IARE NO.

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Title	INTEGRATED CIRCUITS APPLICATIONS					
Course Code	AEC0	08				
Programme	B.Tech					
	V ECE EEE					
Semester						
Course Type	Core					
Regulation	IARE - R16					
Theory Practic				al		
Course Structure	Lecti	ures	Tutorials	Credits	Laboratory	Credits
	3		-	3	3	2
Chief Coordinator	Ms.J S	ravan	na, Assistant Profe	essor		
Course Faculty	Ms. G Ajitha, Assistant Professor Mr. B Naresh, Assistant Professor Ms. N Anusha, Assistant Professor					
			nmanachari, Assis			
			na, Assistant Prof			
	Ms. K	S Indi	rani, Assistant Pro	ofessor		

COURSE OBJECTIVES

I	Be acquainted to principles and characteristics of op-amp and apply the techniques for the design of Comparators, instrumentation amplifier, integrator, differentiator, multivibrators, waveform generators, log and anti-log amplifiers.
II	Analyze and design filters, timer, analog to digital and digital to analog Converters.
III	Understand the functionality and characteristics of commercially available digital integrated circuits.

COURSE OUTCOMES (COs):

CO 1	Discuss the analysis of Op-Amp for different configurations and its properties.
CO 2	Analyze and design the linear and non linear applications of Op-Amp
CO 3	Design the various filters using Op-Amp and analysis of Multivibrators using 555 Timer
CO 4	Describe the various ADC and DAC techniques
CO 5	Explore the concepts of Combinational and sequential logic circuits using digital IC's

COURSE LEARNING OUTCOMES (CLOs):

CLO 1	Illustrate the block diagram, classifications, package types, temperature range, specifications and characteristics of Op-Amp.
CLO 2	Discuss various types of configurations in differential amplifier with balanced and unbalanced outputs.
CLO 3	Evaluate DC and AC analysis of dual input balanced output configuration and discuss the properties of differential amplifier and discuss the operation of cascaded differential amplifier.
CLO 4	Analyze and design linear applications like inverting amplifier, non-inverting amplifier, instrumentation amplifier and etc. using Op-Amp.
CLO 5	Analyze and design non linear applications like multiplier, comparator, log and anti log amplifiers, waveform generators and etc, using Op-Amp.
CLO 6	Discuss various active filter configurations based on frequency response and construct using 741 Op- Amp.
CLO 7	Design bistable, monostable and astable multivibrators operation by using IC 555 timer and study their applications.
CLO 8	Determine the lock range and capture range of PLL and use in various applications of communications.
CLO 9	Understand the classifications, characteristics and need of data converters such as ADC and DAC.
CLO 10	Analyze the digital to analog converter technique such as weighted resistor DAC, R-2R ladder DAC, inverted R-2R ladder DAC and IC 1408 DAC.
CLO 11	Analyze the analog to digital converter technique such as integrating, successive approximation and flash converters.
CLO 12	Design adders, multiplexers, demultiplexers, decoders, encoders by using TTL/CMOS integrated circuits and study the TTL and CMOS logic families.
CLO 13	Design input/output interfacing with transistor – transistor logic or complementary metal oxide semiconductor integrated circuits.
CLO 14	Understand the operation of SR, JK, T and D flip-flops with their truth tables and characteristic equations. Design TTL/CMOS sequential circuits.
CLO 15	Design synchronous, asynchronous and decade counter circuits and also design registers like shift registers and universal shift registers.

TUTORIAL QUESTION BANK

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
	UNIT-I			
	INTEGRATED CIRCUITS			
	Part - A(Short Answer Question	ns)		
1	Mention the advantages of integrated circuits over discrete	Remember	CO 1	AEC008.01
	component circuit.			
2	Classify the integrated circuits.	Remember	CO 1	AEC008.01
3	Name the different types if IC packages.	Remember	CO 1	AEC008.01
4	Define differential amplifier.	Understand	CO 1	AEC008.02
5	Mention the characteristics of an ideal op-amp.	Remember	CO 1	AEC008.02
6	Sketch the equivalent circuit of op-amp.	Remember	CO 1	AEC008.02
7	List the functions of level translator.	Remember	CO 1	AEC008.02
8	List the AC characteristics of op amp.	Remember	CO 1	AEC008.03
9	List the properties of differential amplifier.	Remember	CO 1	AEC008.02
10	Define input bias current.	Understand	CO 1	AEC008.03
11	Define slew rate.	Understand	CO 1	AEC008.03
12	Define CMRR	Understand	CO 1	AEC008.03
13	Define thermal drift.	Understand	CO 1	AEC008.03
14	List the specifications of practical op amp.	Remember	CO 1	AEC008.03
15	Define PSSR.	Understand	CO 1	AEC008.03
16	List the different temperature ranges of IC 741packages?	Remember	CO 1	AEC008.01
17	Give the classification of differential amplifier.	Remember	CO 1	AEC008.02
18	Write the equation for A _{CM} and CMRR	Remember	CO 1	AEC008.03
19	What is the difference between open loop and closed loop gain	Remember	CO 1	AEC008.03
20	of op amp.	TT 1 . 1	GO 1	4 E G000 02
20	Write the ideal values of CMRR and input offset voltage.	Understand	CO 1	AEC008.03
	Part - B (Long Answer Question		G0.1	4 T G 0 0 0 0 0
1	Discus the operation of Differential amplifier with neat circuit	Remember	CO 1	AEC008.02
	diagram and list the types of differential amplifiers.	TT1	CO 1	AEC000 02
2	Analyze the input bias current compensation in an inverting	Understand	CO 1	AEC008.03
3	amplifier with the help of circuit diagram. Describe the following terms in an OP-AMP.	Remember	CO 1	AEC008.03
3	1. Input Bias current 2. Input offset voltage 3. Input offset	Remember	COT	AEC008.03
	current			
4	Analyze the circuits for improving Common Mode Rejection	Understand	CO 1	AEC008.03
4	Ratio for differential amplifier circuits.	Understand	COT	ALC008.03
5	Explain the external frequency compensation methods of	Remember	CO 1	AEC008.03
	operational amplifier circuit.	10110111001		112000.03
6	Calculate slew rate of a voltage follower op amp circuit for a	Understand	CO 1	AEC008.03
	given sinusoidal input.	2 501564114	201	=====================================
7	Define stability. Discuss the stability of operational amplifier	Remember	CO 1	AEC008.02
	with neat circuit diagrams.			
8	List and compare ideal and practical characteristics of an	Remember	CO 1	AEC008.03
	operational amplifier circuit.			
9	Analyze the dual input balanced output configuration of	Understand	CO 1	AEC008.02
	Differential amplifier circuit.			
10	Briefly Discuss the AC analysis of dual input balanced output	Remember	CO 1	AEC008.03
	differential amplifier circuit.			
11	Explain the use of constant current bias method for Dual input	Understand	CO 1	AEC008.03
	balanced output differential amplifier.			
12	Explain level translator of cascaded differential amplifier with	Remember	CO 1	AEC008.03
	neat circuit diagram.			
13	Discuss common mode rejection ratio and Supply voltage	Understand	CO 1	AEC008.03
	rejection ratio for a given operational amplifier.			

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
14	List out different configurations of differential amplifier. Explain any one of them in detail.	Remember	CO 1	AEC008.02
15	Explain two open loop op-amp configurations of operational amplifier with neat circuit diagrams.	Understand	CO 1	AEC008.02
16	Explain the difference between constant current bias and current mirror?	Remember	CO 1	AEC008.03
17	Why is RE replaced by a constant current bias circuit in a diffential amplifier?	Remember	CO 1	AEC008.03
18	Explain with figures how two supply V^+ and V^- are obtained from a single supply ?	Understand	CO 1	AEC008.01
19	Explain why CMRR $\rightarrow \infty$ for an emitter coupled differential amplifier when $R_E \rightarrow \infty$.	Remember	CO 1	AEC008.03
20	What is cross over distortion and how it is eliminated?	Remember	CO 1	AEC008.03
	Part - C (Analytical Questions			
i	Determine the output voltage of the differential amplifier having input Voltages V1=1mV and V2=2 mV. The amplifier has a differential gain of 5000 and CMRR 1000.	Understand	CO 1	AEC008.02
i	An op-amp with a slew rate = $0.5V/\mu S$ is used as an inverting amplifier to obtain a gain of 100. The voltage gain Vs frequency characteristic of the amplifier is flat up to 10 KHz. Determine i. The maximum peak-to-peak input signal that can be applied without any distortion to the output ii. The maximum frequency of the input signal to obtain a sine wave output of 2V peak.	Remember	CO 1	AEC008.03
i (1	(a) Derive slew rate equation and discuss the effect of slew rate in applications of op-amp. (b) Explain the term thermal drift. Find the output voltage of a non-inverting amplifier if the temperature rises to 50oC for an offset voltage drift of 0.15mV/oC if it was nulled at 25oC.	Remember	CO 1	AEC008.03
4	A differential amplifier has (i) CMRR = 1000 and (ii) CMRR = 10000. The first set of inputs is $V_1 = 100 \text{ V}$ and $V_2 = -100 \text{ V}$. The second set of inputs is $V_1 = 1100 \text{ V}$ and $V_2 = 900 \text{ V}$. Calculate the percentage difference in output voltages obtained for the two sets of input voltage and also comment on this.	Understand	CO 1	AEC008.03
5	For an op-amp PSRR =60 db(min), CMRR= 10^4 and the differential mode gain is 10^5 , the voltage changes by 20 V in 4 μ sec. calculate (i) numerical value of the PSRR (ii) common mode gain. (iii) Slew rate.	Remember	CO 1	AEC008.03
6 I	For a differential amplifier R_C =1 K Ω , R_S =1 K Ω , h_{ie} =1 K Ω , h_{fe} =50, the emitter resistance of 2.5 M Ω while the differential input of 1 mV. Calculate the output voltage and CMRR in db. If the common mode input is 20 mV. Assume single ended output.	Understand	CO 1	AEC008.02
7	An op - amp has a slew rate of $1.5V/\mu s$. What is the maximum frequency of an output sinusoid of peak value 10 V at which the distortion sets in due to the slew rate limitation?	Remember	CO 1	AEC008.03
8	Derive the output voltage of an op-amp based differential amplifier.	Understand	CO 1	AEC008.02
	An op-amp has a differential gain of 80 dB and CMRR of 95 Db. If $V1=2\mu V$ and $V2=1.6\mu V$.then calculate differential and common mode output values.	Remember	CO 1	AEC008.03
	The input signal to an op-amp is $0.03\sin(1.5\times10^5)$ t. calculate maximum gain of an op-amp with the slew rate of $0.4V/\mu$ sec.	Understand	CO 1	AEC008.03
	UNIT - II			

APPLICATIONS OF OP-AMPS

Part – A (Short Answer Questions)

				_
1	List the applications of IC741?	Remember	CO 2	AEC008.04
2	Draw the circuit diagram of integrator?	Remember	CO 2	AEC008.04
3	Define voltage follower?	Understand	CO 2	AEC008.04
4	Give the applications of comparator?	Remember	CO 2	AEC008.05
5	Draw the circuit diagram of differentiator?	Remember	CO 2	AEC008.04
6	What are the applications of DC amplifier?	Remember	CO 2	AEC008.05
7	What do you mean by summing amplifier?	Understand	CO 2	AEC008.04
8	Draw the diagram of inverting adder?	Remember	CO 2	AEC008.04
9	How op-amps can be used to subtract the two input voltages?	Remember	CO 2	AEC008.04
10	What are the applications of log amplifier?	Understand	CO 2	AEC008.05
11	What are the applications of AC amplifier?	Remember	CO 2	AEC008.05
12	What are the limitations of differentiator?	Understand	CO 2	AEC008.04
13	Give the applications of anti-log amplifier?	Remember	CO 2	AEC008.05
14	What are the limitations of integrator?	Understand	CO 2	AEC008.04
15	Explain why integrators are preferred over differentiators in	Remember	CO 2	AEC008.04
	analog computers?			
	Part - B (Long Answer Question	ns)		
1	What is the instrumentation amplifier? What are the required	Remember	CO 2	AEC008.04
•	parameters of an instrumentation amplifier? Explain the			
	working of instrumentation amplifier with neat circuit diagram.			
2	Derive the gain expression for inverting operational amplifier	Understand	CO 2	AEC008.04
_	and non inverting operational amplifier.	Cilacistalia		122000.0
3	With circuit and waveforms explain the application of OPAMP	Remember	CO 2	AEC008.04
J	as Differentiator and write the advantages of practical	remember	002	TECCOCIO!
	differentiator.			
4	Explain practical integrator circuit using IC 741 and list the	Understand	CO 2	AEC008.04
•	advantages of practical integrator over ideal integrator.	Cilacistalia		122000.0
5	Explain the operation of AC amplifier and obtain its transfer	Understand	CO 2	AEC008.05
	function.	Cilacistalia		122000.00
6	Draw the circuit of a log amplifier using two op-amps and	Remember	CO 2	AEC008.05
-	explain its operation?			
7	Draw and explain the operation of square wave generator using	Remember	CO 2	AEC008.05
	op amp 741and give necessary equations.			
8	What are the limitations of an ordinary op-amp differentiator?	Remember	CO 2	AEC008.04
	Draw the circuit of a practical differentiator that will eliminate			
	these limitations?			
9	Explain the operation of monostable multivibrator using op	Understand	CO 2	AEC008.05
	amp and derive the expression for pulse width.			
10	Draw and explain the operation of triangular waveform	Remember	CO 2	AEC008.05
	generator using necessary equations.			
	Part - C (Analytical Questions)		- I
1	Design a differentiator to differentiate an input signal that varies	Remember	CO 2	AEC008.04
	in frequency from 10 Hz to about 1 KHz. If a sine wave of 1V	Remember	CO 2	712000.04
	peak at 1000 Hz is applied to this differentiator draw the output			
	waveforms.			
2	Draw the output waveform for a sine wave of 1V peak at 100Hz	Remember	CO 2	AEC008.04
2	applied to the differentiator.	Kemember	CO 2	ALCOOO.04
3	Design an op-amp differentiator that will differentiate an Input	Remember	CO 2	AEC008.04
5	signal with fmax = 100Hz.	Kemember	CO 2	ALC000.04
4	Find R_1 and R_f in the lossy integrator so that the peak gain is	Remember	CO 2	AEC008.04
7	20dB and the gain is 3dB down from its peak when $\omega = 10,000$	Remember	202	7112000.04
	rad/sec. use a capacitance of 0.01micro farads.			
5	Design an op-amp differentiator that will differentiate an Input	Remember	CO 2	AEC008.04
5	signal with $f_{max} = 1000Hz$	Kemember	CO 2	ALC006.04
6	Design a square wave generator using op amp to oscillate	Remember	CO 2	AEC008.05
6	frequency $f_0 = 1$ KHz and dc supply voltage = ± 12 V.	Kemember	CO 2	AEC008.03
7	Draw the output waveform for a sine wave of 2V peak at	Remember	CO 2	AEC008.05
/		Kemember	CO 2	AEC008.03
	1000Hz applied to the differentiator.			

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
8	Design a comparator circuit for input voltage = $2V_{pp}$ sine wave at 1KHz, V_{ref} =500mV, R=100 Ω , and supply voltage= ± 15 V.Draw the output waveform.	Remember	CO 2	AEC008.05
9	Design a differential instrumentation amplifier using a transducer bridge. Given data $R_1{=}1k\Omega,\ R_f{=}4.7\ k\Omega,\ R_A{=}R_B{=}R_C{=}100\ k\Omega,\ V_{DC}{=}5v, and\ op-$ amp supply voltages = $\pm15V. The\ transducer$ is a thermistor with the following specifications: $R_T{=}100\ k\Omega$ at a reference temperature of 25°C; temperature coefficient of resistance = $-1k\Omega/{^o}C$ or $1\%/{^o}C.$ Determine the output voltage at 0^oCand at 100^oC .	Remember	CO 2	AEC008.04
10	For a non inverting single supply AC amplifier R_{in} =50 Ω , C_i =0.1 μ F, C_1 =0.1 μ F, R_1 = R_2 = R_3 =100K Ω , R_f =1M Ω and V_{CC} =+12 V. Determine the bandwidth of the amplifier and maximum voltage swing.	Remember	CO 2	AEC008.05
	UNIT-III ACTIVE FILTERS AND TIMERS	S		
	Part - A (Short Answer Question			
1	Illustrate why active filters are preferred?	Understand	CO 3	AEC008.06
2	What is meant by cut off frequency of a high pass filter and how it is found out in a first order high pass filter?	Remember	CO 3	AEC008.06
3	Define an electronic filter.	Remember	CO 3	AEC008.06
4	Define pass band and stop band of a filter.	Remember	CO 3	AEC008.06
5	Discuss the disadvantages of passive filters?	Understand	CO 3	AEC008.06
6	Define pass band of a filter?	Remember	CO 3	AEC008.06
7	Define stop band of a filter?	Understand	CO 3	AEC008.06
8	What is the roll-off rate of a first order filter?	Remember	CO 3	AEC008.06
9	Why do we use a high order filters?	Understand	CO 3	AEC008.06
10	Give the applications of wideband pass filter?	Remember	CO 3	AEC008.06
11	Define figure of merit or Q factor in terms of bandwidth?	Understand	CO 3	AEC008.06
12	Draw the circuit diagram of 1 st order low pass filter?	Remember	CO 3	AEC008.06
13	Draw the circuit diagram of 1 st order high pass filter?	Understand	CO 3	AEC008.06
14 15	What are the applications of band rejet filters? Define Notch filter?	Remember	CO 3	AEC008.06
15		Remember	CO 3	AEC008.06
	List the applications of 555 timer in Monostable mode of	<u> </u>		T
2	operation Give the pin configuration of 555 IC?	Remember Understand	CO 3	AEC008.08 AEC008.08
3	What are the basic blocks in PLL?	Remember	CO 3	AEC008.08
4	List the applications of 565 PLL	Remember	CO 3	AEC008.08
5	Define lock range in PLL	Remember	CO 3	AEC008.08
6	Define capture range in PLL	Remember	CO 3	AEC008.08
7	Give the different types of phase detectors?	Understand	CO 3	AEC008.08
8	Define pull-in-time?	Remember	CO 3	AEC008.08
9	What are the major differences between digital and analog PLLs	Remember	CO 3	AEC008.08
10	What are the applications of Monostable multivibrator?	Remember	CO 3	AEC008.07
11	What are the applications of Astable multivibrator?	Remember	CO 3	AEC008.07
12	What are the applications of Schmitt trigger?	Remember	CO 3	AEC008.07
13	Define duty cycle?	Remember	CO 3	AEC008.08
14	Give the pin configuration of voltage controlled oscillator - IC566	Understand	CO 3	AEC008.08
15	Give the applications of Comparator?	Understand	CO 3	AEC008.08
	Part - B (Long Answer Question			
1	Describe a second order low pass filter with circuit diagram and derive its transfer function.	Understand	CO 3	AEC008.06

2	Draw the circuit of a first order low pass filter and derive its transfer function using necessary equations.	Remember	CO 3	AEC008.06
3	Draw the circuit of a narrow band pass filter and derive its transfer function using necessary equations.	Remember	CO 3	AEC008.06
4	Draw the circuit of a all pass filter and derive its transfer function using necessary equations.	Remember	CO 3	AEC008.06
5	Explain second order high pass filter and derive its transfer function using necessary equations.	Understand	CO 3	AEC008.06
7	Draw the circuit of a first order high pass filter and derive its transfer function	Remember	CO 3	AEC008.06
8	Draw the circuit of a narrow band reject filter and derive its transfer function.	Understand	CO 3	AEC008.06
9	Draw the circuit of a wide band pass filter and derive its transfer function using necessary equations.	Remember	CO 3	AEC008.06
10	Illustrate the differences between wide band pass and narrow band pass filters?	Understand	CO 3	AEC008.06
	CIE-II			
1	Explain each block of the functional block diagram of 555 timer and list the advantages of 555 timer.	Understand	3	AEC008.07
2	Explain working principle of Phase locked loop using appropriate block diagram and equations.	Understand	CO 3	AEC008.08
3	Draw the block diagram of an Astable multivibrator using 555timer and derive an expression for its frequency of oscillation	Remember	CO 3	AEC008.07
4	Derive the expression for i) capture range in PLL ii) Lock in ranging Phase locked loop.	Remember	CO 3	AEC008.08
5	Draw the schematic diagram of voltage controlled oscillator and explain its working principle?	Remember	CO 3	AEC008.08
6	Derive the expression for pulse width of monostable multi using 555 timer.	Remember	CO 3	AEC008.07
7	Explain any two applications of monostable multi using 555 timer with the help of diagrams.	Understand	CO 3	AEC008.07
8	Derive the expression for lock in range of phase locked loop.	Remember	CO 3	AEC008.08
9	Explain the operation of frequency multiplier using phase locked loop with neat circuit diagram	Understand	CO 3	AEC008.08
10	Explain any two applications of IC565 with neat circuit diagrams.		CO 3	AEC008.08
	Part - C (Analytical Questions)			
1	Design a second order Butterworth low-pass filter having upper cut-off frequency 1 kHz. Then determine its frequency response. Given parameters: f_h =1 kHz, C=0.1 μ F, R=1.6K Ω and damping factor α =1.414.	Understand	CO 3	AEC008.06
2	Design a second order Butterworth High-pass filter having lower cut-off frequency 1 kHz. Given parameters: f_h =1 kHz, C=0.1 μ F, R=1.6K Ω and damping factor α =1.414. Calculate R_F & R_i and also determine its frequency response.	Remember	CO 3	AEC008.06
3	Design a wide band pass filter having f ₁ =400Hz, f _h =2kHz and pass band gain of 4. Find the value of Q factor of the filter.	Understand	CO 3	AEC008.06
4	Design a wide band reject filter having f _h =400Hz, f _l =2kHz and pass band gain of 2. Find the value of Q factor of the filter.	Remember	CO 3	AEC008.06
5	Design 1 st order wideband pass filter if lower cut off frequency is 500Hz, and upper cut off frequency is 2KHz.	Remember	CO 3	AEC008.06
6	Design a 2 nd order HPF at a cutoff frequency of 2 KHz.	Understand	CO 3	AEC008.06
7	Design a 2 nd order LPF at a cutoff frequency of 4 KHz.	Remember	CO 3	AEC008.06
	CIE-II			
1	Design an Astable Multivibrator using 555 Timer to produce 1Khz square wave form for duty cycle=0.50	Understand	CO 3	AEC008.07

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
2	Design a 555 based square wave generator to produce an asymmetrical square wave of 2 KHz. If Vcc=12V, draw the voltage curve across the timing capacitor and output waveform.	Remember	CO 3	AEC008.07
3	Design and draw the wave forms of 1KHZ square waveform generator using 555 Timer for duty cycle D=25%.	Understand	CO 3	AEC008.07
	UNIT-IV			
	DATA CONVERTERS			
	Part - A (Short Answer Question	ıs)		
1	Illustrate the need of data converters	Understand	CO 4	AEC008.09
2	Illustrate the different type of DAC techniques.	Understand	CO 4	AEC008.10
3	Give applications of data converters.	Remember	CO 4	AEC008.09
4	Give the drawbacks of weighted resistor type DAC.	Remember	CO 4	AEC008.10
5	Give the advantages of weighted resistor type DAC.	Remember	CO 4	AEC008.10
6	Calculate basic step of 9 bit DAC is 10.3 mV. If 000000000 represents 0V, what output produced if the input is 101101111?	Remember	CO 4	AEC008.10
7	What output voltage would be produced by monolithic DAC whose output range is 0 to 10V and whose input binary is 10111100?	Remember	CO 4	AEC008.10
8	Define off set error in DAC.	Remember	CO 4	AEC008.10
9	What are the main advantages of integrating type ADCs?	Remember	CO 4	AEC008.11
10	Define linearity error in DAC.	Remember	CO 4	AEC008.10
11	Define resolution in DAC.	Remember	CO 4	AEC008.10
12	List out the direct type ADCs	Understand	CO 4	AEC008.11
13	Explain in brief the principle of operation of successive approximation ADC	Understand	CO 4	AEC008.11
14	List the broad classification of ADCs	Understand	CO 4	AEC008.11
15	Calculate the values of the full scale output for an 8 bit DAC for the 0 to 10V range	Understand	CO 4	AEC008.10
16	Define integrating type ADCs?	Remember	CO 4	AEC008.10
17	Define nonlinearlity in output of adc/dac	Remember	CO 4	AEC008.10
18	List out the drawback to overcome charge balancing ADC?	Understand	CO 4	AEC008.11
19	What is settling time	Remember	CO 4	AEC008.10
20	Define full scale error	Remember	CO 4	AEC008.10
	Part – B (Long Answer Question			
1	Explain the working of a Weighted resistor D/A converter using neat circuit diagram.	Understand	CO 4	AEC008.10
2	Discuss the successive approximation A/D converter and list the advantages of successive approximation A/D converter	Understand	CO 4	AEC008.11
3	Discuss the working principal of a dual slope A/D converter with neat circuit diagram	Understand	CO 4	AEC008.11
4	With neat diagram, explain the working principle of inverter R-2R ladder DAC.	Understand	CO 4	AEC008.10
5	Explain the working of a counter type A/D converter and state it's important feature	Understand	CO 4	AEC008.11
6	Describe the specifications, advantages and applications of Digital to Analog converters.	Remember	CO 4	AEC008.09
7	With neat diagram, explain the working principle of R-2R ladder type DAC.	Remember	CO 4	AEC008.10
8	Discuss the operation of parallel comparator type ADC with circuit diagram.	Remember	CO 4	AEC008.11
9	Discuss 4 bit weighted resistor DAC with neat circuit diagram and list the advantages.	Understand	CO 4	AEC008.10
10	Explain How many equal intervals are present in a 14-bit D-A converter?	Understand	CO 4	AEC008.11

12 E d d 13 E a a 14 E to 15 E 16 D 17 E o 18 D 19 E 20 D D	QUESTION A 10-bit D/A converter have an output range from 0-9v. Calculate the output voltage produced when the input binary number is 1110001010. Explain the working and principle of a ic1408 with a neat pin diagram Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock or increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction Discuss the application of data converters interfacing with the	taxonomy level Understand Understand Understand Understand Understand Understand Understand Understand Understand	Course Outcomes CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11 AEC008.11 AEC008.11 AEC008.11 AEC008.11
12 E d d 13 E a a 14 E to 15 E 16 D 17 E o 18 D 19 E 20 D D	Calculate the output voltage produced when the input binary number is 1110001010. Explain the working and principle of a ic1408 with a neat pin diagram Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock to increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand Understand Understand	CO 4	AEC008.11 AEC008.11 AEC008.11 AEC008.11 AEC008.11
12 E d d 13 E a a 14 E to 15 E 16 D 17 E o 18 D 19 E 20 D D	Calculate the output voltage produced when the input binary number is 1110001010. Explain the working and principle of a ic1408 with a neat pin diagram Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock to increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11 AEC008.11
12 E d d 13 E a a 14 E to 15 E 16 E 17 E 0 18 E 19 E 20 E	number is 1110001010. Explain the working and principle of a ic1408 with a neat pin diagram Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock to increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11
12 E d d 13 E a a 14 E to 15 E 16 E 17 E o 18 E E 19 E 20 E	Explain the working and principle of a ic1408 with a neat pin diagram Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock to increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11
13 E a 14 E to 15 E 16 C 17 E o 18 C 19 E 20 C	Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock or increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11
13 E a 14 E to 15 E 16 C 17 E o 18 C 19 E 20 C C	Explain the DAC applications of digital circuit has provide an analog voltage or current to drive an analog device? Explain the digital ramp ADC by binary counter and allow clock or increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11
14 E to to 15 E 16 Γ F F F F F F F F F F F F F F F F F F	Explain the digital ramp ADC by binary counter and allow clock o increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the applicatin of ADC and DAC in signal reconstruction	Understand Understand Understand Understand Understand	CO 4 CO 4 CO 4	AEC008.11 AEC008.11 AEC008.11
14 E to 15 E 16 I I I I I I I I I I I I I I I I I I	Explain the digital ramp ADC by binary counter and allow clock o increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand	CO 4 CO 4 CO 4	AEC008.11 AEC008.11
15 E 16 E 17 E 0 0 18 E 19 E 20 E	o increment the counter? Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand Understand	CO 4 CO 4 CO 4	AEC008.11 AEC008.11
15 E 16 C 17 E 0 18 C 19 E 20 C	Explain settling time, linearity error, resolution Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand	CO 4 CO 4	AEC008.11
16 E 17 E 0 18 E 19 E 20 E	Discuss the function of the EOC signal and SOC signal Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand Understand	CO 4 CO 4	AEC008.11
17 E o o 18 E E E E E E E E E E E E E E E E E E	Explain and Draw digital ramp ADC and write down its operation. Describe offset error and its effect on a DAC output. Explain the application of ADC and DAC in signal reconstruction	Understand Understand	CO 4	
18 D 19 E 20 D	Describe offset error and its effect on a DAC output. Explain the applicatin of ADC and DAC in signal reconstruction	Understand		71LC000.11
18 E 19 E 20 E	Describe offset error and its effect on a DAC output. Explain the applicatin of ADC and DAC in signal reconstruction		CO 4	
19 E	Explain the applicatin of ADC and DAC in signal reconstrcution			AEC008.11
20 E		i O nidei standi	CO 4	AEC008.11
I I		Understand	CO 4	AEC008.11
ı la	analog world	Characteria		1120000111
-	Part - C (Analytical Questions)			
1 (Calculate basic step of 9 bit DAC is 10.3 mV. If 000000000	Understand	CO 4	AEC008.10
	represents OV, what output produced if the input is 101101111.	Characteria		1120000110
	Design a dual slope ADC uses a16-bit counter and a 4MHz clock	Remember	CO 4	AEC008.11
	rate. The maximum input voltage is+10v. The maximum			
	ntegrator output voltage should be-8v when the counter has			
	cycled through 2n counts. The capacitor used in the integrator is			
0	0.1 μF Find the value of the resistor R of the integrator.			
3 I	Design a dual slope ADC uses an 18 bit counter with a 5MHz	Remember	CO 4	AEC008.11
	clock. The maximum integrator input voltage in +12V and			
	maximum integrator output voltage at 2n count is -10V. If			
	$R=100K\Omega$, find the size of the capacitor to be used for integrator.			
	Calculate the values of the LSB,MSB and full scale output for an	Remember	CO 4	AEC008.10
	8 bit DAC for the 0 to 10V range.	** 1	G . 1	1777000 10
	How many levels are possible in a two bit DAC what is its	Understand	CO 4	AEC008.10
	resolution if the output range is 0 to 3V.	D 1	GO 4	AEG000 11
	Calculate what is the conversion time of a 10 bit successive	Remember	CO 4	AEC008.11
	approximation A/D converter if its 6.85V. Calculate basic step of 9 bit DAC is 10.3 mV. If 000000000	Damamhan	CO 4	AEC008.10
	represents OV, what output produced if the input is 100101101	Remember	CO 4	AEC008.10
	Calculate the values of the LSB,MSB and full scale output for an	Understand	CO 4	AEC008.10
	B bit DAC for the 0 to 5V range	Chacistana	CO 4	ALC000.10
	How many levels are possible in a two bit DAC what is its	Remember	CO 4	AEC008.11
	resolution if the output range is 0 to 4V.	Kemember	CO 4	71EC000.11
	Design a dual slope ADC uses an 18 bit counter with a 2MHz	Remember	CO 4	AEC008.11
	clock. The maximum integrator input voltage in +12V and			1120000111
	maximum integrator output voltage at 2n count is -10V. If			
	$R=100K\Omega$, find the size of the capacitor to be used for integrator.			
	UNIT-V			
	DIGITAL IC APPLICATIONS			
	Part - A (Short Answer Question	ns)		
1 1	Name the three types of TTL gate.	Remember	CO 5	AEC008.13
	Define noise margin of a logic family.	Remember	CO 5	AEC008.13
	Define combinational circuit.	Understand	CO 5	AEC008.12
	Define sequential circuit.	Remember	CO 5	AEC008.14
	Give the differences between combinational design and	Understand	CO 5	AEC008.12
	sequential design.			
6 (Compare latch and flip flop.	Understand	CO 5	AEC008.14

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
7	Sketch the 1 X 2 demux.	Understand	CO 5	AEC008.12
8	Define counter.	Understand	CO 5	AEC008.15
9	Describe the differences between synchronous counters and asynchronous counters	Understand	CO 5	AEC008.15
10	Explain Johnson counter.	Understand	CO 5	AEC008.15
11	What is ring counter.	Understand	CO 5	AEC008.15
12	Define priority encoder.	Understand	CO 5	AEC008.12
13	How many select lines are needed to construct 16 X 1 mux.	Remember	CO 5	AEC008.12
14	What is race around condition?	Remember	CO 5	AEC008.14
15	How many flip flops are required to construct Mod-12 counter.	Remember	CO 5	AEC008.15
16	Explain full- adder in brief	Remember	CO 5	AEC008.12
17	Explain the working of decoders	Remember	CO 5	AEC008.14
18	Difference between combinational logic circuit and sequential logic circuit	Remember	CO 5	AEC008.15
19	Discuss the applications of shift registers.	Remember	CO 5	AEC008.12
20	Difference between Synchronous and asynchronous counters	Remember	CO 5	AEC008.12
20	Part - B (Long Answer Question			112000.12
1	Compare CMOS, TTL and ECL with reference to logic levels, DC noise margin, propagation delay and fan-out.	Remember	CO 5	AEC008.13
2	Discuss the following terms with reference to CMOS logic. i. Logic Levels ii. Noise margin iii. Power supply rails	Understand	CO 5	AEC008.13
3	iv. Propagation delay Implement BCD to 7 segment display decoder using common cathode using 4:16 decoder.	Remember	CO 5	AEC008.12
4	Explain the operation of priority encoder IC 74XX148 using pin diagram and truth table.	Remember	CO 5	AEC008.12
5	Design 32X1 multiplexer using four 74X151 multiplexers and one 74X139 decoder.	Remember	CO 5	AEC008.12
6	Explain 4 bit binary parallel adder IC 74LS83/74LS283 with logic diagram.	Remember	CO 5	AEC008.12
7	Explain the working of Master Slave flip jk flop using diagram	Remember	CO 5	AEC008.14
8	Explain the working of clocked T flip flop.	Understand	CO 5	AEC008.14
9	Construct a JK flip flop using a D flip flop.	Remember	CO 5	AEC008.14
10	Design 16 bit adder using two 7483 ICs.	Remember	CO 5	AEC008.12
11	Compare synchronous counters and asynchronous counters.	Understand	CO 5	AEC008.15
12	Draw and explain the operation 4 bit asynchronous down counter with timing diagrams.	Remember	CO 5	AEC008.15
13	Explain and design asynchronous MOD 10 (decade) counter.	Remember	CO 5	AEC008.15
14	Explain the operation of universal shift register using IC 74194 with logic diagram.	Remember	CO 5	AEC008.15
15	Explain the operation ring counter using truth table and timing diagrams.	Understand	CO 5	AEC008.15
16	Design and explain the 3 to 8 decoder using 2 to 4 decoders.	Remember	CO 5	AEC008.12
17	Implement 16x1 Multiplexer using 8x1 Multiplexers and 2x1 Multiplexer.	Understand	CO 5	AEC008.15
18	Using D-Flip flops and waveforms explain the working of a 4-bit SISO shift register.	Remember	CO 5	AEC008.15
19	Using a suitable logic diagram explain the working of a 1-to-8 de multiplexer.	Remember	CO 5	AEC008.15
20	What is a half-adder? Explain a half-adder with the help of truth-table and logic diagram.	Remember	CO 5	AEC008.15
	Part - C (Analytical Questions)			

S.No	QUESTION	Blooms taxonomy level	Course Outcomes	Course Learning Outcomes
1	Implement the following function with 8: 1 MUX (74XX151)	Remember	CO 5	AEC008.12
	and two 4X1 MUX.			
	$F(W,X,Y,Z) = \sum_{n=1}^{\infty} (2,4,6,7,10,11,12,13,14)$	** 1	GO #	1 F G 0 0 0 1 2
2	Design an 8 bit adder using two 4 bit parallel adders IC74283.	Understand	CO 5	AEC008.12
3	Design 4 to 16 decoder using two 74X138 decoders.	Remember	CO 5	AEC008.12
4	Realize the following expression using 74X151 ICs and 74X139	Remember	CO 5	AEC008.12
	IC			
	$F(Z) = A^{1}BCD + AB^{1}CD + ABC^{1}D + A^{1}BDE + ACDE^{1} + AB^{1}CE + AB$			
	CD^1			
5	Design 4 bit up/down ripple counter with a control for up/down	Understand	CO 5	AEC008.15
	counting.			
6	Determine f_{max} for 4 bit synchronous counter if t_{pd} for each flip	Remember	CO 5	AEC008.15
	flop is 50 ns and t_{pd} for each AND gate is 20 ns. Compare this			
	with f_{max} for a MOD-16 ripple counter.			
7	Design divide by 20 counter using IC 7490 and also draw the	Remember	CO 5	AEC008.15
	internal architecture of IC 7490.			
8	Explain any two applications of counters in detail.	Understand	CO 5	AEC008.15
9	How many flip flops are required to design binary counter that	Remember	CO 5	AEC008.15
	counts from 0 to 1023 and also determine the frequency at which			
	output of last (MSB) flip flop for an input clock frequency of 2			
	Mhz.			
10	Draw the timing diagrams at the output of each flip flop if each	Remember	CO 5	AEC008.14
	flip flop has propagation delay of 20 ns			
11	Design a 4 bit ,4 state ring counter using 74X194 with neat	Understand	CO 5	AEC008.15
	timing diagrams.			

Prepared By: Ms. J Sravana, Assistant Professor

HOD, EEE