
LECTURE NOTES

ON

OPERATING SYSTEMS

B.Tech IV Semester

Mr. N Bhaswanth

Assistant Professor

Ms. B Pravallika

Assistant Professor

INFORMATION TECHNOLOGY

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

DUNDIGAL, HYDERABAD - 500 043

UNIT – I

Operating System:

Introduction to Operating System

A program that acts as an intermediary between a user of a computer and the computer
hardware Operating system goals:

 Execute user programs and make solving user problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Computer System Structure :

Computer system can be divided into four components

 Hardware – provides basic computing resources CPU, memory, I/O devices

Operating system Controls and coordinates use of hardware among various applications and users

 Application programs – define the ways in which the system resources are used to solve the computing

problems of the users Word processors, compilers, web browsers, database systems, video games

 UsersPeople, machines, other computers

Four Components of a Computer System

Operating System Definition
 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and fair resource use

 OS is a control program

 Controls execution of programs to prevent errors and improper use of the computer

 No universally accepted definition

 Everything a vendor ships when you order an operating system‖ is good approximation

But varies wildly

 ―The one program running at all times on the computer‖ is the kernel. Everything else is either a

system program (ships with the operating system) or an application program

Computer Startup
 bootstrap program is loaded at power-up or reboot

 Typically stored in ROM or EPROM, generally known as firmware

 Initializes all aspects of system

 Loads operating system kernel and starts execution

Computer System Organization

 Computer-system operation

 One or more CPUs, device controllers connect through common bus providing access to shared memory

 Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation
 I/O devices and the CPU can execute concurrently

 Each device controller is in charge of a particular device type

 Each device controller has a local buffer

 CPU moves data from/to main memory to/from local buffers

 I/O is from the device to local buffer of controller

 Device controller informs CPU that it has finished its operation by causing An interrupt

Common Functions of Interrupts
 Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which

contains the addresses of all the service routines

 Interrupt architecture must save the address of the interrupted instruction

 Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interruptnA
trap is a software-generated interrupt caused either by an error or a user request

 An operating system is interrupt driven

Interrupt Handling
 The operating system preserves the state of the CPU by storing registers and the program counter

 Determines which type of interrupt has occurred:

 vectored interrupt system

 Separate segments of code determine what action should be taken for each type of interrupt

Interrupt Timeline

I/O Structure

 After I/O starts, control returns to user program only upon I/O completion

 Wait instruction idles the CPU until the next interrupt

 Wait loop (contention for memory access)

 At most one I/O request is outstanding at a time, no simultaneous I/O processing

 After I/O starts, control returns to user program without waiting for I/O completion

 System call – request to the operating system to allow user to wait for I/O completion

 Device-status table contains entry for each I/O device indicating its type, address, and state

 Operating system indexes into I/O device table to determine device status and to modify table entry to
include interrupt.

Direct Memory Access Structure

 Used for high-speed I/O devices able to transmit information at close to memory speeds

 Device controller transfers blocks of data from buffer storage directly to main memory without
CPU intervention

 Only one interrupt is generated per block, rather than the one interrupt per byte.

Storage Structure

 Main memory – only large storage media that the CPU can access directly

 Secondary storage – extension of main memory that provides large nonvolatile storage capacity

 Magnetic disks – rigid metal or glass platters covered with magnetic recording material

 Disk surface is logically divided into tracks, which are subdivided into sectors

 The disk controller determines the logical interaction between the device and the computer

Storage Hierarchy

 Storage systems organized in hierarchy

 Speed

 Cost

 Volatility

Caching – copying information into faster storage system; main memory can be viewed as a
last cache for secondary storage

Caching

 Important principle, performed at many levels in a computer (in hardware, operating system, software)

 Information in use copied from slower to faster storage temporarily

 Faster storage (cache) checked first to determine if information is there

 If it is, information used directly from the cache (fast)

 If not, data copied to cache and used there

 Cache smaller than storage being cached

 Cache management important design problem

 Cache size and replacement policy

Computer-System Architecture

 Most systems use a single general-purpose processor (PDAs through mainframes)

 Most systems have special-purpose processors as well

 Multiprocessors systems growing in use and importance

 Also known as parallel systems, tightly-coupled systems

Advantages include

1.Increased throughput
2.Economy of scale

3. Increased reliability – graceful degradation or fault
tolerance Two types

1. Asymmetric Multiprocessing

2.Symmetric Multiprocessing

How a Modern Computer Works Symmetric Multiprocessing Architecture

A Dual-Core Design

Clustered Systems

 Like multiprocessor systems, but multiple systems working together
Usually sharing storage via a storage-area network (SAN)
 Provides a high-availability service which survives failures

Asymmetric clustering has one machine in hot-standby mode

Symmetric clustering has multiple nodes running applications, monitoring each other Some
clusters are for high-performance computing

(HPC) Applications must be written to use parallelization

 Multiprogramming needed for efficiency

 Single user cannot keep CPU and I/O devices busy at all times

 Multiprogramming organizes jobs (code and data) so CPU always has one to Execute

 A subset of total jobs in system is kept in memory

 One job selected and run via job scheduling

 When it has to wait (for I/O for example), OS switches to another job

 Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that
users can interact with each job while it is running, creating interactive computing

 Response time should be < 1 second

 Each user has at least one program executing in memory [process

 If several jobs ready to run at the same time [CPU scheduling

 If processes don’t fit in memory, swapping moves them in and out to run

Virtual memory allows execution of processes not completely in memory.

Memory Layout for Multiprogrammed System

Operating-System Operations

 Interrupt driven by hardware

 Software error or request creates exception or trap

 Division by zero, request for operating system service

 Other process problems include infinite loop, processes modifying each Other or the operating system

 Dual-mode operation allows OS to protect itself and other system components

 User mode and kernel mode

 Mode bit provided by hardware

 Provides ability to distinguish when system is running user code or kernel code

 Some instructions designated as privileged, only executable in kernel mode

 System call changes mode to kernel, return from call resets it to user

Transition from User to Kernel Mode

 Timer to prevent infinite loop / process hogging resources

 Set interrupt after specific period

 Operating system decrements counter

 When counter zero generate an interrupt

 Set up before scheduling process to regain control or terminate program that exceeds allotted time

OPERATING SYSTEM FUNCTIONS

Process Management

 A process is a program in execution. It is a unit of work within the system. Program is a passive entity,

process is an active entity.

 Process needs resources to accomplish its task

 CPU, memory, I/O, files

 Initialization data

 Process termination requires reclaim of any reusable resources

 Single-threaded process has one program counter specifying location of next instruction to execute

 Process executes instructions sequentially, one at a time, until completion
Multi-threaded process has one program counter per thread
 Typically system has many processes, some user, some operating system running concurrently on one

or more CPUs

 Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

 The operating system is responsible for the following activities in connection with process

management:

 Creating and deleting both user and system processes

 Suspending and resuming processes

 Providing mechanisms for process synchronization

 Providing mechanisms for process communication

 Providing mechanisms for deadlock handling

Memory Management

 All data in memory before and after processing

 All instructions in memory in order to execute

 Memory management determines what is in memory when

 Optimizing CPU utilization and computer response to users

 Memory management activities

 Keeping track of which parts of memory are currently being used and by whom

 Deciding which processes (or parts thereof) and data to move into and out of memory

 Allocating and deallocating memory space as needed

 OS provides uniform, logical view of information storage

 Abstracts physical properties to logical storage unit - file

 Each medium is controlled by device (i.e., disk drive, tape drive)

 Varying properties include access speed, capacity, data-transfer rate, access method (sequential

or random)

 File-System management

 Files usually organized into directories

 Access control on most systems to determine who can access what

 OS activities include

 Creating and deleting files and directories

 Primitives to manipulate files and dirs

 Mapping files onto secondary storage

 Backup files onto stable (non-volatile) storage media

Mass-Storage Management

 Usually disks used to store data that does not fit in main memory or data that must be kept for a
―long‖ period of time

 Proper management is of central importance

 Entire speed of computer operation hinges on disk subsystem and its algorithms

 Free-space management

 Storage allocation

 Disk scheduling

 Some storage need not be fast

 Tertiary storage includes optical storage, magnetic tape

 Still must be managed

 Varies between WORM (write-once, read-many-times) and RW (read-write)

DISTRIBUTED SYSTEMS

Computing Environments

Traditional computer

 Blurring over time

Office environment
 PCs connected to a network, terminals attached to mainframe or minicomputers providing batch
 and timesharing
 Now portals allowing networked and remote systems access to same resources

 Home networks
 Used to be single system, then

modems Now firewalled, networked
Client-Server Computing

 Dumb terminals supplanted by smart PCs

 Many systems now servers, responding to requests generated by clients

Compute-server provides an interface to client to request services (i.e. database)

File-server provides interface for clients to store and retrieve files

Peer-to-Peer Computing

 Another model of distributed system

 P2P does not distinguish clients and servers

 Instead all nodes are considered peers

 May each act as client, server or both

 Node must join P2P network

Registers its service with central lookup service on network, or

Broadcast request for service and respond to requests for service via discovery protocol

 Examples include Napster and Gnutella

Web-Based Computing

 Web has become ubiquitous

 PCs most prevalent devices

 More devices becoming networked to allow web access
 New category of devices to manage web traffic among similar servers: load balancers

 Use of operating systems like Windows 95, client-side, have evolved into Linux and Windows XP,

which can be clients and servers

Open-Source Operating Systems

 Operating systems made available in source-code format rather than just binary closed-source

 Counter to the copy protection and Digital Rights Management (DRM) movement

 Started by Free Software Foundation (FSF), which has ―copyleft‖ GNU Public License (GPL)

 Examples include GNU/Linux, BSD UNIX (including core of Mac OS X), and Sun Solaris

Operating System Services

 One set of operating-system services provides functions that are helpful to the user:

 User interface - Almost all operating systems have a user interface (UI)

 Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch

 Program execution - The system must be able to load a program into memory and to run that

program, end execution, either normally or abnormally (indicating error)

 I/O operations - A running program may require I/O, which may involve a file or an I/O device

 File-system manipulation - The file system is of particular interest. Obviously, programs need to
read and write files and directories, create and delete them, search them, list file Information,
permission management.

A View of Operating System Services

Operating System Services

 One set of operating-system services provides functions that are helpful to the user (Cont):l
Communications – Processes may exchange information, on the same computer or between computers

over a network

Communications may be via shared memory or through message passing (packets moved by the OS)

 Error detection – OS needs to be constantly aware of possible errors

May occur in the CPU and memory hardware, in I/O devices, in user program

For each type of error, OS should take the appropriate action to ensure correct and consistent computing

Debugging facilities can greatly enhance the user’s and programmer’s abilities to efficiently use
 the system

 Another set of OS functions exists for ensuring the efficient operation of the system itself via
 resource sharing

 Resource allocation - When multiple users or multiple jobs running concurrently, resources must be

allocated to each of them

 Many types of resources - Some (such as CPU cycles, main memory, and file storage) may have special
allocation code, others (such as I/O devices) may have general request and release code

 Accounting - To keep track of which users use how much and what kinds of computer resources

Protection and security - The owners of information stored in a multiuser or networked

computer system may want to control use of that information, concurrent processes should not
interfere with each other

 Protection involves ensuring that all access to system resources is controlled

 Security of the system from outsiders requires user authentication, extends to defending external
I/O devices from invalid access attempts

If a system is to be protected and secure, precautions must be instituted throughout it. A chain is only as
strong as its weakest link.

User Operating System Interface - CLI
 Command Line Interface (CLI) or command interpreter allows direct command entry

Sometimes implemented in kernel, sometimes by systems program Sometimes
multiple flavors implemented – shells

Primarily fetches a command from user and executes it

 Sometimes commands built-in, sometimes just names of programs

 If the latter, adding new features doesn’t require shell modification

User Operating System Interface - GUI

 User-friendly desktop metaphor interface

 Usually mouse, keyboard, and monitor

 Icons represent files, programs, actions, etc

Various mouse buttons over objects in the interface cause various actions (provide information,
options, execute function, open directory (known as a folder)

 Invented at Xerox PARC

 Many systems now include both CLI and GUI interfaces

 Microsoft Windows is GUI with CLI ―command‖ shell

 Apple Mac OS X as ―Aqua‖ GUI interface with UNIX kernel underneath and shells

 available Solaris is CLI with optional GUI interfaces (Java Desktop, KDE)

Bourne Shell Command Interpreter

The Mac OS X GUI

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

Mostly accessed by programs via a high-level Application Program Interface (API) rather than direct
system call usen Three most common APIs are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for

 the Java virtual machine (JVM)
Why use APIs rather than system calls?(Note that the system-call names used throughout this text are
generic)

Example of System Calls

Standard C Library Example

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to these

 Numbers

 The system call interface invokes intended system call in OS kernel and returns status of the system call

and any return values

 The caller need know nothing about how the system call is implemented

 Just needs to obey API and understand what OS will do as a result call

 Most details of OS interface hidden from programmer by API

Managed by run-time support library (set of functions built into libraries included with compiler)

API – System Call – OS Relationship

MS-DOS execution

System Call Parameter Passing

 Often, more information is required than simply identity of desired system call

 Exact type and amount of information vary according to OS and call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

In some cases, may be more parameters than registers

Parameters stored in a block, or table, in memory, and address of block passed as a parameter in a

register . This approach taken by Linux and Solaris

Parameters placed, or pushed, onto the stack by the program and popped off the stack by the
 operating system

 Block and stack methods do not limit the number or length of parameters being passed

Parameter Passing via Table

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

 Protection

Examples of Windows and Unix System Calls

(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

System Programs
System programs provide a convenient environment for program development and execution. The can
be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

Application programs

Most users’ view of the operation system is defined by system programs, not the actual system calls

 Provide a convenient environment for program development and execution

 Some of them are simply user interfaces to system calls; others are considerably more complex

 File management - Create, delete, copy, rename, print, dump, list, and generally manipulate files

and directories

 Status information

 Some ask the system for info - date, time, amount of available memory, disk space, number of users

 Others provide detailed performance, logging, and debugging information

 Typically, these programs format and print the output to the terminal or other output devices

 Some systems implement a registry - used to store and retrieve configuration information

 Text editors to create and modify files

 Special commands to search contents of files or perform transformations of the text

 Programming-language support - Compilers, assemblers, debuggers and interpreters

sometimes provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage editors, and overlay-

loaders, debugging systems for higher-level and machine language

 Communications - Provide the mechanism for creating virtual connections among processes, users,

and computer systems

 Allow users to send messages to one another’s screens, browse web pages, send electronic-
mail messages, log in remotely, transfer files from one machine to another

Operating System Design and Implementation

 Design and Implementation of OS not ―solvable‖, but some approaches have proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy to learn, reliable, safe, and fast

 System goals – operating system should be easy to design, implement, and maintain, as well as
 flexible, reliable, error-free, and efficient

 Important principle to separate

 Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will be done

 The separation of policy from mechanism is a very important principle, it allows maximum flexibility
if policy decisions are to be changed later

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of Functionality are not well separated

MS-DOS Layer Structure

Layered Approach

 The operating system is divided into a number of layers (levels), each built on top of lower layers. The

bottom layer (layer 0), is the hardware; the highest (layer N) is the user interface.

 With modularity, layers are selected such that each uses functions (operations) and services of
only lower-level layer

Traditional UNIX System Structure

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating system had limited

structuring. The UNIX OS consists of two separable parts

 Systems programs

 The kernel

Consists of everything below the system-call interface and above the physical hardware

Provides the file system, CPU scheduling, memory management, and other operating-system
functions; a large number of functions for one level.

Layered Operating System

Micro kernel System Structure

 Moves as much from the kernel into ―user‖ space

 Communication takes place between user modules using message passing

 Benefits:

Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space communication

Mac OS X Structure

Modules
 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible.

Solaris Modular Approach

Virtual Machines

 A virtual machine takes the layered approach to its logical conclusion. It treats hardware and the
operating system kernel as though they were all hardware

 A virtual machine provides an interface identical to the underlying bare hardware

 The operating system host creates the illusion that a process has its own processor and (virtual memory)

 Each guest provided with a (virtual) copy of underlying computer

 First appeared commercially in IBM mainframes in 1972

 Fundamentally, multiple execution environments (different operating systems) can share the
same hardware

 Protect from each other

 Some sharing of file can be permitted, controlled

 Commutate with each other, other physical systems via networking

 Useful for development, testing

 Consolidation of many low-resource use systems onto fewer busier systems

 ―Open Virtual Machine Format‖, standard format of virtual machines, allows a VM to run within
many different virtual machine (host) platforms

Para-virtualization

 Presents guest with system similar but not identical to hardware

 Guest must be modified to run on paravirtualized hardwareF

 Guest can be an OS, or in the case of Solaris 10 applications running in containers

Solaris 10 with Two Container

VMware Architecture

The Java Virtual Machine

Operating-System Debugging

 Debugging is finding and fixing errors, or bugs

OSes generate log files containing error information

 Failure of an application can generate core dump file capturing memory of the process

 Operating system failure can generate crash dump file containing kernel memory

 Beyond crashes, performance tuning can optimize system performance

Kernighan’s Law: ―Debugging is twice as hard as writing the code in the rst place. Therefore, if
you write the code as cleverly as possible, you are, by definition, not smart enough to debug it.‖

 DTrace tool in Solaris, FreeBSD, Mac OS X allows live instrumentation on production systems Probes

fire when code is executed, capturing state data and sending it to consumers of those probes

Solaris 10 dtrace Following System Call

Operating System Generation

 Operating systems are designed to run on any of a class of machines; the system must be configured

for each specific computer site

 SYSGEN program obtains information concerning the specific configuration of the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the kernel, load it into memory, and
start its execution

System Boot

 Operating system must be made available to hardware so hardware can start it

 Small piece of code – bootstrap loader, locates the kernel, loads it into memory, and starts it

 Sometimes two-step process where boot block at fixed location loads bootstrap loader

 When power initialized on system, execution starts at a fixed memory
location Firmware used to hold initial boot code

UNIT – II

Process Management

Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

Process – a program in execution; process execution must progress in sequential fashion
A process includes:

 program counter

 stack

 data section

Process in Memory

Process State

As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

CPU Switch From Process to Process

Process Scheduling Queues

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and
allocates CPU

Addition of Medium Term Scheduling

 Short-term scheduler is invoked very frequently (milliseconds) Þ (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) Þ (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU bursts

 CPU-bound process – spends more time doing computations; few very long CPU bursts

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load

the saved state for the new process via a context switch

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching

 Time dependent on hardware support

Process Creation

 Parent process create children processes, which, in turn create other processes, forming a tree
of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

 Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new program

Process Creation

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

Some operating system do not allow child to continue if its parent

terminates All children terminated - cascading termination

Interprocess Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes,including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process
Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

 Paradigm for cooperating processes, producer process produces information that is consumed by

a consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

Shared data

#define BUFFER_SIZE 10
typedef struct {

. . .

} item;

item
buffer[BUFFER_SIZE]; int
in = 0;

int out = 0;

Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer
while (true) {

/* Produce an item */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers
*/ buffer[in] = item;

in = (in + 1) % BUFFER SIZE;
}

Bounded Buffer – Consumer
while (true) {

while (in == out)

; // do nothing -- nothing to consume
// remove an item from the buffer

item = buffer[out];

out = (out + 1) % BUFFER SIZE;

return item;
}

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

 logical (e.g., logical properties)

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox A
link may be associated with many processes

 Each pair of processes may share several communication links

Link may be unidirectional or bi-directional Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A
Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received

 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue

 Non-blocking receive has the receiver receive a valid message or null

Buffering

Queue of messages attached to the link; implemented in one of three ways

1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

2. Bounded capacity – finite length of n messages
Sender must wait if link full

3. Unbounded capacity – infinite length
Sender never waits

 POSIX Shared Memory

 Process first creates shared memory segment

 segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it

 shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory

 printf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space

 shmdt(shared memory);

 Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

 msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

 port_allocate()

 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication channels

 Communication works as follows:

The client opens a handle to the subsystem’s connection port object

The client sends a connection request

The server creates two private communication ports and returns the handle to one of them to the client
The client and server use the corresponding port handle to send messages or callbacks and to listen for
replies

Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Remote Method Invocation (Java)

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and peforms

the procedure on the server

Execution of RPC

Remote Method Invocation

 Remote Method Invocation (RMI) is a Java mechanism similar to RPCs

 RMI allows a Java program on one machine to invoke a method on a remote object

Marshalling Parameters

Threads

 To introduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of

multithreaded computer systems

 To discuss the APIs for the Pthreads, Win32, and Java thread libraries

 To examine issues related to multithreaded programming

Single and Multithreaded Processes

Benefits

 Responsiveness

 Resource Sharing

 Economy

 Scalability

Multicore Programming

Multicore systems putting pressure on programmers, challenges include

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Thread management done by user-level threads librarynThree

 POSIX Pthreadsl Win32 threads

 Java threads

 Windows XP/2000

 Solaris

primary thread libraries:

 Linux

 Tru64 UNIX

 Mac OS X

Multithreading Models

 Many-to-One

 One-to-One

 Many-to-Many

Many -to-One

Many user-level threads mapped to single kernel thread

Examples:

 Solaris Green Threads

 GNU Portable Threads

One-to-One

Each user-level thread maps to kernel thread
Examples

Windows NT/XP/2000

Linux

Solaris 9 and later

Many-to-Many Model

 Allows many user level threads to be mapped to many kernel threads

 Allows the operating system to create a sufficient number of kernel threads

 Solaris prior to version 9

Windows NT/2000 with the ThreadFiber package

Two-level Model

Similar to M:M, except that it allows a user thread to be bound to kernel thread
Examples

 IRIX

 HP-UX

 Tru64 UNIX

 Solaris 8 and earlier

Thread Libraries

 Thread library provides programmer with API for creating and managing threads

 Two primary ways of implementing

 Library entirely in user space

 Semantics of fork() and exec() system calls

 Thread cancellation of target thread

 Asynchronous or deferred

 Signal handling

 Thread pools

 Thread-specific data

 Scheduler activations

Thread Cancellation

 Terminating a thread before it has finished

 Two general approaches:

 Asynchronous cancellation terminates the target thread immediately

 Deferred cancellation allows the target thread to periodically check if it should be cancelled

CPU Scheduling

 To introduce CPU scheduling, which is the basis for multiprogrammed operating systems
To describe various CPU-scheduling algorithms
 To discuss evaluation criteria for selecting a CPU-scheduling algorithm for a particular system

 Maximum CPU utilization obtained with multiprogramming

 CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait

 CPU burst distribution

Histogram of CPU-burst Times

Alternating Sequence of CPU And I/O Bursts

CPU Scheduler
Selects from among the processes in memory that are ready to execute, and allocates the CPU to one
of them

CPU scheduling decisions may take place when a process:

1. Switches from running to waiting state

2. Switches from running to ready state

3. Switches from waiting to ready

4. Terminates

Scheduling under 1 and 4 is non preemptive

All other scheduling is preemptive

Dispatcher

 Dispatcher module gives control of the CPU to the process selected by the short-term scheduler;
this involves:

 switching context

 switching to user mode

 jumping to the proper location in the user program to restart that program

 Dispatch latency – time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

 CPU utilization – keep the CPU as busy as possible

 Throughput – # of processes that complete their execution per time unit

 Turnaround time – amount of time to execute a particular process

 Waiting time – amount of time a process has been waiting in the ready queue

 Response time – amount of time it takes from when a request was submitted until the first response
is produced, not output (for time-sharing environment)

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

First-Come, First-Served (FCFS) Scheduling

Process Burst Time

P1 24
P2 3
P3 3

Suppose that the processes arrive in the order: P1 , P2 , P3

The Gantt Chart for the schedule is:

P1 P2 P3

0
Waiting time for P1 = 0; P2 = 24; P3 = 27

Average waiting time: (0 + 24 + 27)/3 = 17

Suppose that the processes arrive in the order

24 27 30

P2 , P3 , P1

The Gantt chart for the schedule is:nnnn Waiting time for P1 = 6; P2 = 0; P3 = 3nAverage waiting time: (6

+ 0 + 3)/3 = 3

Much better than previous case

Convoy effect short process behind long process

P2 P3 P1

0 3 6 30
Shortest-Job-First (SJF) Scheduling

 Associate with each process the length of its next CPU burst. Use these lengths to schedule the process

with the shortest time

 SJF is optimal – gives minimum average waiting time for a given set of processes

The difficulty is knowing

Process Arrival Time Burst Time

P1 0.0 0.0

P2 2.0 2.0
P3 4.0 4.0

P4 5.0 5.0

Process Arrival Time Burst Time

P1 0.0 6

P2 2.0 8

P3 4.0 7
P4 5.0 3

SJF scheduling chart

average waiting time = (3 + 16 + 9 + 0) / 4 = 7the length of the next CPU request

0 3 9 16 24
th

1. tn actual length of n CPU burst

2. n1 predicted value for the next CPU burst

3. , 0 1

4. Define :
 Determining Length of Next CPU Burst

 Can only estimate the length

 Can be done by using the length of previous CPU bursts, using exponential averaging

Prediction of the Length of the Next CPU Burst

Examples of Exponential
Averaging a =0

tn+1 = tn

Recent history does not count
a =1

P
4 P1

P3 P2

tn+1 = a tn

Only the actual last CPU burst counts

If we expand the formula, we get:

tn+1 = a tn+(1 - a)a tn -1 + …

+(1 - a)j a tn -j + …

+(1 - a)n +1 t0

Since both a and (1 - a) are less than or equal to 1, each successive term has less weight than its predecessor

Priority Scheduling

 A priority number (integer) is associated with each process

 The CPU is allocated to the process with the highest priority (smallest integer º highest priority)

 Preemptive

 nonpreemptive

 SJF is a priority scheduling where priority is the predicted next CPU burst time

 Problem º Starvation – low priority processes may never execute

 Solution º Aging – as time progresses increase the priority of the process

Round Robin (RR)

 Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this

time has elapsed, the process is preempted and added to the end of the ready queue.

 If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the
CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units.

 Performance

 q large Þ FIFO

 q small Þ q must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

The Gantt chart is:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

Multilevel Queue

 Ready queue is partitioned into separate queues:

foreground (interactive)
background (batch)

 Each queue has its own scheduling algorithm

 foreground – RR

 background – FCFS

 Scheduling must be done between the queues

 Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of

starvation.

 Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes;
i.e., 80% to foreground in RR

20% to background in FCFS

Turnaround Time Varies With The Time Quantum

Multilevel Queue Scheduling

Multilevel Feedback Queue

 A process can move between the various queues; aging can be implemented this way

 Multilevel-feedback-queue scheduler defined by the following parameters:

 number of queues

 scheduling algorithms for each queue

 method used to determine when to upgrade a process

 method used to determine when to demote a process

method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

 Q0 – RR with time quantum 8 milliseconds

 Q1 – RR time quantum 16 milliseconds

 Q2 – FCFS

 Scheduling

 A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it

does not finish in 8 milliseconds, job is moved to queue Q1.

 At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it

is preempted and moved to queue Q2.

Multilevel Feedback Queues

Thread Scheduling

 Distinction between user-level and kernel-level threads

 Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP

 Known as process-contention scope (PCS) since scheduling competition is within the process

 Kernel thread scheduled onto available CPU is system-contention scope (SCS) – competition
among all threads in system

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available

 Homogeneous processors within a multiprocessor

 Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating

the need for data sharing

 Symmetric multiprocessing (SMP) – each processor is self-scheduling, all processes in common ready

queue, or each has its own private queue of ready processes

 Processor affinity – process has affinity for processor on which it is currently running

 soft affinity

 hard affinity

NUMA and CPU Scheduling

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

 Faster and consume less power

 Multiple threads per core also growing

 Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Operating System Examples

 Solaris scheduling

 Windows XP scheduling

 Linux scheduling

Linux Scheduling

 Constant order O(1) scheduling time

 Two priority ranges: time-sharing and real-time

 Real-time range from 0 to 99 and nice value from 100 to 140

Priorities and Time-slice length

List of Tasks Indexed According to Priorities

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and defines the performance
of each algorithm for that workload

 Queueing models

 Implementation

Evaluation of CPU schedulers by Simulation

Process Synchronization

 To introduce the critical-section problem, whose solutions can be used to ensure the consistency of

shared data

 To present both software and hardware solutions of the critical-section problem

 To introduce the concept of an atomic transaction and describe mechanisms to ensure atomicity

 Concurrent access to shared data may result in data inconsistency

 Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes

 Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers.
We can do so by having an integer count that keeps track of the number of full buffers. Initially, count is
set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the

consumer after it consumes a buffer

Producer

while (true) {

/* produce an item and put in nextProduced */

while (count == BUFFER_SIZE)

; // do nothing

buffer [in] = nextProduced;

in = (in + 1) %

BUFFER_SIZE; count++;

}

Consumer

while (true) {

while (count == 0)

; // do nothing

nextConsumed = buffer[out];

out = (out + 1) %

BUFFER_SIZE; count--;
/* consume the item in nextConsumed

}

Race Condition

count++ could be implemented as

register1 = count

register1 = register1 + 1
count = register1

count-- could be implemented as

register2 = count

register2 = register2 - 1

count = register2

Consider this execution interleaving with ―count = 5‖ initially:

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}

Solution to Critical-Section Problem

1. Mutual Exclusion - If process Pi is executing in its

critical section, then no other processes can be

executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist some processes that wish to
enter their critical section, then the selection of the processes that will enter the critical section next
cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter

their critical sections after a process has made a request to enter its critical section and before that
request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

Peterson’s Solution

 Two process solution

 Assume that the LOAD and STORE instructions are atomic; that is, cannot be interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the critical section.

 The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

Algorithm for Process Pi

do {

flag[i] =
TRUE; turn = j;

while (flag[j] && turn ==
j); critical section

flag[i] = FALSE;
remainder section

} while (TRUE);

Synchronization Hardware

 Many systems provide hardware support for critical section code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions Atomic = non-interruptable

 Either test memory word and set value Or swap contents of two memory words

Solution to Critical-section Problem Using
Locks do {

acquire lock

critical section

release lock

remainder section

} while (TRUE);

TestAndSet Instruction

Definition:

boolean TestAndSet (boolean *target)

{

boolean rv =
*target; *target =
TRUE; return rv:

}

Solution using TestAndSet

Shared boolean variable lock., initialized to
false. Solution:

do {

while (TestAndSet (&lock))
; // do nothing

// critical

section lock = FALSE;

// remainder section

} while (TRUE);

Swap Instruction

Definition:

void Swap (boolean *a, boolean *b)

{

boolean temp =

*a; *a = *b;

*b = temp:

}

Solution using Swap
Shared Boolean variable lock initialized to FALSE; Each process has a
local Boolean variable key

Solution:

do {

key = TRUE;

while (key == TRUE)

Swap (&lock, &key);

// critical section

lock = FALSE;

// remainder section

} while (TRUE);

Bounded-waiting Mutual Exclusion with
TestandSet() do {

waiting[i] = TRUE;

key = TRUE;

while (waiting[i] && key)

key = TestAndSet(&lock);

waiting[i] = FALSE;

// critical section

j = (i + 1) % n;

while ((j != i) && !waiting[j])
j = (j + 1) % n;

if (j == i)

lock = FALSE;
else

waiting[j] = FALSE;

// remainder

section } while (TRUE);

Semaphore

 Synchronization tool that does not require busy waiting nSemaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

wait (S) {

while S <= 0
; // no-op

S--;

}

signal
(S) { S++;

}

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between

0 and 1; can be simpler to implement

 Also known as mutex locksnCan implement a counting semaphore S as a binary semaphore

 Provides mutual exclusionSemaphore mutex; // initialized to do {

wait (mutex);

// Critical Section
signal (mutex);

} while (TRUE);

// remainder section

Semaphore Implementation

 Must guarantee that no two processes can execute wait () and signal () on the same semaphore at

the same time

 Thus, implementation becomes the critical section problem where the wait and signal code are placed
in the crtical section.

 Could now have busy waiting in critical section
implementation But implementation code is short
Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical sections and therefore this is not a
good solution.

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue. Each entry in a waiting queue has two

data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue and place it in the ready queue.

Implementation of wait:

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process to S-

>list; block();
}

}

Implementation of signal:

signal(semaphore *S) {

S->value++;

if (S->value <= 0) {

remove a process P from S-
>list; wakeup(P);

}

}

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be caused by only

one of the waiting processes

 Let S and Q be two semaphores initialized to 1

P1 P0

wait (Q); wait (S);

wait (S); wait (Q);
 .
 .
 .

signal (Q); signal (S);
signal (S); signal (Q);

Starvation – indefinite blocking. A process may never be removed from the semaphore queue in which it
is suspended

 Priority Inversion - Scheduling problem when lower-priority process holds a lock needed by higher-
priority process

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem

 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

 The structure of the producer process

do { // produce an item in nextp wait (empty);

wait (mutex);

// add the item to the

buffer signal (mutex);
signal (full);

} while (TRUE);

The structure of the consumer process

do { wait (full);

wait (mutex);

// remove an item from buffer to

nextc signal (mutex);

signal (empty);

// consume the item in
nextc } while (TRUE);

Readers-Writers Problem

A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and writenProblem – allow multiple readers to read at the same time. Only one
single writer can access the shared data at the same time

 Shared Data

 Data set

 Semaphore mutex initialized to 1

 Semaphore wrt initialized to 1

 Integer readcount initialized to 0
The structure of a writer process

do { wait (wrt) ;

// writing is

performed signal (wrt) ;

} while (TRUE);

The structure of a reader

process do {

wait (mutex) ;

readcount ++ ;

if (readcount ==
1) wait (wrt) ;
signal (mutex)

// reading is

performed wait (mutex) ;
readcount - - ;

if (readcount ==
0) signal (wrt) ;

signal (mutex)

; } while (TRUE);

Dining-Philosophers Problem

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

 The structure of Philosopher i:

do {

wait (chopstick[i]);

wait (chopStick[(i + 1) % 5]);

// eat

signal (chopstick[i]);

signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

Problems with Semaphores

Incorrect use of semaphore
operations: l signal (mutex)

….

wait (mutex)

wait (mutex) …

wait (mutex)

Omitting of wait (mutex) or signal (mutex) (or both)

Monitors
A high-level abstraction that provides a convenient and effective mechanism for process synchronization
Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations
procedure P1 (…) { …. }

…

procedure Pn (…) {……}

Initialization code (….) { … }

…

}

}

Schematic view of a Monitor

Condition Variables

condition x, y;
Two operations on a condition variable:

x.wait () – a process that invokes the operation is

suspended.

x. signal () – resumes one of processes (if any)

that invoked x.wait ()

Monitor with Condition Variables

Solution to Dining Philosophers

monitor DP

{

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {

state[i] =
HUNGRY; test(i);

if (state[i] != EATING) self [i].wait;

}

void putdown (int i) {

state[i] = THINKING;

// test left and right
neighbors test((i + 4) % 5);

test((i + 1) % 5);

}

void test (int i) {

if ((state[(i + 4) % 5] != EATING)
&& (state[i] == HUNGRY) &&

(state[(i + 1) % 5] != EATING))

{ state[i] = EATING ;

self[i].signal () ;

}

}
initialization_code() {

for (int i = 0; i < 5; i++)

state[i] = THINKING;

}

}

Each philosopher I invokes the operations pickup()

and putdown() in the following sequence:

DiningPhilosophters.pickup (i);

EAT

DiningPhilosophers.putdown (i);

Monitor Implementation Using Semaphores

Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)

int next-count = 0;nEach procedure F will be replaced
by wait(mutex);

…

body of F;

…

if (next_count >

0) signal(next)

else

signal(mutex);nMutual exclusion within a monitor is ensured.

Monitor Implementation
For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x-count = 0;nThe operation x.wait can be implemented as:

x-count++;

if (next_count > 0)
signal(next);

else

signal(mutex);

wait(x_sem);

x-count--;

The operation x.signal can be implemented

as: if (x-count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

A Monitor to Allocate Single Resource

monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time)
{ if (busy)

x.wait(time);

busy = TRUE;

}

void release() {

busy = FALSE;

x.signal();

initialization code() {

}

}

busy = FALSE;

}

Synchronization Examples

 Solaris

 Windows XP

 Linux

 Pthreads

 Implements a variety of locks to support multitasking, multithreading (including real-time threads),

and multiprocessing

 Uses adaptive mutexes for efficiency when protecting data from short code segments

 Uses condition variables and readers-writers locks when longer sections of code need access to data

 Uses turnstiles to order the list of threads waiting to acquire either an adaptive mutex or reader-writer
lock

Windows XP Synchronization

 Uses interrupt masks to protect access to global resources on uniprocessor systems

 Uses spinlocks on multiprocessor systems

 Also provides dispatcher objects which may act as either mutexes and semaphores

 Dispatcher objects may also provide events

 An event acts much like a condition variable

 Linux:lPrior to kernel Version 2.6, disables interrupts to implement short critical sections

 Version 2.6 and later, fully preemptive

 Linux provides:

 semaphores

 spin locks

Pthreads Synchronization

 Pthreads API is OS-independent

 It provides:

 mutex locks

 condition variablesnNon-portable extensions include:

 read-write locks

 spin locks

Atomic Transactions

 System Model

 Log-based Recovery

 Checkpoints

 Concurrent Atomic Transactions

System Model

 Assures that operations happen as a single logical unit of work, in its entirety, or not at all

 Related to field of database systems

 Challenge is assuring atomicity despite computer system failures

 Transaction - collection of instructions or operations that performs single logical function

 Here we are concerned with changes to stable storage – disk

 Transaction is series of read and write operations

 Terminated by commit (transaction successful) or abort (transaction failed) operation Aborted
transaction must be rolled back to undo any changes it performed

 Volatile storage – information stored here does not survive system crashes

 Example: main memory, cache

 Nonvolatile storage – Information usually survives crashes

 Example: disk and tape

 Stable storage – Information never lost

 Not actually possible, so approximated via replication or RAID to devices with independent
failure modes

 Goal is to assure transaction atomicity where failures cause loss of information on volatile storage

Log-Based Recovery

 Record to stable storage information about all modifications by a transaction

 Most common is write-ahead logging

 Log on stable storage, each log record describes single transaction write operation,
 including Transaction name
 Data item name

Old value

New value

 <Ti starts> written to log when transaction Ti starts

 <Ti commits> written when Ti commits

 Log entry must reach stable storage before operation on data occurs

Log-Based Recovery Algorithm
Using the log, system can handle any volatile memory errors

 Undo(Ti) restores value of all data updated by Ti

 Redo(Ti) sets values of all data in transaction Ti to new values

 Undo(Ti) and redo(Ti) must be idempotent

 Multiple executions must have the same result as one execution

 If system fails, restore state of all updated data via log

 If log contains <Ti starts> without <Ti commits>, undo(Ti)

 If log contains <Ti starts> and <Ti commits>, redo(Ti)

Checkpoints
Log could become long, and recovery could take long

Checkpoints shorten log and recovery time.

Checkpoint scheme:

1. Output all log records currently in volatile storage to stable

storage 2.Output all modified data from volatile to stable storage

3.Output a log record <checkpoint> to the log on stable storage

Now recovery only includes Ti, such that Ti started executing before the most recent checkpoint,
and all transactions after Ti All other transactions already on stable storage

Concurrent Transactions

 Must be equivalent to serial execution – serializability

 Could perform all transactions in critical section

 Inefficient, too restrictive

 Concurrency-control algorithms provide serializability

Serializability

 Consider two data items A and B

 Consider Transactions T0 and T1

 Execute T0, T1 atomically

 Execution sequence called schedule

 Atomically executed transaction order called serial schedule

 For N transactions, there are N! valid serial schedules

Schedule 1: T0 then T1

 overlapped execute
Resulting execution not necessarily incorrect

 Consider schedule S, operations Oi, Oj
 Conflict if access same data item, with at least one write

If Oi, Oj consecutive and operations of different transactions & Oi and Oj don’t conflict

 Then S’ with swapped order Oj Oi equivalent to S

 If S can become S’ via swapping nonconflicting operations

 S is conflict serializable

Schedule 2: Concurrent Serializable Schedule

Locking Protocol

 Ensure serializability by associating lock with each data item

 Follow locking protocol for access control

Nonserial Schedule

 Nonserial schedule allows

Locks

 Shared – Ti has shared-mode lock (S) on item Q, Ti can read Q but not write Q

Exclusive – Ti has exclusive-mode lock (X) on Q, Ti can read and write Q

 Require every transaction on item Q acquire appropriate lock

 If lock already held, new request may have to wait

 Similar to readers-writers algorithm

Two-phase Locking Protocol

 Generally ensures conflict serializability

 Each transaction issues lock and unlock requests in two phases

 Growing – obtaining locks

 Shrinking – releasing locks

 Does not prevent deadlock

Timestamp-based Protocols

 Select order among transactions in advance – timestamp-ordering

 Transaction Ti associated with timestamp TS(Ti) before Ti starts

 TS(Ti) < TS(Tj) if Ti entered system before Tj

 TS can be generated from system clock or as logical counter incremented at each entry of transaction

 Timestamps determine serializability order

 If TS(Ti) < TS(Tj), system must ensure produced schedule equivalent to serial schedule where Ti

appears before Tj

Timestamp-based Protocol Implementation

 Data item Q gets two timestamps

 W-timestamp(Q) – largest timestamp of any transaction that executed write(Q) successfully

R-timestamp(Q) – largest timestamp of successful read(Q)

 Updated whenever read(Q) or write(Q) executed

 Timestamp-ordering protocol assures any conflicting read and write executed in timestamp order

Suppose Ti executes read(Q)

 If TS(Ti) < W-timestamp(Q), Ti needs to read value of Q that was already

overwritten read operation rejected and Ti rolled back

 If TS(Ti) ≥ W-timestamp(Q)

read executed, R-timestamp(Q) set to max(R-timestamp(Q), TS(Ti))

Timestamp-ordering Protocol

Supose Ti executes write(Q)

If TS(Ti) < R-timestamp(Q), value Q produced by Ti was needed previously and Ti assumed it

would never be produced

Write operation rejected, Ti rolled back

If TS(Ti) < W-tiimestamp(Q), Ti attempting to write obsolete value of Q

Write operation rejected and Ti rolled back

Otherwise, write executed

Any rolled back transaction Ti is assigned new timestamp and restarted

Algorithm ensures conflict serializability and freedom from deadlock

Schedule Possible Under Timestamp Protocol

UNIT – III

Memory Management

 To provide a detailed description of various ways of organizing memory hardware

 To discuss various memory-management techniques, including paging and segmentation

To provide a detailed description of the Intel Pentium, which supports both pure segmentation

and segmentation with paging

 Program must be brought (from disk) into memory and placed within a process for it to be run
 Main memory and registers are only storage CPU can access directly

 Register access in one CPU clock (or less)

 Main memory can take many cycles

 Cache sits between main memory and CPU registers

 Protection of memory required to ensure correct operation

Base and Limit Registers

A pair of base and limit registers define the logical address space

Binding of Instructions and Data to Memory

 Address binding of instructions and data to memory addresses can happen at three different stages

Compile time: If memory location known a priori, absolute code can be generated; must recompile
code if starting location changes

 Load time: Must generate relocatable code if memory location is not known at compile time

Execution time: Binding delayed until run time if the process can be moved during its execution from
one memory segment to another. Need hardware support for address maps (e.g., base and limit
registers)

Multistep Processing of a User Program

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is central to
proper memory management

 Logical address – generated by the CPU; also referred to as virtual address
Physical address – address seen by the memory unit

 Logical and physical addresses are the same in compile-time and load-time address-binding
schemes; logical (virtual) and physical addresses differ in execution-time address-binding scheme

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to every address generated by a

user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical addresses

Dynamic relocation using a relocation register

Dynamic Loading

 Routine is not loaded until it is called

 Better memory-space utilization; unused routine is never loaded

 Useful when large amounts of code are needed to handle infrequently occurring cases

 No special support from the operating system is required implemented through program design

Dynamic Linking

 Linking postponed until execution time

 Small piece of code, stub, used to locate the appropriate memory-resident library routine

 Stub replaces itself with the address of the routine, and executes the routine

 Operating system needed to check if routine is in processes’ memory address

 Dynamic linking is particularly useful for libraries

 System also known as shared libraries

Swapping

A process can be swapped temporarily out of memory to a backing store, and then brought back into
memory for continued execution Backing store – fast disk large enough to accommodate copies of all

memory images for all users; must provide direct access to these memory images Roll out, roll in –
swapping variant used for priority-based scheduling algorithms; lower-priority process is swapped out so
higher-priority process can be loaded and executed Major part of swap time is transfer time; total transfer

time is directly proportional to the amount of memory swapped Modified versions of swapping are found on
many systems (i.e., UNIX, Linux, and Windows)

System maintains a ready queue of ready-to-run processes which have memory images on disk

Schematic View of Swapping

Contiguous Allocation

 Main memory usually into two partitions:

 Resident operating system, usually held in low memory with interrupt vector

User processes then held in high memory Relocation registers used to protect user processes from
each other, and from changing operating-system code and data

 Base register contains value of smallest physical address

Limit register contains range of logical addresses – each logical address must be less than the

limit register

 MMU maps logical address dynamically

OS

process 5

process 8

process 2

OS

process 5

process 2

OS

process 5

process 9

process 2

OS

process 5

process 9

process 10

process 2

Hardware Support for Relocation and Limit Registers

 Multiple-partition allocation

 Hole – block of available memory; holes of various size are scattered throughout memory

 When a process arrives, it is allocated memory from a hole large enough to accommodate it

 Operating system maintains information about:

 a) allocated partitions b) free partitions (hole)

Dynamic Storage-Allocation Problem

 First-fit: Allocate the first hole that is big enough

 Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size

Produces the smallest leftover hole

 Worst-fit: Allocate the largest hole; must also search entire list

Produces the largest leftover hole

 First-fit and best-fit better than worst-fit in terms of speed and storage utilization
Fragmentation

 External Fragmentation – total memory space exists to satisfy a request, but it is not contiguous

 Internal Fragmentation – allocated memory may be slightly larger than requested memory; this size

difference is memory internal to a partition, but not being used

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in one large block

 Compaction is possible only if relocation is dynamic, and is done at execution time.

 I/O problem

Latch job in memory while it is involved in I/O

Do I/O only into OS buffers

Paging

 Logical address space of a process can be noncontiguous; process is allocated physical memory

whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes
and 8,192 bytes)

 Divide logical memory into blocks of same size called pages Keep track of all free frames

 To run a program of size n pages, need to find n free frames and load program

 Set up a page table to translate logical to physical addresses

 Internal fragmentation

Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p) – used as an index into a page table which contains base address of each page

in physical memory

 Page offset (d) – combined with base address to define the physical memory address that is sent to

the memory unit

 For given logical address space 2m and page size 2n

Paging Hardware

m - n n

Paging Model of Logical and Physical Memory

page number

p

page offset

d

Paging Example

32-byte memory and 4-byte pages

Free Frames

Implementation of Page Table

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table Page-

 table length register (PRLR) indicates size of the page table

In this scheme every data/instruction access requires two memory accesses. One for the page table and
one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-lookup hardware
cache called associative memory or translation look-aside buffers (TLBs)

 Some TLBs store address-space identifiers (ASIDs) in each TLB entry – uniquely identifies each
process to provide address-space protection for that process

Associative Memory

 Associative memory – parallel search

 Address translation (p, d)

 If p is in associative register, get frame # out

 Otherwise get frame # from page table in memory

Frame #

Paging Hardware With TLB

Effective Access Time

 Associative Lookup = e time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is found in the associative registers; ratio related

to number of associative registers

 Hit ratio = an Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 –

a) = 2 + e – a

Memory Protection

 Memory protection implemented by associating protection bit with each frame
Valid-invalid bit attached to each entry in the page table:
 ―valid‖ indicates that the associated page is in the process’ logical address space, and is thus a legal page

 ―invalid‖ indicates that the page is not in the process’ logical address space

 Valid (v) or Invalid (i) Bit In A Page Table

Page #

Shared Pages

Shared code

 One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical address space of all processes

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear anywhere in the logical address space

Shared Pages Example

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

Two-Level Page-Table Scheme

Two-Level Paging Example

 A logical address (on 32-bit machine with 1K page size) is divided into:

 a page number consisting of 22 bits

 a page offset consisting of 10 bits

 Since the page table is paged, the page number is further divided into:

 a 12-bit page number

 a 10-bit page offset

 Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement within the page of the

outer page table

p

Address-Translation Scheme

age number page offset

pi p2 d

12

10

10

Three-level Paging Scheme

Hashed Page Tables

 Common in address spaces > 32 bits

 The virtual page number is hashed into a page table

 This page table contains a chain of elements hashing to the same location

 Virtual page numbers are compared in this chain searching for a match

 If a match is found, the corresponding physical frame is extracted

Hashed Page Table

Inverted Page Table

 One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns that page

 Decreases memory needed to store each page table, but increases time needed to search the table when

a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-table entries

Inverted Page Table Architecture

Segmentation
Memory-management scheme that supports user view of memory

 A program is a collection of segments

 A segment is a logical unit such as:

 main program

 procedure function

 method

 object

 local variables, global variables

 common block

 stack

 symbol table

 arrays

User’s View of a Program

Logical View of Segmentation

1

1 4

2

3 2

4
3

user space
physical
memory space

Segmentation Architecture

 Logical address consists of a two tuple:

o <segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:

 base – contains the starting physical address where the segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR

 Protection

 With each entry in segment table associate:
 validation bit = 0 Þ illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation problem

 A segmentation example is shown in the following diagram

Segmentation Hardware

Example of Segmentation

Example: The Intel Pentium

 Supports both segmentation and segmentation with paging

 CPU generates logical address

Given to segmentation unit

Which produces linear addresses

 Linear address given to paging unit

Which generates physical address in main
memory Paging units form equivalent of MMU

Logical to Physical Address Translation in Pentium

Intel Pentium Segmentation

Pentium Paging Architecture

Linear Address in Linux

Three-level Paging in Linux

UNIT – IV

File System Implementation

File Concept

 Contiguous logical address spaceand Types:
 Data
 numeric
 character
 binary
 Program

File Structure
 None - sequence of words, bytes
 Simple record structure
 Lines
 Fixed length
 Variable length
 Complex Structures

 Formatted document
 Relocatable load file
 Can simulate last two with first method by inserting appropriate control characters
 Who decides:
 Operating system
 Program

File Attributes
 Name – only information kept in human-readable form
 Identifier – unique tag (number) identifies file within file system
 Type – needed for systems that support different types
 Location – pointer to file location on device
 Size – current file size
 Protection – controls who can do reading, writing, executing

 Time, date, and user identification – data for protection, security, and usage monitoring

 Information about files are kept in the directory structure, which is maintained on the disk

File Operations File is an abstract data type

 Create
 Write
 Read
 Reposition within file
 Delete

 Open(Fi) – search the directory structure on disk for entry Fi, and move the content of entry to memory

 Close (Fi) – move the content of entry Fi in memory to directory structure on disk

Open Files
 Several pieces of data are needed to manage open files:

 File pointer: pointer to last read/write location, per process that has the file open
 File-open count: counter of number of times a file is open – to allow removal of data from open-file table

when last processes close it

 Disk location of the file: cache of data access information
 Access rights: per-process access mode information

Open File Locking
 Provided by some operating systems and file systems
 Mediates access to a file
 Mandatory or advisory:
 Mandatory – access is denied depending on locks held and requested
 Advisory – processes can find status of locks and decide what to do

File Types – Name, Extension

Access Methods

Sequential Access
 read next
 write
 reset

 no read after last write

 (rewrite)

Direct Access

 read n
 write n
 position to n
 read next
 write next
 rewrite n

n = relative block number

Sequential-access File

Simulation of Sequential Access on Direct-access File

Example of Index and Relative Files

Directory Structure

 A collection of nodes containing information about all files
 Both the directory structure and the files reside on disk
 Backups of these two structures are kept on tapes

Files

Disk Structure
 Disk can be subdivided into partitions
 Disks or partitions can be RAID protected against failure
 Disk or partition can be used raw – without a file system, or formatted with a file system
 Partitions also known as minidisks, slices

 Entity containing file system known as a volume

 Each volume containing file system also tracks that file system’s info in device directory or volume table of

contents

 As well as general-purpose file systems there are many special-purpose file systems, frequently all within the
same operating system or computer

A Typical File-system Organization

F F F F

F

Operations Performed on Directory
 Search for a file
 Create a file
 Delete a file
 List a directory
 Rename a file
 Traverse the file system

Organize the Directory (Logically) to Obtain

 Efficiency – locating a file quickly
 Naming – convenient to users
 Two users can have same name for different files

 The same file can have several different names

 Grouping – logical grouping of files by properties, (e.g., all Java programs, all games, …)

Single-Level Directory
 A single directory for all users

 Naming problem

 Grouping problem
 Two-Level Directory
 Separate directory for each user

 Path name
 Can have the same file name for different user
 Efficient searching
 No grouping capability

Tree-Structured Directories

Creating a new file is done in current directory

 Delete a file rm
<file-name>
 Creating a new subdirectory is done in current directory

mkdir <dir-name>
Example: if in current directory /mail

mkdir count

 Deleting ―mail‖ Þ deleting the entire subtree rooted by ―mail‖

Acyclic-Graph Directories

 Have shared subdirectories and files

Two different names (aliasing)If dict deletes list Þ dangling pointer
 Solutions:
 Backpointers, so we can delete all pointers Variable size records a problem
 Backpointers using a daisy chain organization
 Entry-hold-count solution

 New directory entry type

 Link – another name (pointer) to an existing file
 Resolve the link – follow pointer to locate the file

General Graph Directory

 How do we guarantee no cycles?
 Allow only links to file not subdirectories
 Garbage collection

 Every time a new link is added use a cycle detection algorithm to determine whether it is OK

File System Mounting

 A file system must be mounted before it can be accessed

 A unmounted file system (i.e. Fig. 11-11(b)) is mounted at a mount point

prog coun ex pr copy

mail

(a) Existing. (b) Unmounted Partition

File Sharing

 Sharing of files on multi-user systems is desirable Sharing may be done through a protection scheme On
distributed systems, files may be shared across a network Network File System (NFS) is a common
distributed file-sharing method

File Sharing – Multiple Users
 User IDs identify users, allowing permissions and protections to be per-user

Group IDs allow users to be in groups, permitting group access rights

File Sharing – Remote File Systems

 Uses networking to allow file system access between systems
 Manually via programs like FTP

Mount Point

 Automatically, seamlessly using distributed file systems
 Semi automatically via the world wide web
 Client-server model allows clients to mount remote file systems from servers
 Server can serve multiple clients
 Client and user-on-client identification is insecure or complicated
 NFS is standard UNIX client-server file sharing protocol
 CIFS is standard Windows protocol

 Standard operating system file calls are translated into remote calls

 Distributed Information Systems (distributed naming services) such as LDAP, DNS, NIS,
Active Directory implement unified access to information needed for remote computing

File Sharing – Failure Modes

 Remote file systems add new failure modes, due to network failure, server failure

 Recovery from failure can involve state information about status of each remote request

 Stateless protocols such as NFS include all information in each request, allowing easy recovery but
less security

 Consistency semantics specify how multiple users are to access a shared file simultaneously
 Similar to Ch 7 process synchronization algorithms
 Tend to be less complex due to disk I/O and network latency (for remote file systems
 Andrew File System (AFS) implemented complex remote file sharing semantics
 Unix file system (UFS) implements:
 Writes to an open file visible immediately to other users of the same open file

 Sharing file pointer to allow multiple users to read and write concurrently

 AFS has session semantics
 Writes only visible to sessions starting after the file is closed

Protection
 File owner/creator should be able to control:
 what can be done

 by whomTypes of access

 Read

 Access Lists and Groups
 Mode of access: read, write, execute
 Three classes of users
 RWX

a) owner access 7 Þ 1 1 1

RWX

b) group access 6 Þ 1 1 0

RWX

c) public access 1 Þ 0 0 1

 Ask manager to create a group (unique name), say G, and add some users to the group. For a particular file
(say game) or subdirectory, define an appropriate access.

owne grou publi

chmo 76 gam

Attach a group to a file

chgrp G game

Windows XP Access-control List Management

A Sample UNIX Directory Listing

Mass-Storage Systems

Describe the physical structure of secondary and tertiary storage devices and the resulting effects on the uses of
the devices Explain the performance characteristics of mass-storage devices Discuss operating-system services
provided for mass storage, including RAID and HSM

Overview of Mass Storage Structure
Magnetic disks provide bulk of secondary storage of modern
computers Drives rotate at 60 to 200 times per second

Transfer rate is rate at which data flow between drive and computer

Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time
for desired sector to rotate under the disk head (rotational latency)

Head crash results from disk head making contact with the disk
surface That’s bad

Disks can be removable

Drive attached to computer via I/O bus

Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel, SCSI

Host controller in computer uses bus to talk to disk controller built into drive or storage array

Moving-head Disk Mechanism

Magnetic tape

Was early secondary-storage medium

Relatively permanent and holds large quantities of data
Access time slow

Random access ~1000 times slower than disk

Mainly used for backup, storage of infrequently-used data, transfer medium between
systems Kept in spool and wound or rewound past read-write head

Once data under head, transfer rates comparable to
disk 20-200GB typical storage

Common technologies are 4mm, 8mm, 19mm, LTO-2 and SDLT

Disk Structure

Disk drives are addressed as large 1-dimensional arrays of logical blocks, where the logical block is the
smallest unit of transfer The 1-dimensional array of logical blocks is mapped into the sectors of the disk
sequentially Sector 0 is the first sector of the first track on the outermost cylinder

Mapping proceeds in order through that track, then the rest of the tracks in that cylinder, and then through
the rest of the cylinders from outermost to innermost

Disk Attachment

Host-attached storage accessed through I/O ports talking to I/O busses

SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator requests operation and SCSI targets
perform tasks

Each target can have up to 8 logical units (disks attached to
device controller FC is high-speed serial architecture

Can be switched fabric with 24-bit address space – the basis of storage area networks (SANs) in which
many hosts attach to many storage units

Can be arbitrated loop (FC-AL) of 126 devices

Network-Attached Storage
Network-attached storage (NAS) is storage made available over a network rather than over a local connection
(such as a bus)

NFS and CIFS are common protocols

Implemented via remote procedure calls (RPCs) between host and

storage New SCSI protocol uses IP network to carry the SCSI protocol

Storage Area Network
Common in large storage environments (and becoming more common)

Multiple hosts attached to multiple storage arrays - flexible

Disk Scheduling

The operating system is responsible for using hardware efficiently — for the disk drives, this means having a
fast access time and disk bandwidth

Access time has two major components

Seek time is the time for the disk are to move the heads to the cylinder containing the desired sector
Rotational latency is the additional time waiting for the disk to rotate the desired sector to the disk

head Minimize seek time

Seek time » seek distance

Disk bandwidth is the total number of bytes transferred, divided by the total time between the first request
for service and the completion of the last transfer

Several algorithms exist to schedule the servicing of disk I/O requests .We illustrate them with a request queue
(0-199)

FCFS

98, 183, 37, 122, 14, 124, 65, 67

Head pointer 53

Illustration shows total head movement of 640 cylinders

SSTF

Selects the request with the minimum seek time from the current head position
SSTF scheduling is a form of SJF scheduling; may cause starvation of some
requests Illustration shows total head movement of 236 cylinders

SCAN

The disk arm starts at one end of the disk, and moves toward the other end, servicing requests until it gets to the
other end of the disk, where the head movement is reversed and servicing continues. SCAN algorithm
Sometimes called the elevator algorithm

Illustration shows total head movement of 208 cylinders

C-SCAN

Provides a more uniform wait time than SCAN

The head moves from one end of the disk to the other, servicing requests as it goes

When it reaches the other end, however, it immediately returns to the beginning of the disk, without servicing
any requests on the return trip

Treats the cylinders as a circular list that wraps around from the last cylinder to the first one

C-LOOK

Version of C-SCAN

Arm only goes as far as the last request in each direction, then reverses direction immediately, without
first going all the way to the end of the disk

Selecting a Disk-Scheduling Algorithm

SSTF is common and has a natural appeal

SCAN and C-SCAN perform better for systems that place a heavy load on the
disk Performance depends on the number and types of requests

Requests for disk service can be influenced by the file-allocation method

The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be
replaced with a different algorithm if necessary

Either SSTF or LOOK is a reasonable choice for the default
algorithm Disk Management

Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk controller can
read and write

To use a disk to hold files, the operating system still needs to record its own data structures on the
disk Partition the disk into one or more groups of cylinders

Logical formatting or ―making a file system‖

To increase efficiency most file systems group blocks into
clusters Disk I/O done in blocks

File I/O done in clusters Boot

block initializes system

The bootstrap is stored in ROM

Bootstrap loader program

Methods such as sector sparing used to handle bad blocks

Booting from a Disk in Windows 2000

Swap-Space Management

Swap-space — Virtual memory uses disk space as an extension of main memory

Swap-space can be carved out of the normal file system, or, more commonly, it can be in separate disk partition
Swap-space management

4.3BSD allocates swap space when process starts; holds text segment (the program) and data
segment Kernel uses swap maps to track swap-space use

Solaris 2 allocates swap space only when a page is forced out of physical memory, not when the virtual memory
page is first created

Data Structures for Swapping on Linux Systems

RAID – multiple disk drives provides reliability via redundancy Increases the mean time to failure Frequently
combined with NVRAM to improve write performance

RAID is arranged into six different levels

Several improvements in disk-use techniques involve the use of multiple disks working cooperatively Disk
striping uses a group of disks as one storage unit RAID schemes improve performance and improve the
reliability of the storage system by storing redundant data Mirroring or shadowing (RAID 1) keeps duplicate of

each disk

Striped mirrors (RAID 1+0) or mirrored stripes (RAID 0+1) provides high performance and
high reliability Block interleaved parity (RAID 4, 5, 6) uses much less redundancy

RAID within a storage array can still fail if the array fails, so automatic replication of the data between arrays is
common

RAID Structure

Frequently, a small number of hot-spare disks are left unallocated, automatically replacing a failed disk
and having data rebuilt onto them

RAID (0

Extensions
RAID alone does not prevent or detect data corruption or other errors, just
disk failures Solaris ZFS adds checksums of all data and metadata

Checksums kept with pointer to object, to detect if object is the right one and whether it
changed Can detect and correct data and metadata corruption

ZFS also removes volumes, partitions.
Disks allocated in pools

File systems with a pool share that pool, use and release space like ―malloc‖ and ―free‖ memory
allocate / release calls

+ 1) and (1 + 0)

ZFS Checksums All Metadata and Data

Traditional and Pooled Storage

Stable-Storage Implementation

Write-ahead log scheme requires stable storage To implement stable storage:
Replicate information on more than one nonvolatile storage media with independent failure modes

Update information in a controlled manner to ensure that we can recover the stable data after any failure

during data transfer or recovery

Tertiary Storage Devices

Low cost is the defining characteristic of tertiary storage Generally, tertiary storage is built using removable

media Common examples of removable media are floppy disks and CD-ROMs; other types are available

Removable Disks

Floppy disk — thin flexible disk coated with magnetic material, enclosed in a protective plastic case Most
floppies hold about 1 MB; similar technology is used for removable disks that hold more than 1 GB

Removable magnetic disks can be nearly as fast as hard disks, but they are at a greater risk of damage from

exposure

A magneto-optic disk records data on a rigid platter coated with magnetic
material Laser heat is used to amplify a large, weak magnetic field to record a
bit Laser light is also used to read data (Kerr effect)

The magneto-optic head flies much farther from the disk surface than a magnetic disk head, and the magnetic
material is covered with a protective layer of plastic or glass; resistant to head crashes Optical disks do not use
magnetism; they employ special materials that are altered by laser light

WORM Disks

The data on read-write disks can be modified over and over
WORM (―Write Once, Read Many Times‖) disks can be written only once

Thin aluminum film sandwiched between two glass or plastic platters

To write a bit, the drive uses a laser light to burn a small hole through the aluminum; information can be
destroyed by not altered

Very durable and reliable

Read-only disks, such ad CD-ROM and DVD, com from the factory with the data pre-recorded

Tapes

Compared to a disk, a tape is less expensive and holds more data, but random access is much slower

Tape is an economical medium for purposes that do not require fast random access, e.g., backup copies of disk
data, holding huge volumes of data

Large tape installations typically use robotic tape changers that move tapes between tape drives and storage
slots in a tape library

stacker – library that holds a few tapes silo

– library that holds thousands of tapes

A disk-resident file can be archived to tape for low cost storage; the computer can stage it back into disk storage
for active use

Operating System Support
Major OS jobs are to manage physical devices and to present a virtual machine abstraction to applications
For hard disks, the OS provides two abstraction:

Raw device – an array of data blocks
File system – the OS queues and schedules the interleaved requests from several applications

Application Interface
Most OSs handle removable disks almost exactly like fixed disks — a new cartridge is formatted and an
empty file system is generated on the disk

Tapes are presented as a raw storage medium, i.e., and application does not not open a file on the tape, it
opens the whole tape drive as a raw device

Usually the tape drive is reserved for the exclusive use of that application

Since the OS does not provide file system services, the application must decide how to use the array of blocks
Since every application makes up its own rules for how to organize a tape, a tape full of data can generally only
be used by the program that created it

Tape Drives

The basic operations for a tape drive differ from those of a disk drive

locate() positions the tape to a specific logical block, not an entire track (corresponds to seek())

The read position() operation returns the logical block number where the tape head
is The space() operation enables relative motion

Tape drives are ―append-only‖ devices; updating a block in the middle of the tape also effectively erases
everything beyond that block

An EOT mark is placed after a block that is written

File Naming
The issue of naming files on removable media is especially difficult when we want to write data on a removable
cartridge on one computer, and then use the cartridge in another computer

Contemporary OSs generally leave the name space problem unsolved for removable media, and depend on
applications and users to figure out how to access and interpret the data. Some kinds of removable media (e.g.,
CDs) are so well standardized that all computers use them the same way

Hierarchical Storage Management (HSM)
A hierarchical storage system extends the storage hierarchy beyond primary memory and secondary storage to
incorporate tertiary storage — usually implemented as a jukebox of tapes or removable disks

Usually incorporate tertiary storage by extending the file

system Small and frequently used files remain on disk

Large, old, inactive files are archived to the jukebox

HSM is usually found in supercomputing centers and other large installations that have enormous volumes of
data

Speed

Two aspects of speed in tertiary storage are bandwidth and latency Bandwidth is measured in bytes per second
Sustained bandwidth – average data rate during a large transfer; # of bytes/transfer time Data rate when the
data stream is actually flowing

Effective bandwidth – average over the entire I/O time, including seek() or locate(), and cartridge

switching Drive’s overall data rate

Access latency – amount of time needed to locate data

Access time for a disk – move the arm to the selected cylinder and wait for the rotational latency; < 35
milliseconds

Access on tape requires winding the tape reels until the selected block reaches the tape head; tens or hundreds
of seconds

Generally say that random access within a tape cartridge is about a thousand times slower than random access
on disk

The low cost of tertiary storage is a result of having many cheap cartridges share a few expensive drives

A removable library is best devoted to the storage of infrequently used data, because the library can only satisfy
a relatively small number of I/O requests per hour

Reliability

A fixed disk drive is likely to be more reliable than a removable disk or tape drive An optical cartridge is likely
to be more reliable than a magnetic disk or tape A head crash in a fixed hard disk generally destroys the data,
whereas the failure of a tape drive or optical disk drive often leaves the data cartridge unharmed

Cost

Main memory is much more expensive than disk storage The cost per megabyte of hard disk storage is

competitive with magnetic tape if only one tape is used per drive The cheapest tape drives and the cheapest disk
drives have had about the same storage capacity over the years Tertiary storage gives a cost savings only when

the number of cartridges is considerably larger than the number of drives

UNIT – V

DEADLOCKS

To develop a description of deadlocks, which prevent sets of concurrent processes from completing their tasks.
To present a number of different methods for preventing or avoiding deadlocks in a computer system.

The Deadlock Problem
A set of blocked processes each holding a resource and waiting to acquire a resource held by another process
in the set

Example

System has 2 disk drives

P1 and P2 each hold one disk drive and each needs another

one Example

semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

 Traffic only in one direction
 Each section of a bridge can be viewed as a resource
 If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback)
 Several cars may have to be backed up if a deadlock occurs
 Starvation is possible
 Note – Most OSes do not prevent or deal with deadlocks

System Model

 Resource types R1, R2, . . ., Rm
 CPU cycles, memory space, I/O devices

 Each resource type Ri has Wi instances. Each

process utilizes a resource as follows:

request

use

release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously

Mutual exclusion: only one process at a time can use a resource

Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by
other processes

No preemption: a resource can be released only voluntarily by the process holding it, after that process
has completed its task

Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is waiting for a resource

that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for a resource that is

held by

Pn, and P0 is waiting for a resource that is held by P0.

Resource-Allocation Graph

A set of vertices V and a set of edges
E V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes in the

system R = {R1, R2, …, Rm}, the set consisting of all resource types in

the system request edge – directed edge P1 ® Rj assignment edge –

directed edge Rj ® Pi

Process

Resource Type with 4 instances

Pi requests instance of Rjn

Rj

Pi is holding an instance of Rj

Pi

P
i

Rj

Example of a Resource Allocation Graph

Resource Allocation Graph With A Deadlock

Graph With A Cycle But No Deadlock

Basic Facts
If graph contains no cycles no deadlock If graph contains a cycle if only one instance per resource type, then
deadlock

if several instances per resource type, possibility of deadlock

Methods for Handling Deadlocks

Ensure that the system will never enter a deadlock state Allow the system to enter a deadlock state and then
recover Ignore the problem and pretend that deadlocks never occur in the system; used by most operating
systems, including UNIX

Deadlock Prevention

Restrain the ways request can be made

Mutual Exclusion – not required for sharable resources; must hold for non sharable resources

Hold and Wait – must guarantee that whenever a process requests a resource, it does not hold any other
resources

Require process to request and be allocated all its resources before it begins execution, or allow process to
request resources only when the process has none

Low resource utilization; starvation possible

No Preemption –

If a process that is holding some resources requests another resource that cannot be immediately allocated to it,

then all resources currently being held are released Preempted resources are added to the list of resources for
which the process is waiting Process will be restarted only when it can regain its old resources, as well as the
new ones that it is requesting

Circular Wait – impose a total ordering of all resource types, and require that each process requests resources
in an increasing order of enumeration

Deadlock Avoidance

Requires that the system has some additional a priori information
available

Simplest and most useful model requires that each process declare the maximum number of resources of
each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure that there can
never be a circular-wait condition

Resource-allocation state is defined by the number of available and allocated resources, and the maximum
demands of the processes

Safe State

When a process requests an available resource, system must decide if immediate allocation leaves the system in
a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes is the systems such that

for each Pi, the resources that Pi can still request can be satisfied by currently available resources + resources

held by all the Pj, with j < in That is:

If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and

terminate When Pi terminates, Pi +1 can obtain its needed resources, and so on

Basic Facts

If a system is in safe state Þ no deadlocks. If a system is in unsafe state Þ possibility of deadlock Avoidance Þ
ensure that a system will never enter an unsafe state.

Safe, Unsafe , Deadlock State

Avoidance algorithms
 Single instance of a resource type
 Use a resource-allocation graph
 Multiple instances of a resource type
 Use the banker’s algorithm

Resource-Allocation Graph Scheme

Claim edge Pi ® Rj indicated that process Pj may request resource Rj; represented by a dashed linen Claim edge

converts to request edge when a process requests a resource Request edge converted to an assignment edge

when the resource is allocated to the process

When a resource is released by a process, assignment edge reconverts to a claim edge Resources must be
claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj

The request can be granted only if converting the request edge to an assignment edge does not result in
the formation of a cycle in the resource allocation graph

Banker’s Algorithm

Multiple instances Each process must a priori claim maximum use When a process requests a resource it
may have to wait When a process gets all its resources it must return them in a finite amount of time

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj available

Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of RjNeed: n x m

matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1
2. Find and i such that both:

(a) Finish [i] = false(b) Needi £ Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

Resource-Request Algorithm for Process Pi
1. Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of resource type

Rj1. If Requesti £ Needi go to step 2. Otherwise, raise error condition, since process has exceeded its maximum

claim

2. If Requesti £ Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available – Request;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe Þ the resources are allocated to Pi

If unsafe Þ Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

n5 processes P0 through P4;

3 resource types:

C

2

A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

Allocation Max Available A B C A B C A B

P0 0 1 0 7 5 3 P1 2 0 0 3 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

The content of the matrix Need is defined to be Max – Allocation

Need A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Example: P1 Request (1,0,2)

Check that Request £ Available (that is, (1,0,2) £ (3,3,2) Þ true

 Allocation Need Available
 ABC ABC ABC

P0 010 743 230

P1 302 020

P2 301 600

P3 211 011

P4 002 431

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety

requirement Can request for (3,3,0) by P4 be granted? Can request for (0,2,0) by P0

be granted?

Deadlock Detection

Allow system to enter deadlock state Detection algorithm Recovery scheme

Single Instance of Each Resource Type
Maintain wait-for graph

Nodes are processes

Pi ® Pj if Pi is waiting for Pj Periodically invoke an algorithm that searches for a cycle in the graph. If there

is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the number of

vertices in the graph

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Several Instances of a Resource Type

Available: A vector of length m indicates the number of available resources of each type. Allocation: An n x m

matrix defines the number of resources of each type currently allocated to each process. Request: An n x m

matrix indicates the current request of each process. If Request [ij] = k, then process Pi is requesting k more

instances of resource type. Rj.

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available(b) For i = 1,2, …, n, if Allocationi ¹ 0, then

Finish[i] = false; otherwise, Finish[i] = true2. Find an index i such that both:

(a) Finish[i] == false(b) Requesti £ Work If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true

go to step 24. If Finish[i] == false, for some i, 1 £ i £ n, then the system is in deadlock state. Moreover, if

Finish[i] == false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect whether the system is in deadlocked state

Example of Detection Algorithm

nFive processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

nSnapshot at time T0:

 Allocation Need Available
 ABC ABC ABC

P0 010 000 000

P1 200 202

P2 303 000

P3 211 100

P4 002 002

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

P2 requests an additional instance of type C
Request A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

State of system?

Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; requests

Deadlock exists, consisting of processes P1, P2, P3, and P4

Detection-Algorithm Usage

When, and how often, to invoke depends on:
How often a deadlock is likely to occur?

How many processes will need to be rolled back?

one for each disjoint cycle If detection algorithm is invoked arbitrarily, there may be many cycles in the
resource graph and so we would not be able to tell which of the many deadlocked processes ―caused‖
the deadlock.

Recovery from Deadlock: Process Termination
Abort all deadlocked processes Abort one process at a time until the deadlock cycle is eliminated.
In which order should we choose to abort?

Priority of the process

How long process has computed, and how much longer to
completion Resources the process has used

Resources process needs to complete

How many processes will need to be

terminated Is process interactive or batch?

Recovery from Deadlock: Resource Preemption
Selecting a victim – minimize cost Rollback – return to some safe state, restart process for that state Starvation

– same process may always be picked as victim, include number of rollback in cost factor

I/O Systems
Explore the structure of an operating system’s I/O subsystem

Discuss the principles of I/O hardware and its complexity

Provide details of the performance aspects of I/O hardware and software

I/O Hardware
Incredible variety of I/O devices

Common concepts

Port
Bus (daisy chain or shared direct access)

Controller (host adapter)

I/O instructions control devices

Devices have addresses, used by

Direct I/O instructions
Memory-mapped I/O

A Typical PC Bus Structure

Device I/O Port Locations on PCs (partial)

Polling

Determines state of

device command-ready

busy

Error Busy-wait cycle to wait for I/O from device

Interrupts

CPU Interrupt-request line triggered by I/O device Interrupt handler receives interrupts Markable to ignore or
delay some interrupts Interrupt vector to dispatch interrupt to correct handler Based on priority Some
nonmarkable Interrupt mechanism also used for exceptions

Interrupt-Driven I/O Cycle

Intel Pentium Processor Event-Vector Table

Direct Memory Access

Used to avoid programmed I/O for large data movement Requires DMA controller Bypasses CPU to transfer
data directly between I/O device and memory.

Six Step Process to Perform DMA Transfer

Application I/O Interface

I/O system calls encapsulate device behaviors in generic classes
Device-driver layer hides differences among I/O controllers
from kernel Devices vary in many dimensions

Character-stream or block
Sequential or random-access

Sharable or dedicated Speed

of operation

read-write, read only, or write only

A Kernel I/O Structure

Characteristics of I/O Devices

Block and Character Devices

Block devices include disk drives
Commands include read, write, seek
Raw I/O or file-system access

Memory-mapped file access possible Character devices include keyboards, mice, serial ports
Commands include get(), put()Libraries layered on top allow line editing

Network Devices
Varying enough from block and character to have own interface Unix and Windows NT/9x/2000 include socket
interface

Separates network protocol from network operation

Includes select() functionality Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Clocks and Timers
Provide current time, elapsed time, timer Programmable interval timer used for timings,

periodic interruptsnioctl() (on UNIX) covers odd aspects of I/O such as clocks and timers

Blocking and Non blocking I/O

Blocking - process suspended until I/O completed
Easy to use and understand

Insufficient for some needs Nonblocking - I/O call returns as much as
available User interface, data copy (buffered I/O) Implemented via
multi-threading

Returns quickly with count of bytes read or written Asynchronous - process runs while I/O
executes Difficult to use

I/O subsystem signals process when I/O completed

Two I/O Methods

Synchronous Asynchronous

Kernel I/O Subsystem

Scheduling

Some I/O request ordering via per-device queue

Some OSs try fairness Buffering - store data in memory while transferring between
devices To cope with device speed mismatch

To cope with device transfer size mismatch
To maintain ―copy semantics‖

Device-status Table

Sun Enterprise 6000 Device-Transfer Rates

Kernel I/O Subsystem
Caching - fast memory holding copy of
data Always just a copy

Key to performance Spooling - hold output for a device
If device can serve only one request at a time

i.e., Printing Device reservation - provides exclusive access to a device
System calls for allocation and deallocation

Watch out for deadlock

Error Handling

OS can recover from disk read, device unavailable, transient write failures Most return an error number or code
when I/O request fails System error logs hold problem reports

I/O Protection

User process may accidentally or purposefully attempt to disrupt normal operation via illegal
I/O instructions All I/O instructions defined to be privileged

I/O must be performed via system calls Memory-mapped and I/O port

memory locations must be protected too

Use of a System Call to Perform I/O

Kernel Data Structures

Kernel keeps state info for I/O components, including open file tables, network connections, character device
state Many, many complex data structures to track buffers, memory allocation, ―dirty‖ blocks Some use object-
oriented methods and message passing to implement I/O

UNIX I/O Kernel Structure

I/O Requests to Hardware Operations

Consider reading a file from disk for a process:

Determine device holding file Translate

name to device representation

Physically read data from disk into buffer

Make data available to requesting process

Return control to process

Life Cycle of An I/O Request

STREAMS

STREAM – a full-duplex communication channel between a user-level process and a device in Unix
System V and beyond

A STREAM consists of:

- STREAM head interfaces with the user process

- driver end interfaces with the device

- zero or more STREAM modules between them. Each
module contains a read queue and a write queue Message
passing is used to communicate between queues

The STREAMS Structure

Performance

I/O a major factor in system performance: Demands CPU to execute device driver, kernel I/O

code Context switches due to interrupts

Data copying

Network traffic especially stressful

Intercomputer Communications

Improving Performance

Reduce number of context
switches Reduce data copying

Reduce interrupts by using large transfers, smart
controllers, polling Use DMA

Balance CPU, memory, bus, and I/O performance for highest throughput

Device-Functionality Progression

P R O T E C T I O N

Goals of Protection

Operating system consists of a collection of objects, hardware or software. Each object has a unique name and
can be accessed through a well-defined set of operations Protection problem - ensure that each object is
accessed correctly and only by those processes that are allowed to do son

Principles of Protection

Guiding principle – principle of least privilege

Programs, users and systems should be given just enough privileges to perform their tasks

Domain Structure

Access-right = <object-name, rights-set>

where rights-set is a subset of all valid operations that can be performed on the object. Domain = set of
access-rights

System consists of 2 domains:

 User

 Supervisor UNIX

Domain = user-id

Domain switch accomplished via file system

Each file has associated with it a domain bit (setuid bit)

When file is executed and setuid = on, then user-id is set to owner of the file being executed. When execution
completes user-id is reset

Domain Implementation (MULTICS)

Let Di and Dj be any two domain rings

If j < I Þ Di Í Dj

Access Matrix
View protection as a matrix (access matrix)

Rows represent domains

Columns represent objects

Access(i, j) is the set of operations that a process executing in Domaini can invoke on Objectj

Use of Access Matrix

If a process in Domain Di tries to do ―op‖ on object Oj, then ―op‖ must be in the access matrix Can be

expanded to dynamic protection

Operations to add, delete access rights

Special access rights:

 Owner of Oi

 Copy op from Oi to Oj

 Control – Di can modify Dj access rights

 Transfer – switch from domain Di to Dj

Access matrix design separates mechanism from policy

Mechanism

Operating system provides access-matrix + rules

If ensures that the matrix is only manipulated by authorized agents and that rules are strictly enforced

Policy

User dictates policy
Who can access what object and in what mode

Implementation of Access Matrix
Each column = Access-control list for one object

Defines who can perform what operation.

Domain 1 = Read, Write

Domain 2 = Read

Domain 3 = Read

M Each Row = Capability List (like a key)

Fore each domain, what operations allowed on what objects.

Object 1 – Read

Object 4 – Read, Write, Execute

Object 5 – Read, Write, Delete, Copy

Access Matrix of Figure A With Domains as Objects

Access Matrix with Copy Rights

Access Matrix With Owner Rights

Modified Access Matrix of Figure B

Access Control

Protection can be applied to non-file resources

Solaris 10 provides role-based access control (RBAC) to implement least privilege

Privilege is right to execute system call or use an option within a system call

Can be assigned to processes

Users assigned roles granting access to privileges and programs

Role-based Access Control in Solaris 10

Revocation of Access Rights

Access List – Delete access rights
from access list Simple

Immediate Capability List – Scheme required to locate capability in the system before capability
can be revoked Reacquisition

Capability-Based Systems

Hydra

Fixed set of access rights known to and interpreted by the system

Interpretation of user-defined rights performed solely by user's program; system provides
access protection for use of these rights Cambridge CAP System

Data capability - provides standard read, write, execute of individual storage segments
associated with object Software capability -interpretation left to the subsystem, through its
protected procedures

Language-Based Protection

Specification of protection in a programming language allows the high-level description of
policies for the allocation and use of resources Language implementation can provide software
for protection enforcement when automatic hardware-supported checking is unavailable Interpret
protection specifications to generate calls on whatever protection system is provided by the
hardware and the operating system

Protection in Java 2

nProtection is handled by the Java Virtual Machine (JVM)nA class is assigned a protection
domain when it is loaded by the JVMnThe protection domain indicates what operations the class
can (and cannot) performnIf a library method is invoked that performs a privileged operation, the
stack is inspected to ensure the operation can be performed by the library

Stack Inspection

