INSTITUTEOFAERONAUTICALENGINEERING

(Autonomous)
Dundigal, Hyderabad-500043

COMPUTER SCIENCE AND ENGINEERING

TUTORIAL QUESTION BANK

Course Title	FUNDAMENTALS OF ELECTRICAL ENGINEERING				
Course Code	AEEB01				
Programme	B.Tech				
Semester	I CS				
Course Type	Foundation				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Chief Coordinator	Mr. A Naresh Kumar, Assistant Professor				
Course Faculty	Dr. M Laxmidevi Ramanaiah, Associate Professor Mr. A Nareshkumar, Assistant Professor Mr. K Lingaswamy, Assistant Professor Mr. A Srikanth, Assistant Professor Mr. T Mahesh, Assistant Professor Mr. N Shivaprasad, Assistant Professor				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Understand the basic electrical circuits and circuit laws to study behavior of electrical networks.
II	Use different network reduction techniques to study characteristics of electrical networks.
III	Analyze series and parallel AC circuits using complex notation.
IV	State and use DC circuit theorems to determine unknown currents and voltages.

COURSE OUTCOMES (COs):

CO 1	Understand the basic concepts of electricity, electrical circuits elements, application's of Kirchhoff laws to complex circuits.
CO 2	Explore to the working of mesh analysis and nodal analysis, inspection method, super mesh, super node analysis.
CO 3	Summarize various alternating quantities such as instantaneous, peak, RMS, average, form factor and peak factor for different periodic wave forms.

CO 4	Discuss the basic theory of real, reactive, apparent power and complex power, power factor.
CO 5	Explain the concepts of graph, tree, incidence matrix, basic cut set and basic tie set matrices for planar networks, duality and dual networks.

COURSE LEARNING OUTCOMES (CLOs):

AEEB01.01	Define the various nomenclature used to study the DC electrical circuits.
AEEB01.02	Understand the concept of electrical circuit and classify electrical circuits elements.
AEEB01.03	Analyze the circuits using Kirchhoff's current and Kirchhoff's voltage law.
AEEB01.04	Use of series-parallel concepts for simplifying circuits.
AEEB01.05	Describe source transformation technique to determine equivalent resistance and source current.
AEEB01.06	Apply network reduction techniques to calculate unknown quantities associated with electrical circuits.
AEEB01.07	Summarize the procedure of mesh analysis and nodal analysis, inspection method, super mesh, super node analysis.
AEEB01.08	Apply the concept of network theorems.
AEEB01.09	Summarize the procedure of thevenin's and norton's theorems to reduce complex network into simple equivalent network.
AEEB01.10	List out various alternating quantities such as Sinusoidal AC voltage, average and RMS values, form and peak factor, and understand concept of three phase alternating quantity.
AEEB01.11	Interpret the alternating quantities with its instantaneous, average and root mean square values.
AEEB01.12	Illustrate the concept of impedance, reactance, admittance, susceptance and conductance.
AEEB01.13	Understand the phase and phase difference and j notation.
AEEB01.14	Discuss representation of rectangular and polar forms.
AEEB01.15	Analyze the steady state behavior of R, L and C elements with sinusoidal excitation.
AEEB01.16	Analyze the steady state behavior of series and parallel RL and RC circuits with sinusoidal excitation.
AEEB01.17	Analyze the steady state behavior of series and parallel RLC circuits with sinusoidal excitation.
AEEB01.18	Illustrate the concept of real, reactive, apparent power and complex power.
AEEB01.19	Interpret the power factor in single phase AC circuits.
AEEB01.20	Discuss the various nomenclatures related with network topology. AEEB01.21Formulate incidence, tie-set and cut-set matrix which are used to solve the behavior of complex electrical circuits.
AEEB01.22	Understand the concepts of duality and importance of dual networks.

MODULE- I

INTRODUCTION TO ELECTRICAL CIRCUITS

Part - A (Short Answer Questions)

11	Calculate the equivalent capacitance of the combination shown figure below across X and Y .	Understand	CO 1	AEEB01.02
12	A capacitor having capacitance of $5 \mu \mathrm{~F}$ is charged to a voltage of 10 V . Calculate the stored energy in joules.	Remember	CO 1	AEEB01.01
13	Determine the current through 800 ohm resistor in the network shown in figure.	Understand	CO 1	AEEB01.02
14	Calculate power across each element in the given circuit.	Understand	CO 1	AEEB01.02
15	Calculate equivalent inductance in the given circuit.	Understand	CO 1	AEEB01.02
MODULE-II				
ANALYSIS OF ELECTRICAL CIRCUITS				
Part - A (Short Answer Questions)				
1	Write the expressions of star to delta transformation.	Remember	CO 2	AEEB01.05
2	Write the expressions of delta to star transformation.	Remember	CO 2	AEEB01.05
3	Define super mesh.	Remember	CO 2	AEEB01.06
4	Give the condition for super node.	Understand	CO 2	AEEB01.07
5	Write the limitations of mesh analysis.	Remember	CO 2	AEEB01.07
6	Write the limitations of nodal analysis.	Remember	CO 2	AEEB01.07

7	If three equal value resistors are in delta, determine their equivalent values in star connection.	Understand	CO2	AEEB01.08
8	Define reference node.	Remember	CO 2	AEEB01.09
9	Give the difference between nodal analysis and mesh analysis.	Understand	CO2	AEEB01.06
10	If three equal value resistors are in star, calculate their equivalent values in delta connection.	Understand	CO 2	AEEB01.05
11	If three equal value resistors with $\mathrm{R}=3$ ohms are in delta, determine their equivalent values in star connection.	Understand	CO 2	AEEB01.07
12	If three equal value resistors with $\mathrm{R}=3 \mathrm{ohm}$ are in star, determine their equivalent values in delta connection	Understand	CO 2	AEEB01.05
13	State theveninn's theorem.	Remember	CO 2	AEEB01.05
14	State norton's theorem.	Remember	CO 2	AEEB01.05
15	Write limitations of norton's theorem.	Remember	CO 2	AEEB01.05
	Part - B (Long Answer Questions)			
1	Derive the expressions for equivalent resistances while transforming from star to delta and delta to star.	Understand	CO 2	AEEB01.06
2	Discuss the method used to determine loop currents for multiple loop network with an neat example.	Understand	CO 2	AEEB01.05
3	Summarize the procedure to calculate node voltages of an electrical network using nodal analysis.	Understand	CO2	AEEB01.08
4	Discuss the method used to determine loop currents for multiple loop network with ideal current source between any two meshes.	Understand	CO 2	AEEB01.07
5	Summarize the procedure to calculate node voltages of an electrical network with ideal voltage source between any two nodes.	Understand	CO 2	AEEB01.07
6	Explain the inspection method to write mesh equation for a network.	Understand	CO2	AEEB01.08
7	Explain the inspection method to write nodal equation for a network.	Understand	CO2	AEEB01.08
8	Derive the expressions of star-delta transformations to determine the equivalent resistance of complex network.	Understand	CO 2	AEEB01.09
9	Explain mesh analysis with a neat example.	Understand	CO2	AEEB01.09
10	Explain nodal analysis with a neat example.	Understand	CO 2	AEEB01.07
11	State and verify thevenin's theorem with an example for DC excitation.	Understand	CO2	AEEB01.07
12	State and verify nortan's theorem with an example for DC excitation.	Understand	CO2	AEEB01.07
13	Explain source transformation technique with a neat example.	Understand	CO2	AEEB01.07
14	Explain steps to solve currents in thevenin's theorem.	Understand	CO 2	AEEB01.09
15	Explain steps to solve currents in nortons's theorem.	Understand	CO2	AEEB01.09
Part - C (Problem Solving and Critical Thinking Questions)				
1	Calculate the current flowing through 3 ohms resistor using Norton's theorem. If the circuit is as below.	Understand	CO 2	AEEB01.08

2	Calculate the current flowing through 3 ohms resistor using thevenin's theorem for the circuit is as below.	Understand	CO 2	AEEB01.08
3	Apply mesh analysis and calculate the current flowing through 3 Ohms element.	Understand	CO 2	AEEB01.08
4	Apply nodal analysis and determine the current flowing through each element.	Understand	CO 2	AEEB01.08
5	Determine the node voltages and power absorbed by 5 ohms resistor.	Understand	CO 2	AEEB01.08
6	Using inspection method, compute the current in each mesh and power loss in each element.	Understand	CO 2	AEEB01.08

7	Using inspection method, calculate the node voltages and power loss in each element.	Understand	CO 2	AEEB01.08
8	Determine the node voltages using nodal analysis for given circuit shown below.	Understand	CO 2	AEEB01.08
9	Determine the current through branch a-b using mesh analysis shown in figure below.	Understand	CO 2	AEEB01.09
10	Apply mesh analysis and calculate the current flowing through each element.	Understand	CO 2	AEEB01.09
	Element From node To node 20 V source a 0 4 ohms a b 5 ohms b 0 2 ohms b c 3 ohms c 0 5 ohms c d 6 ohms d 0			
11	Apply nodal analysis and calculate the current flowing through each element.	Understand	CO 2	AEEB01.09
	Element From node To node 30 V source a 0 4 ohms a b 5 ohms b 0 2 ohms b c 3 ohms c 0 5 ohms c d 6 ohms d 0			

12	Calculate the node voltages and the power absorbed by 7 ohms resistor.			Understand	CO 2	AEEB01.09
	Element	From node	To node			
	40 V source	a	0			
	10 ohms	a	b			
	8 ohms	b	0			
	7 ohms	b	c			
	6 ohms	b				
	9 ohms	c	0			
13	In a circuit branch $\mathrm{AB}=11$ OHMS, $\mathrm{BC}=20$ OHMS, $\mathrm{CD}=12 \mathrm{OHMS}, \mathrm{BD}=8$ ohms and DA $=15$ OHMS and an source of 100 V in series with 5 OHMS connected across A and C. Calculate the mesh currents.			Understand	CO 2	AEEB01.09
14	Apply mesh analysis and calculate the current above through each element.2Ω			Understand	CO 2	AEEB01.09
15	Calculate the node voltages and the power absorbed by 7 ohms resistor.			Understand	CO 2	AEEB01.09
MODULE -III						
INTRODUCTION TO AC CIRCUITS						
Part - A (Short Answer Questions)						
1	Define the alternating quantity.			Remember	CO 3	AEEB01.14
2	Give the difference between periodic and non-periodic wave form.			Understand	CO 3	AEEB01.14
3	Define the peak, peak to peak, average, RMS value also peak and form factor of sine function.			Remember	CO 3	AEEB01.14
4	Represent the alternating current and voltage in terms of sine function.			Remember	CO 3	AEEB01.14
5	Write the expressions for voltage wave forms if wave form B lags wave form A by 30 degrees from reference axis.			Understand	CO 3	AEEB01.14
6	For the given alternating voltage, compute peak, peak to peak, average, RMS values. $\mathrm{V}(\mathrm{t})=25$ sin wt.			Understand	CO 3	AEEB01.14
7	Explain why average value is defined for half cycle of sine wave.			Understand	CO 3	AEEB01.10
8	In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F , calculate source current flowing through circuit.					
9	An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is $(20+25 \mathrm{j})$ ohms.			Understand		
10	Write the expression for reactance offered by inductor and capacitor.			Remember	CO 3	AEEB01.13
11	Give the net impedance offered by commercial inductor and capacitor.			Understand	CO 3	AEEB01.12
12	Define the term admittance of circuit.			Remember	CO 3	AEEB01.14
13	If two impedances of $(2+3 \mathrm{j})$ ohms and $(4+5 \mathrm{j})$ ohms are in series, calculate the total impedance, and source current.			Understand	CO 3	AEEB01.14
14	Draw the impedance triangle and explain in detail.			Remember	CO 3	AEEB01.14
15	Define the term susceptance of circuit.			Remember	CO 3	AEEB01.12

Part - B (Long Answer Questions)				
1	Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave.	Understand	CO 3	AEEB01.14
2	Derive the expression for average values of sine wave.	Understand	CO 3	AEEB01.14
3	Derive the expression for RMS values of sine wave.	Remember	CO 3	AEEB01.14
4	Summarize the features of electrical network with DC and AC excitation.	Understand	CO 3	AEEB01.14
5	Explain the nature of power factor in inductive and capacitive circuits.	Understand	CO 3	AEEB01.14
6	Compute all types of relations between two wave forms and write the relevant expressions.	Understand	CO 3	AEEB01.13
7	Derive the expression for form factor of sine wave.	Understand	CO 3	AEEB01.11
8	Explain the terms phase, phase difference and phasor diagram with neat example.	Understand	CO 3	AEEB01.11
9	Derive the expressions for reactance and impedance of inductor and capacitor.	Understand	CO 3	AEEB01.13
10	Explain the concept of j notation.	Understand	CO 3	AEEB01.13
11	Discuss the concept of reactance and impedance offered by R, L, C parameters.	Understand	CO 3	AEEB01.12
12	Explain the conversion of polar to rectangular form.	Understand	CO 3	AEEB01.12
13	Explain the conversion of rectangular to polar form.	Understand	CO 3	AEEB01.12
14	Explain the concept of susceptance and admittance offered by R, L, C parameters.	Understand	CO 3	AEEB01.12
15	Explain admittance triangle in detail.	Understand	CO 3	AEEB01.12
Part - C (Problem Solving and Critical Thinking)				
1	A sine wave has a frequency of 50 kHz . How many cycles does it complete in 20ms?	Understand	CO 3	AEEB01.14
2	A sine wave has a peak value of 25 V . Determine the following values a) rms b) peak to peak c) average	Understand	CO 3	AEEB01.14
3	The period of a sine wave is 20 milliseconds. What is the frequency?	Understand	CO 3	AEEB01.14
4	The frequency of a sine wave is 30 Hz . What is the period?	Understand	CO 3	AEEB01.14
5	A wire is carrying a direct current of 20 A and a sinusoidal alternating current of peak value 20A. Find the RMS value of the resultant current in the wire.	Understand	CO 3	AEEB01.14
6	A sine wave has a frequency of 50 kHz . How many cycles does it complete in 20ms?	Understand	CO 3	AEEB01.14
7	Find form factor and peak factor for a given waveform.	Understand	CO 3	AEEB01.14
8	Find RMS value for a given waveform.	Understand	CO 3	AEEB01.14
9	A sinusoidal voltage applied to capacitor $0.01 \mu \mathrm{~F}$. The frequency of sine wave is 2 kHz . Determine the capacitive reactance.	Understand	CO 3	AEEB01.12
10	A sinusoidal voltage applied to inductor 2 mH . The frequency of sine wave is 3 kHz . Determine the inductive reactance.	Understand	CO 3	AEEB01.12
11	A 50Ω, resistor is connected in parallel with an inductive reactance of 30Ω. A 20 V signal is applied to the circuit. Find the total impedance and line current in the circuit.	Understand	CO 3	AEEB01.13

12	If the voltage applied is $(10-8 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is (3-5j) A. Determine complex power and circuit constants.	Understand	CO 3	AEEB01.13
13	If $\mathrm{R}=100 \Omega$, and $\mathrm{C}=0.2 \mu \mathrm{~F}$ are connected in parallel with $20 \mathrm{~V}, 5 \mathrm{kHz}$ Determine the total current, phase angle and total impedance of the circuits.	Understand	CO 3	AEEB01.13
14	A signal generator supplies a $30 \mathrm{~V}, 100 \mathrm{~Hz}$ signal to circuit If $\mathrm{R}=10 \Omega, \mathrm{~L}=20 \mathrm{mH}$, $\mathrm{C}=50 \mu \mathrm{~F}$.determine the impedance, line current and phase angle.	Understand	CO 3	AEEB01.13
15	If $\mathrm{R}=25 \Omega, \mathrm{~L}=64 \mathrm{mH}, \mathrm{C}=80 \mu \mathrm{~F}$ are connected in series with 110 V and find current, VR, VL and VC.	Understand	CO 3	AEEB01.13
MODULE -IV				
COMPLEX POWER ANALYSIS				
Part - A (Short Answer Questions)				
1	Draw the power triangle for L.	Remember	CO 4	AEEB01.15
2	Draw the power triangle for C .	Understand	CO 4	AEEB01.15
3	Draw the power triangle for RL.	Remember	CO 4	AEEB01.15
4	Draw the power triangle for RC.	Remember	CO 4	AEEB01.15
5	Draw the power triangle for RLC.	Understand	CO 4	AEEB01.15
6	How do you calculate power factor?	Understand	CO 4	AEEB01.15
7	What is power factor and why is it important?	Understand	CO 4	AEEB01.15
8	What will happen if power factor is more than 1?	Understand	CO 4	AEEB01.15
9	What is the cause for power factor?	Understand	CO 4	AEEB01.15
10	What is the power factor formula?	Understand	CO 4	AEEB01.15
11	Define real power	Understand	CO 4	AEEB01.16
12	Define reactive power	Understand	CO 4	AEEB01.17
13	Define apparent power	Remember	CO 4	AEEB01.19
14	Define complex power	Understand	CO 4	AEEB01.15
15	Define power factor	Understand	CO 4	AEEB01.15
Part - B (Long Answer Questions)				
1	Explain the concept of active, reactive, apparent power and draw power triangle for L .	Understand	CO 4	AEEB01.15
2	Explain the concept of active, reactive, apparent power and draw power triangle for C .	Understand	CO 4	AEEB01.15
3	Explain the concept of active, reactive, apparent power and draw power triangle for RL.	Understand	CO 4	AEEB01.15
4	Explain the concept of active, reactive, apparent power and draw power triangle RC.	Understand	CO 4	AEEB01.15
5	Explain the concept of active, reactive, apparent power and draw power triangle RLC.	Understand	CO 4	AEEB01.16
6	Co-relate the impedance triangle with power triangle and explain In detail.	Understand	CO 4	AEEB01.17
7	Co-relate the voltage triangle with power triangle and explain In detail.	Understand	CO 4	AEEB01.17
8	Derive the expression for true power in ac circuits.	Understand	CO 4	AEEB01.17
9	Predict the voltage, current and power in series RC circuit using sinusoidal excitation.	Understand	CO 4	AEEB01.17
10	Define the power factor of the circuit and give its importance.	Understand	CO 4	AEEB01.15
11	How do you convert kW to kVA?	Understand	CO 4	AEEB01.15
12	How do you convert kW to KVA?	Understand	CO 4	AEEB01.19
13	Why is apparent power greater than real power?	Understand	CO 4	AEEB01.15
14	What is the difference between active power, reactive power and apparent power?	Understand	CO 4	AEEB01.15
15	Explain about kVAR?	Understand	CO 4	AEEB01.15
Part - C (Problem Solving and Critical Thinking)				
1	In an ac circuit two parallel impedances are connected in series with Z 1 across AB terminals, where $A B$ terminals are fed by 200 V 0degrees. Determine total active power, reactive power and apparent power and power factor of each branch and voltage drop across Z3 $\mathrm{Z} 1=(8+\mathrm{j})$ ohms $\mathrm{Z} 2=(1+6 \mathrm{j})$ ohms $\mathrm{Z} 3=(3+5 \mathrm{j})$ ohms.	Understand	CO 4	AEEB01.17
2	In an ac circuit two parallel impedances are connected in series with Z 1 across AB terminals, where AB terminals are fed by 200 V 0degrees. Determine total active power, reactive power and apparent power and power factor of each branch and voltage drop across Z3.	Understand	CO 4	AEEB01.17

	$\begin{aligned} & \mathrm{Z} 1=(3+2 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 2=(4+5 \mathrm{j}) \text { ohms } \\ & \mathrm{Z} 3=(2+4 \mathrm{j}) \text { ohms. } \end{aligned}$			
3	If the voltage applied is $(10-8 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is $(3-5 \mathrm{j}) \mathrm{A}$, Determine complex power and circuit constants.	Understand	CO 4	AEEB01.15
4	If the voltage applied is $(10+8 \mathrm{j}) \mathrm{V}$ and current flowing through circuit is (3+5) A , calculate complex power and circuit constants.	Understand	CO 4	AEEB01.17
5	The voltage of a circuit is $v=200 \sin (w t+300)$ and the current is $\mathrm{i}=50 \sin (\mathrm{wt}+$ 600). Determine i) The average power, reactive power and apparent power. ii) The circuit elements if $w=100 \pi \mathrm{rad} / \mathrm{sec}$.	Understand	CO 4	AEEB01.17
6	In an AC circuit source applied is $\mathrm{v}=100 \sin 50 \mathrm{t}$ across series combination of 16 ohms and 30 H , determine total impedance, phase angle between voltage and current in circuit and power factor of the circuit.	Understand	CO 4	AEEB01.17
7	For a series RL circuit with $\mathrm{R}=2 \mathrm{k} \Omega$ and $\mathrm{L}=30 \mathrm{mH}$. Determine total impedance Z , current I, phase angle voltage across the resistance VR and voltage across the inductor VL.	Understand	CO 4	AEEB01.17
8	A series RC circuit with $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{R}=25 \mathrm{k} \Omega$ and $\mathrm{C}=25 \mu \mathrm{~F}$. Determine total power and phase angle.	Understand	CO 4	AEEB01.15
9	A series RL circuit with $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{R}=25 \mathrm{k} \Omega$ and 0.2 mH . Determine reactive power and phase angle.	Understand	CO 4	AEEB01.15
10	A series RLC circuit with $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{R}=25 \mathrm{k} \Omega, 0.2 \mathrm{mH}$ and $\mathrm{C}=25 \mu \mathrm{~F}$. Determine apparent and phase angle.	Understand	CO 4	AEEB01.15
11	A series RLC circuit with $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{R}=25 \mathrm{k} \Omega, 0.2 \mathrm{mH}$ and $\mathrm{C}=25 \mu \mathrm{~F}$. Determine power triangle and voltage triangle.	Understand	CO 4	AEEB01.15
12	A series RC circuit with $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{R}=5 \mathrm{k} \Omega$ and $\mathrm{C}=0.2 \mu \mathrm{~F}$. Determine total impedance Z , current I, phase angle, voltage across the resistance VR and voltage across the capacitance VC.	Understand	CO 4	AEEB01.17
13	Determine reactive power and phase angle of series RLC circuit with $f=50 \mathrm{~Hz}$, $\mathrm{R}=10 \Omega, \mathrm{~L}=0.2 \mathrm{mH}$ and $\mathrm{C}=0.5 \mu \mathrm{~F}$.	Understand	CO 4	AEEB01.17
14	Determine active power and phase angle of series RLC circuit with $f=50 \mathrm{~Hz}$, $\mathrm{R}=10 \Omega, \mathrm{~L}=0.2 \mathrm{mH}$ and $\mathrm{C}=0.5 \mu \mathrm{~F}$.	Understand	CO 4	AEEB01.15
15	Determine apparent power and phase angle of series RLC circuit with $f=50 \mathrm{~Hz}$, $\mathrm{R}=10 \Omega, \mathrm{~L}=0.2 \mathrm{mH}$ and $\mathrm{C}=0.5 \mu \mathrm{~F}$.	Understand	CO 4	AEEB01.15
MODULE - V				
NETWORK TOPOLOGY				
Part - A (Short Answer Questions)				
1	Define network topology and write its importance in electrical circuits.	Remember	CO 5	AEEB01.20
2	Define co-tree.	Remember	CO 5	AEEB01.20
3	Define tree.	Remember	CO 5	AEEB01.20
4	Give the properties of incidence matrix.	Remember	CO 5	AEEB01.21
5	Give the properties of tie-set matrix.	Remember	CO 5	AEEB01.20
6	Give the properties of cut-set matrix.	Remember	CO 5	AEEB01.20
7	Write the expression for number of links.	Remember	CO 5	AEEB01.20
8	For 8 elements 5 node graph, determine number of links.	Understand	CO 5	AEEB01.20
9	For 8 elements 5 links, determine number of node graphs.	Understand	CO 5	AEEB01.20
10	Define basic tie-set and give the condition to form basic tie-set.	Remember	CO 5	AEEB01.20
11	Define basic cut-set and give the condition to form basic cut-set.	Remember	CO 5	AEEB01.20
12	Define the duality and the dual elements.	Remember	CO 5	AEEB01.20
13	Give the importance of tie-set matrix with electrical networks.	Understand	CO 5	AEEB01.20
14	Give the importance of incident matrix with electrical networks.	Understand	CO 5	AEEB01.20
15	Give the importance of cut-set matrix with electrical networks.	Understand	CO 5	AEEB01.22
Part - B (Long Answer Questions)				
1	Define terms graph, oriented and non-oriented graph, planar and non- planar.	Remember	CO 5	AEEB01.20
2	Explain the formation of incidence matrix with an example.	Understand	CO 5	AEEB01.21
3	Explain the formation of cut-set matrix with an example.	Understand	CO 5	AEEB01.21
4	Demonstrate the formation of matrix using tie-sets for the determination of relation between link currents and branch currents.	Understand	CO 5	AEEB01.20
5	Describe the method for the formation of matrix used to give relation between branch and twig voltages.	Understand	CO 5	AEEB01.20

6	Explain the dual elements.	Understand	CO 5	AEEB01.20
7	Explain the dual network with neat example.	Understand	CO 5	AEEB01.21
8	Determine the branch currents in terms of link currents using tie-set matrix with an example.	Understand	CO 5	AEEB01.21
9	Determine the branch voltages in terms of twig voltages using cut-set matrix with an example.	Understand	CO 5	AEEB01.22
10	Take any graph and draw all possible trees, basic tie-sets.	Understand	CO 5	AEEB01.22
11	Take any graph and draw all possible trees and basic cut-sets.	Understand	CO 5	AEEB01.22
12	Take any graph, draw all possible trees and form incidence matrix for one tree.	Understand	CO 5	AEEB01.22
13	Derive the relation between twig voltages and branch voltages and write current equations.	Understand	CO 5	AEEB01.20
14	Define terms tree, co-tree, branches, links, nodes and degree of the node.	Remember	CO 5	AEEB01.21
15	Write list of properties of a Tree.	Understand	CO 5	AEEB01.21
Part - C (Problem Solving and Critical Thinking)				
1	$\begin{gathered} \text { Draw the graph from incident matrix and write tie-set matrix } \\ 1 \\ 1 \end{gathered} 0$	Understand	CO 5	AEEB01.20
2	$\begin{aligned} & \text { Draw the graph from incident matrix and write cut-set matrix } \\ & \begin{array}{cccccc} 1 & 0 & 0 & 0 & -1 \\ -1 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{array} \end{aligned}$	Understand	CO 5	AEEB01.20
3	Draw the following i. Graph ii. Tree iii. Dual network of figure shown below.	Understand	CO 5	AEEB01.20
4	Explain the principal of duality and draw the dual network.	Understand	CO 5	AEEB01.22
5	Determine the branch voltages using cut-set marix.	Understand	CO 5	AEEB01.20
6	Develop the fundamental tie-set matrix for the circuit shown in figure.	Understand	CO 5	AEEB01.20

7	Draw the following i. Graph ii. Tree iii. Dual network of figure shown below.	Understand	CO 5	AEEB01.20
8	Explain the principal of duality and draw the dual network.	Understand	CO 5	AEEB01.20
9	Determine the branch voltages using cut-set matrix.	Understand	CO 5	AEEB01.20
10	Develop the fundamental tie-set matrix for the circuit shown in figure.	Understand	CO 5	AEEB01.20

11	Draw the following i. Graph ii. Tree iii. Dual network of figure shown below.	Understand	CO 5	AEEB01.20
12	Determine the branch voltages using cut-set matrix.	Understand	CO 5	AEEB01.20
13	Explain the principal of duality and draw the dual network.	Understand	CO 5	AEEB01.20
14	Develop the fundamental tie-set matrix for the circuit shown in figure.	Understand	CO 5	AEEB01.21

15	Draw the following 1. Graph 2. Tree 3. Dual network of figure shown below.	Understand	CO 5	AEEB01.21

