
LECTURE NOTES

ON

Foundations of Data Science

M.Tech (R18) I Semester

Prepared by

Mr. C Raghavendra

Assistant Professor

Computer Science and Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal- 500 043, Hyderabad.

UNIT - 1

Data science process

The data scientist is responsible for guiding a data science project from start to finish. Success in

a data science project comes not from access to any one exotic tool, but from having quantifiable

goals, good methodology, cross-discipline interactions, and a repeatable workflow.

The roles in a data science project:

ROLES AND RESPONSIBLITIES

Project sponsor : Represents the business interests; champions the project

Client : Represents end users’ interests; domain expert

Data scientist : Sets and executes analytic strategy; communicates with sponsor and client

Data architect : Manages data and data storage; sometimes manages data collection

Operations : Manages infrastructure; deploys final project results

PROJECT SPONSOR:

The most important role in a data science project is the project sponsor. The sponsor is the

person, who wants the data science result; generally they represent the business interests. The

sponsor is responsible for deciding whether the project is a success or failure. Getting sponsor

sign-off becomes the central organizing goal of a data science project.

CLIENT:

While the sponsor is the role that represents the business interest, the client is the role that

represents the model’s end users’ interests. Sometimes the sponsor and client roles may be filled

by the same person. Again, the data scientist may fill the client role if they can weight business

trade-offs, but this isn’t ideal.

The client is more hands-on than the sponsor; they’re the interface between the technical details

of building a good model and the day-to-day work process into which the model will be

deployed.

DATA SCIENTIST

The next role in a data science project is the data scientist, who’s responsible for taking all

necessary steps to make steps, pick the data sources, and pick the tools to be used. Since they

pick the techniques that will be tried, they have to be well informed about the project succeed,

including setting the project strategy and keeping the client informed. They design the project

statistics and machine learning. They’re also responsible for project planning and tracking,

though they may do this with a project management partner.

DATA ARCHITECT

The data architect is responsible for all of the data and its storage. Often this role is filled by

someone outside of the data science group, such as a database administrator or architect. Data

architects often manage data warehouses for many different projects, and they may only be

available for quick consultation

OPERATIONS

The operations role is critical both in acquiring data and delivering the final results. The person

filling this role usually has operational responsibilities outside of the data science group.

Stages of a data science project:

The ideal data science environment is one that encourages feedback and iteration between the

data scientist and all other stakeholders. This is reflected in the lifecycle of a data science project.

 Fig. The life cycle of a data science project: loops within the loops

Defining the goal:

The first task in a data science project is to define a measurable and quantifiable goal. Why do

the sponsors want the project in the first place? What do they lack, and what do they need? What

are they doing to solve the problem now, and why isn’t that good enough? What resources will

you need: what kind of data and how much staff? Will you have domain experts to collaborate

with, and what are the computational resources? How do the project sponsors plan to deploy

your results? What are the constraints that have to be met for successful deployment?

Data collection and management

This step encompasses identifying the data you need, exploring it, and conditioning it to be

suitable for analysis. This stage is often the most time-consuming step in the process

So far, we have dealt with small datasets that easily fit into your computer’s memory. But what

about datasets that are too large for your computer to handle as a whole? In this case, storing the

data outside of R and organizing it in a database is helpful. Connecting to the database allows

you to retrieve only the chunks needed for the current analysis.

Even better, many large datasets are already available in public or private databases. You can

query them without having to download the data first.

R can connect to almost any existing database type. Most common database types have R

packages that allow you to connect to them (e.g., RSQLite, RMySQL, etc). Furthermore,

the dplyr package you used in the previous chapter, in conjunction with dbplyr supports

connecting to the widely-used open source databases sqlite, mysql and postgresql, as well as

Google’s bigquery, and it can also be extended to other database types (a vignette in

the dplyr package explains how to do it). RStudio has created a website that provides

documentation and best practices to work on database interfaces.

Interfacing with databases using dplyr focuses on retrieving and analyzing datasets by

generating SELECTSQL statements, but it doesn’t modify the database itself. dplyr does not

offer functions to UPDATE or DELETEentries. If you need these functionalities, you will need

to use additional R packages (e.g., RSQLite). Here we will demonstrate how to interact with a

database using dplyr, using both the dplyr’s verb syntax and the SQL syntax.

The portal_mammals database

We will continue to explore the surveys data you are already familiar with from previous lessons.

First, we are going to install the dbplyr package:

install.packages(c("dbplyr", "RSQLite"))

The SQLite database is contained in a single file portal_mammals.sqlite that you generated

during the SQL lesson. If you don’t have it, you can download it from Figshare into

the data subdirectory using:

dir.create("data", showWarnings = FALSE)

download.file(url = "https://ndownloader.figshare.com/files/2292171",

 destfile = "data/portal_mammals.sqlite", mode = "wb")

Connecting to databases

We can point R to this database using:

library(dplyr)

library(dbplyr)

#>

#> Attaching package: 'dbplyr'

#> The following objects are masked from 'package:dplyr':

#>

#> ident, sql

mammals <- DBI::dbConnect(RSQLite::SQLite(), "data/portal_mammals.sqlite")

https://cran.r-project.org/web/packages/dplyr/index.html
https://cran.r-project.org/package=dbplyr
https://sqlite.org/
https://www.mysql.com/
https://www.postgresql.org/
https://cloud.google.com/bigquery/
https://cran.r-project.org/web/packages/dbplyr/vignettes/new-backend.html
http://db.rstudio.com/

This command uses 2 packages that helps dbplyr and dplyr talk to the SQLite database. DBI is

not something that you’ll use directly as a user. It allows R to send commands to databases

irrespective of the database management system used. The RSQLite package allows R to

interface with SQLite databases.

This command does not load the data into the R session (as the read_csv() function did).

Instead, it merely instructs R to connect to the SQLite database contained in

the portal_mammals.sqlite file.

Using a similar approach, you could connect to many other database management systems that

are supported by R including MySQL, PostgreSQL, BigQuery, etc.

Let’s take a closer look at the mammals database we just connected to:

src_dbi(mammals)

#> src: sqlite 3.19.3 [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> tbls: plots, species, surveys

Just like a spreadsheet with multiple worksheets, a SQLite database can contain multiple tables.

In this case three of them are listed in the tbls row in the output above:

 plots

 species

 surveys

Now that we know we can connect to the database, let’s explore how to get the data from its

tables into R.

Querying the database with the SQL syntax

To connect to tables within a database, you can use the tbl() function from dplyr. This function

can be used to send SQL queries to the database. To demonstrate this functionality, let’s select

the columns “year”, “species_id”, and “plot_id” from the surveys table:

tbl(mammals, sql("SELECT year, species_id, plot_id FROM surveys"))

With this approach you can use any of the SQL queries we have seen in the database lesson.

Querying the database with the dplyr syntax

One of the strengths of dplyr is that the same operation can be done using dplyr’s verbs instead

of writing SQL. First, we select the table on which to do the operations by creating

the surveys object, and then we use the standard dplyr syntax as if it were a data frame:

surveys <- tbl(mammals, "surveys")

surveys %>%

 select(year, species_id, plot_id)

In this case, the surveys object behaves like a data frame. Several functions that can be used with

data frames can also be used on tables from a database. For instance, the head() function can be

used to check the first 10 rows of the table:

head(surveys, n = 10)

#> # Source: lazy query [?? x 9]

#> # Database: sqlite 3.19.3

#> # [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> record_id month day year plot_id species_id sex hindfoot_length

#> <int> <int> <int> <int> <int> <chr> <chr> <int>

#> 1 1 7 16 1977 2 NL M 32

#> 2 2 7 16 1977 3 NL M 33

#> 3 3 7 16 1977 2 DM F 37

#> 4 4 7 16 1977 7 DM M 36

#> 5 5 7 16 1977 3 DM M 35

#> 6 6 7 16 1977 1 PF M 14

#> 7 7 7 16 1977 2 PE F NA

#> 8 8 7 16 1977 1 DM M 37

#> 9 9 7 16 1977 1 DM F 34

#> 10 10 7 16 1977 6 PF F 20

#> # ... with more rows, and 1 more variable: weight <int>

This output of the head command looks just like a regular data.frame: The table has 9

columns and the head() command shows us the first 10 rows. Note that the

columns plot_type, taxa, genus, and speciesare missing. These are now located in

the tables plots and species which we will join together in a moment.

However, some functions don’t work quite as expected. For instance, let’s check how many rows

there are in total using nrow():

nrow(tbl)

#> NULL

That’s strange - R doesn’t know how many rows the survey table contains - it

returns NULL instead. You might have already noticed that the first line of the head() output

included ?? indicating that the number of rows wasn’t known.

The reason for this behavior highlights a key difference between using dplyr on datasets in

memory (e.g. loaded into your R session via read_csv()) and those provided by a database.

To understand it, we take a closer look at how dplyr communicates with our SQLite database.

SQL translation

Relational databases typically use a special-purpose language, Structured Query Language

(SQL), to manage and query data.

For example, the following SQL query returns the first 10 rows from the surveys table:

SELECT *

FROM `surveys`

LIMIT 10

Behind the scenes, dplyr:

1. translates your R code into SQL

2. submits it to the database

3. translates the database’s response into an R data frame

To lift the curtain, we can use dplyr’s show_query() function to show which SQL

commands are actually sent to the database:

show_query(head(surveys, n = 10))

#> <SQL>

#> SELECT *

#> FROM `surveys`

#> LIMIT 10

The output shows the actual SQL query sent to the database; it matches our manually

constructed SELECTstatement above.

Instead of having to formulate the SQL query ourselves - and having to mentally switch back and

forth between R and SQL syntax - we can delegate this translation to dplyr. (You don’t even

need to know SQL to interact with a database via dplyr!)

dplyr, in turn, doesn’t do the real work of subsetting the table, either. Instead, it merely sends

the query to the database, waits for its response and returns it to us.

That way, R never gets to see the full surveys table - and that’s why it could not tell us how

many rows it contains. On the bright side, this allows us to work with large datasets - even too

large to fit into our computer’s memory.

dplyr can translate many different query types into SQL allowing us to,

e.g., select() specific columns, filter() rows, or join tables.

To see this in action, let’s compose a few queries with dplyr.

Simple database queries

First, let’s only request rows of the surveys table in which weight is less than 5 and keep only

the species_id, sex, and weight columns.

https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

surveys %>%

 filter(weight < 5) %>%

 select(species_id, sex, weight)

#> # Source: lazy query [?? x 3]

#> # Database: sqlite 3.19.3

#> # [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> species_id sex weight

#> <chr> <chr> <int>

#> 1 PF M 4

#> 2 PF F 4

#> 3 PF <NA> 4

#> 4 PF F 4

#> 5 PF F 4

#> 6 RM M 4

#> 7 RM F 4

#> 8 RM M 4

#> 9 RM M 4

#> 10 RM M 4

#> # ... with more rows

Executing this command will return a table with 10 rows and the

requested species_id, sex and weightcolumns. Great!

… but wait, why are there only 10 rows?

The last line:

... with more rows

indicates that there are more results that fit our filtering criterion. Why was R lazy and only

retrieved 10 of them?

Laziness

Hadley Wickham, the author of dplyr explains:

When working with databases, dplyr tries to be as lazy as possible:

• It never pulls data into R unless you explicitly ask for it.

https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html

• It delays doing any work until the last possible moment - it collects together everything

you want to do and then sends it to the database in one step.

When you construct a dplyr query, you can connect multiple verbs into a single pipeline. For

example, we combined the filter() and select() verbs using the %>% pipe.

If we wanted to, we could add on even more steps, e.g. remove the sex column in an

additional select call:

data_subset <- surveys %>%

 filter(weight < 5) %>%

 select(species_id, sex, weight)

data_subset %>%

 select(-sex)

#> # Source: lazy query [?? x 2]

#> # Database: sqlite 3.19.3

#> # [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> species_id weight

#> <chr> <int>

#> 1 PF 4

#> 2 PF 4

#> 3 PF 4

#> 4 PF 4

#> 5 PF 4

#> 6 RM 4

#> 7 RM 4

#> 8 RM 4

#> 9 RM 4

#> 10 RM 4

#> # ... with more rows

Just like the first select(species_id, sex, weight) call, the select(-

sex) command is not executed by R. It is sent to the database instead. Only the final result is

retrieved and displayed to you.

Of course, we could always add on more steps, e.g., we could filter by species_id or

minimum weight. That’s why R doesn’t retrieve the full set of results - instead it only

retrieves the first 10 results from the database by default. (After all, you might want to
add an additional step and get the database to do more work…)

To instruct R to stop being lazy, e.g. to retrieve all of the query results from the

database, we add the collect() command to our pipe. It indicates that our database

query is finished: time to get the final results and load them into the R session.

data_subset <- surveys %>%

 filter(weight < 5) %>%

 select(species_id, sex, weight) %>%

 collect()

Now we have all 17 rows that match our query in a data.frame and can continue to

work with them exclusively in R, without communicating with the database.

Complex database queries

dplyr enables database queries across one or multiple database tables, using the

same single- and multiple-table verbs you encountered previously. This means you can
use the same commands regardless of whether you interact with a remote database or
local dataset! This is a really useful feature if you work with large datasets: you can first
prototype your code on a small subset that fits into memory, and when your code is
ready, you can change the input dataset to your full database without having to change
the syntax.

On the other hand, being able use SQL queries directly can be useful if your
collaborators have already put together complex queries to prepare the dataset that you
need for your analysis.

To illustrate how to use dplyr with these complex queries, we are going to join

the plots and surveystables. The plots table in the database contains information

about the different plots surveyed by the researchers. To access it, we point

the tbl() command to it:

plots <- tbl(mammals, "plots")

plots

#> # Source: table<plots> [?? x 2]

#> # Database: sqlite 3.19.3

#> # [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> plot_id plot_type

#> <int> <chr>

#> 1 1 Spectab exclosure

#> 2 2 Control

#> 3 3 Long-term Krat Exclosure

#> 4 4 Control

#> 5 5 Rodent Exclosure

#> 6 6 Short-term Krat Exclosure

#> 7 7 Rodent Exclosure

#> 8 8 Control

#> 9 9 Spectab exclosure

#> 10 10 Rodent Exclosure

#> # ... with more rows

The plot_id column also features in the surveys table:

surveys

#> # Source: table<surveys> [?? x 9]

#> # Database: sqlite 3.19.3

#> # [/home/travis/build/datacarpentry/R-ecology-

lesson/data/portal_mammals.sqlite]

#> record_id month day year plot_id species_id sex

hindfoot_length

#> <int> <int> <int> <int> <int> <chr> <chr>

<int>

#> 1 1 7 16 1977 2 NL M

32

#> 2 2 7 16 1977 3 NL M

33

#> 3 3 7 16 1977 2 DM F

37

#> 4 4 7 16 1977 7 DM M

36

#> 5 5 7 16 1977 3 DM M

35

#> 6 6 7 16 1977 1 PF M

14

#> 7 7 7 16 1977 2 PE F

NA

#> 8 8 7 16 1977 1 DM M

37

#> 9 9 7 16 1977 1 DM F

34

#> 10 10 7 16 1977 6 PF F

20

#> # ... with more rows, and 1 more variable: weight <int>

Because plot_id is listed in both tables, we can use it to look up matching records,

and join the two tables.

diagram illustrating inner and left joins

For example, to extract all surveys for the first plot, which has plot_id 1, we can do:

plots %>%

 filter(plot_id == 1) %>%

 inner_join(surveys) %>%

 collect()

#> Joining, by = "plot_id"

#> # A tibble: 1,995 x 10

#> plot_id plot_type record_id month day year

species_id sex

#> <int> <chr> <int> <int> <int> <int>

<chr> <chr>

#> 1 1 Spectab exclosure 6 7 16 1977 PF

M

#> 2 1 Spectab exclosure 8 7 16 1977 DM

M

#> 3 1 Spectab exclosure 9 7 16 1977 DM

F

#> 4 1 Spectab exclosure 78 8 19 1977 PF

M

#> 5 1 Spectab exclosure 80 8 19 1977 DS

M

#> 6 1 Spectab exclosure 218 9 13 1977 PF

M

#> 7 1 Spectab exclosure 222 9 13 1977 DS

M

#> 8 1 Spectab exclosure 239 9 13 1977 DS

M

#> 9 1 Spectab exclosure 263 10 16 1977 DM

M

#> 10 1 Spectab exclosure 270 10 16 1977 DM

F

#> # ... with 1,985 more rows, and 2 more variables:

hindfoot_length <int>,

#> # weight <int>

Important Note: Without the collect() statement, only the first 10 matching rows are

returned. By adding collect(), the full set of 1,985 is retrieved.

Challenge

Write a query that returns the number of rodents observed in each plot in each year.

Hint: Connect to the species table and write a query that joins the species and survey
tables together to exclude all non-rodents. The query should return counts of rodents by
year.

Optional: Write a query in SQL that will produce the same result. You can join multiple
tables together using the following syntax where foreign key refers to your unique id

(e.g., species_id):

SELECT table.col, table.col

FROM table1 JOIN table2

ON table1.key = table2.key

JOIN table3 ON table2.key = table3.key

Challenge

Write a query that returns the total number of rodents in each genus caught in the
different plot types.

Hint: Write a query that joins the species, plot, and survey tables together. The query
should return counts of genus by plot type.

This is useful if we are interested in estimating the number of individuals belonging to
each genus found in each plot type. But what if we were interested in the number of

genera found in each plot type? Using tally() gives the number of individuals,

instead we need to use n_distinct() to count the number of unique values found in

a column.

unique_genera <- left_join(surveys, plots) %>%

 left_join(species) %>%

 group_by(plot_type) %>%

 summarize(

 n_genera = n_distinct(genus)

) %>%

 collect()

#> Joining, by = "plot_id"

#> Joining, by = "species_id"

n_distinct, like the other dplyr functions we have used in this lesson, works not

only on database connections but also on regular data frames.

Creating a new SQLite database

So far, we have used a previously prepared SQLite database. But we can also use R to

create a new database, e.g. from existing csv files. Let’s recreate the mammals

database that we’ve been working with, in R. First let’s read in the csv files.

species <- read_csv("data/species.csv")

#> Parsed with column specification:

#> cols(

#> species_id = col_character(),

#> genus = col_character(),

#> species = col_character(),

#> taxa = col_character()

#>)

surveys <- read_csv("data/surveys.csv")

#> Parsed with column specification:

#> cols(

#> record_id = col_integer(),

#> month = col_integer(),

#> day = col_integer(),

#> year = col_integer(),

#> plot_id = col_integer(),

#> species_id = col_character(),

#> sex = col_character(),

#> hindfoot_length = col_integer(),

#> weight = col_integer()

#>)

plots <- read_csv("data/plots.csv")

#> Parsed with column specification:

#> cols(

#> plot_id = col_integer(),

#> plot_type = col_character()

#>)

Creating a new SQLite database with dplyr is easy. You can re-use the same

command we used above to open an existing .sqlite file. The create =

TRUE argument instructs R to create a new, empty database instead.

Caution: When create = TRUE is added, any existing database at the same location

is overwritten without warning.

my_db_file <- "portal-database.sqlite"

my_db <- src_sqlite(my_db_file, create = TRUE)

Currently, our new database is empty, it doesn’t contain any tables:

my_db

#> src: sqlite 3.19.3 [portal-database.sqlite]

#> tbls:

To add tables, we copy the existing data.frames into the database one by one:

copy_to(my_db, surveys)

copy_to(my_db, plots)

my_db

If you check the location of our database you’ll see that data is automatically being
written to disk. R and dplyr not only provide easy ways to query existing databases,

they also allows you to easily create your own databases from flat files!

Challenge

Add the remaining species table to the my_db database and run some of your queries

from earlier in the lesson to verify that you have faithfully recreated the mammals
database.

Note: In this example, we first loaded all of the data into the R session by reading the

three csv files. Because all the data has to flow through R, this is not suitable for very

large datasets.

It’s rare that a data analysis involves only a single table of data. Typically you have many tables

of data, and you must combine them to answer the questions that you’re interested in.

Collectively, multiple tables of data are called relational data because it is the relations, not just

the individual datasets, that are important.

Relations are always defined between a pair of tables. All other relations are built up from this

simple idea: the relations of three or more tables are always a property of the relations between

each pair. Sometimes both elements of a pair can be the same table! This is needed if, for

example, you have a table of people, and each person has a reference to their parents.

To work with relational data you need verbs that work with pairs of tables. There are three

families of verbs designed to work with relational data:

 Mutating joins, which add new variables to one data frame from matching observations in

another.

 Filtering joins, which filter observations from one data frame based on whether or not they

match an observation in the other table.

 Set operations, which treat observations as if they were set elements.

The most common place to find relational data is in a relational database management system

(or RDBMS), a term that encompasses almost all modern databases. If you’ve used a database

before, you’ve almost certainly used SQL. If so, you should find the concepts in this chapter

familiar, although their expression in dplyr is a little different. Generally, dplyr is a little easier to

use than SQL because dplyr is specialised to do data analysis: it makes common data analysis

operations easier, at the expense of making it more difficult to do other things that aren’t

commonly needed for data analysis.

13.1.1 Prerequisites

We will explore relational data from nycflights13 using the two-table verbs from dplyr.

library(tidyverse)
library(nycflights13)

13.2 nycflights13

We will use the nycflights13 package to learn about relational data. nycflights13
contains four tibbles that are related to the flights table that you used in data

transformation:
 airlines lets you look up the full carrier name from its abbreviated code:

 airlines
 #> # A tibble: 16 × 2
 #> carrier name
 #> <chr> <chr>

http://r4ds.had.co.nz/transform.html#transform
http://r4ds.had.co.nz/transform.html#transform

 #> 1 9E Endeavor Air Inc.
 #> 2 AA American Airlines Inc.
 #> 3 AS Alaska Airlines Inc.
 #> 4 B6 JetBlue Airways
 #> 5 DL Delta Air Lines Inc.
 #> 6 EV ExpressJet Airlines Inc.

#> # ... with 10 more rows
 airports gives information about each airport, identified by the faa airport code:

 airports
 #> # A tibble: 1,458 × 8
 #> faa name lat lon alt tz

dst
 #> <chr> <chr> <dbl> <dbl> <int> <dbl>

<chr>
 #> 1 04G Lansdowne Airport 41.1 -80.6 1044 -5

A
 #> 2 06A Moton Field Municipal Airport 32.5 -85.7 264 -6

A
 #> 3 06C Schaumburg Regional 42.0 -88.1 801 -6

A
 #> 4 06N Randall Airport 41.4 -74.4 523 -5

A
 #> 5 09J Jekyll Island Airport 31.1 -81.4 11 -5

A
 #> 6 0A9 Elizabethton Municipal Airport 36.4 -82.2 1593 -5

A
#> # ... with 1,452 more rows, and 1 more variables: tzone <chr>

 planes gives information about each plane, identified by its tailnum:

 planes
 #> # A tibble: 3,322 × 9
 #> tailnum year type manufacturer model

engines
 #> <chr> <int> <chr> <chr> <chr>

<int>
 #> 1 N10156 2004 Fixed wing multi engine EMBRAER EMB-145XR

2
 #> 2 N102UW 1998 Fixed wing multi engine AIRBUS INDUSTRIE A320-214

2
 #> 3 N103US 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214

2
 #> 4 N104UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214

2
 #> 5 N10575 2002 Fixed wing multi engine EMBRAER EMB-145LR

2
 #> 6 N105UW 1999 Fixed wing multi engine AIRBUS INDUSTRIE A320-214

2

 #> # ... with 3,316 more rows, and 3 more variables: seats <int>,
#> # speed <int>, engine <chr>

 weather gives the weather at each NYC airport for each hour:

 weather
 #> # A tibble: 26,130 × 15
 #> origin year month day hour temp dewp humid wind_dir

wind_speed
 #> <chr> <dbl> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl>

<dbl>
 #> 1 EWR 2013 1 1 0 37.0 21.9 54.0 230

10.4
 #> 2 EWR 2013 1 1 1 37.0 21.9 54.0 230

13.8
 #> 3 EWR 2013 1 1 2 37.9 21.9 52.1 230

12.7
 #> 4 EWR 2013 1 1 3 37.9 23.0 54.5 230

13.8
 #> 5 EWR 2013 1 1 4 37.9 24.1 57.0 240

15.0
 #> 6 EWR 2013 1 1 6 39.0 26.1 59.4 270

10.4
 #> # ... with 2.612e+04 more rows, and 5 more variables: wind_gust

<dbl>,
#> # precip <dbl>, pressure <dbl>, visib <dbl>, time_hour <dttm>
One way to show the relationships between the different tables is with a drawing:

This diagram is a little overwhelming, but it’s simple compared to some you’ll see in
the wild! The key to understanding diagrams like this is to remember each relation
always concerns a pair of tables. You don’t need to understand the whole thing; you
just need to understand the chain of relations between the tables that you are
interested in.

For nycflights13:

 flights connects to planes via a single variable, tailnum.

 flights connects to airlines through the carrier variable.

 flights connects to airports in two ways: via the origin and dest variables.

 flights connects to weather via origin (the location),

and year, month, day and hour (the time).

13.3 Keys

The variables used to connect each pair of tables are called keys. A key is a variable
(or set of variables) that uniquely identifies an observation. In simple cases, a single
variable is sufficient to identify an observation. For example, each plane is uniquely
identified by its tailnum. In other cases, multiple variables may be needed. For

example, to identify an observation in weather you need five

variables: year, month, day, hour, and origin.

There are two types of keys:

 A primary key uniquely identifies an observation in its own table. For
example, planes$tailnum is a primary key because it uniquely identifies each plane

in the planes table.
 A foreign key uniquely identifies an observation in another table. For example,

the flights$tailnumis a foreign key because it appears in the flights table where

it matches each flight to a unique plane.
A variable can be both a primary key and a foreign key. For example, origin is part

of the weatherprimary key, and is also a foreign key for the airport table.

Once you’ve identified the primary keys in your tables, it’s good practice to verify that
they do indeed uniquely identify each observation. One way to do that is
to count() the primary keys and look for entries where n is greater than one:

planes %>%
 count(tailnum) %>%
 filter(n > 1)
#> # A tibble: 0 × 2
#> # ... with 2 variables: tailnum <chr>, n <int>

weather %>%
 count(year, month, day, hour, origin) %>%
 filter(n > 1)
#> Source: local data frame [0 x 6]
#> Groups: year, month, day, hour [0]
#>
#> # ... with 6 variables: year <dbl>, month <dbl>, day <int>, hour
<int>,
#> # origin <chr>, n <int>
Sometimes a table doesn’t have an explicit primary key: each row is an observation,
but no combination of variables reliably identifies it. For example, what’s the primary
key in the flights table? You might think it would be the date plus the flight or tail

number, but neither of those are unique:
flights %>%
 count(year, month, day, flight) %>%
 filter(n > 1)
#> Source: local data frame [29,768 x 5]
#> Groups: year, month, day [365]
#>
#> year month day flight n
#> <int> <int> <int> <int> <int>

#> 1 2013 1 1 1 2
#> 2 2013 1 1 3 2
#> 3 2013 1 1 4 2
#> 4 2013 1 1 11 3
#> 5 2013 1 1 15 2
#> 6 2013 1 1 21 2
#> # ... with 2.976e+04 more rows

flights %>%
 count(year, month, day, tailnum) %>%
 filter(n > 1)
#> Source: local data frame [64,928 x 5]
#> Groups: year, month, day [365]
#>
#> year month day tailnum n
#> <int> <int> <int> <chr> <int>
#> 1 2013 1 1 N0EGMQ 2
#> 2 2013 1 1 N11189 2
#> 3 2013 1 1 N11536 2
#> 4 2013 1 1 N11544 3
#> 5 2013 1 1 N11551 2
#> 6 2013 1 1 N12540 2
#> # ... with 6.492e+04 more rows
When starting to work with this data, I had naively assumed that each flight number
would be only used once per day: that would make it much easier to communicate
problems with a specific flight. Unfortunately that is not the case! If a table lacks a
primary key, it’s sometimes useful to add one with mutate() and row_number().

That makes it easier to match observations if you’ve done some filtering and want to
check back in with the original data. This is called a surrogate key.
A primary key and the corresponding foreign key in another table form a relation.
Relations are typically one-to-many. For example, each flight has one plane, but each
plane has many flights. In other data, you’ll occasionally see a 1-to-1 relationship.
You can think of this as a special case of 1-to-many. You can model many-to-many
relations with a many-to-1 relation plus a 1-to-many relation. For example, in this data
there’s a many-to-many relationship between airlines and airports: each airline flies to
many airports; each airport hosts many airlines.

 Exercises

1. Add a surrogate key to flights.

2. Identify the keys in the following datasets

1. Lahman::Batting,

2. babynames::babynames

3. nasaweather::atmos

4. fueleconomy::vehicles

5. ggplot2::diamonds

(You might need to install some packages and read some documentation.)

3. Draw a diagram illustrating the connections between the Batting, Master,

and Salaries tables in the Lahman package. Draw another diagram that shows the

relationship between Master, Managers, AwardsManagers.

How would you characterise the relationship between the Batting, Pitching,

and Fieldingtables?

13.4 Mutating joins

The first tool we’ll look at for combining a pair of tables is the mutating join. A
mutating join allows you to combine variables from two tables. It first matches
observations by their keys, then copies across variables from one table to the other.

Like mutate(), the join functions add variables to the right, so if you have a lot of

variables already, the new variables won’t get printed out. For these examples, we’ll
make it easier to see what’s going on in the examples by creating a narrower dataset:
flights2 <- flights %>%
 select(year:day, hour, origin, dest, tailnum, carrier)
flights2
#> # A tibble: 336,776 × 8
#> year month day hour origin dest tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA
#> 2 2013 1 1 5 LGA IAH N24211 UA
#> 3 2013 1 1 5 JFK MIA N619AA AA
#> 4 2013 1 1 5 JFK BQN N804JB B6
#> 5 2013 1 1 6 LGA ATL N668DN DL
#> 6 2013 1 1 5 EWR ORD N39463 UA
#> # ... with 3.368e+05 more rows
(Remember, when you’re in RStudio, you can also use View() to avoid this problem.)

Imagine you want to add the full airline name to the flights2 data. You can combine

the airlines and flights2 data frames with left_join():

flights2 %>%
 select(-origin, -dest) %>%
 left_join(airlines, by = "carrier")
#> # A tibble: 336,776 × 7
#> year month day hour tailnum carrier name
#> <int> <int> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 N14228 UA United Air Lines Inc.
#> 2 2013 1 1 5 N24211 UA United Air Lines Inc.
#> 3 2013 1 1 5 N619AA AA American Airlines Inc.
#> 4 2013 1 1 5 N804JB B6 JetBlue Airways
#> 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.

#> 6 2013 1 1 5 N39463 UA United Air Lines Inc.
#> # ... with 3.368e+05 more rows
The result of joining airlines to flights2 is an additional variable: name. This is why I

call this type of join a mutating join. In this case, you could have got to the same
place using mutate() and R’s base subsetting:

flights2 %>%
 select(-origin, -dest) %>%
 mutate(name = airlines$name[match(carrier, airlines$carrier)])
#> # A tibble: 336,776 × 7
#> year month day hour tailnum carrier name
#> <int> <int> <int> <dbl> <chr> <chr> <chr>
#> 1 2013 1 1 5 N14228 UA United Air Lines Inc.
#> 2 2013 1 1 5 N24211 UA United Air Lines Inc.
#> 3 2013 1 1 5 N619AA AA American Airlines Inc.
#> 4 2013 1 1 5 N804JB B6 JetBlue Airways
#> 5 2013 1 1 6 N668DN DL Delta Air Lines Inc.
#> 6 2013 1 1 5 N39463 UA United Air Lines Inc.
#> # ... with 3.368e+05 more rows
But this is hard to generalise when you need to match multiple variables, and takes
close reading to figure out the overall intent.

The following sections explain, in detail, how mutating joins work. You’ll start by
learning a useful visual representation of joins. We’ll then use that to explain the four
mutating join functions: the inner join, and the three outer joins. When working with
real data, keys don’t always uniquely identify observations, so next we’ll talk about
what happens when there isn’t a unique match. Finally, you’ll learn how to tell dplyr
which variables are the keys for a given join.

13.4.1 Understanding joins

To help you learn how joins work, I’m going to use a visual representation:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 3, "x3"
)
y <- tribble(

 ~key, ~val_y,
 1, "y1",
 2, "y2",
 4, "y3"
)
The coloured column represents the “key” variable: these are used to match the rows
between the tables. The grey column represents the “value” column that is carried
along for the ride. In these examples I’ll show a single key variable, but the idea
generalises in a straightforward way to multiple keys and multiple values.

A join is a way of connecting each row in x to zero, one, or more rows in y. The

following diagram shows each potential match as an intersection of a pair of lines.

(If you look closely, you might notice that we’ve switched the order of the key and
value columns in x. This is to emphasise that joins match based on the key; the value

is just carried along for the ride.)
In an actual join, matches will be indicated with dots. The number of dots = the
number of matches = the number of rows in the output.

13.4.2 Inner join

The simplest type of join is the inner join. An inner join matches pairs of
observations whenever their keys are equal:

(To be precise, this is an inner equijoin because the keys are matched using the
equality operator. Since most joins are equijoins we usually drop that specification.)

The output of an inner join is a new data frame that contains the key, the x values,
and the y values. We use by to tell dplyr which variable is the key:

x %>%
 inner_join(y, by = "key")
#> # A tibble: 2 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
The most important property of an inner join is that unmatched rows are not included
in the result. This means that generally inner joins are usually not appropriate for use
in analysis because it’s too easy to lose observations.

13.4.3 Outer joins

An inner join keeps observations that appear in both tables. An outer join keeps
observations that appear in at least one of the tables. There are three types of outer
joins:

 A left join keeps all observations in x.

 A right join keeps all observations in y.

 A full join keeps all observations in x and y.

These joins work by adding an additional “virtual” observation to each table. This
observation has a key that always matches (if no other key matches), and a value
filled with NA.

Graphically, that looks like:

The most commonly used join is the left join: you use this whenever you look up
additional data from another table, because it preserves the original observations
even when there isn’t a match. The left join should be your default join: use it unless
you have a strong reason to prefer one of the others.

Another way to depict the different types of joins is with a Venn diagram:

However, this is not a great representation. It might jog your memory about which join
preserves the observations in which table, but it suffers from a major limitation: a

Venn diagram can’t show what happens when keys don’t uniquely identify an
observation.

13.4.4 Duplicate keys

So far all the diagrams have assumed that the keys are unique. But that’s not always
the case. This section explains what happens when the keys are not unique. There
are two possibilities:

1. One table has duplicate keys. This is useful when you want to add in additional
information as there is typically a one-to-many relationship.

Note that I’ve put the key column in a slightly different position in the output. This
reflects that the key is a primary key in y and a foreign key in x.

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 2, "x3",
 1, "x4"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2"
)
left_join(x, y, by = "key")
#> # A tibble: 4 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 2 x3 y2
#> 4 1 x4 y1

2. Both tables have duplicate keys. This is usually an error because in neither table do
the keys uniquely identify an observation. When you join duplicated keys, you get all
possible combinations, the Cartesian product:

x <- tribble(
 ~key, ~val_x,
 1, "x1",
 2, "x2",
 2, "x3",
 3, "x4"
)
y <- tribble(
 ~key, ~val_y,
 1, "y1",
 2, "y2",
 2, "y3",
 3, "y4"
)
left_join(x, y, by = "key")
#> # A tibble: 6 × 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 y1
#> 2 2 x2 y2
#> 3 2 x2 y3
#> 4 2 x3 y2
#> 5 2 x3 y3
#> 6 3 x4 y4

13.4.5 Defining the key columns

So far, the pairs of tables have always been joined by a single variable, and that
variable has the same name in both tables. That constraint was encoded by by =
"key". You can use other values for by to connect the tables in other ways:

 The default, by = NULL, uses all variables that appear in both tables, the so

called natural join. For example, the flights and weather tables match on their
common variables: year, month, day, hour and origin.

 flights2 %>%
 left_join(weather)

 #> Joining, by = c("year", "month", "day", "hour", "origin")
 #> # A tibble: 336,776 × 18
 #> year month day hour origin dest tailnum carrier temp dewp

humid
 #> <dbl> <dbl> <int> <dbl> <chr> <chr> <chr> <chr> <dbl> <dbl>

<dbl>
 #> 1 2013 1 1 5 EWR IAH N14228 UA NA NA

NA
 #> 2 2013 1 1 5 LGA IAH N24211 UA NA NA

NA
 #> 3 2013 1 1 5 JFK MIA N619AA AA NA NA

NA
 #> 4 2013 1 1 5 JFK BQN N804JB B6 NA NA

NA
 #> 5 2013 1 1 6 LGA ATL N668DN DL 39.9 26.1

57.3
 #> 6 2013 1 1 5 EWR ORD N39463 UA NA NA

NA
 #> # ... with 3.368e+05 more rows, and 7 more variables: wind_dir

<dbl>,
 #> # wind_speed <dbl>, wind_gust <dbl>, precip <dbl>, pressure

<dbl>,
#> # visib <dbl>, time_hour <dttm>

 A character vector, by = "x". This is like a natural join, but uses only some of the

common variables. For example, flights and planes have year variables, but they

mean different things so we only want to join by tailnum.

 flights2 %>%
 left_join(planes, by = "tailnum")
 #> # A tibble: 336,776 × 16
 #> year.x month day hour origin dest tailnum carrier year.y
 #> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr> <int>
 #> 1 2013 1 1 5 EWR IAH N14228 UA 1999
 #> 2 2013 1 1 5 LGA IAH N24211 UA 1998
 #> 3 2013 1 1 5 JFK MIA N619AA AA 1990
 #> 4 2013 1 1 5 JFK BQN N804JB B6 2012
 #> 5 2013 1 1 6 LGA ATL N668DN DL 1991
 #> 6 2013 1 1 5 EWR ORD N39463 UA 2012
 #> # ... with 3.368e+05 more rows, and 7 more variables: type <chr>,
 #> # manufacturer <chr>, model <chr>, engines <int>, seats <int>,

#> # speed <int>, engine <chr>
Note that the year variables (which appear in both input data frames, but are not

constrained to be equal) are disambiguated in the output with a suffix.
 A named character vector: by = c("a" = "b"). This will match variable a in

table x to variable b in table y. The variables from x will be used in the output.

For example, if we want to draw a map we need to combine the flights data with the
airports data which contains the location (lat and long) of each airport. Each flight

has an origin and destination airport, so we need to specify which one we want to

join to:
flights2 %>%
 left_join(airports, c("dest" = "faa"))
#> # A tibble: 336,776 × 15
#> year month day hour origin dest tailnum carrier
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA
#> 2 2013 1 1 5 LGA IAH N24211 UA
#> 3 2013 1 1 5 JFK MIA N619AA AA
#> 4 2013 1 1 5 JFK BQN N804JB B6
#> 5 2013 1 1 6 LGA ATL N668DN DL
#> 6 2013 1 1 5 EWR ORD N39463 UA
#> # ... with 3.368e+05 more rows, and 7 more variables: name <chr>,
#> # lat <dbl>, lon <dbl>, alt <int>, tz <dbl>, dst <chr>, tzone
<chr>

flights2 %>%
 left_join(airports, c("origin" = "faa"))
#> # A tibble: 336,776 × 15
#> year month day hour origin dest tailnum carrier
name
#> <int> <int> <int> <dbl> <chr> <chr> <chr> <chr>
<chr>
#> 1 2013 1 1 5 EWR IAH N14228 UA Newark
Liberty Intl
#> 2 2013 1 1 5 LGA IAH N24211 UA La
Guardia
#> 3 2013 1 1 5 JFK MIA N619AA AA John F
Kennedy Intl
#> 4 2013 1 1 5 JFK BQN N804JB B6 John F
Kennedy Intl
#> 5 2013 1 1 6 LGA ATL N668DN DL La
Guardia
#> 6 2013 1 1 5 EWR ORD N39463 UA Newark
Liberty Intl
#> # ... with 3.368e+05 more rows, and 6 more variables: lat <dbl>,
#> # lon <dbl>, alt <int>, tz <dbl>, dst <chr>, tzone <chr>

13.4.6 Exercises

1. Compute the average delay by destination, then join on the airports data frame so

you can show the spatial distribution of delays. Here’s an easy way to draw a map of
the United States:

2. airports %>%
3. semi_join(flights, c("faa" = "dest")) %>%

4. ggplot(aes(lon, lat)) +
5. borders("state") +
6. geom_point() +

 coord_quickmap()
(Don’t worry if you don’t understand what semi_join() does — you’ll learn about it

next.)
You might want to use the size or colour of the points to display the average delay

for each airport.
7. Add the location of the origin and destination (i.e. the lat and lon) to flights.

8. Is there a relationship between the age of a plane and its delays?

9. What weather conditions make it more likely to see a delay?

10. What happened on June 13 2013? Display the spatial pattern of delays, and then use
Google to cross-reference with the weather.

13.4.7 Other implementations

base::merge() can perform all four types of mutating join:

dplyr merge

inner_join(x, y) merge(x, y)

left_join(x, y) merge(x, y, all.x = TRUE)

right_join(x, y) merge(x, y, all.y = TRUE),

full_join(x, y) merge(x, y, all.x = TRUE, all.y = TRUE)

The advantages of the specific dplyr verbs is that they more clearly convey the intent
of your code: the difference between the joins is really important but concealed in the
arguments of merge(). dplyr’s joins are considerably faster and don’t mess with the

order of the rows.
SQL is the inspiration for dplyr’s conventions, so the translation is straightforward:

dplyr SQL

inner_join(x, y, by = "z") SELECT * FROM x INNER JOIN y USING (z)

left_join(x, y, by = "z") SELECT * FROM x LEFT OUTER JOIN y USING (z)

right_join(x, y, by = "z") SELECT * FROM x RIGHT OUTER JOIN y USING (z)

full_join(x, y, by = "z") SELECT * FROM x FULL OUTER JOIN y USING (z)

Note that “INNER” and “OUTER” are optional, and often omitted.

Joining different variables between the tables, e.g. inner_join(x, y, by = c("a"
= "b")) uses a slightly different syntax in SQL: SELECT * FROM x INNER JOIN y
ON x.a = y.b. As this syntax suggests, SQL supports a wider range of join types

than dplyr because you can connect the tables using constraints other than equality
(sometimes called non-equijoins).

13.5 Filtering joins

Filtering joins match observations in the same way as mutating joins, but affect the
observations, not the variables. There are two types:

 semi_join(x, y) keeps all observations in x that have a match in y.

 anti_join(x, y) drops all observations in x that have a match in y.

Semi-joins are useful for matching filtered summary tables back to the original rows.
For example, imagine you’ve found the top ten most popular destinations:

top_dest <- flights %>%
 count(dest, sort = TRUE) %>%
 head(10)
top_dest
#> # A tibble: 10 × 2
#> dest n
#> <chr> <int>
#> 1 ORD 17283
#> 2 ATL 17215
#> 3 LAX 16174
#> 4 BOS 15508
#> 5 MCO 14082
#> 6 CLT 14064
#> # ... with 4 more rows
Now you want to find each flight that went to one of those destinations. You could
construct a filter yourself:

flights %>%
 filter(dest %in% top_dest$dest)
#> # A tibble: 141,145 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 542 540 2 923
#> 2 2013 1 1 554 600 -6 812
#> 3 2013 1 1 554 558 -4 740
#> 4 2013 1 1 555 600 -5 913
#> 5 2013 1 1 557 600 -3 838
#> 6 2013 1 1 558 600 -2 753
#> # ... with 1.411e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight
<int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,

#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
But it’s difficult to extend that approach to multiple variab les. For example, imagine
that you’d found the 10 days with highest average delays. How would you construct
the filter statement that used year, month, and day to match it back to flights?

Instead you can use a semi-join, which connects the two tables like a mutating join,
but instead of adding new columns, only keeps the rows in x that have a match in y:

flights %>%
 semi_join(top_dest)
#> Joining, by = "dest"
#> # A tibble: 141,145 × 19
#> year month day dep_time sched_dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 554 558 -4 740
#> 2 2013 1 1 558 600 -2 753
#> 3 2013 1 1 608 600 8 807
#> 4 2013 1 1 629 630 -1 824
#> 5 2013 1 1 656 700 -4 854
#> 6 2013 1 1 709 700 9 852
#> # ... with 1.411e+05 more rows, and 12 more variables:
#> # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight
<int>,
#> # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
#> # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
Graphically, a semi-join looks like this:

Only the existence of a match is important; it doesn’t matter which observation is
matched. This means that filtering joins never duplicate rows like mutating joins do:

The inverse of a semi-join is an anti-join. An anti-join keeps the rows that don’t have a
match:

Anti-joins are useful for diagnosing join mismatches. For example, when
connecting flights and planes, you might be interested to know that there are

many flights that don’t have a match in planes:

flights %>%
 anti_join(planes, by = "tailnum") %>%
 count(tailnum, sort = TRUE)
#> # A tibble: 722 × 2
#> tailnum n
#> <chr> <int>
#> 1 <NA> 2512
#> 2 N725MQ 575
#> 3 N722MQ 513
#> 4 N723MQ 507
#> 5 N713MQ 483
#> 6 N735MQ 396
#> # ... with 716 more rows

13.5.1 Exercises

1. What does it mean for a flight to have a missing tailnum? What do the tail numbers

that don’t have a matching record in planes have in common? (Hint: one variable

explains ~90% of the problems.)
2. Filter flights to only show flights with planes that have flown at least 100 flights.

3. Combine fueleconomy::vehicles and fueleconomy::common to find only the

records for the most common models.
4. Find the 48 hours (over the course of the whole year) that have the worst delays.

Cross-reference it with the weather data. Can you see any patterns?

5. What does anti_join(flights, airports, by = c("dest" = "faa")) tell you?

What does anti_join(airports, flights, by = c("faa" = "dest")) tell you?

6. You might expect that there’s an implicit relationship between plane and airline,
because each plane is flown by a single airline. Confirm or reject this hypothesis
using the tools you’ve learned above.

13.6 Join problems

The data you’ve been working with in this chapter has been cleaned up so that you’ll
have as few problems as possible. Your own data is unlikely to be so nice, so there

are a few things that you should do with your own data to make your joins go
smoothly.

1. Start by identifying the variables that form the primary key in each table. You should
usually do this based on your understanding of the data, not empirically by looking for
a combination of variables that give a unique identifier. If you just look for variables
without thinking about what they mean, you might get (un)lucky and find a
combination that’s unique in your current data but the relationship might not be true in
general.

For example, the altitude and longitude uniquely identify each airport, but they are not
good identifiers!

airports %>% count(alt, lon) %>% filter(n > 1)
#> Source: local data frame [0 x 3]
#> Groups: alt [0]
#>
#> # ... with 3 variables: alt <int>, lon <dbl>, n <int>

2. Check that none of the variables in the primary key are missing. If a value is missing
then it can’t identify an observation!

3. Check that your foreign keys match primary keys in another table. The best way to do
this is with an anti_join(). It’s common for keys not to match because of data entry

errors. Fixing these is often a lot of work.
If you do have missing keys, you’ll need to be thoughtful about your use of inner
vs. outer joins, carefully considering whether or not you want to drop rows that don’t
have a match.

Be aware that simply checking the number of rows before and after the join is not
sufficient to ensure that your join has gone smoothly. If you have an inner join with
duplicate keys in both tables, you might get unlucky as the number of dropped rows
might exactly equal the number of duplicated rows!

13.7 Set operations

The final type of two-table verb are the set operations. Generally, I use these the
least frequently, but they are occasionally useful when you want to break a single
complex filter into simpler pieces. All these operations work with a complete row,
comparing the values of every variable. These expect the x and y inputs to have the
same variables, and treat the observations like sets:

 intersect(x, y): return only observations in both x and y.

 union(x, y): return unique observations in x and y.

 setdiff(x, y): return observations in x, but not in y.

Given this simple data:

df1 <- tribble(

 ~x, ~y,
 1, 1,
 2, 1
)
df2 <- tribble(
 ~x, ~y,
 1, 1,
 1, 2
)
The four possibilities are:

intersect(df1, df2)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 1

Note that we get 3 rows, not 4
union(df1, df2)
#> # A tibble: 3 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 2
#> 2 2 1
#> 3 1 1

setdiff(df1, df2)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 2 1

setdiff(df2, df1)
#> # A tibble: 1 × 2
#> x y
#> <dbl> <dbl>
#> 1 1 2
R-Programming

A variable provides us with named storage that our programs can

manipulate. A variable in R can store an atomic vector, group of atomic

vectors or a combination of many Robjects. A valid variable name consists

of letters, numbers and the dot or underline characters. The variable name

starts with a letter or the dot not followed by a number.

Variable
Name

Validity Reason

var_name2. valid Has letters, numbers, dot and
underscore

var_name% Invalid Has the character '%'. Only dot(.)

and underscore allowed.

2var_name invalid Starts with a number

.var_name ,

var.name

valid Can start with a dot(.) but the

dot(.)should not be followed by a
number.

.2var_name invalid The starting dot is followed by a

number making it invalid.

_var_name invalid Starts with _ which is not valid

Variable Assignment

The variables can be assigned values using leftward, rightward and equal to

operator. The values of the variables can be printed

using print() or cat()function. The cat() function combines multiple items

into a continuous print output.

Assignment using equal operator.

var.1 = c(0,1,2,3)

Assignment using leftward operator.

var.2 <- c("learn","R")

Assignment using rightward operator.

c(TRUE,1) -> var.3

print(var.1)

cat ("var.1 is ", var.1 ,"\n")

cat ("var.2 is ", var.2 ,"\n")

cat ("var.3 is ", var.3 ,"\n")

When we execute the above code, it produces the following result −

[1] 0 1 2 3
var.1 is 0 1 2 3
var.2 is learn R
var.3 is 1 1

Note − The vector c(TRUE,1) has a mix of logical and numeric class. So

logical class is coerced to numeric class making TRUE as 1.

Data Type of a Variable

In R, a variable itself is not declared of any data type, rather it gets the

data type of the R - object assigned to it. So R is called a dynamically typed

language, which means that we can change a variable’s data type of the

same variable again and again when using it in a program.

var_x <- "Hello"

cat("The class of var_x is ",class(var_x),"\n")

var_x <- 34.5

cat(" Now the class of var_x is ",class(var_x),"\n")

var_x <- 27L

cat(" Next the class of var_x becomes ",class(var_x),"\n")

When we execute the above code, it produces the following result −

The class of var_x is character
 Now the class of var_x is numeric
 Next the class of var_x becomes integer

Finding Variables

To know all the variables currently available in the workspace we use

the ls()function. Also the ls() function can use patterns to match the

variable names.

print(ls())

When we execute the above code, it produces the following result −

[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"

Note − It is a sample output depending on what variables are declared in

your environment.

The ls() function can use patterns to match the variable names.

List the variables starting with the pattern "var".
print(ls(pattern = "var"))

Executing the program....
$Rscript main.r
character(0)

When we execute the above code, it produces the following result −

[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"

Note − It is a sample output depending on what variables are declared in

your environment.

The ls() function can use patterns to match the variable names.

List the variables starting with the pattern "var".

print(ls(pattern = "var"))

When we execute the above code, it produces the following result −

[1] "my var" "my_new_var" "my_var" "var.1"
[5] "var.2" "var.3" "var.name" "var_name2."
[9] "var_x" "varname"

The variables starting with dot(.) are hidden, they can be listed using

"all.names = TRUE" argument to ls() function.

print(ls(all.name = TRUE))

When we execute the above code, it produces the following result −

[1] ".cars" ".Random.seed" ".var_name" ".varname"
".varname2"
[6] "my var" "my_new_var" "my_var" "var.1"
"var.2"
[11]"var.3" "var.name" "var_name2." "var_x"

Deleting Variables

Variables can be deleted by using the rm() function. Below we delete the

variable var.3. On printing the value of the variable error is thrown.

rm(var.3)

print(var.3)

When we execute the above code, it produces the following result −

[1] "var.3"
Error in print(var.3) : object 'var.3' not found

All the variables can be deleted by using the rm() and ls() function

together.

rm(list = ls())

print(ls())

When we execute the above code, it produces the following result −

character(0)

An operator is a symbol that tells the compiler to perform specific

mathematical or logical manipulations. R language is rich in built-in

operators and provides following types of operators.

Types of Operators

We have the following types of operators in R programming −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Assignment Operators

 Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language.

The operators act on each element of the vector.

 v <- c(2,5.5,6)
 t <- c(8, 3, 4)
 print(v+t)

Executing the program....
$Rscript main.r
[1] 10.0 8.5 10.0

Operator Description Example

+
Adds two

vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v+t)

it produces the following result −

[1] 10.0 8.5 10.0

−

Subtracts
second

vector from
the first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v-t)

it produces the following result −

[1] -6.0 2.5 2.0

*
Multiplies

both vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v*t)

it produces the following result −

[1] 16.0 16.5 24.0

/

Divide the

first vector
with the

second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v/t)

When we execute the above

code, it produces the following

result −

[1] 0.250000 1.833333 1.500000

%%
Give the
remainder

of the first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

vector with
the second

print(v%%t)

it produces the following result −

[1] 2.0 2.5 2.0

%/%

The result of
division of

first vector
with second

(quotient)

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%/%t)

it produces the following result −

[1] 0 1 1

^

The first
vector

raised to the

exponent of
second

vector

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v^t)

it produces the following result −

[1] 256.000 166.375 1296.000

Relational Operators

Following table shows the relational operators supported by R language.

Each element of the first vector is compared with the corresponding

element of the second vector. The result of comparison is a Boolean value.

Operator Description Example

>

Checks if

each element
of the first

vector is

greater than
the

corresponding
element of

the second
vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>t)

it produces the following result

−

[1] FALSE TRUE FALSE FALSE

<

Checks if

each element
of the first

vector is less

than the
corresponding

element of
the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v < t)

it produces the following result

−

[1] TRUE FALSE TRUE FALSE

==

Checks if
each element

of the first
vector is

equal to the

corresponding
element of

the second
vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v == t)

it produces the following result

−

[1] FALSE FALSE FALSE TRUE

<=

Checks if
each element

of the first
vector is less

than or equal
to the

corresponding
element of

the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v<=t)

it produces the following result

−

[1] TRUE FALSE TRUE TRUE

>=

Checks if
each element

of the first
vector is

greater than
or equal to

the
corresponding

element of
the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>=t)

it produces the following result

−

[1] FALSE TRUE FALSE TRUE

!=

Checks if
each element

of the first
vector is

unequal to
the

corresponding

element of
the second

vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v!=t)

it produces the following result

−

[1] TRUE TRUE TRUE FALSE

Logical Operators

Following table shows the logical operators supported by R language. It is

applicable only to vectors of type logical, numeric or complex. All numbers

greater than 1 are considered as logical value TRUE.

Each element of the first vector is compared with the corresponding

element of the second vector. The result of comparison is a Boolean value.

Operator Description Example

&

It is called

Element-wise
Logical AND

operator. It
combines

each element
of the first

vector with
the

corresponding
element of

the second

vector and
gives a

output TRUE
if both the

elements are
TRUE.

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

it produces the following result

−

[1] TRUE TRUE FALSE TRUE

|

It is called

Element-wise
Logical OR

v <- c(3,0,TRUE,2+2i)

operator. It
combines

each element
of the first

vector with
the

corresponding

element of
the second

vector and
gives a

output TRUE
if one the

elements is
TRUE.

t <- c(4,0,FALSE,2+3i)

print(v|t)

it produces the following result

−

[1] TRUE FALSE TRUE TRUE

!

It is called

Logical NOT
operator.

Takes each
element of

the vector

and gives the
opposite

logical value.

v <- c(3,0,TRUE,2+2i)

print(!v)

it produces the following result

−

[1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the

vectors and give a vector of single element as output.

Operator Description Example

&&

Called
Logical AND

operator.
Takes first

element of
both the

vectors and

gives the
TRUE only if

both are
TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(1,3,TRUE,2+3i)

print(v&&t)

it produces the following result −

[1] TRUE

||

Called
Logical OR

operator.
Takes first

element of
both the

vectors and

gives the
TRUE if one

of them is
TRUE.

v <- c(0,0,TRUE,2+2i)

t <- c(0,3,TRUE,2+3i)

print(v||t)

it produces the following result −

[1] FALSE

Assignment Operators

These operators are used to assign values to vectors.

Operator Description Example

<−

or

=

or

<<−

Called Left

Assignment

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

print(v3)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i
[1] 3+0i 1+0i 1+0i 2+3i
[1] 3+0i 1+0i 1+0i 2+3i

->

or

->>

Called Right
Assignment

c(3,1,TRUE,2+3i) -> v1

c(3,1,TRUE,2+3i) ->> v2

print(v1)

print(v2)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general

mathematical or logical computation.

Operator Description Example

:

Colon
operator. It

creates the
series of

numbers in
sequence

for a vector.

v <- 2:8

print(v)

it produces the following result −

[1] 2 3 4 5 6 7 8

%in%

This
operator is

used to
identify if an

element
belongs to a

vector.

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

it produces the following result −

[1] TRUE
[1] FALSE

%*%

This

operator is
used to

multiply a
matrix with

its
transpose.

M = matrix(c(2,6,5,1,10,4),
nrow = 2,ncol = 3,byrow = TRUE)

t = M %*% t(M)

print(t)

it produces the following result −

 [,1] [,2]
[1,] 65 82
[2,] 82 117

Decision making structures require the programmer to specify one or more

conditions to be evaluated or tested by the program, along with a

statement or statements to be executed if the condition is determined to

be true, and optionally, other statements to be executed if the condition is

determined to be false.

Following is the general form of a typical decision making structure found in

most of the programming languages −

R provides the following types of decision making statements. Click the

following links to check their detail.

An if statement consists of a Boolean expression followed by one or more

statements.

Syntax

The basic syntax for creating an if statement in R is −

if(boolean_expression) {
 // statement(s) will execute if the boolean expression is true.
}

If the Boolean expression evaluates to be true, then the block of code

inside the if statement will be executed. If Boolean expression evaluates to

be false, then the first set of code after the end of the if statement (after

the closing curly brace) will be executed.

Flow Diagram

Example

x <- 30L

if(is.integer(x)) {

 print("X is an Integer")

}

When the above code is compiled and executed, it produces the following

result −

[1] "X is an Integer"

x <- c("what","is","truth")

if("Truth" %in% x) {

 print("Truth is found")

} else {

 print("Truth is not found")

}

When the above code is compiled and executed, it produces the following

result −

[1] "Truth is not found"

Here "Truth" and "truth" are two different strings.

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement,

which is very useful to test various conditions using single if...else if

statement.

When using if, else if, else statements there are few points to keep in

mind.

 An if can have zero or one else and it must come after any else if's.

 An if can have zero to many else if's and they must come before the

else.

 Once an else if succeeds, none of the remaining else if's or else's

will be tested.

Syntax

The basic syntax for creating an if...else if...else statement in R is −

if(boolean_expression 1) {
 // Executes when the boolean expression 1 is true.
} else if(boolean_expression 2) {
 // Executes when the boolean expression 2 is true.
} else if(boolean_expression 3) {
 // Executes when the boolean expression 3 is true.
} else {
 // executes when none of the above condition is true.
}

Example

x <- c("what","is","truth")

if("Truth" %in% x) {

 print("Truth is found the first time")

} else if ("truth" %in% x) {

 print("truth is found the second time")

} else {

 print("No truth found")

}

When the above code is compiled and executed, it produces the following

result −

[1] "truth is found the second time"

A switch statement allows a variable to be tested for equality against a list

of values. Each value is called a case, and the variable being switched on is

checked for each case.

Syntax

The basic syntax for creating a switch statement in R is −

switch(expression, case1, case2, case3....)

The following rules apply to a switch statement −

 If the value of expression is not a character string it is coerced to

integer.

 You can have any number of case statements within a switch. Each

case is followed by the value to be compared to and a colon.

 If the value of the integer is between 1 and nargs()−1 (The max

number of arguments)then the corresponding element of case

condition is evaluated and the result returned.

 If expression evaluates to a character string then that string is

matched (exactly) to the names of the elements.

 If there is more than one match, the first matching element is

returned.

 No Default argument is available.

 In the case of no match, if there is a unnamed element of ... its value

is returned. (If there is more than one such argument an error is

returned.)

Flow Diagram

Example

x <- switch(

 3,

 "first",

 "second",

 "third",

 "fourth"

)

print(x)

When the above code is compiled and executed, it produces the following

result −

[1] "third"

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially. The

first statement in a function is executed first, followed by the second, and

so on.

Programming languages provide various control structures that allow for

more complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times and the following is the general form of a loop statement in

most of the programming languages −

R programming language provides the following kinds of loop to handle

looping requirements. Click the following links to check their detail.

The Repeat loop executes the same code again and again until a stop

condition is met.

Syntax

The basic syntax for creating a repeat loop in R is −

repeat {
 commands
 if(condition) {
 break
 }
}

Flow Diagram

Data Type:

Logical

 Example TRUE , FALSE
v <- TRUE
print(class(v))
it produces the following result:
[1] "logical"

Numeric:

Example 12.3, 5, 999
v <- 23.5
print(class(v))
it produces the following result:
[1] "numeric"
Integer:

Example 2L, 34L, 0L
v <- 2L
print(class(v))
it produces the following result:
[1] "integer"
Complex:

Example 3 + 2i
v <- 2+5i
print(class(v))

it produces the following result:
[1] "complex"
Character

 Example 'a' , '"good", "TRUE", '23.4'
v <- "TRUE"
print(class(v))
it produces the following result:
[1] "character"
Raw:

"Hello" is stored as 48 65 6c 6c 6f
v <- charToRaw("Hello")
print(class(v))
it produces the following result:
[1] "raw"

In R programming, the very basic data types are the R-objects called vectors

which hold

elements of different classes as shown above. Please note in R the number
of classes is

not confined to only the above six types. For example, we can use many
atomic vectors

and create an array whose class will become array

Vectors

When you want to create vector with more than one element, you should
use c() function

which means to combine the elements into a vector.

Create a vector.
apple <- c('red','green',"yellow")
print(apple)
Get the class of the vector.
print(class(apple))
When we execute the above code, it produces the following result:
[1] "red" "green" "yellow"
[1] "character"

Lists

A list is an R-object which can contain many different types of elements

inside it like
vectors, functions and even another list inside it.
 # Create a list.
list1 <- list(c(2,5,3),21.3,sin)
Print the list.
print(list1)
When we execute the above code, it produces the following result:

[[1]]
[1] 2 5 3
[[2]]
[1] 21.3
[[3]]
function (x) .Primitive("sin")
Matrices

A matrix is a two-dimensional rectangular data set. It can be created using a
vector input

to the matrix function.
Create a matrix.
M = matrix(c('a','a','b','c','b','a'), nrow=2,ncol=3,byrow = TRUE)
print(M)
When we execute the above code, it produces the following result:
[,1] [,2] [,3]

R Programming

10
[1,] "a" "a" "b"
[2,] "c" "b" "a"
Arrays

While matrices are confined to two dimensions, arrays can be of any number

of
dimensions. The array function takes a dim attribute which creates the

required number
of dimension. In the below example we create an array with two elements

which are 3x3
matrices each.
Create an array.
a <- array(c('green','yellow'),dim=c(3,3,2))
print(a)
When we execute the above code, it produces the following result:
, , 1
[,1] [,2] [,3]
[1,] "green" "yellow" "green"
[2,] "yellow" "green" "yellow"

[3,] "green" "yellow" "green"
, , 2
[,1] [,2] [,3]
[1,] "yellow" "green" "yellow"
[2,] "green" "yellow" "green"
[3,] "yellow" "green" "yellow"
Factors

Factors are the r-objects which are created using a vector. It stores the
vector along with

the distinct values of the elements in the vector as labels. The labels are
always character

irrespective of whether it is numeric or character or Boolean etc. in the input
vector. They

are useful in statistical modeling.
Factors are created using the factor() function.The nlevels functions gives the

count of

levels.
Create a vector.
apple_colors <- c('green','green','yellow','red','red','red','green')
R Programming

11
Create a factor object.
factor_apple <- factor(apple_colors)
Print the factor.
print(factor_apple)
print(nlevels(factor_apple))
When we execute the above code, it produces the following result:
[1] green green yellow red red red yellow green
Levels: green red yellow
applying the nlevels function we can know the number of distinct
values
[1] 3
Data Frames

Data frames are tabular data objects. Unlike a matrix in data frame each
column can

contain different modes of data. The first column can be numeric while the
second column

can be character and third column can be logical. It is a list of vectors of
equal length.
Data Frames are created using the data.frame() function.
Create the data frame.
BMI <- data.frame(
gender = c("Male", "Male","Female"),
height = c(152, 171.5, 165),
weight = c(81,93, 78),

Age =c(42,38,26)
)
print(BMI)
When we execute the above code, it produces the following result:
gender height weight Age
1 Male 152.0 81 42
2 Male 171.5 93 38
3 Female 165.0 78 26

http://r4ds.had.co.nz/strings.html
http://r4ds.had.co.nz/strings.html

