row 3

;read all columns

rmask unused bits

;key row 3, find the col.
;if none, false input, repeat

;8et DPTRe=start of row O
;find col. key belongs to
;set DPTR=start of row 1
;find cel. key belongs to
;set DPTR=start of row 2
;find col. key belongs to
;set DPTR=start of row 3
;see if any CY bit is low
;if zero, get the ASCII code
;point to next col. address

SJMP FIND ;keep searching

MATCH: CLR A ;set A=0 (match is found)
MOVC A, @R+DPTR ;jget ASCII c¢ode from table
MOV PO,A ;display pressed key
LJMF K1

;ASCII LOOK-UP TABLE FOR EACH ROW
ORG 300H

KCODEO: DB o L, 2, '3 ;ROW O

KCODEl: DB N TP TN T ;ROW 1

KCODEZ2: DB ey, rer A TR ;RCW 2

KCODE3: DB tCt,'D!,'EY,"F! ;ROW 3
END

LCD INTERFACING USING 8051

LCD1

P1.7

c2
| .
LU S Y
22pF X1 19 B XTAL1 PO.0/ADO
] — P0.1/AD1
| _ 18 P0.2/AD2
L c1 XTAL2 PO.3/AD3
= 1 | P0.4/AD4
P0.5/AD5
| GRYSTAL P0.6/ADB
22pF 11.0592 MHz g 1 Rst PO.7/AD7
3
Sv Qe (f a P2.0/AB
lemm P2 1/A9
P2.2/A10
10uF R1 2 | Fsen P2.3/A11
10k 5 ALE P2.4/A12
—O EA P2.5/A13
—_—T ® P2.6/A14
L P2.7/A15
;— P1.0/T2 P3.0/RXD
- P1.am2ex P3.1/TXD
= P2 P3.2/INTO
= P13 P3.3/INTA
——]| P14 P3.4/T0
—{ P15 P35T1
< r16 P36/WR

10

|E:um|—n

o

~

P3.7/RD

ATB9S52

PIN 40 Viee, PIN 20 Ground

CircuitD gest

ADC is the Analog to Digital converter, which converts analog data into digital format;

usually it is used to convert analog voltage into digital format. Analog signal has infinite

no of values like a sine wave or our speech, ADC converts them into particular levels or

states, which can be measured in numbers as a physical quantity. Instead of continuous

conversion, ADC converts data periodically, which is usually known as sampling
rate. Telephone modem is one of the examples of ADC, which is used for internet, it
converts analog data into digital data, so that computer can understand, because computer
can only understand Digital data. The major advantage, of using ADC is that, we noise can
be efficiently eliminated from the original signal and digital signal can travel more
efficiently than analog one. That’s the reason that digital audio is very clear, while
listening.

ADC0808/0809 is a monolithic CMOS device and microprocessor compatible control logic
and has 28 pin which gives 8-bit value in output and 8- channel ADC input pins (INO-IN7).
Its resolution is 8 so it can encode the analog data into one of the 256 levels (28). This
device has three channel address line namely: ADDA, ADDB and ADDC for selecting
channel. Below is the Pin Diagram for ADCO0808:

IN3 =1 28f—N2 | . -:| Ut
IN4 —{ 2 27F=1N1 ' '

28 1o 9 cLocK 4—12

IN5 —{3 26—INO gé_ INY Y sTapT —o-
IN6 —{ 4 25f=ADD A =11 'N2 7

— N2 EOC ——

IN7—{5 24|~ ADD B 2 | na o

3 21

START —{6 23}=ADD ¢ — | N5 - OUTY =

EOC—{7 22— ALE 5 [& OUTZ 5

—1 IN7 S OUT3 [—=

2=5 {8 21f=2"1MsB - § ouTs |2

_ -2 =1 ADD A OUTS b——

OUTPUT ENABLE—{9 202 gg R e :lli

cLock =410 19}=2-3 | uEE CUT |
Vppp (#) =112 17p=2"8138 % VREF(+) % -

GND—{13 16— Vper (=) — VREF(-} © OE [—=—

27414 15 =26 -

ADCO0808/0809 requires a clock pulse for conversion. We can provide it by using
oscillator or by using microcontroller. In this project we have applied frequency by using

microcontroller.

We can select the any input channel by using the Address lines, like we can select the input
line INO by keeping all three address lines (ADDA, ADDB and ADDC) Low. If we want to

select input channel IN2 then we need to keep ADDA, ADDB low and ADDC high. For
selecting all the other input channels, have a look on the given table:

ADC Channel Name |ADDC PIN ADDB PIN ADDA PIN
INO LOW LOW LOW
IN1 LOW LOW HIGH
IN2 LOW HIGH LOW
IN3 LOW HIGH HIGH
IN4 HIGH LOW LOW
IN5 HIGH LOW HIGH
IN6 HIGH HIGH LOW
IN7 HIGH HIGH HIGH

include<reg51.h>
#include<stdio.h>

sbit ale=P3"3;

shit 0e=P3"6;

shit sc=P3"4;

shit eoc=P3"5;

sbit clk=P3"7;

shit ADDA=P3"0; //Address pins for selecting input channels.
sbit ADDB=P3"1;

shit ADDC=P3"2;

#define Icdport P2 //lcd

shit rs=P270;

shit rw=P2/2;

shit en=P2/1;

#define input_port P1 //ADC
int result[3],number;

include<reg51.h>
#include<stdio.h>

shit ale=P3"3;

shit oe=P3"6;

shit sc=P3"4;

shit eoc=P3"5;

shit clk=P3"7;

shit ADDA=P3"0; //Address pins for selecting input channels.
sbit ADDB=P3"1;

sbit ADDC=P3"2;

#define Icdport P2 //lcd

sbit rs=P270;

shit rw=P2/2;

shit en=P2/1;

#define input_port P1 //ADC

int result[3],number;
void timer0() interrupt 1 // Function to generate clock of frequency 500KHZ using Timer O
interrupt.

{
clk=~clk;
void delay(unsigned int count)

inti,j;
for(i=0;i<count;i++)
for(j=0;j<100;j++);

void daten()
{
rs=1;
rw=0;
en=1;
delay(1);
en=0;

void lcd_data(unsigned char ch)

Icdport=ch & OxFO;
daten();

Icdport=ch<<4 & 0xFO;
daten();

void cmden(void)

{
rs=0;
en=1;
delay(1);
en=0;

void lcdemd(unsigned char ch)

Icdport=ch & 0xfO0;
cmden();
Icdport=ch<<4 & OxFO0;
cmden();

Icdprint(unsigned char *str) //Function to send string data to LCD.
while(*str)

lcd_data(*str);
str++;
}
}

void lcd_ini() //Function to inisialize the LCD

{

Icdemd(0x02);

Icdemd(0x28);

Icdecmd(0x0e);

Icdemd(0x01);
}

void show()

sprintf(result,"%d",number);
Icdprint(result);
lcdprint(" ™);

void read_adc()

{
number=0;
ale=1;
sc=1;
delay(1);
ale=0;
sc=0;
while(eoc==1);
while(eoc==0);
oe=1;
number=input_port;
delay(1);
0e=0;

}

void adc(int i) //Function to drive ADC

switch(i)

{

case 0:

ADDC=0; // Selecting input channel INO using address lines
ADDB=0;

ADDA=0;
Icdemd(0xc0);
read_adc();

show();
break;

case 1:

ADDC=0; // Selecting input channel IN1 using address lines
ADDB=0;

ADDA=1;
Icdemd(0xc6);
read_adc();

show();

break;

case 2:

ADDC=0; // Selecting input channel IN2 using address lines
ADDB=1,;

ADDA=0;
Icdemd(0xcc);

read_adc();
show();
break;
}
}
void main()
{
int i=0;
eoc=1;
ale=0;
0e=0;
sc=0;
TMOD=0x02;
THO=0xFD;
Icd_ini();
Icdprint(" ADC 0808/0809 ");
Icdcmd(192);
Icdprint(" Interfacing ");
delay(500);
Icdemd(1);
Icdprint("Circuit Digest *);
Ilcdcmd(192);
Icdprint("System Ready... ");
delay(500);
Icdemd();
Icdprint("Chl Ch2 Ch3™);
IE=0x82;
TRO=1;
while(1)

for(i=0;i<3;i++)
{
adc(i);
number=0;

¥
by
¥

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to analog
signals. In this section we discuss the basics of interfacing a DAC to the 8051.

Recall from your digital electronics book the two methods of creating a DAC: binary weighted and
R/2R ladder. The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used
in this section, use the R/2R method since it can achieve a much higher degree of precision. The
first criterion for judging a DAC is its resolution, which is a function of the number of binary
inputs. The common ones are 8, 10, and 12 bits. The number of data bit inputs decides the

resolution of the DAC since the number of analog output levels is equal to 2”, where nis the

number of data bit inputs. Therefore, an 8-input DAC.

such as the DACO0808 provides 256 discrete voltage (or current) levels of output.
Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are also
16-bit DACs, but they are more expensive.

MC1408 DAC (or DAC0808)

In the MC1408 (DACO0808), the digital inputs are converted to current (l,y), and by connecting a
resistor to the lo,pin, we convert the result to voltage.

The total current provided by the I, pin is a function of the binary numbers at the DO — D7 inputs
of the DACO0808 and the reference current (l.f), and is as follows:

¥ + + . ' ' ;
2 4 & 16 32 4 f28 256

Lout = ey (Dy D6 DS D4 DI D2 DI DO)
where DO is the LSB, D7 is the MSB for the inputs, and I.f is the input current that must be
applied to pin 14. The I.f current is generally set to 2.0 mA. Figure 13-18 shows the generation of
current reference (setting I.f = 2 mA) by using the
standard 5-V power supply and IK and 1.5K-ohm standard resistors. Some DACSs also use the zener

diode (LM336), which overcomes any fluctuation associated

- +5Y
8051 by
P] DI 1k
— {1} ouT TO
02 SCOPE
= D4 Vel) 10V
| D5
T o -
P17 p———_t={ 7
VEE COMP GHD

1

[LRIT2

A2V

To find the value sent to the DAC for various angles, we simply multiply the V, voltage by 25.60
because there are 256 steps and full-scale Vo is 10 volts. Therefore, 256 steps /10 V = 25.6 steps

per volt. To further clarify this, look at the following code. This program sends the values to the

DAC continuously (in an infinite loop) to produce a crude sine wave. See Figure 13-19.

BGAIN: MOV DFTR,#TABLE
MOV RZ,#COUNT
BACK: CLR A
MOVC A, @RA+DPTE
MOV Fl.A
INC DPFTE
DJINZ R2,BACK
SJMP AGATIN
ORG 300
TRELE: DB 128,192,238,255,238,192 ;see Table 13-7
DE 128,64,17,0,17,64,128

UNIT-IV
INTRODUCTION TO REAL — TIME OPERATING SYSTEMS

B Introduction

B A more complex software architecture is needed to handle multiple tasks,
coordination, communication, and interrupt handling — an RTOS architecture

B Distinction:

B Desktop OS — OS is in control at all times and runs applications, OS runs
in different address space

B RTOS - OS and embedded software are integrated, ES starts and activates
the OS — both run in the same address space (RTOS is less protected)

B RTOS includes only service routines needed by the ES application
B RTOS vendors: VsWorks (we got it!), VTRX, Nucleus, LynxOS, uC/OS
B Most conform to POSIX (IEEE standard for OS interfaces)

B Desirable RTOS properties: use less memory, application programming
interface, debugging tools, support for variety of microprocessors,
already-debugged network drivers

What Is an O.S?
O A piece of software
O It provides tools to manage (for embedded systems)
B Processes, (or tasks)
B Memory space
What Is an Operating System?

O What? It is a program (software) that acts as an intermediary between a user of a
computer and the computer hardware.

O Why? Make the use of a computer CONVENIENT and EFFICIENT.
What Is an Operating System?For an Embedded System

O Provides software tools for a convenient and prioritized control of tasks.

O Provides tools for task (process) synchronization.
O Provides a simple memory management system

Abstract View of A System (Embedded System):

Application

Os

Hardware

Process/Task Concept:
O Process is a program in execution; process execution must progress in sequential fashion
O A process includes:
H program counter
B stack

B data section

Multitasking:

TASK #1 TASK #2 TASK #n

Stack Stack Stack

—>
Task Control Block Task Control Block Task Control Block

[Siatus) [Siafus |

F_SP Esp
PTIGTTY [Priomy | Prioy |

cpu \ \ /

CPU Registers

SP

Context

Process/Task Concept:
O Task States:
B Running: Instructions are being executed
B Ready: The process is waiting to be assigned to a process
B Blocked: The process is waiting for some event to occur
B terminated: The process has finished execution
B new: The process is being created
Task states:
Tasks and Task States:
B A task —a simple subroutine

B ES application makes calls to the RTOS functions to start tasks, passing to the OS, start
address, stack pointers, etc. of the tasks

B Task States:
H Running
B Ready (possibly: suspended, pended)
B Blocked (possibly: waiting, dormant, delayed)
B [Exit]
B Scheduler — schedules/shuffles tasks between Running and Ready states

B Blocking is self-blocking by tasks, and moved to Running state via other tasks’
interrupt signaling (when block-factor is removed/satisfied)

B When a task is unblocked with a higher priority over the ‘running’ task, the
scheduler ‘switches’ context immediately (for all pre-emptive RTOSS)

Figure 6.1 Task States

Whatever the task
needs, happens.

This is Another

highest ready task
Task needs priority is higher
something ready task. priority

to happen before
it can continue.

Task State Transitions:

admitted interrupt terminated)

scheduler dispatch

/0 or event completion M .

I/O or event wait

Tasks — 1:

B |[ssue — Scheduler/Task signal exchange for block-unblock of tasks via function
calls

B |[ssue — All tasks are blocked and scheduler idles forever (not desirable!)

B |[ssue — Two or more tasks with same priority levels in Ready state (time-slice,
FIFO)

B Example: scheduler switches from processor-hog vLevelsTask to vButtonTask
(on user interruption by pressing a push-button), controlled by the main() which
initializes the RTQOS, sets priority levels, and starts the RTOS

Figure 6.2 Uses for Tasks

/* “Button Task™ */
void vButtonTask (void) /* High priority */
{
while (TRUE)
{
!1 Block until user pushes a button
!'! Quick: respond to the user

}

/* "Levels Task" */
void vlievelsTask (void) /* Low priority */
; $
while (TRUE)
"
!l Read levels of floats in tank
1! Calculate average float level (continued)

Figure 6.2 (continued)

'Y Do some interminable calculation
1! Do more interminable calculation
I'l Do yet more interminable calculation

'l Figure out which tank to do next

Figure 6.3 Microprocessor Responds to a Button under an RTOS

vlevelsTask is User presses button; vButtonTask vButtonTask
busy calculating RTOS switches does everything it finishes its work
while vButtonTask IMiCroprocessor to needs to do to and blocks again;
is blocked. vButtonTask; respond to the RTOS switches
vLevelsTask button. MiCroprocessor
is ready. back to

\ / / vlevelsTask.

yButtonTask

vLlevelsTask

Time
Tasks and Data:
B Each tasks has its won context - not shared, private registers, stack, etc.

B |n addition, several tasks share common data (via global data declaration; use of
‘extern’ in one task to point to another task that declares the shared data

B Shared data caused the ‘shared-data problem’ without solutions discussed in Chp4
or use of ‘Reentrancy’ characterization of functions

Figure 6.5 Data in an RTOS-Based Real-Time System

RTOS
data RTOS
structures

Task 1 registers Task 1 stack
|

All other
data

Task 2 stack Task 2 registers Task 3 registers Task 3 stack

Semaphores and Shared Data — A new tool for atomicity

B Semaphore — a variable/lock/flag used to control access to shared resource (to
avoid shared-data problems in RTOS)

B Protection at the start is via primitive function, called take, indexed by the
semaphore

B Protection at the end is via a primitive function, called release, also indexed
similarly

B Simple semaphores — Binary semaphores are often adequate for shared data
problems in RTOS

Figure 6.13 Execcution Flow with Semaphores

Code in the vCalculateTankLevels task. Code in the vRespondToButton task.

Levels task is calculating
tank levels. l

Button task is blocked
waiting for a button.

TakeSemaphore ():
11 Set tankdatalil.lTimeUpdated

|
\‘ The user pushes a button; the

higher-priority button task —

unblocks; the RTOS swiches tasks. \
|

1 = I! Get ID of button
TakeSemaphore ():
(This does not return yer)

The semaphore is not available; the /
e button task blocks; the RTOS —-—

switches back.

11 Set tankdatalil.lTankLevel
ReleaseSemaphore ();:

|
R.eleasing the semaphore unblocks

TT—— the button task; the RTOS
switches again.

(Now TakeSemaphore returns)
preintf (. . <)

ReleaseSemaphore ();

1t Block until user pushes a button

The button task blocks; the IR'TOS

e

// resumes the levels task.

Semaphores and Shared Data — 1:
B RTOS Semaphores & Initializing Semaphores
B Using binary semaphores to solve the ‘tank monitoring’ problem

B The nuclear reactor system: The issue of initializing the semaphore variable in a
dedicated task (not in a ‘competing’ task) before initializing the OS — timing of
tasks and priority overrides, which can undermine the effect of the semaphores

B Solution: Call OSSemlnit() before OSInit()

Figure 6.14 Semaphores Protect Data in the Nuclear R eactor

fkdefine TASK_PRIORITY_READ 11

fdefine TASK_PRIORITY_CONTROL 12

fidefine STK_SIZE 1024

static unsigned int ReadStk [STK_SIZE];
static unsigned int ControlStk [STK_SIZE];

static int iTemperatures[2];
OS_EVENT *p_semTemp;

void main (void)

{
/* Initialize (but do not start) the RTOS */

0SInit ()

/* Tell the RTOS about our tasks */
0STaskCreate (vReadTemperatureTask, NULLP,
(void *)&ReadStk[STK_SIZE], TASK_PRIORITY_READ);

0STaskCreate (vControlTask, NULLP,
(void *)&ControlStk[STK_SIZE], TASK_PRIORITY_CONTROL):

/* Start the RTOS. (This function never returns.) */

oSStart ()
}

void vReadTemperatureTask (void)
{
while (TRUE)

{
0STimeDly (5); /* Delay about 1/4 second */

0SSemPend (p_semTemp, WAIT_FOREVER);
11 read in iTemperatures[O0]:

1! read in iTemperatures[1];
0SSemPost (p_semTemp):

}

void vControlTask (void)

{
p_semTemp = 0SSemInit (1);

while (TRUE)

(
0SSemPend (p_semTemp, WAIT_FOREVER):

if (iTemperatures[0] != iTemperatures[11)
11 set off howling alarm;
0SSemPost (p_semTemp);

1! Do other useful work

Semaphores and Shared Data — 2

Reentrancy, Semaphores, Multiple Semaphores, Device Signaling,
a reentrant function, protecting a shared data, cErrors, in critical section

Each shared data (resource/device) requires a separate semaphore for individual
protection, allowing multiple tasks and data/resources/devices to be shared
exclusively, while allowing efficient implementation and response time

example of a printer device signaled by a report-buffering task, via semaphore
signaling, on each print of lines constituting the formatted and buffered report

Figure 6.15 Semaphores Make a Function Reentrant

void Taskl (veoid)
{

vCountErrors (9):

)

void Task2 (void)
{

vCountErrors (11);

}

static int cErrors:
static NU_SEMAPHORE semErrors:

void vCountErrors (int cNewErrors)

{
NU_Obtain_Semaphore (&semErrors., NU_SUSPEND):
cErrors += cNewErrors:
NU_Release_Semaphore (&semErrors):

)

Figure 6.16 Using a Semaphore as a Signaling Device

/* Place to construct report. */
static char a_chPrint[10][21];

{* Count of lines in report. */
static int ilinesTotal;

/* Count of lines printed so far. */
static int ilinesPrinted;

/* Semaphore to wait for report to finish. */
static OS_EVENT *semPrinter;

void vPrinterTask(void)

(
BYTE byError; /* Place for an error return. */
Int wMsg;

/* Initialize the semaphore as already taken. */
semPrinter = 0SSemInit(0):

while (TRUE)

{
/* Wait for a message telling what report to format. */
wMsg = (int) 05QPend (QPrinterTask, WAIT_FOREVER, &byError);

!t Format the report into a_chPrint
iLinesTotal = /! count of lines in the report

/* Print the first 1ine of the report */
jLinesPrinted = 0;
vHardwarePrinterOutputline (a_chPrint[iLinesPrinted++]);

/* Wait for print job to finish. */
0SSemPend (semPrinter, WAIT_FOREVER, &byError);

(continued)

Figure 6.16 (continued)

void vPrinterInterrupt (void)
(
if (ilinesPrinted == ilLinesTotal)
/* The report is done. Release the semaphore. */
0SSemPost (semPrinter);

else
/* Print the next line. */
vHardwarePrinterOutputLine (a_chPrint[iLinesPrinted++]);

semaphores and Shared Data — 3:
B Semaphore Problems — ‘Messing up’ with semaphores

B The initial values of semaphores — when not set properly or at the wrong
place

B The ‘symmetry’ of takes and releases — must match or correspond — each
‘take’ must have a corresponding ‘release’ somewhere in the ES
application

B ‘Taking’ the wrong semaphore unintentionally (issue with multiple
semaphores)

B Holding a semaphore for too long can cause ‘waiting’ tasks’ deadline to be
missed

B Priorities could be ‘inverted’ and usually solved by “priority
inheritance/promotion’

Eigurc 6.17 Priority Inversion

Task A gets a
message 1n its queue
and unblocks; RTOS
switches to Task A.

Task B gets a
ITlL'SSdgC in i[S qllCllC
and unblocks; RTOS
switches to Task B,
\
Task C rakes a \
semaphore that it \
shares with Task A \

Task A \\ \

Task A tries to take
the semaphore that
Task C already has taken.

Task B goes on running

and running and running,
never giving Task C a

chance to release the
semaphore. Task A is blocked.

Task B \\

Task C

Time

1] The rask the microprocessor is executing

message queue :

T

Mleszage-passing

Two (or more) processes can exchange information via access to a common system message
queue. The sending process places via some (OS) message-passing module a message onto a
queue which can be read by another process (Figure)Each message is given an identification or
type SO that processes can select the appropriate message. Process must share a common key in
order to gain access to the queue in the first place (subject to other permissions -- see below).

Mleszage-passing

| Tyme | Mesmge

Mesmge Cueue

0SQCreate()

0sQDel()
osoFsh) Message Queue OSGPendl

oSl

O

oSQPost)

0S5QPend(

050Post|)

0SQPend() Timeout

6

Basic Message Passing IPC messaging lets processes send and receive messages, and queue
messages for processing in an arbitrary order. Unlike the file byte-stream data flow of pipes,
each IPC message has an explicit length. Messages can be assigned a specific type. Because of
this, a server process can direct message traffic between clients on its queue by using the client
process PID as the message type. For single-message transactions, multiple server processes can
work in parallel on transactions sent to a shared message queue.

Before a process can send or receive a message, the queue must be initialized (through the
msgget function see below) Operations to send and receive messages are performed by the
msgsnd () and msgrev () functions, respectively.

When a message is sent, its text is copied to the message queue. The msgsnd () and msgrev ()
functions can be performed as either blocking or non-blocking operations. Non-blocking
operations allow for asynchronous message transfer -- the process is not suspended as a result of
sending or receiving a message. In blocking or synchronous message passing the sending process
cannot continue until the message has been transferred or has even been acknowledged by a
receiver. IPC signal and other mechanisms can be employed to implement such transfer. A
blocked message operation remains suspended until one of the following three conditions occurs:

e The call succeeds.
e The process receives a signal.
e The queue is removed.

Initialising the Message Queue :

The msgget () function initializes a new message queue:

int msgget (key t key, int msgflg)

It can also return the message queue ID (msqid) of the queue corresponding to the key argument.
The value passed as the msgf1g argument must be an octal integer with settings for the queue's
permissions and control flags.

The following code illustrates the msgget () function.

#include <sys/ipc.h>;
#include <sys/msg.h>;

key t key; /* key to be passed to msgget () */
int msgflg /* msgflg to be passed to msgget () */

int msgid; /* return value from msgget () */
key = ...

msgflg = ...

if ((msgid = msgget (key, msgflg)) == –1)

{
perror ("msgget: msgget failed");
exit (1) ;
} else
(void) fprintf (stderr, “msgget succeeded");

Mailbox:

e Mailbox (for message) is an IPC through a message-block at an OS that can be
used only by a single destined task.

e A task on an OS function call puts (means post and also send) into the mailbox
nly a pointer to a mailbox message

e Mailbox message may also include a header to identify the message-type
specification.

Mailbox IPC features:

*OS provides for inserting and deleting message into the mailbox message- pointer. Deleting
eans message-pointer pointing to Null.
*Each mailbox for a message need initialization (creation) before using the functions in the

scheduler for the message queue and message pointer pointing to null

Intertask Communication

e Mailboxes

- Any task can send a message to a mailbox and any task can receive a message
from a mailbox

MAILBOX

. s N
e I imren

Copyright © 201 2 Embedded Systems
Commitice

/ \ /7 7 ”“-._\
4 \ 2 Pend
TaskisR |70 Lef'——-{ Task)

Mailbox Related Functions at the OS:

OS Functions for the Mailbox

] 1
I I I |
Create Write Accept Query
(Post)

Pipe Function:
Pipe

e Pipe is a device used for the interprocess communication
e Pipe has the functions create, connect and delete and functions similar to a device driver

Writing and reading a Pipe:

» A message-pipe— a device for inserting (writing) and deleting (reading) from that between two
given inter-connected tasks or two sets of tasks.

* Writing and reading from a pipe is like using a C commandfwrite with a file name
to write into a named file, and C command fread with a file nameto read into a named

Pipe

=0 w(C)= =

Writing

Reading
data to o data from
Pipe Data maintained in the pipe Pipe
one descriptor the other descriptor

@-@) S

_ N\ D
- Q/ | ... 4 “select” on
le
\";‘,\MP“;PMO‘;
Pipe
Control
Block
i by coun o
Task-Waiting List buller 529 Task-Waiting List
Al ouput poshion p=p
EE- s -
o > o — %

Pipe function calls:

e Create a pipe

e Open pipe

e Close pipe

e Read from the pipe
e \Write to the pipe

Event Functions:
e Wait for only one event (semaphore or mailboxmessage posting event)

e Event related OS functions can wait for number of events before initiating an action or
wait for any of the predefined set of events

e FEvents for wait can be from different tasks or the ISRs

Event functions at OS:

Some OSes support and some don’t support event functions for a group of event

Setting Events
E

Events

Task 1 8. 16, or 32 bit Event Register l
ofo]1]ofofofofofolofofo[1]ofofo]
Ry -
Checking Events
» NoWait

| ®
¢ Wait ®
®J

o Wait with imeout

tmeoud

Event registers function calls:

e Create an event register
e Delete an event register
e Query an event register
e Setan event register

e Clear an event register

e Each bit | an event register can be used to obtain the states of an event .

e A task can have an event register and other tasks can set/clear the bits in the event
register

Signal:
e one way for messaging is to use an OS function signal ().
e Provided in Unix, Linux and several RTOSes.
e Unix and Linux OSes use signals profusely and have thirty-one different types of
signals for the various events.

e A signal is the software equivalent of the flag at a register that sets on a hardware
interrupt. Unless masked by a signal mask, the signal allows the execution of the
Signal handling function and allows the handler to run just as a hardware interrupt
allows the execution of an ISR

e Signal provides the shortest communication.

Signal management fuction calls:

Install a signal handler

Remove an installed signal handler
Send a signal to another task

Block a signal from being delivered
Unblock a blocked signal

Ignore a signal

Timers:

e Real time clock — system clock, on each tick SysClkIntr interrupts
e Based on each SysClklIntr interrupts— there are number of OS timer functions
e Timer are used to message the elasped time of events for instance , the kernel has to keep
track of different times
The following functions calls are provided to manage the timer
o Gettime
e Settime
e Time delay(in system clock)
e Time delay(in sec.)
e Reset timer

Memory management:
Memory allocation:
e Memory allocation When a process is created, the memory manager allocates the
memory addresses (blocks) to it by mapping the process address space.
e Threads of a process share the memory space of the process

Memory Managing Strategy for a system

e Fixed

blocks allocation

Dynamic

blocks Allocation

Dynamic Page

Allocation

Dynamic Data memory Allocation

Interrupt service routine (ISR):

e Interrupt is a hardware signal that informs the cpu that an important event has occurred
when interrupt occured, cpu saves its content and jumps to the ISR
e InRTOS
o Interrupt latency
o Interrupt response
o Interrupt recovery
Mutex:
Mutex standards for mutual exclusion ,mutex is the general mechanism used for both
rsource synchronization as well as task synchronization
It has following mechanisms
e Disabling the scheduler
e Disabling the interrupts
e By test and set operations

e Using semaphore

UNIT-V
INTRODUCTION TO ADVANCED ARCHITECTURES

SHARC Processor Architectural Overview

Super Harvard Architecture

Analog Devices' 32-Bit Floating-Point SHARC® Processors are based on a Super Harvard
architecture that balances exceptional core and memory performance with outstanding 1/0
throughput capabilities. This "Super" Harvard architecture extends the original concepts of
separate program and data memory busses by adding an I/O processor with its associated
dedicated busses. In addition to satisfying the demands of the most computationally intensive,
real-time signal-processing applications, SHARC processors integrate large memory arrays and
application-specific peripherals designed to simplify product development and reduce time to
market.

The SHARC processor portfolio currently consists of four generations of products providing
code-compatible solutions ranging from entry-level products priced at less than $10 to the
highest performance products offering fixed- and floating-point computational power to 450
MHz/2700 MFLOPs. Irrespective of the specific product choice, all SHARC processors provide
a common set of features and functionality useable across many signal processing markets and
applications. This baseline functionality enables the SHARC user to leverage legacy code and
design experience while transitioning to higher-performance, more highly integrated SHARC
products.

Common Architectural Features

32/40-Bit IEEE Floating-Point Math

32-Bit Fixed-Point Multipliers with 64-Bit Product & 80-Bit Accumulation

No Arithmetic Pipeline; All Computations Are Single-Cycle

Circular Buffer Addressing Supported in Hardware

32 Address Pointers Support 32 Circular Buffers

Six Nested Levels of Zero-Overhead Looping in Hardware

Rich, Algebraic Assembly Language Syntax

Instruction Set Supports Conditional Arithmetic, Bit Manipulation, Divide & Square
Root, Bit Field Deposit and Extract

e DMA Allows Zero-Overhead Background Transfers at Full Clock Rate Without
Processor Intervention

First Generation SHARC products offer performance to 66 MHz/ 198 MFLOPs and form the
cornerstone of the SHARC processor family. Their easy-to-use Instruction Set Architecture that
supports both 32-bit fixed-point and 32/40-bit floating data formats combined with large memory
arrays and sophisticated communications ports make them suitable for a wide array of parallel
processing applications including consumer audio, medical imaging, military, industrial, and
instrumentation.

Second Generation SHARC products double the level of signal processing performance
(100MHz / 600MFLOPs) offered by utilizing a Single-Instruction, Multiple-Data (SIMD)
architecture. This hardware extension to first generation SHARC processors doubles the number
of computational resources available to the system programmer. Second generation products

contain dual multipliers, ALUs, shifters, and data register files - significantly increasing overall
system performance in a variety of applications. This capability is especially relevant in
consumer, automotive, and professional audio where the algorithms related to stereo channel
processing can effectively utilize the SIMD architecture.

Third Generation SHARC products employ an enhanced SIMD architecture that extends CPU
performance to 450 MHz/2700 MFLOPs. These products also integrate a variety of ROM
memory configurations and audio-centric peripherals design to decrease time to market and
reduce the overall bill of materials costs. This increased level of performance and peripheral
integration allow third generation SHARC processors to be considered as single-chip solutions
for a variety of audio markets.

The fourth generation of SHARC® Processors, now includes the ADSP-21486, ADSP-21487,
ADSP-21488, ADSP-21489 and offers increased performance, hardware-based filter
accelerators, audio and application-focused peripherals, and new memory configurations capable
of supporting the latest surround-sound decoder algorithms. All devices are pin-compatible with
each other and completely code-compatible with all prior SHARC Processors. These newest
members of the fourth generation SHARC Processor family are based on a single-instruction,
multiple-data (SIMD) core, which supports both 32-bit fixed-point and 32-/40-bit floating-point
arithmetic formats making them particularly suitable for high-performance audio applications

Fourth-generation SHARC Processors also integrate application-specific peripherals designed to
simplify hardware design, minimize design risks, and ultimately reduce time to market. Grouped
together, and broadly named the Digital Applications Interface (DAI), these functional blocks
may be connected to each other or to external pins via the software-programmable Signal
Routing Unit (SRU). The SRU is an innovative architectural feature that enables complete and
flexible routing amongst DAI blocks. Peripherals connected through the SRU include but are not
limited to serial ports, IDP, S/PDIF Tx/Rx, and an 8-Channel asynchronous sample rate
converter block. The fourth generation SHARC allows data from the serial ports to be directly
transferred to external memory by the DMA controller. Other peripherals such as SPI,UART and
Two-Wire Interface are routed through a Digital Peripheral Interface (DPI).

Instruction-level parallelism (ILP)

Pipelining can overlap the execution of instructions when they are independent of one another.
This potential overlap among instructions is called instruction-level parallelism (ILP) since the
instructions can be evaluated in parallel.

The amount of parallelism available within a basic block (a straight-line code sequence with no
branches in and out except for entry and exit) is quite small. The average dynamic branch
frequency in integer programs was measured to be about 15%, meaning that about 7 instructions
execute between a pair of branches.

Since the instructions are likely to depend upon one another, the amount of overlap we can
exploit within a basic block is likely to be much less than 7.

To obtain substantial performance enhancements, we must exploit ILP across multiple basic
blocks.

The simplest and most common way to increase the amount of parallelism available among
instructions is to exploit parallelism among iterations of a loop. This type of parallelism is often
called loop-level parallelism.

Example 1

for (i=1; i<=1000; i= i+1)

x[i] = X[i] + y[il;
This is a parallel loop. Every iteration of the loop can overlap with any other iteration, although
within each loop iteration there is little opportunity for overlap.

Example 2

for (i=1; i<=100; i= i+1){
a[i] = a[i] + b[i]; /Is1
bli+1] =c[i] + d[i]; //s2

Is this loop parallel? If not how to make it parallel?

Statement s1 uses the value assigned in the previous iteration by statement s2, so there is a loop-
carried dependency between s1 and s2. Despite this dependency, this loop can be made parallel
because the dependency is not circular:

- neither statement depends on itself;
- while sl depends on s2, s2 does not depend on s1.

A loop is parallel unless there is a cycle in the dependencies, since the absence of a cycle means
that the dependencies give a partial ordering on the statements.

To expose the parallelism the loop must be transformed to conform to the partial order. Two
observations are critical to this transformation:

There is no dependency from sl to s2. Then, interchanging the two statements will not affect the
execution of s2.

On the first iteration of the loop, statement s1 depends on the value of b[1] computed prior to
initiating the loop.
This allows us to replace the loop above with the following code sequence, which makes
possible overlapping of the iterations of the loop:
a[1] = a[1] + b[1];
for (i=1; i<=99; i= i+1){
b[i+1] = c[i] + d[i[;
a[i+1] = a[i+1] + b[i+1];
}

b[101] = c[100] + d[100];

Example 3

for (i=1; i<=100; i= i+1){
a[i+1] =a[i] + c[i]; //S1
b[i+1] = b[i] + a[i+1]; //S2
}
This loop is not parallel because it has cycles in the dependencies, namely the
statements S1 and S2 depend on themselves!

There are a number of techniques for converting such loop-level parallelism into instruction-
level parallelism. Basically, such techniques work by unrolling the loop.

An important alternative method for exploiting loop-level parallelism is the use of vector
instructions on a vector processor, which is not covered by this tutorial.

12C Bus Protocol

The 12C bus physically consists of 2 active wires and a ground connection. The active wires,
called SDA and SCL, are both bi-directional. SDA is the Serial Data line, and SCL is the Serial
CLock line.

Every device hooked up to the bus has its own unique address, no matter whether it is an MCU,
LCD driver, memory, or ASIC. Each of these chips can act as a receiver and/or transmitter,
depending on the functionality. Obviously, an LCD driver is only a receiver, while a memory or
I/0O chip can be both transmitter and receiver.

The 12C bus is a multi-master bus. This means that more than one IC capable of initiating a data
transfer can be connected to it. The 12C protocol specification states that the IC that initiates a
data transfer on the bus is considered the Bus Master. Consequently, at that time, all the other
ICs are regarded to be Bus Slaves.

As bus masters are generally microcontrollers, let's take a look at a general 'inter-1C chat' on the
bus. Let’s consider the following setup and assume the MCU wants to send data to one of its
slaves (also see here for more information; click here for information on how to receive data
from a slave).

: 5CL
= : - : S04

Slaves

First, the MCU will issue a START condition. This acts as an 'Attention’ signal to all of the
connected devices. All ICs on the bus will listen to the bus for incoming data.

Then the MCU sends the ADDRESS of the device it wants to access, along with an indication
whether the access is a Read or Write operation (Write in our example). Having received the
address, all IC's will compare it with their own address. If it doesn't match, they simply wait until
the bus is released by the stop condition (see below). If the address matches, however, the chip
will produce a response called the ACKNOWLEDGE signal.

Once the MCU receives the acknowledge, it can start transmitting or receiving DATA. In our
case, the MCU will transmit data. When all is done, the MCU will issue the STOP condition.
This is a signal that the bus has been released and that the connected ICs may expect another
transmission to start any moment.

We have had several states on the bus in our example:

START, ADDRESS, ACKNOWLEDGE, DATA, STOP. These are all unique conditions on the
bus. Before we take a closer look at these bus conditions we need to understand a bit about the
physical structure and hardware of the bus.

Controller Area Network (CAN) interface in embedded systems:

CAN or Controller Area Network or CAN-bus is an I1SO standard computer network protocol
and bus standard, designed for microcontrollers and devices to communicate with each other
without a host computer. Designed earlier for industrial networking but recently more adopted to
automotive applications, CAN have gained widespread popularity for embedded control in the
areas like industrial automation, automotives, mobile machines, medical, military and other
harsh environment network applications.

Development of the CAN-bus started originally in 1983 at Robert Bosch GmbH. The protocol
was officially released in 1986. And the first CAN controller chips, produced by Intel and
Philips, introduced in the market in the year of 1987.

Introduction:

The CAN is a "broadcast" type of bus. That means there is no explicit address in the messages.
All the nodes in the network are able to pick-up or receive all transmissions. There is no way to
send a message to just a specific node. To be more specific, the messages transmitted from any
node on a CAN bus does not contain addresses of either the transmitting node, or of any intended
receiving node. Instead, an identifier that is unique throughout the network is used to label the
content of the message. Each message carries a numeric value, which controls its priority on the
bus, and may also serve as an identification of the contents of the message. And each of the
receiving nodes performs an acceptance test or provides local filtering on the identifier to
determine whether the message, and thus its content, is relevant to that particular node or not, so
that each node may react only on the intended messages. If the message is relevant, it will be
processed; otherwise it is ignored.

http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/transmitting-a-byte-to-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/getting-acknowledge-from-a-slave-device.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html
http://www.esacademy.com/en/library/technical-articles-and-documents/miscellaneous/i2c-bus/i2c-bus-events/start-and-stop-conditions.html

How do they communicate?

If the bus is free, any node may begin to transmit. But what will happen in situations where two
or more nodes attempt to transmit message (to the CAN bus) at the same time. The identifier
field, which is unique throughout the network helps to determine the priority of the message. A
"non-destructive arbitration technique™ is used to accomplish this, to ensure that the messages are
sent in order of priority and that no messages are lost. The lower the numerical value of the
identifier, the higher the priority. That means the message with identifier having more dominant
bits (i.e. bit 0) will overwrite other nodes' less dominant identifier so that eventually (after the
arbitration on the ID) only the dominant message remains and is received by all nodes.

As stated earlier, CAN do not use address-based format for communication, instead uses a
message-based data format. Here the information is transferred from one location to another by
sending a group of bytes at one time (depending on the order of priority). This makes CAN
ideally suited in applications requiring a large number of short messages (e.g.: transmission of
temperature and rpm information). by more than one location and system-wide data consistency
is mandatory. (The traditional networks such as USB or Ethernet are used to send large blocks of
data, point-to-point from node A to node B under the supervision of a central bus master).

Let us now try to understand how these nodes are interconnected physically, by pointing out
some examples. A modern automobile system will have many electronic control units for various
subsystems (figl-a). Typically the biggest processor will be the engine control unit (or the host
processor). The CAN standard even facilitates the subsystem to control actuators or receive
signals from sensors. A CAN message never reaches these devices directly, but instead a host-
processor and a CAN Controller (with a CAN transciever) is needed between these devices and
the bus. (In some cases, the network need not have a controller node; each node can easily be
connected to the main bus directly.)

The CAN Controller stores received bits (one by one) from the bus until an entire message block
is available, that can then be fetched by the host processor (usually after the CAN Controller has
triggered an interrupt). The Can transciever adapts signal levels from the bus, to levels that the
CAN Controller expects and also provides a protective circuitry for the CAN Controller. The
host-processor decides what the received messages mean, and which messages it wants to

transmit itself.
¢ >
v

Engine CAN Buses

A S N S

Transmission Aitbags Antilock cruise .
Cotrol Node Control braking control Wmdow
Node Control Node oL
Node control

It is likely that the more rapidly changing parameters need to be transmitted more frequently and,
therefore, must be given a higher priority. How this high-priority is achieved? As we know, the
priority of a CAN message is determined by the numerical value of its identifier. The numerical
value of each message identifier (and thus the priority of the message) is assigned during the
initial phase of system design. To determine the priority of messages (while communication),
CAN uses the established method known as CSMA/CD with the enhanced capability of non-
destructive bit-wise arbitration to provide collision resolution and to exploit the maximum
available capacity of the bus. "Carrier Sense" describes the fact that a transmitter listens for a
carrier wave before trying to send. That is, it tries to detect the presence of an encoded signal
from another station before attempting to transmit. If a carrier is sensed, the node waits for the
transmission in progress to finish before initiating its own transmission. "Multiple Access"
describes the fact that multiple nodes send and receive on the same medium. All other nodes
using the medium generally receive transmissions by one node. "Collision Detection” (CD)
means that collisions are resolved through a bit-wise arbitration, based on a preprogrammed
priority of each message in the identifier field of a message.

MICROCONTROLLER

+ 1

CAN Controller

| {

CAN Transceiver

i 2

i CAN bus Lines

Let us now try to understand how the term "priority” becomes more important in the network.
Each node can have one or more function. Different nodes may transmit messages at different
times (Depends how the system is configured) based on the function(s) of each node. For
example:

1) Only when a system failure (communication failure) occurs.

2) Continually, such as when it is monitoring the temperature.

3) A node may take action or transmit a message only when instructed by another node, such as
when a fan controller is instructed to turn a fan on when the temperature-monitoring node has
detected an elevated temperature.

Note:

When one node transmits the message, sometimes many nodes may accept the message and act
on it (which is not a usual case). For example, a temperature-sensing node may send out
temperature data that are accepted & acted on only by a temperature display node. But if the
temperature sensor detects an over-temperature situation, then many nodes might act on the
information.

CAN use "Non Return to Zero" (NRZ) encoding (with "bit-stuffing”) for data communication on
a "differential two wire bus". The two-wire bus is usually a twisted pair (shielded or unshielded).
Flat pair (telephone type) cable also performs well but generates more noise itself, and may be
more susceptible to external sources of noise.

Main Features:

a) A two-wire, half duplex, high-speed network system mainly suited for high-speed applications
using "short messages”. (The message is transmitted serially onto the bus, one bit after another in
a specified format).

b) The CAN bus offers a high-speed communication rate up to 1 M bits / sec, for up to 40 feet,
thus facilitating real-time control. (Increasing the distance may decrease the bit-rate).

¢) With the message-based format and the error-containment followed, it's possible to add nodes
to the bus without reprogramming the other nodes to recognize the addition or changing the
existing hardware. This can be done even while the system is in operation. The new node will
start receiving messages from the network immediately. This is called "hot-plugging”
d) Another useful feature built into the CAN protocol is the ability of a node to request
information from other nodes. This is called a remote transmit request, or RTR.

e) The use of NRZ encoding ensures compact messages with a minimum number of transitions
and high resilience to external disturbance.

f) CAN protocol can link up to 2032 devices (assuming one node with one identifier) on a single
network. But accounting to the practical limitations of the hardware (transceivers), it may only
link up to 110 nodes on a single network.

g) Has an extensive and unique error checking mechanisms.

h) Has High immunity to Electromagnetic Interference. Has the ability to self-diagnose & repair
data errors.

i) Non-destructive bit-wise arbitration provides bus allocation on the basis of need, and delivers
efficiency benefits that cannot be gained from either fixed time schedule allocation (e.g. Token
ring) or destructive bus allocation (e.g. Ethernet.)

j) Fault confinement is a major advantage of CAN. Faulty nodes are automatically dropped from
the bus. This helps to prevent any single node from bringing the entire network down, and thus
ensures that bandwidth is always available for critical message transmission.

k) The use of differential signaling (a method of transmitting information electrically by means
of two complementary signals sent on two separate wires) gives resistance to EMI & tolerance of
ground offsets.

I) CAN is able to operate in extremely harsh environments. Communication can still continue
(but with reduced signal to noise ratio) even if:

1. Either of the two wires in the bus is broken
2. Either wire is shorted to ground

3. Either wire is shorted to power supply.

CAN protocol Layers & message Frames:

Like any network applications, Can also follows layered approach to the system implementation.
It conforms to the Open Systems Interconnection (OSI) model that is defined in terms of layers.
The ISO 11898 (For CAN) architecture defines the lowest two layers of the seven layers
OSI/1ISO model as the data-link layer and physical layer. The rest of the layers (called Higher
Layers) are left to be implemented by the system software developers (used to adapt and
optimize the protocol on multiple media like twisted pair. Single wire, optical, RF or IR). The
Higher Level Protocols (HLP) is used to implement the upper five layers of the OSI in CAN.

CAN use a specific message frame format for receiving and transmitting the data. The two types
of frame format available are:

a) Standard CAN protocol or Base frame format
b) Extended Can or Extended frame format

The following figure (Fig 2) illustrates the standard CAN frame format, which consists of seven
different bit-fields.

a) A Start of Frame (SOF) field - indicates the beginning of a message frame.

b) An Arbitration field, containing a message identifier and the Remote Transmission Request
(RTR) bit. The RTR bit is used to discriminate between a transmitted Data Frame and a request
for data from a remote node.

c) A Control Field containing six bits in which two reserved bits (r0 and r1) and a four bit Data
Length Code (DLC). The DLC indicates the number of bytes in the Data Field that follows.

d) A Data Field, containing from zero to eight bytes.

e) The CRC field, containing a fifteen-bit cyclic redundancy check-code and a recessive
delimiter bit.

f) The Acknowledge field, consisting of two bits. The first one is a Slot bit which is transmitted
as recessive, but is subsequently over written by dominant bits transmitted from any node that
successfully receives the transmitted message. The second bit is a recessive delimiter bit.

g) The End of Frame field, consisting of seven recessive bits.

An Intermission field consisting of three recessive bits is then added after the EOF field. Then
the bus is recognized to be free.

- Messae Frame =
| |
| 1 | | 1 | 1
|

| Arbirawon field ! Conml ! DaaFeld | CRCfield ! ACK ! ECQF | Im ! Buslde

Bus e
| | | | ! | ' |
U1 titlderifier | | | [DLC] Dot (0-8Byes) | 15t L
! ' L I 4 L
S0, BB | & Deliritr Delmiter
t L S

The Extended Frame format provides the Arbitration field with two identifier bit fields. The first
(the base ID) is eleven (11) bits long and the second field (the ID extension) is eighteen (18) bits
long, to give a total length of twenty nine (29) bits. The distinction between the two formats is
made using an ldentifier Extension (IDE) bit. A Substitute Remote Request (SRR) bit is also
included in the Arbitration Field.

Error detection & correction:

This mechanism is used for detecting errors in messages appearing on the CAN bus, so that the
transmitter can retransmit message. The CAN protocol defines five different ways of detecting
errors. Two of these works at the bit level, and the other three at the message level.

1. Bit Monitoring.

2. Bit Stuffing.

3. Frame Check.

4. Acknowledgement Check.
5. Cyclic Redundancy Check

1. Each transmitter on the CAN bus monitors (i.e. reads back) the transmitted signal level. If the
signal level read differs from the one transmitted, a Bit Error is signaled. Note that no bit error is
raised during the arbitration process.

2. When five consecutive bits of the same level have been transmitted by a node, it will add a
sixth bit of the opposite level to the outgoing bit stream. The receivers will remove this extra bit.
This is done to avoid excessive DC components on the bus, but it also gives the receivers an
extra opportunity to detect errors: if more than five consecutive bits of the same level occurs on
the bus, a Stuff Error is signaled.

3. Some parts of the CAN message have a fixed format, i.e. the standard defines exactly what
levels must occur and when. (Those parts are the CRC Delimiter, ACK Delimiter, End of Frame,
and also the Intermission). If a CAN controller detects an invalid value in one of these fixed
fields, a Frame Error is signaled.

4. All nodes on the bus that correctly receives a message (regardless of their being "interested” of
its contents or not) are expected to send a dominant level in the so-called Acknowledgement Slot
in the message. The transmitter will transmit a recessive level here. If the transmitter can't detect
a dominant level in the ACK slot, an Acknowledgement Error is signaled.

5. Each message features a 15-bit Cyclic Redundancy Checksum and any node that detects a
different CRC in the message than what it has calculated itself will produce a CRC Error.

Error confinement:

Error confinement is a technique, which is unique to CAN and provides a method for
discriminating between temporary errors and permanent failures in the communication network.
Temporary errors may be caused by, spurious external conditions, voltage spikes, etc. Permanent
failures are likely to be caused by bad connections, faulty cables, defective transmitters or
receivers, or long lasting external disturbances.

Let us now try to understand how this works.

Each node along the bus will be having two error counters namely the transmit error counter
(TEC) and the receive error counter (REC), which are used to be incremented and/or
decremented in accordance with the error detected. If a transmitting node detects a fault, then it
will increments its TEC faster than the listening nodes increments its REC because there is a
good chance that it is the transmitter who is at fault.

A node usually operates in a state known as "Error Active” mode. In this condition a node is
fully functional and both the error count registers contain counts of less than 127. When any one
of the two error counters raises above 127, the node will enter a state known as "Error Passive".
That means, it will not actively destroy the bus traffic when it detects an error. The node which is
in error passive mode can still transmit and receive messages but are restricted in relation to how
they flag any errors that they may detect. When the Transmit Error Counter rises above 255, the
node will enter the Bus Off state, which means that the node doesn't participate in the bus traffic
at all. But the communications between the other nodes can continue unhindered.

To be more specific, an "Error Active" node will transmit "Active Error Flags" when it detects
errors, an "Error Passive™ node will transmit "Passive Error Flags" when it detects errors and a
node, which is in "Bus Off" state will not transmit "anything” on the bus at all. The transmit
errors give 8 error points, and receive errors give 1 error point. Correctly transmitted and/or
received messages cause the counter(s) to decrease. The other nodes will detect the error caused
by the Error Flag (if they haven't already detected the original error) and take appropriate action,
i.e. discard the current message.

Let's assume that whenever node-A (for example) on a bus tries to transmit a message, it fails
(for whatever reason). Each time this happens, it increases its Transmit Error Counter by 8 and
transmits an Active Error Flag. Then it will attempt to retransmit the message and suppose the
same thing happens again. When the Transmit Error Counter rises above 127 (i.e. after 16

attempts), node A goes Error Passive. It will now transmit passive error flags on the bus. A
Passive Error Flag comprises 6 recessive bits, and will not destroy other bus traffic - so the other
nodes will not hear the node-A complaining about bus errors. However, A continues to increase
its TEC. When it rises above 255, node-A finally stops and goes to "Bus Off" state.

What does the other nodes think about node A? - For every active error flag that A transmitted,
the other nodes will increase their Receive Error Counters by 1. By the time that A goes Bus Off,
the other nodes will have a count in their Receive Error Counters that is well below the limit for
Error Passive, i.e. 127. This count will decrease by one for every correctly received message.
However, node A will stay bus off. Most CAN controllers will provide status bits and
corresponding interrupts for two states: "Error Warning" (for one or both error counters are
above 96) and "Bus Off".

Bit Timing and Synchronization:
The time for each bit in a CAN message frame is made up of four non-overlapping time
segments as shown below.

One bit time

) L
Previous bit >< Synchseg Prop-sag Phase segl Phase seg2 >< Nextbit
I

Sample point//'

The following points may be relevant as far as the "bit timing" is concerned.

1. Synchronization segment is used to synchronize the nodes on the bus. And it will always be of
one quantum long.

2. One time quanta (which is also known as the system clock period) is the period of the local
oscillator, multiplied by the value in the Baud Rate Pre-scaler (BRP) register in the CAN
controller.

3. A hit edge is expected to take place during this synchronization segment when the data
changes on the bus.

4. Propagation segment is used to compensate for physical delay times within the network bus
lines. And is programmable from one to eight time quanta long.

5. Phase-segmentl is a buffer segment that can be lengthened during resynchronization to
compensate for oscillator drift and positive phase differences between the oscillators of the
transmitting and receiving nodes. And is also programmable from one to eight time quanta long.

6. Phase-segment2 can be shortened during resynchronization to compensate for negative phase

errors and oscillator drift. And is the maximum of Phase-segmentl combined with the
Information Processing Time.

7. The Sample point will always be at the end of Phase-segl. It is the time at which the bus level
is read and interpreted as the value of the current bit.

8. The Information Processing Time is less than or equal to 2 time quanta.

This bit time is programmable at each node on a CAN Bus. But be aware that all nodes on a
single CAN bus must have the same bit time regardless of transmitting or receiving. The bit time
is a function of the period of the oscillator local to each node, the value that is user-programmed
into BRP register in the controller at each node, and the programmed number of time quanta per
bit.

How do they synchronize:

Suppose a node receives a data frame. Then it is necessary for the receiver to synchronize with
the transmitter to have proper communication. But we don't have any explicit clock signal that a
CAN system can use as a timing reference. Instead, we use two mechanisms to maintain
synchronization, which is explained below.

Hard synchronization:

It occurs at the Start-of-Frame or at the transition of the start bit. The bit time is restarted from
that edge.

Resynchronization:

To compensate for oscillator drift, and phase differences between transmitter and receiver
oscillators, additional synchronization is needed. The resynchronization for the subsequent bits
in any received frame occurs when a bit edge doesn't occur within the Synchronization Segment
in a message. The resynchronization is automatically invoked and one of the Phase Segments are
shortened or lengthened with an amount that depends on the phase error in the signal. The
maximum amount that can be used is determined by a user-programmable number of time quanta
known as the Synchronization Jump Width parameter (SJW).

Higher Layer Protocols:

Higher layer protocol (HLP) is required to manage the communication within a system. The term
HLP is derived from the OSI model and its seven layers. But the CAN protocol just specifies
how small packets of data may be transported from one point to another safely using a shared
communications medium. It does not contain anything on the topics such as flow control,
transportation of data larger than CAN fit in an 8-byte message, node addresses, establishment of
communication, etc. The HLP gives solution for these topics.

