TARE TO LEGIS

INSTITUTEOFAERONAUTICALENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

INFORMATION TECHNOLOGY

TUTORIAL QUESTION BANK

Course Title	FUNDAM	ENTALS OF EL	ECTRICAL E	ENGINEERING		
Course Code	AEEB01					
Programme	B.Tech	B.Tech				
Semester	I IT	I IT				
Course Type	Foundatio	Foundation				
Regulation	IARE - R1	IARE - R18				
Course Structure		Theory Practical		cal		
	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	-	-	
Chief Coordinator	Mr. A Nar	eshkumar, Assista	ant Professor			
Course Faculty		eshkumar, Assist				
		Mr. K Lingaswamy, Assistant Professor				
		Dr. M Laxmidevi Ramanaiah, Associate Professor				
		Mr. A Srikanth, Assistant Professor				
		Mr. T Mahesh, Assistant Professor				
	Mr. N Shi	v <mark>aprasad, Assist</mark> ai	nt Professor			

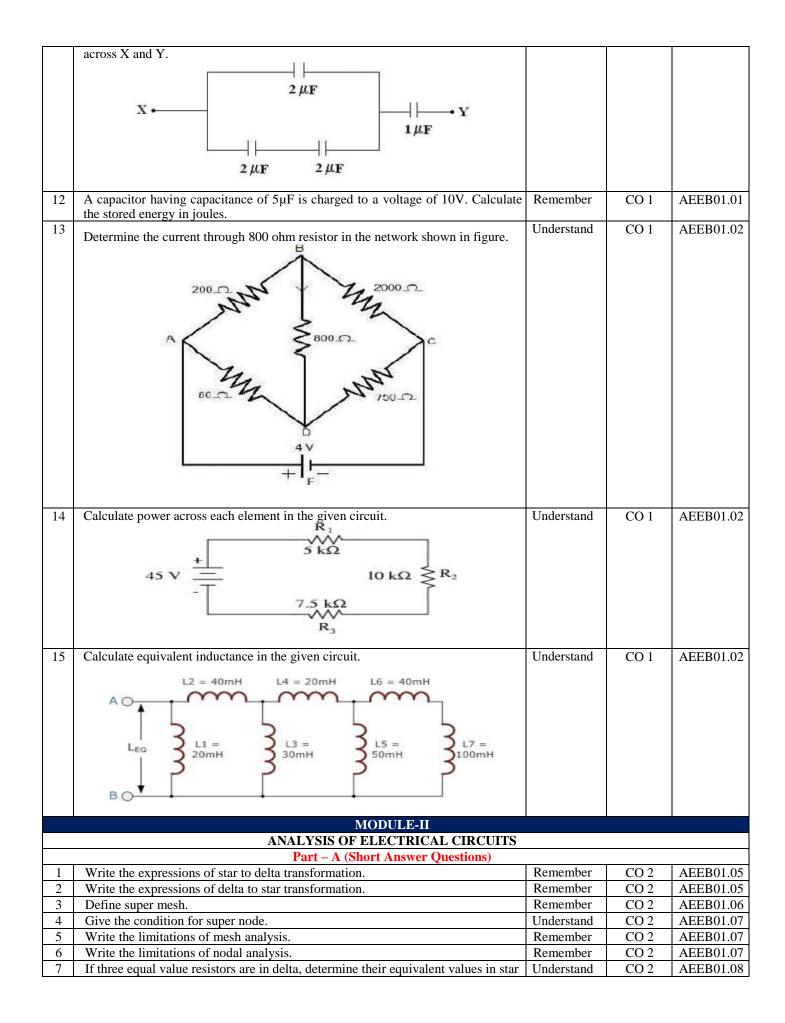
COURSE OBJECTIVES:

The course should enable the students to:					
I	Understand the basic electrical circuits and circuit laws to study behavior of electrical networks.				
II	Use different network reduction techniques to study characteristics of electrical networks.				
III	Analyze series and parallel AC circuits using complex notation.				
IV	State and use DC circuit theorems to determine unknown currents and voltages.				

COURSE OUTCOMES (COs):

	CO 1	Understand the basic concepts of electricity, electrical circuits elements, application's of Kirchhoff laws to complex circuits.
	CO 2	Explore to the working of mesh analysis and nodal analysis, inspection method, super mesh, super node analysis.
-	CO 3	Summarize various alternating quantities such as instantaneous, peak, RMS, average, form factor and peak factor for different periodic wave forms.

CO 4	Discuss the basic theory of real, reactive, apparent power and complex power, power factor.
CO 5	Explain the concepts of graph, tree, incidence matrix, basic cut set and basic tie set matrices for planar networks, duality and dual networks.


COURSE LEARNING OUTCOMES (CLOs):

AEEB01.01	Define the various nomenclature used to study the DC electrical circuits.
AEEB01.02	Understand the concept of electrical circuit and classify electrical circuits elements.
AEEB01.03	Analyze the circuits using Kirchhoff's current and Kirchhoff's voltage law.
AEEB01.04	Use of series-parallel concepts for simplifying circuits.
AEEB01.05	Describe source transformation technique to determine equivalent resistance and source current.
AEEB01.06	Apply network reduction techniques to calculate unknown quantities associated with electrical circuits.
AEEB01.07	Summarize the procedure of mesh analysis and nodal analysis, inspection method, super mesh, super node analysis.
AEEB01.08	Apply the concept of network theorems.
AEEB01.09	Summarize the procedure of thevenin's and norton's theorems to reduce complex network into simple equivalent network.
AEEB01.10	List out various alternating quantities such as Sinusoidal AC voltage, average and RMS values, form and peak factor, and understand concept of three phase alternating quantity.
AEEB01.11	Interpret the alternating quantities with its instantaneous, average and root mean square values.
AEEB01.12	Illustrate the concept of impedance, reactance, admittance, susceptance and conductance.
AEEB01.13	Understand the phase and phase difference and j notation.
AEEB01.14	Discuss representation of rectangular and polar forms.
AEEB01.15	Analyze the steady state behavior of R, L and C elements with sinusoidal excitation.
AEEB01.16	Analyze the steady state behavior of series and parallel RL and RC circuits with sinusoidal excitation.
AEEB01.17	Analyze the steady state behavior of series and parallel RLC circuits with sinusoidal excitation.
AEEB01.18	Illustrate the concept of real, reactive, apparent power and complex power.
AEEB01.19	Interpret the power factor in single phase AC circuits.
AEEB01.20	Discuss the various nomenclatures related with network topology.
AEEB01.21	Formulate incidence, tie-set and cut-set matrix which are used to solve the behavior of complex electrical circuits.
AEEB01.22	Understand the concepts of duality and importance of dual networks.

TUTORIAL QUESTION BANK

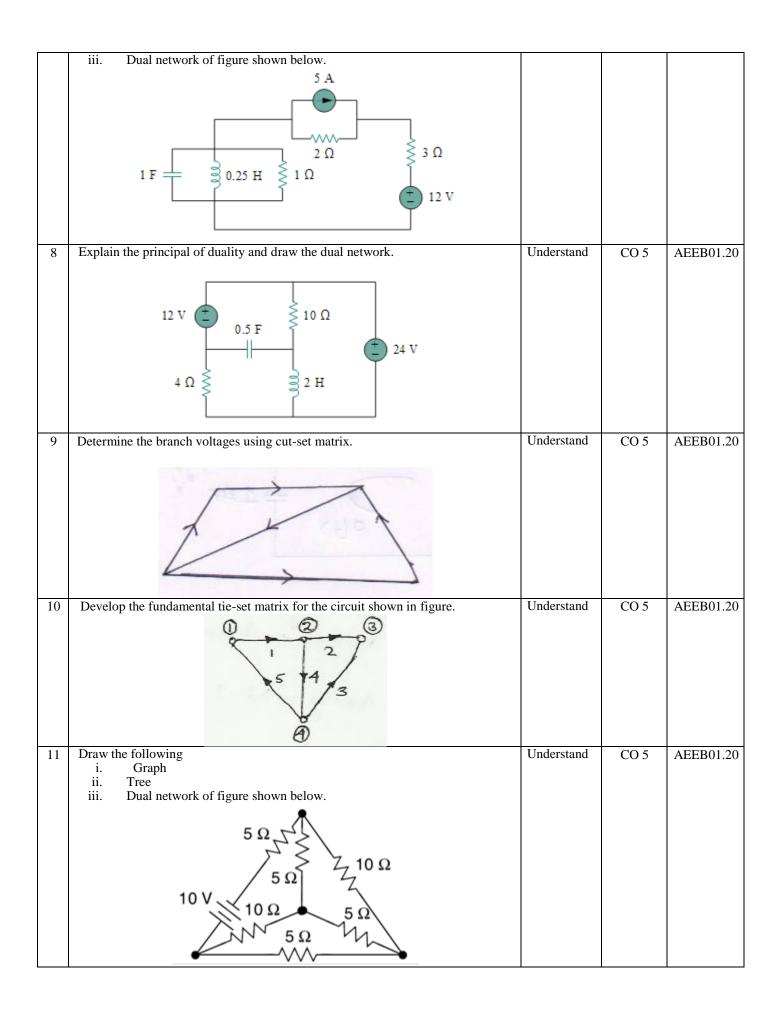
	MODULE- I						
INTRODUCTION TO ELECTRICAL CIRCUITS							
C	Part - A (Short Answer Questions)	DI	C	C			
S.	QUESTIONS	Blooms	Course	Course			
No		Taxonomy	Outcomes	Learning			
		Level		Outcomes			
1	Define the inductance.	Remember	CO 1	(CLOs) AEEB01.01			
2	Define the inductance. Define the capacitance.	Remember	CO 1	AEEB01.01			
3	Draw the symbols of different controlled sources.	Remember	CO 1	AEEB01.01			
4	State and explain the potential difference.	Remember	CO 1	AEEB01.01			
5	Define current.	Remember	CO 1	AEEB01.01			
6	Define resistance.	Remember	CO 1	AEEB01.01			
7	Give the expression for voltage in terms of W and Q.	Understand	CO 1	AEEB01.01			
8	Give the expression for voltage in terms of w and Q. Give the charge of an electron.	Understand	CO 1	AEEB01.01			
9	State OHM's law.	Remember	CO 1	AEEB01.01			
10	State Grid's law. State Kirchhoff's current and Kirchhoff's voltage laws.	Remember	CO 1	AEEB01.01			
11	Define the power and energy.	Remember	CO 1	AEEB01.01			
12	Describe the active elements.	Remember	CO 1	AEEB01.01			
13	Describe passive elements.	Remember	CO 1	AEEB01.01			
14	Calculate the equivalent resistance of the circuit if applied voltage is 23V and	Understand	CO 1	AEEB01.01			
14	current flowing through circuit is 4A, receiving a power of 92W.	Onderstand	COT	AEEB01.02			
15	If the charge developed between two plates is 2C and capacitance is 4.5 F,	Understand	CO 1	AEEB01.02			
13	calculate the voltage across the plates.	Chacistana	201	1122201.02			
	Part - B (Long Answer Questions)						
1	Write short notes on voltage-current relations in RLC parameters.	Remember	CO 1	AEEB01.01			
2	Explain the Kirchhoff's laws with example and neat diagrams.	Understand	CO 1	AEEB01.01			
3	Classify types of elements and explain in detail.	Understand	CO 1	AEEB01.01			
4	Distinguish between ideal and practical energy sources.	Understand	CO 1	AEEB01.01			
5	State Ohm's law and give its applicability to electrical network.	Remember	CO 1	AEEB01.01			
6	Explain convention current direction and voltage across an element.	Understand	CO 1	AEEB01.01			
7	Write the conventions to study any electrical circuit.	Remember	CO 1	AEEB01.01			
8	Define the terms voltage, current, power, energy, node and degree of the node.	Remember	CO 1	AEEB01.01			
9	State current division rule and explain with neat example.	Remember	CO 1	AEEB01.01			
10	State voltage rule and explain with neat example.	Remember	CO 1	AEEB01.01			
11	Derive the V-I relationship, power and energy stored in inductor.	Understand	CO 1	AEEB01.01			
12	Derive the V-I relationship, power and energy stored in capacitor.	Understand	CO 1	AEEB01.01			
13	Derive the equivalent resistance equations when they are connected in series and		CO 1	AEEB01.02			
	parallel.						
14	Derive the equivalent inductance equations when they are connected in series and	Understand	CO 1				
	parallel.			AEEB01.02			
15	Derive the equivalent capacitance equations when they are connected in series	Understand	CO 1				
	and parallel.			AEEB01.03			
L.	Part - C (Problem Solving and Critical Thinking Que	stions)					
1	Calculate the equivalent resistance and source current for the given data.	Understand	CO 1	AEEB01.01			
	Element From node To node						
	30 V source a 0						
	4 ohms a b 5 ohms b 0						
	2 ohms b c						
	3 ohms						
	5 ohms c d						
	6 ohms d 0						
2	In a network consisting of AB terminals, firstly a branch across AB is defined as	Understand	CO 1	AEEB01.01			
	20V in series with 5 ohm, second branch 7 ohm and third branch 10V in series						
	with 4 ohm. Calculate voltage drop across 7 ohm resistor.						

3	Use network reduction technique and calculate current response in each element.	Understand	CO 1	AEEB01.01
	Element From node To node			
	25 V source a 0			
	6 ohms a b			
	8 ohms b 0			
	2 ohms b c			
	3 ohms b c			
4	5 ohms	TT. 1	CO 1	AEED01.01
4	In a circuit branch $AB = 10$ ohm, $BC = 20$ ohm, $CD = 15$ ohm, $BD = 8$ ohm and $DA = 5$ ohm and an source of 100V in series with 50hm connected across A and	Understand	CO 1	AEEB01.01
	C. Calculate equivalent resistance, source current and voltage drop across DA.			
5	In an circuit branch AB = 1 ohm, BC = 2 ohm, CD = 1 ohm, BD = 8 ohm and	Understand	CO 1	AEEB01.01
	DA = 5 ohm and an source of 100V in series with 5 ohm connected across Aand			
	C. Calculate equivalent resistance, source current and voltage drop across DA.			
6	Consider an coil allowing an current of $i(t) = 4t^2$, calculate voltage induced,	Understand	CO 1	AEEB01.01
	power absorbed and energy stored by inductor, if its inductance is 5H.	TT 1 . 1	GO 1	4 EED 04 02
7	Calculate the equivalent resistance between A and B terminals.	Understand	CO 1	AEEB01.03
	A — — — — — — — — — — — — — — — — — — —			
	4Ω [
	4Ω ≶			
	and the same of th			
	6Ω			
	}			
	8Ω≥ ≥ 4Ω			
	В			
8	Calculate equivalent resistance, source current, voltage drop and power dissipated in each resistor.	Understand	CO 1	AEEB01.1
	in each resistor.			
	element From node To node			
	20 V source a 0			
	4 ohms a b			
	5 ohms b 0			
	2 ohms b c			
	3 ohms c 0			
9	Calculate	Understand	CO 1	AEEB01.02
	a) The equivalent resistances across the terminals of the supply			
	b) Total current supplied by the source			
	c) Power delivered to 16 ohm resistor in circuit shown in figure shown below.			
	+			
	100 V = \$120 \$120 \$160			
	-			
	80 60 40			
10	Calculate the power consumed by each resistor.	Understand	CO 1	AEEB01.02
	5 Ω			
	¥ > >			
	20 V (⁺) ≥10Ω ≥ 6Ω			
11	Calculate the equivalent capacitance of the combination shown figure below	Understand	CO 1	AEEB01.02

	connection			
8	connection. Define reference node.	Remember	CO 2	AEEB01.09
9	Give the difference between nodal analysis and mesh analysis.	Understand	CO 2	AEEB01.09 AEEB01.06
10	If three equal value resistors are in star, calculate their equivalent values in delta	Understand	CO 2	AEEB01.05
10	connection.	Understand	CO 2	AEEBU1.03
11	If three equal value resistors with R= 30hms are in delta, determine their		CO 2	AEEB01.07
11	equivalent values in star connection.	Understand	CO 2	ALLEGOT.O7
12	If three equal value resistors with R=30hm are in star, determine their		CO 2	AEEB01.05
	equivalent values in delta connection	Understand		
13	State theveninn's theorem.	Remember	CO 2	AEEB01.05
14	State norton's theorem.	Remember	CO 2	AEEB01.05
15	Write limitations of norton's theorem.	Remember	CO 2	AEEB01.05
	Part - B (Long Answer Questions)			•
1	Derive the expressions for equivalent resistances while transforming from star to	Understand	CO 2	AEEB01.06
	delta and delta to star.			
2	Discuss the method used to determine loop currents for multiple loop network	Understand	CO 2	AEEB01.05
	with an neat example.			
3	Summarize the procedure to calculate node voltages of an electrical network	Understand	CO 2	AEEB01.08
	using nodal analysis.	TT 1 . 1	00.2	4 EED 01 07
4	Discuss the method used to determine loop currents for multiple loop network	Understand	CO 2	AEEB01.07
_	with ideal current source between any two meshes.	TT 1 . 1	GO 2	A EED 01 07
5	Summarize the procedure to calculate node voltages of an electrical network with	Understand	CO 2	AEEB01.07
6	ideal voltage source between any two nodes. Explain the inspection method to write mesh equation for a network.	Understand	CO 2	AEEB01.08
7	Explain the inspection method to write nesh equation for a network. Explain the inspection method to write nodal equation for a network.	Understand	CO 2	AEEB01.08
8	Derive the expressions of star-delta transformations to determine the equivalent	Understand	CO 2	AEEB01.08 AEEB01.09
0	resistance of complex network.	Understand	CO 2	AEEBU1.09
9	Explain mesh analysis with a neat example.	Understand	CO 2	AEEB01.09
10	Explain nodal analysis with a neat example.	Understand	CO 2	AEEB01.07
11	State and verify thevenin's theorem with an example for DC excitation.	Understand	CO 2	AEEB01.07
12	State and verify nortan's theorem with an example for DC excitation.	Understand	CO 2	AEEB01.07
13	Explain source transformation technique with a neat example.	Understand	CO 2	AEEB01.07
14	Explain steps to solve currents in thevenin's theorem.	Understand	CO 2	AEEB01.09
15	Explain steps to solve currents in unevenin's theorem.	Understand	CO 2	AEEB01.09
13	Part - C (Problem Solving and Critical Thinking Que		CO 2	ALEBO1.09
1	Calculate the current flowing through 3 ohms resistor using Norton's theorem.	Understand	CO 2	AEEB01.08
1	If the circuit is as below.	Chacistana	CO 2	ALLEDOT.08
	4 Ω 2 Ω			
	$\frac{1}{2}$ $\leq 5 \Omega$ $\leq 3 \Omega$			
	\rightarrow			
	20 V			
$oxed{oxed}$		İ		

2	Calculate the current flowing through 3 ohms resistor using thevenin's theorem for	Understand	CO 2	AEEB01.08
	the circuit is as below.			
	4 Ω 2 Ω			
	$\frac{1}{2}$ $\lesssim 5\Omega$ $\lesssim 3\Omega$			
	30 V			
	30 7			
3	Apply mesh analysis and calculate the current flowing through 3 Ohms element.	Understand	CO 2	AEEB01.08
	6Ω 3Ω			
	→ → → · · · · · · · · · · · · · · · · ·			
	$ 2V \stackrel{+}{(+)} \qquad $			
4	Apply nodal analysis and determine the current flowing through each element.	Understand	CO 2	AEEB01.08
	36 V			
	12Ω 15Ω			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
	12 A			
5	Determine the node voltages and power absorbed by 5 ohms resistor.	Understand	CO 2	AEEB01.08
	1			
	5 2			
	(↑) 3A ≥3 (↑) 8A			
6	Using inspection method, compute the current in each mesh and power loss in	Understand	CO 2	AEEB01.08
	each element.			
	2			
	12V 			
	\$2			
	18V≟ T			
	·			

7	Using inspection method, c	alculate the node v	roltages and power loss in each	Understand	CO 2	AEEB01.08
	element.					
		√	W			
	- annex.*.		valent di			
		$\mathbb{L}_{\mathbb{L}}(\mathbb{L})$	영상한 의			
		100mA	1 <u>20</u>			
	≥ 2		7V —			
		≥5	1989 - Ja			
	4	A A	<u> </u>			
	<u></u>	V				
	(Contracts to					
8	Determine the node voltages	using nodal analysis	for given circuit shown below.	Understand	CO 2	AEEB01.08
		2.0	5.0			
		-W	~~			
	5A (+) <	44	£ 1.0.			
	3.0 \$	1 Ω	→ } ···			
		I, <	29 V			
		I				
		•				
9	Determine the current throu	gh branch a-b using	g mesh analysis shown in figure	Understand	CO 2	AEEB01.09
	below.	B	,,,			
	Creative Control of the Control of t	Ω 2Ω	3 <u>0</u> b			
		/	<u> </u>			
			+			
	60 V +	5A(↑)	>6C T 50 V			
		γ	-			
10	Apply mesh analysis and ca	lculate the current fl	owing through each element.	Understand	CO 2	AEEB01.09
10	Tippiy mesh anarysis and ea	realate the carrent if	owing unough each element.	Chatistana	CO 2	TILLED 01.09
	Element	From node	To node			
	20 V source	a	0			
	4 ohms	a	b			
	5 ohms	b	0			
	2 ohms 3 ohms	b c	0			
	5 ohms	С	d			
	6 ohms	d	0			
11	Apply nodal analysis and ca	lculate the current fl	owing through each element.	Understand	CO 2	AEEB01.09
	Element	From node	To node			
	30 V source 4 ohms	a a	0 b			
	5 ohms	b	0			
	2 ohms	b	c			
	3 ohms	c	0			
	5 ohms	С	d			
	6 ohms	d	0			
12	Calculate the node voltages	and the power absor	bed by 7 ohms resistor.	Understand	CO 2	AEEB01.09
		From node	To node			
		I Brom node	I I o node	1		1
	Element 40 V source					
	40 V source	a	0			


	7 ohms b c			
	6 ohms b c			
	9 ohms			
13	In a circuit branch AB = 11 OHMS, BC = 20 OHMS, CD = 12 OHMS, BD = 8	Understand	CO 2	AEEB01.09
	ohms and DA = 15 OHMS and an source of 100V in series with 5 OHMS			
	connected across A and C. Calculate the mesh currents.			
14	Apply mesh analysis and calculate the current above through each element.	Understand	CO 2	AEEB01.09
	4Ω 2Ω 5Ω			
	7.72			
	+			
	$20 \text{ V} \qquad $			
1.5		TT 1 . 1	GO 2	4 EED 01 00
15	Calculate the node voltages and the power absorbed by 7 ohms resistor.	Understand	CO 2	AEEB01.09
	6Ω 			
	10 Ω			
	$\begin{array}{c c} & & & & \\ & & & \\ & & & \end{array}$			
	$_{40\mathrm{V}} \xrightarrow{\frac{1}{1}}$ $\geqslant _{8\Omega}$ $\leqslant _{9\Omega}$			
	$\begin{array}{c c} & 40 & \downarrow & \\ & & & \\ $			
	MODULE -III			
	INTRODUCTION TO AC CIRCUITS			
	Part - A (Short Answer Questions)			
1	Define the alternating quantity.	Remember	CO 3	AEEB01.14
2	Give the difference between periodic and non-periodic wave form.	Understand	CO 3	AEEB01.14
3	Define the peak, peak to peak, average, RMS value also peak and form factor of	Remember	CO 3	AEEB01.14
	sine function.			
4	Represent the alternating current and voltage in terms of sine function.	Remember	CO 3	AEEB01.14
5	Write the expressions for voltage wave forms if wave form B lags wave form A	Understand	CO 3	AEEB01.14
	by 30 degrees from reference axis.		GO 1	4 EED 01 14
6				
L!	For the given alternating voltage, compute peak, peak to peak, average, RMS	Understand	CO 3	AEEB01.14
7	values. $V(t) = 25 \sin wt$.			
7	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave.	Understand Understand	CO 3	AEEB01.14 AEEB01.10
7 8	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4			
	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave.			
8	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit.	Understand		
	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine			
8	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms.	Understand		AEEB01.10
9 10	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor.	Understand Understand Remember	CO 3	AEEB01.10 AEEB01.13
9	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms.	Understand	CO 3	AEEB01.10
9 10 11	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit.	Understand Understand Remember Understand Remember	CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12
9 10 11 12	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor.	Understand Understand Remember Understand	CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14
9 10 11 12	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the	Understand Understand Remember Understand Remember	CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14
9 10 11 12 13	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current.	Understand Understand Remember Understand Remember Understand	CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14 AEEB01.14
9 10 11 12 13	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit.	Understand Remember Understand Remember Understand Remember Remember	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14 AEEB01.14 AEEB01.14
9 10 11 12 13	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part – B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form	Understand Remember Understand Remember Understand Remember Understand	CO 3 CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14 AEEB01.14
9 10 11 12 13 14 15	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part – B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave.	Understand Understand Remember Understand Remember Understand Remember Understand Understand Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14
9 10 11 12 13 14 15	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part - B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave. Derive the expression for average values of sine wave.	Understand Remember Understand Remember Understand Remember Understand Understand Understand Understand	CO 3	AEEB01.10 AEEB01.13 AEEB01.12 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14
9 10 11 12 13 14 15 1 2 3	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part - B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave. Derive the expression for average values of sine wave. Derive the expression for RMS values of sine wave.	Understand Remember Understand Remember Understand Remember Understand Understand Understand Understand Understand Understand Remember	CO 3	AEEB01.10 AEEB01.13 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14
9 10 11 12 13 14 15 1 2 3 4	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part - B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave. Derive the expression for average values of sine wave. Derive the expression for RMS values of sine wave. Summarize the features of electrical network with DC and AC excitation.	Understand Remember Understand Remember Understand Remember Understand Understand Understand Understand Understand Understand Understand Understand	CO 3	AEEB01.10 AEEB01.13 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14
9 10 11 12 13 14 15 1 2 3	values. V(t) = 25 sin wt. Explain why average value is defined for half cycle of sine wave. In an AC circuit source applied is 100 sin100t across series combination of 4 ohms and 13 F, calculate source current flowing through circuit. An AC circuit consists of 20 ohms resistance and an inductor in series, determine the value of inductance if total impedance is (20 + 25j) ohms. Write the expression for reactance offered by inductor and capacitor. Give the net impedance offered by commercial inductor and capacitor. Define the term admittance of circuit. If two impedances of (2 + 3j) ohms and (4+5j) ohms are in series, calculate the total impedance, and source current. Draw the impedance triangle and explain in detail. Define the term susceptance of circuit. Part - B (Long Answer Questions) Define the terms peak, peak to peak, average, RMS values, peak factor and form factor of sine wave. Derive the expression for average values of sine wave. Derive the expression for RMS values of sine wave.	Understand Remember Understand Remember Understand Remember Understand Understand Understand Understand Understand Understand Remember	CO 3	AEEB01.10 AEEB01.13 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14 AEEB01.14

	expressions.			
7	Derive the expression for form factor of sine wave.	Understand	CO 3	AEEB01.11
,	bettve the expression for form factor of sine wave.	Chacistana	603	TEED01.11
8	Explain the terms phase, phase difference and phasor diagram with neat example.	Understand	CO 3	AEEB01.11
9	Derive the expressions for reactance and impedance of inductor and capacitor.	Understand	CO 3	AEEB01.13
10	Explain the concept of j notation.	Understand	CO 3	AEEB01.13
11	Discuss the concept of reactance and impedance offered by R, L, C parameters.	Understand	CO 3	AEEB01.12
12	Explain the conversion of polar to rectangular form.	Understand	CO 3	AEEB01.12
13	Explain the conversion of rectangular to polar form.	Understand	CO 3	AEEB01.12
14	Explain the concept of susceptance and admittance offered by R, L, C parameters.	Understand	CO 3	AEEB01.12
15	Explain admittance triangle in detail.	Understand	CO 3	AEEB01.12
	Part – C (Problem Solving and Critical Thinking	<u>z)</u>	l	
1	A sine wave has a frequency of 50 kHz. How many cycles does it complete in 20ms?	Understand	CO 3	AEEB01.14
2	A sine wave has a peak value of 25 V. Determine the following values a) rms b) peak to peak c) average	Understand	CO 3	AEEB01.14
3	The period of a sine wave is 20 milliseconds. What is the frequency?	Understand	CO 3	AEEB01.14
4	The frequency of a sine wave is 30 Hz. What is the period?	Understand	CO 3	AEEB01.14
5	A wire is carrying a direct current of 20A and a sinusoidal alternating current of	Understand	CO 3	AEEB01.14
	peak value 20A. Find the RMS value of the resultant current in the wire.			
6	A sine wave has a frequency of 50kHz. How many cycles does it complete in 20ms?	Understand	CO 3	AEEB01.14
7	Find form factor and peak factor for a given waveform.	Understand	CO 3	AEEB01.14
8	Find RMS value for a given waveform.	Understand	CO 3	AEEB01.14
	5V			
9	A sinusoidal voltage applied to capacitor 0.01 μF . The frequency of sine wave is 2	Understand	CO 3	AEEB01.12
10	kHz. Determine the capacitive reactance. A sinusoidal voltage applied to inductor 2mH. The frequency of sine wave is 3	Understand	CO 3	AEEB01.12
	kHz. Determine the inductive reactance.	XX 1	~	
11	A 50 Ω , resistor is connected in parallel with an inductive reactance of 30 Ω . A 20V signal is applied to the circuit. Find the total impedance and line current in the circuit.	Understand	CO 3	AEEB01.13
12	If the voltage applied is (10-8j) V and current flowing through circuit is (3–5j) A. Determine complex power and circuit constants.	Understand	CO 3	AEEB01.13
13	If $R=100 \Omega$, and $C=0.2\mu F$ are connected in parallel with 20V,5kHz Determine the total current, phase angle and total impedance of the circuits.	Understand	CO 3	AEEB01.13
14	A signal generator supplies a 30V, 100 Hz signal to circuit If R=10 Ω , L = 20mH, C=50 μ F.determine the impedance, line current and phase angle.	Understand	CO 3	AEEB01.13
15	If R=25 Ω , L = 64mH, C=80 μ F are connected in series with 110V and find current, VR, VL and VC.	Understand	CO 3	AEEB01.13
	MODULE -IV			
		•	•	·

COMPLEX POWER ANALYSIS						
1	Part – A (Short Answer Questions) Draw the power triangle for L.	Remember	CO 4	AEEB01.15		
2	Draw the power triangle for C.	Understand	CO 4	AEEB01.15 AEEB01.15		
3	Draw the power triangle for RL.	Remember	CO 4	AEEB01.15		
4	Draw the power triangle for RC.	Remember	CO 4	AEEB01.15		
5	Draw the power triangle for RLC.	Understand	CO 4	AEEB01.15		
6	How do you calculate power factor?	Understand	CO 4	AEEB01.15		
7	What is power factor and why is it important?	Understand	CO 4	AEEB01.15		
8	What will happen if power factor is more than 1?	Understand	CO 4	AEEB01.15		
9	What is the cause for power factor?	Understand	CO 4	AEEB01.15		
10	What is the power factor formula?	Understand	CO 4	AEEB01.15		
11	Define real power	Understand	CO 4	AEEB01.16		
12	Define reactive power	Understand	CO 4	AEEB01.17		
13	Define apparent power	Remember	CO 4	AEEB01.19		
14	Define complex power	Understand	CO 4	AEEB01.15		
15	Define power factor	Understand	CO 4	AEEB01.15		
	Part – B (Long Answer Questions)					
1	Explain the concept of active, reactive, apparent power and draw power triangle for L.	Understand	CO 4	AEEB01.15		
2	Explain the concept of active, reactive, apparent power and draw power triangle for C.		CO 4	AEEB01.15		
3	Explain the concept of active, reactive, apparent power and draw power triangle for RL.	Understand	CO 4	AEEB01.15		
4	Explain the concept of active, reactive, apparent power and draw power triangle RC.	Understand	CO 4	AEEB01.15		
5	Explain the concept of active, reactive, apparent power and draw power triangle RLC.	Understand	CO 4	AEEB01.16		
6	Co-relate the impedance triangle with power triangle and explain In detail.	Understand	CO 4	AEEB01.17		
7	Co-relate the voltage triangle with power triangle and explain In detail.	Understand	CO 4	AEEB01.17		
8	Derive the expression for true power in ac circuits.	Understand	CO 4	AEEB01.17		
9	Predict the voltage, current and power in series RC circuit using sinusoidal excitation.	Understand	CO 4	AEEB01.17		
10	Define the power factor of the circuit and give its importance.	Understand	CO 4	AEEB01.15		
11	How do you convert kW to kVA?	Understand	CO 4	AEEB01.15		
12	How do you convert kW to KVA?	Understand	CO 4	AEEB01.19		
13	Why is apparent power greater than real power?	Understand	CO 4	AEEB01.15		
14	What is the difference between active power, reactive power and apparent power?	Understand	CO 4	AEEB01.15		
15	Explain about kVAR?	Understand	CO 4	AEEB01.15		
	Part – C (Problem Solving and Critical Thinking		~~ .	T . ==== 0.1 . =		
1	In an ac circuit two parallel impedances are connected in series with Z1 across AB terminals, where AB terminals are fed by 200V 0degrees. Determine total active power, reactive power and apparent power and power factor of each branch and voltage drop across Z3 $Z1 = (8+j) \text{ ohms}$ $Z2 = (1+6j) \text{ ohms}$ $Z3 = (3+5j) \text{ ohms}.$	Understand	CO 4	AEEB01.17		
2	In an ac circuit two parallel impedances are connected in series with Z1 across AB terminals, where AB terminals are fed by 200V 0degrees. Determine total active power, reactive power and apparent power and power factor of each branch and voltage drop across Z3. $Z1=(3+2j) \text{ ohms}$ $Z2=(4+5j) \text{ ohms}$ $Z3=(2+4j) \text{ ohms}.$	Understand	CO 4	AEEB01.17		
3	If the voltage applied is (10- 8j) V and current flowing through circuit is (3–5j) A, Determine complex power and circuit constants.	Understand	CO 4	AEEB01.15		
4	If the voltage applied is (10+8j) V and current flowing through circuit is (3+5) A, calculate complex power and circuit constants.	Understand	CO 4	AEEB01.17		
5	The voltage of a circuit is $v = 200 \sin(wt + 300)$ and the current is $i = 50 \sin(wt + 600)$. Determine	Understand	CO 4	AEEB01.17		
	i) The average power, reactive power and apparent power.					

	ii) The singuit elements if = 100 = mad/as:			
	ii) The circuit elements if $w = 100\pi$ rad /sec.	II. danster 1	00.4	AEED01.15
6	In an AC circuit source applied is v=100sin50t across series combination of 16	Understand	CO 4	AEEB01.17
	ohms and 30H, determine total impedance, phase angle between voltage and			
	current in circuit and power factor of the circuit.			
7	For a series RL circuit with R=2k Ω and L=30mH. Determine total impedance Z,	Understand	CO 4	AEEB01.17
	current I, phase angle voltage across the resistance VR and voltage across the			
	inductor VL.			
8	A series RC circuit with f=50Hz, R=25k Ω and C=25 μ F. Determine total power	Understand	CO 4	AEEB01.15
	and phase angle.			
9	A series RL circuit with f=50Hz, R=25kΩ and 0.2mH. Determine reactive power	Understand	CO 4	AEEB01.15
	and phase angle.			
10	A series RLC circuit with f=50Hz, R=25kΩ, 0.2mH and C=25μF. Determine	Understand	CO 4	AEEB01.15
	apparent and phase angle.			
11	A series RLC circuit with f=50Hz, R=25kΩ, 0.2mH and C=25μF. Determine	Understand	CO 4	AEEB01.15
- 1	power triangle and voltage triangle.	Circuita		1122201.10
12	A series RC circuit with $f=50$ Hz, $R=5k\Omega$ and $C=0.2\mu F$. Determine total	Understand	CO 4	AEEB01.17
12	impedance Z, current I, phase angle, voltage across the resistance VR and voltage	Chacistana	CO 4	ALLD01.17
	across the capacitance VC.			
12	*	Understand	CO 4	AEEB01.17
13	Determine reactive power and phase angle of series RLC circuit with f=50Hz,	Understand	CO 4	ACEBUI.I/
	R=10Ω, L=0.2mH and C=0.5μF.	TT. 4		APPROLIT
14	Determine active power and phase angle of series RLC circuit with f=50Hz,	Understand	CO 4	AEEB01.15
	R=10Ω, L=0.2mH and C=0.5μF.			
15	Determine apparent power and phase angle of series RLC circuit with f=50Hz,	Understand	CO 4	AEEB01.15
	$R=10\Omega$, $L=0.2$ mH and $C=0.5$ μ F.			
	MODULE –V			
	NETWORK TOPOLOGY			
	Part - A (Short Answer Questions)			
1	Define network topology and write its importance in electrical circuits.	Remember	CO 5	AEEB01.20
2	Define co-tree.	Remember	CO 5	AEEB01.20
3	Define tree.	Remember	CO 5	AEEB01.20
4	Give the properties of incidence matrix.	Remember	CO 5	AEEB01.21
5	Give the properties of tie-set matrix.	Remember	CO 5	AEEB01.20
6	Give the properties of cut-set matrix.	Remember	CO 5	AEEB01.20
7	Write the expression for number of links.	Remember	CO 5	AEEB01.20
8	For 8 elements 5 node graph, determine number of links.	Understand	CO 5	AEEB01.20
9	For 8 elements 5 links, determine number of node graphs.	Understand	CO 5	
10	Define basic tie-set and give the condition to form basic tie-set.			AEEB01.20
		Remember	CO 5	AEEB01.20
11	Define basic cut-set and give the condition to form basic cut-set.	Remember	CO 5	AEEB01.20
12	Define the duality and the dual elements.	Remember	CO 5	AEEB01.20
13	Give the importance of tie-set matrix with electrical networks.	Understand	CO 5	AEEB01.20
14	Give the importance of incident matrix with electrical networks.	Understand	CO 5	AEEB01.20
15	Give the importance of cut-set matrix with electrical networks.	Understand	CO 5	AEEB01.22
	Part - B (Long Answer Questions)			
1	Define terms graph, oriented and non-oriented graph, planar and non- planar.	Remember	CO 5	AEEB01.20
2	Explain the formation of incidence matrix with an example.	Understand	CO 5	AEEB01.21
3	Explain the formation of cut-set matrix with an example.	Understand	CO 5	AEEB01.21
4	Demonstrate the formation of matrix using tie-sets for the determination of	Understand	CO 5	AEEB01.20
	relation between link currents and branch currents.			31.20
5	Describe the method for the formation of matrix used to give relation between	Understand	CO 5	AEEB01.20
	branch and twig voltages.			
6	Explain the dual elements.	Understand	CO 5	AEEB01.20
7	Explain the dual network with neat example.	Understand	CO 5	AEEB01.21
8	Determine the branch currents in terms of link currents using tie-set matrix with	Understand	CO 5	AEEB01.21
	an example.			
9	Determine the branch voltages in terms of twig voltages using cut-set matrix with	Understand	CO 5	AEEB01.22
	an example.			
10	Take any graph and draw all possible trees, basic tie-sets.	Understand	CO 5	AEEB01.22
11	Take any graph and draw all possible trees and basic cut-sets.	Understand	CO 5	AEEB01.22
12	Take any graph, draw all possible trees and form incidence matrix for one tree.	Understand	CO 5	AEEB01.22
14 1				

12	Derive the relation between twig voltages and branch voltages and write current		CO 5	AEED01 20
13	equations.	Understand	CO 3	AEEB01.20
14	Define terms tree, co-tree, branches, links, nodes and degree of the node.	Remember	CO 5	AEEB01.21
15	Write list of properties of a Tree.	Understand	CO 5	AEEB01.21
10	Part – C (Problem Solving and Critical Thinkin		000	1122001.21
1	Draw the graph from incident matrix and write tie-set matrix 1 0 0 0 -1 -1 -1 -1 0 0 0 0 1 -1 0 0 1 0 1 1	Understand	CO 5	AEEB01.20
2	Draw the graph from incident matrix and write cut-set matrix 1 0 0 0-1 -1 -1 -1 0 0 0 0 1 -1 0 0 1 0 1 1	Understand	CO 5	AEEB01.20
3	Draw the following i. Graph ii. Tree iii. Dual network of figure shown below.	Understand	CO 5	AEEB01.20
4	Explain the principal of duality and draw the dual network.	Understand	CO 5	AEEB01.22
5	Determine the branch voltages using cut-set marix.	Understand	CO 5	AEEB01.20
6	Develop the fundamental tie-set matrix for the circuit shown in figure. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Understand	CO 5	AEEB01.20
7	Draw the following i. Graph ii. Tree	Understand	CO 5	AEEB01.20

Prepared by:

Mr. A Nareshkumar, Assistant Professor, EEE