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1 Introduction to Finite Element
Method

The digital computer has exerted a profound impact on engineering education, research, and prac-
tice. A versatile numerical method in the hands of engineers is the Finite Element Method (FEM). A
general-purpose program based on FEM implemented on a computer provides a universal tool for engi-
neering analysis, design optimization, and simulation. This chapter sets the stage for the study of finite
elements and solution procedures that are described in detail in the subsequent chapters. Applications
to solid mechanics and structural mechanics problems are stressed in these chapters. More advanced
applications of FEM are identified in the last chapter as topics for further study.

1.1 Engineering Analysis

1.1.1 Objectives of engineering analysis

During the design and development of a product (as an assemblage of parts), the analyst is quite often
required to: (i) calculate the displacements at certain points; (ii) calculate the entire distribution or
displacement field; (iii) determine the stress distribution and hence predict strength; (iv) determine the
natural frequencies and associated modes of vibration; (v) determine the critical buckling loads and the
associated mode shapes; (vi) predict and plot forced vibration response; (vii) predict and plot transient
response; (viii) predict temperature distribution and hence thermal stress distribution; (ix) predict crack
growth, residual strength and fatigue life; (x) predict velocity, pressure and temperature distribution in
fluids; (xi) study fluid—structure interactions (hydro-elasticity, aero-elasticity, etc.); (xii) study nonlin-
ear effects (geometric and material nonlinearities); (xiii) determine electric and magnetic fields, and
many more!

1.1.2  Methods of engineering analysis

To achieve the above objectives, the analyst has at his disposal three distinct approaches: (i) analytical
methods; (ii) experimental techniques and (iii) numerical methods.

Analytical methods [1.1] provide quick closed form solutions. But, they treat only simple geome-
tries and idealized support and loading conditions. Using experimental techniques, scaled models or
prototypes can be tested. This approach is costly both in terms of the model, instrumentation, test facil-
ities and the actual test itself. Numerical methods require very few restrictive assumptions; it can treat
complex geometries and realistic support and loading conditions. They are far more cost effective than
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experimental techniques. The current interest in the engineering community on the development and
application of computational tools based on numerical methods is thereby justified. This in fact was the
motivation to develop the most versatile numerical method, namely, the finite element method (FEM).

The goal of analysis is to verify a design prior to manufacture. While there are several methods of
engineering analysis, the most comprehensive is the finite element analysis (FEA).

The finite element method is essentially dependent for its success on the skillful use of digital
computers. The method is put in the hands of professional engineers in the form of general-purpose
programs.

[t is in general possible to use the FEM to provide accurate numerical solutions to almost any math-
ematical problem or mathematically modelled physical problem in diverse fields like solid mechanics,
mechanics of composites, fluid dynamics, heat transfer, etc. Many continuum mechanics problems
arise in engineering and these are usually posed by appropriate differential equations and boundary
conditions to be imposed on unknown functions. All such problems can also be dealt with by FEM.

1.1.3 History of finite element method

Finite element technology has emerged as a new discipline combining continuum mechanics with
approximation theory, numerical analysis, and computer science. It draws from recent advances in
each of these disciplines and is nourished by them, but it also stands as a viable branch of engineering
in its own right.

In the pre-computer era, the finite element concept was used in the analysis of naturally discrete
systems such as trusses, frames, electrical circuits, etc. The modern version of FEM was first used in
engineering practice by discretizing a continuum using simple sub-domains with multiple connecting
points (nodes) by Turner et al., [1.2], Argyris [1.3], and Clough [1.4]. The name finite element was
first coined by Clough [1.4] in the year 1960. Parallel developments were also reported in applied
mathematics literature.

The development of modern finite element technology therefore spans a period of forty years and
may be divided into four stages, with each stage spanning eight to ten years.

The first stage is characterized by development of simple two- and three-dimensional continuum el-
ements, mostly for solid mechanics applications. The variational approach for deriving element equa-
tions was introduced and all the elements developed belonged to the stiffness (displacement) model.

In the second stage, the variational approach was expanded to include multi-field and generalized
variational principles with relaxed inter-element displacement continuity requirements leading to the
mixed models and hybrid models. Weighted-residual methods were introduced to extend the finite
element method for the analysis of field problems. The mathematical foundations of FEM received
a great deal of attention during this stage. Efficient numerical methods for the solution of algebraic
equations and for the extraction of eigen values were developed. Sub-structuring (super elements) and
modal synthesis techniques for solving very large problems were introduced. A number of commercial
FEM systems were developed and released for public use. Also, FEM penetrated other areas of engi-
neering analysis such as heat transfer, fluid dynamics, biomechanics, geomechanics, acromechanics,
fracture mechanics, mechanics of laminated composite materials and structures, electromagnetism, etc.
Further applications to nonlinear and time-dependent (transient) response and coupled-field problems
(soil-structure, fluid—structure, etc.) were also made.

The third stage involved the development and applications of special elements. Singular elements
for computational fracture mechanics, boundary-layer elements for viscous fluid flow analysis, infinite




1.1 Engineering Analysis 3

elements for modelling unbounded domains, rigid links, and gap elements for contact problems are
some of the examples. Other activities included the development of the boundary element method,
coupling of FEM with continuum mechanics methods such as Rayleigh-Ritz and Bubnov—Galerkin
methods, and establishing equivalence and similarities between various finite element methods.

The fourth stage is characterized by new application fields, development of efficient algorithms
and computational strategies for new computing systems (e.g., vector multi-processor and massively-
parallel processors), widespread availability of commercial FEA software on personal computers,
workstations and supercomputers. Also increasing attention was focused on quality assessment and
control of finite element solutions. Strategies were proposed for adaptive refinement of finite element
approximation in order to achieve optimal solutions.

The success of FEM is mainly attributed to its generality, versatility, ability to model and ana-
lyze complex geometries and robustness. To date there are approximately five-hundred user-friendly,
widely distributed, well documented general purpose FEA programs and over two hundred pre and
post processor packages [1.5].

The literature on finite element technology is nearly over-whelming. The first textbook on the FEM
was published in 1967. Since then over 387 textbooks and monographs and over 338 conference
proceedings have been published on the subject [1.6].

The Finite Element Method by O.C. Zienkiewicz and R.L. Taylor, now in its fifth edition, (in vol-
umes 1-3) is the pre-eminent reference work [1.7].

1.1.4 Advantages of finite element method

In initiating the prediction of displacements, stresses, vibration frequencies, buckling loads, etc., for a
given product or its parts, the analyst must first derive the governing equations. A basic difficulty in
this approach, quite apart from the solvability of the derived equations is the ability of these equations
to represent the design conditions. Complexities in geometry, applied loads, support conditions and
material properties enter into this condition. A basic promise of the finite element method is that a
system of matrix equations governing the behaviour can be formed automatically and solved efficiently,
irrespective of the complexities of practical design conditions.

The underlying mathematics of FEM is simple to understand and the procedure easy to use. How-
ever, successful application of FEM in practice depends on the availability of a general-purpose finite
element analysis software implemented on a digital computer. Commercial FEM systems abound. A
handbook on the topic [1.5] lists and describes over fifty programs by name along with their avail-
ability. For example, these programs can solve limitless variety of problems in solid mechanics and
structural mechanics, whether linear or nonlinear, static or dynamic, elastic or plastic.

A more subtle attribute of FEM is its ability to deal with complex material models. For example, the
heterogeneous, anisotropic, nonlinear, inelastic models of laminated composite materials and sandwich
construction are handled without any significant expansion of the cost or complexity of the numerical
simulation process. FEM brings a number of special advantages to coupled thermal-structural analysis.
A consistent methodology of finite element heat transfer analysis is available [1.8] for the computation
of temperature distribution in solids and structures. It is possible to use the same general-purpose FEA
program to predict both temperature distribution due to thermal input and thermal stresses arising from
these temperatures. Also, in cases where the material properties are a function of temperature, it is
possible to assign material properties to each finite element consistent with the temperature level of
that element. It is a revolution you must be familiar with — the marriage of personal computers and




4 Chapter 1: Introduction to Finite Element Method

finite element analysis programs. Over thirty-five PC-based FEM systems are currently available in the
market [1.9]. Of these, some stand out as market leaders based on their performance, popularity and
advertising. What makes FEA on a PC so successful is its affordability. This will change the face of
engineering design in general and structural and mechanical design in particular. Technically, the size
of a finite element model that a PC can handle is limited only by the capacity of the hard disk. Best of
all, a PC-based FEM system is an excellent training tool for teaching FEM.

1.1.5 Variational principles and finite element methods

The finite element method applied to the numerical solution of solid mechanics problems can be re-
garded as applications of the known variational principles. There are several advantages: (i) the method
is thereby put on a sound theoretical foundation; (ii) the requirements for compatibility are clarified
as these are quite explicit in the statement of the energy principles; and (iii) greater flexibility in the
design of finite elements comes about because of the variety of alternatives at hand.

In addition to the minimum potential energy and minimum complementary energy principles, more
general mixed variational principles due to Hellinger-Reissner and Hu—Washizu are available. Also,
modified forms of these with relaxed inter-element displacement or stress continuity are also available.
Table 1.1 is particularly useful in classifying the many different avenues for developing finite element
methods. Among the finite element methods identified in Table 1.1, the displacement method is cer-
tainly the best understood and most widely used. The subsequent discussion is therefore confined to
the displacement method. Finite element analysis of solids and structures based on the principle of
minimum potential energy employs a piece-wise Rayleigh-Ritz procedure. Note that the assumed dis-
placement functions must satisfy sufficient continuity conditions within the domain under considera-
tion and the kinematic boundary conditions. There is, however, no requirement that the force boundary
conditions be a priori satisfied.

Table 1.1  Variational principles and finite element methods

Variational principle Finite element method

Principle of minimum potential Stiffness method/Displacement method
energy/Principle of virtual work (PMPE)

Principle of minimum complementary energy Equilibrium method/Force method
(PMCE)

Hellinger—Reissner mixed variational principle =~ Mixed method I

Modified PMPE Hybrid displacement method

Modified PMCE Hybrid stress method

Modified mixed variational principle Mixed method II

Hu-Washizu principle Displacement method

1.1.6 Basic steps in finite element analysis

The first step is the discretization of a given domain using finite elements. The domain can be a solid,
a liquid, a gas, or their combinations. A library of finite elements of different types, shapes and orders
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is available for this purpose. Each element has a finite number of nodes and each node a finite number
of degrees of freedom, which are the fundamental unknowns. The elements are inter-connected at their
nodes only and the finite element mesh (see Fig. 1.1) is generated using a pre-processor. Commercial
pre-processors have the capability of automated mesh generation and adaptive mesh refinement. The
second step is to approximate the field variable(s) over each element domain in terms of their nodal
values using inferpolation functions (also called shape functions). Derivation of element equations,
which are necessary and sufficient to determine the vector of nodal degrees of freedom for each ele-
ment, is the objective of the third step. Variational and weighted residual approaches are widely used
in this step. Computation of element matrices and vectors involves numerical integration over each el-
ement domain. The fourth step involves assembly of element equations. In the fifth step, the governing
matrix equations are appropriately modified to enforce boundary, support, symmetry and constraint
conditions. Special elements such as springs, rigid links, and gap elements are made use of for this
purpose. Solution of the governing matrix equations is accomplished in the sixth step. This will pro-
vide the vector of nodal degrees of freedom for the assemblage as well as for the individual elements.
The final step is called post-processing where the numerical results are printed, plotted, displayed, and
animated graphically. Interactive computer graphics are used for this purpose.

Fig. 1.1 A coarse-mesh, two-dimensional finite element model of a spur gear teeth

The above finite element procedure of artificially subdividing a given domain into convenient sub-
domains and assuming separate interpolation functions for each subdomain can be termed piece-wise
Rayleigh-Ritz method.
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Two approaches are available for refining a finite element model as the one shown in Fig. 1.1.
The first approach provides more number of elements of the same type. This leads to the so-called
h-convergence. In the second approach, the number of elements remains fixed, but the order of the in-
terpolation functions used within each element is increased successively. This leads to p-convergence.
In practice, a combination of h- and p-convergence is also used. Does an approximate numerical solu-
tion, obtained by the finite element method converge to the exact solution as the finite element mesh is
uniformly refined? To ensure convergence, some criteria have to be satisfied. These are discussed in
the next section.

1.1.7 Convergence criteria

If a particular problem in solid or structural mechanics is repeatedly analyzed, each time using a finer
mesh of finite elements, we generate a sequence of approximate numerical solutions. How can we be
assured that the sequence converges to the theoretically correct results? For conforming displacement
model, a relatively simple proof of convergence can be given, based on the minimum property of the
potential energy. A convergence proof is of more than academic interest. For one thing, it contributes
to the confidence with which FEM can be used in practice, because the analyst has a guarantee that
the results might approach the correct answer as the finite element mesh is refined. In addition, the
convergence proof points up the conditions necessary for fast convergence and good accuracy, and
thus provides useful guidelines in designing new elements and in improving existing elements.

Let the field variables be denoted by u = u(x, y, z) and let there be a functional denoted by m = 7(u)
that gives the governing differential equations of the problem on hand from the stationary condition

dr(u) =0.

Let us also assume that 7 contains derivatives of u through order m. Let the assumed interpolation
functions within a finite element be of the form

{u} = [N]{q}

where q is a vector of nodal degrees of freedom and N is a matrix of shape functions. If the exact u is
to be approached as the mesh of finite elements is refined, then: (i) within each element, the assumed
interpolation functions for u must contain a complete polynomial of degree m; (ii) across boundaries
between elements, there must be continuity of u and its derivatives through order m — 1; and (iii) if the
element is used in a mesh (rather than tested individually) and the boundary conditions on the mesh
are appropriate to a constant value of any of the m™ order derivatives of u, then as the mesh is refined
each element must come to display that constant value. Satisfaction of the above criteria guarantees
convergence with mesh refinement. It is to be noted here that for a given problem if no functional =
exists but the governing differential equations and associated boundary conditions are known, one can
yet obtain a finite element formulation by the weighted residual methods. Then one regards m as the
highest order derivative of the field variables u to be found in an integral expression used to generate
the finite element equations.

The patch test [1.10] was originally created by Irons as a simple test that can be performed on a
computer, so as to check the validity of a finite element formulation and its programmed implementa-
tion. If a particular element passes the patch test, we have the assurance that all convergence criteria
noted above are met. Therefore, when this element is used to model any other structure or machine
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component, successive mesh refinement will produce a sequence of approximate solutions that con-
verge to the exact solution. In other words, the patch test serves as a necessary and sufficient condition
for convergence. An element that fails the patch test cannot be trusted.

1.1.8 Role of finite element analysis in computer-aided design

Figure 1.2 identifies the modules and their functions in a typical computer-aided design procedure.

Manual design Computer aided design

[ Recognition of need | [ Geometric modelling }=—o/ |

| Problem definition | [ Engineering analysis |~=—

3]
=
g
[ Synthesis | | Design optimization |——o/ 5
2
5
3 Design review
[ Analysis | and Grs kst

| Optimization | | Automated drafting |——ro

E

[ Evaluation |

[ Presentation |

Fig. 1.2  Computer-aided design: Modules

We note that the first step is the geometric modelling of the product (an assemblage of parts). A
large number of commercial CAD systems can be employed to perform this step. They are: Catia, Un-
iGraphics, Pro/Engineer, I-Deas, Mechanical Desk Top, etc. In this step, for each part a mathematical
model (the collection of all equations and data required to define the geometry) is generated and stored
in the database. Given this information, the second step, the engineering analysis, may proceed.

In the second step, use of a general-purpose finite element analysis program (pre-processor, solver,
post-processor) is now an accepted practice. A large number of commercial FEM systems are available
for this purpose. They are NASTRAN, ANSYS, MARC, NISA, ALGOR, etc. This step generally is
and should be performed by design engineers and not necessarily by engineering analysis specialists.
Therefore, we recognize that the finite element method used must be robust, reliable and efficient. A
basic pre-requisite to perform engineering analysis by FEM is a tractable mathematical model (the
collection of all equations and data that can be used to predict the behaviour) of the product. FEM

provides numerical solutions to the chosen mathematical model, which may be changed depending on
the objectives of the analysis.
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It is no longer sufficient to design a workable product which performs the desired functions. It has
become essential to optimize the product design in order to maximize or minimize chosen variable(s)
called objective function(s). This in fact is the third step in the CAD process. Keeping this in mind,
commercial CAD and FEM systems have implemented FEM-based optimization methods as a module.

Simulation is the process of subjecting the part/product to various inputs, such as loads and environ-
ments, to determine how it behaves and thus predict the characteristics of the physical system. Though
simulation may be carried out with scale models and prototypes, the cost and effort involved make it
impossible to use these for product design since many feasible designs and operating conditions need
to be considered and evaluated. Simulation with finite element models (virtual prototypes) is particu-
larly valuable in new product design. The fourth step in the CAD process, namely design review and
evaluation, relies on the finite element model (virtual prototype) and test simulation. The final step in
CAD is automated drafting.

Finite element modelling for engineering analysis is therefore an integral part of CAD. Although
an exciting field of activity, finite element analysis is clearly a supporting activity in the larger field of
CAD.

Finally, we comment on the future of the FEM in CAD. Surely, every design engineer wants to
use FEM-based engineering analysis, design optimization, and test simulation to enhance the product
design. Given a mathematical model to be solved, finite element models will be automatically refined
until the required solution accuracy has been attained. In this automated analysis environment, the
engineer can concentrate on the design aspects while using computer aided engineering (CAE) tools
with great efficiency and benefit, With these remarks I do not wish to suggest overconfidence but to
express a realistic outlook with respect to the valuable and exciting use of finite elements and solution
procedures in engineering analysis, design optimization, and test simulation.

1.2 Mathematical Preliminaries
1.2.1 Physical problems, mathematical models and finite element solutions

The finite element method is widely used to perform engineering analysis of physical systems. The
derivation of an appropriate mathematical model of the physical problem is an important pre-requisite
for engineering analysis to proceed. The finite element method provides numerical solutions to this
mathematical model and therefore it is necessary to assess the accuracy of the numerical solution. If
the accuracy criteria are not met, the finite element model has to be refined until sufficient accuracy is
reached. Hence the development of an appropriate finite element model is crucial.

Once a mathematical model has been solved accurately by finite element analysis and the results in-
terpreted with respect to the physical system, we may well decide to consider next a refined mathemat-
ical model in order to improve our understanding of the response of the physical system. Furthermore,
a change in the physical problem statement itself may be necessary, and this in turn will also lead to
additional mathematical models and their finite element solutions. This iterative solution process is
shown in Fig. 1.3.

In summary, we should keep in mind that the crucial step in finite element analysis of physical
systems is always choosing an appropriate mathematical model. Furthermore, the chosen mathematical
model must be reliable and effective. In the process of analysis, the analyst has to judge not only
the accuracy of the finite element solution but also its validity. Choosing the mathematical model,




1.2 Mathematical Preliminaries 9
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problem

Physical problem

" Improve
Mathematical model mathematical model

Finite element solution

* Elements Refine finite
= Meshes element model
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convergence of finite
element solution

I Interpretation of results

-

Design modification and
optimization

Fig. 1.3  Physical problems, mathematical models, finite element solutions

solving this model by appropriate finite element procedures, and judging the results are the fundamental
ingredients of an engineering analysis.

Some classical techniques used for the formulation and solution of mathematical models of en-
gineering systems is well documented (see Bathe [1.11]). Two categories of mathematical models
are considered: lumped-parameter models and continuum-mechanics-based models. We also refer to
these as discrete-systems and continuous-systems mathematical models. Discrete-system mathemati-
cal models lead to steady state problems, propagation problems and eigen value problems. Continuous-
system mathematical models lead to differential equation formulations, variational formulations and
weighted residual methods.

1.2.2 Differential equations formulations

Continuum-mechanics-based mathematical modelling of systems lead us to differential equations. The
governing differential equations must be satisfied throughout the domain of the physical system, and
before their solution can be attempted, they must be supplemented by boundary conditions and also
by initial conditions. In initiating engineering analysis of a part/product, the analyst must first derive
the governing differential equations. A basic difficulty in the approach, quite apart from the solvability
of the derived equations, is the ability of these equations to represent the complexities in geometry,
applied loads, support conditions and material properties. In summary, we face difficulties not only
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in deriving the governing differential equations, but also in their solution. Therefore, this approach is
suitable for providing exact solutions only for very simple physical systems. For example, consider a
bar with varying cross-section shown in Fig. 1.4 subjected to body force b, and a concentrated load R.
The governing differential equation for this problem is

d du(x) 5
= [EA(X) - ] + bx(x) =0in Q, (1.1)
supplemented by the boundary conditions,
u(x=0)=0, (1.2)
du
EA(x)— = R, (1.3)
dx x=L

where E is the Young's modulus of the material and A is the cross-sectional area of the bar. An exact
solution to the problem is not possible without an explicit equation for A(x). The difficulties associated
with the differential equations formulations have given impetus to variational formulations.

Fig. 1.4 A bar subjected to axial loads

1.2.3 Variational formulations

Continuum-mechanics-based mathematical modelling of solids and structures lead us to variational
formulations. The essence of the approach is to calculate the total potential 7 of the system and to in-
voke the stationarity of 7, i.e., @7 = 0, with respect to the state variables. The variational formulations
are effective for the solution of solid mechanics and structural mechanics problems by the Rayleigh—
Ritz method. Indeed, the FEM for solid/structural mechanics problems can be regarded as a piecewise
Rayleigh—Ritz method!

The total potential 7 is also called the functional of the problem. An important question then arises:
How can we establish an appropriate functional corresponding to a physical problem?

For solid mechanics and structural mechanic problems, a number of functionals are applicable. For
instance, we can employ the potential energy functional 7, the complimentary energy functional 7,
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the Hellinger—Reissner functional myg, the Hu—Washizu functional mgw, and a number of modified
forms of these with relaxed requirements on inter-element displacement or stress continuity which
are also available. Table 1.1 is particularly useful in identifying the many different possibilities for
developing finite element methods based on these functionals.

For example, the potential energy functional governing static buckling analysis of the problem
shown in Fig. 1.5 is

£ L
R P [ (dw\® e
0 0
and the essential boundary conditions are
w(x=0) =0, (1.5)
dw
St =0 (1.6)
dx x=0
w
Z
7
Z
Z
P
0 =
Z <
Z
7
Z
7]
[ |
| = |

Fig. 1.5 A column subjected to compressive load

The basic step in the Rayleigh—Ritz method is to assume a solution of the form

w(x) = aixfi(), (1.7)

where f;(x) are linearly independent trial functions and a; are multipliers to be determined. We have to
assume the trial functions f;(x) such that the essential boundary conditions are a priori satisfied. The
parameter a; is determined from the equations

onp 3
—62—0,1—1,2,3,...,71. (]'8)
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There are some classes of problems for which variational formulations are not available. This has
given impetus to the development of weighted residual methods.

1.2.4 Weighted residual methods

In a previous section we have discussed the differential equations formulation of physical problems.
For thermal analysis, fluid flow analysis, electromagnetic fields, etc., the governing differential equa-
tions, appropriate boundary and initial conditions are well known. However, closed form solutions
are possible for simple systems only. For more complex systems, weighted residual methods must be
employed. Indeed, the finite element method for field problems can be regarded as an extension of
these.

Consider the analysis of a steady state field problem using its differential equations formulation,

L[] = r in domain £2, (1.9)

in which L is a linear differential operator, ¢ is the state variable to be calculated, and r is the forcing
function. The solution to the problem must also satisfy the boundary conditions

Bi[¢] = gi at boundary S;(i = 1,2,...). (1.10)

The basic step in the weighted residual method is to assume a solution of the form

n
ﬁ-_—zai' i (1.11)
i=l1

where the f; are linearly independent trial functions and a; are multipliers to be determined. We have
to choose the functions f; in (1.11) so as to satisfy all boundary conditions in (1.10), and then calculate
the residual

R=r—L<Za.—~f,-). (1.12)
i=1

For the exact solution the residual is of course zero. A good approximation to the exact solution
would imply that R is small at all points of the solution domain 2. The various weighted residual
methods differ in the criteria that they employ to calculate a; such that R is small. However, in all the
methods we determine the a; so as to make a weighted average of R vanish. In the Galerkin method,
the parameters q; are determined from the equation

/ﬁ*RdQ:O(i=1,2,3,...,n), (1.13)
111

where (0 is the solution domain.

An important step in using a weighted residual method is the solution of the simultaneous equations
for the parameters a;. We note that since L is a linear operator, a linear set of equations in the parameters
a;j is generated. In addition, the coefficient matrix is symmetric (and also positive definite) if L is a
symmetric and also positive definite operator. The fundamental difficulty in using the weighted residual
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method in practice is because the trial functions must be 2m times differentiable and must satisfy all
essential and natural boundary conditions, where 2m is the order of the highest derivative present in the
problem governing the differential equations. Therefore, the weighted residual method is used in the
context of the FEM in a different form, namely, in a form that allows the use of trial functions which
are to be m times differentiable only and do not need to satisfy a priori the natural boundary conditions.
The procedure would be to weigh the governing differential equations(s) in the domain with suitable
weight function(s); integrate the resulting equation(s) with a transformation using integration by parts
(or more generally using the divergence theorem); and substituting the natural boundary conditions.
This leads us to a weak statement.

1.2.5 Matrix algebra

The use of vectors and matrices is of fundamental importance in engineering analysis by finite element
method. The objective of this section is to present the fundamentals, with emphasis on those aspects
that are important in finite element analysis.

Matrices are an ordered array of numbers that are subjected to specific rules of addition, multiplica-
tion, and inversion. Whenever the elements of a matrix obey a certain law, we can consider the matrix
to be of special form symmetric, diagonal, banded, etc.

Two matrices A and B can be multiplied to obtain C = AB if and only if the number of columns in
A is equal to the number of rows in B. If A is of order p x m and B is of order m x g, then for each
element of matrix C, we have,

m
Cj= Zaikbkj, (1.14)
k=1

and C is of the order p x g.

With regard to matrix division, it strictly does not exist. Instead, an inverse matrix is defined. The
inverse of a matrix A is denoted by A ~!. Assuming that the inverse exists, the elements of A ~! are
such that A ~'A = I and AA~" = I, where I is the identity matrix.

A matrix that possesses an inverse is said to be nonsingular. A matrix without an inverse is a singular
matrix. To obtain the inverse of a general matrix, we need to have a general algorithm.

A practical way of calculating the inverse of a matrix A of order n x n is to solve the n systems of
equation

AX =1, (1.15)

where I is the identity matrix of order » and we have X = A ~!. For the solution of equations in (1.15),
one can use the well known Gaussian elimination algorithm.

The trace and determinant of a matrix are defined only if the matrix is square. The trace of the
matrix A is denoted as tr(A) and equal to

n
tr= E Qji,
i=1

where n is the order of A.
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The determinant of an n x n matrix A is denoted as detA and is given by the recurrence relation

detA = Y (—1)"" ay;detAy;,
=1

where Aj; is the (n — 1)(n — 1) matrix obtained by eliminating the 1*' row and /™ column from the
matrix A.
A set of simultaneous linear algebraic equations may be symbolized as

AX =b. (1.16)
Solution for X may be symbolized as
X =A"h

A square matrix is called singular if its determinant is zero. If A in (1.16) is singular, there is no
unique solution vector X, and standard equation solvers will fail. Let A be an n x n matrix and X an
n % I column vector. Also let X # 0, which means that at least one coefficient X; is nonzero. Then for
all X,

if XTAX > 0, A is called positive definite.

if XTAX > 0, A is called positive semi-definite.

1.3 Numerical Methods in Finite Element Analysis

1.3.1 Interpolation functions

In the finite element method, there is a need to approximate the field variables over each element
domain in terms of their nodal values using interpolation functions (also called shape functions). How-
ever, to ensure monotonic convergence of finite element solutions, the interpolation functions should a
priori satisfy the so-called convergence criteria. The two requirements for monotonic convergence are
that the elements (or the mesh) must be compatible and complete. For one-dimensional elements, C”
continuous Lagrange and C' continuous Hermite polynomial functions, well known in the mathematics
literature, are used as interpolation functions. For two- and three-dimensional continuum elements and
for structural elements (beam, plate, shell), procedures to derive appropriate interpolation functions are
outlined in the subsequent chapters.

1.3.2 Numerical integration techniques
An important aspect of finite element analysis is the use of numerical integration techniques to compute

element matrices and vectors. The required integrals in the one-, two- and three-dimensional cases
respectively, can be written as

1= [ Fle)ds
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1= [ F(&magan; and

i / F (€, 1, C)dédndc.

These integrals are evaluated numerically using

1= [F©)de =3 WiF @);

i=1
n

1= [Flemaen=3"

WiW;F (&) ;
i=l j=I1
n n n
Ir= / F(§,m,Q)ddnd =y > > " WiWWiF (&1, G) ,
i=1 j=1 k=1
where the W;, W;, and Wy are the weighting factors, and (&;, ;> Cx) denote sampling point locations and
n denotes number of sampling points.

In finite element analysis we integrate matrices, which means that each element of the matrix con-
sidered is integrated individually. Hence for the derivation of numerical integration formulas, we need
to consider a typical element of a matrix, which we denote as F. A very important numerical integra-
tion technique in which both the positions of the sampling points and the weights have been optimized
is the Gauss quadrature formula. For the one-dimensional case, we have

1= [Feae=> wir(@.
=1

We require n sampling points (also called Gauss points) to integrate exactly a polynomial of order
at most (2n — 1). Polynomials of orders less than (27 — 1) are also integrated exactly.

A great deal of research has been done on the development of suitable numerical integration formu-
las for quadrilateral and triangular domains in two-dimensions, hexahedral and tetrahedral domains in
three-dimensions.

1.3.3 Static analysis—solution of equilibrium equations

The computational efficiency of finite element analysis depends on the numerical methods used for the
solution of the governing matrix equations. In this section, we are concerned with the solution of the
simultaneous equations that arise in static analysis of solids and structures. Specifically, we discuss the
solution of the equations that arise in linear static analysis

K{Q} = {F}, (1.17)

where K is the stiffness matrix, Q the vector of nodal degrees of freedom, and F the vector of nodal
forces.

There are two different approaches for the solution of the equations in (1.17) — direct solution
techniques and iterative solution techniques.
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The most effective direct solution techniques currently used are basically applications of Gauss
elimination algorithm. The basic algorithm can be applied to any set of simultaneous linear equa-
tions. Its effectiveness in FEA depends on the specific properties of the assembled matrix: symmetry,
bandedness, sparsity and positive definiteness.

The mathematical operations of Gauss elimination reduce the matrix K to upper triangular form,
i.e., a form in which all elements below the leading diagonal are zero. Starting with the last equation,
it is then possible to calculate by back substution all unknowns in the order @, Qn—1,..., Q1. A very
important aspect of the computer implementation of the Gauss elimination procedure is referred to as
the active column solution or the skyline reduction method. The use of bandwidth minimization pro-
cedures can be very important in practice because the mean half-bandwidth of a stiffness matrix may
initially be rather large as a result of the element and nodal point generation schemes used. Further-
more, the active columns of the matrix K are stored in a one-dimensional array. Cholesky factorization,
static condensation, sub structuring, and frontal solver are some other schemes that are in principle,
applications of the basic Gauss elimination procedure.

It is informative to note that during the initial developments of the finite element method, iterative
solution algorithms have been employed. A basic disadvantage of an iterative solution is that the time
of solution can be estimated only very approximately because the number of iterations required for
convergence depends on the condition number of the stiffness matrix K. It is primarily for this reason
that the use of iterative solvers in finite element analysis was largely abandoned, while the direct solvers
have been refined and rendered extremely effective. The Gauss-Seidel iterative procedure continues to
find use. However, the conjugate gradient method is particularly attractive.

The finite element equations to be solved in nonlinear analysis of solids and structures are, at time

t+ At,
AR _HATR 0, (1.18)

where the vector "+ 2'F stores the externally applied nodal loads and “+#7R is the vector of nodal forces
that are equivalent to the element stresses. Both vectors in (1.18) are evaluated using the principle of
virtual displacements.

Since the nodal point forces ‘4R depend nonlinearly on the nodal point displacements, it is nec-
essary to iterate in the solution of (1.18). The most frequently used iteration scheme for the solution of
nonlinear finite element equations are the Newton-Raphson and other closely related techniques. An
important requirement of nonlinear finite element analysis is frequently the calculation of the collapse
load of a structure. A load-displacement constraint method proposed by E.Riks can be used for this

purpose.
1.3.4 Vibration analysis—solution of eigen problems
The finite element equations to be solved in vibration analysis of solids and structures are

K¢ = AMg, (1.19)

where K and M are, respectively, the stiffness matrix and mass matrix of the finite element model.
The cigen values \; and the eigen vectors ¢, are the natural frequencies (radians/s) squared (w?)
and the corresponding mode shape vectors, respectively. We concentrate in particular on the cal-
culation of the smallest eigen values Ay, Az, ..., A, and corresponding eigen vectors ¢y, @2, ..., @p.
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The solution methods considered here can be subdivided into four groups: the vector iteration meth-
ods; the transformation methods; polynomial iteration techniques; and sturm sequence methods. A
number of solution algorithms have been developed within each of these four groups. In addition, the
Lanc’'zos method and the subspace iteration methods are also available.

1.3.5 Dynamic response analysis—solution of equations of motion

The finite element equations for dynamic response analysis are
MQ(t) + CQ(t) + KQ(t) = F(1), (1.20)

where M, C, and K are the mass, damping and stiffness matrices; F is the vector of externally applied,
time-dependent, nodal point loads, Q, Q, and Q are the displacement, nodal point velocity and nodal
point acceleration vectors of the finite element model, all of them being time-dependent.

Mathematically, (1.20) represents a system of linear differential equations of second order with con-
stant coefficients. However, the procedures proposed for the solution of general systems of differential
equations can become very expensive if the order of the matrices is large, unless specific advantage is
taken of the special characteristics of the coefficient matrices K, C and M. In practical finite element
analysis, the procedures considered are divided into two groups: direct integration and mode superpo-
sition. The central different method, the Houbolt method, the Wilson #-method, the new-mark method,
belong to the direct integration methods group.

The dynamic response analysis by mode superposition requires, first the solution of the eigen values
and eigen vectors of the problem, then the solution of the decoupled equilibrium equations, and finally
the superposition of the response in each eigen vector. In practice, the eigen vectors are the free
vibration mode shapes of the finite element model.

The choice between mode superposition analysis and direct integration methods is merely one of
numerical effectiveness.

Nonlinear dynamic response analysis of a finite element model is in essence, performed using the
incremental formulations, the iterative solution methods, and the time integration algorithms (explicit
integration and implicit integration). The application of mode superposition in nonlinear dynamic
response analysis can be effective if only a relatively few modes shapes need to be considered.

1.3.6 Linear buckling analysis—solution methods

The matrix equation for linear buckling analysis of structures by the finite element method is
(K + AK,] {dQ} = {0}, (1.21)

where the initial stress stiffness matrix K, is calculated from an arbitrarily chosen level of membrane
stress state, and A is the factor by which this level must be increased or decreased in order to produce
buckling. At the critical (buckling) load, there is a bifurcation in a load versus displacement plot.
Two infinitesimally close equilibrium states are possible — the unbuckled state and the buckled state,
without any change in the applied loads F. Nodal displacement increments {dQ} are departures from
the configuration Q that exist just before buckling. The right hand side of (1.21) is the corresponding
change in applied nodal point loads and is therefore a null vector. Equation (1.21) is an eigen problem.




18 Chapter 1: Introduction to Finite Element Method

The computed value of A may be positive or negative, depending on the state of membrane stress used
to construct K,. Membrane stresses may be known at the outset, or they may have to be computed.
Linear buckling analysis uses K and K, based on the original, undeformed geometry of the structure
and often overestimates the actual buckling load. Most practical buckling problems are nonlinear, and
buckling analysis should be based on the tangent stiffness that prevails at the instant of buckling. These
considerations are automatically incorporated in the nonlinear finite element analysis procedures.

The reader is advised to refer Bathe [1.11] for algorithmic details. However, computer implementa-
tion of these numerical methods and its integration into a commercial FEM system that can be executed
on any computer, personal to supercomputer, is a challenge and involves many human years’ effort.
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1.5 Computational Problems

No specific computational problems are suggested in this chapter. However, students may wish to get
acquainted with the FEA software chosen for the course by using its pre-processor to create simple
geometries and discretize them using finite elements.




Unit-11
One Dimensional Elements

In the finite element method elements are grouped as 1D, 2D and 3D
elements. Beams and plates are grouped as structural elements. One
dimensional elements are the line segments which are used to model
bars and truss. Higher order elements like linear, quadratic and cubic
are also available. These elements are used when one of the dimension
is very large compared to other two. 2D and 3D elements will be
discussed in later chapters.

Seven basic steps in Finite Element Method
These seven steps include
e Modeling
Discretization
Stiffness Matrix
Assembly
Application of BC’s
Solution
Results

Let’s consider a bar subjected to the forces as shown

\

\/




First step is the modeling lets us model it as a stepped shaft consisting
of discrete number of elements each having a uniform cross section.
Say using three finite elements as shown. Average c/s area within each
region is evaluated and used to define elemental area with uniform
Cross-section.

A= A’ + Ay’ [ 2 similarly A; and A ; are evaluated

Second step is the Discretization that includes both node and element
numbering, in this model every element connects two nodes, so to
distinguish between node numbering and element numbering elements
numbers are encircled as shown.

/ORI €}




Above system can also be represented as a line segment as shown

ENONONNO

1 2 3 4

Here in 1D every node is allowed to move only in one direction, hence
each node as one degree of freedom. In the present case the model as
four nodes it means four dof. Let Q1, Q2, Q3 and Q4 be the nodal
displacements at node 1 to node 4 respectively, similarly F1, F2, F3, F4
be the nodal force vector from node 1 to node 4 as shown. When these
parameters are represented for a entire structure use capitals which is
called global numbering and for representing individual elements use
small letters that is called local numbering as shown.

Q Q Q Q
—c * 5

()

Global numbering ® o
1 2
Local numbering

This local and global numbering correspondence is established using
element connectivity element as shown

Elements Nodes
e 1 2 o Local
1 1 2
2 2 3 | } Global
3 3 4

Element Connectivity table




Now let’s consider a single element in a natural coordinate system that
varies in § and n, X; be the x coordinate of node 1 and x, be the x

coordinate of node 2 as shown below.

E=-1 E=1
Let us assume a polynomial
X=a,+a, ¢
Now
@ x=x g=-1
@x=x, &= 1
After applying these conditions and solving for constants we have
X4 =4dp - 44
Xy = ap T a;
Ap=X1+Xo/2 1= Xo-X1/2

Substituting these constants in above equation we get




X=80+a1§

X=X4+Xp + X = X4 &
2 2
X=1-& x4 +1+ & Xy
2 2
X = N,X; + NX,
N= - & N, e
> 2

Where N; and N, are called shape functions also called as interpolation
functions.

These shape functions can also be derived using nodal displacements
say gl and g2 which are nodal displacements at nodel and node 2
respectively, now assuming the displacement function and following
the same procedure as that of nodal coordinate we get

U= (10'*'(11@
U=1-& q; +1+&qp
2 2
U = Nyqq + Nog,
= [Ny N q;

92

U = Ng




U= Ng
Where N is the shape function matrix and q is displacement matrix.

Once the displacement is known its derivative gives strain and
corresponding stress can be determined as follows.

C where L = Xx»- X4
e= 1_[-1 1]|q
- 92
€=Bq
heis Ba 1L_ [-1 1] element strain displacement matrix
c=EE=BQE

From the potential approach we have the expression of IT as

From the potential energy concept

*u="/éjchzdv j uT f, dv f uTTds - {uipi

Vv Vv g =1




Since body is divide

Me= [U,— W, dv
e
n=1/éfBTqTEBC|dV { UiP;

Now total potential energy

_ 7. 5 5
=2 My = uq (fB EBAL)Q - S Qi Fi

[T =%Q'™KQ-Q'F

To extremise the potential energy

dr__ - o=kQ-F
dQr

Third step in FEM is finding out stiffness matrix from the above
equation we have the value of K as

K= BTE B dV where B= 1_ [ -1 1 ]
L

For an element

K= | BTE B A dx




But

dx _
de - L/2

Therefore now substituting the limits as -1 to +1 because the value of &
varies between -1 & 1 we have

+1

K= [B'EBALd:

-1

Integration of above equations gives K which is given as

K =AE
L

Fourth step is assembly and the size of the assembly matrix is given
by number of nodes X degrees of freedom, for the present example that
has four nodes and one degree of freedom at each node hence size of
the assembly matrix is 4 X 4. At first determine the stiffness matrix of
each element say ki, k, and ks as

\

/A1E1 2 AE,

1 -1 L, L

K,=AE = :
Ly | ow| | JAE AR




Similarly determine k, and k3

=

~ £
,A:E: ,A:'E:;\ A3’E3 - AL‘-Eﬁ
L, L K Ls L
K, = 3=
: AE, A_,E’ A.E, A.E,
S ™ L, % La [ =

The given system is modeled as three elements and four nodes we have
three stiffness matrices.

ONONNO.

Since node 2 is connected between element 1 and element 2, the
elements of second stiffness matrix (k) gets added to second row
second element as shown below similarly for node 3 it gets added to
third row third element

.®.@. @

( 1 2 3 - \
AE, - AE, 0 0 1
L L,
AE, AE; +AE; AE, 0 5
L, L, L, L,
a ) AE; AE, - AE, - AE; 3
L, L, L, L,
0 O < AQE'), A3E3 4
\ J




Fifth step is applying the boundary conditions for a given system. We
have the equation of equilibrium KQ=F

K = global stiffness matrix
Q = displacement matrix
F= global force vector

Let Q1, Q2, Q3, and Q4 be the nodal displacements at node 1 to node 4
respectively. And F1, F2, F3, F4 be the nodal load vector acting at node
1 to node 4 respectively.

oNolgc

Given system is fixed at one end and force is applied at other end.
Since node 1 is fixed displacement at node 1 will be zero, so set q1 =0.
And node 2, node 3 and node 4 are free to move hence there will be
displacement that has to be determined. But in the load vector because
of fixed node 1 there will reaction force say R1. Now replace F1 to R1
and also at node 3 force P is applied hence replace F3 to P. Rest of the
terms are zero.

After applying BC,s

( 1 () ()
AE, AE, 0 0 0 R4
L Ls
AE,  AE  AE, AE,
L4 Ly g L 9 Q @
AE, AE, AE AE -
0 L Ly T L = Q; ¢
AE AE, §
0 0 » » Q,
\ )]\ ) \ )




Sixth step is solving the above matrix to determine the displacements
which can be solved either by

e Elimination method
e Penalty approach method

Details of these two methods will be seen in later sections.

Last step is the presentation of results, finding the parameters like
displacements, stresses and other required parameters.




Body force distribution for 2 noded bar element
We derived shape functions for 1D bar, variation of these shape

functions is shown below .As a property of shape function the value of
N, should be equal to 1 at node 1 and zero at rest other nodes (node 2).

O

N,= (1+) No=(1-€)
2 2
11‘i 2 1 g

From the potential energy of an elastic body we have the expression of
work done by body force as

j u' f, dv

\'}
U =N;q; + Ny,

For an element

.
j u fbAdx

e




Where fj, is the body acting on the system. We know the displacement
function U = N1g; + N0, substitute this U in the above equation we get

=Afb./ (N4q1 + N»qy) dx

=AftJ [N1 N2] o dX
e q2

=Afj [ay 9o] [N¢| dx
J LJ
ql

"Afy q-l:f

e

r )
Afbj N, dx

qT )

Afbf N, dx

_ e J

N,
N,

dx




Similarly

./dex=_|e_
2

e

Therefore
ul f, Adx = qT A

f

e
This amount of body force will be distributed at 2 nodes hence the

expression as 2 in the denominator.




Surface force distribution for 2 noded bar element

Now again taking the expression of work done by surface
force from potential energy concept and following the same
procedure as that of body we can derive the expression of surface
force as

juTTds 2 j uT T dx

S e e

-

)
/ \
= qTi’ | ET 1 "l
[ 2 1 /}
/4

\
Te%\\-//
Where T, is element surface force distribution.

Methods of handling boundary conditions

We have two methods of handling boundary conditions
namely Elimination method and penalty approach method. Applying
BC’s is one of the vital role in FEM improper specification of boundary
conditions leads to erroneous results. Hence BC’s need to be accurately
modeled.

Elimination Method: let us consider the single boundary conditions
say Q; = a;.Extremising IT results in equilibrium equation.

Q=[Q1 Qs Qs.......... Q] be the displacement vector and
F=[Fy Fp Fauurevnnn. Fn]' be load vector

Say we have a global stiffness matrix as




Now potential energy of the form IT = % Q'KQ-Q'F can written as

IT =% (Q:K1;Q1 +Q1K12Q2+.....+ Q:KinQn
+ QK21 Q1+Q2K22Q0o+ ... .. + Q2KonQn

Substituting Q; = a; we have

IT =% (a1Kpa; +a:K12Q0+. ...+ a1 KynQn
+ Q2K218.1+Q2K22Q2+ .......... + QQKQNQN

+ QnKniar QK Q2 +QnKnnQn)
- (a1F1 + QFot +QNFN)

Extremizing the potential energy
ie  dIT/dQi=0 gives
Wherei =2, 3...N

K22Q2+K23Q3+ .......... + K2NQN = F2 - K21a1
K32Q2+K33Q3+.......... + Ks3nOn = F3 — Ksag
KN2Q2+KN3Q3+ .......... + KNNQN = Fn— Kniag

Koy Kozovooiionai, Kon Qz Fo-Kyag
Ky, Kszeorooronnn. .. Kon Q3 F3-Kziag

Kny KNgevoorooonnt. KnN QN Fn-Knzag




Now the N X N matrix reduces to N-1 x N-1 matrix as we know Q;=a;
ie first row and first column are eliminated because of known Q;.
Solving above matrix gives displacement components. Knowing the
displacement field corresponding stress can be calculated using the

relation ¢ = €Bq.

Reaction forces at fixed end say at nodel is evaluated using the relation

R1: K11Q1+K12Q2+ ............... +K1NQN'F1

Penalty approach method: let us consider a system that is fixed at
both the ends as shown

»P 2

N W N N
—

In penalty approach method the same system is modeled as a spring
wherever there is a support and that spring has large stiffness value as
shown.

Spring




Let a; be the displacement of one end of the spring at node 1 and as be
displacement at node 3. The displacement Q; at node 1 will be
approximately equal to a;, owing to the relatively small resistance
offered by the structure. Because of the spring addition at the support
the strain energy also comes into the picture of IT equation .Therefore
equation IT becomes

IT=% Q'KQ+ % C (Q, -a1)*- Q'F
The choice of C can be done from stiffness matrix as
C=max[K;] X 10

We may also choose 10° &10° but 10* found more satisfactory on most
of the computers.

Because of the spring the stiffness matrix has to be modified ie the
large number c gets added to the first diagonal element of K and Ca;

gets added to F; term on load vector. That results in.

( 3 3
K11+ C K12 K13 Q1 F1)+Cal
K21 Kzz Kzz Q2 = F2
\ K31 K:s.z Kss L Q3 F3 )

A reaction force at node 1 equals the force exerted by the spring on the
system which is given by

Reaction forces = -C (Q-a,)




Example 1

;/’ /
/] /
/

/ 1 —P 2

/] /

/) 7

4 4
A, =900mm? A, =1200mm?
E,=70 x 109 N/m2 E,= 200 X 109 N/m?2
L,=200mm L, =300mm
P =300 KN

To solve the system again the seven steps of FEM has to be followed,
first 2 steps contain modeling and discretization. this result in

Q @ 7

" =) %

o

1 2 v

Third step is finding stiffness matrix of individual elements

1 2

K =aE |1 1| 900x075x105| 1 -1 315 -3.15[1
1 _E]_1 = ——————— = 105
s |9 A 200 " 315 3.150




Similarly

2 3
§ 8 -8 |2
Y L
L |4 8 8 |3

Next step is assembly which gives global stiffness matrix

1 2 3

( )
315 -3.15 0 1
K= -3.15 315+8 -8 (1052
0 -8 8 3

. v,

Now determine global load vector

s N
R

F, |7| 300 x 103

kFa,f \. Ra )




We have the equilibrium condition KQ=F

/f/" \"-.I\ s
s are o1 (L0 R
2. 19 -3, 19 U |
10s[-315 315+8 8| | Q2| =| 300x10f " (315X10°XQ1)
~ fa fa - () !ﬂ}c‘Q'1 \
\U -0 [@) ) |‘ Q3 | r\3 [ 7
T

After applying elimination method we have Q2 = 0.26mm

Once displacements are known stress components are calculated as
follows

For element 1
G =E1[-1 1] Q1
L Q2

=94.17 N/mm?

For element 2
G, =E1[-1 1] Q2

. =.179.34 N/mm?
2 Q3




Example 2

E,=2.06 x 10° MPa

L,= L, = 304.8mm
P = 444.8N

Solution:

1

SODLNNN S
1
A,=3387.09mm2 A,=2419.35mm2 | 2
Body force =f, = 7.69 x 10-°N/mm?
} 1 2 e
1 -1 {2 28 2281 @
= 106
-1 228 2282 21
( 2 3 @)
1 -1} [1.63 -1.63}2 3¢
= 105
H 9 1.63 1.63|3
1 2 3
228 -228 0 1
K=|-2.28 228+1.63 -1.63 K082

0 -1.63

163 | 3




Body force terms Méffm
Element 1 21 fbq
D1p
2 1)2
= 3387.09 x 7.69 x 105 x 304.5{1 1
2 1)2
) [39.69}1
~ l39.692
Ll
Body force terms @;fm
Element 2 21 fp1 +fpo
— 2 @lp
foo = Aotplo |1 34fy
2 1)3
= 2419.35 ; 8{1 2
= 2419.35 x 7.69 x 105 x 304.
2 1)3

i {28.3 JZ
28.3 )3




Global load vector:

\F3) L f

Fo I7] Portfo2| =] 512.8

3 ube

3 N
39.69

b2 ] | 283 )

We have the equilibrium condition KQ=F
{ ht
( . f’”m 20 /9 + B
P8 278 0 ~
106 |.2028 6.92 163 | Q2 | =|512.8
1 -1.63 163 | Q3 8.3
S L

Q2=0.23x103mm

Q3 =25x10*mm

After applying elimination method and solving matrices we have the
value of displacements as Q2 = 0.23 X 10°mm & Q3 = 2.5X10*mm




Example 3

/| (I) 60mm
/] ‘l; \ 40mm
/|
/] 1 P o
/ g
/ Steel coppet
E=2x10° MPa E,=1 X 10° MPa
L,=800 mm L, =500mm
P =100 KN
Solution:
e  .® 7
41 2 £ %

A, = m/4 (60)° = 2827.43mm?

A, = m/4 (40)? = 1256. 63mm?
1

; 7.06
K, = AE, 1 1 _ 2827.43x2x 105 | 1 -1 _ 105 {
T[4 1 800 a1 -7.06
2 3

3 251 -251|2
. AE, |1 -1 - {
L |4 3 251 251|3

-7.06
7.06

2




Global stiffness matrix

1 2 3
707 -7.07 0 1

K=|-7.07 9583 -2513 [1052
0 -2.513 2.513 ) 3

e

Global load vector:

F, |7| 100 x 103

\ FSJ 0
Equilibrium Equation
KQ=F

Q1 0
7.07 -7.07 0

K=|-7.07 @583 -2.513 109 Q2 | =| 100 x 103

0 -2.513 2513 Q3 0

C=max[K;] X104=9.583 x 10°x104




Modification required

o~

+C Q1
7.07  -7.07 0
-7.07 9583 -2513 |105 Q2
0 -2513 2513 Q3
. gun . .
After Modification
_
9.583X 10¢ -7.07 0 Q1
-7.07 9583 -2.513 107 Q2
0 2513 9.583x104 | 3
p
Solving the matrix we have
Q1 =7.698X10mm, Q2=0.104mm,

Reaction forces

@ node 1

~

A

0 +Cat

100 x 103

0+cC

A

0

100 x 107
0

Q3=2.736 X 106mm

R,= C(Q1 —al) = -73597.44N

@ node 3

R,= C(Q3 — a3) = -26219.08N




Temperature effect on 1D bar element

Lets us consider a bar of length L fixed at one end whose temperature
Is increased to AT as shown.

i

AT(ec)

L J

p L

Because of this increase in temperature stress induced are called as

thermal stress and the bar gets expands by a amount equal to aATL as
shown. The resulting strain is called as thermal strain or initial strain

AT(°c) i
) - "OZATL ]
a = coefficient of thermal expansion
OLATL OAT

L

Thermal strain ( initial strain)




In the presence of this initial strain variation of stress strain graph is as
shown below

c
Hooke’s law
Stress 0] _E
Strain _ & - 80
c=(e-¢g)E
Eo "6
&
€-¢g

We know that

Strain energy in a bar

U=% [T ¢dv

For an element

U="% | o™ ¢ A dx

Therefore

U="% [E (c-5)7 (c-20) A dX

U="% [E (Bq-g)T (Bq-s,) A dx




U="% [ E (Bq-¢,)T (Bq-s) A dx

But dx /dg = L./2

U="1% EAeI (Bq - £0) T (Bq - &) Le/2 dE
U =% EA/2] (Bq-2)T (Bq-sg)Le d&

U =% EA/2 ] (BTqT- ) (Bq - &) Le dE

U="%Le EA/2 |[BTq"Bq - B7q7€,-Bas, +&¢7] dE
U="%LeEA2 [[BTq"Bq-¢ g2 dE

U="%Le EA/2 [[BTqTBq-¢ey-27 +&,2 dE
Therefore e

Integrating individual terms

Stiffness matrix

Thermal load
vector

U= ,d®A [[BTBd:]q
e

e o
- U

1EALe [£2
% 5 -2*—;80 déf_>

Extremizing the potential energy first term yields stiffness matrix,
second term results in thermal load vector and last term eliminates that

do not contain displacement filed




Thermal load vector

From the above expression taking the thermal load vector lets
derive what is the effect of thermal load.

We know that BT=1
L |1




Stress component because of thermal load

c=(c-¢)kE

We know ¢ = Bg and g, = aAT substituting these in above equation we
get

= (Bq - aAT) E
= EBq-E aAT

6=E1[1 1]q-E aAT
L




Example 4 A2 = 1200mm?

A1 = 900mm?2

1 —P 2

TSN SN \\‘3
RSN

0'.1=23X10'5Perﬂc Ol, =11.7 X 106 Per 0C

E,.=70x10°N/m?2 E,=200 X 10° N/m?
L,=200mm L, =300mm

P =300 KN is applied at 20% ,the temperature
is then raised to 60%

Solution:
@ @) %
o P ?
1 2 4
1 2
. 4 1
Ki=AE, ' = =90M 1 4 = 103 {315 315}
R ERE 200 A 4 315 315 |2

2 3

i 800 -800 |2
=8B [T Y e {
T |4 4 800 800 |3




Global stiffness matrix:

1 2 3
315 -315 0 1
K=|-315 1115 800 [103 2
0  -800 800 3

A

Thermal load vector:
We have the expression of thermal load vector given by

0= EA<>m['11

Element 1

6,=70 X 103 X 900 X 23 X 106 X 40

1|1
12
-57.96 (1
61 =103
57.96 )2

Similarly calculate thermal load distribution for second element

3-112.32 2

10
% 112.32




Global load vector:

% @ e
*
1
0 0, 0,
s . R
Fs 0, -57.96
F = P+6,+0, =
» 2791 = |245.64 | 103
0
 F3) 2 (112.32)
From the equation KQ=F we have
NN —s7-en—
=375 G o
-315 1115 -8¢0 |10° Q2 24564 | 103 -(- 315 X 10%)Q1-(- 8 X 105)Q3
. -800 840 e
\\/) 112.92 -(0)Q1

After applying elimination method and solving the matrix we have
Q2= 0.22mm




Stress in each element:

For element 1

G1=E1‘l_[-1 11 Q1 _E%AT
L1 Q2
=12.60MPa
For element 2
02=E21T[-1 1] {QZ B AT
2 Q3

=-240.27MPa




Quadratic 1D bar element

In the previous sections we have seen the formulation of 1D linear bar
element , now lets move a head with quadratic 1D bar element which
leads to for more accurate results . linear element has two end nodes
while quadratic has 3 equally spaced nodes ie we are introducing one
more node at the middle of 2 noded bar element.

Consider a quadratic element as shown and the numbering scheme will
be followed as left end node as 1, right end node as 2 and middle node
as 3.

o o 2
d; ds d2 -
=1

o

Let’s assume a polynomial as
— 2
Usa,+a8+a,<

Now applying the conditions as
@ node 1 u=q; &=-1
@node2 wu=q, &= 1
@ node3 u=q;, =0

qi=o,-a g ta,
Q= to g+,

q3:ao




Solving the above equations we have the values of constants

A==y 0y-Qq+d,—20;
2 2

And substituting these in polynomial we get
— 2
Usa,+a8+a,8

_ Q3. ﬁz ~ qﬂ §+(q1 +q;— zqu £2
2 ) L 2

=5(6-1) 9q +g(E+1)q, +(1-89)q;
2

2
Or

U= N,q;+N,q,+N,q,

Where N1 N, N; are the shape functions of quadratic element




1 3 2
q ’ 44 Q3 12
E=-1 £=0 =1 g=-1 €=0 g

N;= §(E-1) N=g(E+1)

2 2

Graphs show the variation of shape functions within the element .The
shape function N, is equal to 1 at node 1 and zero at rest other nodes (2
and 3). N, equal to 1 at node 2 and zero at rest other nodes(1 and 3) and
N3 equal to 1 at node 3 and zero at rest other nodes(1 and 2)




Element strain displacement matrix If the displacement field is
known its derivative gives strain and corresponding stress can be
determined as follows

WKT

U= N;q,+N,q,+N3q,

du
€= —
dx
- du d}:] By chain rule
d€ dx

Now
du i d[N;q4+N,0,+N3q5]
dz  de

Splitting the above equation into the matrix form we have

du AN NN |
dz  d 1|
: : ds

du {(2(:2-1) 25+1) -2&} [ |

dEJ qz ¢

ds




Therefore

du du ¢¢

& = =
dx dg dx

{(2&2-1) (2e-1) -2&}

d4

d

ds

e

_ L[(2§-1) (26+1) -2@/% |
| 2 2 A2 ¢

e = Bq

d3

dg
dx

B is element strain displacement matrix for 3 noded bar element

Stiffness matrix:

We know the stiffness matrix equation

K=IBTE B dv

For an element

K=J.BTE B A dx

e

- J.BTEB/;\LEdﬁ

e




Taking the constants outside the integral we get

K= E2A LeJ.BT B d&

Where
_2 [(2e-1)  (26+1) -2¢
B_i( 1) (281 2t
and B”
~ R
(28-1)
2
BT- " (22+1)
le 5
_-2& )

Now taking the product of B X B and integrating for the limits -1 to
+1 we get

K=E/20\LeJ. B™ B d¢

_ I
Ve (28-1)2 | | VA (28-1) (2841)] | -(2&-1)g
=EAL _
Ve (26-1) (22+1) | Va (26+1)2 (2e+1)e
\-(2& 1)¢ (25+1)g 42 )

Integration of a matrix results in




1 -8
K=E
EAlq 7 -8
L
-8 -8 16

Body force term & surface force term can be derived as same as 2
noded bar element and for quadratic element we have

Body force:

1/6
1/6

2/3
Surface force term:

e
1/6

213

This amount of body force and surface force will be distributed at three
nodes as the element as 3 equally spaced nodes.




Problems on quadratic element

Ex/a mple 5 ,
/|
/| /
/| 1 P 2 ?
/| /
/) 7
4 2
A, =600mm? A, = 800mm?2
E=2 x 105 N/mm?2
L= 150mm L, = 220mm
P =30 KN
Solution:
% D e
| & w
1 2 3 4
1 3 2

186 26 -213 |1

[ %)

K,=105(2.6 186 -21.3
213 -213 4262

3 5 4
169 242 -193 )3

on

K,=105/2.42 169 -19.3
193 -19.3 387 |4




Global stiffness matrix

1 2 3 4
186 -213 26 0
213 426 213 0
— 5
K=10 26 -213 355 -193
0 0 -19.3 387
0 0 24 1973
Global load vector
1@ @ 7
% 2 3 4 5|2
e (R
F, 0
F= =
Fi P
F, 0
Fs] | Rs)

5

0

0
2.4
-19.3
16.9

\




By the equilibrium equation KQ=F, solving the matrix we have Q2, Q3
and Q4 values

s e - = R-
203 426 213 0 ( & 0 | Q=125X10"mm
5 2

10 26 213 355 193 2 Q, | P _Q3=2.14X10-3mm

0 0 -193 381 -193 Q,| [° | Qs=513X10%mm
0 0 24 193 -11.3 Q ke

Stress components in each element
For element 1 @ node 1

5 - %{(2&2-1) @5+ 20k

Q3

0
O,F %} -3/2 2 2] {001} 2X10°

0.02

= 93.1 N/mm?2

For element 1 @ node 2

_ 2 (281 “
o = ﬁ( 1) (@er) _25]{02

E

Q3

0
_ 2 _1 1
G, = 150[ Z V2 0 ) {ooi 2 X 10

0.02

=13.33 N/mm?




For element 1 @ node 3

or 2{e5gh e -2%1FLJE

1

0
%_ﬁ[yz 32 -2 ]{Ooizxuﬁ

0.02
= -66.5 N/mm?

For element 2 @ node 3

or 210N 21 2ok

|
2 Q5

0.02
02/3_270[3/2 s 2}{001}2“05

0

= -63.63 N/mm?

For element 2 @ node 4

d Qs

[ ; ; 0.02
C,= 27) - V2 0 ) {0@ 2X 108

0

=-9.09 N/mm?2




For element 2 @ node 5

o - %(2&2-1) @25+1) ¢ 7,

1 Qs

25 150
0

0.02
c=2% 32 -2 | {001} 2 X 105

= 45.45 N/mm?




ANALYSIS OF TRUSSES

A Truss is a two force members made up of bars that are
connected at the ends by joints. Every stress element is in either tension
or compression. Trusses can be classified as plane truss and space truss.

e Plane truss is one where the plane of the structure remain in
plane even after the application of loads

e While space truss plane will not be in a same plane
Fig shows 2d truss structure and each node has two degrees of freedom.
The only difference between bar element and truss element is that in

bars both local and global coordinate systems are same where in truss
these are different.

Qg Q,, Qi

There are always assumptions associated with every finite element
analysis. If all the assumptions below are all valid for a given situation,
then truss element will yield an exact solution. Some of the
assumptions are:

> Truss element is only a prismatic member ie cross sectional
area is uniform along its length

> |t should be a isotropic material

> Constant load ie load is independent of time

> Homogenous material




> A load on a truss can only be applied at the joints (nodes)

> Due to the load applied each bar of a truss is either induced
with tensile/compressive forces

> The joints in a truss are assumed to be frictionless pin joints

> Self weight of the bars are neglected

Consider one truss element as shown that has nodes 1 and 2 .The
coordinate system that passes along the element (x' axis) is called
local coordinate and X-Y system is called as global coordinate
system. After the loads applied let the element takes new position
say locally node 1 has displaced by an amount q;' and node2 has
moved by an amount equal to g,.As each node has 2 dof in
global coordinate system .let node 1 has displacements g, and ¢,
along x and y axis respectively similarly gz and g, at node 2.

QD
)
&

Resolving the components g, 0,, s and g, along the bar we get two
equations as




g4/ =q,c0s6 +q, sin 6

g,' = gsc0s86 + q, sin 6
Or
di'=¢qy g+ dam

do' =gzl +q,m

Writing the same equation into the matrix form

q1| 4 m 0 0

a5y 0 0 { m

q=Lg

~

d1
9z
ds

94

-

-~

Where L is called transformation matrix that is used for local —global

correspondence.
Strain energy for a bar element we have
U=%q'Kq
For a truss element we can write
U =1 qIT K ql

Whereg' =Lgandg''=L"q"




Therefore

U:]/ZqITKqI

% LTq"K Lg

72 Q'K+q

“2q'(L'KL)g

Where Ky is the stiffness matrix of truss element

K=LTK L

Taking the product of all these matrix we have stiffness matrix for truss

element which is given as

Wz {m
AE Im m?
K=~
L2 -lm
-fm -m2

0

L2

{2

m

m)




Stress component for truss element
The stress o in a truss element is given by
o=¢E

But strain e= B q' andq'=Tq

where B= ~—[-1 11

Therefore

¥
— E _
G_—Le[-l m ! nﬂ s

ds
A4

How to calculate direction cosines

Consider a element that has node 1 and node 2 inclined by an angle 6
as shown .let (x1, y1) be the coordinate of node 1 and (x2,y2) be the

coordinates at node 2.




When orientation of an element is know we use this angle to calculate A
and m as:

A =cos6 m = cos (90 - 6)=sind

and by using nodal coordinates we can calculate using the relation

£=X2—X1 m=y2_y1

. le

We can calculate length of the element as

| = \/ (Xo-X1)? + (Yo — ¥4)?




Example 6
P = 50KN

2[] 1000mm? 2,

2
200mm 500mm

= 750mm . v

Solution: For given structure if node numbering is not given we have to
number them which depend on user. Each node has 2 dof say ql g2 be
the displacement at node 1, g3 & g4 be displacement at node 2, g5 &q6
at node 3.

Tabulate the following parameters as shown

Element 0 L {=cosh | m=sin 0
1 336 | 901.3 | 0.832 0.554
2 0 750 1 0

For element 1 6 can be calculate by using tan6 = 500/700 ie 6 = 33.6,
length of the element is

.= \/ (Xo-X1)? + (Yo — ¥1)?
=901.3 mm
Similarly calculate all the parameters for element 2 and tabulate




Calculate stiffness matrix for both the elements

(2 tm -2 +Am)

AE M m2 -Im -m2
K==

L2 -Im £ m

Adm -m2 Im m2

N _/
184 122 184 122 |1 266 0 -266 0 ) 3
122 0816 -1.22 -0816| 2 K =10 0 0 0 0 4

= 5 =

Ki=10%| 184 120 184 122 |3 2 266 0 266 0 |5
4 0 0 0 0 |6

-1.22 -0.816 1.22 0.816

Element 1 has displacements g1, g2, g3, g4. Hence numbering scheme
for the first stiffness matrix (K1) as 1 2 3 4 similarly for K, 345 & 6 as

shown above.

Global stiffness matrix: the structure has 3 nodes at each node 3 dof
hence size of global stiffness matrix will be 3 X2 =6

... leBX6
o 2 3 < 5 B ™
184 122 -184 -122 0 0 1
122 0816 -1.22 -0816 O 0 |2
-1.84 122 45 122 -266 0 |3
K=10°
-1.22 -0.816 1.22 0.816 0 0 |4
0 0 266 0 266 O 5
0 0 0 0 0 0 6

~ ~/




From the equation KQ = F we have the following matrix. Since node 1
Is fixed g1=g2=0 and also at node 3 g5 =06 =0 .At node 2 93 & g4 are
free hence has displacements.

In the load vector applied force is at node 2 ie F4 = 50KN rest other

forces zero.

- - = -» /@ ) -
- - b @ 9
Al8s |22 45 122 2b6 b Q3 0

10° )2 dsi6122 ost6 b b Q4 |=|-50X10°
o g—2.66—0—B-66 @ o

o —o— o 1lo ,/ k@ e

By elimination method the matrix reduces to 2 X 2 and solving we get
Q3= 0.28mm and Q4 = -1.03mm. With these displacements we
calculate stresses in each element.

Example 7 .

30mm

§?\ » 20KN

40mm

+ L

E=295X105N/mm2 A=1mm?




Solution: Node numbering and element numbering is followed for the
given structure if not specified, as shown below

25KN

@ 30mm
ﬁ\ 2 > 20KN

4 40mm

Let Q1, Q2 .....Q8 be displacements from node 1 to node 4 and
F1, F2...... F8 be load vector from node 1 to node 4.

Tabulate the following parameters

Element ] L £ =cos0 | m=sin ©
1 0] 40 1 o
2 90 30 o 1
3 36.8 50 0.8 0.6
4 0] 40 1 o

Determine the stiffness matrix for all the elements

i 1 2 3 4 X 3 4 5 6 )
5 0 5 0 | 1 (’0 0 0 0 3
o 0 0 0 |2 0 666 0 -666|,
K,=108 K,=10°
=5 0o 5 0 |3 0 0 0 0 |5
o 6 o a4 Jd 0 -666 0 6.666




> 6 1 2 5 6 7

8
(256 192 -256 -1.92 |5 (6§ 0 5 0 )5
192 144 192 -1.44|6 0 0 0 0 |s

K=108 K=10°

371V 256 192 256 192 |1 5 0 5 0
192 144192 144 )2 0o o o o |8

Global stiffness matrix: the structure has 4 nodes at each node 3 dof
hence size of global stiffness matrix will be 4 X 2 = 8

ie8 X8
1 2 3 4 5 6 7 8
(756 192 -5 0 256 -1.92 0 0 )1
192 144 0 0 192 144 0 0o |2
-5 0 5 0 0 0 0 0 |3
0 0 0 666 0 666 0 0o |4
256 -1.92 0 0 756 192 -5 0o |5
192 144 0 666 192 811 0 0 |6
0 0 0 0 -5 0 5 o |7
\50 0 0 0 0 0 0 ) 8

From the equation KQ = F we have the following matrix. Since node 1
Is fixed q1=0g2=0 and also at node 4 q7 = g8 = 0 .At node 2 because of
roller support q3=0 & g4 is free hence has displacements. g5 and g6
also have displacement as they are free to move.

In the load vector applied force is at node 2 ie F3 = 20KN and at node 3
F6 = 25KN, rest other forces zero.




v 4 4 A" 4 Lo W~ NN (‘m\ fal
L L L3 4 N LIS w ~
=  — 5 s e &
ot
) 0 5 q 0 0 q Q3 20 X 10°
I B B A L A e &
10 256 192 0 ( 756 192 - Q5 - 0
192 144 0 -$66 192 811 0 Q6 -25 X 10°
O N Fal s - fal ‘\-—\ fa)
v} v \vJ J 1% ) brd
n n n n m fa)
\0 v v v 1Y 7 o8 y, < v

Solving the matrix gives the value of g3, g5 and g6.




Beam element

Beam is a structural member which is acted upon by a system of
external loads perpendicular to axis which causes bending that is
deformation of bar produced by perpendicular load as well as force
couples acting in a plane. Beams are the most common type of
structural component, particularly in Civil and Mechanical
Engineering. A beam is a bar-like structural member whose primary
function is to support transverse loading and carry it to the supports

A truss and a bar undergoes only axial deformation and it is
assumed that the entire cross section undergoes the same displacement,
but beam on other hand undergoes transverse deflection denoted by v.
Fig shows a beam subjected to system of forces and the deformation of

the neutral axis
y

~

ST




We assume that cross section is doubly symmetric and bending take
place in a plane of symmetry. From the strength of materials we
observe the distribution of stress as shown.

d2v/dx? = M/EI

Where M is bending moment and | is the moment of inertia.

According to the Euler Bernoulli theory. The entire c/s has the same
transverse deflection V as the neutral axis, sections originally
perpendicular to neutral axis remain plane even after bending

Deflections are small & we assume that rotation of each section
Is the same as the slope of the deflection curve at that point (dv/dx).
Now we can call beam element as simple line segment representing the
neutral axis of the beam. To ensure the continuity of deformation at any
point, we have to ensure that VV & dv/dx are continuous by taking 2 dof

@ each node V & 6(dv/dx). If no slope dof then we have only
transverse dof. A prescribed value of moment load can readily taken

into account with the rotational dof 0 .

Potential energy approach
Strain energy in an element for a length dx is given by

=% [ 5 ¢ dA dx
A

=% [ 6 6/E dA dx
A
:%£02/EdAdx




But we know ¢ = M y/ | substituting this in above equation we get.

= % [ M2 y2dA dx
*EI2

=% M2 [ ] y2dA ] dx
El2 4

= V2 M? dx
El

But
M= E| d?v/dx?

Therefore strain energy for an element is given by

L
=" | El (d?v/dx?)? dx
Now the potential energy for a beam element can be written as
L 2 L
=Y | E|[d2\ﬂdx -[pvdx-ZP,V, - ZMV,

0 d—)(2 0 m

P ---- distribution load per unit length

P point load @ point m

V- deflection @ point m

M, ----- momentum of couple applied at point k

V' ----- slope @ point k




Hermite shape functions:

1D linear beam element has two end nodes and at each node 2
dof which are denoted as Q,.; and Qy; at node i. Here Qy;.1 represents
transverse deflection where as Q,; is slope or rotation. Consider a beam
element has node 1 and 2 having dof as shown.

Q1 Q3
QZL,]) Q4 2
a:-'] §= 1

The shape functions of beam element are called as Hermite shape
functions as they contain both nodal value and nodal slope which is
satisfied by taking polynomial of cubic order

Hi=a+ Db & +cé?+d; &

that must satisfy the following conditions

Hy [Hy Ho | Hy [Hs | Hy [ Hy | HY

Je

=11,0 0} 1 0] 0 0]O0

Jis

=1 0,0 0O} 0 1] 0 0|1

JTs

Applying these conditions determine values of constants as

Hi=a+ b ¢+c & +d &
@ node 1
H=1, H’=0, £=-1

T=a;-by+¢—-dy (O
H1’=%Eli= 0=b,—2¢, +3d;— (>




Hi=a#+b g+c & +d &
@ node 2
H=1, H' =0, £=1
O=a;+b,+c,+d;—)
H1’=%§i= 0=b, +2¢, +3d,—(~
Solving above 4 equations we have the values of constants
a1=% , b1='% y C1= 0, d1= %
Therefore
H, =% (2 - 32+ £9)

Similarly we can derive
Hy =% (1- & £2+27)

Hy =" (2 43¢ - £9)

Hy=Va (-1- £+E2 +5°)
Following graph shows the variations of Hermite shape functions

Slope =0
2
H, 6=1
Slope =0
P
A {éope=1 na
§= 1 &:1 g:_‘] \__,—1
Slope=5 0
3 Slope =0 H4 Slope=A‘.
Slppe =0 ‘\/\ - |
£=-1 £= 1




Stiffness matrix:
Once the shape functions are derived we can write the equation
of the form

V(&) = H,V, +H) AV tH,V, +H {dv}
de |

1 dg
But
dv_dv dX
dé dx dg
_dv Le
_ dx-2
e

V(E) = H,V, +H{vaF +H,V, +H{dvjke
dx 2 d xp

V(€) = Hyq +H,q,L, +Haq, +H,q,L

2 2
We know V -_ H q
where
H :E_h HL. Hj H4|—eJ
2 2

Strain energy in the beam element we have

L
= 1/zof El (d?v/dx2)? dx

_df2dv
dx|L.d¢
_2d|dv
Ldx| d¢
_2d - dv
_f@([m] Where m de




Where
d2H)_ [3: , (1+3g , -3 ,1+3};|EJ
[dé’f}[zé [ 2 }2“ _25 [ 2 E
Therefore total strain energy in a beam is
=% | El (d?v/dx?)? dx

=% | El (d2v/dx?)? | /2 d&

N
_EmLlqr1e [dzH ‘ﬂ—ﬂ d
';réi[ L | g qez) 9

-qdg

|

NN

0
4 m
L
¥4
2
NI
—
o
N ,

Now taking the K component and integrating for limits -1 to +1 we get
12 6, 12 6l )

El |6l 412 -6l
Le3|-12 -6l

e 2|E2
. 12 -8l

e

2 _ 2
\8l, 2.2 -6l, 4.2




Beam element forces with its equivalent loads
Uniformly distributed load

- EI A & 4 A L & & A A A PILE/2 PLe/2
= | |
J L
I » PL2M2 -PL.%/12
a

Point load on the element

Al wh?B (3a+b)  -wa/P (a+3b)
= |
o ; G
. ° Eﬁabzﬂz waZb/l?
Vérying load
T -3PL/20 -1PL/20
. ¢ e
L ‘ -1/30PL2 -1/20PL2

Bending moment and shear force
We know

dx2 ldx
Using these relations we have

M=E[BEq; +(35 1), -6205+(3E +1)l.a

V =(%[2q1 +|eq2 '2q3+|eq4:]

e




ITI
>
)
3

=2
o
o)

12KN/m

/)
7
1 :
/]
7 L1=L2=1m A

E = 200GPa

| =4 X 106N/mm?
Solution:

Let’s model the given system as 2 elements 3 nodes finite
element model each node having 2 dof. For each element determine
stiffness matrix.

2 3

,.»‘ 4 - s 3 4 5 g -
12 6 126 | 12 6 126 |
K=8X1096 4 6 2 2 K=8Xx10°6 4 B 2 |
-2 6 12 -6 | 12 6 12 6 |5
€ 4 -6 4 | 6 4 -6 4 5

J
"~ -

Global stiffness matrix

1 2 3 4 5 6
12 6 126 0 0,
6 6 2 0 0 s
12 6 24 0 12 6 |°

K= 8 X 10°

6 2 0 8 B 2 ¢
0 0 42 6 12 -85
i 6

0o 0 6 2 6 4




Load vector because of UDL

Element 1 do not contain any UDL hence all the force term for
element 1 will be zero.
ie

s ~ -~ =

F1

F2
F1_ F3

F4

Il
o o o o

For element 2 that has UDL its equivalent load and moment are
represented as

6000N 6000N
T 000N-m “TY1000N-Ir
_ 2 3
ie
S
F3 6000
_ | Fa -1000
F2_ F5 | — | -6000
F6 1000
~ - _/

Global load vector:

F1, (0
F2 0
F= |F3 - -6000
F4| -1000
F5| -6000
F6) 11000




From KQ=F we write

14 + -|2 e—q 0 @ A
!
r s 0 ey 0
2 —f—ab—o—t>—6——Q) 6000 —
8 X 10 =
i q 8 b 2 || 4 |7|-1000
£ Lo 4o o () | cone
X 5 2 p 4 )% ) 1000

At node 1 since its fixed both g1=g2=0

node 2 because of roller g3=0

node 3 again roller ie g5=0
By elimination method the matrix reduces to 2 X 2 solving this we
have Q4= -2.679 X 10*mm and Q6 = 4.464 X10“*mm

To determine the deflection at the middle of element 2 we can write the
displacement function as

V() = Hyq; tHquL +H305 +H,Qel

2 2
=-0.089mm
Example 9
2400N/m 1 1000N
Ve
10m L 12m | 6m

El=2X107N-m?2 I El= 10"N-m?2




Solution: Let’s model the given system as 3 elements 4 nodes finite
element model each node having 2 dof. For each element determine

stiffness matrix. Q1, Q2...... Q8 be nodal displacements for the entire
system and F1...... F8 be nodal forces.

3

IR N Rl

(= 2010|6040 80 200 © g f01 T2 76 2 288
0° L2 60 12 40 ° Z pnpnl
60 200 80 400 ° T2 28 T2 576 )

5 6 7 8

12 36 -12 36 s
_ 407 |36 14 36 T2 s
K, o

42 236 12 36 |
3% 72 % 144J8

-

Global stiffness matrix:

[s+] =~ ()] 3] B w [§%]




Load vector because of UDL.:
For element 1 that is subjected to UDL we have load vector as

12000N 12000N
\20000N-m AJO000N-m
2 3
ie
-
F1 -12000
_ R -20000
F1_ F3 | = | -12000
F4 20000

.

A _/

Element 2 and 3 does not contain UDL hence

F,=

-

F3
F4
F5
F8

e

- ~ ~ ~ = ~ =

F5

0

0 __|Fs
0 F3_

0

o O O O

F7
F8

= o », e =

Global load vector:

F1] | -12000

F2 ~20000

F3| | -12000
_ |F4|_  -20000
~Fs5 0

F6 0

F7 0

F8' L 0




And also we have external point load applied at node 3, it gets added to
F5 term with negative sign since it is acting downwards. Now F
becomes,

F1] | -12000 |
F2 -20000
F3 -12000
F= F4 — -20000
F5 0 -10000
F6 0
F7 0
8 L 0 J
From KQ=F
~§ 2 3 ¥ 3 6 A N
@" —T2000"
2 1Q2 -20000
> Q3 -12000
K= 8 X 8 * |Q4 | =| -20000
°|Q5| | -10000
° Q6 0
; 0
~ )

At node 1 because of roller support q1=0

Node 4 since fixed q7=98=0
After applying elimination and solving the matrix we determine the
values of g2, g3, g4, g5 and g6.




UNIT-II
Two Dimensional Analysis

Many engineering structures and mechanical components are
subjected to loading in two directions. Shafts, gears, couplings,
mechanical joints, plates, bearings, are few examples. Analysis of many
three dimensional systems reduces to two dimensional, based on
whether the loading is plane stress or plane strain type. Triangular
elements or Quadrilateral elements are used in the analysis of such
components and systems. The various load vectors, displacement
vectors, stress vectors and strain vectors used in the analysis are as
written below,

the displacement vector u = [u, v]",
u is the displacement along x direction, v is the displacement along y direction,

the body force vector f= [, f,]"

fy , i1s the component of body force along x direction, fy is the
component of body force along y direction

the traction force vector T =[ T, , T,]"
Tx, is the component of body force along x direction, T, isthe
component of body force along y direction

Two dimensional stress strain equations
From theory of elasticity for a two dimensional body
subjected to general loading the equations of equilibrium are given by

[60x /6X] + [61x /6y ] + Fx=0
[614y /6x ] + [60y /6y] + Fy =0
Also 1xy = 1yx
The strain displacement relations are given by
Sx = 6u/6x, Sy= 6v/By, Yxy=6ul/6y+6V/6X

s = [6u/6x, 6v /6y, (6u/6y+6v/6X)]"
The stress strain relationship for plane stress and plane strain conditions




are given by the matrices shown in the next page. o, 0y 1,y Sx Sy Yxy are
usual stress strain components, Vv is the poisons ratio. E is young’s
modulus. Please note the differences in [ D] matrix .

Two dimensional elements

Triangular elements and Quadrilateral elements are called
two dimensional elements. A simple triangular element has straight
edges and corner nodes. This is also a linear element. It can have
constant thickness or variable thickness.

The stress strain relationship for plane stress loading is given by

Ox 1 Vv 0 SZ

oy Vi 1] 0 s
= E/(v) x|~

Iy 0 0l1viz | |y,

[0]= [D][S]

The stress strain relationship for plane strain loading is give by

Ox 1-v| V 0 S,
Oy Vv 1-v| O Sy
=| E/(1+v)(1-2v) *

Ixy 0 0 Yo -v Yyz

[0]=[DI1[S]

The element having mid side nodes along with corner nodes is a
higher order element. Element having curved sides is also a higher
order element.

A simple quadrilateral element has straight edges and corner
nodes. This is also a linear element. It can have constant thickness or
variable thickness. The quadrilateral having mid side nodes along with




corner nodes is a higher order element. Element having curved sides is
also a higher order element.

The given two dimensional component is divided in to number of
triangular elements or quadrilateral elements. If the component has
curved boundaries certain small region at the boundary is left

Figure 5.2 Finite element discretization.




Constant Strain Triangle




Quadrilateral




Constant Strain Triangle

It is a triangular element having three straight sides joined at three
corners. and imagined to have a node at each corner. Thus it has three
nodes, and each node is permitted to displace in the two directions,
along x and y of the Cartesian coordinate system. The loads are applied
at nodes. Direction of load will also be along x direction and y
direction, +ve or —ve etc. Each node is said to have two degrees of
freedom. The nodal displacement vector for each element is given by,

d=1[d:,02,d3,94,05,956]
1,03, s are nodal displacements along x direction of nodel, node2

and node3 simply called horizontal displacement components.
d.,q4, (e are nodal displacements along y direction of nodel, node2
and node3 simply called vertical displacement components. q 5 —1 iS
the displacement component in x direction and q ; is the displacement
component in ydirection.

Similarly the nodal load vector has to be considered for each
element.

Poi

nt loads will be acting at various nodes along x and y

(X1,Y1), X2,Y2), (X3,Yy3) arecartesian coordinates.of node 1 node 2 and
node 3.

In the discretized model of the continuum the node numbers
are progressive, like 1,2,3,4,5,6,7,8.......... etc and the corresponding
displacementsare Q;,Q,, Qs,

Q40Q5Q6,0Q7,Q5,Q9, Q..... Qi , two displacement components at each
node.

Q - 1 is the displacement component in x direction and Q 4 is
the displacement component in y direction. Letj =10, ie
10" node, Q- 1=Q1o Q2= Q2
The element connectivity table shown establishes correspondence of
local and global node numbers and the corresponding degrees of
freedom. Also the (X1, v1), ( X2 ,¥» ) and (Xs,y3) have the global




correspondence established through the table.

Element Connectivity Table Showing
Local — Global Node Numbers
Element | Local Nodes Numbers
Number 1 2 3

1 1 2 4
Corres-

2 4 2 7

3 =ponamnyg-

. " . . Global-

11 6 7 10 | Node-

20 13 16 15 | Numbers

Nodal Shape Functions: under the action of the given load the nodes
are assumed to deform linearly. element has to deform elastically and
the deformation has to become zero as soon as the loads are zero. It is
required to define the magnitude of deformation

and nature of deformation for the element Shape functions or
Interpolation functions are used to model the magnitude of
displacement and nature of displacement.

The Triangular element has three nodes. Three shape functions N1 , N2
, N3 are used at nodes 1,2 and 3 to define the displacements. Any linear
combination of these shape functions also represents a plane surface.
N1=C,N2=y,N3=1-C —vy (1.8)

The value of N1 is unity at node 1 and linearly reduces to O at node 2
and 3. It defines a plane surface as shown in the shaded fig. N2 and N3
are represented by similar surfaces having values of unity at nodes 2
and 3 respectively and dropping to 0 at the opposite edges. In particular
N1 + N2 + N3 represents a plane at a height of 1 at nodes 1, 2 and 3
The plane is thus parallel to triangle 1 2 3.




Shape Functions N;, N, , N3

For every N1, N2and N3, N1+ N2+ N3=1N1 N2 andN3
are therefore not linearly
independent.

N1=C N2 =y N3=1-C -y, where C and y are natural
coordinates The displacements inside the element are given by,
U=N1qgl+N2qg3+N3g5

V= Nlg2+N2g4 +N3q6 Writingtheseinthematrixfogml
q.

Ny 0 N, 0 N, 0 , g,

v 0 N, O N, O N, g,
qs

[u]=[N][q] q
6




Iso Paramatric Formulation :

The shape functions N1, N2, N3 are also used to define the
geometry of the element apart from variations of displacement.

This is called Iso-Parametric
formulation

uU=N1gl+N29g3+N3g5
v=N19g2+ N2qg4 + N3 g6, defining variation of displacement.

X =N1x1+N2x2+N3x3
y=N1yl+N2y2+N3y3, defining geometry.

Potential Energy :
Total Potential Energy of an Elastic body subjected to general loading is given by
n = Elastic Strain Energy + Work Potential

n=%Jo'sdv-Ju fdv-Ju Tds-Xu'iPi
For the 2- D body under consideration P.E. is given by
v=Y%[s'DstedA-Ju" ftdA-[u' Ttdl-Zzu'iPi

This expression is utilised in deriving the elemental properties such as
Element stiffness matrix [K] , load vetors f®, T°, etc .

Derivation of Strain Displacement Equation and Stiffness Matrix for CST (
derivationof [B]and [K] ) :

Consider the equations

U= N1lgl+N29g3 +N3g5v=N1qg2+N2g4+ N3qg6

X = NIx1+N2x2 +N3x3y = N1yl+N2y2 + N3y3 Eq (1)

We Know that u and v are functions of x and y and they in
turn are functionsof Cand y .

u=u(x(@C,y),y@€y) v=v(x(@€.y),y(€.y))

taking partial derivatives for u, usingchainrule,  we have equation (A) given b

<<




ou O X ou oV

ou_ _ N
0 & oXx 0 ¢ oy 0 ¢
ou = 8+u 0 X ou_ oy
o n 0X 0N oy 0n
Eq
(A)

Similarly, taking partial derivatives for v using chain rule,
we have equation

(B) given by

oV _ 0V 0 X +avav

0 & o x 0 & oy 0 &
ov = oV 0 X oV 0
v —

_|_
0 M 0 X 0N oy 0N
Eq

(B)

now consider equation (A), writing it in matrix form

5 x a
0 & = g 0% O X
ou_ ox oy ou

o o on 0y




Is called JACOBIAN [ J]

oy
0 06
oV
on

Jacobian is used in determining the strain components, now we can get

ou L au
u il
oy on

In the Left vector 6u /6x = S, is the strain component along x-dirction.

Similarly writing equation (B) in matrix form and considering [J] we get,

oV o, oV
ov 13

o [J] D&
oV v
oy on

In the left vector 6v /6y =S y , is the strain component along y-direction..
6uU/6X = Sy, 6v/ey = Sy, Yxy = 6U/By + 6V/6X

We have to determine [J] , [J] * which is same for both the equations.
First we will take up the determination 6u/6x = s, and 6u/6y using J and J*




Consider the equations
U= N1qgl+N2g3 +N3g5 v=N10g2+N2qg4 + N3 g6

Substituting for N1, N2 and N3, in the above equations we get
u=Caql+yg3+(1-C-y)agd =(gql-9g5)C+(g3-g5)y+05
=015C+Qqasy+(Qs

6u/6C=ql5 6u/6y=0q35

v=Cg2+yg4 +(1-C-y)q6 =(0g2-96)C+(g4-qg6)y+qb
=02x6C+0syY+Qqs
6v/6C =q26 6v/6y=q46

Consider x = N1 x1 + N2 x2 +
N3 x3y=N1yl+ N2

y2 + N3 y3
Substituting for N1, N2 and N3, in the above equations we get

X=Cx1l+yx2+(1-C-y)x3
X=(x1-x3)C +(x2 -x3)y+x3 =x13C+X3y+ x3
6x /6C =x13 6x/6y=0q 23

y=Cyl+yy2 +(1-C-y)y3

y=(yl-y3)C +(y2 - ¥Y3)y+y3 =y13C+Yyay+y3
6y /6C=yl3  6y/6y=y23

To determine []], [J] -1

6u /6C =015 6u /6y = g 35 6v /6C =q 26 6v /6y = g 46
6x /6C = x13 6x /6y = y236y /6C = y13 By /6y = y23
[J]= 6x/6C 6y/6C [J] =x13,y13 x1-x3,yl-y3

6x /6y 6y /6y x23 ,y23 X2-x3,y2-y3

To determine [J] ™ : find out co

factors [ J ] co-factors of x ij = (-1)




i+j||

co-factors [co] = (y2-Vy3), -(x2-x3) Vy23,x32
-(yl - y3), (x1 - x 3) y31, x13

Adj [J] = [co]" = y23y31
x32 x13
[J]*=Adj[J]/]3]

[3] " = (1/)9]) y23 y31
x32 x13

Also we have
6u /6C =915 =qgl-g56u/6y=0935=03-05

6u/ex = [J]™" 6u/eC
6u /6y 6u /6y

6u/6x = (1/]) y23y31ql-9g5
6u /6y x32 x13 g3 -5
6u/ex = (1/0]|) y23ql-q5+y31qg3-g5
6u /6y x32 ql- g5+ x13 g3 g5

6u/6x = (1/0]) y23ql-y2395+y31qg3-y31g5
6u /6y x32 g1- x32 g5 + x13 q3 — x13g5

6u/ex = (1/P]) y23gl +y31 93 -y23q5-y31g5
6u /6y x32 gl +x13 g3 - x32 g5 x130g5

6u/6x = (1/J]) y23gl +y31q3-05(y2-y3+y3-yl)
6u /6y x32 gl +x13 g3 - g5 (X3 - x2+x1 - x3)

6u/ex = (1/)]) y2391+y3193-q5(y2-yl)
6u /6y x32 g1 +x139g3 -5 (- x2+x1)

6u/6x = (1/]) y23qgl +y3193+ g5 (yl-y2)
6u /6y x32 gl +x130g3 + 05 (X2 -x1)

6u/6x = (1/]) y239l1 +y31qg3+yl2qg5
6u /6y x32 gl +x13qg3 +x21 g5




Writing the R.H.S of above equation in Matrix form

6u/ex =1/]J] y23 0 vy31 O
yl2 0 gléu/6y x32 0
x13 0 x21 0 g2¢3
0495

Similarly Considering equation (B) we get

oV
@ :[J]—l a_
O X S
oV oV

oy an




[J]=6x/6C 6y/6C = x13,y13x1-x3,yl-y3
6x /6y 6y /6y x23, y23 Xx2-x3,y2-Vy3

[J]-1=1/|J] y23 y3l
x32 x13

consider v=N1qg2+N2g4 +N3qg6v=Cqg2+yqs

+(1C-y) g6
v=(02-96)C+(q4-qg6)y+q6
=26 C+ 46y + g6

6v/6C =26

6v /6y = 46
6v/6x=[J] " 6v
/6C 6v /6y 6V
/6y

6v/ex = (1/J]) y23y3l g2- g6

6v /6y x32 x13 g4 —g6

6v/ex = (1/J]) y23 (g2-g6) +y31l(qg4—q6)

6v /6y x32 (g2- g6) + x13 (g4 —g6)

6v/ex = (1/J]) y23q2-y23q96 +y31qgd4—y3196

6v /6y x32 (2- x3296 + x13 g4 —x1306

6v /6x = (1/|J|) y2392 + y31 g4 - y2396— y3196
6v /6y x32 g2 + x13 g4 - x320q6— x13q6

6v /6x = (1/|J|) y2392 + y31q4 - q6(y2 - y3+ y3 -y1)
6v /6y x32 g2 + x13 g4 - g6(x3 -

x2+x1 - x3) canceling y3 and x3 , we get

6v /6x = (1/|J|) y2392 + y31qg4 - q6(y2 -y1)




6v /6y

x32 g2 + x13 g4 - 6( - x2+x1)

6v/6x = (1/J]) y23q92 +y31g4 + g6(yl +y2)

6v /6y

x32 g2 + x13 g4 + g6(x2+x1)

6v /6x = (1/]3]) y23q2 + y31q4 + y12 6

6v /6y

x32 g2 + x13 g4 +

x21q Writing in matrix form

ev/ex =1/J] O y23 0
y31 0 yl12 gl 6v/6y
0 x32 0 x13 0 x21
92 03
q4 95 g6

Triangular element with traction force on edge 1-2

Let u and v are the displacements and Tx , Ty are the components of traction forces

W.p. due to traction force = [ (u Tx+

vTy)tdlu= N1qgl+N2q3 V=

N1g2 + N2 g4

only one edge connecting two nodes Is considered, let I, is the edge.

=J[(N1gl+N2@3) Tx+ (N1g2+N2qgd) Ty] te dl

D




= (te TXx N1 gl +te Tx N2 g3) + (te Ty N1 g2 + te Ty N2 g4) dl
=(qlte Tx N1 dl +g3te Tx] N2dl) + (g2 te Ty N1 dl + g4 te

Ty | N2 dI) Arranging them Node wise
=ql (te Tx/N1dl)+q2(teTyJN1dl)+qg3(te Tx[N2dl)+qgd (te Ty N2

N3 is zero along the edge | 1, , N1 and N2 are similar to the
shape functions of 1-D bar element.

WhereN1=(1-C)/2andN2=(1+C)/?2

IN1dl =] (1-C)/2(le/2) dC = (le/2) [(1 — C)/2 dC (the
integration is between the limits — 1 to 1)

JA-C)2dC)=%[JdC-]CdC]1=%[C-C?/2]  I-Ilimit=(-1)u - limit:
)

[ [ 1-(-1)] - % [(12/2) - (-12/2)] ]=[1-0] =1
N1 dl = (lef2) = 1 1,/ 2 =led /2

Stress calculations :
Strains are constant over CST , hence Stresses are also constant over an element.
{o} = [D] [B{a}
Element connectivity table should be used to extract elemental
displacement vector form the Global Displacement vector. Principal
stresses and strains are calculated separately using Mohr’s circle
relations.

Numerical Examples

Evaluate the shape functions N1, N2 and N3 at the interior point P for the
triangular element shown in Fig:

dI)

(1



31(4,7)

P (3.85, 4¢8)

2(7,3.5)

1(1.5, 2)

Solution : given point P (3.85,4.81) :
the coordinates of the nodes are . node 1 (x1,y1) =(1.5,2.0)

node 2 (x2,y2)=(7.0,3.5) node 3 (x3,y3)=(4.0,7.0

Consider x = N1x1+N2x2 +N3x3 y=N1yl+N2y2
+ N3 y3 Substituting for x1, y1, X2, y2, and noting P
(3.85,4.81) etc we have 3.85=1.5N1+ 7.0 N2 +4.0 N3

N3

ButN1=C, N2=

480=20N1+35N2+7.0

y,N3=(1-

C-y)38=15C+7.0y+

40(1-C-y)

480=20C+35y+7.0(1-C-vy),
simplifying and re arranging we get

25C-3y=0.15: 5C+35y=22
25C-3y=015:.............. *2
5C+35y=22:.............. *1 and subtract
5C-6y=0.3:

5C + --35y=--2.2




-95y=-19 < y=0.2

substitute this value in the equation 2.5 C — 3y =0.15
C=075/25=0.3

=25C-3(0.2)=0.15 25C=0.15-0.6=0.75

Thus ¢=0.3 y = 0.2 is the required Answer

2.0 Determine The Jacobian of transformation for the triangular element shown in
Fig: (x1,yl)=(15,20) (x2,y2)=(7.0,35)(x3,y3)=(4.0,7.0)

314, 7)

1 (1.5, 2)

x13 | y13
P (3.85, ai8) J =
2(7.3.5) X23 y23
x1-x3 yl-y3
15-40=-25 2.0-7.0=-5.0
J =
X2 -X3 y2 -y3
7.0-4.0=3.0 3.5-7.0=-35




= (-2.5) (-3.5) — (3)(-5) = 23.75 Ans
(Note:J = 2*A  where A is the area of the triangle )

3.0 Determine The Jacobian of transformation considering the nodes 1 2 3 in clock wise order
for the previous problem ( take node 3 as node 2 ).

Solution : the value of J becomes negetive

x1-x3 yl-y3
15-70=-55 2.0-35=-15
J =
X2-x3 y2 -y3
4.0-7.0=-3.0 7.0-3.5=35

J=(-5.5) (3.5) — (-3)(-1.5) =-19.5-45=-23.75
(J=2*A). where A is the area of the triangle

4.0 Find [B]1, [B]? for the elements shown in fig below using the local node numbers
shown at the corners. Length of rectangle 3 in, breadth = 2 in

VTU - EDUSAT
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Qs 3 3 5 2 I—»Qs
El, ]
Q
Qg El
I Q; 2 3 11 “ 2]
— 4 _—

b O i
AN } VE'U/@
31743'—_‘: - LEdr:mng




Ele?]|1 2 3Lo
1 1 2 4 Gl
2 3 4 2 Gl

Solution :
Consider left lower corner of the rectangle as the origin
For element (1) (x1,y1) =(3,0) (x2,y2) =(3,2) (x3,y3) =(0,0)
For element (2) (x1,yl) =(0, 2) (x2,y2) =(0,0) (x3,y3) =(3,2)
To determine [B] matrix for element 1 :
(x1,y1) =(3,0) (x2,y2) =(3,2) (x3y3)=(0,0)
To determine the | J |
(x1,y1)=(3,0) (x2,y2) = (3,2) (x3y3)=(0,0)
x1 —x3 yl—vy3 3 0
3-0 0-0 6-0=6
X2- X3 y2 —y3 3 2
3-0 2-0
| J[=6
y2 -y 3 0 y3-yl 0 yl-y 2 0
2-0 0-0 0-2
Y
=1/6 0 X3 X 2 0 X1 - X3 0 X2 X1
0-3 3-0 3-3

X3 -x 2 yzéys x1-x3 | y3-vyl x2-x1 | yl-y 2




To determine [B] matrix for element 2 :

(x1,yl) = (0, 2) (x2,y2) = (0, 0) (x3,y3) = (3, 2)

2-0 0 0-0 0 0-2 0
1/6 0 -3 0 3 0 0
-3 2 3 0 0 -2
[B] * for element 1
y2-y3 0 y3-yl 0 yl-y 2 0
0-2 2-2 2-0
/13|
0 X3 -X 2 0 X1 - x3 0 X2 -x1
3-0 0-3 0-0
X3-x2 | y2-y3 | x1-x3 y3-yl x2-x1 | yl-y 2
3 -2 -3 0 0 2
-2 0 0 0 2
1/6
0 3 0 -3
3 -2 -3 0

[B] “ for element 2




5.0 For the 2-d plate shown, determine the displacements at nodes 1
and 2 and the Element Stresses. Use plane stress. condition . Thickness
of the plate t is 0.5 in, take the value of E = 30*106 psi, neglect the
effect of body force.

L
’ 1000 Ib
P

%><x3 Jf =

NN

Thickness 7z = 0.5 in., £ = 30 X 10° psi. » = 0.25

Solution : Knowing the value of E and v observe the
following to get [ D ] (30x10°) / (1- 0.25 %) = 32000000 =

3.2x10’
(1-0.25)/2= 0.75/2=0.375 3.2x10"x0.375=1.2 x 10’
3.2x 10" x 0.25=0.8x10 ", with these note the [ D ] in the next page

[B]' has already been determined in the previous problem, let us multiply [D] & [B
— for element 1

For plane stress condition [D] is given by

[ M——




E/(1-v?
[3.2x10 ]

1 Y; 0
[1] | [0.25] [0]
Y; 1 0
[0.25] | [1] [0]
0 0 1v/2
[0] [0] |[1-0.25]/2

[3.2x10 7] | [0.8x 10 7] 0
[0.8x10 7] | [3.2x10 7] 0
0 0 [1.2x10 7]

Taking out 10" common from the elements of [ D ] and multiplying
with B* as shown below
(3.2*2)/6 = 1.067 0.8*(-3)/6=-04 (-2*3.2)/6=-1.067

(0.8*2)/6=0.267 (3.2*(-3)/6 =-1.61.2*(-3)/6=-0.6

(1.2*2) /6 =0.4 There are only few multiplication to do, operations repeat

107 3.2 0.8 0 5 5 5T 5

0.8 3.2 0 1/6 -

[D] [B] 3
0 0 1.2 3 2 [3]0 |o0

1.067 | 041 0 |04 ]-1067] 0O

_ 10’
= 0267 | -16 | 0 | 1.6 | -0267] 0
06 | 04 |06 0 0 -0.4
This is DB*

[B]? matrix has already been determined let us multiply [D] & [B]* — for element 2




10/ 3.2 0.8 0
210 00
0.8 3.2 0 1/6
- 6]’ 0 |3 0 | -3
0 0 12 3 [-2] 3]0
-1.067] 04 | 0 [-04] 12067 ©
107
0267 16 | 0 [-16] 0267 | ©
06 | -04[-06] 0 0 0.4
This is DB?

Observe DB! and

DB?, the elements are same except for +ve or —ve sign.

To calculate stiffness matrices k! and K2 :

k'=t.A. B'"[D][B]*

First look at the following simple

calculations , te=0.51In

Ae=%bhb*h=1%L*3*2=3in2 teAe=05*3=15in3

2*0.25=05:

-3*0.25=-0.75

(teAe)/6 =15/6 = 0.25

Kk’ = te Ae B °T[D] [B]

-2*%0.25=-0.5:

(1/6 is of [B]'T)

3*0.25=0.75etc




2 -3 05[] 0 [-0.75
0.25
0 2 0 [-075| 05
0 3 0 0 0.75
0 0 0 [075] 0
-2 0 05] 0 0
0 -2 0 0 0.5
This is
[A. to / 6] [B]'T

k'=t.A. B [D][B]' =

0.5 0 -0.75
0 |-075)| 05
0 0 0.75
0 | 0.75 0

-051 O 0
0 0 -0.5

This is

[Acte / 6] [B]""

, 1.067| -04 | 0 | 04 | -1.067| O
10

0267 | -16 | 0 | 1.6 | -0.267 | O

06 | 04 |06 O 0 0.4
This is DB*

(0.5 * 1.067) + (-0.75) *( -0.6) = 0.5335 + 0.45 = 0.9835
0.5*(-0.4) + (-0.75*0.4) = - 0.20 — 0.30 = -0.50

-0.75 * 0.6 = -0.45 ; -0.75 *(-1.6)+0.5* 0.4 = 1.4

-0.75 *(1.6) =-1.2 0.5%0.4 =0.20

0.5 (-1.067) = -0.5335 = -0.533

-0.75 * (-0.4) = 0.3




QL |Q2 [Q3 Q4 [Q7 Qs
0.983 |-05 [-0.45|0.2 |-0.533/0.3 | Q1
05 |14 (03 [-1.2/02 (02 Q2
045 (03 (045 0 |0 0.3 Q3
02 [-12/0 |12 -02 |0 |04
053302 |0 |-02/0533 [0 |Q7
03 |-02/-03 [0 |0 02 Q8
K'=t.A. B [D][B]

Global degrees of freedom associated with element 1 are Q1 ,Q2 ,Q3

,Q4 ,Q7 ,Q8 see fig To facilitate assembly it should be written in order
Q1,02 ,03,04 ,Qs,Qs ,Q7,Q8 . It will be shown after determining k*

To determine k2 :

k=t A. B° T [D] [B) =

0.5 0 -0.75
0 | -0.75] 0.5
0 0 0.75
0 | 0.75 0

-05] 0 0
0 0 -0.5

This is

[Ac t./ 6] [BI

-1.067] 04 [ 0 [-04] 1067 ©
10’
0267 16 | 0 |-16| 0267 | ©
06 | -04[-06] 0 0 0.4
This is DB*

-0.75* 0.6 =-0.45;

0.5%(-0.4) + (-0.75%0.4)
=-0.20 - 0.30 = -0.50

(0.5 * 1.067) + (-0.75) *( -0.6)
= 0.5335 + 0.45 = 0.9835 =0.983

-0.75 *(-1.6)+0.5* 0.4 = 1.4

-0.75*(1.6 ) =-1.2;0.5*0.4 = 0.20

0.5 (-1.067) = -0.5335 = -0.533

-0.75 * (-0.4) = 0.3




Q5 [Q6 [Q7 |Q8 Q3 |4
0.983 |-0.5 |-0.45/0.2 |-0.533/0.3 | Qs
05 |14 |03 |-1.2/02 |02 Qe
-0.45 (0.3 (045 |0 |0 03/ Qs
02 [-12/0 [12]-02 [0 Qs
053302 |0 |-02]/0533 [0 Qs
03 |-02/-03 |0 |0 0.2 |Q
K?’=t, A. B® [D][B[

Global degrees of freedom associated with element 2 are Q5 ,Q6 ,Q7
,Q8 ,0Q3 ,0Q4 see fig To facilitate assembly it should be written in order
Q1,02 ,03,04 ,Q5,Qs ,Q7,Q8 . It will be shown below .

K 1 modified

Q1 Q2 | Q3 Q4 | Q5| Q6| Q7 Q8
0.983|-05|-045(0.2 [|0.0]0.0|-0.533|0.3 Q1
0.5 14 {03 |-1.2/0.0/0.0/0.2 -0.2 | Q2
-0.45 (0.3 | 045 (00 |0.0[0.0]0.0 -0.3 | Q3

7 02 |(-1.2/00 |12 |0.0]0.0]-02 0.0 | Q4
10 0.0 0.0 |00 |00 |00[0.0]0.0 0.0 | Q5
0.0 0.0 |00 |00 |00[0.0]0.0 0.0 | Q6
0.533/0.2 |00 |02 |0.0]0.0/0533 |00 |Q7
0.3 0.2 |03 |00 |00[0.0]0.0 0.2 | Q8

+

K > modified

Q1| Q2| Q3 Q4 | Q5 Q6 | Q7 Q8
0.0/ 0.0| 0.0 0.0 | 0.0 00 |00 |00 Q1
7 0.0/ 0.0| 0.0 0.0 | 0.0 0.0 |0.0 |00 | Q2
10 0.0/0.0]0533 |00 053302 [00 |-0.2| Q3
0.0/ 0.0| 0.0 0.2 | 0.3 0.20|-0.3 [ 0.0 | Q4
0.0/ 0.0|-0.533|0.3 | 0.983|-05|-045]|0.2 | Q5
0.0/ 0.0| 0.2 -02/-05 |14 |03 |12 | Q6
0.0/ 0.0| 0.0 -0.3|-045 |03 | 045 | 0.0 | Q7
0.0/ 0.0 -0.2 0.0 | 0.2 -1.2 100 |12 | Q8




K 1 modified + K » modified

Ql Q2 | Q3 Q4 |Q5 Q6 |Q7 Q8

0.983|-05|-0.45 {0.2 |0.0 0.0 |-0.533(0.3 | Q1

0.5 1.4 |03 -1.2 1 0.0 0.0 |0.2 -0.2 | Q2

-0.45 /0.3 [0.983 |0.0 |0.533|0.2 |0.0 -0.5 | Q3

0.2 -1.2] 0.0 1.4 |0.3 0.2 |-05 0.0+ | Q4

0.0 0.0 |-0.533|0.3 [0.983|-05| -0.45 | +0.2 | Q5

0.0 0.0 | 0.2 -0.2/-05 |14 |03 1.2 | Q6

0.533(0.2 | 0.0 -0.1 | -0.45|0.3 [0.983 [0.0 | Q7

0.3 0.2 | -0.5 0.0 |0.2 -1.210.0 +1.4| Q8

OVERALL EQUATION TO BE SOLVED
[K][Q]=[F]

Ql |Q2 | Q3 Q4 Q5 Q6 | Q7 Q38
0.983|-05|-045 [ 0.2 |0.0 0.0 |-0.533|0.3 Q1 0
0.5 1.4 | 0.3 -1.2 |1 0.0 0.0 | 0.2 -0.2 Q2 0
-0.45 0.3 {0983 | 0.0 | 053302 |0.0 -0.5 Q3 0
0.2 -1.21 0.0 1.4 |0.3 0.2 |-05 0.0+ | * | Q4 -1000
0.0 0.0 | -0.533|0.3 |[0.983|-0.5| -0.45 | +0.2 Q5 0
0.0 0.0 | 0.2 -0.2/-05 |14 |03 1.2 Q6 0
0.533/0.2 | 0.0 -0.1 | -0.45]0.3 |0.983 | 0.0 Q7 0
0.3 0.2 | -0.5 0.0 |0.2 -1.2| 0.0 +1.4 Q8 0




The boundary conditions

are : Node 1 has roller

support Q2 =0

Node 3 is fixed Q7=0,Q8=0
Node 4 is fixed Q5=0,0Q6

=0Thedof Q2 Q5Q6 Q7
Q8=0
Therefore in the assembled matrix by the method of

elimination Rows 2, 5, 6, 7, 8 and Columns 2, 5, 6,
7, 8 will cancel

[ K] assembled
Boundary condition applied

Ql |Q2/Q3 |Q4/Q5/ Q6 Q7 Q8

0.983 -0.45]0.2

Q1

Q2

-0.45 0.983 | 0.0

Q3

0.2 0.0 1.4

Q4

Q5

Q6

Q7

Q8




TOB | SOL [ED
7 Ql Q3 Q4
10 10.983|-0.45 | 0.2|Q;
-0.45 10.983 0.0 | Qs
0.2 0.0 1.41Q,
10" [0.983 Q1 -0.45Q3+0.2Q4]= 0
10" [-0.45Q1+0.983Q3] =0
10" [0.2Q1+1.4Q4] = -1000
Take 10° inside the bracket
10* [983 Q1 — 450 Q3 + 200 Q4] = 0
10*[-450 Q1 + 983 Q3] =0
10° [200 Q1 + 1400 Q4] = -1000
Now divide all egs by 10
[983Q1-450Q3+200Q4] = 0 ..eevennen... eq. 1
[[450 Q1 +983Q3] = 0 cevvevvrennnenn.. eq. 2
[200Q1 +1400Q4] = -0.1 ..o eg. 3

rewriting eq. 1,

983 Q1 =450 Q3 - 200 Q4

Q1 =0.457 Q3 -0.203 Q4 ; substituting this
Qlin eq. 2 we get, -450 (0.457 Q3 -0.203
Q4)+983Q3=0
=777.35Q3+90Q4=0.......... eq. 4

Similarly substituting for Q1 in eq. 3

200 (0.457 Q3 -0.203 Q4) + 1400 Q4 =- 0.1,
simplifying we get , 91.4 Q3 + 1359.4 Q4 = -
0.1.......... eg. 5




now consider eg.4 and eq.5
777.35Q3+ 90.0Q4=00....... x 91.4
91.4 Q3+ 1359.4Q4=-0.1 ....... X 777.35

71049.79 Q3 + 8226 Q4 = 0.0

71049.79 Q3 + 1056729.59 Q4 = -77.735, now subtract
- 1048503.59 Q4 = 77.735
Q4=-7414x10-5in substitute this in eq. 4

777.35 Q3 +90 (-7.414x10-5) =0
Q3 =8.5848x 10-6 = 0.854 x 10-5 in
Q3=0.854 x10-51in

Substituting for Q3 in the equation

450 Q1 + 983 Q3 =0
-450 Q1 + 983 (0.854 x 10-5) =0,  we get
Q1 = 1.866 x 10-5 in

Answer from the text book is
Ql=1913*10-5inQ3 = 0.875*10-5in Q4 =-7.436 * 10-5 in

Element -1 Element — 2

Q1 ql=1.913in Q5/q1=0.0in

Q2(0g2=0.0in Q6(0g2=0.0in
10° [ Q3| ¢3=0.875 in 10° [ Q7| g3=0.0in

Q4| g4=-7.436In Q8| g4=0.0in

Q7| g5=00in Q3| g5=10.8751in

Q8| g6=0.0in Q4 | g6 =-7.436in

To calculate stresses in the elements :

Stresses acting on element1 o, = [D] [B]* x[q']

1.067 | -04] 0 [ 04]-1067] 0 1.913
10 0267 | -1.6 | 0 | 1.6 | -0.267| 0 10° 0.0 93.3 psi | 0
_ 07-847??6 -1138.7 | o,
06 | 04 |06 D 0 |-04 6 ; psi.
This is DBl 00 62.3 psi Ixy

ok




[(1.067 x 1.913) — (0.4 x 7.436)] (10%) =[2.041171-2.9744] (10°) = -93.3
[(0.267 x 1.913) — (1.6 x 7.436)] (10%) =[ 0.510771-11.8976] (10%)-1138.7
[(-0.6 x 1.913) + (0.6 x .875)] (10%) = [-1.1478 +0.525] (10°) = - 62.3

Stresses acting on element 2 01 = [D] [B]? x[q¢?]

-1.067] 04 | 0 |-04] 1067 ] 0 0
10’ 0.0
0267 16 | 0 |-16] 0267 | 0 10° 0.0 934 psi | o0
06 | 04106 0| 0 |04 0.0 = | 284ps o
— I 0.875 -297.4 psi | 1xy
This is DB 7 436

[1.067 x 0.875] (10°) = (0.933625) (10°) = 93.4
[0.267 x 0.875)] (10%) = (0.233625) (10°) = 23.4
[0.4 x -7.436] (10%) = (-2.9744) (10%) = -297.4

01=[0,=-93.3,0,=-1138.7, 1,,- 62.3] " psi
02=1[0x=93.4,0y=23.4, 1, =-297]
T psi Acting at the centroid of the
elements




UNIT-IV
JWO-DIMENSJONAL ANALYOIS USING QUADRILATERAL ELEMENTS

Introduction

Many engineering structures and mechanical components are subjected to
loading in two directions. Shafts, gears, couplings, mechanical joints, plates,
bearings, are few examples. Analysis of many three dimensional systems
reduces to two dimensional, based on whether the loading is plane stress or
plane strain type. Iso-parametric Quadrilateral elements are widely used in
the analysis of such components and systems. For Iso-parametric
quadrilateral elements the derivation of shape function is simple and the
stiffness matrix is generated using numerical Integration . The various load
vectors, displacement vectors, stress vectors and strain vectors used in the
analysis are as written below,

the displacement vector u = [u, v]",

u is the displacement along x direction, v is the displacement along y direction,

the body force vector f = [, f,]
f, , is the component of body force along x direction, f, is the component of
body force along y direction

the traction force vector T=[T,, T,]"
Tx, is the component of body force along x direction, T, is the component
of body force along y direction

Two dimensional stress strain equations
From theory of elasticity for a two dimensional body subjected to
general loading the equations of equilibrium are given by

[60y /6X] + [61yx /6y ] + Fx =0
[614y /6x ] + [60y /6Y] + Fy =0
Also 1xy = 1yx
The strain displacement relations are given by
Sx= 6u/6x, Sy= 6v/6y, Yxy=6ul/by+6Vv/6X
s = [6u/6x, 6v /6y, (6u/By+6v/6X)]"

The stress strain relationship for plane stress and plane strain conditions are
given by the matrices shown in the next page. ox Oy 1, Sx Sy Yy are




usual stress strain components, v is the poisons ratio. E is young’s modulus.
Please note the differences in [ D] matrix .

The stress strain relationship for plane stress loading is given by

Ox 1]v]o s,
Oy Vi1| O Sy
=|E/(1v? *

Ixy 0 0|1-v/2 Yyz

[O]=[D][S]

The stress strain relationship for plane strain loading is give by

Ox 1v| V 0 S,
Oy \ 1v| 0 Sy
=| E/(1+v)(1-2v) *
lxy O 0 ]/2 ‘V yyz

[0]= [D][S]

The element having mid side nodes along with corner nodes is a higher order
element. Element having curved sides is also a higher order element.

A simple quadrilateral element has straight edges and corner nodes.
This is also a linear element. It can have constant thickness or variable
thickness. The quadrilateral having mid side nodes along with corner nodes is
a higher order element. Element having curved sides is also a higher order
element.

The given two dimensional component is divided in to number of
quadrilateral elements. If the component has curved boundaries certain small
region at the boundary is left uncovered by the elements. This leads to some
error in the solution.




Quadrilateral

It is a quadrilateral element having four straight sides joined at four corners.
and imagined to have a node at each corner. Thus it has four nodes, and each
node is permitted to displace in the two directions, along x and y of the
Cartesian coordinate system. The loads are applied at nodes. Direction of
load will also be along x direction and y direction, +ve or —ve etc. Each
node is said to have two degrees of freedom. The nodal displacement vector
for each element is given by,
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A body discretized using quadrilaterals

q=1[01.92,095,94,95,0607.0s]
d:,93,0s,q7arenodal displacements along x direction of nodel, node?2
and node3 node4 simply called horizontal displacement components.
d2,04,06,0s are nodal displacements along y direction of nodel, node2 and
node3
node 4 , simply called vertical displacement components. q 5 — 1 is the
displacement component in x direction and q »; is the displacement
component in ydirection.

Similarly the nodal load vector has to be considered for each element.

Point loads

will be acting at various nodes along xandy .................coeevennn.n.
X1,¥Y1), X2,Y¥2), X3,Y3),(X4,Ys) arecartesian coordinates.of node 1
node 2 node 3.
and node 4

In the discretized model of the continuum the node numbers are progressive,
like 1,2,3,4,5,6,7,8.......... etc and the corresponding displacementsare Q ;, Q,, Q3

Q4Q5Q6,Q7,Qs5,Q9, Qu..... Qs, two displacement components at each
node.

Q-1 is the displacement component in x direction and Q
oj 1S the displacement component in y direction. Letj =10, ie 10"
node, Q2j-1=Q19 Q2j= Q20

The element connectivity table shown establishes correspondence of local
and global node numbers and the corresponding degrees of freedom. Also

the (X1, y1), (X2,y2) and (X3,ya) ,
(X 4, Y4 )have the global correspondence established through the table.

Element Connectivity Table Showing
Local — Global Node Numbers
Element | Local Nodes Numbers
Number 1 2 3 4

1 1 2 3 4




11 12 19 14 21

20

Nodal Shape Functions: under the action of the given load the nodes are
assumed to deform linearly. element has to deform elastically and the
deformation has to become zero as soon as the loads are zero. It is required to
define the magnitude of deformation and nature of deformation

for the element. Shape functions or Interpolation functions are used to model the
magnitude of displacement and nature of displacement.

A Quadrilateral has Four Nodes, each node having Two Degrees of Freedom
(Displacements)
Displacement along x direction and y direction

[q]=[a1,92,93,94,95,06,97.,98] ' , This is nodal
displacement vector g1 g3 g5 q7 displacements along x direction
of nodel, node2 , node3 and node 4 g2 g4 q6 g8 displacements
along y direction of nodel, node2 , node3 and node 4

Nodal coordinates are (x1,yl1), (x2,¥y2), (x3,y3) (x4,vy4). The
displacement of an interior point P (x,y) is given by u = [ u(x,y), v(x,y) 1"

The local nodes are numbered 1,2,3 and 4 in counter
clockwise fashion. The loads are applied at nodes ( + ve or
—ve)

The Master Quadrilateral is defined in C , y coordinate system. It is a square
having four nodes each node having two dof . Four Lagrange shape functions
N1, N2, N3 and N4 are used to model the displacement. Ni is unity at node i
and zero at other nodes

Nl=1atnodel, Oatnodes2,3,4, ......cc.ccvviviiiniinnn.. eq(1)
this means N1 = 0 along edges C = (+1) and y = (+1) So by intuition N1 has




tobeoftheformN1=c(1-C)(1-y)............ eq(2)
where ¢ is a constant

N1=1at C=(-1)and y=(-1) ie at Node 1,
therefo
rel=c(2)(2) giving c=1/4,
............... eq(3)thusN1=%(1-C)(1

similarly other shape functions are also written
N1=%(1-C)(1-y), N2=%(1+C)(1-y) N3=%(1+C)(1+y),
N4 =% (L-C) (L+y),

..... eq(®) Ni=% (1-CCi)(1—yyi) (Ci,yi)are
coordinates of node i

Atnodel C=(-1),y=(-1) N1=%(1-C)(1l-vy),
Atnode2C=(+1),y=(-1)N2=%(1+C

)(1-y), Atnode3C = (+1),y=(+1) N3

=% (1+C)(1+y), Atnoded C=(1),y
=(-)N4=%Q1-C)(1+y),

Iso Paramatric Formulation :

U= N1qgl+N29g3 +N3g5+N4q7 v=N1g2+N29g4+N3q6+
N4Ag8x= NIx1+N2x2 +N3x3+N4x4 y=Nlyl+N2y2
+ N3 y3 + N4 y4

The same shape functions are used to define the displacement and geometry of
the element.
This is called Iso-Parametric formulation.
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Potential Energy :
Total Potential Energy of an Elastic body subjected to general loading is given by

n = Elastic Strain Energy + Work
Potential

n=%Jo'sdv-Ju fdv-Ju' Tds-Zu'iPi
For the 2- D body under consideration P.E. is given by
v=Y%[s'DstedA-Ju' ftdA-[u' Ttdl-zu'iPi

This expression is utilised in deriving the elemental properties such as Element

stiffness matrix
[K], load vetors £, T°, etc.

Derivation of Strain Displacement Equation and Stiffness Matrix for (
derivationof [B]and [K]) :

Sx=6u/6xs,=6V/6y Yy =6u/b6y+6V/6X
u=u(x(@C.y),y(€C.y)) v=v(x(C.y) y(€C.y))

To get expressions for different strain components, derivations which are




almost similar has to be repeated twice. That is what we did in the case for
CST.
Instead we consider f=f[ x (C,y), Yy (C,y) ] as a general implicit function,

derive Jacobean, 6f /6x, 6f /6y, 6f/6C , 6f /6y etc and use them changing
suitably as functions for u or v etc. This way the derivations become simple.
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oYy on
Let us determine [J] , [J] *, 6f /6C , 6f /6y, 6x /6C , 6x /By , 6y

/6C , 6y /6y etc consider f=f[x (C,y),y(C.y)]

X=NLIx1+N2x2 +N3x3+N4x4 y=N1yl+N2y2+N3y3+ N4 y4

X=%A-C)(1l-y)x1+%(1+C)(1-y)x2

+Y% (Q1+C)(1+y)x3+% (1 -C) (1+y )x4
6X/6C=Y[-(1-y)x1+(Q1-y)x2+ (1+Yy)x3—(1+y)x4]
eX/6y=Y[-(1-C)x1-(1+C)x2+ (1+C)x3+(1- C)x4]
y=%Q1-C)(1-y)yl+%(1+C)(1-y)y2
+%(1+C)(1+y)y3+%(1-C)(1+y)ya

6y/6C="a[-(1-y)yl+(1-y)y2+ (1+y)y3—(1+y)y4]
by/6y="[-(1-C)yl-(1+C)y2+ (1+C)y3+ (1- C)yd]

Writing the elements of Matrix J

Ju | J

J21 Jzz

Ju =%[-Q-y)x1+Q-y)x2+(1+y)x3-(1+y)x4]
Jio =Y%[-(1-y)yl+(1-y)y2+(1+y)y3-(1+y)y4]
Jor=%[-(1-C)x1-(1+C)x2+(1+C)x3+ (1- C)x4]

Joo =% [-(1-C)yl-(1+C)y2+(1+C)y3+(1- C)y4]

We have [J] =1/ ]3] * [co]




Ju | Je
J =
b1 | I
Joo | -Jpp
L] =] U
-Jo1 Ju
of
olf_ Jop | -di2 8—
ol X S
=1/]J| * of
f
T om
oy -1 | Ju

Sx= 6u/6x = 1/ |J|[(Jo6uU/6C) + (-Jp6U/6Y)]
6u /6y = 1/|J|[(-J216u/6 C) + (Jn6U/6Yy)]

6v/ex =1/ [(J6V/6C)+ (-Jp6V/6Y )]
sy=06v/6y=1/|J [(-d21 6V /6 C) + (Jn

6v /6 y )] This equation is utilized in

deriving [ B] [ k] etc

C.y))




Changingf to u and v we get following matrices .........

o u of
0 X =V | I -Jio 0

6 u "J21 ‘]11 af
oy oM
oV of
0 X =131 3 | o, 0
oV -Jo1 Ji1 of
oy oM

Combining the matrices we get expression for strain components

S x 6u /6x Jo -J1o 0 0
1/ |
S 6v /6y 0 0 | -dn| Jun
y
6u /6y + = or | i | J2 | -2
Y 6V /16X

[ S global coordinates] = [A] [S Iocalcoordinates]
[ SQCO] = [A] [Slco]
[s] [A] [ G Jlaq]
[s] [ B 1 [dl

6u/6C

6u / 6y

6v /6 C

6v / 6y




Now let us differentiate uand v w.r.t C and y to get strain components in
local coordinate system

uU=N1qgl+N2g3+N3qg5+N4q7
=[%(1-C)(1-y)lql+[*2(1+C)(1-y)]g3
+[a(1+C)(1+y)las+[%(1-C) (1+y)las

?]U 46 C=Y[(-1) (1-y)lal +[(1) (1-y)Ja3 +[(1) (1 +y)JaS + [(-1) (1+y
q

=Y [-(1-y)al +(1 —y)g3 +(1 +y)g5 +(-(1+ y)q7)]

?]U ;Gy =7 [(-1) (1-C)lal +[(-1) (1 +C)]a3 + [(1) (1 +C)la5 +[(1) (1-C
q

=Y [-(1- G)al + (-(1+ C)g3) +(1 + C )5 + (1- C)q7]

v=N1g2+N2qg4+ N3g6+ N4g8
=[%(1-C)(1-y)lg2+[%(1+C)(1-y)]lg4
+ [ (1+C) (1+y)]g6+ [ (1-C) (1+y)]a8

6v/6C="[-(1-y)g2+(1-y)g4+(1+y)q6+ (- (1+y) q8]

6v/iby="%[-(1-C) g2 +(-(1+ C) a4 +(1+C) a6 +(1- C) g8 ]
6u/6C=%[-(1-y)ql +(1-y)a3 +(1+y)a5 +(-(1+y)a7)]

6u/6y="[-(1- C)ql + (-(1+ C)g3) +(1+ C)ad + (1- C)q7]

Substituting these in the equation [ S g o ] = [A][S 1co ]

We get
6u/6C -1-y)] 0 [(A-y)] O |(A+y)] O [-(1+y) O Gs
oulby| _| |10 0 |-axe| o [@o| 0 |- o S
6v/6C 0 |-1-y)] 0 |(I-y)] O [(+y)l O |[-(1+y) d4
6v/6y 0 -G 0 ||(1+C)| 0 [(A+C)] 0O |(1-C) Qs
Oe
Qs
Os




[s] = [B][g]=[3x1]
[s]=[A][%....] [q...];[3x1] = [3x4]

[4x8] [8x1][s] = [A][l G 11[q..]
= 3x8] [8x1]

[B] = [A]LG]

The terms of [B] and |J| are involved functions of C & y . The strain in the
element is expressed in terms of nodal displacement.

0 = D B g where D is 3x3 matrix

Elemental strain energy is given by % [ 0's dv
0 = D B g where D is 3x3 matrix

U=XtJe%o'sdA=%tele[DBq]' BqdA
=%q [t.J.B"DBdA] q
U=x%q' [t.//B'DBdetJdCdy]q
=x%q [K]q
where k® = t. | | B'DB det J dC dy is the element stiffness matrix

B and det J are involved functions of C & y, and so the integration
has to be performed numerically. The element stiffness matrix is ( 8
x8)

The Body force vector J. vurlfdv:

U=Ng
f=[f, f, 1" is constant within each element

[wufdv=3q"f




fe=te[J]IN detdCdy]{f,f,}"

the body force has to be evaluated by Numerical Integration

Traction Force Vector

Traction force vectors are assumed to act on the edges of the quadrilateral.

Let T =[ Tx, Ty ] act on edge 2-3 , along which C = 1. For this edge the
shape function becomes. N1=N4=0 , N2=(1-y)/2 N3=(1+y)/2,
they are linear functions along the edges, similar to 1-d bar element .

From the expression of P.E. eq. the traction force is given by,

Ju'Ttdl=[[Ng] " TdI=[[N"q" T le/2 dy

=q' [le/2]N"dy] " =q'[le/2[NTdy] "

Te:(teIZ-3/2)[0101 TX: TyTXI TylolojT

Numerical Integration And Gauss Quadrature Formula

The solution of many Engineering Problems involve evaluating one or more
INTEGRALS. The value of integrals can be evaluated by conventional
methods only for simple and continuous functions. In many occasions the
integration is to be carried out where the value of integrand is known at
discrete points and within an interval. Generally the evaluation of definite
integrals by conventional method is tedious, difficult and some time
impossible. Numerical methods are generally used as an alternate to
conventional method.

A function f (x) is assumed to be continuous in an interval (Xa , Xc). A
polynomial is used to approximate the function in this interval ( made to
pass through certain set of points). The area under the polynomial and the x-
axis will clearly, either exceed the actual area for xa < x < xg or less than the
actual area for xg <X < Xc (area between f(x) and x-axis is the actual area).
See Fig (a). Therefore the error associated with the integral for. X = X to X
= Xc Is reduced. Higher the order of the polynomial lesser will be the error.
Trapezoidal Rule, Simpson’s 1/3rd Rule, Simpson’s 3/8th Rule, Newtons -
Cotes formula etc are basic numerical methods of integration. These
methods require equally spaced sampling points (pivotals).




Consider an arbitrary function f(x). The area bound by f(x) and the x-

axis for theinterval X to Xg isgiven by ( see fig (b) ).
1= ) PR dx eq. 1
let | :szaIbe(x) dx=wy f(X) +w,of(X)+twsf(X)+...w;f(x))
=XWif(Xi) ool eg. la
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Fig (b)

W1, W,, W3, etc are called weights or
weight functions x1, x2, x3 are called
gauss points or sampling points

both w; and x; are unknowns, They are determined using Legendre
polynomials, hence the equation is also called Gauss-Legendre-quadrature
formula. In this the value of n sampling points can be used to fit (2n-1)
degree variation. The Gauss points are selected such that a polynomial of (2n-
1) degree is integrated exactly by employing n gauss points. In other words
the error in the approximates are zero if the (2n+2) th derivative of the
integrand vanishes.

The Gauss points are selected such that a polynomial of (2n-1) degree is
integrated exactly by employing n gauss points. In other words the error in
the approximates are zero if the (2n+2)th derivative of the integrand vanishes.

Numerical Integration

one Dimensional Analysis -- One Point Formula :

let 1=T= o) PF0 dx = Wy (X)) + W, F (X )+ W F (X 3)+

owiE ) Tet 1=T=a) PR dx = Wy f(X0) ... eq 1
for single point approximation wl and x1 are unknowns.
since there are two unknowns, the integral must hold for f(x) = 1 and f(x) = x

for number of gauss points n = 1 and the order of the polynomial is (2n-1) = 1, it is
linear.

Consider 1= yal ®f(x) dx = wi f(x1) ......... eq 2
for f(x) =1 Xaj xb f(x) dx = xB - xA =w(1) =wl
....... eq3afor f(x) =X  xa) O f(x) dx = (XB? — XA2)
[ 2 =w(x1) =wlxl

solving these two egs.
XB-xA=wl (xB*°-xA%/2 =wixl

we get wl = xB — XA




x1=(xB +xA)/?2

the integral is evaluated without regard to functional value at x = XA or x =
XB, it can be got by knowing the functional value at a point representing the
average of XA and xB

Numerical Integration -One Dimensional Analysis
One Point Formula G- co-ordinate system

In finite element method the elemental characteristics are in C coordinate
system in case of one dimensional analysis. C varies from -1 to 1.

We have to transform the egs. from x-axis to C-axis by linearly relating x to C.
Letx=a0+alC ............. eq>5

the constants a0 and al are determined by using new limits of integration.
x=xAatC= -1 x=xBatC = 1substituting these in to eq 5 and
solving we get a0 = (xB + xA) / 2 andal =(xB—-xA)/2

Substituting these ineq 5, x = [(XB + xA) / 2] + [(XB — xA) / 2]
C...... eq 6 Differentiating this w,r,t C we get , dx = [(XB — xA) /

2]1dC ....... eq 7,
using eq 6 and 7

eql I= Xaj xb f(x) dx = w; f(X,) can now be written as

= [ KB + XA) 1 2] + F [ (XB + XA)/2 + (XB — XA)/2 ]

dC.............. eq.8 1= fﬂ f(C)dC ...... eqg.9, now from eq.
3C
wl=xB-xA=1-(-1)=2x1=(xB+xA)2=(1-1)/2=0

w1 = 2 ( = 0 This is the transformation




The exact Integral and Gauss quadrature formula that involve single

term can be related as | = 4 I+1 f(C)dC=T=w1f(Cl)...... eq 10

If the curve happens to be a straight line, the integral can be evaluated to
sample f(0) at the middle point when C = 0, and multiply by the length
of the interval as,

1= " £(0) dC = £(0) [1+1] = 2(0)
.......... eqlliewl=2Cl=

There are two parameters wl ,C1, , we consider the formula represented
by eq. 10 to be exact when f (C) is a polynomial of order (2n-1) =1 ie
linear.

f(C)=a0+alC............ eq.12 therefore

| = -1J1f(a0+a1C;) dC=2a0........... eq.13

we also have T=w1 f (C1) = wl(a0 + al C1) ....eq14

Errore=1-1 e=-1 Ilf (C) dC - wi f (C1) = 2a0 —w1(a0+al C1)
e=a0(2-wl)-alwlCl ............ eq 15

the error will be minimum if 6e /6a0 = 6e /6al =0 ... eq 16
6e/6a0=2-wl=0 wl=2

6e /6al = -wlC1=0C1 = 0 therefore

| =wl f (C1) = 2 f(0)........ eq 17

These are same as we

got earlier.

Two Point Formula (- co-ordinate system :

Consider Gauss-Legendre quadrature formula with sampling Gauss points n = 2

1= % (C)dC=wlf(CL) +W2f(C2)=1.....eq18




We have four parameters to select, therefore | will be exact when 1f (C) is a

polynomial of order
3. (cubic polynomial. 2n-1 =3 )

1f(C)=a0+alC+a2C2+a3C3................. eq 19

l=- Jl (a0+al C+a2 C2 +a3 C3) dC = 2a0+ (2/3) a2

............... eq 20 Now consider equation 18 as
T=wlf(Cl)+w2f(C2)
=wl (a0+ al C1+a2 C12 + a3 C13) + w2 (a0+ al C2+ a2 C22 + a3 C23)

= a0 (wl+w2) +al(wl Cl+w2 C2) +a2(wl C12 + w2 C22) +a3 (w1l C13 +

w2 C23)....... eq.2le=1-1
e =[ 2a0+ (2/3) a2] — [ a0 (wl+w2) + al(wl C1+ w2 C2)
+a2(wl Cl2 + w2 C22) + a3 (wl C13 + w2 C23) ]

the error will be zero if
6e /6a0 = 6e /6al = 6e /6a2 = 6e /6a3=10

These yields wl+ w2 =2wl Cl+w2 C2=0
wlCl2+w2C22=2/3 wlCl3+w2C23=0

These egs. have the unique solution,
wl=w2=2 Cl = -13,C2=1A3

Substituting these values in to
| = -1I1f (C)dC =wlf(Cl) +w2 f(C2) we will get approximate answer.

Gauss-Legendre quadrature formula with sampling Gauss points n = 3

LY (C)dC = wl F(CL) + w2 £(C2) + W3 F(C3) =1 ....eq 22
We have six parameters to select, therefore | will be exact when f (C) is a
polynomial of order 5. (5th degree polynomial. 2n-1=5).

f(C)=a0+alC+a2C2+a3C3+a4C4+a5C5........ eq 23
| = J' (a0+al C+a2 C2 +a3 C3 + a4 C4 + a5 C5 ) dC

| = 2a0+ (2/3) a2 + (2/5) a4




.............................. eq 24 f(C1l) = a0+ al
Cl+a2 Cl2+a3 C13 +a4 C14 +a5 C15
f(C2) = a0+ al G2+ a2 C22 + a3 C23 + a4 C24
+a5C25

f(C3)=a0+al C3+a2 C32+a3C33+a4 C34+a5C35
Substituting these in to (eq.22)

T=-,J F(C) dC = wi f(CL) + w2 f(C2) + w3 f

(C3) we
get T= wil(a0+al C1+a2 C12 +a3 C13 + a4

Cl4+a5Cl15)
+ w2 (a0+ al C2+ a2 C22 + a3 C23 + a4 C24 + a5 C25)
+w3 (a0+ al C3+ a2 C32 +a3 C33 +a4 C34 +a5 C35)
Simplifying the eqgn. we get

T=a0 (wl+w2+w3) + al(wl C1+ w2 C2 + w3 C3)
+a2(wl Cl12 + w2 C22 + w3 C32 ) + a3 (w1 C13 + w2 C23 +
w3 C33)
+ad4(wl Cl4+ w2 C24 +w3 C34) +a5 (wl Cl5+w2 C25 +
w3 C35)

e=1-1
e = [ 2a0+ (2/3) a2 +(2/5) a4 ]
— [a0 (wl+w2+w3) + al(wl C1+ w2 C2 + w3 C3)
+a2(wl Cl2 +w2 C22 +w3 C32) +a3 (w1l C13 + w2 C23 + w3 C33)
+a4(wl Cl4+ w2 C24 + w3 C34 ) + a5 (w1l C15 + w2 C25 + w3

¢39) ]




the error will be zero if
6e /6a0 = 6e /6al = 6e /6a2 = 6e /6a3= 6e /6a4 = 6e /6a5 =0

These yields wl+ w2+ w3 =2 wlCl+w2C2+w3C3=0
wlCl12 +w2 C22+w3C32=2/3 wl(C13+w2C23 +w3
C33=0w1Cl4+w2C24 +w3C34=2/5 wlC15+
w2C25+w3C35=0

These egs. have the unique solution,

€1 = -/0.6=-0.774596692 €2 = 0.00000000

C3=+0.6 = 0.774596692

wl = w3 =5/9 = 0.555555555

w2 = 8/9 = 0.888888888

Substituting these valuesinto 1=-- fl f(C)dC=wlf(Cl)+w2f(C2)+w3f
(C3)

we will get approximate answer

Two and Three Dimensional Analysis - co-ordinate system :
Quadrilateral Plane elements and Hexahedral solid elements :

In these cases we apply the one dimensional integration formulas
successively in each direction. Similar to the analytical evaluation of double
or triple integral, successively the innermost integral is evaluated by keeping
the variables corresponding to other integrals constant.

For Quadrilateral Plane region the Gauss Quadrature formula is given by
1 1 S an e
Iz-lj -1,[ f(Cy)dCdy = I= X5 Xz wiwj f(Ciyj)) ... eq 28

For Hexahedral Solid region the Gauss Quadrature formula is given by




1 1 1 n n n L o
1= ] f Y0 dodyde =" 57 oy I <o wiwj wk F(Gilyi .GK) ......eq 29

The method discussed so for cannot be applied for Triangular and Tetrahedral solid

regions.

In case of Triangular plane and Tetrahedral solid regions the limits
integration involve variables. The Integrals are expressed using Area
coordinates instead of natural coordinates and integration is carried out

We know the area co-ordinates of CST, consider an arbitrary point p(x,y) in
the triangle. Join all the corners of the triangle to the point. The area of the
triangle is divided in to three parts A1 A2 A3 . A isthe over all area

Shape
Functions
L1:A1/A
L2:A2/A
L3:A3/A
L1+ Lo +L3=

If Ais the total area of the triangle then . L1 =Al1/A,L2=A2/
A, L3 = A3/ A are called the area co-ordinates of point p(x,y),

L1 =1atnode 1and 0 at node 2 and 3
L2 =1 atnode 2 and 0 at node 1 and 3
L3 =1 atnode 3 and 0 at node 2 and 1




They are shape functions in terms of area co-ordinates.
l=al f(L1,L2,L3)dA

1 1-L1
=0/ 0] fLi, L)dLd,
:|:i:12nWif(LI1,L|2,LI3) (L1=L1etc)

This is the Gauss Quadrature formula , i is the location of Gauss points.
Tables are available which give the Gauss points and weights for linear ,
gradratic and cubic triangular planes

Also In the case of Tetrahedral solid regions the limits of integration involve
variables. The Integrals are expressed using Volume coordinates instead of
natural coordinates and integration is carried out. The VVolume co-ordinates of
a Tetrahedron is similar to area coordinates of CST and can be explained as
follows. Consider an arbitrary point p (x,y) inside the tetrahedron, Join all
the corners of the tetrahedron to this point. The volume of the triangle is
divided in to four parts v1 v2 v3 v4.

If v is the total volume of the tetrahedron then , L1 =vl1/v ,L2=Vv2/v, L3
=v3/v, L4=v4 /v, are called the volume co-ordinates of point p(x,y) . v1
Is the volume p234, v2 is the volume of p134 , v3 is the volume pl124 , v4 is
the volume p123. The Integral of the tetrahedral solid is given by

The Integral of the tetrahedral solid is given by
|=v[f(L1,L2,L3,L4)dv

oo o M2 o sy dt a2 aus
T=s"wif(ly, L'y, L's, L'y)

Tables are available that gives the Gauss points and weights for the linear,
quadratic and tetrahedral solids.

Probl : Evaluate the following using one point and two point Gauss quadrature

1=, [3e%+C2+1/(G+2) ] dC




One pointtormula :torn=1we havewl=Z2and (C1=0

|=_1jlf(g)dc;=w1f(c;1)f(c;1)=f(0)=[3e°+02+1/(o+2)]=3.5
l=wl1f(Cl)=2x35=7

Two point formula : forn =2 we havewl =w2=1 and C1=-0.57735
C2=+0.57735

1=, ['F(C) dG = wif(Gl) +

w2 f(C2) f(C1) = f (- 0.57735)
=[3e %7 + (- 0.57735)% + 1/ (- 0.57735 +2) ] =2.720

f (C2) = f (+0.57735)
=[3e%7" +(0.57735)? + 1/ (0.57735 +2) ] = 6.065

I =wlf(Cl)+w2f(C2) =1(2.720) + 1(6.065) =8.785 Ans the exact
solution is 8.815 Note : For better accuracy minimum six decimal digits
should be used in weight functions and

sampling points

In the above discussion the sampling points and weight functions Ci , wi are
considered only for natural interval from (-1 to 1). However to make the
calculations general the sampling points and weight functions for any interval
from (a to b) are given by Ci! , wi! where

Cil =[ (at+b)/2 + ((b-a)/2)Ci ] wi! = ((b-a)/2) wi

Prob2 : Evaluate using two point Gauss quadrature, |=1
= ofs (2° - C) dC Solution : For the natural interval ( -1 to 1)
for two point gauss quadrature
n=2wl=w2=1 and Cl1=-0.57735 C2=+0.57735

For the interval (0 to 3) using the formulae
Cl!=[(a+b)/2 + ((b-a)/2)C1] C2! =[(ath)/2 + ((b-a)/2)C 2]
wl! =((b-a)2)wl w2 !=((b-a)/2)w2wehave

C1! = [ (3+0)/2 + ( (3-0)/2)(-0.57735)] = 0.633975




C2! = [ (3+0)/2 + ((3-0)/2)(0.57735)] = 2.36602
wll =((3-0)2) (1) =3/2  w2!=((3-0)/2) (1) =3/2

f(C)=(2-C) using C1!, C2! In place of C
f(C1!) =(20.633975 - 0.633975) = 0.9178
f(C2!) = (22.36602 — 2.36602) = 2.789

I=wi1lf(c11)+w2If(c2!) = (3/2) (0.9178) + (3/2) (2.789) =5.56
Prob3 : Using two point Gaussian quadrature formula evaluate the following integral
1 (1 - o
| = -1I -1I fCy)dCdy = T= %4 X wiwj fGiy)) ... eq 28

1 1
1=-1] - ] (¢ 20y 21 dC gy |
Solution :The above integral can be expressed in general form as
1 1 ~ n n - - - -
1=l ] r ey aCay = 1= £y X wiwi f (Giyi)
n =2 in both C and y direction. Expanding the above equation

T=wi[ wl f(C1,yl) + w2 f (C1,y2) ] + w2[ wl f (C2,y1) + w2 f (C2,y2) ]
=wl12 f (C1,yl) + wiw2 f (C1,y2) + w2wl f (C2,y1) + w22 f (C2,y2) ]

T=wi[ wl (C12 + 2C1yl +y12) + w2 (C12 + 2C1y2 +y22) ]

+w2[ wl (C22 + 2C2yl +y12) + w2 (C22 + 2C2y2 +y22) |
From table we get the values of Gauss points and weights for two point
Gauss quadrature formulaas C1 = yl=-13 C2 = y2=1~3 wl=
w2 =1, substituting these in the above equation we get,

T=1[1 ((- 13)2 + 2(- 13) (- 1N3) +(- 1N3)2)
+1((- UN3)2+2(- 1N3) (AN3) +(1N3) 2) ]
+ 1[1((1N3) 2+ 2 (1N3) (- LN3) + (- 1N3)2)
+ 1 ((AN3) 2+ 2(1N3)AN3) +(1N3) 2) ]

on simplification gives T = 8/3

Prob 4 : evaluate the integral -, | (2 + x + x? )dx




Solution : we need at least two point integration rule since the integrand
contain a quadratic term. We will use both one point and two point guass
quadrature and show that two point result matches with the exact solution.

For one point rule we know x1 =0wl =2
Consider T = -1 Il f(x) dx = wif(x1) ......... eq 2

= 2(2+0+0) = 4
For two point rule we know x1 = 1/N3x2=-1~3wl=w2 =1

1= -0 16 (0 dx = wi f (x1) + w2 f (x2)
=1(2+1N3+(@1N3)2)+1f(2-113+ (13)2)

= 4.6667 The exact solution is 4.6667

1
Prob 5 : evaluate the integral -1 I cos (nx/2) dx

Solution :For one point rule we know x1 =0wl =2

T:-lj.lf(x)dxzwlf(xl):2[cos(n0/2)]:2

For two point rule we know x1 = 1/\/3 x2 =- 1/\/3 wl=w2=1
1= - JHF () dx = wl f (x1) + w2 f (x2)
=1cos[(n/2) (1N3)] +1cos[(n/2)(-1/N3)]

=2 cos (n/2V3) =1.232381
For three point rule we know x1= \/0.6 x2=0x3= -\/0.6
wl =5/9 w2=8/9 w3=5/9

| = -1f1f(x) dx =wl f(x1) + w2 f (x2) + w3 f (x3)
= 5/9 cos (n/2)(¥0.6 ) + 8/9 cos (n/2)(0) + 5/9 cos (n/2)(-V0.6)

= 1.274123754

For Four point rule we know

x1=0.8611363 X2 =0.3399810x3 = -0.3399810 x4 =-
0.8611363

wl =0.347854845 w2 = 0.652145155 w3 =




0.652145155 w4 = 0.347854845

| = -1I1f (X) dx =wl f(x1) + w2 f (x2) + w3 f (x3) + wa f (x4)

= 0.347854845 cos (n/2)(0.8611363) + 0.652145155 cos (n/2)(0.3399810)

+ 0.652145155 cos (n/2)(- 0.3399810) + 0.347854845 cos (n/2)(- 0.8611363)

= 1.273229508
The actual answer is = 1.273239544

Determination of Stiffness Matrix [K] for quadrilateral element :

Elemental strain energy is given by %2 | 0's dv
0 = D B g where D is 3x3 matrix

U=t Jeho'sdA=%tele [DBq] BqdA
=%q [t. ] B"DBdA] q
U=X%q [tJ]B'DBdetJdCdy]q
=x%q [K]q
where k® =t | | B'DB det J dC dy is the element stiffness matrix

B and det J are involved functions of C & y, and so the integration
has to be performed numerically. The element stiffness matrix is ( 8
x8)

Integration has to be carried out to determine only upper triangular elements
, Let O is the ij th element of the integrand above
O(C,y) = te ( B'DB detJ)ij Using2 x 2 rule we get ( 4 point integration)

Kij=wl2 0(C1,yl) + wiw2 O(C1,y2) + w2wl O(C2,y1) + w22 O(C2,y2)

wl=w2=1.0 Cl=yl=-0.57735 C2=y2 =0.57735
( look in to prob 3 solved using 2 x 2 rule ),

Ki J =2XWpOpr p 1104 IP is the integration pOint

where Op is the value of 0 and wip is the weight factor at integration point

IP. [ B'DB det J ] results in 8x8 matrix, containing 64 terms which are

symmetric about principal diagonal. Each term is a function of C &y, on

integration give kij ‘s Numerical integration is carried out considering the

gauss points 1,2,3,4 as indicated above.




k1l =w12 011 (C1,yl) + wiw2 011 (C1,y2) + w2wl 011 (C2,y1) +
w22 011 (G2,y2) k12= w12 012 (G1l,yl) + wiw2 012 (Cl,y2) +
w2wl 012 (C2,y1) + w22 012 (G2,y2) k13 = wl12 013 (G1,y1) +
wlw2 013 (C1,y2) +w2wl 013(C2,y1) + w22 013 (G2,y2)

k88 = w12 088 (C1,y1) + wiw2 088 (C1,y2) + w2wl 088(C2,y1) + w22 088 (C2,y2)

C.y

Thus No General k matrix is developed in case of quadrilateral. Elements of
k depends on gauss points. Some time elements of stiffness matrix [k] are
determined at mid point of the quadrilateral where C =y =0. Thisis a
simplified procedure and results in relatively lesser data to handle.

yA
1,1 1,1
-0.57735 0.57735,
0.57735| 4 3] 057735
¢

-0.57735, |1 0.57735,
-0.57735 -0.57735

1,-1"
1,-1

Stress Calculations in Quadrilateral element : 0 = DBq

0 = DBq is not constant within the element. They are functions of C , y and
consequently vary within the element. In practice the stresses evaluated at
Gauss points, which are also the points used for numerical evaluation of K,
where they are found be accurate. For a quadrilateral with 2 x 2 integration
this gives four sets of stress values. For generating less data one may




evaluate stresses at one point per element, say at C =y = 0. Many

Computer schemes use this approach

Problems on Quadrilateral elements

Consider the rectangular element shown in fig. Assume plane stress

conditions, E =30 x 106 psi, v=0.3, and

q=1[0,0, 0.002, 0.003, 0.006,

0.0032,0,0]T in. Evaluate J, BandoatC =y =0
Solution : atnode 1 ,2,3, 4 displacement componentsareq:q,9394950s

g7 s in usual direction .

L.

I3 2,1)

»

4 (0,1)

C (1,0.5)

L

L

L

1(0,0)

2 (2,0)




(x1,y1)= (0,0) (x2,y2) = (2, 0) (x3y3) = (2, 1)
(x4,y4) = (0, 1) (xc ,yc) = (1, 0.5)
Gauss points C=y=0 qgq=[0,0,0.002, 0.003, 0.006, 0.0032, 0, 0]" in.

first let us determine J

JI1=Y%[-1-y)x1+(1-y)x2+ (1 +y)x3—(1+Yy) x4]
J2="%[-(1-y)yl+(1-y)y2+(1+y)y3—(1+y)y4]
R1=%[-1-C)x1-(1+C)x2+(1+C)x3+ (1- C) x4]
J22=Y%[-1-C)yl-(1+C)y2+ (1 +C)y3+
1-C)y4]x1,yl=0,0 x2y2=2,0 x3y3=2,1
x4yA=0,1C=y=0

N1 =%[-0+2(1—-y)+2(1+y)-0] =y [2(1-y)+2(1+
yl=1 ni=1

J12 =Y [-0+ 0+ (L +Y) - (1+ V)] =y [

+y)-(1+y)]= 0 J12=0J21 =%[-0-2(1+C)+

2(1+C)+0] =%[-2(1+C)+2(1+ C)=0
21=0J22=%[-0-0+(1+C)+(1- Q)] =Y, [(1+

C)+(1-Q)="% 122 =%

J1 =1 Jp2=0 Jn=0Jp=%

[J] is a constant Matrix

Also J| =%

1 0
J =

0 Yo

Also |J| =%




mbnc

o | -] 0] 0
R VI BV s o
Je | du | 2 |
0] o0]o0
1/:(12/2) o001
0 1]%|o0
[A]
1 0
0 0
0 2
This is [G] substitute C =y =0
-I-y) 0 | (1y)] O |(I+ty) O |-(I+y) O
-(1-G) 0 |-(1+G) O |(1+C) 0 |(1-C)] O
ya 0 |@y) 0 fdy)p 0 ) 0 -(14y)
0 |-(1-C) 0 |-(I+¢) 0 |(I+C) 0 |(1-Q)

This is [G]

substitutingC =y =0

-1/4 0 | 1/4] 0 |1/4

0

-1/4

0

-1/4] 0 |-1/4] 0 |1/4

0

1/4

0

0 |-1/4] 0 |1/410

1/4

0

-1/4

0 |-1/4] 0 |-1/4] O

1/4

0

1/4




The stresses at C =y =0 are now given byo°=D B" g

[ D] —
30 x 106/ (1-09)] 1 109 0 [B]I"=[A][G]
X ¥ . - -
=32.96x106 14 0 | 14| 0 |1/4] 0 |-14] O
0.031] 0 0 |-12] 0 |-12] 0|12 0 |12
0 [0[038 [-172|-v4|-12| 14 |12|va] 12 |-14




[D][B] = 10°

30 x 10°/ (1-0.09) = 32.96x10° 32.96x0.3 = 9.890 32.96x0.03 = 0.9888
32.96x0.35 =11.53 32.96x0.25 = 8.24 32.96x0.5 = 16.48
9.890 x 0.5 =4.945 0.988 x 0.25 =0.2472 11.53 x0.5=5.765

11.53 x0.25=5.765
-8.24 -4.945 8.24 -4.945 8.24 4945 -8.24 4.945

-0.2472  -16.48 0.2472 -16.48 0.2472 16.48 -0.2472 16.48
-5.765 -2.883 -5.765 2.883 5.765 2.883 5.765  -2.883

The stresses at C =Yy = 0 are now given by o’=D B’ q

[D][BO]=10° x

-8.24 |-4.945 8.24 |-4.945 |8.24 4945 |-8.24 4.945

-0.2472 |-16.48 |0.2472 |-16.48 |0.2472 |16.48 |-0.2472 |16.48

-5.765 |-2.883 |-5.765 [2.883 |[5.765 (2.883 |5.765 |-2.883

10° [ 8.24*0.002 - 4.945 * 0.003 + 8.24*0.006+ 4.945* 0.0032]
= 0.066909*10° = 66909 psi
10° [ 0.2472*0.002 — 16.48 * 0.003 + 0.2472*0.006 +
16.48*0.0032 ]
= 23080 psi (5273.6 psi)
10 [ -5.765*0.002 +2.883* 0.003 + 5.765*0.006 + 2.883* 0.0032
= 0.040905 * 106 = 40905
[00]=[66909,23080,40905 ] " psi

[a]

0.002

0.003

0.006

0.0032




Higher Order Elements :

The four Node quadrilateral studied so for have shape functions containing
the terms 1, C & y etc which are linear terms. Elements having shape
functions containing C*y, C* y* and C Y etc are called Higher order
elements. They have middle nodes along with corner nodes or other normal
nodes. They provide greater accuracy in analysis

Determination of [ k ] for higher order elements follow the routine steps :
u=Ngqs=Bq k®= t./][B'DB detJdCdy  Kk%isevaluated at gauss points
etc.

Nine Node Quadrilateral , Eight Node Quadrilateral , Six Node Triangle are the Higher
order elements used in 2-d analysis. The shape functions are derived using Lagrange shape
function formula

(G- CO)(C- CI)...... (C- GPp-1)(G- Gp+1)..... (G- Cn)
------------- (Cp-CO)(Cp-CI)...... (Gp-Cp-
1)(Cp-Cp+1)..... (Gp-Cn)

The shape functions are also determined using Serendipity approach,
assuming a polynomial of suitable order (depending on degrees of freedom),
determining the values of constants using boundary conditions and other
mathematical constraints specific to certain analysis and geometry, etc,.

Nine node quadrilateral :

The Element is a Quadrilateral consisting of Four Corner Nodes and Four
Middle Nodes and a Node at the center of the element total Nine Nodes.
Shape functions can be defined in local coordinates using serendipity
approach. We use a master quadrilateral to define N’s. consider C- axis alone
with local nodes 1,2,3 with C = -1, 0, 1. , L1, L2 L3 are generic shape
functions with usual definition L1 (C) = 1 at node 1 and 0 at other two nodes
etc,




Consider L1=0atC=0andat C =+1, hence it should be of the
form L1=cC (1-C) Since L1 =1at C =-1we get c = - 1%,
thereforeL1 (C)=-C (1-C)/2




Using similar argument L2(C)=(1+C)(1-C) L3(C)=C (1+
G)/2

Similarly along y axis we have, L1(y)=-y(1-y)/?2 L2(y) = (1-y) (1+y)
L3(y)= [y(1+y)/ 2]

In the master quadrilateral element every node has the coordinates C = -1, 0 or +1
y =-1, 0 or +1, thus the following product rule give the shape functions as,

N1=L1(C)L1(y) NS=L2(C)L1(y) N2=L3(C)L1(y)
N8 = L1(C) L2(y) NO=L2(C)L2(y) N6=L3(C)L2(y)
N4 = L1 (C) L3 (y) N7 =L2(C)L3(y) N3=L3(C)L3(y)

Higher order terms in N leads to higher order interpolation of displacement
as given by u = Nq Higher order terms can also be used to define
geometry. This leads to quadrilateral having
curved edges if required. [X]=[N][x] [y]=[N][Yy].

Any how sub parametric formulation can also be adopted using nine node
shape functions to interpolate displacement and four node shape function to
define geometry.

Shape functions of a Eight node quadrilateral :

Ay
(-1, 1) (1, 1)
4 y=1 N
0 ‘ g 3
s Ny 1+ C+Yy
C=-1 /
8 6 K4
1+t Y Sy C=1
0 0




(11_1)




1

L1
Eight node master quadrilateral

The Element is a Quadrilateral consisting of Four Corner Nodes and Four
Middle Nodes, total Eight Nodes. Shape functions can be defined in local
coordinates using serendipity approach.

We use a master quadrilateral to define N’s.

Ni = 1 at node | and 0 all other nodes. Thus N1 has to vanish along
lines C =+1 & y=+1 Thus N1 is of the form N1=c(1- C) (1-y)
(1+ C+y).

Atnodel N1=1 C=y=-1 1=c(1+1) (1+1)(1-1-1) =-4c,thusc=-1/4
Therefore N1 = - % [(1+ C) (1- y) (1+ C+ y)], similarly N2 , N3, N4 are
determined .

N1=-[(1+C) (1-y) A+ C+y)]/4, N2=-[(1+C)(1-y) (1-C+y)]/4
N3 =-[(1+C) (1+y) 1-C-y)]1/4,  N4=-[(1-C) (1+y) (1+C-y)]/ 4

N5 N6, N7, N8 are determine at mid points

N5 vanishes along the edges C = +1, y=+1, C = -1, hence it has
to be of the form N5 = ¢(1- C) (1-y) (1+ C), = ¢c(1- C*) (1-y)
we have the condition N5 =1 at node 5
orN5=1atC=0,y=-1 1=c(1-C*)(1-y)=c (1) (2)c=%

Thus N5 = % [(1- C*) (1- y)] , similarly remaining can
be determined. N5 =[(1- C2) (1- y)]/ 2 N6 = [(1+

C)(1-y2)]/2
N7=[1-C2)(1+yl/2  N8=[(1-C)(1-y2)]/2

Shape functions of a Six node Triangle : C=1-C-y.

The Element is a triangle consisting of Three Corner Nodes and Three
Middle Nodes, total Six Nodes. Shape functions can be defined in local
coordinates using serendipity approach.. We use a master Triangle to define
N’s.

Ni=1atnode 1 and 0 all other nodes etc. N1 =C (2C - 1)




N2=y(2y-1)N3=C((2C-1) N4 =4Cy

N5=4Cy N6=4CC
Since terms C?, y* are also present the triangle is also called quadratic triangle.

Iso parametric representation is u=Nqg , x=XNixi y =2 Ni

yi

[ k] has to be got by numerical integration ke =te || B'DB det J dC dy
One point rule at the centroid with wl= % and the gauss points C1 =yl =
C1 = 1/3 is used Other choices of wi and Gauss points are available in the

table.

Master Triangle

=1 2

¢=1

=0

6 1
c=1 C=1/2 C=0
Shape functions of Iso parametric Linear Bar Element :

Element characteristics of iso parametric elements are derived using natural
coordinate system C defined by element geometry and not by the element
orientation in the global-coordinate system. That is, axial coordinate is
attached to the bar and remains directed along the axial length of the bar,
regardless of how the bar is oriented in space.

Consider a two node, linear bar element having two degrees of freedom,
axial deformations Ui and Uj at nodes i and j, associated with the global x-




coordinate as shown in figure

Consider the displacements field u(C) to the nodal displacement Ui and Uj
using a linear polynomial u(C) =al +a2 C, where C is natural coordinates
and vary from -1 to +1, al and a2 are generalized coordinates and can be
determined from the following nodal conditions.

At,C=-1,u(-1))=Ui and C=+1;u(l) =U;j
By substituting above conditions into

equation ,we obtain Ui =al +a2 (-1) Ui=

al - a2

Uj=al+a2 (1) Uj=al +a2

adding both we get Ui + Uj = 2al therefore al = (Ui + Uj)/2

Subtracting we get Ui -Uj = - 2a2 therefore a2 =
- (Ui - Up/2 a2 = (Uj - Ui)/2

u(G) = (Ui + Uj)/2 + [(Uj - Ui)/i2 ] ()

= (Ui - Ui C) /2 + (Uj + Uj C )/2

= Ui (1- C) /2 + Uj (1+ C)/2

=[(1- C)/ 2]*ui + [(1+C)/ 2]*uj or  [(1- C)/ 2]*ql+ [(1+C)/ 2]*q2

Thusu(C) =Ni (C)*ui+Nj (C)*uj or = N1ql
+ N2g2 Ni (C) =N1=(1-C)/2

Nj (C) = N2 = (1+C)/ 2

Are called the shape functions

Atnodel1 C=-1N1=1Atnode2C=1N1=0
Atnode2C=1N2=1Atnodel1 C=-1N2=0

A 4
\ 4

v
—=0)
—= 0




Consider a three noded bar element as shown in figure below. Let i and j be
the end nodes and k be the middle node. The element is defined in natural
coordinate system. The shape functions can be derived either by using the
displacement polynomial of order two or the Lagrange shape function
formula.

Let Ni, Nj and Nk be the shape functions of nodes i , j and k respectively.
Let Ci, Cj and Ck be the nodal coordinates defined in the natural coordinate
system figure below Using the Lagrange shape function formula for one-
dimensional element we obtain the shape function Ni of node i as

Ni(C) = [(G- CK)(C-CN]/ [(Ci -Ck)( CI -C))]
Introducing Ci = -1, Ck =0, Cj = +1 into above expression, we obtain

Ni(C) =[(C-0)(C-1)]/[(-1-0)(-1-1)] =
C(C-1)/2Ni(C) = [C(C-1) / 2]

i k

~ e

X C=
> C¥-1

N(C)

= (
A 4

Similarly we obtain the shape functions Nk and Nj of nodes k and
j respectively as NK(G) = [(G- Gi)( G-C})I / [(Gk ~Gi)( Gk ~Gj)] =
(1- €9
= [(C+1)(C-DI/ [WC-D] = [(2- G)(1+C)]/

[(D(D)]=(1-C?) NK(G) = (1- G7)




Nj(C) = [(C- CH(C-CK)]/ [(C] -CI)( C] -CK)] = [C(C+1) / 2]
[(C-(-D(C-01/[(1- (-1)) (1-0)] =

[C(C+1) /2] Nj(C) = [C(C+1) / 2]
N1(G)=C(C-1)/2 N2(G)=[C(C+1)/2] N3(C)=(1-C)

Isoparametric Linear Triangular Element :

For an actual or generalized physical element, in a physical space, natural
coordinate axes need not be orthogonal or parallel to the global coordinate
axes. The natural coordinates are attached to the element and maintain
their position with respect to it regardless of the element orientation in
global coordinates. Also an element’s physical size and shape have no
effect on the numerical values of reference coordinates at which nodes
appear. Thus, physical elements of various sizes and shapes are all
mapped in to the same size and shape in reference coordinates.

For example, an actual triangular element  mapped in to a natural
coordinate system, is always an isosceles triangle having the length of sides
equal to unity. The family of elements mapped are called master elements.
The displacements are directed parallel to global coordinates not parallel to
natural coordinates.

In terms of generalized coordinates ai, bi the displacement models are given by the

equations
U(

Consider a three-node, linear triangular element. Let C and y be the natural
coordinates for the triangular element . The master element is as shown in an
earlier figure
The displacement models as linear polynomial

are given by u(C , y) =al+a2 C +a3

z(c ,Y) = bl+b2 C +b3 y
where u and v are displacements field inside the element, al, a2, a3, b1,
b2, and b3 are the generalized coordinates to be determined from the
following nodal conditions.




At C=1, y=0; u(1,0) =uiv(1,0) =
ViAt C=0, y=1;u(0,1) =uj
v(0,1) =
vjAt C=0, y=0;u(0,0) =uk
v(0,0) =
vk
where ui, vi, uj, vj, uk and vk are the nodal
displacements. u(C , y) =al+a2 C +a3 yv(C, V)
=bl+b2 C+b3y

At C=1, y=0; u(l,0)=ui v(1,0)=vi
ui =al+a2 (1) +a3 (0) =al+a2

eql vi =
bl+b2 (1) +b3 (0) = bl+b2
eq2
At C=0,y=1, u@0l=u Vv(01)=y
uj=al+a2 (0) +a3 (1) = al +a3 eq 3 vj =bl+b2 (0) + b3 (1) = bl +b3
At C=0, y=0; u(0,0) = uk v(0,0) = vk

uk =al vk=bl oral=ukbl=

vk Substituting the values of al bl
intheegs 12 3 4 above

ui = al+a2 uk +a2 a2 =ui - uk
vi = bl+b2 vk +b2 b2 =vi - vk

uj =al +a3=uk +a3 a3 =uj - uk
vj = bl +b3 = vk +b3 b3 =vj —vk

€q



Thus we have

al = uk and bl= vk
a2 = ui- uk b2 = vi- vk
a3 = uj- uk b3 = vj- vk

Substitution of these constants into equation
u(C,y)=al+a2C+a3y v(C,y) =bl+b2 C +b3y
u(€,y) = uk+ Gui- uk)+ y(uj-uk) (G ,y) = vk+ G(vi- vK)+ y(vj- VK)

u(C,y)=uk+ Cui—Cuk+yuj—yuk
=Cui+tyuj+uk-Cuk-yuk
=CQui+tyuj+(1-C-y)uk
= Ni ui + Nj uj + Nk uk

v(C ,y) = vk+ C vi- C vk+ y vj- y vk
=Cvityvj+vk—Cvk-yvk
=CVi+tyvj+(1-C-y)vk
= Nivi + Njvj + Nk vk

where Ni = C, Nj = yand Nk = 1- C- y are the shape functions of linear
triangular element. The shape functions are linear over the entire element.

Isoparametric Linear Quadrilateral Element:

Consider the general quadrilateral element defined in x- and y- coordinates
shown in an earlier fig. Let i, j, k and | be the nodes labeled in the counter
clockwise direction from node i.

Let u and v be the displacements field within the element.

The general quadrilateral element can be expressed in terms of the master
element defined in C, y coordinates and is square shaped. The shape functions
for the element can be derived using the Lagrange shape function formula in
the C and y directions. Let us first derive the shape function Ni at node i.

In the Lagrange formula for two-dimensional element, replacing P by i and
since element is linear, we have

Ni(C, y) = Ni(C) Ni(y) Where Ni(C) is the shape function at node i.




It can be defined by treating separately as one-dimensional case
in C coordinate. Therefore Ni(C) = (C - Cj) / (Ci - C))

Since, there are only 2 nodes i and j along the —ve y side of the element

Using nodal coordinates in natural coordinate system,
wehave Ci=-1, Cj=+1 substituting in the equation

Ni(Q)=(C-C))/(Ci-C)) =(C-
1)/ (-1=1) Ni (C) = (C-1) / -2

Similarly, we can obtain the Ni(y) along the -ve C side of element
using theegn. Ni(y) =(y—-y 1)/ (yi-yl)

Since, along the —ve side C only i and | nodes are present substituting their nodal

coordinates
yi=-1 yl=1 intoequation above we obtain

Ni(y)=(y—-1)/(
1-DNi(y)=(y-
1)/ -2

Thus the shape function at node | is got by
multiplying Ni (C) Ni (y)
NI(C, y) = [(C-1) /-2][( y-1)/-2]
= Y4(1-C)(1-y)
Similarly, we can find the remaining shape function at j, k and | nodes. Thus,
all the four shape functions can be written as
Ni(C, y) = ¥4(1-C)(1-y)
Nj(C, y) = Ya(1+C)(1-y)
NK(C, y) = Va(1+C)(1+y)
NI(C, y) = Ya(1-C)(1+y)

While implementing in a computer program, following general equation can be

used.
Np(C, y) = %(1+CCp)(1+yyp) forp =i, j, kandI.




('1’ 1)

1,1
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(-1,-1
L1(C
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The stresses at C =y = 0 are now given by 0 °=D B’ g

[D]

30 x 106 / (1-.09)
=32.96x106

1

0.03

—

0.35

(1,-1)
L3(C)

v




Problem:

For the simple bar shown in the figure determine the displacements, stress and the reaction. The cross
section of the bar is 500mm?, length is 1000mm, and the Young’s Modulus is E = 2X10° N/mm?.
Take load P = 1000N.

-
P = 1000

1000mm

Results:

Deformation at fixed end = 0 Deformation at mid

section = 0.005mm

Deformation at free end where the load is acting = 0.01mm Stress in the Bar = ¢ = 2
N/mm?

Reaction Force = R; = -1000N
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9 Finite Element Analysis Programs

9.1 Overview

Computer implementation of finite elements and solution procedures for engineering analysis is ad-
dressed. The end product is a general-purpose finite element analysis program. For such software to
be used as an effective CAE tool, the programming should be hardware independent. The chosen finite
elements and numerical methods must be accurate and reliable. The program should be executable on
a given platform of choice — single processor, multi-processor, parallel processor, etc.

A general purpose FEA program consists of three modules: a pre-processor, a solver, and a post-
processor. Commercial FEA programs can handle very large number of nodes and nodal degrees of
freedom provided a powerful hardware is made available. User’s manual, theoretical manual, and
verification problems manual, document a commercial FEA program.

Surveys of general-purpose programs for finite element analysis have been published [9.1]. At
present FEA programs are used rather than written. Understanding of the organization, capabilities,
and limitations of commercial FEA programs is generally more important than an ability to develop or
even modify a FEA code. The emphasis on programming the FEM which was a major preoccupation
in many recent textbooks [9.2 to 9.4] is therefore absent in this book.

The purpose of this chapter is to describe the organization and desirable capabilities of a general-
purpose FEA program. A brief description of widely distributed and extensively used commercial FEA
codes is included so that the reader is aware of their current capabilities.

Benchmark constitutes a standard set of test problems devised to assess the performance of FEA
codes.

The practical issue of developing a viable FEA program and its implementation in the PC environ-
ment is a much larger challenge. Typically, it involves hundreds of human year’s effort.

9.2 FEA Program: Organization

The four components shown in Fig. 9.1 are common to virtually all general-purpose FEA programs.
The INPUT phase enables the user to provide information relating to geometric representation, finite
clement discretization, support conditions, applied loads, and material propertics. The more sophis-
ticated commercial FEM systems facilitate automated generation of nodes and elements and provide
access to a material property database. Plotting of the finite element model is also possible so that
errors if any, in the input phase, may be detected and corrected prior to performing computations.
The finite element library comprises the element matrix generation modules. Herein resides the
coded formulative process for the individual finite elements. Ideally, the element library is open-ended
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Input
Finite
Element
Library
Assembly and
solution
Results

Fig. 9.1  Components of a general purpose finite element analysis program

and capable of accommodating new elements to any degree of complexity. This phase generates the
required element matrices and vectors.

The assembly module includes all matrix operations necessary to position the element matrices for
connection to neighbouring elements and the connection process itself. The latter operation thereby
produces the global matrix equation of the finite element model.

The solution phase operates on the governing matrix equation of the problem derived in the previous
phase. In the case of a linear static analysis, this may mean no more than the solution of a set of linear
algebraic equations for a known right-hand side. In the case of linear vibration and buckling analysis,
this may mean the extraction of eigen values and eigen vectors. Transient response analysis will require
computations over a time history of applied load.

Finally, the results phase provides the analyst with a record of the solution. The record is commonly
a printed list of nodal d.o.f, element strains and stresses, reaction forces corresponding to constrained
degrees of freedom and a host of other requested information. As in input phase, there is a trend toward
graphical output of results such as plots of displacement and stress contours, modes of vibration and
buckling, etc.

A commercial FEM system therefore consists of three basic modules: pre-processor; solver; and
post-processor. These modules and their functions are illustrated in Fig. 9.2. The pre-processor allows
the user to create geometry or input CAD geometry, and provides the tools for meshing the geometry.
The solver takes the finite element model provided by the pre-processor and computes the required
response. The post-processor takes the data from the solver and presents it in a form that the user can
understand.

9.3 FEA Program: Capabilities

The desirable features of a general-purpose FEA program are a large number of material models;
a good library of finite elements; a good number of analysis procedures; and ability to manage the
associated data. A brief discussion on these follows.
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. Read/Generate nodal coordinates and boundary conditions
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. Print/Plot deformed mesh over undeformed mesh

2. Print/Plot contours of displacements
3. Compute element strains, stresses, etc
4. Print /Plot contours of stresses

5. Display locations of max./min. stress

6. Print/Plot contours of failure index

Fig. 9.2  Finite element analysis program—modules and their functions

9.3.1 Material models

To cover a large number of metallic and non-metallic materials and a wide range of their behaviour, a
general-purpose FEA program should provide a library of material models.

» Homogeneous, isotropic, linear, elastic
¢ Orthotropic

* Anisotropic

¢ Laminated composite

» Nonlinear elastic

o Elastic plastic
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Viscoelastic

Viscoplastic

Hyperelastic

Temperature-dependent material properties

9.3.2 Element library

The available elements are for solid, structural, thermal and fluid flow analysis. They can be classified
as follows:

One-dimensional elements
- 1-D, 2-D, 3-D bar elements
- Linear/quadratic/cubic in order
Two-dimensional elements
- Triangular/quadrilateral in shape
- Linear/quadratic/cubic in order
~ With straight/curved edges
Axisymmetric ring elements
~ Triangular/quadrilateral in shape
- Linear/quadratic/cubic in order
- With flat/curved surfaces
Three-dimensional elements
— Tetrahedra/hexahedra/pentahedra in shape
— Linear/quadratic/cubic in order
- With flat/curved faces
Beam elements
— Euler-Bernouli theory/shear deformation theory
- 1-D, 2-D, 3-D beam elements
Plate elements
= Kirchoff theory/Mindlin theory
- Triangular/quadrilateral shapes
- Linear/quadratic/cubic in order
— With straight/curved edges
Shell elements
— Flat shell elements/facet approximation
— Curved shell elements: triangular/quadrilateral shapes; quadratic/cubic orders
— Axisymmetric shell elements: with curved surfaces; linear/quadratic/cubic in order
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¢ Special elements
— Spring
- Gap
- Rigid link
— Contact
e Crack tip elements

Some of these elements are formulated to handle large displacements, large rotations and finite strains.
Some formulations use reduced integration with hourglass control.

9.3.3 Procedures library

e Linear static analysis
¢ Linear dynamic analysis
- Free vibration
- Forced vibration
— Transient response: mode superposition
— Transient response: direct integration
— Acoustic excitation and response
— Spectrum response
¢ Linear buckling analysis
¢ Non linear analysis
— Geometric nonlinearity
— Material nonlinearity
~ Combined geometric and material nonlinearity
— Contact problems
» Aero-elastic analysis

- Divergence
- Flutter
» Design optimization (sensitivity analysis)
¢ Thermal analysis: computational
¢ Fluid dynamics: computational
» Fracture mechanics: computational
» Electromagnetics
¢ Electrostatics
* Magnetostatics

This allows the user to perform a wide variety of analyses. These procedures provide solutions for lin-
ear or nonlinear behaviour under static or dynamic loads. Large deformation and finite strain problems,
contact problems, can also be addressed using these procedures.
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9.3.4 Data processing

¢ Super elements
¢ Automated multilevel sub structuring
e Fourier analysis: axisymmetric bodies/shells under non-axisymmetric loads
¢ Cyclic symmetry
« Efficient numerical methods
- Direct solver
— Iterative solver
e Efficient computer systems
- Super computers
— Parallel processing systems
* Automatic adaptive mesh refinement

9.4 FEA Program: A Catalogue

A brief description of widely distributed commercial FEA programs is included here so that the reader
is aware of their current capabilities.

9.4.1 MSC.Nastran

NASA Structural Analysis (Nastran) is a general-purpose program based on the finite element method
developed by MacNeal Schwendler Corporation (MSC). The associated pre- and post-processor is
called MSC.Patran. This premier FEA software is now available on the PC and runs both on DOS and
Windows operating systems.

MSC.Patran provides the industry’s most comprehensive and powerful tools for the creation of
accurate finite element models. Backed by the world’s largest CAE support organization and enhanced
by continual use at some of the largest manufacturers, MSC.Patran sets the standard for finite element
pre- and post-processing.

MSC.Nastran is the world standard in finite element analysis solutions. Its analysis capabilities give
the user the competitive edge. With open choice of platforms from desktop PCs to supercomputers,
MSC.Nastran is available where it is needed. MSC.Nastran’s unique element technologies provide
highly accurate results with lower modelling effort, less solution time, and reduced computer require-
ments. Using MSC.Nastran one can optimize designs without increasing design cycle time. MSC
provides the best documentation, customer support, and user training.

Building better products lighter, stronger, safer, in less time, at less cost are the business benefits of
FEA using Nastran.

Analysis procedures in MSC.Nastran include: structural statics; structural dynamics; heat transfer;
aero-elastic; magnetic field; piezo electric; acoustic; and hydro-elastic.
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9.4.2 NISA

Numerically Integrated Finite Elements for Systems Analysis (NISA) is a family of general-purpose fi-
nite element programs for PCs, workstations and supercomputers developed by Engineering Mechanics
Research Corporation (EMRC). The associated pre- and post-processor is called DISPLAY. The distin-
guishing features of the NISA programs are: user-friendly documentation; excellent technical support;
flexible purchase options; and best price/performance in the industry.

NISA offers independent modules for a variety of analysis: linear statics: nonlinear statics, dy-
namics; heat transfer; composites; optimization; fatigue and fracture; fluid dynamics; printed circuit
boards; electromagnetic fields; kinematic and dynamic analysis of mechanical systems.

NISA provides an excellent library of isoparametric finite elements. A special module NISA.P
ADAPT utilizes P elements. This program continually increases the order of the polynomial on a fixed
finite element mesh until a reasonable convergence is reached. P refinement and properly designed
mesh is efficient and reliable.

NISA offers interfaces to major CAD/CAM systems: pro/engineer; unigraphics; CATIA.

DISPLAY is a powerful interactive graphics pre- and post-processor, which makes complex finite
element modelling and results interpretation a cinch.

These programs reflect the latest advances in CAE utilizing finite element methods.

9.4.3 MARC

The right answer for finite element analysis is the general-purpose program called MARC developed by
MARC Analysis Research Corporation. Special features of this program are: fully integrated nonlinear
solution; powerful automated 3-D contact; accurate, adaptive simulations; parallel processing; and
multi-physics. The associated pre- and post-processor is called Mentat.

MARC and Mentat allow the user to perform a wide variety of structural, thermal, fluid, and coupled
field analyses using finite element method. The analysis procedures provide solutions for simple to
complex linear and nonlinear problems in engineering.

The capabilities in MARC include: linear; nonlinear; large deformation and finite strain; automated
contact; and adaptive meshing.

MARC has an extensive library of metallic and nonmetallic material models: linear elastic; elastic
plastic; elastomers; hyperelastic; rigid plastic flow; creep; viscoelastic; viscoplastic; poro-elasticity
and soils; powder metallurgy; composites; and concrete.

Over 140 elements are available in MARC, which are modern, robust and accurate. They are
grouped as: truss; beam; plane stress; plane strain; generalized plane strain; plate; shell; membrane;
axisymmetric; 3-D solid; special elements (springs, gaps, rigid links, pipe bend, etc.); and user defined
elements.

Analysis types supported by MARC are: statics; dynamics; heat transfer; thermo mechanical; frac-
ture mechanics; fluid dynamics; hydrodynamic bearing; joule heating; acoustics; electrostatics; mag-
netostatics; electromagnetics; design sensitivity and optimization.

Mentat is tightly integrated with the MARC FEA program, allowing all data to be defined inter-
actively through a powerful graphical user interface. Notable capabilities include: geometry creation;
solid modelling; mesh generation; analysis support; post-processing; and advanced rendering.

Mentat's optional modules support interfaces to the leading CAD/CAM systems CATIA; pro/engi-
neers; [-DEAS, and auto CAD.
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9.4.4 LS-DYNA

LS-DYNA is a general-purpose code based on the FEM for analyzing large/elastic/inelastic deforma-
tion dynamic response of solids and structures including structures coupled to fluids. The main solution
procedure is based on explicit time integration. An implicit solver is also available with somewhat lim-
ited capabilities for structural and heat transfer analysis.

A contact impact algorithm allows difficult contact problems to be easily treated with heat transfer
included across the contact interfaces.

Spatial discretization is achieved by the use of four-node tetrahedral, eight-node hexahedral solid
elements; two-node beam elements; three-node triangular and four-node quadrilateral shell elements;
eight-noded solid shell elements; truss elements; membrane elements; discrete elements; and rigid
bodies. A variety of formulations are available for each element type (solid, fluid, structural, discrete).

Specialized capabilities for modelling airbags, sensors, and seat belts have tailored LS-DYNA for
applications in the automotive industry.

Adaptive meshing is available for shell elements and is widely used in sheet metal stamping simu-
lations.

LS-DYNA currently has over two hundred material models and over ten equations of state to cover
a wide range of material behavior.

LS-DYNA is operational on supercomputers, mainframes, workstations, parallel processing sys-
tems, and PCs.

The associated pre- and post-processor is called LS-TAURUS.

LS-DYNA and LS-TAURUS are developed by Livermore Software Technology Corporation.

9.4.5 ANSYS

ANSYS is an integrated design analysis tool based on the FEM developed by ANSYS, Inc. It has
its own tightly integrated pre- and post-processor. The ANSYS product documentation is excellent
and it includes commands reference; operations guide; modeling and meshing guide; basic analysis
procedures guide; advanced analysis guide; element reference; theory reference; structural analysis
guide; thermal analysis guide; electromagnetic fields analysis guide; fluid dynamics guide; and coupled
field analysis guide. Taken together, these manuals provide descriptions of the procedures, commands,
elements, and theoretical details needed to use the ANSYS program. All of the above manuals except
the ANSYS theory reference are available online through the ANSYS help system, which can be
accessed either as a standalone system or from within the ANSYS program. A brief description of the
information found in each of the manuals follows.

Engineering capabilities of ANSYS products are: structural analysis (linear stress, nonlinear stress,
dynamic, buckling); thermal analysis (steady state, transient, conduction, convention, radiation, and
phase change); CFD analysis (steady state, transient, incompressible, compressible, laminar, turbu-
lent); electromagnetic fields analysis (magnetostatics, electrostatics); field and coupled field analy-
sis (acoustics, fluid-structural, fluid-thermal, magnetic—fluid, magnetic—structural, magnetic—thermal,
piezoelectric, thermal-electric, thermal-structural, electric-magnetic); sub-modelling; optimization;
and parametric design language.

Element library in ANSYS lists 189 finite elements. They are broadly grouped into: LINK, PLANE,
BEAM, SOLID, CONTAC, COMBIN, PIPE, MASS, SHELL, FLUID, SOURCE, MATRIX, HYPER,
VISCO, INFIN, INTER, SURF, etc. Under each type, different shapes and orders complete the list.
Obviously, ANSYS has the best elements in its library.
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Analysis procedures in ANSYS can be grouped into: static analysis; transient analysis; mode fre-
quency analysis; harmonic response analysis; buckling analysis; sub-structuring analysis; and spectrum
analysis.

In ANSYS, there are two fundamentally different types of optimization. The first is referred to as
design optimization; it works entirely with the ANSYS parametric design language and is contained
within its own module (ANSYS /OPT). The second is topology optimization, a form of shape opti-
mization.

ANSYS finite element analysis software enables engineers to perform the following tasks:

* Build computer models or transfer CAD models of structures, products, components, or systems.
* Apply operating loads or other design performance conditions.

» Study physical response, such as stress levels, temperature distributions or electromagnetic fields.
* Optimize a design early in the product development process to reduce production costs.

¢ Do prototype testing in environments where it otherwise would be undesirable or impossible.

9.5 Closure

Spectacular advances have been made in the development, documentation, and implementation of com-
mercial FEA programs on PCs, workstations, mainframes, and supercomputer systems. Pre-processors
with graphical user interface are also available that can create finite element models of virtually all
CAD models. Post-processors are capable of display and animation of the results of every finite ele-
ment analysis. At present, FEA programs have been integrated in widely used CAD/CAM systems.
Computer implementation of finite element procedures is not trivial; it involves hundreds of human
years effort not only for development but also for updates.

It is instructive to compare and contrast the desirable features of a general purpose FEA program
with the current capabilities of commercial FEA codes. This may provide directions for modifications,
extensions and upgrading of commercial FEA codes.

It is recommended that the reader use one of the commercial FEA programs, not necessarily from
those described here, to analyze the computational problems listed in the text. This will enable the user
to acquire the skills needed to effectively use the FEM in general, and a general-purpose program in
particular, in practice.

Advanced applications of the FEM, not considered so far, can be attempted using commercial FEA
programs. Some of these are identified and described in the next chapter.

9.6 References

[9.1] Berbbia, C.A., editor. Finite Element Systems: A Handbook. Springer Verlag, Berlin, 1985.

[9.2] Krishnamoorthy, C.S. Finite Element Analysis: Theory and Programming. Tata McGraw Hill,
New Delhi, 2nd ed., 1994.

[9.3] Reddy, I.N. An Introduction to the Finite Element Method. McGraw Hill, New York, 2nd ed.,
1993,

[9.4] Chandrupatla, T.R. and Belegundu, A.D. An Introduction to Finite Elements in Engineering.
Prentice Hall of India, New Delhi, 2nd ed., 2001.







