

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Title	FUNDAMENTALS OF IMAGE PROCESSING				
Course Code	AEC552	AEC552			
Programme	B.Tech				
Semester	VII EEE				
Course Type	Open Elective – II				
Regulation	IARE - R16				
	Theory Practical			cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3		-
Chief Coordinator	Ms. M.Saritha, Assistant Professor				
Course Faculty	Ms. M.Saritha, Assistant Professor				

COURSE OBJECTIVES:

The	The course should enable the students to:				
Ι	Understand the image fundamentals and the relationship between pixels.				
II	Understand the image enhancement techniques in spatial domain and frequency domain.				
III	Analyze the image restoration technique from degraded image using various filtering techniques				
IV	Design segmentation of the image for boundary detection				
V	Differentiate redundancy techniques and apply for image compression.				

COURSE OUTCOMES (COs):

Understand the fundamental concepts of a Digital Image Processing System. Examine various types of Transforms. Examine the relationship between pixels
Analyze images in the frequency domain using various filters. Examine various types of images, intensity transforms and Image Enhancement with spatial filtering. Develop FT for Image Enhancement in frequency domain.
Analyze the algebraic approach to restoration. Evaluate the model, approaches, and filtering techniques for image restoration.

CO 4	Interpret Image Segmentation and representation techniques. Evaluate the methodologies for image segmentation, restoration etc.
CO 5	Categorize various Compression techniques and Interpret Image Compression standards.

COURSE LEARNING OUTCOMES:

AEC552.01	Understand the image fundamentals, image transforms, relationship between pixels.
AEC552.02	Explore sampling and quantization in terms of images.
AEC552.03	Analyze the types of transforms, properties mathematical proofs etc.,
AEC552.04	Determine the Advanced transforms, implementations using software's
AEC552.05	Explore the Image enhancement in spatial domain, different types of point processing.
AEC552.06	Understand the Histogram , histogram manipulation, Linear and nonlinear gray level transformation
AEC552.07	Analyze the Local or neighborhood operation, median filter processing, Spatial domain high pass filtering etc.
AEC552.08	Generating filters directly in the frequency domain, obtaining frequency domain filters from spatial filters
AEC552.09	Understand the filtering in frequency domain, smoothing and sharpening filters in frequency domain.
AEC552.10	Understand the Image restoration degraded model
AEC552.11	Determine algebraic approach to restore and inverse filtering.
AEC552.12	Understand Least mean square filters
AEC552.13	Determine the constrained least square restoration, restoration, image restoration
AEC552.14	Illustrate the Image segmentation detection of discontinuities and edge linking and boundary detection.
AEC552.15	Determine the threshold and the region oriented segmentation morphological image processing dilation and erosion.
AEC552.16	Understand structuring element decomposition, the strel function, opening and closing and hit and miss transform.
AEC552.17	Describe the image compression, redundancies and removal methods.
AEC552.18	Understand fidelity criteria, image compression models, source encoder and decoder, error free compression
AEC552.19	Determine lossy compression, JPEG 2000 standards

1

TUTORIAL QUESTION BANK

S. No	QUESTION	Blooms	Course	Course
	-	Taxonomy	Outcome	learning
		Level		Outcome
	UNIT-I			1
	INTRODUCTION			
	PART-A (SHORT ANSWER QU	JESTIONS)		
1	Explain the steps involved in digital image processing?	Remember	CO 1	AEC552.01
2	Explain Sampling and Quantization	Remember	CO 1	AEC552.02
3	Discuss about the Slant transform(1-D &2-D)	Remember	CO 1	AEC552.03
4	What is meant by Digital Image Processing?	Remember	CO 1	AEC552.04
5	Explain the process of image acquisition.	Remember	CO 1	AEC552.01
6	Explain about image sampling and quantization process.	Remember	CO 1	AEC552.02
7	Define spatial and gray level resolution.	Remember	CO 1	AEC552.03
8	Explain about the basic relationships and distance measures between pixels in a digital image.	Remember	CO 1	AEC552.04
9	Define Fourier Transform and its inverse.	Understand	CO 1	AEC552.01
10	Define discrete Fourier transform and its inverse.	Remember	CO 1	AEC552.02
11	State distributive and scaling property.	Understand	CO 1	AEC552.03
12	Explain the basic principle of Hotelling transform.	Remember	CO 1	AEC552.04
13	Write about Slant transform.	Understand	CO 1	AEC552.01
14	What are the properties of Slant transform?	Remember	CO 1	AEC552.02
15	Write about Hadamard transform	Remember	<u>CO 1</u>	AEC552.03
16	Explain about discrete cosine transform	Understand	<u>CO 1</u>	AEC552.03
17	What are the properties of Hadamard transform?	Remember	<u>CO 1</u>	AEC552.03
18	What are the properties of Hotelling transform?	Remember	<u>CO 1</u>	AEC552.03
19	Explain relationship between pixels.	Understand	<u>CO 1</u>	AEC552.01
20	What is the need of transform for digital Image processing?	Remember	COT	AEC552.03
1	PART-B (LONG ANSWER QUE	LSTIONS)	<u> </u>	150552.01
1	Discuss about the following relationships between pixels	Understand	COT	AEC552.01
	iii)distance measures iv)path		0	
2	Briefly explain the forward and inverse transformation	Remember	CO 1	AEC552.02
2	kernels' of image transforms	Kennenhoer	CO 1	AEC332.02
3	State and prove separability property of 2D-FFT	Understand	CO 1	AEC552.03
4	State and prove the translation property. Write the	Understand	CO 1	AEC552.04
	expressions for Walsh transforms kernel and Walsh $transform(1D, k_2D)^2$		1 m	
5	Write the Welch transform forward and reverse low-1-	Understand	CO 1	AEC552.01
5	What is the need for transform? Specify the properties of	Domombor		AEC332.01
0	2D Fourier transform.	Remember	COT	AEC332.02
7	State distributivity and scaling property.	Understand	CO 1	AEC552.03
8	Explain how digital images can be represented? What is Image Transform?	Understand	CO 1	AEC552.04
9	What are the fundamental steps in Digital Image Processing?	Remember	CO 1	AEC552.01
10	What are the components of an Image Processing System?	Remember	CO 1	AEC552.02
11	Explain about elements of visual perception.	Remember	CO 1	AEC552.01
12	Write about perspective image transformation	Remember	CO 1	AEC 552 02
12	Briefly explain the forward and inverse transformation	Remember	CO 1	AFC552.02
15	kernals of image transforms			AEC332.03
14	Explain about walsh transform with algorithms.	Remember	CO 1	AEC552.03
15	Explain about Aliasing and Moiré Patterns.	Remember	CO 1	AEC552.03

S. No	QUESTION	Blooms	Course	Course
		Taxonomy	Outcome	learning
		Level		Outcome
16	Explain the basic principle of Hotelling transform Discuss	Remember	CO 1	AEC552.04
	about the hotelling transform(1-D & 2-D)			
17	Explain about Haar transform with algorithms. What are the	Remember	CO 1	AEC552.03
	properties of Haar transform. State and prove separability			
	property of 2D-FFT			
18	What are the properties of Walsh transform, Write about	Remember	CO 1	AEC552.04
	Walsh transform. State distributivity and scaling property			
19	State distributivity and scaling property.	Understand	CO 1	AEC552.03
20	Explain about Perspective image transformation.	Remember	CO 1	AEC552.04
	PART-C (PROBLEM SOLVING AND CRITICAL	THINKING QU	JESTIONS)	
1	Determine $F=H.f.H^{T}=H.f.H$ with 2-D use 4x4 image by	Apply	CO 1	AEC552.01
	using Hadamard Transform			
2	Discuss about the Hadamard tansform(1-D &2-D). Find the	Understand	CO 1	AEC552.02
	number of bits required to store a 256 X 256 image with 32			
	gray levels?			
3	Find the DCT of the following sequence $f(x) = \{1, 2, 4, 7\}$	Apply	CO 1	AEC552.03
4	$f(x) = \{1, 2, 0, 3\}$ with N=4, image size is (4x4) using find	Understand	CO 1	AEC552.04
	F=H.F , using Hadamard Transform			
5	Name and explain some important properties of 2-D	Apply	CO 1	AEC552.01
	DFT.State and prove the translation property.			
6	Find mean μ_x , c_x , Eigen Vector and Eigen values using	Apply	CO 1	AEC552.02
	KL_Hotelling Transform, X: $x = \{(1 \ 2), (2 \ 1), (2, 2), (3,, 2)\}$			
	1)} with help of 4x4 image .			
7	Generate one Haar Basis for N=2, n=1,q=0 or1, Determine	Apply	CO 1	AEC552.03
	the value k, Z, verify the conditions, $H_k(Z)$, z=0, $\frac{1}{2}$.			
8	$F(x) = \{1, 2, 0, 3\}$ Apply Walsh Transform, determine F=W.f,	Understand	CO 1	AEC552.04
0	F=W.f W ⁺ =W f W		<u> </u>	1 5 6 5 5 0 0 1
9	Write the expressions for Walsh transforms kernel and W_{alsh} transforms (1D, 8-2D)?	Apply	CO 1	AEC552.01
10	Walsh transform $(1D \& 2D)$?	TT. 1. and and 1	CO 1	AE0552.02
10	Calculate S_n, a_n and s_n with help of 8x8 Slant matrix for $N=8$ $n=2$ $h=3$ gauges root 5/ square root 21 and $a=4/square$	Understand	COT	AEC552.02
	$N=0$, $II=3$, O_3 = square root 3/ square root 21 and a_3 =4/square		-	
			A	
		ЛТ		
	PART-A(SHORT ANSWER OUT	ESTIONS)	1	
1	What are types of Image Enhancement and Explain two	Remember	CO 2	AEC552.05
	domains		552	1
2	Write about histogram specification.	Remember	CO 2	AEC552.06
3	Explain about image averaging process.	Remember	CO 2	AEC552.07
4	Distinguish between spatial domain and frequency domain	Remember	CO 2	AEC552.08
	enhancement techniques.			
5	Explain about Ideal Low Pass Filter (ILPF) in frequency	Understand	CO 2	AEC552.09
-	domain.			
6	Explain smoothing spatial filters and nonlinear order static	Remember	CO 2	AEC552.05
	spatial filters.			
7	Explain about Prewitt and sobel edge detectors.	Understand	CO 2	AEC552.06
8	Compare the characteristics of low pass, high pass and	Apply	CO 2	AEC552.07
	homomorphic filters in image enhancement in frequency			
	domain.			
9	Explain Median filter processing	Understand	CO 2	AEC552.08
10	Explain Spatial domain high pass filtering	Understand	CO 2	AEC552.09

S. No	QUESTION	Blooms	Course	Course
		Taxonomy	Outcome	learning
		Level		Outcome
11	The frequency domain techniques of image enhancement in	Understand	CO 2	AEC552.09
	detail			
12	Explain about Ideal High Pass Filter.	Remember	CO 2	AEC552.09
13	Explain about median filter processing	Understand	CO 2	AEC552.09
14	Explain filtering in frequency domain.	Remember	CO 2	AEC552.09
15	How generating filters directly in the frequency domain.	Understand	CO 2	AEC552.09
16	Explain image enhancement in spatial domain.	Understand	CO 2	AEC552.08
17	Describe enhancement through point processing	Understand	CO 2	AEC552.09
18	What are the types of point processing?	Remember	CO 2	AEC552.08
19	Explain about histogram manipulation.	Remember	CO 2	AEC552.09
20	Distinguish between linear and non-linear gray level	Remember	CO 2	AEC552.08
	transformation			
	PART-B (LONG ANSWER QUI	ESTIONS)		
1	What is meant by image enhancement by point processing?	Understand	CO 2	AEC552.05
	Discuss any two methods in it.			
2	Define histogram of a digital image. Explain how histogram	Understand	CO 2	AEC552.06
	is useful in image enhancement?			
3	Write about Local enhancement and Explain Smoothing	Understand	CO 2	AEC552.07
	Spatial filters.			
4	Discuss about the mechanics of filtering in spatial domain.	Understand	CO 2	AEC552.08
	Mention the points to be considered in implementation			
	neighborhood operations for spatial filtering.			
5	What is meant by image subtraction? Discuss various areas	Understand	CO 2	AEC552.09
	of application of image subtraction.			
6	Discuss the frequency domain techniques of image	Understand	CO 2	AEC552.05
	enhancement in detail.	** 1	GO 0	150550.04
7	Discuss about Butterworth low pass filter with a suitable	Understand	CO 2	AEC552.06
0	example.	XX 1 . 1	CO A	100552.07
8	Discuss about Gaussian High Pass and Gaussian Low Pass	Understand	02	AEC552.07
0	Filter.	I In danatan d	<u> </u>	AEC552.09
9	Explain high boost and high frequency filtering. What is	Understand	02	AEC552.08
	in image enhancement		A	
10	Explain the concept of homomorphic filtering	Understand	CO 2	AEC552.00
10	Write brief notes on histogram manipulation process	Understand	CO_2	AEC552.09
11	what are the turge of point processing techniques and	Understand	CO_2	AEC552.00
12	explain any two techniques	Understand	02	AEC332.09
13	How does generating filters directly in the frequency	Understand	CO^{2}	AEC552.07
15	domain	Onderstand	02	ALC332.07
14	Write brief notes about neighborhood operation process	Understand	CO 2	AFC 552 09
14	What are the types of median filter processing methods	Remember	CO_2	AEC552.09
15	explain each briefly	Remember	002	ALC332.07
16	What are the types of point processing explain each briefly	Understand	CO 2	AEC 552 09
10	Explain a type of Gaussian filters with neat diagrams	Understand	CO_2	AEC552.09
17	Discuss about Ideal High Pass Filter and Butterworth High	Onderstand	002	MLC332.07
	Pass filter.			
18	What is an Ideal filter explain types of ideal filters.	Understand	CO 2	AEC552.08
19	What is an enhancement in digital image processing and	Understand	CO 2	AEC508.09
	explain how does enhancement through point processing	Chatibund	202	1200000
20	Describe the image enhancement in frequency domain	Understand	CO 2	AEC552.08
-	process.			
	-			

S. No	QUESTION	Blooms	Course	Course
		Taxonomy	Outcome	learning
		Level		Outcome
	PART-C (PROBLEM SOLVING AND CRITICA	L THINKING	QUESTION	S)
1	(a) What is the objective of image enhancement? Define	Apply	CO 2	AEC552.05
	spatial domain. Define point processing.			
	(b) Use 4x4 Image For a given image find (i) Digital			
	Negative of image/Negation, (ii) Bit plane Slicing by using			
	concept on Image Enhancement in Spatial domain	XX 1 . 1	<u> </u>	100550.04
2	Apply Contrast Stretching techniques on 3-bit gray level $\frac{1}{2}$	Understand	CO 2	AEC552.06
	initiage of size 4x4. If $I=0$ 1 2 5 4 5 6 7, $II_i = 0$ 4 4 1 2 2 5 0, colculate 1 different 1 values, where 1-grav level, $m=0$ to 7			
3	Five Steps for filtering in frequency domain to evaluating	Apply	CO 2	AEC 552 07
5	different filters for image smoothing and image sharpening	Аррту	02	AEC552.07
	with example			
4	Consider a 3x3 spatial Mask that average the four closest	Understand	CO 2	AEC552.08
	neighbours of a point (x,y) but excludes point itself from			
	average $F(x,y) = F(x,y)$. Find the equivalent filter $H(u,v)$ in			
	the frequency domain.			
5	Explain how Laplacian is implemented in frequency	Apply	CO 2	AEC552.09
	domain.			
6	Expression for 2-D IHPF, expression for BHPF, expression	Apply	CO 2	AEC552.05
	for GHPF with sketches. Explain their usefulness in image			
	enhancement.			
7	Write about smoothing spatial filters. What is meant by the	Understand	CO 2	AEC552.06
	gradiant and the laplacian? discuss their role in image			
8	How does the spatial filter with name order static filter	Apply	CO 2	AEC552.07
0	(non-linear filter)or median filter work?	Аррту	02	AEC352.07
9	Expression for Butterworth low pass filter in frequency	Apply	CO 2	AEC 552 08
,	domain and discuss. Description of homomorphic filtering	rippiy	002	ALC352.00
10	Perform Histogram equalization of the following 8x8 image	Understand	CO 2	AEC552.09
_	the gray level distribution of the image is given below: Gray		-	
	level $(r_k) = 0\ 1\ 2\ 3\ 4\ 5\ 6\ 7$, Number of pixels $(p_k) = 8\ 10\ 10\ 2$		\sim	
	12 16 9 2, calculate Y_k , p_k , p_m , c_m , L and number of pixels.			
	UNIT-III			
	IMAGE RESTORATIO	N	-	
	PART-A(SHORT ANSWER QU	ESTIONS)		
1	Explain about gray level interpolation.	Remember	<u>CO 3</u>	AEC552.10
2	Explain about whener filter used for image restoration.	Remember	CO 3	AEC552.10
3	Explain Mean filters.	Remember	CO_3	AEC552.11
4	Explain the Order-Statistic Filters	Understand	CO_3	AEC332.12
5	Explain a simple Image Formation Model	Understand	CO_3	AEC552.13
7	Write brief notes on inverse filtering	Remember	CO_3	AEC552.10
8	Obtain the method of Least Mean Squares Filtering	Remember	CO 3	AEC552.11
0	(Wiener) for image restoration	itemenioei		112032.12
9	Explain Iterative deterministic approaches to restoration	Understand	CO 3	AEC552.13
-	Constrained least squares iteration and Least squares			
	iteration			
10	Explain interactive restoration	Remember	CO 3	AEC552.10
11	Explain constrained least square restoration, interactive	Remember	CO 3	AEC552.11
	restoration			
12	Explain a Model of the Image Degradation/Restoration	Remember	$CO\overline{3}$	AEC552.12
	Process.			

S. No	QUESTION	Blooms	Course	Course
		Taxonomy	Outcome	learning
		Level		Outcome
13	Explain Contra harmonic mean filter and Median filter	Remember	CO 3	AEC552.13
14	Explain image enhancement and image restoration	Understand	CO 3	AEC552.10
15	Explain Midpoint filter with example	Understand	CO 3	AEC552.11
16	How a degradation process is modeled?	Remember	CO 3	AEC552.10
17	What is inverse filtering?	Remember	CO 3	AEC552.11
18	What is meant by blind image restoration?	Understand	CO 3	AEC552.10
19	Present a note on weight parameter.	Understand	CO 3	AEC552.13
20	What are the three methods of estimating the degradation	Understand	CO 3	AEC552.10
	function?			
	PART-B (LONG ANSWER (QUESTIONS)		
1	Explain a Model of the Image Degradation/Restoration	Understand	CO 3	AEC552.10
	Process.			
2	Explain about the restoration filters used when the image	Analyze	CO 3	AEC552.11
	degradation is due to noise only.			
3	Enumerate the differences between the image enhancement	Apply	CO 3	AEC552.12
	and image restoration.			
4	Explain about iterative nonlinear restoration using the	Analyze	CO 3	AEC552.13
	Lucy–Richardson algorithm.			
5	Explain the method of least mean squares filtering for	Understand	CO 3	AEC552.10
	image restoration.			
6	Explain model of image degradation/restoration process	Apply	CO 3	AEC552.11
	with a block diagram.			
7	Explain the method of constrained least squares filtering for	Understand	CO 3	AEC552.12
	image restoration.			
8	Write about noise probability density functions for all noise	Analyze	CO 3	AEC552.13
	models.			
9	Explain three principle ways to estimate the degradation	Analyze	CO 3	AEC552.10
	function for use in image restoration.			
10	Explain notch reject filters.	Understand	CO 3	AEC552.11
11	Enumerate the differences between the image enhancement	Understand	CO 3	AEC552.10
	and image restoration.			
12	Explain how Wiener filter used for image restoration.	Analyze	CO 3	AEC552.10
13	Explain Arithmetic mean filter	Understand	CO 3	AEC552.10
14	Explain different types of restoration filters.	Understand	CO 3	AEC552.11
15	Write about types of Order-Statistic filters.	Understand	CO 3	AEC552.11
16	Write about component image observation model.	Understand	CO 3	AEC552.12
	b) Discuss about Erlang noise.			
17	Explain about DAMMER and Weight	Understand	CO 3	AEC552.13
18	Discuss in detail the image restoration using inverse	Analyze	CO 3	AEC552.11
	filtering.	N		
19	Discuss about constrained and unconstrained restorations.	Understand	CO 3	AEC552.13
20	Describe constrained least square filtering technique for	Understand	CO 3	AEC552.12
	image restoration and derive its transfer function.			
	PART-C (PROBLEM SOLVING AND CRITICA	L THINKING	QUESTION	S)
1	Explain three principle ways to estimate the degradation	Apply	$CO\overline{3}$	AEC552.10
	function for use in image restoration.			
2	Explain about iterative nonlinear restoration using the lucy-	Apply	CO 3	AEC552.11
	richardson algorithm.			
3	Derive the expression for observed image when the	Understand	CO 3	AEC552.12
	degradations are linear position invariant.			
4	Explain Wiener smoothing filter	Apply	CO 3	AEC552.13
			1	1

S. No	QUESTION	Blooms	Course	Course
		Taxonomy	Outcome	learning
		Level		Outcome
5	Describe constrained least square filtering technique for	Apply	CO 3	AEC552.10
	image restoration and derive its transfer function.			
6	Discuss and Explain, Relation with inverse filtering and	Understand	CO 3	AEC552.11
	Iterative Wiener filters			
7	How can we obtain the notch filter that pass rather than	Apply	CO 3	AEC552.12
	suppressing the frequency in notch area?			
8	Discuss about a Model of the Restoration Process. How	Apply	CO 3	AEC552.10
	image is degraded, restoration is an objective process and			
0	Criteria	I In damatan d	CO 2	AEC552 11
9	Explain about whether filter used for image restoration.	Annly	CO_3	AEC552.11
10	unconstrained restoration	Арріу	03	AEC552.12
	IMACE SECMENTATIO	N		
	PART.A/SHORT ANSWER OU	ESTIONS)		
1	Write about edge detection	Remember	CO 4	AEC 552 14
2	Explain about fidelity criterion	Remember	CO 4	AEC552.15
3	Explain their role in segmentation	Understand	CO 4	AEC552.16
4	What are the derivative operators useful in image	Understand	CO 4	AEC552.14
	segmentation?	Charlotana	001	1120002111
5	What is thresholding?	Remember	CO 4	AEC552.15
6	Explain about global thresholding	Remember	CO 4	AEC552.16
7	Explain Image segmentation detection of discontinuities	Understand	CO 4	AEC552.14
8	Explain Opening and closing the hit and miss	Understand	CO 4	AEC552.15
	transformation.			
9	Explain edge linking and boundary detection	Remember	CO 4	AEC552.16
10	What are the importance of Image Segmentation and	Remember	CO 4	AEC552.14
	Morphological operation			10 A
11	Explain A Simple edge model	Remember	CO 4	AEC552.15
12	Why edge detection is a non-trivial task	Understand	CO 4	AEC552.16
13	Explain Thresholding ,linking and Edge Thinning	Remember	CO 4	AEC552.14
14	Discuss categorizing thresholding Methods	Remember	CO 4	AEC552.15
15	What are the advantages of region growing	Understand	CO 4	AEC552.16
16	Explain the threshold selection based on boundary	Remember	CO 4	AEC552.14
17	characteristics	D 1	<u> </u>	150550 15
1/	Distinguish Dilation and Erosion : opening and closing	Remember	<u>CO 4</u>	AEC552.15
18	Discuss Combining dilation and erosion with example	Understand	CO 4	AEC552.16
19	Explain Strel function and erosion with suitable examples	Remember	CO 4	AEC552.14
20	explain morphological image processing with dilation and	Remember	CO 4	AEC552.15
	DADT D (LONC ANSWED OL	ESTIONS)		
1	What are the derivative encertary useful in image	Lindonstand	CO 4	AE0552.14
1	segmentation? Explain their role in segmentation	Understand	0.04	AEC332.14
2	Explain about the edge linking procedures	Remember	CO 4	AEC552.15
3	What is thresholding? Explain about global thresholding	Understand	CO4	AEC552.15
4	Explain about region based segmentation	Remember	CO 4	AEC552.10
5	Discuss in detail about region based segmentation	Understand	CO 4	AEC552.14
6	Explain the closing operation in image morphology with	Understand	CO 4	AEC552.15
5	examples?	Charlound	201	
7	Discuss the Strel function, erosion with examples	Remember	CO 4	AEC552.16
8	Combining dilation and erosion with suitable examples	Remember	CO 4	AEC552.14
9	Explain region oriented segmentation	Remember	CO 4	AEC552.15

S. No	QUESTION	Blooms	Course	Course
	-	Taxonomy	Outcome	learning
		Level		Outcome
10	Sketch morphological image processing of dilation erosion, hit and mis	Understand	CO 4	AEC552.14
11	Explain about basic adaptive thresholding process used in image segmentation.	Remember	CO 4	AEC552.14
12	Explain in detail the threshold selection based on boundary characteristics.	Remember	CO 4	AEC552.15
13	What are the derivative operators useful in image segmentation?	Understand	CO 4	AEC552.16
14	Determined the Global processing via the Hough Transform for edge linking	Understand	CO 4	AEC508.14
15	Explain about the Global processing via graph-theoretic techniques for edge linking	Remember	CO 4	AEC552.15
16	Explain about Region Splitting and Merging with an example	Understand	CO 4	AEC552.16
17	Write about the importance of Hit-or-Miss morphological transformation operation on a digital binary image	Remember	CO 4	AEC552.14
18	Determined the opening operation in image morphology with examples?	Remember	CO 4	AEC552.15
19	Discuss morphological image processing dilation and erosion	Remember	CO 4	AEC552.16
20	What is Hit-or-Miss morphological transformation? Explain their role in segmentation	Remember	CO 4	AEC552.14
	PART-C (PROBLEM SOLVING AND CRITICA	L THINKING	OUESTION	S)
1	What are the conditions of Region Split justify below	Understand	CO 4	AEC552.14
	condition :			
	$\max\{g(x,y)\}-\min\{g(x,y)$		7 0 /	
2	What are the conditions of Region margin justify below	Remember	CO 4	AEC552.15
	$\max\{g(\mathbf{x}, \mathbf{y})\} - \min\{g(\mathbf{x}, \mathbf{y})\}$		-	
3	What are the conditions of Split and merge justify below	Understand	CO 4	AEC552.16
	condition :			
4	$\max\{g(x,y)\}-\min\{g(x,y)$	TT- 1 1	CO 4	A E C 5 5 2 1 4
4	What are the k-means and image Segmentation and Computerphile	Understand	CO 4	AEC552.14
5	Discuss Dilation, Erosion opening and closing with suitable	Remember	CO 4	AEC552.15
	example of Dilation verify perfect match ,some match and		here and	
	no match			
6	Evaluate Hit-and -Miss morphological transformation how to pixels are removed	Understand	CO 4	AEC552.16
7	Given 6x6 image A and element B {1 1 1} structuring	Understand	CO 4	AEC552.14
0	(i)compute A dilated by B (ii) A ¹ eroded by B	XX 1 1	<u> </u>	
8	Suppose two discrete 1-D functional are represented by the sequences $f = \{5, 7, 11, 8, 2, 6, 8, 0, 7, 4, 3\}$ $h = \{1, 2, 1\}$ Compute	Understand	CO 4	AEC552.14
	dilation and erosion $(5,7,7,7,8,2,0,0,7,7,4,5)$, $n = \{1,2,1\}$. Compute			
9	Suppose two discrete 1-D functional are represented by the	Remember	CO 4	AEC552.15
	sequences $f=\{5,7,11, 8,2,6,8,9,7,4,3\}$, $h=\{1,2,1\}$. Compute			
	opening and closing.			
10	What is Half transform how it is used for edge linking	Understand	CO 4	AEC552.16
	verify now to change a and o with $y=ax+o$.			

S. No	QUESTION	Blooms	Course	Course			
		Taxonomy	Outcome	learning			
		Level		Outcome			
UNIT-V							
IMAGE COMPRESSION							
PART-A(SHORT ANSWER OUESTIONS)							
1	Define image compression.	Understand	CO 5	AEC552.17			
2	Explain about fidelity criterion.	Understand	CO 5	AEC552.18			
3	Explain LZW coding with an example	Understand	CO 5	AEC552.19			
4	Explain the concept of bit plane coding method	Remember	CO 5	AEC552.17			
5	Explain about lossless predictive coding.	Remember	CO 5	AEC552.18			
6	Explain about lossy predictive coding	Understand	CO 5	AEC552.19			
7	Explain The Channel Encoder and Decoder	Remember	CO 5	AEC552.17			
8	Distinguish between Huffman coding Variable-Length	Understand	CO 5	AEC552.18			
	Coding						
9	Explain Arithmetic coding procedure and Bit-plane	Understand	CO 5	AEC552.19			
	decomposition:						
10	Sketch lossless predictive coding model	Remember	CO 5	AEC552.17			
11	Explain Arithmetic Encoding procedures	Remember	CO 5	AEC552.18			
12	Explain transmission of a message with example	Understand	CO 5	AEC552.19			
13	Explain average code length, entropy and efficiency	Understand	CO 5	AEC552.19			
14	Explain Shannon-Fanon Coding with examples	Remember	CO 5	AEC552.18			
15	Explain JPEG is better than a Raw free?.	Understand	CO 5	AEC552.17			
16	Explain Schematic diagram of Data Compression	Understand	CO 5	AEC552.18			
	Procedure						
17	Explain Lossless compression – coding	Remember	CO 5	AEC552.17			
18	Explain Data Compression and Data Redundancy	Understand	CO 5	AEC552.18			
19	Draw & Explain block diagram of Lossy Compression	Understand	CO 5	AEC552.19			
20	Draw & Explain block diagram of Lossless Compression	Remember	CO 5	AEC552.17			
	PART-B (LONG ANSWER OUT	ESTIONS)					
1	Explain about the redundancies in a digital image.	Remember	CO 5	AEC552.17			
2	Explain about image compression models.	Remember	CO 5	AEC552.18			
3	Explain the concept of bit plane coding method.	Understand	CO 5	AEC552.19			
4	Explain about lossless predictive coding.	Apply	CO 5	AEC552.17			
5	Explain about lossy predictive coding.	Remember	CO 5	AEC552.18			
6	Explain about wavelet coding.	Understand	CO 5	AEC552.19			
7	Explain a method of generating variable length codes with	Understand	CO 5	AEC552.17			
	an example			1120002117			
8	Explain arithmetic encoding process with an example	Remember	CO 5	AEC552.18			
9	Explain with a block diagram about transform coding	Understand	CO 5	AEC552.19			
-	system	. 0. 4					
10	List out and explain in detail about the image compression	Remember	CO 5	AEC552.17			
11	Discuss in detail about JPEG compression standard and the	Understand	CO 5	AEC552.18			
	steps involved in JPEG compression						
12	Explain a method of generating variable length codes with	Remember	CO 5	AEC552.18			
	an example.						
13	Explain arithmetic encoding process with an example.	Understand	CO 5	AEC552.18			
14	Explain LZW coding with an example.	Understand	CO 5	AEC552.19			
15	Explain about JPEG compression standard and the steps	Understand	CO 5	AEC552.17			
	involved in JPEG compression.						
16	Discuss Redundancies and their removal methods with	Understand	CO 5	AEC552.18			
	examples						
17	Explain source encoder and decoder	Understand	CO 5	AEC552.19			
18	Evaluate error free compression and lossy compression	Understand	CO 5	AEC552.17			
19	Discuss JPEG 2000 standard with merits and demerits	Understand	CO 5	AEC552.18			

S. No	QUESTION	Blooms	Course	Course		
		Taxonomy Level	Outcome	learning Outcome		
20	Draw and Explain A transform coding system	Understand	CO 5	AEC552.19		
PART-C (PROBLEM SOLVING AND CRITICAL THINKING QUESTIONS)						
1.	Consider the transmission of a message "IARE." comprising a sting of characters with probability A -0.3, R- 0.3, E-0.2, I-0.1, .'0.1	Remember	CO 5	AEC552.17		
2.	By using Arithmetic Decoding procedure, decode the message 0.572 given the coding model. Symbol=! C E, Probability=0.1, 0.4, 0.5.	Understand	CO 5	AEC552.18		
3.	Determine and find out arithmetic coding , using this expression , $P(A)=0.5$, $P(B)=0.25$, $P(C)=0.25$.	Understand	CO 5	AEC552.19		
4.	Decode message 0.572, given the coding model P(C)=0.4, P(E)=0.5, P(!)=0.1	Remember	CO 5	AEC552.17		
5.	Consider a Source with 7 messages having probabilities 0.25, 0.25, 0.125, 0.125, 0.125, 0.0625, 0.0625. Find average code length, entropy and efficiency	Understand	CO 5	AEC552.18		
6.	Determine codeword, word length and code length using Huffman coding: x1=0.4, x2=0.19, x3=0.16, x4=0.15, x5=0.15.	Understand	CO 5	AEC552.19		
7.	A six symbol alphabet where the probability of each symbol is tabulated below ,Symbol(Xi)= A B C D E F : Probability of occurring P(Xi) =0.30 0.25 0.20 0.12 0.08 0.05 verify Shannon- Fanon Coding	Remember	CO 5	AEC552.17		
8.	A six symbol alphabet where the probability of each symbol is tabulated below ,Symbol (Xi)= g h i j k l : Probability of occurring P(Xi) =0.30 0.25 0.20 0.12 0.08 0.05 verify Run length coding	Understand	CO 5	AEC552.18		
9.	Discuss Quantization vs. compression and verify merits and demerits	Understand	CO 5	AEC552.19		
10.	Why JPEG is better than a Raw free? What are the merits and de-merits.	Remember	CO 5	AEC552.18		

LID

Prepared By: Ms. M. Saritha, Assistant Professor ON F

HOD, EEE