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TERMINOLOGY 

The What is Operation Research 

• Definition 

• Scope 

Operations Research is the science of rational decision-making and the study, design and 

integration of complex situations and systems with the goal of predicting system behavior and 

improving or optimizing system performance. 

The formal activities of operation research were initiated in England during World War II to 

make decisions regarding the best utilization of war material. After the war the ideas advanced in 

military operations were adapted to improve efficiency and productivity in the civilian sector. 

That developed to today’s dominant and indispensable decision-making tool, Operations 

research. It encompasses managerial decision making, mathematical and computer modeling and 

the use of information technology for informed decision-making. 

The concepts and methods of Operations Research are pervasive. Students and graduates advise 

the public and private sectors on energy policy; design and operation of urban emergency 

systems; defense; health care; water resource planning; the criminal justice system; 

transportation issues. They also address a wide variety of design and operational issues in 

communication and data networks; computer operations; marketing; finance; inventory planning; 

manufacturing; and many areas designed to improve business productivity and efficiency. The 

subject impacts biology, the internet, the airline system, international banking and finance. It is a 

subject of beauty, depth, infinite breadth and applicability. 

The Meaning of Operations Research 

From the historical and philosophical summary just presented, it should be apparent that the term 

“operations research” has a number of quite distinct variations of meaning. To some, OR is that 

certain body of problems, techniques, and solutions that has been accumulated under the name of 

OR over the past 30 years, and we apply OR when we recognize a problem of that certain genre. 

To others, it is an activity or process-something we do, rather than know-which by its very nature 

is applied. 

Perhaps in time the meaning will stabilize, but at this point it would be premature to exclude any 

of these interpretations. It would also be counterproductive to attempt to make distinctions 



 

between “operations research” and the “systems approach.” While these terms are sometimes 

viewed as distinct, they are often conceptualized in such a manner as to defy separation. Any 

attempt to draw boundaries between them would in practice be arbitrary. 

 

 The Operational Research Society of Great Britain has adopted the following definition: 

Operational research is the application of the methods of science to complex problems arising in 

the direction and management of large systems of men, machines, materials and money in 

industry, business, government, and defense. The distinctive approach is to develop a scientific 

model of the system, incorporating measurements of factors such as chance and risk, with which 

to predict and compare the outcomes of alternative decisions, strategies or controls. The purpose 

is to help management determine its policy and actions scientifically. 

Operations research is concerned with scientifically deciding how to best design and operate 

man-machine systems, usually under conditions requiring the allocation of scarce resources. 

Although both of these definitions leave something to be desired, they are about as specific as 

one would want to be in defining such a broad area. It is noteworthy that both definitions 

emphasize the motivation for the work; namely, to aid decision makers in dealing with complex 

real-world problems. Even when the methods seem to become so abstract as to lose real-world 

relevance, the student may take some comfort in the fact that the ultimate goal is always some 

useful application. 

Both definitions also mention methodology, describing it only very generally as “scientific.” 

That term is perhaps a bit too general, inasmuch as the methods of science are so diverse and 

varied. A more precise description of the OR methodology would indicate its reliance on 

“models.” Of course, that term would itself require further elaboration, and it is to that task that 

we now turn our attention. 

Operations Research has been defined so far in various ways and still not been defined in an 

authoritative way. Some important and interesting opinions about the definition of OR which 

have been changed according to the development of the subject been given below: 

OR is a scientific method of providing executive departments with a quantitative basis for 

decision regarding the operations under their control.  -Morse and Kimbal(9164) 

OR is a scientific method of providing executive with an analytical and objective basis for 

decisions.   - P.M.S.Blacket(1948) 

OR is the application of scientific methods, techniques and tools to problems involving the 



 

operations of systems so as to provide these in control of the operations with optimum solutions 

to the problem.” 

-Churchman, Acoff, Arnoff (1957) 

OR is the art of giving bad answers to problems to which otherwise worse answers are given. 

-T. L Saaty (1958) 

OR is a management activity pursued in two complementary ways-one half by the free and bold 

Exercise of commonsense untrammeled by any routine, and other half by the application of a 

repertoire of well-established 

 

MODELS IN OPERATIONS RESEARCH 

 

Modeling  in  Operations Research: 

The essence of the operations research activity lies in the construction and use of models. 

Although modeling must be learned from individual experimentation, we will attempt here to 

discuss it in broad, almost philosophical terms. This overview is worth having, and setting a 

proper orientation in advance may help to avoid misconceptions later. 

Definition. A model in the sense used in 0 R is defined as a representation of an actual object or 

situation. It shows the relationships (direct or indirect) and inter-relationships of action and 

reaction in terms of cause and effect. 

Since a model is an abstraction of reality, it thus appears to be less complete than reality itself. 

For a model to be complete, it must be a representative of those aspects of reality that are being 

investigated. 

The main objective of a model is to provide means for analyzing the behaviour of the system for 

the purpose of improving its performance. Or, if a system is not in existence, then a model 

defines the ideal structure of this future system indicating the functional relationships among its 

elements. The reliability of the solution obtained from a model depends on the validity of the 

model in representing the real systems. A model permits to ‘examine the behavior of a system 

without interfering with ongoing operations. 

Models can be Classified According to Following Characteristics: 

1. Classification by Structure 

i. Iconic models. Iconic models represent the system as it is by scaling it up or down (i.e., 



 

by enlarging or reducing the size). In other words, it is an image. 

For example, a toy airplane is an iconic model of a real one. Other common examples of it are: 

photographs, drawings, maps etc. A model of an atom is scaled up so as to make it visible to 

the naked eye. In a globe, the diameter of the earth is scaled down, but the globe has 

approximately the same shape as the earth, and the relative sizes of continents, seas, etc., are 

approximately correct. The iconic model is usually the simplest to conceive and the most 

specific and concrete. Its function is generally descriptive rather than explanatory. 

Accordingly, it cannot be easily used to determine or predict what effects many important 

changes on the actual system. 

ii. Analogue models. The models, in which one set of properties is used to represent another 

set of properties, are called analogue models. After the problem is solved, the solution is 

reinterpreted in terms of the original system. 

For example, graphs are very simple analogues because distance is used to represent the 

properties such as: time, number, percent, age, weight, and many other properties. Contour 

lines on a map represent the rise and fall of the heights. In general, analogues are less specific, 

less concrete but easier to manipulate than are iconic models. 

iii. Symbolic (Mathematical) models. The symbolic or mathematical model is one which 

employs a set of mathematical symbols (i.e., letters, numbers, etc.) to represent the decision 

variables of the system. These variables are related together by means of a mathematical 

equation or a set of equations to describe the behavior (or properties) of the system. The 

solution of the problem is then obtained by applying well-developed mathematical techniques 

to the model. 

The symbolic model is usually the easiest to manipulate experimentally and it is most general 

and abstract. Its function is more often explanatory rather than descriptive. 

2. Classification by Purpose 

Models can also be classified by purpose of its utility. The purpose of a model may be 

descriptive predictive or prescriptive. 

i. Descriptive models. A descriptive model simply describes some aspects of a situation based 

on observations, survey. Questionnaire results or other available data. The result of an opinion 

poll represents a descriptive model. 

ii.Predictive models. Such models can answer ‘what if’ type of questions, i.e. they can make 

predictions regarding certain events. For example, based on the survey results, television 



 

networks such models attempt to explain and predict the election results before all the votes are 

actually counted. 

iii.Prescriptive  models. Finally, when a predictive model has been repeatedly successful, it can 

be used to prescribe a source of action. For example, linear programming is a prescriptive (or 

normative) model because it prescribes what the managers ought to do. 

3. Classification by Nature of Environment 

These are mainly of two types: 

i. Deterministic models. Such models assume conditions of complete certainty and perfect 

knowledge. 

For example, linear programming, transportation and assignment models are deterministic type 

of models. 

Ii .Probabilistic (or Stochastic) models. These types of models usually handle such situations in 

which the consequences or payoff of managerial actions cannot be predicted with certainty. 

However, it is possible to forecast a pattern of events, based on which managerial decisions can 

be made. For example, insurance companies are willing to insure against risk of fire, accidents, 

sickness and so on, because the pattern of events have been compiled in the form of probability 

distributions. 

4.Classification by Behavior 

i. Static models. These models do not consider the impact of changes that takes place during 

the planning horizon, i.e. they are independent of time. Also, in astatic model only one decision 

is needed for the duration of a given time period. 

ii.Dynamic models. In these models, time is considered as one of the important variables and 

admits the impact of changes generated by time. Also, in dynamic models, not only one but a 

series of interdependent’ decisions is required during the planning horizon. 

 

5. Classification by Method of Solution 

i. Analytical models. These models have a specific mathematical structure-and thus can be 

solved by known analytical or mathematical techniques. For example, general linear 

programming models as well as the specially structured transportation and assignment models 

are analytical models. . 

ii. Simulation models. They also have a mathematical structure but they cannot be solved by 

purely using the ‘tools’ and ‘techniques’ of mathematics. A simulation model is essentially 



 

computer-assisted experimentation on a mathematical structure of a real time structure in order 

to study the system under a variety of assumptions. 

Simulation modeling has the advantage of being more flexible than mathematical modeling 

and hence can be used to represent complex systems which otherwise cannot be formulated 

mathematically. On the other hand, simulation has the disadvantage of not providing general 

solutions like those obtained from successful mathematical models. 

6. Classification by use of Digital Computers The development of the digital computer has led to 

the introduction of the following types of modeling in OR. 

i. Analogue and Mathematical models combined. Sometimes analogue models are also 

expressed in terms of mathematical symbols. Such models may belong to both the types (ii) 

and (iii) in classification 1 above. 

For example, Simulation model is of analogue type but mathematical formulae are also used in 

it. Managers very frequently use this model to ‘simulate’ their decisions by summarizing the 

activities of industry in a scale-down period. 

ii. Function models. Such models are grouped on the basis of the function being performed. 

For example, a function may serve to acquaint to scientist with such things as-tables, carrying 

data, a blue-print of layouts, a program representing a sequence of operations (like’ in 

computer programming). 

(iii) Quantitative models. Such models are used to measure the observations. 

For example, degree of temperature, yardstick, a unit of measurement of length value, etc. 

Other examples of quantitative models are: (i) transformation models which are useful in 

converting a measurement of one scale to another (e.g., Centigrade vs. Fahrenheit conversion 

scale), and (ii) the test models that act as ‘standards’ against which measurements are 

compared (e.g., business dealings, a specified standard production control, the quality of a 

medicine). 

iii. Heuristic models. These models are mainly used to explore alternative strategies (courses 

of action) that were overlooked previously, whereas mathematical models are used to represent 

systems possessing well- defined strategies. Heuristic models do not claim to find the best 

solution to the problem. 

Principles of Modeling 

Let us now outline general principles useful in guiding to formulate the models within the 

context of 0 R. The model building and their users both should be consciously aware of the 



 

following Ten principles: 

1. Do not build up a complicated model when simple one will suffice. Building the strongest 

possible model is a common guiding principle for mathematicians who are attempting to extend 

the theory or to develop techniques that have wide applications. However, in the actual practice 

of building models for specific purposes, the best advice is to “keep it simple”. 

2. Beware of molding the problem to fit the technique. For example, an expert on linear 

programming techniques may tend to view every problem he encounters as required in a linear 

programming solutions. In fact, not all optimization problems involve only linear functions. 

Also, not all OR problems involve optimization. As a matter of fact, not all real-world problems 

call for operations research! Of course, everyone search reality in his own terms, so the field of 

OR is not unique in this regard. Being human we rely on the methods we are most comfortable in 

using and have been most successful within the past. We are certainly not able to use techniques 

in which we have no competence, and we cannot hope to be competent in all techniques. We 

must divide OR experts into three main categories: 

(i)Technique developers. (ii) Teacher and (iii) Problem solvers. 

In particular one should be ready to tolerate the behavior “I have found a cure but I am trying to 

search a disease to fit it” among technique developers and teachers. 

3.The deduction phase of modeling must be conducted rigorously. The reason for requiring 

rigorous deduction is that one wants to be sure that if model conclusions are inconsistent with 

reality, then the defect lie in the assumptions. One application of this principle is that one must 

be extremely careful when programming computers. Hidden “bugs” are especially dangerous 

when they do not prevent the program from running but simply produce results, which are not 

consistent with the intention of the model. 

4. Models should be validated prior to implementation. For example, if a model is constructed to 

forecast the monthly sales of a particular commodity, it could be tested using historical data to 

compare the forecasts it would have produced to the actual sales. In case, if the model cannot be 

validated prior to its implementation, then it can be implemented in phases for validation. For 

example a new model for inventory control may be implemented for a certain selected 

 group of items while the older system is retained for the majority of remaining items. If the 

model proves successful, more items can be placed within its range. It is also worth noting that 

real things change in time. A highly satisfactory model may very well degrade with age. So 

periodic re-evaluation is necessary. 

5. A model should never be taken too literally. For example, suppose that one has to construct an 



 

elaborate computer model of Indian economy with many competent researchers spending a great 

deal of time and money in getting all kinds of complicated interactions and relationships. Under 

such circumstances, it can be easily believed as if the model duplicates itself the real system. 

This danger continues to increase as the models become larger and more sophisticated, as they 

must deal with increasingly complicated problems. 

6.A model should neither be pressed to do, nor criticized for failing to do that for which it was 

never intended. One example of this error would be the use of forecasting model to predict so far 

into the future that the data on which the forecasts are based have no relevance. Another example 

is the use of certain network methods to describe the activities involved in a complex project. A 

model should not be stretched beyond its capabilities. 

7. Beware of over-selling a model. This principle is of particular importance for the OR 

professional because most non- technical benefactors of an operations researcher’s work are not 

likely to understand his methods. The increased technicality of one’s methods also increases the 

burden of responsibility on the OR professional to distinguish clearly between his role as model 

manipulator and model interpreter. In those cases where the assumptions can be challenged, it 

would be dishonest to use the model. 

8. Some of the primary benefits of modeling are associated with the process of developing the 

model. It is true in general that a model is never as useful to anyone else as it is to those who are 

involved in building it up. The model itself never contains the full knowledge and understanding 

of the real system that the builder must acquire in order to 

Successfully model it, and there is no practical way to convey this knowledge and understanding 

properly. In some cases the sole benefits may occur while the model is being developed. In such 

cases, the model may have no further value once it is completed, An example of this case might 

occur when a small group of people attempts to develop a formal plan for some subject. The plan 

is the final model, but the real problem may be to agree on ‘what the objectives ought to be’. 

9. A model cannot be any better than the information that goes into it. Like a computer program, 

a model can only manipulate the data provided to it; it cannot recognize and correct for 

deficiencies in input. Models may condense data or convert it to more useful forms, but they do 

not have the capacity to generate it. In some situations it is always better to gather more 

information about the system instead of exerting more efforts on modern constructions. 

10. Models cannot replace decision makers. The purpose of OR models should not be supposed 

to provide “Optimal solutions” free from human subjectivity and error. OR models can aid 

decision makers and thereby permit better decisions to be made. However they do not make the 



 

job of decision making easier. Definitely, the role of experience, intuition and judgment in 

decision-making is undiminished. 

GENERAL METHODS FOR SOLVING ‘OR’ MODLES 

In OR, we do not have a single general technique that solves all mathematical models that arise 

in practice. Instead, the type and complexity of the mathematical model dictate the nature of the 

solution method. For example, in Section 1.1 the solution of the tickets problem requires simple 

ranking of the alternatives based on the total purchasing price, whereas the solution of the 

rectangle problem utilizes differential calculus to determine the maximum area. 

The most prominent OR technique is linear programming. It is designed for models with strict 

linear objective and constraint functions. Other techniques include integer programming (in 

which the variables assume integer values), dynamic programming (in which the original model 

can be decomposed into smaller sub. problems), network programming (in which the problem 

can be modeled as a network), and nonlinear programming (in which the functions of the model 

are non. linear). The cited techniques are but a partial list of the large number of available OR 

tools. 

A peculiarity of most OR techniques is that solutions are not generally obtained in (formula-like) 

closed forms. Instead, they are determined by algorithms. An algorithm provides fixed 

computational rules that are applied repetitively to the problem with each repetition (called 

iteration) moving the solution closer to the optimum. Because the computations associated with 

each iteration are typically tedious and voluminous, it is imperative that these algorithms be 

executed on the computer. . 

Some mathematical models may be so complex that it is impossible to solve them by any of the 

available optimization algorithms. In such cases, it may be necessary to abandon the search for 

the optimal solution and simply seek a good solution using heuristics or rules of thumb. 

Generally three types of methods are used for solving OR models. 

Analytic Method. If the OR model is solved by using all the tools of classical mathematics 

such as: differential calculus and finite differences available for this task, then such type of 

solutions are called analytic solutions. Solutions of various inventory models are obtained by 

adopting the so-called analytic procedure. 

Iterative Method. If classical methods fail because of complexity of the constraints or of the 

number of variables, then we are usually forced to adopt an iterative method. Such a procedure 

starts with a trial solution and a set of rules for improving it. 



 

The trial solution is then replaced by the improved solution, and the process is repeated until 

either no further improvement is possible or the cost of further calculation cannot be justified. 

 

Iterative method can be divided into three groups:   

a. After a finite number of repetitions, no further  improvement will be possible. 

 b. Although successive iterations improve the solutions, we are only guaranteed the solution as 

a limit of an infinite process. 

c. Finally we include the trial and error method, which, however, is likely to be lengthy, 

tedious, and costly even if   electronic computers are used. 

The Monte-Carlo Method: The basis of so-called Monte-Carlo technique is random sampling 

of variable’s values from a Distribution of  that variable. Monte-Carlo refers to the use of 

sampling methods to estimate the value of non-stochastic variables. The following are the main 

steps of Monte-Carlo method:   

Step 1. In order to have a general idea of the system, we first draw a flow diagram of the 

system. 

Step 2. Then we take correct sample observations to select some suitable model for the system. 

In this step we compute the probability distributions for the variables of our interest. 

Step 3. We, then, convert the probability distributions to a 

cumulative distribution function.   

Step 4. A sequence of random numbers is now selected with the help of random number tables. 

  

Step 5. Next we determine the sequence of values of variables of interest with the sequence of 

random numbers obtained instep 4. 

Step 6. Finally we construct some standard mathematical function to the values obtained in 

step 5.Step 3. Step 4. Step 5. 

 

The British/Europeans refer to "operational research", the Americans to "operations 

research" - but both are often shortened to just "OR" (which is the term we will use). 

Another term which is used for this field is "management science" ("MS"). The Americans 

sometimes combine the terms OR and MS together and say "OR/MS" or"ORMS". 

Yet other terms sometimes used are "industrial engineering" ("IE"), "decision science" 



 

("DS"), and “problemsolving”. In recent years there has been a move towards a 

standardization upon a single term for the field, namely the term "OR". 

“Operations Research (Management Science) is a scientific approach to decision making that 

seeks to best design and operate a system, usually under conditions requiring the allocation of 

scarce resources.” 

A system is an organization of interdependent components that work together to accomplish 

the goal of the system. 

 
THE METHODOLOGY OF OR 

When OR is used to solve a problem of an organization, the following seven step procedure 

should be followed: 

Step 1. Formulate the Problem 

OR analyst first defines the organization's problem. Defining the problem includes specifying 

the organization's objectives and the parts of the organization (or system) that must be studied 

before the problem can be solved. 

Step 2. Observe the System 

Next, the analyst collects data to estimate the values of parameters that affect the 

organization's problem. These estimates are used to develop (in Step 3) and evaluate (in Step 

4) a mathematical model of the organization's problem. 

Step 3. Formulate a Mathematical Model of the Problem 

The analyst, then, develops a mathematical model (in other words an idealized representation) 

of the problem. In this class, we describe many mathematical techniques that can be used to 

model systems. 

Step 4. Verify the Model and Use the Model for Prediction 

The analyst now tries to determine if the mathematical model developed in Step 3 is an 

accurate representation of reality. To determine how well the model fits reality, one 

determines how valid the model is for the current situation. 

Step 5. Select a Suitable Alternative 

Given a model and a set of alternatives, the analyst chooses the alternative (if there is one) 

that best meets the organization's objectives. 

Sometimes the set of alternatives is subject to certain restrictions and constraints. In many 

situations, the best alternative may be impossible or too costly to determine. 

Step 6. Present the Results and Conclusions of the Study 

In this step, the analyst presents the model and the recommendations from Step 5 to the 

decision making individual or group. In some situations, one might present several 



 

alternatives and let the organization choose the decision maker(s) choose the one that best 

meets her/his/their needs. 

After presenting the results of the OR study to the decision maker(s), the analyst may find that 

s/he does not (or they do not) approve of the recommendations. This may result from 

incorrect definition of the problem on hand or from failure to involve decision maker(s) from 

the start of the project. In this case, the analyst should return to Step 1, 2, or3. 

Step 7. Implement and Evaluate Recommendation 

If the decision maker(s) has accepted the study, the analyst aids in implementing the 

recommendations. The system must be constantly monitored (and updated dynamically as the 

environment changes) to ensure that the recommendations are enabling decision maker(s) to 

meet her/his/their objectives. 

 
HISTORY OF OR 

(Prof. Beasley‟s lecture notes) 

OR is a relatively new discipline. Whereas 70 years ago it would have been possible to study 

mathematics, physics or engineering (for example) at university it would not have been 

possible to study OR, indeed the term OR did not exist then. It was only really in the late 

1930's that operational research began in a systematic fashion, and it started in the UK. 

Early in 1936 the British Air Ministry established Bawdsey Research Station, on the east 

coast, near Felixstowe, Suffolk, as the centre where all pre-war radar experiments for both the 

Air Force and the Army would be carried out. Experimental radar equipment was brought up 

to a high state of reliability and ranges of over 100 miles on aircraft were obtained. 

It was also in 1936 that Royal Air Force (RAF) Fighter Command, charged specifically with 

the air defense of Britain, was first created. It lacked however any effective fighter aircraft - 

no Hurricanes or Spitfires had come into service - and no radar data was yet fed into its very 

elementary warning and controlsystem. 

It had become clear that radar would create a whole new series of problems in fighter 

direction and control so in late 1936 some experiments started at Biggin Hill in Kent into the 

effective use of such data. This early work, attempting to integrate radar data with ground 

based observer data for fighter interception, was the start ofOR. 

The first of three major pre-war air-defense exercises was carried out in the summer of 1937. 

The  

Although scientists had (plainly) been involved in the hardware side of warfare (designing 

better planes, bombs, tanks, etc) scientific analysis of the operational use of military resources 



 

had never taken place in a systematic fashion before the Second World War. Military 

personnel, often by no means stupid, were simply not trained to undertake such analysis. 

These early OR workers came from many different disciplines, one group consisted of a 

physicist, two physiologists, two mathematical physicists and a surveyor. What such people 

brought to their work were "scientifically trained" minds, used to querying assumptions, logic, 

exploring hypotheses, devising experiments, collecting data, analyzing numbers, etc. Many 

too were of high intellectual caliber (at leastfourwartime OR personnel were later to win 

Nobel prizes when they returned to their peacetime disciplines). By the end of the war OR 

was well established in the armed services both in the UK and in the USA. OR started just 

before World War II in Britain with the establishment of teams of scientists to study the 

strategic and tactical problems involved in military operations. The objective was to find the 

most effective utilization of limited military resources by the use of quantitative techniques. 

Following the end of the war OR spread, although it spread in different ways in the UK and 

USA. You should be clear that the growth of OR since it began (and especially in the last 30 

years) is, to a large extent, the result of the increasing power and widespread availability of 

computers. Most (though not all) OR involves carrying out a large number of numeric 

calculations. Without computers this would simply not bepossible. 

1. BASIC ORCONCEPTS 

 

"OR is the representation of real-world systems by mathematical models together with the use 

of quantitative methods (algorithms) for solving such models, with a view to optimizing." 

We can also define a mathematical model as consisting of: 

Decision variables, which are the unknowns to be determined by the solution to the 

model. 

Constraints to represent the physical limitations of the system 

 An objective function 

 An optimal solution to the model is the identification of a set of variable values which are 

feasible (satisfy all the constraints) and which lead to the optimal value of the objective 

function. 

An optimization model seeks to find values of the decision variables that optimize (maximize 

or minimize) an objective function among the set of all values for the decision variables that 

satisfy the given constraints. 

Two Mines Example 

The Two Mines Company own two different mines that produce an ore which, after being 



 

crushed, is graded into three classes: high, medium and low-grade. The company has 

contracted to provide a smelting plant with 12 tons of high-grade, 8 tons of medium-grade 

and 24 tons of low-grade ore per week. The two mines have different operating characteristics 

as detailed below. 

Consider that mines cannot be operated in the weekend. How many days per week should 

each mine be operated to fulfill the smelting plant contract? 

Guessing 

To explore the Two Mines problem further we might simply guess (i.e. use our judgment) 

how many days per week to work and see how they turn out. 

 work one day a week on X, one day a week onY 

This does not seem like a good guess as it results in only 7 tones a day of high- grade, 

insufficient to meet the contract requirement for 12 tones of high-grade a day. We say that 

such a solution is infeasible. 

 work 4 days a week on X, 3 days a week onY 

This seems like a better guess as it results in sufficient ore to meet the contract. We say that 

such a solution is feasible. However it is quite expensive (costly). 

We would like a solution which supplies what is necessary under the contract at minimum 

cost. Logically such a minimum cost solution to this decision problem must exist. However 

even if we keep guessing we can never be sure whether we have found this minimum cost 

solution or not. Fortunately our structured approach will enable us to find the minimum cost 

solution. 

Solution 

What we have is a verbal description of the Two Mines problem. What we need to do is to 

translate that verbal description into an equivalent mathematical description. 

In dealing with problems of this kind we often do best to consider them in the order: 

 Variables 

 Constraints 

 Objective 

This process is often called formulating the problem (or more strictly formulating a 

mathematical representation of the problem). 

Variables 

These represent the "decisions that have to be made" or the "unknowns". We have 

two decision variables in this problem: 

x = number of days per week mine X is operated 



 

y = number of days per week mine Y is operated Note 

here that x ≥ 0 and y ≥ 0. 

Constraint 

It is best to first put each constraint into words and then express it in a mathematical form. 

ore  production  constraints  -  balance  the   amount   produced   with  the 

quantity required under the smelting plantcontract 

Ore 

High 6x + 1y ≥12 

Medium 3x + 1y ≥8 

Low 4x + 6y ≥24 

days per week constraint - we cannot work more than a certain maximum 

number of days a week e.g. for a 5 day week we have 

x ≤5 

y ≤5 

 
 

Inequality constraints 

Note we have an inequality here rather than an equality. This implies that we may produce 

more of some grade of ore than we need. In fact we have the general rule: given a choice 

between an equality and an inequality choose the inequality 

For example - if we choose an equality for the ore production constraints we have the three 

equations 6x+y=12, 3x+y=8 and 4x+6y=24 and there are no values of x and y which satisfy all 

three equations (the problem is therefore said to be "over- constrained"). For example the 

values of x and y which satisfy 6x+y=12 and 3x+y=8 are x=4/3 and y=4, but these values do 

not satisfy 4x+6y=24. 

The reason for this general rule is that choosing an inequality rather than an equality gives us 

more flexibility in optimizing (maximizing or minimizing) the objective (deciding values for 

the decision variables that optimize the objective). 

 
Implicit constraints 

Constraints such as days per week constraint are often called implicit constraints because they 

are implicit in the definition of the variables. 

Objective 

Again in words our objective is (presumably) to minimize cost which is given by 180x + 

160y 



 

Since we have the complete mathematical representation of the problem: 

Minimize 

180x + 160y 
subject to 

x + y ≥ 12 3x 
+ y ≥ 84x 

+ 6y ≥ 24 x ≤ 

5 

y ≤ 5 

x, y ≥ 0 

 

 
Discussion 

This problem was a decision problem. 

We have taken a real-world situation and constructed an equivalent mathematical 

representation - such a representation is often called a mathematical model of the real-world 

situation (and the process by which the model is obtained is called formulating the model). 

Just to confuse things the mathematical model of the problem is sometimes called the formulation of the 

problem. 

Having obtained our mathematical model we (hopefully) have some quantitative method 

which will enable us to numerically solve the model (i.e. obtain a numerical solution) - such a 

quantitative method is often called an algorithm for solving the model. 

Essentially an algorithm (for a particular model) is a set of instructions which, when followed 

in a step-by-step fashion, will produce a numerical solution to that model. 

Our model has an objective, that is something which we are trying to optimize. 

Having obtained the numerical solution of our model we have to translate that 

solution back into the real-world situation. 

 
"OR is the representation of real-world systems by mathematical models together with the 

use of quantitative methods (algorithms) for solving such models, with a view to 

optimizing." 



 

2. LINEAR PROGRAMMING 
 

It can be recalled from the Two Mines example that the conditions for a mathematical model 

to be a linear program (LP)were: 

 all variables continuous (i.e. can take fractional values) 

 a single objective (minimize or maximize) 

 the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown. 

LP's are important - this is because: 

 many practical problems can be formulated as LP's 

 there exists an algorithm (called the simplex algorithm) which enables us to solve 

LP's numerically relatively easily 

We will return later to the simplex algorithm for solving LP's but for the moment we will 

concentrate upon formulating LP's. 

Some of the major application areas to which LP can be applied are: 

 Work scheduling 

 Production planning & Production process 

 Capital budgeting 

 Financial planning 

 Blending (e.g. Oil refinery management) 

 Farm planning 

 Distribution 

 Multi-period decision problems 

o Inventory model 

o Financial models 

o Work scheduling 

Note that the key to formulating LP's is practice. However a useful hint is that common 

objectives for LP's are maximize profit/minimize cost. 

There are four basic assumptions in LP: 

 Proportionality 

o The contribution to the objective function from each decision variable is 

proportional to the value of the decision variable (The contribution to the 

is exactly four times 

the contribution to the objective function from making one soldier($3)) 



 

o The contribution of each decision variable to the LHS of each constraint is 

proportional to the value of the decision variable (It takes exactly three times  

to manufacture three soldiers as  it  takes 

to manufacture one soldier (2hrs)) 

 Additivity 

o The contribution to the objective function for any decision variable is 

independent of the values of the other decision variables (No matter what the 

value of train (x2), the manufacture of soldier (x1) will always contribute 3x1 

dollars to the objective function) 

o The contribution of a decision variable to LHS of each constraint is 

independent of the values of other decision variables (No matter what the 

value of x1, the manufacture of x2 uses x2 finishing hours and x2 carpentry 

hours) 

 1st implication: The value of objective function is the sum of the 

contributions from each decision variables. 

 2nd implication: LHS of each constraint is the sum of the 

contributions from each decision variables. 

 Divisibility 

o Each decision variable is allowed to assume fractional values. If we actually 

can not produce a fractional number of decision variables, we use IP (It is 

acceptable to produce 1.69trains) 

 Certainty 

o Each parameter is known with certainty 

FORMULATING LP 
 

Giapetto Example 

(Winston 3.1, p. 49) 

Giapetto's wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw materials 

and takes $14 of labor & overhead costs. Each train sells for $21, uses $9 of raw materials, 

and takes $10 of overhead costs. Each soldier needs 2 hours finishing and 1 hour carpentry; 

each train needs 1 hour finishing and 1 hour carpentry. Raw materials are unlimited, but only 

100 hours of finishing and 80 hours of carpentry are available each week. Demand for trains 

is unlimited; but at most 40 soldiers can be sold each week. How many of each toy should be 

made each week to maximize profits? 

Answer 



 

Decision variables completely describe the decisions to be made (in this case, by Giapetto). 

Giapetto must decide how many soldiers and trains should be manufactured each week. With 

this in mind, we define: 

x1 = the number of soldiers produced per week 

x2 = the number of trains produced per week 

Objective function is the function of the decision variables that the decision maker wants to 

maximize (revenue or profit) or minimize (costs). Giapetto can concentrate on maximizing 

the total weekly profit(z). 

Here profit equals to (weekly revenues) – (raw material purchase cost) – (other variable 

costs). Hence Giapetto‟s objective functions: 

Maximize z = 3x1 + 2x2 

Constraints show the restrictions on the values of the decision variables. Without constraints 

Giapetto could make a large profit by choosing decision variables to be very large. Here there 

are three constraints: 

Finishing time per week 

Carpentry time per week 

Weekly demand for soldiers 

Sign restrictions are added if the decision variables can only assume nonnegative values 

(Giapetto cannot manufacture negative number of soldiers or trains!) 

All these characteristics explored above give the following Linear Programming 

(LP) model 

max z = 3x1+2x2 (The Objective function) 

s.t. 2x1 + x2  (Finishing constraint) 

x1 +  x2  (Carpentry constraint) 

x1  (Constraint on demand for soldiers) 

x1, x2>0 (Sign restrictions) 

A value of (x1, x2) is in the feasible region if it satisfies all the constraints and sign 

restrictions. 

Graphically and computationally we see the solution is (x1, x2) = (20, 60) at which z = 

180. (Optimal solution) 

Report 

The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is limited 

by the carpentry and finishing labor available. Profit could be increased by buying  more 

labor. 



 

Advertisement Example 

(Winston 3.2, p.61) 

Dorian makes luxury cars and jeeps for high-income men and women. It wishes to advertise 

with 1 minute spots in comedy shows and football games. Each comedy spot costs $50K and 

is seen by 7M high-income women and 2M high-income men. Each football spot costs $100K 

and is seen by 2M high-income women and 12M high-income men. How can Dorian reach 

28M high-income women and 24M high- income men at the leastcost? 

Answer 

The decision variables are 

x1 = the number of comedy spots 

x2 = the number of football spots The 

model of the problem: 

min z = 50x1 + 100x2 

st 7x1 + 2x2 = 28 

2x1 + 12x2 =24 

x1,x2>0 

The graphical solution is z = 320 when (x1, x2) = (3.6, 1.4). From the graph, in this problem 

rounding up to (x1, x2) = (4, 2) gives the best integer solution. 

Report 

The minimum cost of reaching the target audience is $400K, with 4 comedy spots and 2 

football slots. The model is dubious as it does not allow for saturation after repeated viewings. 

 
Diet Example 

(Winston 3.4., p. 70) 

Ms. Fidan‟s diet requires that all the food she eats come from one of the four “basic food 

groups“. At present, the following four foods are available for consumption: brownies, 

chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 0.5$, each scoop of 

chocolate ice cream costs 0.2$, each bottle of cola costs 0.3$, and each pineapple cheesecake 

costs 0.8$. Each day, she must ingest at least 500 calories, 6 oz of chocolate, 10 oz of sugar, 

and 8 oz of fat. The nutritional content per unit of each food is shown in Table. Formulate an 

LP model that can be used to satisfy her daily nutritional requirements at minimum cost. 

 

 Calories Chocolate 
(ounces) 

Sugar 
(ounces) 

Fat 
(ounces) 

Brownie 400 3 2 2 

Choc. ice cream (1 scoop) 200 2 2 4 

Cola (1 bottle) 150 0 4 1 

Pineapple cheesecake (1 piece) 500 0 4 5 



 

Answer 

The decision variables: 

x1: number of brownies eaten daily 

x2: number of scoops of chocolate ice cream eaten daily 

x3: bottles of cola drunk daily 

x4: pieces of pineapple cheesecake eaten daily The 

objective function (the total cost of the diet in cents): 

min w = 50x1 + 20x2 + 30x3 + 80x4 

Constraints: 

400x1  + 200x2 + 150x3+ 500x4 >500 (daily calorie intake) 
 

3x1 + 2x2  > 6 (daily chocolate intake) 

2x1 + 2x2 + 4x3+ 4x4 >10 (daily sugar intake) 
 

The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of chocolate and drinking 1 

bottle of cola (w = 90, x2 = 3, x3 =1) 

 
Post Office Example 

(Winston 3.5, p.74) 

A PO requires different numbers of employees on different days of the week. Union rules 

state each employee must work 5 consecutive days and then receive two days off. Find the 

minimum number of employees needed. 

 

Answer 

The decision variables are xi (# of employees starting on day i) 

Mathematically we must 
 

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7   

s.t. x1   + x4 + x5 + x6 + x7 ≥ 17 

 x1 + x2   + x5 + x6 + x7 ≥ 13 

 x1 + x2 + x3   + x6 + x7 ≥ 15 

 x1 + x2 + x3 + x4   + x7 ≥ 19 

 x1 + x2 + x3 + x4 + x5   ≥ 14 

  + x2 + x3 + x4 + x5 + x6  ≥ 16 
   + x3 + x4 + x5 + x6 + x7 ≥ 11 

xt t 

The solution is (xi) = (4/3, 10/3, 2, 22/3, 0, 10/3, 5) giving z = 67/3. 

We could round this up to (xi) = (2, 4, 2, 8, 0, 4, 5) giving z = 25 (may be wrong!). 

Mon Tue Wed Thur Fri 

StaffNeeded 17 13 15 19 

Sat Sun 

14 16 11 



 

However restricting the decision var.s to be integers and using Lindo again gives (xi) = 

(4, 4, 2, 6, 0, 4, 3) giving z =23. 

 
Sailco Example 

(Winston 3.10, p. 99) 

Sailco must determine how many sailboats to produce in the next 4 quarters. The demand is 

known to be 40, 60, 75, and 25 boats. Sailco must meet its demands. At the beginning of the 

1st quarter Sailco starts with 10 boats in inventory. Sailco can produce up to 40 boats with 

regular time labor at $400 per boat, or additional boats at $450 with overtime labor. Boats 

made in a quarter can be used to meet that quarter's demand or held in inventory for the next 

quarter at an extra cost of $20.00 per boat. 

Answer 

The decision variables are for t = 1,2,3,4 

xt= # of boats in quarter t built in regular time 

yt= # of boats in quarter t built in overtime For 

convenience, introduce variables: 

it= # of boats in inventory at the end quarter t 

dt= demand in quarter t 

We aregiventhat d1 = 40, d2 = 60, d3 = 75, d4 = 25, i0=10 

xt t 

Bylogic it= it-1+ xt+ yt- dt t. 

Demand ismetiff it≥ t 

(Signrestrictions xt, yt t) 

We need to minimize total cost z subject to these three sets of conditions where 

z = 400 (x1 + x2 + x3 + x4) + 450 (y1 + y2 + y3 + y4) + 20 (i1 + i2 + i3 + i4) 

Report: 

Lindo reveals the solution to be (x1, x2, x3, x4) = (40, 40, 40, 25) and (y1, y2, y3, y4) = (0, 10, 

35, 0) and the minimum cost of $78450.00 is achieved by the schedule 

  Q1 Q2 Q3 Q4 

Regular time (xt)  40 40 40 25 

Overtime (yt) 0  10 35 0 

Inventory (it) 10 10 0 0 0 

Demand (dt)  40 60 75 25 

 



 

Customer Service Level Example 

(Winston 3.12, p. 108) 

CSL services computers. Its demand (hours) for the time of skilled technicians in the next 5 

months is 

t Jan Feb Mar Apr May 

dt 6000 7000 8000 9500 11000 

It starts with 50 skilled technicians at the beginning of January. Each technician can work 160 

hrs/month. To train a new technician they must be supervised for 50 hrs by an experienced 

technician for a period of one month time. Each experienced 

technician is paid $2K/mth and a trainee is paid $1K/mth. Each month 5% of the skilled 

technicians leave. CSL needs to meet demand and minimize costs. 

Answer 

The decision variable is 

xt= # to be trained in month t 

We must minimize the total cost. For convenience let 

yt= # experienced tech. at start of tth month 

dt= demand during month t 

Then we must 

min z = 2000 (y1+...+ y5) + 1000 (x1 +...+ x5) 

subject to 

160yt- 50xt≥dt for t = 1,...,5 

y1 = 50, d1 = 6000, d2 = 7000, d3 = 8000, d4 = 9500, d5 = 11000 

yt= .95yt-1+xt-1 for t =2,3,4,5 

xt, yt≥0 

SOLVING LP 

 
 

LP Solutions: Four Cases 

When an LP is solved, one of the following four cases will occur: 

1. The LP has a unique optimal solution. 

2. The LP has alternative (multiple) optimal solutions. It has more than one 

(actually an infinite number of) optimal solutions 

3. The LP is infeasible. It has no feasible solutions (The feasible region contains no 

points). 

4. The LP is unbounded. In the feasible region there are points with arbitrarily large 



 

(in a max problem) objective function values. 

The Graphical Solution 

Any LP with only two variables can be solved graphically 
 

Example 1. Giapetto 

Since the Giapetto LP has two variables, it may be solved graphically. 

Answer 

The feasible region is the set of all points satisfying the constraints. max z 

= 3x1 + 2x2 

 2x1  + x2≤100 (Finishing constraint) 

x1  + x2≤ 80 (Carpentry constraint) 

x1 ≤ 40 (Demand constraint) 

x1, x2   ≥0 (Sign restrictions) 

The set of points satisfying the LP is bounded by the five sided polygon DGFEH. Any point 

on or in the interior of this polygon (the shade area) is in the feasible region. Having identified 

the feasible region for the LP, a search can begin for the optimal solution which will be the 

point in the feasible region with the largest z-value (maximization problem). 

To find the optimal solution, a line on which the points have the same z-value is graphed. In a 

max problem, such a line is called an isoprofit line while in a min problem, this is called the 

isocost  line. (The figure shows the isoprofit lines for z = 60, z = 100, and z = 180). 
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In the unique optimal solution case, isoprofit line last hits a point (vertex - corner) before 

leaving the feasible region. 

The optimal solution of this LP is point G where (x1, x2) = (20, 60) giving z = 180. 

 
 

Example 2. Advertisement 
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(Winston 3.2, p. 61) 

Since the Advertisement LP has two variables, it may be solved graphically. 
 

Answer 

The feasible region is the set of all points satisfying the constraints. min z 

= 50x1 +100x2 

s.t.          7x1  +      2x2≥28 (high income women) 

2x1  +   12x2≥ 24 (high income men) x1, 

x2 ≥0 

 

Since Dorian wants to minimize total advertising costs, the optimal solution to the problem 

is the point in the feasible region with the smallest z value. 

An isocost line with the smallest z value passes through point E and is the optimal solution 

at x1 = 3.6 and x2 = 1.4 giving z =320. 

Both the high-income women and high-income men constraints are satisfied, both 

constraints are binding. 
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Example 3. Two Mines 

min 180x +  160y 

st 6x + y ≥12 

3x + y ≥ 8 4x 

+ 6y ≥ 24 x ≤ 

5 

y ≤ 5 

x, y ≥ 0 

Answer 
 

 

 

 
Optimal sol‟n is 765.71. 1.71 days mine X and 2.86 days mine Y are operated. 

 
 

Example 4. Modified Giapetto 

max z = 4x1 + 2x2 

s.t. 2x1  + x2≤100 (Finishing constraint) 

x1  + x2≤ 80 (Carpentry constraint) 

x1 ≤ 40 (Demand constraint) 

x1, x2≥0 (Sign restrictions) 



 

Answer 

Points on the line between points G (20, 60) and F (40, 20) are the alternative optimal 

solutions (see figure below). 

Thus, for 0 ≤ c ≤ 1, 

c [20 60] + (1 - c) [40 20] = [40 - 20c, 20 + 40c] 

will be optimal 

For all optimal solutions, the optimal objective function value is 200. 
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Example 5. Modified Giapetto (v. 2) 

Add constraint x2 ≥ 90 (Constraint on demand for trains). 

Answer 

No feasible region: Infeasible LP 
 

 

Example 6. Modified Giapetto (v. 3) 

Only use constraint x2 ≥ 90 

Answer 

Isoprofit line never lose contact with the feasible region: Unbounded LP 
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The Simplex Algorithm 

Note that in the examples considered at the graphical solution, the unique optimal solution to 

the LP occurred at a vertex (corner) of the feasible region. In fact it is true that for any LP the 

optimal solution occurs at a vertex of the feasible region. This fact is the key to the simplex 

algorithm for solving LP's. 

Essentially the simplex algorithm starts at one vertex of the feasible region and moves (at 

each iteration) to another (adjacent) vertex, improving (or leaving unchanged) the objective 

function as it does so, until it reaches the vertex corresponding to the optimal LP solution. 

The simplex algorithm for solving linear programs (LP's) was developed by Dantzig in the 

late 1940's and since then a number of different versions of the algorithm have been 

developed. One of these later versions, called the revised simplex algorithm (sometimes 

known as the "product form of the inverse" simplex algorithm) forms the basis of most 

modern computer packages for solvingLP's. 

 
Steps 

1. Convert the LP to standard form 

2. Obtain a basic feasible solution (bfs) from the standard form 

3. Determine whether the current bfs is optimal. If it is optimal, stop. 

4. If the current bfs is not optimal, determine which non-basic variable should become a 

basic variable and which basic variable should become a non-basic variable to find a 

new bfs with a better objective function value 

5. Go back to Step3. 

 
Related concepts: 

 Standard form: all constraints are equations and all variables are nonnegative 

 bfs: any basic solution where all variables are nonnegative 

 Non-basic variable: a chosen set of variables where variables equal to0 

 Basic variable: the remaining variables that satisfy the system of equations at the 

standard form 

Example 1. Dakota Furniture 

(Winston 4.3, p. 134) 

Dakota Furniture makes desks, tables, and chairs. Each product needs the limited resources of 

lumber, carpentry and finishing; as described in the table. At most 5 tables can be sold per 

week. Maximize weekly revenue. 



 

 

Resource Desk Table Chair Max Avail. 

Lumber (board ft.) 8 6 1 48 

Finishing hours 4 2 1.5 20 

Carpentry hours 2 1.5 .5 8 

Max Demand unlimited 5 unlimited  

Price ($) 60 30 20  

 

 
LP Model: 

Let x1, x2, x3 be the number of desks, tables and chairs produced. 

Let the weekly profit be $z. Then, we must 

max z = 60x1 +30x2 + 20x3 

s.t. 8x1+ 6x2  + x3 ≤ 48 

4x1+ 2x2 + 1.5 x3 ≤20 

2x1 + 1.5x2 + .5 x3 ≤ 8 

x2 ≤5 

x1, x2, x3 ≥ 0 

 
 

Solution with Simplex Algorithm 

First introduce slack variables and convert the LP to the standard form and write a 

canonicalform 

 

R0 z -60x1 -30x2 -20x3  = 0 

R1  8x1 + 6x2 + x3 + s1 = 48 

R2  4x1 + 2x2 +1.5x3 + s2 = 20 

R3  2x1 + 1.5x2 + .5x3 + s3 = 8 

R4   x2  + s4 = 5 

x1, x2, x3, s1, s2, s3, s4 ≥ 0 

Obtain a starting bfs. 

As (x1, x2, x3) = 0 is feasible for the original problem, the below given point where three of the 

variables equal 0 (the non-basic variables) and the four other variables (the basic variables) 

are determined by the four equalities is an obvious bfs: 

x1 = x2 = x3 = 0, s1 = 48, s2 = 20, s3 = 8, s4 = 5. 

. 

Determine whether the current bfs is optimal. 

Determine whether there is any way that z can be increased by increasing some nonbasic 



 

2 2 

variable. 

If each nonbasic variable has a nonnegative coefficient in the objective function row (row 

0), current bfs isoptimal. 

However, here all nonbasic variables have negative coefficients: It is not optimal. 

 
 

Find a new bfs 

 z increases most rapidly when x1 is made non-zero; i.e. x1 is the enteringvariable. 

 Examining R1, x1 can be increased only to 6. More than 6 makes s1 < 0. Similarly R2, 

R3, and R4, give limits of 5, 4, and no limit for x1 (ratio test). The smallest ratio is the 

largest value of the entering variable that will keep all the current basic variables 

nonnegative. Thus by R3, x1 can only increase to x1 = 4 when s3 becomes 0. We say s3 is 

the leaving variable and R3is the pivote quation. 

 Now we must rewrite the system so the values of the basic variables can be read off. 

The new pivot equation (R3/2)is 

R ‟: x +.75x+.25x+ .5s =4 
3 1 2 3 3 

Then use R3
‟ to eliminate x1 in all the other rows. 

 
R0

‟ 

R1 

R2 

R3 

R4
‟ x2 + s4 = 5 s4 =5 

The new bfs is x2 = x3 = s3 = 0, x1 = 4, s1 = 16, s2 = 4, s4 = 5 making z = 240. 

 
 

Check optimality of current bfs. Repeat steps until an optimal solution is reached 

 We increase z fastest by making x3 non-zero (i.e. x3enters). 

 x3 can be increased to at most x3 = 8, when s2 = 0 ( i.e. s2leaves.) 

 
Rearranging the pivot equation gives 

R‟‟ - 2x2 + x3 + 2s2 - 4s3= 8 (R ‟×2). 

Row operations with R2
‟‟ eliminate x3 to give the new system 

R0‟‟=R0‟+5R2‟‟, R1‟‟=R1‟+R2‟‟, R3‟‟=R3‟-.5R2‟‟,R4‟‟=R4‟ 

The bfs is now x2 = s2 = s3 = 0, x1 = 2, x3 = 8, s1 = 24, s4 = 5 making z = 280. Each 

nonbasic variable has a nonnegative coefficient in row 0 (5x2, 10s2, 10s3). THE 

CURRENT SOLUTION IS OPTIMAL 

R0‟=R0+60R3‟, R1‟=R1-8R3‟, R2‟=R2-4R3‟, R4‟=R4  

z +15x2 - 5x3 + 30s3 = 240 z = 240 ‟ 

-x3 + s1 -4s3 =16 s1 = 16‟ 

- x2 + .5x3 + s2 - 2s3 = 4 s2 = 4 ‟ 

x1 + .75x2 + .25x3  +.5s3 = 4 x1 = 4 

 



 

 
Report: Dakota furniture‟s optimum weekly profit would be 280$ if they produce 2 desks 

and 8 chairs. 

This was once written as a tableau. 

(Use table format for each operation in all HW and exams!!!) 
 

 

max z =60x1+ 30x2 +20x3 

s.t. 8x1+ 6x2 + x3 ≤ 48 

4x1+ 2x2 + 1.5x3 ≤20 

2x1 + 1.5x2 + .5x3 ≤ 8 

x2 ≤ 5 

x1, x2, x3 > 0 
 

 

Initial tableau: 
 

Z x1 x2  x3 s1 s2 s3 s4 RHS BV Ratio 

1 -60 -30  -20 0 0 0 0 0 z = 0  

0 8 6 1  1 0 0 0 48 s1 = 48 6 

0 4 2  1.5 0 1 0 0 20 s2 = 20 5 

0 2 1.5  0.5 0 0 1 0 8 s3 = 8 4 

0 0 1 0  0 0 0 1 5 s4 = 5 - 
 

First tableau: 

Z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 0 15 -5 0 0 30 0 240 z = 240  

0 0 0 -1 1 0 -4 0 16 s1 = 16 - 

0 0 -1 0.5 0 1 -2 0 4 s2 = 4 8 

0 1 0.75 0.25 0 0 0.5 0 4 x1 = 4 16 

0 0 1 0 0 0 0 1 5 s4 = 5 - 

 

Second and optimal tableau: 

Z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 0 5 0 0 10 10 0 280 z = 280  

0 0 -2 0 1 2 -8 0 24 s1 = 24  

0 0 -2 1 0 2 -4 0 8 x3 = 8  

0 1 1.25 0 0 -0.5 1.5 0 2 x1 = 2  

0 0 1 0 0 0 0 1 5 s4 = 5  

 

Example 2. Modified Dakota Furniture 

Dakota example is modified: $35/table new 



 

z = 60 x1 + 35 x2 + 20 x3 

 

Second and optimal tableau for the modified problem: 

 

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio  

1 0 0 0 0 10 10 0 280 z=280   

0 0 -2 0 1 2 -8 0 24 s1=24 -  

0 0 -2 1 0 2 -4 0 8 x3=8 -  

0 1 1.25 0 0 -0.5 1.5 0 2 x1=2 2/1.25  

0 0 1 0 0 0 0 1 5 s4=5 5/1  

Another optimal tableau for the modified problem: 
 

z x1 x2 x3 s1 s2 s3 s4 RHS BV 

1 0 0 0 0 10 10 0 280 z=280 

0 1.6 0 0 1 1.2 -5.6 0 27.2 s1=27.2 

0 1.6 0 1 0 1.2 -1.6 0 11.2 x3=11.2 

0 0.8 1 0 0 -0.4 1.2 0 1.6 x2=1.6 

0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4=3.4 

Therefore the optimal solution is as follows: 
 

z = 280 and for 0 ≤ c ≤ 1 
 

x1  2   0  2c 

x2 = c 0 + (1 – c) 1.6 = 1.6 – 1.6c 

x3 
 8   11.2  11.2 – 3.2c 

 

 
Example 3. Unbounded LPs 

 

z x1 x2 x3 s1 s2 z RHS BV Ratio 

1 0 2 -9 0 12 4 100 z=100  

0 0 1 -6 1 6 -1 20 x4=20 None 

0 1 1 -1 0 1 0 5 x1=5 None 

 
Since ratio test fails, the LP under consideration is an unbounded LP. 

The Big M Method 

If an LP has any ≥ or = constraints, a starting bfs may not be readily apparent. When a bfs  

is not readily apparent, the Big M method or the two-phase simplex method may be used to 



 

solve the problem. 

The Big M method is a version of the Simplex Algorithm that first finds a bfs by adding 

"artificial" variables to the problem. The objective function of the original LP must, of course, 

be modified to ensure that the artificial variables are all equal to 0 at the conclusion of the 

simplex algorithm. 

Steps 

1. Modify the constraints so that the RHS of each constraint is nonnegative (This requires 

that each constraint with a negative RHS be multiplied by -1. Remember that if you 

multiply an inequality by any negative number, the direction of the inequality is 

reversed!). After modification, identify each constraint as a ≤, ≥ or =constraint. 

2. Convert each inequality constraint to standard form (If constraint i is a ≤ constraint, we 

add a slack variable si; and if constraint i is a ≥ constraint, we subtract an excess variable 

ei). 

3. Add an artificial variable ai to the constraints identified as ≥ or = constraints at the end of 

Step 1. Also add the sign restriction ai≥0. 

4. Let M denote a very large positive number. If the LP is a min problem, add (for each 

artificial variable) Mai to the objective function. If the LP is a max problem, add (for each 

artificial variable) -Mait o the objective function. 

5. Since each artificial variable will be in the starting basis, all artificial variables must be 

eliminated from row 0 before beginning the simplex. Now solve the transformed problem 

by the simplex (In choosing the entering variable, remember that M is a very large 

positive number!). 

 
If all artificial variables are equal to zero in the optimal solution, we have found the 

optimal solution to the original problem. 

 
 

If any artificial variables are positive in the optimal solution, the original problem is 

infeasible!!! 

Example 1. Oranj Juice 

(Winston 4.10, p. 164) 

Bevco manufactures an orange flavored soft drink called Oranj by combining orange soda 

and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. 

Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 



 

2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of orange juice. 

Marketing department has decided that each 10 oz bottle of Oranj must contain at least 20 mg 

of vitamin C and at most 4 oz of sugar. Use LP to determine how Bevco can meet marketing 

dept.‟s requirements at minimum cost. LP Model: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a 

bottle of Oranj. 

min z = 2x1 + 3x2 

s.t. 0.5 x1 + 0.25 x2  ≤ 4 (sugar const.) 

x1+ 3 x2≥20 (vit. Cconst.) 

x1+ x2=10 (10 oz in bottle) 

x1, x2 ≥ 0 

 
 

Solving Oranj Example with Big M Method 

1. Modify the constraints so that the RHS of each constraint is 

nonnegative The RHS of each constraint is non negative 

2. Convert each inequality constraint to standardform 

z –     2x1–      3x2 = 0 

0.5x1 + 0.25x2+ s1 = 4 

x1 + 3x2 - e2 = 20 

x1+ x2 =10 

all variables nonnegative 

3. Add aito the constraints identified as > or =const.s 
 

z–  2x1– 3x2 =  0  Row 

0 0.5x1 + 0.25x2+s1 =  4 Row1 

x1+     3x2 - e2+ a2  =20 Row 2 

x1+       x2  + a3     =10 Row 3 

all variables nonnegative 

4. Add Maito the objective function (min problem) 

min z = 2x1 + 3x2 + Ma2 +Ma3 

Row 0 will change to 

z– 2x1– 3x2 – Ma2–Ma3 =0 

5. Since each artificial variable are in our starting bfs, they must be eliminated from row 0 

 



 

z + (2M–2) x1 + (4M–3) x2 –Me2 = 30M New Row0 
 

Initial tableau: 

 
z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0 30M z=30M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 20 a2=20 20/3* 

0 1 1 0 0 0 1 10 a3=10 10 
 

In a min problem, entering variable is the variable that has the “most positive” coefficient 

in row0! 

First tableau: 

 

z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 (2M-3)/3 0 0 (M-3)/3 (3-4M)/3 0 20+3.3M z  

0 5/12 0 1 1/12 -1/12 0 7/3 s1 28/5 

0 1/3 1 0 -1/3 1/3 0 20/3 x2 20 

0 2/3 0 0 1/3 -1/3 1 10/3 a3 5* 

Optimal tableau: 
 

z x1 x2 s1 e2 a2 a3 RHS BV 

1 0 0 0 -1/2 (1-2M)/2 (3-2M)/2 25 z=25 

0 0 0 1 -1/8 1/8 -5/8 1/4 s1=1/4 

0 0 1 0 -1/2 1/2 -1/2 5 x2=5 

0 1 0 0 1/2 -1/2 3/2 5 x1=5 

 
Report: 

In a bottle of Oranj, there should be 5 oz orange soda and 5 oz orange juice. In this 

case the cost would be 25¢. 

Example 2. Modified Oranj Juice 

Consider Bevco‟s problem. It is modified so that 36 mg of vitamin C are required. Related 

LP model is given as follows: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a 

bottle of Oranj. 

min z = 2x1 + 3x2 

s.t. 0.5 x1 + 0.25 x2  ≤ 4 (sugarconst.) 

x1+ 3 x2≥36 (vit. Cconst.) 

x1+ x2=10 (10 oz inbottle) 

x1, x2 ≥ 0 



 

Solving with Big M method: 

Initial tableau: 

 

Z 

 

x1 
 

x2 

 

s1 

 

e2 

 

a2 

 

a3 
 

RHS 

 

BV 

 

Ratio 
1 2M-2 4M-3 0 -M 0 0 46M z=46M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 36 a2=36 36/3 

0 1 1 0 0 0 1 10 a3=10 10  

Optimal tableau: 

Z x1 x2 s1 e2 a2 a3 RHS BV 
1 1-2M 0 0 -M 0 3-4M 30+6M z=30+6M 

0 ¼ 0 1 0 0 -1/4 3/2 s1=3/2 

0 -2 0 0 -1 1 -3 6 a2=6 

0 1 1 0 0 0 1 10 x2=10 

An artificial variable (a2) is BV so the original LP has no feasible solution 

DUALITY 

 
 

Primal – Dual 

Associated with any LP is another LP called the dual. Knowledge of the dual provides 

interesting economic and sensitivity analysis insights. When taking the dual of any LP, the 

given LP is referred to as the primal. If the primal is a max problem, the dual will be a min 

problem and vice versa 

 

Finding the Dual of an LP 

The dual of a normal max problem is a normal min problem. 

Normal max problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≤constraints. 

Normal min problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≥constraints. 

Similarly, the dual of a normal min problem is a normal max problem. 

 
 

Finding the Dual of a Normal Max Problem 

PRIMAL 

Max z= c1x1+ c2x2 +…+cnxn 

s.t. a11x1+ a12x2 + …+a1nxn ≤ 

b1a21x1 + a22x2 + …+a2nxn ≤b2 

… … … … 

am1x1 + am2x2 + … + amnxn≤ bm xj 



 

≥ 0 (j = 1, 2, …, n) 

DUAL 

minw= b1y1 + b2y2 +…+bmym 

2 + … + am1ym≥ c1a12y1 + a22y2 + … + am2ym≥ 

c2 

… … … … 

a1ny1 + a2ny2 + …+ amnym≥ cn yi 

≥ 0 (i = 1, 2, …, m) 

Finding the Dual of a Normal Min Problem 

PRIMAL 

Min w= b1y1+ b2y2 +…+bmym 

s.t. a11y1+ a21y2 + … + am1ym≥ 

c1a12y1 + a22y2 + … + am2ym≥c2 

… … … … 

a1ny1 + a2ny2 + …+ amnym ≥ cnyi 

≥ 0 (i = 1, 2, …, m) 

DUAL 
 
 

Max z = c1x1+ c2x2 +…+cnxn 

 a11x1+ a12x2 + …+a1nxn ≤ 

b1a21x1 + a22x2 + …+a2nxn ≤b2 

… … … … 

am1x1 + am2x2 + … + amnxn ≤ bm xj 

≥ 0 (j = 1, 2, …, n) 



 

 

 

Finding the Dual of a Nonnormal Max Problem 

 If the ith primal constraint is a ≥ constraint, the corresponding dual variable yi 

must satisfy yi ≤0 

 If the ith primal constraint is an equality constraint, the dual variable yiis now 

unrestricted in sign(urs). 

 If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 
Finding the Dual of a Nonnormal Min Problem 

 If the ith primal constraint is a ≤ constraint, the corresponding dualvariable 

xi must satisfy xi ≤ 0 

 If the ith primal constraint is an equality constraint, the dual variable  xi is now 

urs. 

 If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 

The Dual Theorem 

The primal and dual have equal optimal objective function values (if the problems have 

optimal solutions). 

Weak duality implies that if for any feasible solution to the primal and an feasible solution to 

the dual, the w-value for the feasible dual solution will be at least as large as the z-value for 

the feasible primal solution z ≤w. 

Consequences 

 Any feasible solution to the dual can be used to develop a bound on the optimal value 

of the primal objective function. 

 If the primal is unbounded, then the dual problem is infeasible. 

 If the dual is unbounded, then the primal is infeasible. 

 How to read the optimal dual solution from Row 0 of the optimal tableau if the 

primal is a max problem: 

„optimal value of dual variable yi‟ 

= „coefficient of siin optimalrow0‟ (if const. i is a ≤const.) 

= –„coefficient of ei in optimalrow0‟ (if const. i is a ≥ const.) 

= „coefficient of ai in optimal row 0‟ – M (if const. i is a = const.) 

 How to read the optimal dual solution from Row 0 of the optimal tableau if the 



 

primal is a minproblem: 

„optimal value of dual variable xi‟ 

= „coefficient of siin optimalrow0‟ (if const. i is a ≤const.) 

=–„coefficient ofeiinoptimalrow0‟ (if const. i is a ≥const.) 

= „coefficient of aiin optimal row 0‟ + M (if const. i is a = const.) 

 
 

Economic Interpretation 

When the primal is a normal max problem, the dual variables are related to the value of 

resources available to the decision maker. For this reason, dual variables are often referred to 

as resource shadow prices. 

Example 

PRIMAL 

Let x1, x2, x3 be the number of desks, tables and chairs produced. Let the weekly profit be $z. 

Then, we must 

max z = 60x1 + 30x2 + 20x3 

8x1 +  6x2 + x3 ≤ 48 (Lumber constraint) 

4x1 + 2x2 + 1.5x3 ≤ 20 (Finishing hour constraint) 2x1 + 

1.5x2 +0.5x3≤ 8 (Carpentry hour constraint) 

x1, x2, x3 ≥ 0 

DUAL 

Suppose an entrepreneur wants to purchase all of Dakota‟s resources. 

In the dual problem y1, y2, y3 are the resource prices (price paid for one board ft of lumber, 

one finishing hour, and one carpentry hour). 

$w is the cost of purchasing the resources. 

Resource prices must be set high enough to induce Dakota to sell. i.e. total purchasing cost 

equals total profit. 

min w = 48y1 + 20y2 +8y3 

s.t. 8y1 + 4y2 + 2y3 ≥ 60 (Desk constraint) 6y1 +  

2y2 + 1.5y3 ≥ 30 (Table constraint) y1 + 1.5y2+ 

0.5y3 ≥ 20 (Chair constraint) 

y1, y2, y3 ≥ 0 

 
 

 



 

SENSITIVITY ANALYSIS 
 

Reduced Cost 

For any nonbasic variable, the reduced cost for the variable is the amount by which the 

nonbasic variable's objective function coefficient must be improved before that variable will 

become a basic variable in some optimal solution to the LP. 

If the objective function coefficient of a nonbasic variable xkis improved by its reduced cost, 

then the LP will have alternative optimal solutions at least one in which xkis a basic variable, 

and at least one in which xkis not a basic variable. 

If the objective function coefficient of a nonbasic variable xkis improved by more than its 

reduced cost, then any optimal solution to the LP will have xkas a basic variable and xk> 0. 

Reduced cost of a basic variable is zero (see definition)! 

 
 

Shadow Price 

We define the shadow price for the ith constraint of an LP to be the amount by which the 

optimal z value is "improved" (increased in a max problem and decreased in a min problem) 

if the RHS of the ith constraint is increased by 1. 

This definition applies only if the change in the RHS of the constraint leaves the current basis 

optimal! 

A ≥ constraint will always have a non positive shadow price; a ≤ constraint will always have a 

nonnegative shadow price. 

 
Conceptualization 

max z = 5 x1 + x2 + 10x3 

x1 + x3 ≤ 100 

x2 ≤ 1 

All variables ≥ 0 

 
This is a very easy LP model and can be solved manually without utilizing Simplex. 

x2 = 1 (This variable does not exist in the first constraint. In this case, as the problem is a 

maximization problem, the optimum value of the variable equals the RHS value of the second 

constraint). 

x1 = 0, x3 = 100 (These two variables do exist only in the first constraint and as the objective 

function coefficient of x3 is greater than that of x1, the optimum value of x3 equals the RHS 



 

value of the first constraint). 

Hence, the optimal solution is as follows: 

z = 1001, [x1, x2, x3] = [0, 1, 100] 

 
 

Similarly, sensitivity analysis can be executed manually. 

Reduced Cost 

As x2 and x3 are in the basis, their reduced costs are 0. 

In order to have x1 enter in the basis, we should make its objective function coefficient as  

great as that of x3. In other words, improve the coefficient as 5 (10-5). New objective function 

would be (max z = 10x1 + x2 + 10x3) and there would be at least two optimal solutions for [x1, 

x2, x3]: [0, 1, 100] and [100, 1,0]. 

Therefore reduced cost of x1 equals 5. 

If we improve the objective function coefficient of x1 more than its reduced cost, there would 

be a unique optimal solution: [100, 1, 0]. 

Shadow Price 

If the RHS of the first constraint is increased by 1, new optimal solution of x3 would be 101 

instead of 100. In this case, new z value would be 1011. 

If we use the definition: 1011 - 1001 = 10 is the shadow price of the first constraint. 

Similarly the shadow price of the second constraint can be calculated as 1 (please find it). 

Some important equations 

If the change in the RHS of the constraint leaves the current basis optimal (within the 

allowable RHS range), the following equations can be used to calculate new objective 

function value: 

for maximization problems 

new obj. fn. value = old obj. fn. for minimization problems 

 new obj. fn. value = old obj. fn. value – (new RHS – old RHS) × shadow price For 

Lindo example, as the allowable increases in RHS ranges are infinity for each 

constraint, we can increase RHS of them as much as we want. But according to 

allowable decreases, RHS of the first constraint can be decreased by 100 and that of 

second constraint by1.

Lets assume that new RHS value of the first constraint is 60. 

As the change is within allowable range, we can use the first equation (max. problem): 

znew = 1001 + ( 60 - 100 ) 10 = 601. 

value + (new RHS – old RHS) × shadow price 



 

Utilizing Simplex for Sensitivity 

In Dakota furniture example; x1, x2, and x3 were representing the number of desks, tables, 

and chairs produced. 

The LP formulated for profit maximization: 
 

maxz = 60x1 30 x2 20x3    

8 x1 + 6 x2 + x3 + s1 = 48 Lumber 

4 x1 + 2 x2 +1.5 x3 + s2 = 20 Finishing 

2 x1 +1.5 x2 + .5 x3 + s3 = 8 Carpentry 

 x2  + s4 = 5 Demand 

The optimal solution was: 
 

z +5x2 +10 s2 +10s3 =280 
 

-2 x2 +s1 +2 s2 -8 s3 = 24 

-2 x2 + x3 +2 s2 -4 s3 = 8 

+x1 + 1.25x2 
 -.5 s2 +1.5 s3 = 2 

x2   + s4 = 5 

 
Analysis 1 

 

 
z'= 60x1' + 30 x2' + 20 x3'   

8x1' 

4x1' 

+   6x2' 

+   2x2' 

+ x3' 

+1.5x3' 

+ s1' = 48 

 + s2' 

2 x1' +1.5 x2' + .5 x3' + s3' = 8 

 + x2'  + s4' = 5 

or equivalently: 
 

z'= 60x1' + 30 x2' + 20 x3'   

8x1' 

4x1' 

+   6x2' 

+   2x2' 

+ x3' 

+1.5x3' 

+ s1' =48 

=20 +(s2'-  

2 x1' +1.5 x2' + .5 x3' + s3' = 8 

 + x2'  + s4' = 5 

That is z
‟
, x1

‟, x 
‟
, x 

‟
 ,x 

‟
 ,s 

‟
 ,s 

‟
 - s 

‟
 ,s 

‟
 satisfy the original problem, and hence (1) 

2 3 4 1 2 3 4 

Substituting in: 
 

z' +5 x2'   +10(s2'-  +10s3'  = 280 

 -2 x2' 
 + s1' +2(s2'-  -8s3'  = 24 



 

 -2 x2' + x3'  +2(s2'-  -4s3'  = 8 

+ x1' +1.25 x2'   -.5(s2'-  +1.5s3'  = 2 

 x2'    + s4' = 5 

and thus       

z' +5 x2' 
  

+10s2' +10s3' 
 

 

 -2x2' 

-2x2' 

 

+ x3' 

+s1' +2s2' -8s3' 

+2s2' -4s3' 

  

=  

+ x1' +1.25 x2'   -.5s2' +1.5s3'  = 2-  

 x2'    + s4' = 5 

For - zs‟. In this range RHS values are non- negative. 

shadow price of finishing labor is 

$10 per hr. (This is valid for up to 4 extra hours or 4 fewer hours). 

 
 

Analysis 2 

What happens if revenue from desks changes to revenue increases 

by currently). But how large an increase is possible? 

The new revenue is: 

z x1+30x2+20x3 = z x1 

= (280 - 5x2 - 10s2 - 10s3 - 1.25x2 + .5s2 - 1.5s3) 

- x2 - (10- s2 - s3 

So the top line in the final system would be:z x2 + (10 - s2 s3  

optimal. 

For -  

 
 

Analysis 3 

If revenue from a non-basic variable changes, the revenue is 

z
‟
 = 60x1 x2 + 20x3 x2 

= 280 - 5x2 - 10s2 - 10s3 x2 

= 280 - (5 - )x2  - 10s2 -10s3 

The current solution is But is 

increased past $35, it becomes better to produce tables. We say the reduced cost of tables is 

$5.00. 

. 



 

UNIT – II: TRANSPORTATION PROBLEM 
 

 

FORMULATING TRANSPORTATION PROBLEMS 

In general, a transportation problem is specified by the following information: 

 A set of m supply points from which a good/service is shipped. Supply pointi

can supply at most siunits. 

 A set of n demand points to which the good/service is shipped. Demandpoint

j must receive at least djunits. 

 Each unit produced at supply point i and shipped to demand point j incurs a 

variable cost ofcij.

The relevant data can be formulated in a transportation tableau: 

 

 
Supply 

point 1 

Supply 

point 2 

..... 

Supply 

point m 

Demand 
point 1 

Demand 

point 2 ..... d
emand 

Point n 
SUPPLY 

s1 

s2 

 

sm 

DEMAND d1 d2 dn 

 
If total supply equals total demand then the problem is said to be a balanced 

transportation problem. 

 
Let xij= number of units shipped from supply point i to demand point j 

xij: number of units shipped from supply point i to 

demand point j 

then the general LP representation of a transportation problem is 

min i j cij xij 

s.t. j xij<si(i=1,2,...,m) Supply constraints 

 c11  c12    c1n 

    

 c21  c22    c2n 

    

        

    

 cm1  cm2    cmn 

    

 



 

 

xij> 0 

i xij>dj(j=1,2,...,n) Demand constraints 

If a problem has the constraints given above and is a maximization problem, it is still a 

transportation problem. 

 
Formulating Balanced Transportation Problem Example 1. 

Powerco 

Powerco has three electric power plants that supply the needs of four cities. Each power plant 

can supply the following numbers of kwh of electricity: plant 1, 35 million; plant 2, 50 

million; and plant 3, 40 million. The peak power demands in these cities as follows (in kwh): 

city 1, 45 million; city 2, 20 million; city 3, 30 million; city 4, 30 million. The costs of 

sending 1 million kwh of electricity from plant to city is given in the table below. To 

minimize the cost of meeting each city‟s peak power demand, formulate a balanced 

transportation problem in a transportation tableau and represent the problem as a LPmodel. 

 

From 

To 

City 1 City 2 City 3 City 4 
Plant 1 $8 $6 $10 $9  

Plant 2 $9 $12 $13 $7  

Plant 3 $14 $9 $16 $5  

 

 
Answer 

Representation of the problem as a LP model 

xij: number of (million) kwh produced at plant i and sent to city j. 

min z = 8 x11 + 6 x12 + 10 x13 + 9 x14 + 9 x21 + 12 x22 + 13 x23 + 7 x24 + 14 x31 + 9 

x32 + 16 x33 + 5 x34 

s.t.  x11 + x12 + x13 + x14<35 (supply constraints) 

x21 + x22 + x23 + x24 <50 

x31 + x32 + x33 + x34 <40 

x11 + x21 + x31>45 (demand constraints) 

x12 + x22 + x32 >20 

x13 + x23 + x33 >30 

x14 + x24 + x34 > 30 

xij> 0 (i = 1, 2, 3; j = 1, 2, 3,4) 



 

 

Formulation of the transportation problem 
 

 City 1 City 2 City 3 City 4 SUPPLY 
 8  6  10  9  

Plant 1     35 

  9  12  13  7  

Plant 2     50 

  14  9  16  5  

Plant 3     40 

DEMAND 45 20 30 30 125 

Total supply & total demand both equal 125: “balanced transportion problem”. 

 

 
Balancing an Unbalanced Transportation Problem 

Excess Supply 

If total supply exceeds total demand, we can balance a transportation problem by creating a 

dummy demand point that has a demand equal to the amount of excess supply. Since 

shipments to the dummy demand point are not real shipments, they are assigned a cost of 

zero. These shipments indicate unused supply capacity. 

Unmet Demand 

If total supply is less than total demand, actually the problem has no feasible solution. To 

solve the problem it is sometimes desirable to allow the possibility of leaving some demand 

unmet. In such a situation, a penalty is often associated with unmet demand. This means that a 

dummy supply point should be introduced. 

 
Example 2. Modified Powerco for Excess Supply 

Suppose that demand for city 1 is 40 million kwh. Formulate a balanced transportation 

problem. 

Answer 

Total demand is 120, total supply is 125. 

To balance the problem, we would add a dummy demand point with a demand of 125 

– 120 = 5 million kwh. 

From each plant, the cost of shipping 1 million kwh to the dummy is 0. For 

details see Table 4. 



 

 

Table 4. Transportation Tableau for Excess Supply 
 

 City 1 City 2 City 3 City 4  Dummy SUPPLY 
 8  6  10  9   0  

Plant 1       35 

  9  12  13  7   0  

Plant 2       50 

  14  9  16  5   0  

Plant 3       40 

DEMAND 40 20 30 30 5 
 

125 

 
Example 3. Modified Powerco for Unmet Demand 

Suppose that demand for city 1 is 50 million kwh. For each million kwh of unmet demand, 

there is a penalty of 80$. Formulate a balanced transportation problem. Answer 

We would add a dummy supply point having a supply of 5 million kwh representing 

shortage. 

City1 City2 City3 City4 SUPPLY 

Plant 1 

 
Plant 2 

 

Plant 3 

Dummy 

(Shortage) 

DEMAND 50 20 30 30 130 

 
 

FINDING BFS FOR TRANSPORT’N PROBLEMS 

For a balanced transportation problem, general LP representation may be written as: min i 

j cij xij 

s.t. j xij = si(i=1,2,...,m) Supply constraints 

i xij = dj(j=1,2,...,n) Demand constraints 
 

xij> 0 

To find a bfs to a balanced transportation problem, we need to make the following important 

observation: 

   8  6  10  9 
  35    

   9  12  13  7 
  50    

   14  9  16  5 
  40    

          

  
5 

80 80 80 80 

 



 

If a set of values for the xij‟s satisfies all but one of the constraints of a balanced 

transportation problem, the values for the xij‟s will automatically satisfy the other constraint. 

This observation shows that when we solve a balanced transportation, we may omit from 

considerationanyoneoftheproblem‟sconstraintsandsolveanLPhavingm+n-1constraints. We 

arbitrarily assume that the first supply constraint is omitted from consideration. In trying to 

find a bfs to the remaining m+n-1 constraints, you might think that any collection of m+n-1 

variables would yield a basic solution. But this is not the case: If the m+n-1 variables yield a 

basic solution, the cells corresponding to this set contain no loop. 

An ordered sequence of at least four different cells is called a loop if 

 Any two consecutives cells lie in either the same row or same column 

 No three consecutive cells lie in the same row or column 

 The last cell in the sequence has a row or column in common with the first cell in the 

sequence 

There are three methods that can be used to find a bfs for a balanced transportation problem: 

1. Northwest Corner method 

2. Minimum cost method 

3. Vogel‟s method 

 
 

Northwest Corner Method 

We begin in the upper left corner of the transportation tableau and set x11 as large as possible 

(clearly, x11 can be no larger than the smaller of s1 and d1). 

 If x11=s1, cross out the first row of the tableau. Also change d1 tod1-s1. 

 If x11=d1, cross out the first column of the tableau. Change s1 tos1-d1. 

 If x11=s1=d1, cross out either row 1 or column 1 (but not both!). 

o If you cross out row, change d1 to0. 

o If you cross out column, change s1 to0. 

Continue applying this procedure to the most northwest cell in the tableau that does not lie in 

a crossed out row or column. Eventually, you will come to a point where there is only one 

cell that can be assigned a value. Assign this cell a value equal to its row or column demand, 

and cross out both the cells row or column. 

Minimum Cost Method 

Northwest Corner method does not utilize shipping costs, so it can yield an initial bfs that has 

a very high shipping cost. Then determining an optimal solution may require several pivots. 

To begin the minimum cost method, find the variable with the smallest shipping cost (call it 



 

xij). Then assign xijits largest possible value, min {si, dj}. 

As in the NWC method, cross out row i or column j and reduce the supply or demand of the 

non crossedout of row or column by the value of xij. 

Continue like NWC method (instead of assigning upper left corner, the cell with the 

minimum cost is assigned). See Northwest Corner Method for the details! 
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15 
 

10 X 4 6 

X 

X 

15 

5 X 4 6 

X 

X 

10 

5 X 4 6 

Vogel’s Method 

Begin by computing for each row and column a penalty equal to the difference between the 

two smallest costs in the row and column. Next find the row or column with the largest 

penalty. Choose as the first basic variable the variable in this row or column that has the 

smallest cost. As described in the NWC method, make this variable as large as possible, cross 

out row or column, and change the supply or demand associated with the basic variable (See 

Northwest Corner Method for the details!). Now recomputed new penalties (using only cells 

that do not lie in a crossed out row or column), and repeat the procedure until only one 

uncrossed cell remains. Set this variable equal to the supply or demand associated with the 

variable, and cross out the variable’s row and column. 

 2  3  5  6 
    

 2  1  3  5 

2 8   

 3  8  4  6 
    

 

 2  3  5  6 

5    

 2  1  3  5 

2 8   

 3  8  4  6 
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 3  8  4  6 
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Example 3. 
 

 

Supply 
 

 

Demand 15 5 5 

Column 

penalty 
15-6=9 80-7=73 78-8=70 

Row 
penalty 

10 7-6=1 

 
15 78-15=63 

 

 

Supply 
 

 

 

 

 

Demand 15 X 5 

Column 

penalty 
15-6=9 --------------------- 78-8=70 

Row 
penalty 

5 8-6=2 

 
15 78-15=63 

 

 

Supply 
 

 

 

 

 

Demand 15 X 0 

Column 

penalty 
15-6=9 - - 

Row 
penalty 

X - 

 
15 - 

 

 

 

 

 

 
X 

 

 

15 
 

Demand 15 X 0 

 6  7  8 
   

 15  80  78 
   

 

 6  7  8 
 5  

 15  80  78 
   

 

 6  7  8 
 5 5 
 15  80  78 
   

 

 6  7  8 
 5 5 
 15  80  78 

15  0 

 



 

THE TRANSPORTATION SIMPLEX METHOD 

 
 

Steps of the Method 

1. If the problem is unbalanced, balance it 

2. Use one of the methods to find a bfs for the problem 

3. Use the fact that u1 = 0 and ui+ vj= cij for all basic variables to find the u‟s and v‟s for the 

current bfs. 

4. If ui+ vj– cij≤ 0 for all non-basic variables, then the current bfs is optimal. If this is not the 

case, we enter the variable with the most positive ui+ vj– cijinto the basis using the pivoting 

procedure. This yields a new bfs. Return to Step3. 

 
For a maximization problem, proceed as stated, but replace Step 4 by the following step: 

If ui+ vj– cij≥ 0 for all non-basic variables, then the current bfs is optimal. Otherwise, enter 

the variable with the most negative ui+ vj– cijinto the basis using the pivoting procedure. 

This yields a new bfs. Return to Step 3. 

 
Pivoting procedure 

1. Find the loop (there is only one possible loop!) involving the entering variable 

(determined at step 4 of the transport‟n simplex method) and some or all of the basic 

variables. 

2. Counting only cells in the loop, label those that are an even number (0, 2, 4, and so on) of 

cells away from the entering variable as even cells. Also label those that are an odd 

number of cells away from the entering variable as oddcells. 

3. 

variable corresponding to this odd cell will leave the basis. To perform the pivot, decrease 

the value of of values of 

variables not in the loop remain unchanged. The pivot is 0, the 

entering variable will equal 0, and odd variable that has a current value of 0 will leave the 

basis. 

4.  

Example 1. Powerco 

The problem is balanced (total supply equals total demand). 

When the NWC method is applied to the Powerco example, the bfs in the following table is 

obtained (check: there exist m+n–1=6 basic variables). 



 

City1 City2 City3 City4 SUPPLY 

Plant1 
8 6 10 9 

35 
35 

Plant2 
9 12 13 7 

50 
10 20 20 

Plant3 
14 9 16 5 

40 

10 30 

DEMAND 45 20 30 30 125 
 

u1 = 0 

u1 + v1 = 8 yields  v1  =  8 

u2 + v1 = 9 yields  u2  =  1 

u2 + v2 = 12 yields v2 = 11 

u2 + v3 = 13 yields v3 = 12 

u3 + v3 = 16 yields u3 = 4u3 

+ v4=5 yields v4 =1 

For each non-basic variable, we now compute ĉij= ui+ vj– cijĉ12 = 0 

+ 11 – 6 = 5 

ĉ13 = 0 + 12 – 10 = 2 

ĉ14 = 0 + 1 – 9 =-8 

ĉ24 = 1 + 1 – 7 =-5 

ĉ31 = 4 + 8 – 14 = -2 

ĉ32 = 4 + 11 – 9 = 6 

Since ĉ32 is the most positive one, we would next enter x32 into the basis: Each unit of 

x32 that is entered into the basis will decrease Powerco‟s cost by $6. The loop 

involving x32 is (3,2)-(3,3)-(2,3)-  

City 1 City2 City3 City4 SUPPLY 

Plant 1 

Plant 2 50 

Plant 3 40 

DEMAND 45 20 30 30 125 

 8  6  10  35
9
 

35    

 9  12  13  7 

10 20– 20+  

 14  9  16  5 
  10– 30 

 



 

30 

x33 would leave the basis. New bfs is shown at the following table: 

 

ui/vj 8 11 12 7 SUPPLY 

0 
35 

1 

8 6 10 9 
35

 

9 12 13 7 
50

 

10 10 30 
141 9 

-2 
5
 

6 
40 

DEMAND 45 
10

 20 30 
30

 125 
 

ĉ12 = 5, ĉ13 = 2, ĉ14 = -2, ĉ24 = 1, ĉ31 = -8, ĉ33 = -6 

Since ĉ12 is the most positive one, we would next enter x12 into the basis. The 

loop involving x12 is (1,2)-(2,2)-(2,1)-  

 

 

 

 

 

 

 

 

 
x22 would leave the basis. New bfs is shown at the following table: 

 
ui/vj 8 6 12 2 SUPPLY 

 

0 

 
1 

 
3 

DEMAND 45 20 30 

35 

 
50 

 

40 

30 125 

10 30 

ĉ13 = 2, ĉ14 = -7, ĉ22 = -5, ĉ24 = -4, ĉ31 = -3, ĉ33 = -1 

Since ĉ13 is the most positive one, we would next enter x13 into the basis. The 

loop involving x13 is (1,3)-(2,3)-(2,1)-  

 8  6  10  9 

25 10   

 9   1 2 1 3 

20  7  

    30    

1 4 9 
5
 16 

 

 City 1 City 2 City 3 City 4 SUPPLY 
 8  6  10  9  

Plant 1 35–    35 

  9  12  13  7  

Plant 2 10+ 10– 30  50 

  14  9  16  5  

Plant 3  10  30 40 

DEMAND 45 20 30 30 125 

 



 

City1
8 

City2
6 

City3
10 

City4
9 

SUPPLY 

 

 

 

 
x11 would leave the basis. New bfs is shown at the following table: 

 
ui/vj 6 6 10 2 SUPPLY 

 

0 35 
1 

3 50 

14 
3 40 

DEMAND 45 20 30 30 125 

10 30 

ĉ11 = -2, ĉ14 = -7, ĉ22 = -3, ĉ24 = -2, ĉ31 = -5, ĉ33 = -3 

Since all ĉij‟s are negative, an optimal solution has been obtained. 

 

Report 

45 million kwh of electricity would be sent from plant 2 to city 1. 

10 million kwh of electricity would be sent from plant 1 to city 2. Similarly, 10 million kwh 

of electricity would be sent from plant 3 to city 2. 

25 million kwh of electricity would be sent from plant 1 to city 3. 5 million kwh of 

electricity would be sent from plant 2 to city 3. 

30 million kwh of electricity would be sent from plant 3 to city 4 and 

Total shipping costis: 

z = .9 (45) + 6 (10) + 9 (10) + 10 (25) + 13 (5) + 5 (30) = $ 1020 

 

 
TRANSSHIPMENT PROBLEMS 

Sometimes a point in the shipment process can both receive goods from other points and send 

goods to other points. This point is called as transshipment point through which goods can 

be transshipped on their journey from a supply point to demand point. 

Shipping problem with this characteristic is a transshipment problem. 

       

25– 10 13   

       7 

20+  30–  

   9    

30 

5 

 10   

 

 8  6  10  9 
 10  25 
 9    2 1 3 
  7  

45    5    

  9 
5
 16 

 

Plant 1      35 

Plant 2      50 

Plant 3      40 

DEMAND 45 20 30  30 125 

 



 

The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this transportation 

problem. 

 
Remark 

As stated in “Formulating Transportation Problems”, we define a supply point to be a point 

that can send goods to another point but cannot receive goods from any other point. 

Similarly, a demand point is a point that can receive goods from other points but cannot 

send goods to any other point. 

 
Steps 

1. If the problem is unbalanced, balance it 

Let s = total available supply (or demand) for balanced problem 

2. Construct a transportation tableau as follows 

A row in the tableau will be needed for each supply point and transshipment point A 

column will be needed for each demand point and transshipment point 

Each supply point will have a supply equal to its original supply Each 

demand point will have a demand equal to its original demand 

Each transshipment point will have a supply equal to “that point‟s original supply + 

s” 

Each transshipment point will have a demand equal to “that point‟s original demand + s” 

3. Solve the transportation problem 

 
 

Example 1.Bosphorus 

(Based on Winston7.6.) 

Bosphorus manufactures LCD TVs at two factories, one in Istanbul and one in Bruges. The 

Istanbul factory can produce up to 150 TVs per day, and the Bruges factory can produce up to 

200 TVs per day. TVs are shipped by air to customers in London and Paris. The customers in 

each city require 130 TVs per day. Because of the deregulation of air fares, Bosphorus 

believes that it may be cheaper to first fly some TVs to Amsterdam or Munchen and then fly 

them to their final destinations. 



 

The costs of flying a TV are shown at the table below. Bosphorus wants to minimize the total 

cost of shipping the required TVs to its customers. 

  

 

 

 

 

 

 

 

 

Answer: 

In this problem Amsterdam and Munchen are transshipment points. 

Step 1. Balancing the problem Total 

supply = 150 + 200 = 350 

Total demand = 130 + 130 = 260 

Dummy‟s  demand = 350 – 260 = 90 

s = 350 (total available supply or demand for balanced problem) 

Step 2. Constructing a transportation tableau 

Transshipment point‟s demand = Its original demand + s = 0 + 350 = 350 Transshipment 

point‟s supply = Its original supply + s = 0 + 350 = 350 

Amsterdam Munchen London Paris Dummy Supply 
 

Istanbul 

Bruges 

Amsterdam 

Munchen 

Demand 350 350 130 130 90 

Step 3. Solving the transportation problem 

150 

 
200 

 
350 

 
350 

Amsterdam Munchen London Paris Dummy Supply 

Istanbul 

 
Bruges 

Amsterdam 

Munchen 

130 20 

 

0 

1 

 

70 
0 6 16 17 

150 

 
200 

 
350 

130 90 1050 

 8  13  25  28  0 
     

 15  12  26  25  0 
     

 0  6  16  17  0 
     

 6  0  14  16  0 
     

 

 8  13  25  28  0 

 
 15   12  26  25  

 
30          

 

€ 

From 

 

Istanbul 

 

Bruges 

 

Amsterdam 

To  

Munchen 

 

London 

 

Paris 
Istanbul 0 - 8 13 25 28 

Bruges - 0 15 12 26 25 
Amsterdam - - 0 6 16 17 

Munchen - - 6 0 14 16 

London - - - - 0 - 

Paris - - - - - 0 

 



 

Report: 

Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and transship them 

from Amsterdam to London. 

The 130 TVs produced at Bruges should be shipped directly to Paris. The total 

shipment is 6370 Euros. 

 

ASSIGNMENT PROBLEMS 

There is a special case of transportation problems where each supply point should be assigned 

to a demand point and each demand should be met. This certain class of problems is called as 

“assignment problems”. For example determining which employee or machine should be 

assigned to which job is an assignment problem. 

 
LP Representation 

An assignment problem is characterized by knowledge of the cost of assigning each supply 

point to each demand point: cij 

On the other hand, a 0-1 integer variable xijis defined as follows 

xij= 1 if supply point i is assigned to meet the demands of demand point j xij= 0 if 

supply point i is not assigned to meet the demands of point j 

In this case, the general LP representation of an assignment problem is min i j 

cij xij 

s.t. j xij= 1 (i=1,2,..., m) Supply constraints 

i xij = 1 (j=1,2,...,n) Demand constraints 

xij= 0 or xij= 1 

 
 

Hungarian Method 

Since all the supplies and demands for any assignment problem are integers, all variables in 

optimal solution of the problem must be integers. Since the RHS of each constraint is equal to 

1, each xij must be a nonnegative integer that is no larger than 1, so each xij must equal 0 or 1. 

Ignoring the xij= 0 or xij= 1 restrictions at the LP representation of the assignment problem, 

we see that we confront with a balanced transportation problem in which each supply point 

has a supply of 1 and each demand point has a demand of 1. 



 

However, the high degree of degeneracy in an assignment problem may cause the Transportation Simplex 

to be an inefficient way of solving assignment problems. 

For this reason and the fact that the algorithm is even simpler than the Transportation Simplex, 

the Hungarian method is usually used to solve assignment problems. 

 
Remarks 

1. To solve an assignment problem in which the goal is to maximize the objective function, 

multiply the profits matrix through by –1 and solve the problem as a minimization 

problem. 

2. If the number of rows and columns in the cost matrix are unequal, the assignment problem 

is unbalanced. Any assignment problem should be balanced by the addition of one or 

more dummy points before it is solved by the Hungarian method. 

 
Steps 

1. Find the minimum cost each row of the m*m cost matrix. 

2. Construct a new matrix by subtracting from each cost the minimum cost in its row 

3. For this new matrix, find the minimum cost in each column 

4. Construct a new matrix (reduced cost matrix) by subtracting from each cost the minimum 

cost in its column 

5. Draw the minimum number of lines (horizontal and/or vertical) that are needed to cover 

all the zeros in the reduced cost matrix. If m lines are required, an optimal solution is 

available among the covered zeros in the matrix. If fewer than m lines are needed, proceed 

to next step 

6. Find the smallest cost (k) in the reduced cost matrix that is uncovered by the lines drawn 

in Step5 

7. Subtract k from each uncovered element of the reduced cost matrix and add k to each 

element that is covered by two lines. Return to Step5 

 
Example 1. Flight Crew 

(Based on Winston 7.5.) 

Four captain pilots (CP1, CP2, CP3, CP4) has evaluated four flight officers (FO1, FO2, FO3, 

FO4) according to perfection, adaptation, morale motivation in a 1-20 scale (1: very good, 20: 

very bad). Evaluation grades are given in the table. Flight 

Company wants to assign each flight officer to a captain pilot according to these 



 

0 
0 
5 

10 

1 
9 
5 
0 

3 
3 
0 
3 

5 
0 
4 
0 

evaluations. Determine possible flight crews. 
 

 FO1 FO2 FO3 FO4 

CP1 2 4 6 10 

CP2 2 12 6 5 

CP3 7 8 3 9 
CP4 14 5 8 7 

 
Answer: 

Step 1. For each row in the table we find the minimum cost: 2, 2, 3, and 5 respectively 

Step 2 & 3. We subtract the row minimum from each cost in the row. For this new matrix, 

we find the minimum cost in each column 

 0 2 4 8 
 0 10 4 3 
 4 5 0 6 
 9 0 3 2 

Column minimum 0 0 0 2 

Step 4. We now subtract the column Minimum from each cost in the column 

obtaining reduced cost matrix.    

0 2 4 6 

0 10 4 1 
4 5 0 4 
9 0 3 0 

Step 5. As shown, lines through row 3, row 4, and column 1 cover all the zeros in the reduced 

cost matrix. The minimum number of lines for this operation is 3. Since fewer than four lines 

are required to cover all the zeros, solution is not optimal: we proceed to next step. 

 

Step 6 & 7. The smallest uncovered cost equals 1. We now subtract 1 from each uncovered 

cost, add 1 to each twice-covered cost, and obtain 

 

 

 
 

Four lines are now required to cover all the zeros: An optimal s9olution is available. Observe 

that the only covered 0 in column 3 is x33, and in column 2 is x42. As row 5 can not be used 

again, for column 4 the remaining zero is x24. Finally we choose x11. 

0 
0 
4 
9 

2 
10 
5 
0 

4 
4 
0 
3 

6 
1 
4 
0 



 

Report: 

CP1 should fly with FO1; CP2 should fly with FO4; CP3 should fly with FO3; and CP4 

should fly withFO4. 

 
Example 2. Maximization problem 

 

 F G H I J 

A 6 3 5 8 10 

B 2 7 6 3 2 

C 5 8 3 4 6 
D 6 9 3 1 7 
E 2 2 2 2 8 

Report: 

Optimal profit = 36 

Assigments: A-I, B-H, C-G, D-F, E-J 

Alternative optimal solution: A-I, B-H, C-F, D-G, E-J 

 

 

 
TRAVELING SALESPERSON PROBLEMS 

 

“Given a number of cities and the costs of traveling from any city to any other city, what is 

the cheapest round-trip route (tour) that visits each city once and then returns to the starting 

city?” 

This problem is called the traveling salesperson problem (TSP), not surprisingly. 

An itinerary that begins and ends at the same city and visits each city once is called a 

tour. 

Suppose there are N cities. 

Let cij = Distance from city i to city j (for i j) and 

Let cii = M (a very large number relative to actual distances) Also 

define xij as a 0-1 variable as follows: 

xij = 1 if s/he goes from city i to city j; 

xij = 0otherwise 

The formulation of the TSP is: 

min ∑İ ∑j cij xij 

s.t. ∑İ  xij = 1 for allj 

∑j xij=1 for alli 

ui – uj + N xij ≤ N–1 fori j;i,j> 



 

1 All xij = 0 or 1, All ui ≥ 0 

The first set of constraints ensures that s/he arrives once at each city. The 

second set of constraints ensures that s/he leaves each city once. The third set 

of constraints ensure the following: 

Any set of xij‟s containing a subtour will be infeasible Any 

set of xij‟s that forms a tour will be feasible 

ui  – uj  + N xij ≤ N–1 for i j; i,  j 

>1 AssumeN=5 

Subtours: 1-5-2-1, 3-4-3 ??? 

Choose the subtour that does not contain city 1: 

u3 – u4 + 5 x34 ≤ 4 

u4 – u3 + 5 x43 ≤ 4 5 

(x34 + x43) ≤8 

This rules out the possibility that x34 = x43 = 1 

The formulation of an IP whose solution will solve a TSP becomes unwieldy and 

inefficient for large TSPs. 

When using branch and bound methods to solve TSPs with many cities, large amounts of 

computer time may be required. For this reason, heuristics, which quickly lead to a good (but 

not necessarily optimal) solution to a TSP, are often used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

UNIT – IIIA: SEQUENCING   
 

Introduction 

Suppose there are n jobs to perform, each of which requires processing on some or all of 

m different machines. The effectiveness (i.e. cost, time or mileage, etc.) can be measured 

for any given sequence of jobs at each machine, and the most suitable sequence is to be 

selected (which optimizes the effectiveness measure) among all (n!)m theoretically 

possible sequences.Although,theoretically,itisa1wayspossibletoselect the best sequence 

by testing each one, but it is practically impossible because of large number of 

computations. 

In particular, if m = 5 and n = 5, the total number of possible sequences will be (5 !)5 = 

25,000,000,000. Hence the effectiveness for each of (5 !)5 sequences is to be computed 

before selecting the most suitable one. But, this approach is practically impossible to 

adopt. So easier methods of dealing with such problems are needed. 

Before proceeding to our actual discussion we should explain what the sequencing 

problem is. The problem of sequencing may be defined as follows: 

Definition: Suppose there are n jobs (1, 2, 3,..., n), each of which has to be processed one 

at a time at each of m machines A, B, C, ... The order of processing each job through 

machines is given( for example, job is processed through machines A, C, and B in this 

order). The time that each job must require on each machine is known. The problem is to 

find a sequence among(n 

!)m number of all possible sequences (or combinations) ( or order) for processing the 

jobs so that the total elapsed time for all the jobs will be minimum. Mathematically, let 

Ai = time for job i on machine A, 

Bi = time for job i on machine B, etc. 

T = time from start of first job to completion of the last job. 

Then, the problem is to determine for each machine a sequence of jobs i1, i2, i3, ...,in-

where 

(i1,i2, i3, ..., in) is the permutation of the integers which will minimize T. 

Terminology and Notations 

The following terminology and notations will be used in this chapter. 

i. Number of Machines. It means the service facilities through which. a job must pass 

before it is completed.. 

ii. For example, a book to be published has to be processed through composing, 

printing, binding, etc. In this example, the book constitutes the job and the different 

processes constitute the number of machines. . 

iii. Processing order:. It refers to  the order in which various machines are required for 

completing the job. 



 

iv. Processing Time: It means the time required by each job on each machine. The 

notation Tij will denote the processing time required for Ith job b yjth machine (i = 

1,2,..., n;j= 1, 2,...,m). 

v. Idle Time on a Machine. This is the time for which a machine remains idle during 

the total elapsed time. The notation Xij shall be (used to denote the idle time of machine 

j between the end of the (i - 1)th job and the start of the ith job. 

vi. Total Elapsed Time. This is the time between starting the first job and completing 

the last job. This also includes idle time, if exists. It will be denoted by the symbol T. 

vii. No Passing Rule. This rule means that P1lssing is not allowed, i.e .the same order of 

jobs is maintained over each machine. If each of the n-jobs is to be processed through 

two machines A and B in the order AB, then this rule means that each job will go to 

machine A first and then to B. 

Principal Assumptions 

i. No machine can process more than one operation at  a time. 

ii. Each operation ,once started ,must be performed till completion. 

iii. A job is an entity, i.e. even though the job represents a lot of individual parts, no lot 

may be processed by more than one machine at a time. 

iv. Each operation must be completed before any other operation, which it must precede, 

can begin. 

v. Time intervals         for processing are independent of the order in which operations 

are performed. 

vi. There is only one of each type of machine. 

vii. A job is processed as soon as possible subject to ordering requirements. 

viii. All jobs are known and            are ready to start processing before the period under 

consideration begins. 

ix. The time required to transfer jobs between machines is negligible. 
 

 

 

 Processingnjobsand2Machines 

 Processingnjobsand3Machines 

 Processing n jobs and m Machines 

 PROCESSING N JOBS THROUGH TWO MACHINES: 

The problem can be described as: (i) only two machines A and B are involved, (ii) each 

job is is processed in the order AB, and (iii) the exactor expected processing 

timesA),Az,A3,...,An;B),B2,B3,..., Bn are known 

The problem is to sequence (order) the jobs so as to minimize the total elapsed time T. 



 

The solution procedure adopted by Johnson (1954) is given below. 

 

 

Solution Procedure 

Step 1. Select, the least processing time occurring in the list A I, Az, A3,..., Ar and Bt, B2, 

B3' ..., BII’ If there is a tie, either of the smallest processing time should be selected. 

Step 2. If the least processing time is Ar select r th job first. If it is Bs, do the s th job last 

(as the given order is AB). 

Step 3. There are now n - I jobs left to be ordered. Again repeat steps I and n for the 

reduced set of processing times obtained by deleting processing times for both the 

machines corresponding to the job already assigned. . 

Continue till all jobs have been ordered. The resulting ordering will minimize the 

elapsed time T. 

Proof. Since passing is not allowed, all n jobs must be processed on machine A without 

any idle time for it. On the other hand, machine B is subject to its remaining idle time at 

various stages. Let Yj be the time for which m machine B remains idle after completing 

(i - l)th job and before starting processing the ith job (i=1,2, ..., n). Hence, the total 

elapsed time T is given by    

 
Determine a sequence for five jobs that will minimize the elapsed timeT. Calculate 



 

thetotal idle time for the machines in this period. 

Solution. Apply steps I and II of solution procedure. It is seen that the smallest 

processing time is one hour for job 2 on the machine A. So list the job 2 at first place as 

shown above. 

 
Further, it is also possible to calculate the minimum elapsed time corresponding to the 

optimal sequencing, using the individual processing time given in the statement of the 

problem. The details are given in Table 

Thus, the minimum time, i.e. the time for starting of job 2 to completion of the last job 

1, is 30 hrs only. During this time, the machine A remains idle for 2 hrs (from 28 to 30 

hrs) and the machine B remains idle for 3 hrs only (from 0-1,22-23, and 27-28 hrs). The 

total elapsed time can also be calculated by using Gantt chart as follows: 

Now finally we enumerate all these programs one by one using Gantt Chart as shown below: 

‘From these charts it is clear that optimum program is 6th and the minimum elapsed 

time is 18 hours. From the Fig it can be seen that the total elapsed time is 30 hrs, and 

the idle time of the machine B is 3 hrs. In this problem, it is observed that job may be 

held in inventory before going to the machine. For example, 4th job will be free on 

machine A after 4th hour and will start on machine B after 7th hr. Therefore, it will be 

kept in inventory for 3 hrs. Here it is assumed that the storage space is available and the 



 

cost of holding the inventory for each job is either same or negligible. For short 

duration process problems, it is negligible. Second general assumption is that the order 

of completion of jobs has no significance, i.e. no job claims the priority. 

Processing n Jobs Through Three Machines 

The problem can be described as: (i) Only three machines A, B and C are involved, (ii) 

each job is processed in the prescribed order ABC, (iii) transfer of jobs is not permitted, 

i.e. adhere strictly the order over each machine, and (iv) exact or expected processing 

times are given in  

Optimal Solution. So far no general procedure is available for obtaining an 

optimal sequence in this case. 

However, the earlier method adopted by Johnson (1954) can be extended to cover 

the special cases where either one or both of the following conditions hold: 

 The minimum time on machine A the maximum time on machine B. 

 The minimum time on machine C the maximum time on machine B. 

The procedure explained here (without proof) is to replace the problem with an 

equivalent problem, involving n jobs and two fictitious machines denoted by G 

and H, and corresponding time Gj and Hj are defined by 

Here... stands for other machines, if any. Applying the rules to this example, it is 

observed by taking A as X, and D as Y (I rule), that delete the programs containing 

ad. Such a program is 16thonly. Again by n rule taking A as X and C as Y, all those 

programs are deleted which contain lie, i.e., the 5th program. Other rules are not 

applicable to our problem.  

Here... stands for other machines, if any. Applying the rules to this example, it is 

observed by taking A as X, and D as Y (I rule), that delete the programs containing ad. 

Such a program is 16thonly.AgainbynruletakingAasXandCasY, all those programs are 

deleted which contain lie, i.e., the 5th program. Other rules are not applicable to our 

problem. Thus we have only following five programs 

Further, it is also possible to calculate the minimum elapsed time corresponding to the 

optimal sequencing, using the individual processing time given in the statement of the 

problem. The details are given in Table 

 

Thus, the minimum time, i.e. the time for starting of job 2 to completion of the last job 1, 

is 30 hrs only. During this time, the machine A remains idle for 2 hrs (from 28 to 30 hrs) 

and the machine B remains idle for 3 hrs only (from 0-1,22-23, and 27-28 hrs).  


