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UNIT - 1 

 

 
INTRODUCTION TO OR 

TERMINOLOGY 

The British/Europeans refer to "operational research", the Americans to "operations research" - but both are 

often shortened to just "OR" (which is the term we will use). Another term which is used for this field is 

"management science" ("MS"). The Americans sometimes combine the terms OR and MS together and say 

"OR/MS" or "ORMS". 

Yet other terms sometimes used are "industrial engineering" ("IE"), "decision science" ("DS"), and ―problem 

solving‖. 

In recent years there has been a move towards a standardization upon a single term for the field, namely the term 

"OR". 

―Operations Research (Management Science) is a scientific approach to decision making that seeks to best 

design and operate a system, usually under conditions requiring the allocation of scarce resources.‖ 

A system is an organization of interdependent components that work together to accomplish the goal of the 

system. 

THE METHODOLOGY OF OR 

When OR is used to solve a problem of an organization, the following seven step procedure should be followed: 

 
Step 1. Formulate the Problem 

OR analyst first defines the organization's problem. Defining the problem includes specifying the organization's 

objectives and the parts of the organization (or system) that must be studied before the problem can be solved. 

Step 2. Observe the System 

Next, the analyst collects data to estimate the values of parameters that affect the organization's problem. These 

estimates are used to develop (in Step 3) and evaluate (in Step 4) a mathematical model of the organization's 

problem. 

Step 3. Formulate a Mathematical Model of the Problem 

The analyst, then, develops a mathematical model (in other words an idealized representation) of the problem. 

In this class, we describe many mathematical techniques that can be used to model systems. 
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Step 4. Verify the Model and Use the Model for Prediction 

The analyst now tries to determine if the mathematical model developed in Step 3 is an accurate representation 

of reality. To determine how well the model fits reality, one determines how valid the model is for the current 

situation. 

Step 5. Select a Suitable Alternative 

Given a model and a set of alternatives, the analyst chooses the alternative (if there is one) that best meets the 

organization's objectives. 

Sometimes the set of alternatives is subject to certain restrictions and constraints. In many situations, the best 

alternative may be impossible or too costly to determine. 

Step 6. Present the Results and Conclusions of the Study 
 

In this step, the analyst presents the model and the recommendations from Step 5 to the decision making 

individual or group. In some situations, one might present several alternatives and let the organization choose 

the decision maker(s) choose the one that best meets her/his/their needs. 

After presenting the results of the OR study to the decision maker(s), the analyst may find that s/he does not (or 

they do not) approve of the recommendations. This may result from incorrect definition of the problem on hand 

or from failure to involve decision maker(s) from the start of the project. In this case, the analyst should return to 

Step 1, 2, or 3. 

Step 7. Implement and Evaluate Recommendation 

If the decision maker(s) has accepted the study, the analyst aids in implementing the recommendations. The 

system must be constantly monitored (and updated dynamically as the environment changes) to ensure that the 

recommendations are enabling decision maker(s) to meet her/his/their objectives. 

HISTORY OF OR 

In physics or engineering (for example) at university it would not have been possible to study OR, indeed the 

term OR did not exist then. It was only really in the late 1930's that operational research began in a systematic 

fashion, and it started in the UK. 

Early in 1936 the British Air Ministry established Bawdsey Research Station, on the east coast, near Felixstowe, 

Suffolk, as the centre where all pre-war radar Z experiments for both the Air Force and the Army would be 

carried out. Experimental radar equipment was brought up to a high state of reliability and ranges of over 100 

miles on aircraft were obtained. 
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It was also in 1936 that Royal Air Force (RAF) Fighter Command, charged specifically with the air defense of 

Britain, was first created. It lacked however any effective fighter aircraft - no Hurricanes or Spitfires had come 

into service - and no radar data was yet fed into its very elementary warning and control system. 

It had become clear that radar would create a whole new series of problems in fighter direction and control so in 

late 1936 some experiments started at Biggin Hill in Kent into the effective use of such data. This early work, 

attempting to integrate radar data with ground based observer data for fighter interception, was the start of OR. 

The first of three major pre-war air-defense exercises was carried out in the summer of 1937. The experimental 

radar station at Bawdsey Research Station was brought into operation and the information derived from it was 

fed into the general air-defense warning and control system. From the early warning point of view this exercise 

was encouraging, but the tracking information obtained from radar, after filtering and transmission through the 

control and display network, was not very satisfactory. 

In July 1938 a second major air-defense exercise was carried out. Four additional radar stations had been 

installed along the coast and it was hoped that Britain now had an aircraft location and control system greatly 

improved both in coverage and effectiveness. Not so! The exercise revealed, rather, that a new and serious 

problem had arisen. This was the need to coordinate and correlate the additional, and often conflicting, 

information received from the additional radar stations. With the out-break of war apparently imminent, it was 

obvious that something new - drastic if necessary - had to be attempted. Some new approach was needed. 

Accordingly, on the termination of the exercise, the Superintendent of Bawdsey Research Station, A.P. Rowe, 

announced that although the exercise had again demonstrated the technical feasibility of the radar system for 

detecting aircraft, its operational achievements still fell far short of requirements. He therefore proposed that a 

crash program of research into the operational - as opposed to the technical -aspects of the system should begin 

immediately. The term "operational research" [RESEARCH into (military) OPERATIONS] was coined as a 

suitable description of this new branch of applied science. The first team was selected from amongst the 

scientists of the radar research group the same day. 

In the summer of 1939 Britain held what was to be its last pre-war air defense exercise. It involved some 33,000 

men, 1,300 aircraft, 110 antiaircraft guns, 700 searchlights, and 100 barrage balloons. This exercise showed a 

great improvement in the operation of the air defense warning and control system. The contribution made by the 

OR teams was so apparent that the Air Officer Commander-in-Chief RAF Fighter Command (Air Chief Marshal 

Sir Hugh Dowding) requested that, on the outbreak of war, they should be attached to his headquarters at 

Stanmore. 

On May 15th 1940, with German forces advancing rapidly in France, Stanmore Research Section was asked to 

analyze a French request for ten additional fighter squadrons (12 aircraft a squadron) when losses were running 
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at some three squadrons every two days. They prepared graphs for Winston Churchill (the British Prime 

Minister of the time), based upon a study of current daily losses and replacement rates, indicating how rapidly 

such a move would deplete fighter strength. No aircraft were sent and most of those currently in France were 

recalled. 

This is held by some to be the most strategic contribution to the course of the war made by OR (as the aircraft 

and pilots saved were consequently available for the successful air defense of Britain, the Battle of Britain). 

In 1941 an Operational Research Section (ORS) was established in Coastal Command which was to carry out 

some of the most well-known OR work in World War II. 

Although scientists had (plainly) been involved in the hardware side of warfare (designing better planes, bombs, 

tanks, etc) scientific analysis of the operational use of military resources had never taken place in a systematic 

fashion before the Second World War. Military personnel, often by no means stupid, were simply not trained to 

undertake such analysis. 

These early OR workers came from many different disciplines, one group consisted of a physicist, two 

physiologists, two mathematical physicists and a surveyor. What such people brought to their work were 

"scientifically trained" minds, used to querying assumptions, logic, exploring hypotheses, devising experiments, 

collecting data, analyzing numbers, etc. Many too were of high intellectual caliber (at least four wartime OR 

personnel were later to win Nobel prizes when they returned to their peacetime disciplines).By the end of the 

war OR was well established in the armed services both in the UK and in the USA.OR started just before World 

War II in Britain with the establishment of teams of scientists to study the strategic and tactical problems 

involved in military operations. The objective was to find the most effective utilization of limited military 

resources by the use of quantitative techniques. 

Following the end of the war OR spread, although it spread in different ways in the UK and USA. 

 
You should be clear that the growth of OR since it began (and especially in the last 30 years) is, to a large 

extent, the result of the increasing power and widespread availability of computers. Most (though not all) OR 

involves carrying out a large number of numeric calculations. Without computers this would simply not be 

possible. 

BASIC OR CONCEPTS 

"OR is the representation of real-world systems by mathematical models together with the use of quantitative 

methods (algorithms) for solving such models, with a view to optimizing." 

 
We can also define a mathematical model as consisting of: 
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Decision variables, which are the unknowns to be determined by the solution to the model.

 
Constraints to represent the physical limitations of the system

 
An objective function

 
An optimal solution to the model is the identification of a set of variable values which are feasible 

(satisfy all the constraints) and which lead to the optimal value of the objective function.

 

An optimization model seeks to find values of the decision variables that optimize (maximize or minimize) an 

objective function among the set of all values for the decision variables that satisfy the given constraints. 

Two Mines Example 

The Two Mines Company own two different mines that produce an ore which, after being crushed, is graded 

into three classes: high, medium and low-grade. The company has contracted to provide a smelting plant with 12 

tons of high-grade, 8 tons of medium-grade and 24 tons of low-grade ore per week. The two mines have 

different operating characteristics as detailed below. 

 
 

Mine Cost per day (£'000) Production (tons/day) 

  High Medium Low 

X 180 6 3 4 

Y 160 1 1 6 

 

Consider that mines cannot be operated in the weekend. How many days per week should each mine be 

operated to fulfill the smelting plant contract? 

Guessing 

To explore the Two Mines problem further we might simply guess (i.e. use our judgment) how many days per 

week to work and see how they turn out. 

 
work one day a week on X, one day a week on Y

 
This does not seem like a good guess as it results in only 7 tons a day of high-grade, insufficient to meet the 

contract requirement for 12 tones of high-grade a day. We say that such a solution is infeasible. 

 
work 4 days a week on X, 3 days a week on Y

 
 

This seems like a better guess as it results in sufficient ore to meet the contract. We say that such a solution is 

feasible. However it is quite expensive (costly). 
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We would like a solution which supplies what is necessary under the contract at minimum cost. Logically such a 

minimum cost solution to this decision problem must exist. However even if we keep guessing we can never be 

sure whether we have found this minimum cost solution or not. Fortunately our structured approach will enable 

us to find the minimum cost solution. 

Solution: 

What we have is a verbal description of the Two Mines problem. What we need to do is to translate that verbal 

description into an equivalent mathematical description. In dealing with problems of this kind we often do best 

to consider them in the order: 

Variables Constraints 

Objective 

This process is often called formulating the problem (or more strictly formulating a mathematical representation 

of the problem). 

Variables 

These represent the "decisions that have to be made" or the "unknowns". 

We have two decision variables in this problem: 

 
x = number of days per week mine X is operated y = number of days per week mine Y is operated

 
Note here that x ≥ 0 and y ≥ 0. 

Constraints 

It is best to first put each constraint into words and then express it in mathematical form.Ore production 

constraints - balance the amount produced with the quantity required under the smelting plant contract 

 
 

Ore  

High 6x + 1y ≥ 12 

Medium 3x + 1y ≥ 8 

Low 4x + 6y ≥ 24 

 

Days per week constraint - we cannot work more than a certain maximum number of days a week e.g. for a 5 

day week we have 

x ≤ 5 

y ≤ 5 
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Inequality constraints 

Note we have an inequality here rather than equality. This implies that we may produce more of some grade of 

ore than we need. In fact we have the general rule: given a choice between an equality and an inequality choose 

the inequality 

For example - if we choose an equality for the ore production constraints we have the three equations 6x+y=12, 

3x+y=8 and 4x+6y=24 and there are no values of x and y which satisfy all three equations (the problem is 

therefore said to be "over-constrained"). For example the values of x and y which satisfy 6x+y=12 and 3x+y=8 

are x=4/3 and y=4, but these values do not satisfy 4x+6y=24. 

The reason for this general rule is that choosing an inequality rather than an equality gives us more flexibility in 

optimizing (maximizing or minimizing) the objective (deciding values for the decision variables that optimize 

the objective). 

Implicit constraints 

Constraints such as days per week constraint are often called implicit constraints because they are implicit in the 

definition of the variables 

Objective 

Again in words our objective is (presumably) to minimize cost which is given by 180x + 160y 

Hence we have the complete mathematical representation of the problem: 

 

Minimize 

180x + 160y 

 
Subject to 

6x + y ≥ 12 

 
3x + y ≥ 8 

4x + 6y ≥ 24 

x ≤ 5 

y ≤ 5 

x, y ≥ 0 
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Some notes 

The mathematical problem given above has the form all variables continuous (i.e. can take fractional values) a 

single objective (maximize or minimize) the objective and constraints are linear i.e. any term is either a constant 

or a constant multiplied by an unknown (e.g. 24, 4x, 6y are linear terms but xy or x
2
 is a non-linear term) 

Any formulation which satisfies these three conditions is called a linear program (LP). We have (implicitly) 

assumed that it is permissible to work in fractions of days - problems where this is not permissible and variables 

must take integer values will be dealt with under Integer Programming (IP). 

Discussion 

This problem was a decision problem. 

We have taken a real-world situation and constructed an equivalent mathematical representation - such a 

representation is often called a mathematical model of the real-world situation (and the process by which the 

model is obtained is called formulating the model). 

Just to confuse things the mathematical model of the problem is sometimes called the formulation of the 

problem. 

Having obtained our mathematical model we (hopefully) have some quantitative method which will enable us to 

numerically solve the model (i.e. obtain a numerical solution) - such a quantitative method is often called an 

algorithm for solving the model. 

Essentially an algorithm (for a particular model) is a set of instructions which, when followed in a step-by-step 

fashion, will produce a numerical solution to that model. 

Our model has an objective that is something which we are trying to optimize. Having obtained the numerical 

solution of our model we have to translate that solution back into the real-world situation. 

"OR is the representation of real-world systems by mathematical models together with the use of 

quantitative methods (algorithms) for solving such models, with a view to optimizing." 

LINEAR PROGRAMMING 

It can be recalled from the Two Mines example that the conditions for a mathematical model to be a linear 

program (LP) were: 

 

 all variables continuous (i.e. can take fractional values) single objective (minimize or maximize) 

 
 The objective and constraints are linear i.e. any term is either a constant or a constant multiplied 

by an unknown. 
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Many practical problems can be formulated as LP's there exists an algorithm (called the simplex algorithm) 

which enables us to solve LP's numerically relatively easily 

We will return later to the simplex algorithm for solving LP's but for the moment we will concentrate upon 

formulating LP's. 

Some of the major application areas to which LP can be applied are: 

Work scheduling 

 Production planning & Production process 

 Capital budgeting 

 
Financial planning 

o Blending (e.g. Oil refinery management) Farm planning 

o Distribution 

Multi-period decision problems 

 Inventory model 

 Financial models 

 Work scheduling 

 
Note that the key to formulating LP's is practice. However a useful hint is that common objectives for LP's are 

maximized profit/minimize cost. 

There are four basic assumptions in LP: 

 Proportionality 

 

 The contribution to the objective function from each decision variable is proportional to the 

value of the decision variable (The contribution to the objective function from making four soldiers 

(4 $3=$12) is exactly four times the contribution to the objective function from making one soldier 

($3) 

 The contribution of each decision variable to the LHS of each constraint is proportional to the 

value of the decision variable (It takes exactly three times as many finishing hours (2hrs 3=6hrs) to 

manufacture three soldiers as it takes to manufacture one soldier (2 hrs) 
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 Additivity 

 

 The contribution to the objective function for any decision variable is independent of the values 

of the other decision variables (No matter what the value of train (x2), the manufacture of soldier 

(x1) will always contribute 3x1 dollars to the objective function) 

 

 The contribution of a decision variable to LHS of each constraint is independent of the values of 

other decision variables (No matter what the value of x1, the manufacture of x2 uses x2 finishing 

hours and x2 carpentry hours) 

 
1

st
 implication: The value of objective function is the sum of the contributions from 

each decision variables. 

 
 2

nd
 implication: LHS of each constraint is the sum of the contributions from each 

decision variables. 

 
 Divisibility 

 

 Each decision variable is allowed to assume fractional values. If we actually can not produce a 

fractional number of decision variables, we use IP (It is acceptable to produce 1.69 trains) 

 

 Certainty 
 

 Each parameter is known with certainty 

 
FORMULATING LP 

Giapetto Example 

Giapetto's wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw materials and takes $14 of 

labor & overhead costs. Each train sells for $21, uses $9 of raw materials, and takes $10 of overhead costs. Each 

soldier needs 2 hours finishing and 1 hour carpentry; each train needs 1 hour finishing and 1 hour carpentry. 

Raw materials are unlimited, but only 100 hours of finishing and 80 hours of carpentry are available each week. 

Demand for trains is unlimited; but at most 40 soldiers can be sold each week. How many of each toy should be 

made each week to maximize profits? 

Solution: 

Decision variables completely describe the decisions to be made (in this case, by Giapetto). Giapetto must 

decide how many soldiers and trains should be manufactured each week. With this in mind, we define: 

 

 

 
 

 

IARE Optimization Techniques Page | 11 



x1 = the number of soldiers produced per week x2 = the number of trains 

produced per week 

Objective function is the function of the decision variables that the decision maker wants to maximize (revenue 

or profit) or minimize (costs). Giapetto can concentrate on maximizing the total weekly profit (z). 

Here profit equals to (weekly revenues) – (raw material purchase cost) – (other variable costs). Hence Giapetto‘s 

objective function is: 

Maximize z = 3x1 + 2x2 

Constraints show the restrictions on the values of the decision variables. Without constraints Giapetto could 

make a large profit by choosing decision variables to be very large. Here there are three constraints: 

Finishing time per week 

Carpentry time per week 

Weekly demand for soldiers 

Sign restrictions are added if the decision variables can only assume nonnegative values (Giapetto can not 

manufacture negative number of soldiers or trains!) 

All these characteristics explored above give the following Linear Programming (LP) model 
 

 
max z = 3x1 + 2x2 (The Objective function) 

s.t.2x1 + x2 100 (Finishing constraint) 

x1 + x2 80 (Carpentry constraint) 

x1 40 (Constraint on demand for soldiers) 

x1, x2 > 0 (Sign restrictions) 

 

A value of (x1, x2) is in the feasible region if it satisfies all the constraints and sign restrictions. 

 
Graphically and computationally we see the solution is (x1, x2) = (20, 60) at which z =180 (Optimal solution) 

Report 

The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is limited by the carpentry 

and finishing labor available. Profit could be increased by buying more labor. 
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Advertisement Example 

Dorian makes luxury cars and jeeps for high-income men and women. It wishes to advertise with 1 minute spots 

in comedy shows and football games. Each comedy spot costs $50K and is seen by 7M high-income women and 

2M high-income men. Each football spot costs $100K and is seen by 2M high-income women and 12M high- 

income men. How can Dorian reach 28M high-income women and 24M high-income men at the least cost? 

Solution: 

The decision variables are 

x1 = the number of comedy spots 

x2 = the number of football spots 

The model of the problem: 

Min z = 50x1 + 100x2 

St  7x1 +2x2 >=28 

2x1 +12x2 >+24 

x1, x2 >= 0 

The graphical solution is z = 320 when (x1, x2) = (3.6, 1.4). From the graph, in this problem rounding up to (x1, 

x2) = (4, 2) gives the best integer solution. 

Report 

The minimum cost of reaching the target audience is $400K, with 4 comedy spots and 2 football slots. The 

model is dubious as it does not allow for saturation after repeated viewings. 

Diet Example 

Ms. Fidan‘s diet requires that all the food she eats come from one of the four ―basic food groups―. At present, 

the following four foods are available for consumption: brownies, chocolate ice cream, cola, and pineapple 

cheesecake. Each brownie costs 0.5$, each scoop of chocolate ice cream costs 0.2$, each bottle of cola costs 

0.3$, and each pineapple cheesecake costs 0.8$. Each day, she must invest at least 500 calories, 6 oz of 

chocolate, 10 oz of sugar, and 8 oz of fat. The nutritional content per unit of each food is shown in Table. 

Formulate an LP model that can be used to satisfy her daily nutritional requirements at minimum cost. 

 

 
   Calories Chocolate Sugar Fat 

      (ounces) (ounces) (ounces) 

Brownie   400   3 2 2 
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Choc. ice cream (1 scoop)  200   2 2 4 

Cola (1 bottle)   150   0 4 1 

Pineapple cheesecake (1 piece)  500   0 4 5 

Solution:         

The decision variables:        

x1: number of brownies eaten daily     

x2: number of scoops of chocolate ice cream eaten daily  

x3: bottles of cola drunk daily      

x4: pieces of pineapple cheesecake eaten daily   

The objective function (the total cost of the diet in cents):   

min w = 50x1 + 20x2 + 30x3 + 80x4     

Constraints:         

400x1 + 200x2 + 150x3 + 500x4 > 500 (daily calorie intake) 

3x1 + 2x2   > 6 (daily chocolate intake) 

2x1 + 2x2 +4x3 + 4x4 > 10 (daily sugar intake) 

 

 
 

2x1 + 4x2 + x3 + 5x4 > 8 (daily fat intake) 

xi ≥ 0, i = 1, 2, 3, 4  (Sign restrictions!) 

 

 

Report 

The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of chocolate and drinking 1 bottle of 

cola (w = 90, x2 = 3, x3 = 1 

Post Office Example 

A PO requires different numbers of employees on different days of the week. Union rules state each employee 

must work 5 consecutive days and then receive two days off. Find the minimum number of employees needed. 

 
 

 Mon Tue Wed Thur Fri Sat Sun 

Staff Needed 17 13 15 19 14 16 11 
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Solution: 

The decision variables are xi (# of employees starting on day i) 

Mathematically we must 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

The solution is (xi) = (4/3, 10/3, 2, 22/3, 0, 10/3, 5) giving z = 67/3. 

We could round this up to (xi) = (2, 4, 2, 8, 0, 4, 5) giving z = 25 (may be wrong!). However restricting the 

decision ver. to be integers and using Linda again gives (xi) = (4, 4, 2, 6, 0, 4, 3) giving z = 23. 

 
Sailco Example 

Sailco must determine how many sailboats to produce in the next 4 quarters. The demand is known to be 40, 

60, 75, and 25 boats. Sailco must meet its demands. At the beginning of the 1
st
 quarter Sailco starts with 10 

boats in inventory. Sailco can produce up to 40 boats with regular time labor at $400 per boat, or additional 

boats at $450 with overtime labor. Boats made in a quarter can be used to meet that quarter's demand or held in 

inventory for the next quarter at an extra cost of $20.00 per boat. 

Solution: 

The decision variables are for t = 1,2,3,4 

xt = # of boats in quarter t built in regular time yt = # of boats in 

quarter t built in overtime 

For convenience, introduce variables: 
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it = # of boats in inventory at the end quarter t dt = demand in 

quarter t 

We are given that d1 = 40, d2 = 60, d3 = 75, d4 = 25, i0 =10 

xt ≤ 40, t 

 

 
By logic it = it-1+ xt + yt - dt, t. 

 
 

Demand is met if it ≥ 0, t 

 
 

(Sign restrictions xt, yt ≥ 0, t) 

We need to minimize total cost z subject to these three sets of conditions where z = 400 (x1 + x2 + x3 + 

x4) + 450 (y1 + y2 + y3 + y4) + 20 (i1 + i2 + i3 + i4) 

Report: 

Linda reveals the solution to be (x1, x2, x3, x4) = (40, 40, 40, 25) and (y1, y2, y3, y4) = (0, 10, 35, 0) and the 

minimum cost of $78450.00 is achieved by the schedule 

 

  Q1 Q2 Q3 Q4 

Regular time (xt)  40 40 40 25 

Overtime (yt)  0 10 35 0 

Inventory (it) 10 10 0 0 0 

Demand (dt)  40 60 75 25 

Customer Service Level Example 

CSL services computers. Its demand (hours) for the time of skilled technicians in the next 5 months is 
 

 

 

 

 

 

 

It starts with 50 skilled technicians at the beginning of January. Each technician can work 160 hrs/ month. To 

train a new technician they must be supervised for 50 hrs by an experienced technician for a period of one 

month time. Each experienced 
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technician is paid $2K/month and a trainee is paid $1K/month. Each month 5% of the skilled technicians leave. 

CSL needs to meet demand and minimize costs. 

Solution: 
 

The decision variable is 

xt = # to be trained in month t 

We must minimize the total cost. For convenience let yt = # experienced 

tech. at start of t
th
 month dt = demand during month t 

Then we must 

Min z = 2000 (y1+...+ y5) + 1000 (x1 +...+ x5) 

Subject to 

160yt - 50xt ≥ dt for t = 1,..., 5 

y1 = 50, d1 = 6000, d2 = 7000, d3 = 8000, d4 = 9500, d5 = 11000 

yt = .95yt-1 + xt-1for t = 2,3,4,5 

xt, yt ≥0 

SOLVING LP 

LP Solutions: Four Cases 

When an LP is solved, one of the following four cases will occur: 

1. The LP has a unique optimal solution. 

 
2. The LP has alternative (multiple) optimal solutions. It has more than one (actually an infinite number 

of) optimal solutions 

 

3. The LP is infeasible. It has no feasible solutions (The feasible region contains no points). 

 
4. The LP is unbounded. In the feasible region there are points with arbitrarily large (in a max problem) 

objective function values. 

The Graphical Solution 

Any LP with only two variables can be solved graphically 

Example 1. Giapetto 

Since the Giapetto LP has two variables, it may be solved graphically. 

Solution: 

The feasible region is the set of all points satisfying the constraints. 
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max z = 3x1 + 2x2  

s.t. 2x1 + x2 ≤ 100 (Finishing constraint) 

 x1 + x2 ≤ 80 (Carpentry constraint) 

 x1  ≤ 40 (Demand constraint) 

 x1, x2 ≥ 0 (Sign restrictions) 

The set of points satisfying the LP is bounded by the five sided polygon DGFEH. Any point on or in the interior 

of this polygon (the shade area) is in the feasible region. Having identified the feasible region for the LP, a 

search can begin for the optimal solution which will be the point in the feasible region with the largest z-value 

(maximization problem). 

To find the optimal solution, a line on which the points have the same z-value is graphed. In a max problem, 

such a line is called an isoprofit line while in a min problem; this is called the isocost line. (The figure shows 

the isoprofit lines for z = 60, z = 100, and z = 180). 
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In the unique optimal solution case, isoprofit line last hits a point (vertex - corner) before leaving the feasible 

region. 

The optimal solution of this LP is point G where (x1, x2) = (20, 60) giving z = 180. 

A constraint is binding (active, tight) if the left-hand and right-hand side of the constraint are equal when the 

optimal values of the decision variables are substituted into the constraint. 

A constraint is nonbinding (inactive) if the left-hand side and the right-hand side of the constraint are unequal 

when the optimal values of the decision variables are substituted into the constraint. 

In Giapetto LP, the finishing and carpentry constraints are binding. On the other hand the demand constraint for 

wooden soldiers is nonbinding since at the optimal solution x1 < 40 (x1 = 20). 

Example 2. Advertisement 

Since the Advertisement LP has two variables, it may be solved graphically. 

Solution: 

The feasible region is the set of all points satisfying the constraints. 

min z = 50x1 + 100x2 

 

 

s.t. 7x1 + 2x2 ≥ 28 (high income women) 

 2x1 + 12x2 ≥ 24 (high income men) 

 x1, x2 ≥ 0  
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6  

 z = 600 

4 z = 320 

 
 

 A    C   

2 4 6 8 10 12 14 X1 

 

 

Since Dorian wants to minimize total advertising costs, the optimal solution to the problem is the point in the 

feasible region with the smallest z value. 

An isocost line with the smallest z value passes through point E and is the optimal solution at x1 = 3.6 and x2 = 

 giving z = 320. 

 
Both the high-income women and high-income men constraints are satisfied, both constraints are binding 

 
Example 3. Two Mines 

min 180x + 160y 
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st 6x + y ≥ 12 

3x + y ≥ 8 

4x + 6y ≥ 24 

x ≤ 5 

y ≤ 5 

x, y ≥ 0 

Solution: 
 

 

 

 
 

. 

 

 

 

 

 

 

 

 

 

 

 
Optimal sol‘n is 765.71. 1.71 days mine X and 2.86 days mine Y are operated. 

 

 
 

Example 4. Modified Giapetto 

max z = 4x1 + 2x2 

s.t. 2x1 + x2 ≤ 100 (Finishing constraint) 

 x1 + x2 ≤ 80 (Carpentry constraint) 

 x1  ≤ 40 (Demand constraint) 

 x1, x2 ≥ 0  (Sign restrictions) 
 

Solution: 

Points on the line between points G (20, 60) and F (40, 20) are the alternative 

optimal solutions (see figure below). 

Thus, for 0 ≤ c ≤ 1, 

[20 60] + (1 - c) [40 20] = [40 - 20c, 20 + 40c] will be optimal 
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For all optimal solutions, the optimal objective function value is 200 

 

 

 

 

 

 
100 B 

 

 

 

 

80 D 
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Example 5. Modified Giapetto 

Add constraint x2 ≥ 90 (Constraint on demand for trains). 

Solution: 

No feasible region: Infeasible LP 

Example 6. Modified Giapetto 

Only use constraint x2 ≥ 90 

Solution: 
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Isoprofit line never lose contact with the feasible region: Unbounded LP 

The Simplex Algorithm 

Note that in the examples considered at the graphical solution, the unique optimal solution to the LP occurred at 

a vertex (corner) of the feasible region. In fact it is true that for any LP the optimal solution occurs at a vertex of 

the feasible region. This fact is the key to the simplex algorithm for solving LP's. 

Essentially the simplex algorithm starts at one vertex of the feasible region and moves (at each iteration) to 

another (adjacent) vertex, improving (or leaving unchanged) the objective function as it does so, until it reaches 

the vertex corresponding to the optimal LP solution. 

The simplex algorithm for solving linear programs (LP's) was developed by Dantzig in the late 1940's and since 

then a number of different versions of the algorithm have been developed. One of these later versions, called the 

revised simplex algorithm (sometimes known as the "product form of the inverse" simplex algorithm) forms the 

basis of most modern computer packages for solving LP's. 

Steps 

 Convert the LP to standard form 

 
1. Obtain a basic feasible solution (bfs) from the standard form 

 
2. Determine whether the current bfs is optimal. If it is optimal, stop. 

 
3. If the current bfs is not optimal, determine which non basic variable should become a basic variable and 

which basic variable should become a non basic variable to find a new bfs with a better objective 

function value 

4. Go back to Step 3. 

 

Related concepts: 

 Standard form: all constraints are equations and all variables are nonnegative 

 
 bfs: any basic solution where all variables are nonnegative 

 
 Non basic variable: a chosen set of variables where variables equal to 0 

 
 Basic variable: the remaining variables that satisfy the system of equations at the standard form 
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Example 1. Dakota Furniture 

Dakota Furniture makes desks, tables, and chairs. Each product needs the limited resources of lumber, carpentry 

and finishing; as described in the table. At most 5 tables can be sold per week. Maximize weekly revenue. 

 

Resource Desk Table Chair Max Avail. 

Lumber (board ft.) 8 6 1 48 

Finishing hours 4 2 1.5 20 

Carpentry hours 2 1.5 .5 8 

Max Demand unlimited 5 unlimited  

Price ($) 60 30 20  

 
LP Model: 

Let x1, x2, x3 be the number of desks, tables and chairs produced. 

Let the weekly profit be $z. Then, we must 

 
max z = 60x1 + 30x2 + 20x3  

s.t. 8x1 + 6x2 + x3 ≤ 48 

 4x1 + 2x2 + 1.5 x3 ≤ 20 

 2x1 + 1.5x2 + .5 x3 ≤ 8 

   x2  ≤ 5 

 x1, x2, x3 ≥ 0   

 

 

Solution with Simplex Algorithm 

First introduce slack variables and convert the LP to the standard form and write a canonical for 
 

 
 

R0 z -60x1 -30x2 -20x3   = 0 

R1  8x1 + 6x2 + x3 + s1  = 48 

R2  4x1 + 2x2 +1.5x3 + s2  = 20 

R3  2x1 + 1.5x2 + .5x3  + s3 = 8 

R4   x2   + s4 = 5 
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x1, x2, x3, s1, s2, s3, s4 ≥ 

 

 
Obtain a starting bfs. 

As (x1, x2, x3) = 0 is feasible for the original problem, the below given point where three of the variables equal 

0 (the non-basic variables) and the four other variables (the basic variables) are determined by the four 

equalities is an obvious bfs: 

 
x1 = x2 = x3 = 0, s1 = 48, s2 = 20, s3 = 8, s4 = 5. 

Determine whether the current bfs is optimal. 

Determine whether there is any way that z can be increased by increasing some nonbasic variable. 

 
If each nonbasic variable has a nonnegative coefficient in the objective function row (row 0), current bfs is 

optimal. 

However, here all nonbasic variables have negative coefficients: It is not optimal. 

Find a new bfs 

Increases most rapidly when x1 is made non-zero; i.e. x1 is the entering variable. 

 
Examining R1, x1 can be increased only to 6. More than 6 makes s1 < 0. Similarly R2, R3, and R4, give limits 

of 5, 4, and no limit for x1 (ratio test). The smallest ratio is the largest value of the entering variable that will 

keep all the current basic variables nonnegative. Thus by R3, x1 can only increase to x1 = 4 when s3 becomes 0. 

We say s3 is the leaving variable and R3 is the pivot equation. 

Now we must rewrite the system so the values of the basic variables can be 

 
 read off.        

The new pivot equation (R3/2) is      

 R3
‘
: x1+.75x2+.25x3+ .5s3 = 4    

Then use R3
‘
 to eliminate x1 in all the other rows.   

 R0‘=R0+60R3‘, R1‘=R1-8R3‘, R2‘=R2-4R3‘, R4‘=R4  

R0
‘
 z + 15x2 - 5x3   + 30s3 = 240 z = 240 

R1
‘
   - x3  + s1 - 4s3 = 16 s1 = 16 

R2
‘
  - x2 + .5x3  + s2 - 2s3 = 4 s2 = 4 
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R3
‘
 x1 + .75x2 + .25x3  + .5s3 = 4 x1 = 4 

R4
‘
  x2    + s4  = 5 s4 = 5 

 

The new bfs is x2 = x3 = s3 = 0, x1 = 4, s1 = 16, s2 = 4, s4 = 5 making z = 240. 

Check optimality of current bfs. Repeat steps until an optimal solution is reached 

We increase z fastest by making x3 non-zero (i.e. x3 enters). 

x3 can be increased to at most x3 = 8, when s2 = 0 ( i.e. s2 leaves.) 

Rearranging the pivot equation gives 

R2
‘‘
- 2x2 + x3 + 2s2 - 4s3 = 8(R2

‘
× 2). 

Row operations with R2
‘‘
 eliminate x3 to give the new system 

R0‘‘= R0‘ + 5R2‘‘,R1‘‘ = R1‘ + R2‘‘,R3‘‘ = R3‘ - .5R2‘‘, R4‘‘ = R4‘ 

The bfs is now x2 = s2 = s3 = 0, x1 = 2, x3 = 8, s1 = 24, s4 = 5 making z = 280. 

Each non basic variable has a nonnegative coefficient in row 0 (5x2, 10s2, 10s3). 

THE CURRENT SOLUTION IS OPTIMAL 

Report: Dakota furniture‘s optimum weekly profit would be 280$ if they produce 2 desks and 8 chairs. 

 
This was once written as a tableau. 

(Use tableau format for each operation in all HW and exams!!!) 
 

 
 

 max z = 60x1 + 30x2 + 20x3       

 s.t.  8x1 +  6x2 + x3 ≤ 48      

   4x1 +  2x2 + 1.5x3 ≤ 20      

   2x1 + 1.5x2 + .5x3 ≤ 8      

     x2 ≤ 5      

  x1, x2, x3 > 0        

Initial tableau: 

z 
x1  x2  x3 s1 s2 s3 s4 

RHS BV Ratio 

1 -60 -30 -20 0 0 0 0 0 z = 0  

0 8 6 1 1 0 0 0 48 s1 = 48 6 
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0 4 2 1.5 0 1 0 0 20 s2 = 20 5 

0 2 1.5 0.5 0 0 1 0 8 s3 = 8 4 

0 0 1 0 0 0 0 1 5 s4 = 5 - 

 
 

First tableau: 
 
 

z x x x s s s s RHS  BV Ratio 

 1 2 3 1 2 3 4      

1 0 15 -5 0 0 30 0 240 z = 240  

0 0 0 -1 1 0 -4 0 16 s  

1 

= 16 - 

            

0 0 -1 0.5 0 1 -2 0 4 s = 4 8 

          2   

0 1 0.75 0.25 0 0 0.5 0 4 x = 4 16 

          1   

0 0 1 0 0 0 0 1 5 s = 5 - 

          4   

 
 

Second and optimal tableau: 
 
 

z x x x s  

1 

s s s RHS  BV Ratio 

 1 2 3  2 3 4      

1 0 5 0 0 10 10 0 280 z = 280  

0 0 -2 0 1 2 -8 0 24 s  

1 

= 24  

             

0 0 -2 1 0 2 -4 0 8 x = 8  

           3   

0 1 1.25 0 0 -0.5 1.5 0 2 x = 2  

           1   
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0 0 1 0 0 0 0 1 5 s = 5  

          4   

Example 2. Modified Dakota Furniture 

Dakota example is modified: $35/table 

new z = 60 x1 + 35 x2 + 20 x3 

Second and optimal tableau for the modified problem: 
 

 
            

 z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

            

1 0 0 0 0 10 10 0 280 z=280  

0 0 -2 0 1 2 -8 0 24 s1=24 - 

0 0 -2 1 0 2 -4 0 8 x3=8 - 

0 1 1.25 0 0 -0.5 1.5 0 2 x1=2 2/1.25 

0 0 1 0 0 0 0 1 5 s4=5 5/1 

Another optimal tableau for the modified problem: 

  

z 

 

x1 

 

x2 

 

x3 

 

s1 

 

s2 

 

s3 

 

s4 

 

RHS 

 

BV 

 

  

            

1 0 0 0 0 10 10 0 280 z=280  

0 1.6 0 0 1 1.2 -5.6 0 27.2 s1=27.2  

0 1.6 0 1 0 1.2 -1.6 0 11.2 x3=11.2  

0 0.8 1 0 0 -0.4 1.2 0 1.6 x2=1.6  

0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4=3.4  

            

Therefore the optimal solution is as follows: 

z = 280 and for 0 ≤ c ≤ 1 

x1  2  0  2c 

x2 = c 0 + (1 – c) 1.6 = 1.6 – 1.6c 

 
IARE Optimization Techniques Page | 28 



x3  8  11.2  11.2 – 3.2c 

 
 

Example 3. Unbounded LPs  
 

 z x1 x2 x3 s1 s2 z RHS BV Ratio 

           

1 0 2 -9 0 12 4 100 z=100  

0 0 1 -6 1 6 -1 20 x4=20 None 

0 1 1 -1 0 1 0 5 x1=5 None 

 

Since ratio test fails, the LP under consideration is an unbounded LP. 

The Big M Method 

If an LP has any ≥ or = constraints, a starting bfs may not be readily apparent. 

When a bfs is not readily apparent, the Big M method or the two-phase simplex method may be used to solve 

the problem. 

The Big M method is a version of the Simplex Algorithm that first finds a bfs by adding "artificial" variables to 

the problem. The objective function of the original LP must, of course, be modified to ensure that the artificial 

variables are all equal to 0 at the conclusion of the simplex algorithm. 

Steps 
 

 

1. Modify the constraints so that the RHS of each constraint is nonnegative (This requires that each 

constraint with a negative RHS be multiplied by -1. Remember that if you multiply an inequality by 

any negative number, the direction of the inequality is reversed!). After modification, identify each 

constraint as a ≤, ≥ or = constraint. 

2. Convert each inequality constraint to standard form (If constraint i is a ≤ constraint, we add a slack 

variable si; and if constraint i is a ≥ constraint, we subtract an excess variable ei). 

 

3. Add an artificial variable ai to the constraints identified as ≥ or = constraints at the end of Step 1. 

Also add the sign restriction ai ≥ 0. 

 

4. Let M denote a very large positive number. If the LP is a min problem, add (for each artificial 

variable) Mai to the objective function. If the LP is a max problem, add (for each artificial variable) 

-Mai to the objective function. 
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5. Since each artificial variable will be in the starting basis, all artificial variables must be eliminated 

from row 0 before beginning the simplex. Now solve the transformed problem by the simplex (In 

choosing the entering variable, remember that M is a very large positive number!). 

If all artificial variables are equal to zero in the optimal solution, we have found the optimal solution to the 

original problem. 

If any artificial variables are positive in the optimal solution, the original problem is infeasible!!! 

 
Example 1. Orange Juice 

Bevco manufactures an orange flavored soft drink called Orange by combining orange soda and orange juice. 

Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. Each ounce of orange juice contains 

 oz of sugar and 3 mg of vitamin C. It costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to 

produce an ounce of orange juice. Marketing department has decided that each 10 oz bottle of Orange 

must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use LP to determine how Bevco can 

meet marketing dept.‘s requirements at minimum cost. 

LP Model: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a bottle of Oranj. 
 

 
min z = 2x1 + 3x2    

s.t. 0.5 x1 + 0.25 x2 ≤ 4 (sugar const.) 

 x1+ 3 x2 ≥ 20 (vit. C const.) 

 x1+ x2 = 10 (10 oz in bottle) 

 x1, x2 ≥ 0    

Solving Orange Example with Big M Method 

1. Modify the constraints so that the RHS of each constraint is nonnegative 

The RHS of each constraint is nonnegative 

2. Convert each inequality constraint to standard form 

 
z – 2x1 – 3x2  = 0 

0.5x1 + 0.25x2 + s1 = 4 

x1 + 3x2 - e2 = 20 

x1 + x2  = 10 
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3. Add ai to the constraints identified as  > or = const.s  
 

 
z – 2x1 – 3x2  = 0 Row 0 

0.5x1 + 0.25x2 + s1 = 4 Row 1 

x1 + 3x2 - e2 + a2 = 20 Row 2 

x1 + x2  + a3 = 10 Row 3 

 

all variables nonnegative 

4. Add Mai to the objective function (min problem)  

 
 

min z = 2x1 + 3x2 + Ma2 + Ma3 

 
 

Row 0 will change to 

 
 

z – 2x1 – 3x2 – Ma2 – Ma3 = 

5. Since each artificial variable are in our starting bfs, they must be eliminated from row 0 
 

New Row 0 = Row 0 + M * Row 2 + M * Row 3 

 

 
z + (2M–2) x1 + (4M–3) x2 – M e2 =  30M New Row 0 

Initial tableau: 
 

z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0 30M z=30M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 20 a2=20 20/3* 

0 1 1 0 0 0 1 10 a3=10 10 
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all variables nonnegative 



In main problem, entering variable is the variable that has the “most positive” coefficient in row 0! 

 
First tableau: 

 

 
              

 z  x1 x2 s1 e2 a2 a3  RHS BV Ratio 

           

1 (2M-3)/3 0 0 (M-3)/3 (3-4M)/3 0  20+3.3Mz  

0 5/12 0 1 1/12 -1/12 0  7/3 s1 28/5 

0  1/3 1 0 -1/3 1/3 0  20/3 x2 20 

            

a3 

 

0  2/3 0 0 1/3 -1/3 1  10/3 5* 

Optimal table:  
 

  

z 

 

x1 

 

x2 

 

s1 

 

e2 

 

a2 

 

a3 

   

RHS 

 

BV 

 

    

            

1 0 0 0 -1/2 (1-2M)/2 (3-2M)/2   25 z=25  

0 0 0 1 -1/8 1/8 -5/8   1/4 s1=1/4  

0 0 1 0 -1/2 1/2 -1/2   5 x2=5  

0 1 0 0 1/2 -1/2 3/2   5 x1=5  

Report: 

In a bottle of Orange, there should be 5 oz orange soda and 5 oz orange juice. 

In this case the cost would be 25¢. 

Example 2. Modified Orange Juice 

Consider Bevco‘s problem. It is modified so that 36 mg of vitamin C are required. 

Related LP model is given as follows: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a bottle of Oranj. 
 

 
  min z = 2x1 + 3x2          

  s.t. 0.5 x1 + 0.25 x2 ≤ 4  (sugar const.)    
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   x1+ 3 x2 ≥ 36  (vit. C const.)    

   x1+ x2 = 10  (10 oz in bottle)    

  x1, x2 ≥ 0          

Solving with Big M method:  
 

Initial tableau:  
 

 z x1 x2 s1 e2 a2 a3  RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0  46M z=46M   

0 0.5 0.25 1 0 0 0 4 s1=4 16  

0 1 3 0 -1 1 0 36 a2=36 36/3 

0 1 1 0 0 0 1 10 a3=10 10 

Optimal tableau:  
 

 z x1 x2 s1 e2 a2 a3  RHS BV   

1 1-2M 0 0 -M 0 3-4M  30+6M z=30+6M 

0 1/4 0 1 0 0 -1/4  3/2 s1=3/2 

0 -2 0 0 -1 1 -3  6 a2=6 

0 1 1 0 0 0 1  10 x2=10 

 

An artificial variable (a2) is BV so the original LP has no feasible solution 

Report: 

It is impossible to produce Orange under these conditions. 
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UNIT-II 
 

INTRODUCTION: 
 

In Optimization Techniques Linear programming is  one  of  the  model  in  mathematical  programming,  

which is very broad and vast. Mathematical programming includes many more optimization models known as 
Non - linear Programming, Stochastic programming, Integer Programming and Dynamic Programming, each one 

of them is an efficient optimization technique to solve the problem with a specific structure, which depends on 

the assumptions made in formulating the model. We can remember that the general linear programming model is 
based on the assumptions: 

(a) Certainty 

The resources available and the requirement of resources by competing candidates, the profit 

Coefficients of each variable are assumed to remain unchanged and they are certain in nature. 

(b) Linearity 

The objective function and structural constraints are assumed to be linear. 

(c) Divisibility 

All variables are assumed to be continuous; hence they can assume integer or fractional values. 

(d) Single stage 

The model is static and constrained to one decision only. And planning period is assumed to be 

fixed. 

(e) Non-negativity 

A non-negativity constraint exists in the problem, so that the values of all variables are to be 0, 
i.e. the lower limit is zero and the upper limit may be any positive number. 

(f) Fixed technology 

Production requirements are assumed to be fixed during the planning period. 

 
(g) Constant profit or cost per unit 

Regardless of the production schedules profit or cost remains constant. 

Now let us examine the applicability of linear programming model for transportation and 
Assignment models. 

The transportation model deals with a special class of linear programming problem in which the objective is to 

transport a homogeneous commodity from various origins  or factories to different destinations  or  markets  at  

a total minimum cost. 

COMPARISON BETWEEN TRANSPORTATION MODEL AND GENERAL LINEAR 

PROGRAMMING MODEL 
 

Similarities 
 

 Both have objective function.

 Both have linear objective function.

 Both have non - negativity constraints.

 Both can be solved by simplex method. In transportation model it is laborious.
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 A general linear programming problem can be reduced to a transportation problem if (a) the aij's 

(coefficients of the structural variables in the constraints) are restricted to the values 0 and/or 1 and (b) 

There exists homogeneity of units among the constraints.

Differences: 

 Transportation model is basically a minimization model; whereas general linear programming model may be of 

maximization type or minimizationtype.

 The resources, for which, the structural constraints are built up is homogeneous in transportation model; 

where as in general linear programming model they are different. That is one of the constraint may relate to 

machine hours and next one may relate to man-hours etc. In transportation problem, all the constraints are 

related to one particular resource or commodity, which is manufactured by the factories and demanded by 

the market points.

 The transportation problem is solved by transportation algorithm; where as the general linear programming 

problem is solved by simplex method.

 The values of structural coefficients (i.e. xij) are not restricted to any value in general linear programming 

model, where as it is restricted to values either 0 or 1 in transportation problem. Say for example:

Let one of the constraints in general linear programming model is: 2x –3y +10z 

structural variables x, y and z may negative numbers or positive numbers of zeros. Where as in transportation 

model, say for example x11 + x12 + x13 + x14 = bi = 20. Suppose the value of variables x11, and x14 are 10 

each, then 10 + 0. x12 + 0. x13 + 10 = 20. Hence the coefficients of x11 and x14 are 1 and that of x12 and x13 

are zero. 

APPROACH TO SOLUTION TO A TRANSPORTATION PROBLEM BY USING 

TRANSPORTATION ALGORITHM 

The steps used in getting a solution to a transportation problem are given below: 

 
Initial Basic Feasible Solution 

Step I. Balancing the given problem. Balancing means check whether sum of availability constraints must be 

equals to sum of requirement constraints. That is abi = ad j . Once they are equal go to step two. If not by 

opening a Dummy row or Dummy column balance the problem. 

Step II. A .Basic feasible solution can be obtained by three methods, they are 

North - west corner method. 

Least - cost cell method. (Or Inspection method Or Matrix minimum - row minimum - column minimum 

method) 

Vogel's Approximation Method, generally known as VAM. After getting the basic feasible solution (b.f.s.) give 

optimality test to check whether the solution is optimal or not. 

There are two methods of giving optimality test: 

Stepping Stone Method. 

Modified Distribution Method, generally known as MODI method. 

Properties of a Basic feasible Solution 
 

 The allocation made must satisfy the rim requirements, i.e., it must satisfy availability constraints and 

requirement constraints.

 should satisfy non negativity constraint.
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 Total number of allocations must be equal to (m + n – 1), where 'm' is the number of rows and 'n' is the 

number of columns. Consider a value of m = 4 and n = 3, i.e. 4 × 3 matrix. This will have four constraints of

Totally it will have 4 + 3 (i.e m + n) inequalities. If we consider them 

as equations, for solution purpose, we will have 7 equations. In case, if we use simplex method to solve the 

problem, only six rather than seen structural constraints need to be specified. In view of the fact that the sum 

of the origin capacities (availability constraint) equals to the destination requirements (requirement 

constraint). 

Basic Feasible Solution by North - West corner Method 

Let us take a numerical example and discuss the process of getting basic feasible solution by various methods.  

Example 1: 

Four factories, A, B, C and D produce sugar and the capacity of each factory is given below: Factory A produces 

10 tons of sugar and B produces 8 tons of sugar, C produces 5 tons of sugar and that of D is 6 tons of sugar. The 

sugar has demand in three markets X, Y and Z. The demand of market X is 7 tons, that of market Y is 12 tons 

and the demand of market Z is 4 tons. The following matrix gives the transportation cost of 1 ton of sugar from 

each factory to the destinations. Find the Optimal Solution for least cost transportation cost. 

 

 
Factories. 

Cost in Rs. per ton (× 100) 

Markets. 
 

Availability in tons. 

X Y Z 

A 4 3 2 10 

B 5 6 1 8 

C 6 4 3 5 

D 3 5 4 6 

Requirement in 

tons. 

7 12 4 b = 29, d = 23 

 
Here ab is greater than ad hence we have to open a dummy column whose requirement constraint is 6, so that total 

of availability will be equal to the total demand. Now let get the basic feasible solution by three different methods 

and see the advantages and disadvantages of these methods. After this let us give optimality test for the obtained 

basic feasible solutions. 

North- west corner method: 

 

 Balance the problem. That is see whether abi = ad j . If not open a dummy column or dummy row as the  

case may be and balance the problem.

 Start from the left hand side top corner or cell and make allocations depending on the availability and 

requirement constraint. If the availability constraint is less than the requirement constraint, then for that cell 

make allocation in units which is equal to the availability constraint. In general, verify which is the smallest 

among the availability and requirement and allocate the smallest one to the cell under question. Then proceed 

allocating either sidewise or down- ward to satisfy the rim requirement. Continue this until all the allocations 

are over.

 Once all the allocations are over, i.e., both rim requirement (column and row i.e., availability and requirement 

constraints) are satisfied, write allocations and calculate the cost of transportation
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Solution by North-west corner method: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For cell AX the availability constraint is 10 and the requirement constraint is 7. Hence 7 is smaller than 10, 

allocate 7 to cell AX. Next 10 – 7 = 3, this is allocated to cell AY to satisfy availability requirement. Proceed in 

the same way to complete the allocations. Then count the allocations, if it is equals to m + n – 1, then the 

solution is basic feasible solution. The solution, we got have 7 allocations which is = 4 + 4 – 1 = 7. Hence the 

solution is basic feasible solution. 
 

 

 

 

 

 

 

 

 

 
 

 

 

Now allocations are: 
 
 

From To Units in tons Cost in Rs. 

A X 7 7 × 4 = 28 

A Y 3 3 × 3 = 09 

B Y 8 8 × 6 = 48 

C Y 1 1 × 4 = 04 

C Z 4 4 × 3 = 12 

D Z 1 1 × 4 = 04 

D DUMMY 5 5 × 0 = 00 
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 Total in 

Rs. 

 105 

 

Solution by Least cost cell (or inspection) Method: (Matrix Minimum method): 
 

(i) Identify the lowest cost cell in the given matrix. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Allocations are: 

 

From To Units in tons Cost in Rs. 

A Y 8 8 × 3 = 24 

A Z 2 2 × 2 = 04 

B Z 3 3 × 1 = 03 

B DUMMY 5 5 × 0 = 00 

C X 1 1 × 6 = 06 

C Y 4 4 × 4 = 16 

D X 6 6 × 3 = 18 

  Total in Rs. 71 

 

Solution by Vogel‟s Approximation Method: (Opportunity cost method) 

In this method, we use concept of opportunity cost. Opportunity cost is the penalty for not taking correct 

decision. To find the row opportunity cost in the given matrix deducts the smallest element in the row from the 

next highest element. Similarly to calculate the column opportunity cost, deduct smallest element in the column 

from the next highest element. Write row opportunity costs of each row just by the side of availability constraint 
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and similarly write the column opportunity cost of each column just below the requirement constraints. These are 

known as penalty column and penalty row. 

 
 Write row opportunity costs and column opportunity costs as described above.

 Identify the highest opportunity cost among all the opportunity costs and write a tick mark at that element.

 If there are two or more of the opportunity costs which of same magnitude, then select any one of them, to 

break the tie. While doing so, see that both availability constraint and requirement constraint are 

simultaneously satisfied. If this happens, we may not get basic feasible solution i.e solution with m + n – 1 

allocations. As far as possible see that both are not satisfied simultaneously. In case if inevitable, proceed 

with allocations. We may not get a solution with, m + n – 1 allocations. For this we can allocate a small 

element epsilon to any one of the empty cells. This situation in transportation problem is known as 

degeneracy. (This will be discussed once again when we discuss about optimal solution).

In transportation matrix, all the cells, which have allocation, are known as loaded cells and those, which have  

no allocation, are known as empty cells. 

(Note: All the allocations shown in matrix 1 to 6 are tabulated in the matrix given below:) 
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Fro 

m 

To Load Cost in Rs. 

A X 3 3 × 4 = 12 

A Y 7 7 × 3 = 21 

B X 3 3 × 5 = 15 

B Z 5 5 × 1 = 05 

C Y 5 5 × 4 = 20 

D X 1 1 × 3 = 03 

D DUMM 

Y 

5 5 × 0 = 00 

  Total 

Rs. 
76 
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Now let us compare the three methods of getting basic feasible solution: 
 
 

North – west corner 
method. 

Inspection or least cost 

cell method 
Vogel‘s Approximation 
Method. 

1. The allocation is made 

from the left hand side 

top corner irrespective of 

the cost of the cell. 

The allocations are made 

depending on the cost of 

the cell. Lowest cost is first 

selected and then next 
highest etc. 

The allocations are made 

depending on the 
opportunity cost of the cell. 

2. As no consideration is 

given to the cost of the 
cell, naturally the 

total 

transportation cost will 

be higher than the other 
methods. 

As the cost of the cell is 

considered while making 
allocations, the total cost of 

transportation will be 

comparatively less. 

As the allocations are made 

depending on the 
opportunity cost of the cell, 

the basic feasible solution 

obtained will be very nearer 

to optimal solution. 

3. It takes less time. This 

method is suitable to get 

basic feasible solution 

quickly. 

The basic feasible solution, 

we get will be very nearer 

to optimal solution. It takes 

more time than northwest 
coroner method. 

It takes more time for 

getting basic Feasible 

solution. But the solution we 

get will be very nearer to 
Optimal solution. 

4. When basic feasible 
solution alone is asked, it 

is better to go for 

northwest corner method. 

When optimal solution is 
asked, better to go for 

inspection method for  

basic feasible solution and 

MODI for optimal 
solution. 

VAM and MODI is the best 
option to get optimal 

solution. 

 
 

In the problem given, the total cost of transportation for Northwest corner method is Rs. 101/-. The total cost of 

transportation for Inspection method is Rs. 71/- and that of VAM is Rs. 76/-. The total cost got by inspection 

method appears to be less. That of Northwest coroner method is highest. The cost got by VAM is in between 

Optimality Test: (Approach to Optimal Solution) 

Once, we get the basic feasible solution for a transportation problem, the next duty is to test whether the 

solution got is an optimal one or not? This can be done by two methods. (a) By Stepping Stone Method, and (b) 

By Modified Distribution Method, or MODI method. 

1. Put a small ‗+‘ mark in the empty cell. 

2. Starting from that cell draw a loop moving horizontally and vertically from loaded cell to loaded 

cell. Remember, there should not be any diagonal movement. We have to take turn only at loaded 

cells and move to vertically downward or upward or horizontally to reach another loaded cell. In 

between, if we have a loaded cell, where we cannot take a turn, ignore that and proceed to next 

loaded cell in that row or column. 

3. After completing the loop, mark minus (–) and plus (+) signs alternatively. 

4. Identify the lowest load in the cells marked with negative sign. 

5. This number is to be added to the cells where plus sign is marked and subtract from the load of the 

cell where negative sign is marked. 

6. Do not alter the loaded cells, which are not in the loop. 
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7. The process of adding and subtracting at each turn or corner is necessary to see that rim 

requirements are satisfied. 

8. Construct a table of empty cells and work out the cost change for a shift of load from loaded cell to 

loaded cell. 

9. If the cost change is positive, it means that if we include the evaluated cell in the programme, the 

cost will increase. If the cost change is negative, the total cost will decrease, by including the 

evaluated cell in the programme. 

10. The negative of cost change is the opportunity cost. Hence, in the optimal solution of 

transportation problem empty cells should not have positive opportunity cost. 

11. Once all the empty cells have negative opportunity cost, the solution is said to be optimal. 

 
Let us take the basic feasible solution we got by Vogel's Approximation method and give optimality test to it 

by stepping stone method. 

Basic Feasible Solution obtained by VAM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table showing the cost change and opportunity costs of empty cells: 

Table I. 
 

S.No 

. 

Empty 

Cell 

Evaluation 

Loop 

formation 

 

Cost change in Rs. 
Opportunity 

cost 

-(Cost change) 

1. AZ +AZ – AX + BX – BZ +2 – 4 + 5 – 1 = + 2 –2 

2 A Dummy + A DUMMY – AX + BX – B 
DUMMY 

+0 – 4 + 3 – 0 = – 1 +1 

3 BY + BY – AY + AX – BX +6 – 3 + 4 – 5 = +2 -2 

4 B 

DUMMY 

+ B DUMMY – BX + DX – D 

DUMMY 

+0 – 5 +3 – 0 = –2 +2 

5 CX +CX – CY + AX – AY 6 – 4 + 3 – 4 = +1 – 1 

6 CZ +CZ – BZ + BX –AX + AY – CY +2 –1 +5 – 4 +5 – 4 
=+1 

– 1 
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7 C 

DUMMY 

+ C DUMMY – D DUMMY + 

DX – AX + AY – CY 

+ 0 – 0 +3 – 4 +3 – 

4 = 

–2 

+2 

8 DY +DY – DX + AX – AY +5 – 3 +4 – 3 = +3 – 3 

9 DZ +DZ – DX +BX – BZ +4 – 3 + 5 – 1 = +5 – 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In the table 1 cells A DUMMY, B DUMMY, C DUMMY are the cells which are having positive opportunity 

cost. Between these two cells B DUMMY and C DUMMY are the cells, which are having higher opportunity 

cost i.e Rs. 2/ - each. Let us select any one of them to include in the improvement of the present programme. Let 

us select C DUMMY. 

 
 

Table II. 
 

S.No 
. 

Empty 

Cell 

Evolution 

Loop 

formation 

 

Cost change in Rs. 
Opportunity 

Cost 

1 AX +AX –DX + D DUMMY – C 

DUMMY 

+ CY – AY 

+ 4 – 3 + 0 – 0 + 4 – 3 

= + 2 

–2 

2 AX AZ – AY + CY – C 

DUMMY + D DUMMY – 

DX+ BX – BZ 

+ 2 – 3 + 4 – 0 + 0 – 3 
+ 

3 – 0 = + 4 

–4 

3 ADUMM 

Y 

+ A DUMMY – AY + 

DX – D DUMMY 

+ 0 – 4 + 3 – 0 = – 1 +1 

4 BY +BY – BX + DX – D 

DUMMY + C DUMMY – 

CY 

+ 6 –5 + 3 –0 + 0 – 4 = 
0 

0 

5 B 

DUMMY 

+ B DUMMY – BX + DX – D 

DUMMY 

+ 0 – 5 + 3 – 0 = –2 +2 
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6 CX + CX – DX + D DUMMY – C 

DUMMY 

+ 6 –3 + 0 – 0 = +3 –3 

7 CZ + CZ – C DUMMY + D DUMMY 

– DX + BX – BZ 

+ 2 – 0 + 0 – 3 + 5 – 1 

= + 3 

–3 

8 DY DY – CY + C DUMMY – D 
DUMMY 

+ 5 – 4 + 0 – 0 = 1 –1 

9 DZ + DZ – DX + BX – BZ + 4 – 3 +5 – 1 = + 5 –5 

 

Cells A DUMMY and B DUMMY are having positive opportunity costs. The cell B DUMMY is having higher 

opportunity cost. Hence let us include this cell in the next programme to improve the solution. 

Table III. 

 

S.No 

. 

Empty 

Cell 

Evaluation 

Loop 

formation 

 

Cost change in Rs. 
Opportunity 

Cost 

1 AX +AX – AY + CY – C 

DUMMY + B DUMMY – 

BX 

+4 – 3 + 4 – 0 + 0 – 5 

= 0 

0 

2 AZ + AZ – BZ + B DUMMY – C 
DUMMY 

+ CX – AX 

+2 –1 + 0 – 0 + 4 – 3 
=+ 2 

–2 

3 A 
DUMMY 

+ A DUMMY – C DUMMY + CY 
– AY 

+0 – 0 + 4 – 3 = +1 –1 

4 BY + BY – B DUMMY + C DUMMY 
– CY 

+6 – 0 + 0 – 4 = + 2 –2 

5 CX + CX – BX + B DUMMY – C 

DUMMY 

+6 – 5 + 0 – 0 = +1 –1 

6 CZ + CZ – BZ + B DUMMY – C 

DUMMY 

+2 – 1 + 0 – 0 = +1 –1 

7 DY +DY – CY + C DUMMY – B 
DUMMY 

+ BX – DX 

+5 – 4 + 0 – 0 + 5 – 3 

= +3 

–3 

8 DZ + DZ – BZ + BX – DX +4 – 1 + 5 – 3 = +5 –5 

9 D 

DUMMY 

+ D DUMMY – DX + BX – B 

DUMMY 

+ 0 – 3 + 5 – 0 = +2 –2 

 
All the empty cells have negative opportunity cost hence the solution is optimal. The allocations are: 

 
 

S.No Loaded cell Load Cost in Rs. 

1 AY 10 10 × 3 = 30 

2 BX 01 01 × 5 = 05 

3 BZ 05 05 × 1 = 05 
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4 B DUMMY 02 02 × 0 = 00 

5 CY 02 02 × 4 = 08 

6 C DUMMY 03 03 × 0 = 00 

7 DX 06 06 × 3 = 18 

 Total in Rs.  66 
 

Total minimum transportation cost is Rs. 66/- 

 
MAXIMIZATION CASE OF TRANSPORTATION PROBLEM: 

 

Basically, the transportation problem is a minimization problem, as the objective function is to minimize the 

total cost of transportation. Hence, when we would like to maximize the objective function. There are two 

methods. 

 The given matrix is to be multiplied by –1, so that the problem becomes maximization problem.

 Subtract all the elements in the matrix from the highest element in the matrix. Then the problem becomes 

maximization problem. Then onwards follow all the steps of maximization problem to get the solution. Let 

us consider the same problem solved above.

 
Problem 2. 

 

Four factories, A, B, C and D produce sugar and the capacity of each factory is given below: Factory A produces 

10 tons of sugar and B produces 8 tons of sugar, C produces 5 tons of sugar and that of D is 6 tons of sugar. The 

sugar has demand in three markets X, Y and Z. The demand of market X is 7 tons, that of market Y is 12 tons and 

the demand of market Z is 4 tons. The following matrix gives the returns the factory can get, by selling the sugar in 

each market. Formulate a transportation problem and solve for maximizing the returns. 

 

 
 

  Profit in Rs. per ton (× 
100) 

Markets. 

 Availability in tons. 

X Y Z  

Factories.     

A 4 3 2 10 

B 5 6 1 8 

C 6 4 3 5 

D 3 5 4 6 

Requirement in 

tons. 

7 12 4 b = 29, d = 23 
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The balanced matrix of the transportation problem is: 

 

 

 

 

 

 

 

 

 

 

 

 

 
By multiplying the matrix by –1, we can convert it into a maximization problem. Now in VAM we have to find the 

row opportunity cost and column opportunity costs. In minimization problem, we use to subtract the smallest 

element in the row from next highest element in that row for finding row opportunity cost. Similarly, we use to 

subtract smallest element in the column by next highest element. 

 
In the given problem as the opportunity costs of all empty cells are positive, the solution is optimal. And the 

optimal return to the company is Rs. 125/-. 

 
Allocations: 

 

 

S.No Loaded Cell Load Cost in Rs. 

1. AX 02 02 × 4 = 08 

2. AY 03 03 × 3 = 09 

3. A Dmy 05 05 × 0 = 00 

4. BY 08 08 × 6 = 48 

5. CX 05 05 × 6 = 30 

6. DY 01 01 × 5 = 05 

7. DZ 05 05 × 4 = 20 

 Total returns in Rs.  125 
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DEGENERACY IN TRANSPORTATION PROBLEM: 
 

Degeneracy in transportation problem can develop in two ways. First, the problem becomes degenerate when the 

initial programme is designed by northwest corner or inspection or VAM, i.e. at the stage of initial allocation 

only. 

To solve degeneracy at this stage, we can allocate extremely small amount of goods (very close to zero) to one 

or more of the empty cells depending on the shortage, so that the total occupied cells becomes m + n – 1. The 

cell to which small element (load) is allocated is considered to be an occupied cell. In transportation problems, 

 

epsilon is added to such an empty cell, which will enable us to write row number ‗ui‘ and column number ‗vj‘ 

without any difficulty while giving optimality test to the basic feasible solution by MODI method. That is care 

must be taken to see that the epsilon is added to such a cell, which will not make a closed loop, when we move 

horizontally and vertically from loaded cell to loaded cell. (Note: Epsilon is so small so that if it is added or 

subtracted from any number, it does not change the numerical value of the number for which it added or from 

which it is subtracted.). 

 
Secondly, the transportation problem may become degenerate during the solution stages. This happens when the 

inclusion of a most favorable empty cell i.e. cell having highest opportunity cost results in simultaneous  

vacating of two or more of the currently occupied cells. Here also, to solve degeneracy, add epsilon to one or 

more of the empty cells to make the number of occupied cells equals to (m + n – 1) 

Problem 3. Solve the transportation problem given below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution by Northwest corner method: 
 

Initial allocation show that the solution is not having (m+n–1) allocations. Hence degeneracy occurs. 
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Shifting of load by drawing loops to cell YA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The basic feasible solution is having four loaded cells. As the number of columns is 3 and number of rows is 2 the 

total number of allocations must be 2 + 3 – 1 = 4. The solution got has four allocations. Hence the basic feasible 

solution. Now let us give optimality test by MODI method. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Row numbers ui s and column numbers vj s are written in the matrix and opportunity cost of empty cells are 

evaluated. As the opportunity cost of all empty cells is negative, the solution is optimal. The allocations and the 

total cost of transportation is: 

 
 

S.No Loaded Cell Load Cost in Rs. 

1. XA 05 05 × 2 = 50 

2. XB 15 15 × 1 = 15 

3. YA 15 15 × 3 = 45 

4. YC 25 25 × 1 = 25 

 Total cost in Rs.  135 
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TIME MINIMISATION MODEL OR LEAST TIME MODEL OF TRANSPORTATION TIME: 

 
It is well known fact that the transportation problem is cost minimization model, i.e we have to find the least cost 

transportation schedule for the given problem. Some times the cost will become secondary factor when the time 

required for transportation is considered. This type of situation we see in military operation. When the army 

want to send weapons or food packets or medicine to the war front, then the time is important than the money. 

They have to think of what is the least time required to transport the goods than the least cost of transportation. 

Here the given matrix gives the time elements, i.e. time required to reach from one origin to a destination than 

the cost of transportation of one unit from one origin to a destination. A usual, we can get the basic feasible 

solution by Northwest corner method or by least time method or by VAM. To optimize the basic feasible solution, 

we have to identify the highest time element in the allocated cells, and try to eliminate it from the schedule by 

drawing loops and encouraging to take the cell, which is having the time element less than the highest one. Let 

us take a problem and work out the solution. Many a time, when we use VAM for basic feasible solution, the 

chance of getting an optimal solution is more. Hence, the basic feasible solution is obtained by Northwest corner 

method. 

 
Problem 4:The matrix given below shows the time required to shift a load from origins to destinations. Formulate a 

least time schedule. Time given in hours. 

Roc: Row opportunity cost, Coc: Column opportunity cost, Avail: Availability, Req: Requirement. 

 

 

 

 

 

 

 

 

 

 
 Initial assignment by Northwest corner method: The Maximum time of allocated cell is 17 hours. Any cell 

having time element greater than 17 hours is cancelled, so that it will not in the programme.
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By drawing loops, let us try to avoid 17 hours cell and include a cell, which is having time element less than 17 

hours. The basic feasible solution is having m + n – 1 allocation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Here also the maximum time of transport is 17 hours. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

In this allocation highest time element is 11 hours. Let us try to reduce the same. 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

IARE Optimization Techniques Page | 52 



In this allocation also the maximum time element is 11 hours. Let us try to avoid this cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

No more reduction of time is possible. Hence the solution is optimal and the time required for completing the 

transportation is 10 Hours. Tmax = 10 hours. 

PURCHASE AND SELL PROBLEM: (TRADER PROBLEM): 

Problem. 5: 
 

M/S Epsilon traders purchase a certain type of product from three manufacturing units in different places and 

sell the same to five market segments. The cost of purchasing and the cost of transport from the traders place to 

market centers in Rs. per 100 units is given below: 

 

 
 

Place of 

Manufacture 
. 

 
 

Availability 

In units x 
10000. 

 
 

Manufacturing 

cost in Rs. per 
unit 

Market Segments. 

(Transportation cost in Rs.per 100 
units). 

1 2 3 4 5 

Bangalore 
(B) 

10 40 40 30 20 25 35 

Chennai (C) 15 50 30 50 70 25 40 

Hyderabad 
(H) 

5 30 50 30 60 55 40 

 Requirement in units × 

10000 

 6 6 8 8 4 

 

The trader wants to decide which manufacturer should be asked to supply how many to which market segment 

so that the total cost of transportation and purchase is minimized. 

 
Solution: 

Here availability is 300000 units and the total requirement is 320000 units. Hence a dummy row (D) is to be 

opened. The following matrix shows the cost of transportation and purchase per unit in Rs. from manufacturer to 

the market centers directly. 
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 1 2 3 4 5 Availability 

B 404 
0 

4030 402 
0 

402 
5 

4035 10 

C 503 
0 

5050 507 
0 

502 
5 

5040 15 

H 305 
0 

3030 306 
0 

305 
5 

3040 5 

D 0 0 0 0 0 2 

Requirement. 6 6 8 8 4 32 
 

Let us multiply the matrix by 100 to avoid decimal numbers and get the basic feasible solution by VAM. Table. Avail: 

Availability. Req: Requirement, Roc: Row opportunity cost, Coc: Column opportunity cost. 

 
Tableau. I Cost of transportation and purchase Market segments. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tableau. II Cost of transportation and purchase Market segments. 
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Tableau. III Cost of transportation and purchase Market segments. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Tableau. IV Cost of transportation and purchase Market segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Tableau. V Cost of transportation and purchase Market segments. 
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Tableau. VI Cost of transportation and purchase Market segments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Tableau.VII Cost of transportation and purchase Market segments. 

 

 

 

 

 

 

 

 

 

 

 

 
Final Allocation by MODI method. 

Tableau. VIII Cost of transportation and purchase Market segments. 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

Allocation:  
From 

 
To 

 
Load 

 
Cost in Rs. 

 Bangalore 2 10,000 4,03,000 
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 Bangalore 3 80,000 32, 16,000 

 Bangalore 5 10,000 4, 03,000 

 Chennai 1 60,000 30, 18,000 

 Chennai 4 80,000 40, 20,000 

 Chennai 5 10,000 5, 04,000 

 Hyderabad 2 50,000 15, 15,000 

 Total cost in Rs.   1,30, 79,000 

 
 

MAXIMISATION PROBLEM: (PRODUCTION AND TRANSPORTATION SCHEDULE FOR 

MAXIMIZATION): 
 

This type of problems will arise when a company having many units manufacturing the same product and wants 

to satisfy the needs of various market centers. The production manager has to  work out for transport of goods  

to various market centers to cater the needs. Depending on the production schedules and transportation costs, he 

can arrange for transport of goods from manufacturing units to the market centers, so that his costs will be kept at 

minimum. At the same time, this problem also helps him to prepare schedules to aim at maximizing his returns. 

Problem 6: 

A company has three manufacturing units at X, Y and Z which are manufacturing certain product and the 

company supplies warehouses at A, B, C, D, and E. Monthly regular capacities for regular production are 300, 

400 and 600 units respectively for X, Y and Z units. The cost of production per unit being Rs.40, Rs.30 and Rs. 

40 respectively at units X, Y and Z. By working overtime it is possible to have additional production of 100, 150 

and 200 units, with incremental cost of Rs.5, Rs.9 and Rs.8 respectively. If the cost of transportation per unit in 

rupees as given in table below, find the allocation for the total minimum production cum transportation cost. 

Under what circumstances one factory may have to work overtime while another may work at under capacity? 

To 
 

Transportation cost in Rs. 

 

 

 

 

 

 

 If the sales price per unit at all warehouses is Rs. 70/- what would be the allocation for maximum profit? 

Is it necessary to obtain a new solution or the solution obtained above holds valid? 

 If the sales prices are Rs.70/-, Rs. 80/-, Rs. 72/-, Rs. 68/- and Rs. 65/- at A, B, C, D and E respectively 

what should be the allocation for maximum profit? 

Solution: Total production including the overtime production is 1750 units and the total requirement by 

warehouses is 1500 units. Hence the problem is unbalanced. This can be balance by opening a Dummy Row 

(DR), with cost coefficients equal to zero and the requirement of units is 250. The cost coefficients of all other 

cells are got by adding production and transportation costs. The production cum transportation matrix is given 

below: 
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From A B C D E 

X 12 14 18 13 16 

Y 11 16 15 11 12 

Z 16 17 19 16 14 

REQ 400 400 200 200 300 

 



 

 A B C D E DC Availability 

X 52 54 58 53 56 0 300 

Y 41 46 45 41 42 0 400 

Z 56 57 59 56 54 0 600 

XOT 57 59 63 58 61 0 100 

YOT 50 55 54 50 51 0 150 

ZOT 64 65 67 64 62 0 200 

Requirement: 400 400 200 200 300 250 1750 

 

Initial Basic feasible solution by VAM: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we have m +n – 1 (= 11) allocations, the solution is feasible and all the opportunity costs of empty cells are 

negative, the solution is optimal. 

 
 

Allocations: 

Cell Load Cost in Rs. 

XA 300 300 × 52 = 15,600 

YD 100 100 × 41 = 4,100 

YE 300 300 × 40 = 12,000 

ZB 400 400 × 54 = 21,000 

ZC 100 100 × 59 = 5,900 

ZD 100 100 × 56 = 5,600 

XOT A 50 50 × 57 = 2,850 

XOT DR 50 50 × 0 = 0 
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YOT A 50 50 × 50 = 5,500 

YOT C 100 100 × 54 = 5,400 

ZOT DR 50 50 × 0 =0 

Total Cost in 
Rs. 

 75, 550 

 
 

Allocation by VAM: 
 

1. 

 

 A B C D E DC AVAIL ROC 

X 52 54 58 53 56 0 300 52 

Y 41 46 45 41 42 0 400 41 

Z 56 57 59 56 54 0 600 54 

XOT 57 59 63 58 61 0 100 50 

YOT 50 55 54 50 51 0 150 50 

ZOT 64 65 67 64 62 0 (200) 2 00 62 

REQ 400 400 2 00 2 00 300 2 50 1750  

COC 9 8 9 9 9 0   

 
As for one allocation a row and column are getting eliminated. Hence, the degeneracy occurs 

 
 

2. 

 A B C D E DC AVAIL ROC 

X 52 54 58 53 56 0 300 52 

Y 41 46 45 41 42 0 400 41 

Z 56 57 59 56 54 0 600 54 

XOT 57 59 63 58 61 0 (50) 100 57 

YOT 50 55 54 50 51 0 150 50 

REQ 400 400 2 00 2 00 300 2 50 15 50  

COC 9 8 9 9 9 0   

 

 

 

3. 
 

A B C D E AVAIL RO 
C 

X 52 54 58 53 56 300 1 

Y 41 46 45 41 42 (300) 400 0 

Z 56 57 59 56 54 600 2 

XOT 57 59 63 58 61 50 2 

YOT 50 55 54 50 51 150 0 

REQ 400 400 2 00 2 00 300 1500  
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COC 9 8 9 9 9   

  

Here also for one allocation, a row and a column are getting eliminated. Degeneracy will occur. In all we may 

have to allocate two‘s to two empty cells. 

4. 

 

 

 

 

 

 

 

 

 

 
5. 

 A B C D Avail Ro 

c 

X 52 54 58 53 300 1 

Z 56 57 59 56 600 0 

XOT 57 59 63 58 50 1 

YOT 50 55 54 (150) 50 150 0 

Req 400 400 200 100 110 
0 

 

Coc 2 1 4 3   

6 
 A   B C D Avail Roc 

X 52 (30 
0) 

 54 58 53 300 1 

Z 56   57 59 56 600 0 

XOT 57   59 63 58 50 1 

Req 400   400 50 100 950  

Coc 4   3 1 3   

         

 A B  C  D Avail Roc 

Z 56 57  59 (50 
) 

56 550 0 

XOT 57 59  63  58 50 1 

Req 100 400  50  100 600  

Coc 1 2  4  2   
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 A B C D AVAIL ROC 

X 52 54 58 53 300 1 
       

Y 41 46 45 41 (100) 100 0 

Z 56 57 59 56 600 0 

XOT 57 59 63 58 50 1 

YOT 50 55 54 50 150 0 

REQ 40 
0 

400 2 00 2 00 1200  

COC 9 8 9 9   

 



7 
 A B D Avail Roc 

Z 56 57 56 (100) 550 0 

XOT 57 59 58 50 1 

Req 100 400 100 600  

Coc 1 2 2   

8. 
 A B Avail Roc 

Z 56 57 
(400) 

450 1 

XOT 57 59 50 2 

Req 100 400 500  

Coc 1 2   

 
 

9. 

 A Avai 

l 

Z 56 (50) 50 

XO 

T 

57 (50) 50 

 100  

 
In the table showing optimal solution, we can understand that the company X has to work 50% of its over time 

capacity, and company Y has to work 100% of its overtime capacity and company Z will not utilize its overtime 

capacity. 

Here the total profit or return that the trading company gets is equals to Sales revenue – total expenses, which 

include manufacturing cost and transportation cost. Hence, 

Profit = (Total Sales Revenue) – (Manufacturing cost + transportation cost). 

In the question given the sales price is same in all market segments, hence, the profit calculated is independent of 

sales price. Hence the programme, which minimizes the total cost will, maximizes the total profit. Hence the 

same solution will hold good. We need not work a separate schedule for maximization of profit. 

Here sales price in market segments will differ. Hence we have to calculate the total profit by the formula given 

above for all the markets and work for solution to maximize the profit. 

The matrix showing the total profit earned by the company: 
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As all the opportunity cost of empty cells are positive (maximization problem), the solution is optimal. 

The allocations are: 

Cell Load Cost in Rs. 

XB 300 300 × 26 = 7, 800 

YA 400 400 × 29 = 11, 600 

ZC 200 200 × 13 = 2, 600 

ZD 50 50 × 12 = 600 

ZE 300 300 × 11 = 3, 300 

Z DR 50 50 × 0   = 0 

XOT B 100 100 × 21 = 2, 100 

YOT D 150 150 × 18 = 2, 700 

ZOT DR 200 200 × 0   = 0 

Profit in Rs.  = 30, 700 

 
 A B C D E DC Avail Coc 

X 18 26 14 15 9 0 300 8 

Y 29 

400 

34 27 27 25 0 400 5 

Z 14 23 13 12 11 0 600 9 

XOT 13 21 9 10 4 0 100 8 

YOT 20 25 18 18 14 0 150 5 

ZOT 6 15 5 4 3 0 200 9 

Req 400 400 200 200 300 250 1750  

Coc 11 8 9 9 9 0   
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As for one allocation a row and column are getting eliminated. Hence, the degeneracy occurs. 
 

 
 

 B C D E DC Avail Coc 

X 26 

300 

14 15 9 0 300 11 

Z 23 13 12 11 0 600 10 

XOT 21 9 10 4 0 100 11 

YOT 25 18 18 14 0 150 7 

ZOT 15 5 4 3 0 200 10 

Req 400 200 200 300 250 1350  

Coc 1 4 3 5 0   

 
 B C D E DC Avail Coc 

Z 23 13 12 11 0 600 10 

XOT 21 9 10 4 0 100 11 

 100       

YOT 25 18 18 14 0 150 7 

ZOT 15 5 4 3 0 200 10 

Req 100 200 200 300 250 1050  

Coc 2 5 6 3 0   

 

Here also for one allocation, a row and a column are getting eliminated. Degeneracy will occur. In all we may 

have to allocate two s to two empty cells. 

 

 C D E DC Avail Coc 

Z 13 12 11 0 600 1 

YOT 18 18 

150 

14 0 150 0 

ZOT 5 4 3 0 200 1 

Req 200 200 300 250 950  

Coc 5 6 3 0   

 
 

 C D E DC Avail Coc 

Z 13 

200 

12 11 0 600 1 

ZOT 5 4 3 0 200 1 

Req 200 50 300 250 800  

Coc 8 8 8 0   
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 D E DC Avail Coc 

Z 12 11 

300 

0 400 1 

ZOT 4 3 0 200 1 

Req 50 300 250 600  

Coc 8 8 0   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem: 

A company has booked the orders for its consignment for the months of April, May, June and July as given 

below: 

April: 900 units, May: 800 units, June: 900 units and July: 600 units. The company can produce 750 units per 

month in regular shift, at a cost of Rs. 80/- per unit and can produce 300 units per month by overtime production 

at a cost of Rs. 100/- per unit. Decide how much the company has to produce in which shift for minimizing the 

cost of production. It is given that there is no holding cost of inventory. 

Solution: Remember here the production of April is available to meet the orders of April and subsequent months. 

But the production of May cannot be available to meet the demand of April. Similarly, the production of June is 

not available to meet the demand of April, May, but it can meet the demand of June and subsequent months and 

so on. Hence very high cost of production is allocated to the cells (Infinity or any highest number greater than 

the costs given in the problem), which cannot meet the demands of previous months (i.e. back ordering is not 

allowed). Here total availability is 4200 units and the total demand is for 3200 units. Hence we have to open a 

dummy column (DC), with cost coefficients equal to zero. The balanced matrix is shown below. Let us find the 

initial basic feasible solution by Northwest corner method and apply optimality test by MODI method. 

A: April, M: May, J: June, Jl: July, AT: April Over time, MT: May overtime, JT: June overtime, JLT: July over time. 

DC : Dummy column. 
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Tableau 1. 
 

Here the cell JT DC is having highest opportunity cost. Hence let us include the cell in the revised programme. 

To find the opportunity costs of empty cells, the row number ui and column number vj are shown. The cells 

marked with (X) are avoided from the programme. We can also allocate very high cost for these cells, so that 

they will not enter into the programme. 
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Tableau II. Revised programme. 
 

As the opportunity costs of all empty cells are either zeros or negative elements, the solution is optimal. As 

many empty cells are having zero as the opportunity cost, they can be included in the solution and get alternate 

solution. 

Allocations: 
 

 
Demand month. Production of the month Load Cost in Rs. 
April April regular 750 750 × 80 = 60,000 
April April over time 150 150 × 100 = 15,000 
May April over time 150 150 × 100 = 15,000 
May May regular 650 650 × 80 = 52,000 
June May regular 100 100 × 80 = 8,000 
June May over time 300 300 × 100 = 30,000 
June June Regular 500 500 × 80 = 40,000 
July June regular 250 250 × 80 = 20,000 
July July regular 350 350 × 80 = 28,000 
Dummy column June over time 300 300 × 0 
Dummy Column July regular 300 300 × 0 
Dummy column July over time 300   300 × 0  

 Total cost in Rs.:  2,68,000 
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TRANSSHIPMENT PROBLEM: 
 

When a company stocks its goods in warehouse and then sends the goods from warehouse to the market, the 

problem is known as Transshipment problem. 

 
REDUNDANCY IN TRANSPORTATION PROBLEMS: 

Sometimes, it may very rarely happen or while writing the alternate solution it may happen or during modifying 

the basic feasible solution it may happen that the number of occupied cells of basic feasible solution or 

sometimes the optimal solution may be greater than m + n – 1. This is called redundancy in transportation 

problem. This type of situation is very helpful to the manager who is looking about shipping of available loads 

to various destinations. This is as good as having more number of independent simultaneous equations than the 

number of unknowns. It may fail to give unique values of unknowns as far as mathematical principles are 

concerned. But for a transportation manager, it enables him to plan for more than one orthogonal path for an or 

several cells to evaluate penalty costs, which obviously will be different for different paths. 

 
SENSITIVITY ANALYSIS: 

 

 Non - basic variables

While discussing MODI method for getting optimal solution, we have discussed significance of implied cost, 

which fixes the upper limit of cost of the empty cell to entertain the cell in the next programme. Now let us 

discuss the influence of variations in present parameters on the optimum solution i.e sensitivity of optimal 

solution for the variations in the costs of empty cells and loaded cells. If unit cost of transportation of a 

particular non-basic variable changes, at what value of the cost of present optimum will no longer remain 

optimum? To answer this question, in the first instance, it is obvious that as the empty cell is not in the solution, 

any increase in its unit transportation cost will to qualify it for entering variable. But if the unit cost of empty 

cells is reduced the chances of changing the optimum value may be examined. Let us take an optimum solution 

and examine the above statement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In the solution shown above as all the opportunity costs of empty cells are negative. Consider empty cell XA. Its 

opportunity cost is Rs. -3/- This means to say that the units cost of transportation of cell XA decreases by Rs.3/- 

or more i.e Rs.10/- the unit cost of transportation of the empty cell XA minus 3 = 7, or less than 7 the optimal 
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solution changes, i.e. the cell XA will become eligible for entering into solution. Hence this cost, which shows 

the limit of the unit cost of empty cell, is known as implied cost in transportation problems. We can see that the 

opportunity cost of empty cell ZE is zero. This shows that the cell ZE is as good as a loaded cell and hence we 

can write alternate solutions by taking the cell ZE into consideration. (Note: No unit cost of transportation is 

given for the cell ZC. Hence that cell should not be included in the programme. For this purpose, we can 

cross the cell or allocate very high unit cost of transportation for the cell. In case zero or any negative 

element is given as the unit cost of transportation for a cell, the value can  be  taken  for further 

treatment.) 

 Basic variables

If unit cost of loaded cell i.e. basic variable is changed, it affects the opportunity costs of several cells. Now let 

us take the same solution shown above for our discussion. In case the unit cost of transportation for the cell XE is 

instead of 16, and other values remaining unchanged. Now let us workout the opportunity costs of other cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Cells XA and XB is positive when XA is > than 19. Cell XC is positive when XA is > 17 and cell XD is positive 

when XA is 

If unit cost of transportation increase and becomes 17, the present optimum may change. In case the unit cost of 

transportation of the cell XA is reduced, the solution will still remain optimum, as our objective is to minimize 

the total transportation cost. 

A point to note here is we have used Northwest corner method and Vogel‘s approximation method to get basic 

feasible solution. Also we have discussed the least cost method and there are some methods such as row 

minimum and column minimum methods. These methods attempt to optimize the sub- system and do not 

consider marginal trade-offs. Therefore, such methods have no merit to serve useful purpose. 
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UNIT-III 
 

 
 

INTRODUCTION: 
 

 

A sequence is the order in which the jobs are processed. Sequence problems arise when we are concerned with 

situations where there is a choice in which a number of tasks can be performed. A sequencing problem could 

involve: 

 

 Jobs in a manufacturing plant. 

 Aircraft waiting for landing and clearance. 

 Maintenance scheduling in a factory. 

 Programmes to be run on a computer. 

 Customers in a bank & so-on. 

 
Terms used: 

 

 
Job : The jobs or items or customers or orders are the primary stimulus for sequencing. There should be a 

certain number of jobs say ‗n‘ to be processed or sequenced. 

 
Number of Machines : A machine is characterized by a certain processing capability or facilities through which 

a job must pass before it is completed in the shop. It may not be necessarily a mechanical device. Even human 

being assigned jobs may be taken as machines. There must be certain number of machines say ‗k‘ to be used for 

processing the jobs. 

 
Processing Time : Every operation requires certain time at each of machine. If the time is certain then the 

determination of schedule is easy. When the processing times are uncertain then the schedule is complex. 

 
Total Elapsed Time : It is the time between starting the first job and completing the last one. 

 
Idle time : It is the time the machine remains idle during the total elapsed time. 

 
Technological order : Different jobs may have different technological order. It refers to the order in which 

various machines are required for completing the jobs. 

 

Types of sequencing problems: 
 

There can be many types of sequencing problems which are as follows: 
 

 Problem with ‗n‘ jobs through one machine. 

 Problem with ‗n‘ jobs through two machines. 

 Problem with ‗n‘ jobs through three machines. 
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 Here the objective is to find out the optimum sequence of the jobs to be processed and starting and 

finishing time of various jobs through all the machines. 

 No passing rule: it implies that passing is not allowed i.e. the same order of jobs is maintained over each 

machine 

 Static arrival pattern. If all the jobs arrive simultaneously. 

 Dynamic arrival pattern. Where the jobs arrive continuously. 

 
Basic assumptions: 

 

Following are the basic assumptions underlying a sequencing problem: 

 
 No machine can process more than one job at a time. 

 The processing times on different machines are independent of the order in which they are processed. 

 The time involved in moving a job from one machine to another is negligibly small. 

 Each job once started on a machine is to be performed up to completion on that machine. 

 All machines are of different types. 

 All jobs are completely known and are ready for processing. 

 A job is processed as soon as possible but only in the order specified. 

 
Flow-Shop Sequencing: 

 

Job  shop  scheduling is  basically an  optimization process  in which  ideal   jobs are assigned to resource at 

particular times. 

 
Let there be ‗n‘ jobs J1, J2, J3…..Jn. Let there be ‗m‘ machines M1, M2, M3…..Mn. .. If below conditions are 

met, then it is said to be a flow shop sequencing problem. 

 
 The order of sequencing jobs remains same on every machine. 

 The order of machine processing every job remains same. 

 All the job requires processing on every machine. 

 
The very purpose of flow shop sequencing is to assign jobs to each assigned machines in a manner that the every 

machines are engaged all the time without being left ideal. 

 

Benefits of flow shop sequencing in organization: 
 

 Improved process efficiency. 

 Improved machine utilization. 

 Increased production rate. 

 Reduced total processing time. 

 Minimum or Zero Ideal Time. 

 Potential increase in profits and decrease in costs. 
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n jobs through two machines: 
 

 Let there be ‗n‘ jobs each of which is to be processed through two machines say A & B, in the order 

AB. That is each job will go to machine A first and then to B in other words passing off is not allowed. 

 All ‗n‘ jobs are to be processed on A without any idle time. On the other hand the machine B is subject 

to its remaining idle at various stages. 

 Let A1 A2………….An & B1 B2……..Bn be the expected processing time of n jobs on these two 

machines. 

 

Steps for n jobs through two machines: 
 

Step 1: Select the smallest processing time occurring in list Ai or Bi, if there is a tie select either of the smallest 

processing time. 

Step 2: If the smallest time is on machine A, then place it at first place if it is for the B machine place the 

corresponding job at last. Cross off that job. 

Step 3: If there is a tie for minimum time on both the machines then select machine A first & machine B last 

and if there is tie for minimum on machine A (same machine) then select any one of these jobs first and if there 

is tie for minimum on machine B among and select any of these job in the last. 

Step 4: Repeat step 2 & 3 to the reduced set of processing times obtained by deleting the processing time for 

both the machines corresponding to the jobs already assigned 

Step 5: Continue the process placing the job next to the last and so on till all jobs have been placed and it is 

called optimum sequence. 

Step 6: after finding the optimum sequence we can find the followings 

 
 Total elapsed time = Total time between starting the first job of the optimum sequence on machine A 

and completing the last job on machine B. 

 Idle time in machine A = Time when the last job in the optimum sequence is completed on Machine B – 

Time when the last job in the optimum sequence is completed on Machine A. 

 

 
Problem: 

In a factory, there are six jobs to process, each of which should go to machines A & B in the order AB. The 

processing timings in minutes are given, determine the optimal sequencing & total elapsed time. 

 

Jobs 1 2 3 4 5 6 

Machine A 7 4 2 5 9 8 

Machine B 3 8 6 6 4 1 

 
 

Solution: 
 

Step 1: the least of all the times given in for job 6 in machine B. so perform job 6 in the end. It is last in the 

sequences. Now delete this job from the given data. 
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Step 2: Of the remaining timings now the minimum is for job 3 on machine A. so do the job 3 first. Now delete 

this job 3 also. 

Step 3: Now the smallest time is 3 minutes for job first on machine B. thus perform job 1 at the second last 

before job 6. 

 
Example 2: 

 

Suppose we have five jobs, each of which has to be processed on two machines A & B in the order AB. 
Processing times are given in the following table: 

 

Job Machine A Machine B 

1 6 3 

2 2 7 

3 10 8 

4 4 9 

5 11 5 

 
Determine an order in which these jobs should be processed so as to minimize the total processing time. 

 
Solution: 

 

The minimum time in the above table is 2, which corresponds to job 2 on machine A. 

2     

 
Now we eliminate job 2 from further consideration. The reduced set of processing times are as follows: 

 

Job Machine A Machine B 

1 6 3 

3 10 8 

4 4 9 

5 11 5 

 
The minimum time is 3 for job 1 on machine B. Therefore, this job would be done in last. The allocation of jobs 
till this stage would be 

 
2    1 

 
After deletion of job 1, the reduced set of processing times are as follows: 
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Job Machine A Machine B 

3 10 8 

4 4 9 

5 11 5 

 

Similarly, by repeating the above steps, the optimal sequence is as follows: 

 
2 4 3 5 1 

 
Once the optimal sequence is obtained, the minimum elapsed time may be calculated as follows: 

 

Job Machine A Machine B 

Time in Time out Time in Time out 

2 0 2 2 9 

4 2 6 9 18 

3 6 16 18 26 

5 16 27 27 32 

1 27 33 33 36 

 Idle time for machine A = total elapsed time - time when the last job is out of machine A 

36-33=3hours. 

 Idle time for machine B = 2 + (9 - 9) + (18 - 18) + (27 - 26) + (33 - 32) = 4 hours. 

 
Example3 

 

:Strong Book Binder has one printing machine, one binding machine, and the manuscripts of a number of 

different books. Processing times are given in the following table: 

Book Time In Hours 

Printing Binding 

A 5 2 

B 1 6 

C 9 7 

D 3 8 

E 10 4 
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We wish to determine the order in which books should be processed on the machines, in order to minimize the 

total time required. 

 
Solution: 

 

The minimum time in the above table is 1, which corresponds to the book B on printing machine. 

 
B     

 
Now book B is eliminated. The reduced set of processing times is as follows: 

 

Book Time In Hours 

Printing Binding 

A 5 2 

C 9 7 

D 3 8 

E 10 4 

 
The minimum time is 2 for book A on binding machine. Therefore, this job should be done in last. The 

allocation of jobs till this stage is: 

 
B    A 

 
The reduced set of processing times is as follows: 

 

Book Time In Hours 

Printing Binding 

C 9 7 

D 3 8 

E 10 4 

 
Similarly, by repeating the above steps, the optimal sequence is as follows: 

 
B D C E A 

 
Once the optimal sequence is obtained, the minimum elapsed time may be calculated as follows: 
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Book Printing Binding 

Time in Time out Time in Time out 

B 0 1 1 7 

D 1 4 7 15 

C 4 13 15 22 

E 13 23 23 27 

A 23 28 28 30 

 

 Idle time for printing process = total elapsed time - time when the last  job  is  out  of  machine  A  30-
28=2hours. 

 
Idle time for binding process = 1 + (7 - 7) + (15 - 15) + (23 - 22) + (28 - 27) = 3 hours. 

 
Processing n jobs on 3 Machines: 

 

There is no solution available for the general sequencing problems of n jobs through 3 machines. However we 

do have a method under the circumstance that no passing of jobs is permissible and if either or both the 
following conditions are satisfied. 

1) The minimum time on machine A is greater than or equal to the maximum time on machine B. 

2)The minimum time on machine C is greater than or equal to the maximum time on machine B 

 

Or both are satisfied that the following method can be applied 

 

Method of Procedure: 
 

Step1: First of all, the given problem is replaced with an equivalent problem involving n jobs and 2 fictitious 

machines G and H .define the corresponding processing times Gi and Hi by 
 

Gi=AI+BI 

Hi=Bi+Ci 
 

Step2: to the problem obtained step1 above ,the method for processing n jobs through 2 machines is applied 
.The optimal sequence resulting this shall also be optimal for the given problem. 

 

Example 1: 
There are five jobs which must go through these machines A,B and C n th order ABC .Processing times of the 

jobs on different machines given below. 

 
Jobs A  B  C 

1 7 5  6  

2 8 5  8  

3 6 4  7  

4 5 2  4  

5 6 1  3  
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Determine a sequence for 5 jobs which will minimize elapsed time(T) . 

Solution: according to given information 

Min .Ai=5 

Max .Bi=5 

Min .Ci=3 

 

Here since Min .Ai=Max .Ci , the first of the conditions is satisfied. 

 

We shall now determines Gi and Hi and from them find the optimal sequence. 
 

In accordance with the rules for determining optimal sequence in respect of n jobs processing on 2 machines , 

the sequence for above shall be: 

 

3 2 1 4 5 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Total elapsed time (T) =40 hours. 

 

Example 2: 

The MDH Masala Company has to process five items on three machines: - A, B & C. Processing times are 

given in the following table: 

Item Ai Bi Ci 

1 4 4 6 

2 9 5 9 

3 8 3 11 

4 6 2 8 

5 3 6 7 

 
Find the sequence that minimizes the total elapsed time. 

 
Solution: 
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Here, Min. (Ai) = 3, Max. (Bi) = 6 and Min. (Ci) = 6. Since the condition of Max. (Bi) ≤ Min. (Ci) is satisfied, the 
problem can be solved by the above procedure. The processing times for the new problem are given below. 

 

Item Gi = Ai + Bi Hi = Bi + Ci 

1 8 10 

2 14 14 

3 11 14 

4 8 10 

5 9 13 

 

 

 
The optimal sequence is 

 
1 4 5 3 2 

 

 

Item Machine A Machine B Machine C 

 Time in Time out Time in Time out Time in Time out 

1 0 4 4 8 8 14 

4 4 10 10 12 14 22 

5 10 13 13 19 22 29 

3 13 21 21 24 29 40 

2 21 30 30 35 40 49 

 
Total elapsed time = 49. 

 
Idle time for machine A = 49 – 30 = 19 hours. 

Idle time for machine B = 4 + (10 - 8) + (13 - 12) + (21 - 19)+ (30 - 24) + (49 - 35) = 29 hours. 
Idle time for machine C = 8 + (14 - 14) + (22 - 22) + (29 - 29)+ (40 - 40) = 8 hours. 

 

 
 

Example 3: 

Shahi Export House has to process five items through three stages of production, viz, cutting, sewing & 

pressing. Processing times are given in the following table: 

 

 
Item 

Cutting 

(Ai) 

Sewing 

(Bi) 

Pressing 

(Ci) 
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1 3 3 5 

2 8 4 8 

3 7 2 10 

4 5 1 7 

5 2 5 6 

 

Determing an order in which these items should be processed so as to minimize the total processing time. 

 
Solution: 

 

The processing times for the new problem are given below. 
 

 

 
 

Item Gi = Ai + Bi Hi = Bi + Ci 

1 6 8 

2 12 12 

3 9 12 

4 6 8 

5 7 11 

 

 

 

Thus, the optimal sequence may be formed in any of the two ways. 
 

 

 
 

1 4 5 3 2 

 

 
4 1 5 3 2 

 

 

 

Item Cutting Sewing Pressing 

 Time in Time out Time in Time out Time in Time out 

1 0 3 3 6 6 11 

4 3 8 8 9 11 18 

5 8 10 10 15 18 24 
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3 10 17 17 19 24 34 

2 17 25 25 29 34 42 

 

 

 

Total elapsed time = 42 

Idle time for cutting process = 42 – 25 = 17 hours. 

Idle time for sewing process = 3 + (8 - 6) + (10 - 9) + (17 - 15)+ (25 - 19) + (42 - 29) = 27 hours. 

Idle time for pressing process = 6 + (11 - 11) + (18 - 18) + (24 - 24)+ (34 - 34) = 6 hours. 

 
Processing n jobs through m machines: 

 

This section focuses on the sequencing problem of processing two jobs through m machines. Problems under 

this category can be solved with the help of graphical method. The graphical method below is explained with the 

help of the following example. 

 
Two jobs are to be performed on five machines A, B, C, D, and E. Processing times are given in the following 

table. 

 

 

 

 

Job 1 

  
Machine 

Sequence : A B C D E 

Time : 3 4 2 6 2 

 

Job 2 

Sequence : B C A D E 

Time : 5 4 3 2 6 

 
Use graphical method to obtain the total minimum elapsed time. 

 

Solution: 
 

 

 

 

 

 

 

 

Steps 
 

 Mark the processing times of job 1 & job 2 on X-axis & Y-axis respectively. 
 Draw the rectangular blocks by pairing the same machines as shown in the following figure. 
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 Starting from origin O, move through the 45
0
 line until a point marked finish is obtained. 

 The elapsed time can be calculated by adding the idle time for either job to the processing time for that 

job. In this illustration , 

 
Idle time for job 1 is 5 hours. 
Elapsed time = processing time for job 1+Idle tome of job 1 

= (3+4+2+6+2)+5=22 hours. 

Likewise idle time of job 2 is 2 hours. 
Elapsed time =processing time of job 2+Idle time of job 2 

= (5+4+3+2+6)+2=22 hours. 
 

Example 2:There are 4 job ABCD are required to be processed on four machine M1, M2,M3, M4 in that order. 

Determine optimal sequence and total elapsed time. 

 
Job M1 M2 M3 M4 

A 13 8 7 14 

B 12 6 8 19 

C 9 7 5 15 

D 8 5 6 15 
 
 

Given  
Job M1 M2 M3 M4 

A 13   8 7 14 

B 12   6 8 19 

C 9 7 5 15 

D 8 5 6 15 

 

Step 1- 1st we have to convert this problem into two machine problem. For 

that we have to check following condition: 
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Min M1 or Min M4 >= Max M2 or Max M3 
here Min M1=8, Min M4=14, Max M2=7, Max M3=8. 

therefore 8=8 

Min M1=Max M3 

Consolidation or Conversion Table: 

 

JOB MACHINES 5  MACHINES 6 

P(M1+M2+M3) NEW TIME P(M2+M3+M4) NEW TIME 

A 13+8+7 28 8+7+14 29 

B 12+6+8 26 6+8+19 33 

C 9+7+5 21 7+5+15 27 

D 8+5+6 19 5+6+15 26 

 

 
 

New job timing According to Consolidation Table: 

 

Job A B C D 

New M/c 5 28 26 21 19 

New M/c 6 29 33 27 26 

 
 

Sequencing According to consolidation Table: 
 

Consolidated table: 

Job A B  C  D 

New M/c 5 28 26 21 19 

New M/c 6 29 33 27 26 

 
 

Job sequence: 

JOB D B A C 
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START TIME – ST, TIME TAKEN –TT,END TIME –ET 

 
Total Elapsed time= 82 hrs. 

 
Idle Time for M/c 1=Total Elapsed Time- Total time of M/c 1 

=82-42= 40hrs. 

Idle Time for M/c 2=Total Elapsed Time- Total time of M/c 2 
=82-26= 56hrs. 

Idle Time for M/c 3=Total Elapsed Time- Total time of M/c 3 

= 82-26= 56hrs. 
Idle Time for M/c 4=Total Elapsed Time- Total time of M/c 4 

=82-63=19hrs. 

 

Introduction to Game Theory: 
 

Game theory is a kind of decision theory in which one's alternative action is determined after taking into 

consideration all possible alternatives available to an opponent playing the similar game, rather than just by the 

possibilities of various outcome results. Game theory does not insist on how a game must be played but tells the 

process and principles by which a particular action should be chosen. Therefore it is a decision theory helpful in 

competitive conditions. 

 
Properties of a Game 

 

1. There are finite number of competitors known as 'players' 

2. All the strategies and their impacts are specified to the players but player does not know which strategy 
is to be selected. 

3. Each player has a limited number of possible courses of action known as 'strategies' 
4. A game is played when every player selects one of his strategies. The strategies are supposed to be 

prepared simultaneously with an outcome such that no player recognizes his opponent's strategy until he 
chooses his own strategy. 

5. The figures present as the outcomes of strategies in a matrix form are known as 'pay-off matrix'. 

6. The game is a blend of the strategies and in certain units which finds out the gain or loss. 
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7. The player playing the game always attempts to select the best course of action which results in optimal 
pay off known as 'optimal strategy'. 

8. The expected pay off when all the players of the game go after their optimal strategies is called as 'value 

of the game'. The main aim of a problem of a game is to determine the value of the game. 

9. The game is said to be 'fair' if the value of the game is zero or else it s known as 'unfair'. 

 
Characteristics of Game Theory: 

 

1. Competitive game: 

A competitive situation is known as competitive game if it has the four properties 

 
1. There are limited number of competitors such that n ≥ 2. In the case of n = 2, it is known as two-person 

game and in case of n > 2, it is known as n-person game. 

2. Each player has a record of finite number of possible actions. 
3. A play is said to takes place when each player selects one of his activities. The choices are supposed to 

be made simultaneously i.e. no player knows the selection of the other until he has chosen on his own. 
4. Every combination of activities finds out an outcome which results in a gain of payments to every player, 

provided each player is playing openly to get as much as possible. Negative gain means the loss of same 

amount. 

 
2. Strategy 

 

The strategy of a player is the determined rule by which player chooses his strategy from his own list during the 
game. The two types of strategy are 

 
1. Pure strategy 
2. Mixed strategy 

 
Pure Strategy 

 

If a player knows precisely what another player is going to do, a deterministic condition is achieved and 

objective function is to maximize the profit. Thus, the pure strategy is a decision rule always to choose a 

particular strategy. 

 
Mixed Strategy 

 

If a player is guessing as to which action is to be chosen by the other on any particular instance, a probabilistic 
condition is achieved and objective function is to maximize the expected profit. Hence the mixed strategy is a 

choice among pure strategies with fixed probabilities. 

 
Repeated Game Strategies 

 

 In repeated games, the chronological nature of the relationship permits for the acceptance of strategies 
that are dependent on the actions chosen in previous plays of the game. 

 Most contingent strategies are of the kind called as "trigger" strategies. 

 
For Example trigger strategies 

 

In prisoners' dilemma: At start, play doesn't confess. If your opponent plays Confess, then you need to play 

Confess in the next round. If your opponent plays don't confess, then go for doesn't confess in the subsequent 
round. This is called as the "tit for tat" strategy. 
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In the investment game, if you are sender: At start play Send. Play Send providing the receiver plays Return. If 
the receiver plays keep, then never go for Send again. This is called as the "grim trigger" strategy. 

 
3. Number of persons 

When the number of persons playing is 'n' then the game is known as 'n' person game. The person here 
means an individual or a group aims at a particular objective. 

 

Two-person, zero-sum game 
A game with just two players (player A and player B) is known as 'two-person, zero-sum game', if the 

losses of one player are equal to the gains of the other one so that the sum total of their net gains or profits is 

zero. 

Two-person, zero-sum games are also known as rectangular games as these are generally presented 
through a payoff matrix in a rectangular form. 

 

3. Number of activities 

The activities can be finite or infinite. 
 

4. Payoff 

Payoff is referred to as the quantitative measure of satisfaction a person obtains at the end of each play 

 

6. Payoff matrix 
Assume the player A has 'm' activities and the player B has 'n' activities. Then a payoff matrix can be made by 

accepting the following rules 

 
 Row designations for every matrix are the activities or actions available to player A 
 Column designations for every matrix are the activities or actions available to player B 
 Cell entry Vij is the payment to player A in A's payoff matrix when A selects the activity i and B selects 

the activity j. 
 In a zero-sum, two-person game, the cell entry in the player B's payoff matrix will be negative of the 

related cell entry Vij in the player A's payoff matrix in order that total sum of payoff matrices for player 

A and player B is finally zero. 

 
7. Value of the game 

 

Value of the game is the maximum guaranteed game to player A (maximizing player) when both the players 

utilizes their best strategies. It is usually signifies with 'V' and it is unique. 

 
Classification of Games: 

 

Simultaneous vs. Sequential Move Games 
 

 Games where players select activities simultaneously are simultaneous move games. 

- Examples: Sealed-Bid Auctions, Prisoners' Dilemma. 

- Must forecast what your opponent will do at this point, finding that your opponent is also doing 

the same. 

 
 Games where players select activities in a particular series or sequence are sequential move games. 

- Examples: Bargaining/Negotiations, Chess. 

- Must look forward so as to know what action to select now. 

- Many sequential move games have deadlines on moves. 
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 Many strategic situations include both sequential and simultaneous moves. 

 
One-Shot versus Repeated Games: 

 

 One-shot: play of the game takes place once. 

- Players likely not know much about each another. 

- Example - tipping on vacation 

 
 Repeated: play of the game is recurring with the same players. 

- Finitely versus Indefinitely repeated games 

- Reputational concerns do matter; opportunities for cooperative behavior may emerge. 

 
 Advise: If you plan to follow an aggressive strategy, ask yourself whether you are in a one-shot game or 

in repeated game. If a repeated game then think again. 

 
 

Usually games are divided into: 
 

 Pure strategy games 
 Mixed strategy games 

 
The technique for solving these two types changes. By solving a game, we require to determine best strategies 

for both the players and also to get the value of the game. Saddle point method can be used to solve pure 

strategy games. 

The diverse methods for solving a mixed strategy game are 

 
 Dominance rule 

 Analytical method 

 Graphical method 
 Simplex method 

 
Basic Game Theory Terms: 

 

 Game : Description of the situation includes the rules of the game. 

 Players : Decision makers in the game. 

 Payoffs : Expected rewards enjoyed at the end of the game. 

 Actions : Possible choices made by the player. 

 Strategies  : Specified plan of action for every contingency played by other players. 

 
Classification of Games: 

Simultaneous vs. Sequential Move Games 
 

 Games where players select activities simultaneously are simultaneous move games.
- Examples: Sealed-Bid Auctions, Prisoners' Dilemma. 

- Must forecast what your opponent will do at this point, finding that your opponent is also 

- doing the same. 

 
 Games where players select activities in a particular series or sequence are sequential move games.
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- Examples: Bargaining/Negotiations, Chess. 

- Must look forward so as to know what action to select now. 

- Many sequential move games have deadlines on moves. 

 
 Many strategic situations include both sequential and simultaneous moves.

 
One-Shot versus Repeated Games: 

 

 One-shot: play of the game takes place once.

- Players likely not know much about each another. 

- Example - tipping on vacation 

 
 Repeated: play of the game is recurring with the same players.

- Finitely versus Indefinitely repeated games 

- Reputational concerns do matter; opportunities for cooperative behavior may emerge. 

 
 Advise: If you plan to follow an aggressive strategy, ask yourself whether you are in a one-shot game or 

in repeated game. If a repeated game then think again.

 
Usually games are divided into: 

 

 Pure strategy games
 Mixed strategy games

 
The technique for solving these two types changes. By solving a game, we require to determine best strategies 

for both the players and also to get the value of the game.Saddle point method can be used to solve pure 

strategy games. 

The diverse methods for solving a mixed strategy game are 

 
 Dominance rule 

 Analytical method 
 Graphical method 

 Simplex method 

 
Basic Game Theory Terms: 

 

 Game : Description of the situation includes the rules of the game. 

 Players : Decision makers in the game. 

 Payoffs : Expected rewards enjoyed at the end of the game. 

 Actions : Possible choices made by the player. 

 Strategies  : Specified plan of action for every contingency played by other players. 
 

Pure Strategies (with saddle points): 

 In a zero-sum game, the pure strategies of two players constitute a saddle point if the corresponding 

entry of the payoff matrix is simultaneously a maximum of row minima and a minimum of column 

maxima. This decision-making is referred to as the minimax-maximin principle to obtain the best 

possible selection of a strategy for the players. 
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 In a pay-off matrix, the minimum value in each row represents the minimum gain for player A. Player A 

will select the strategy that gives him the maximum gain among the row minimum values. The selection 

of strategy by player A is based on maximin principle. Similarly, the same pay-off is a loss for player B. 

The maximum value in each column represents the maximum loss for Player B. Player B will select the 

strategy that gives him the minimum loss among the column maximum values. 

 The selection of strategy by player B is based on minimax principle. If the maximin value is equal to 

minimax value, the game has a saddle point (i.e., equilibrium point). Thus the strategy selected by player 

A and player B are optimal 

Example 1: Consider the example to solve the game whose pay-off matrix is given in the following table as 

follows: 

 

Game Problem 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The game is worked out using minimax procedure. Find the smallest value in each row and select the largest 

value of these values. Next, find the largest value in each column and select the smallest of these numbers. The 

procedure is shown in the following table. 

Minimax Procedure 
 

 

 

 

 

 

 

 

 

 

 

 If Maximum value in row is equal to the minimum value in column, then saddle point exists. 

Max Min = Min Max 

1 = 1 

 Therefore, there is a saddle point. 

The strategies are, 

Player A plays Strategy A1, (A A1). 

Player B plays Strategy B1, (B B1). 
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 Value of game = 1. 
 

Example 2: Check whether the following game is given in Table, determinable and fair. 

 

 

 

 

 
Game Problem 

 

 

 

 

 

 

 

 

 

 

 

 

Solution: The game is solved using maximin criteria as shown in Table. 

Maximin Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

The game is strictly neither determinable nor fair. 

 
Example  3: Identify the optimal  strategies for  player A and player  B for  the game,  given below in Table. 

Also find if the game is strictly determinable and fair. 

Game Problem 
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The game is strictly determinable and fair. The saddle point exists and the game has a pure strategy. The optimal 

strategies are given in the following table. 

 

 
Optimal Strategies 

 

 

 

 

 

 

 

 

 

 

 

 

Analytical Method:[No saddle point exists so using analytical method] 
 

A 2 x2 payoff matrix where there is no saddle point can be solved by analytical method. 

Given the matrix 

 

 
 

Value of the game is 
 

 

 

With the coordinates 
 

 
 

 

 

 

 

 

Alternative procedure to solve the strategy 

 Find the difference of two numbers in column 1 and enter the resultant under column 2. Neglect the negative 

sign if it occurs. 

 Find the difference of two numbers in column 2 and enter the resultant under column 1. Neglect the negative 

sign if it occurs. 

 Repeat the same procedure for the two rows 

 
Example 1: 
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Solution: 
 

It is a 2 x 2 matrix and no saddle point exists. We can solve by analytical method 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

Example 2: 
 

 

 

 

 

 

Solution: 
 

Example 1: Solve the game with the pay-off matrix for player A as given in table. 

Game Problem 
 

 

 

 

 

 

 

 

 

 

 

 

Solution: Find the smallest element in rows and largest elements in columns as shown in table. 
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Minimax Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Select the largest element in row and smallest element in column. Check for the minimax criterion, 

Max Min = Min Max 

1 = 1 

Therefore, there is a saddle point and it is a pure strategy. 

Optimum Strategy: 

Player A A2 Strategy 

Player B B1 Strategy 

The value of the game is 1. 

Example 2: Solve the game with the payoff matrix given in table and determine the best strategies for the 

companies A and B and find the value of the game for them. 

Game Problem 
 

 

 

 

 

 

 

 

 

 

 

Solution: The matrix is solved using maximin criteria, as shown in table below. 
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Maximin Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, there is a saddle point. 

Optimum strategy for company A is A1 and 

Optimum strategy for company B is B1 or B3. 
 

 

 

 

 

 

 

 

 
 

 

Example 1:  
A and B play a game in which each has three coins, a 5 paisa, 10 paisa and 20 paisa coins. Each player selects a 

coin without the knowledge of the other‘s choice. If the sum of the coins is an odd amount, A wins B‘s coins. If 

the sum is even, B wins A‘s coins. Find the optimal strategies for the players and the value of the game. 

Solution: 
 

The pay of matrix for the given game is: Assume 5 paisa as the I strategy, 10 paisa as the II strategy and the 20 

paisa as the III strategy. 
 
 

 5 

I 

10 

II 

20 

III 

 
5 I –10 15 25 

A 10 II 15 –20 –30 

 
20 III 25 –30 –40 
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In the problem it is given when the sum is odd, A wins B‘s coins and when the sum is even, B will win A‘s coins. 

Hence the actual pay of matrix is: 

 

 5 

I 

10 

II 

20 

III 

 

Row 
minimum 

 5 I –5 10 20 –5 

A 10 II 5 –10 –10 –10 

 
20 III 5 –20 –20 –20 

Column 
maximum. 

  5 10 20  

 

The problem has no saddle point. Column I and II are dominating the column III. Hence it is removed from the 

game. The reduced matrix is: 

 
 

 5 

I 

10 

II 

 

Row 

minimum 

 5 I –5 10 –5 

A 10 II 5 –10 –10 

 
20 III 5 –20 –20 

Column 
maximum. 

  5 10  

 

 

The problem has no saddle point. Considering A, row III is dominated by row II, hence row III is eliminated 

from the matrix. The reduced matrix is: 

 

 
 

 I II Row minimum 

 

 
A 

I 

 
 

II 

–5 

 
 

5 

10 

 
 

–10 

–5 

 
 

–10 

Colum 
maximum. 

 
5 10 

 

 

No saddle point. By application of formulae: 

x1 = (a22 – a21 ) / (a11 + a22) – (a12 + a21) or = 1 – x2 = (–10 – 5) / [–5 + (–10)] – (10 – 5) 

= –15 / (–15 – 5) = (–15 / –20) = (15 / 20) = 3 / 4, hence x2 = 1 – (3 / 4) = 1 / 4 

y1 = (a22 – a12) / (a11 + a22) – (a12 + a21) or = 1 – y2 = (–10 – 10) / –20 = 20 / 20 = 1 and 

y2 = 0 
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Value of the game = v = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) = (50 – 50) / – 20 = 0 Answer  

is A ( 3/ 4, 1 / 4, 0), B ( 1, 0, 0) , v = 0. 

2*n game problem: 

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2 we can get the solution by method of sub games. 

If we can reduce the given matrix to 2 × n or m × 2 sizes, then we can get the solution by graphical method. A 

game in which one of the players has two strategies and other player has number of strategies is known as 2 × n 

or m × 2 games. If the game has saddle point it is solved. If no saddle point, if it can be reduced to 2 × 2 by 

method of dominance, it can be solved. When no more reduction by dominance is possible, we can go for 

Method of Sub games or Graphical method. We have to identify 2 × 2 sub games within 2 × n or m × 2 games 

and solve the game. 
 

Problem 1: 

Solve the game whose payoff matrix is: 

B 
 

 
 I II III 

I –4 3 –1 

A 

II 

 
 

6 

 
 

–4 

 
 

–2 

Column maximum. 

 

No saddle point. 

The sub games are: 

Sub game I: 

 

 

 

 

 

 

 
 

 

 

 

 

No saddle point. First let us find the value of the sub games by applying the formula. Then compare the values 

of the sub games; whichever is favorable for the candidate, that sub game is to be 

selected.NowhereasAhasonlytwostrategiesandBhasthreestrategies,thegame,whichisfavorable to B, is to be 

selected. 

 

Value of the game = v1 = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) 
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= (–4 × –4) – (3 × 6) / [(–4 + –4] – (3 + 6) = 2 / 17 

 
 

m*2 game problem: 

When we can reduce the given payoff matrix to 2 × 3 or 3 × 2 we can get the solution by method of sub 

games. If we can reduce the given matrix to 2 × n or m × 2 sizes, then we can get the solution by graphical 

method. A game in which one of the players has two strategies and other player has number of strategies is 

known as 2 × n or m × 2 games. If the game has saddle point it is solved. If no saddle point, if it can be reduced 

to 2 × 2 by method of dominance, it can be solved. When no more reduction by dominance is possible, we can 

go for Method of Sub games or Graphical method. We have to identify 2 × 2 sub games within 2 × n or m × 2 

games and solve the game. 

 
Problem 1: 

 

Solve the following 2 × n sub game: 

B 

 
  I II 

I 1 8 

A II 3 5 

 III 11 2 

Solution: 
 

The given game is m × 2 game. 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

No saddle point. Hence A‘s Sub games are: 

A‘s sub game No.1. 
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The game has saddle point and hence value of the game is v1 = 3 A's sub game No.2. 

 
 I II Row minimum 

 

 
A 

I 

 

III 

1 

 

11 

8 

 

2 

1 

 

2 

Column 
maximum. 

 
11 8 

 

 

No saddle point. Hence the value of the game v2 = (a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) 

= [(1) × (2) – (8) × (11)] / (3) – (19) = (3 – 88) / (– 16) = (85 / 16) 

A‘s Sub game No. 3: 

 
  I II Row minimum 

II 3 5 3 

A III 11 2 2 

Column 
maximum. 

 
11 5 

 

 

No saddle point. Hence the value of the game v3 =(a11 a22 – a12 a21) / (a11 + a22) – (a12 + a21) 

(3 × 2) – (11 × 5) / (3 + 2) – (5 + 11) = (6 – 55) / (5 – 16) = – (49 / 11) 
 

Now v1 = 3, v2 = 85 / 16 = 5.31, and v3 = 49 / 11 = 4.45. Comparing the values, as far as A is concerned, v2 

gives him good returns. Hence A prefers to play the sub game No. 2. For this game we have to find out the 

probabilities of playing the strategies. For sub game No.2: 

x1 = (a22 – a21 ) / (a11 + a22) – (a12 + a21) or = 1 – x2 = (2 – 11) / (– 16) = (9 / 16) , 

x2 = 1 – (9 / 16) = (7/16) 

y1 = (a22 – a12) / (a11 + a22) – (a12 + a21) or = 1 – y2 = (2 – 8) / (– 16) = (6 / 16) 

y2 = 1 – (6 / 16) = ( 10 / 16) . 

 

 

 

IARE Optimization Techniques Page | 96 



Therefore optimal strategies for A and B are: 

 
A (9 / 16, 0, 7 / 16), B (6 / 16, 10 / 16) and value of the game v = (85 / 16) = 5.31 

 

Graphical method: 

The graphical method is used to solve the games whose payoff matrix has 

 

 Two rows and n columns (2 x n)

 m rows and two columns (m x 2)

 

Algorithm for solving 2 x n matrix games: 
 

 Draw two vertical axes 1 unit apart. The two lines are x1= 0, x1= 1 

 Take the points of the first row in the payoff matrix on the vertical line x1= 1 and the points of the 

second row in the payoff matrix on the vertical line x1= 0. 

 The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to give a straight line. Draw 

‗n‘ straight lines for j=1, 2... n and determine the highest point of the lower envelope obtained. This will 
be the maximin point. 

 The two or more lines passing through the maximin point determines the required 2 x 2 payoff matrix. 

This in turn gives the optimum solution by making use of analytical method. 

 

Example 1: 
 

Solve by graphical method 
 

 

 

 

 

 
 

Solution: 
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Example 2: 
 

 

 

 

 

 

Solution: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V = 8/7 
SA= (3/7, 4 /7) 
SB= (2/7, 0, 5 /7) 
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The game has saddle point (1,3), the element is (–1). Hence the value of the game v3 =-1. 

Comparing the two values v1 and v2, v2, and v3, both v2 and v3 have negative values, which are favorable to 

player B. But v2 is more preferred by B as it gives him good returns. Hence B prefers to play strategies I and III. 

Hence sub game II is selected. For this game we have to find the probabilities of strategies. For sub game II the 

probabilities of strategies are: 

x1= (a22 – a21) / (a11 + a22) – (a12 + a21) or = 1 – x2 = [(–2) – 6] / (– 11) = ( 8 / 11), hence 

x2= 1 – (8 / 11) = 3 / 11 

y1 = (a22 – a12) / (a11 + a22) – (a12 + a21) or = 1 – y2 = [(–2) – (–1)] / –11 = (1 / 11), Hence 

y2 = 1 / (1 / 11) = (10 / 11). 

Hence optimal strategies for the players are: 

A (8/11, 3 / 11), B (1 / 11, 0, 10 / 11) and the value of the game is – (14 / 11). 

 
 

Algorithm for solving m x 2 matrix games: 
 

 Draw two vertical axes 1 unit apart. The two lines are x1=0, x1= 14 

 Take the points of the first row in the payoff matrix on the vertical line x1= 1 and the points of the second 

row in the payoff matrix on the vertical line x1= 0. 

 The point a1jon axis x1= 1 is then joined to the point a2jon the axis x1= 0 to give a Straight line. Draw 
‗n‘ straight lines for j=1, 2... n and determine the lowest point of the upper envelope obtained. This will 

be the minimax point. 

 The two or more lines passing through the minimax point determines the required 2 x 2 payoff matrix. 

This in turn gives the optimum solution by making use of analytical method. 
 

 

 

 

 

 

 
 

 

IARE Optimization Techniques Page | 99 



Example 1: 
 

Solve by graphical method 
 

 

 

 

 

 
 

 

 

Solution: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V = 3/9 = 1/3 

SA= (0, 5 /9, 4/9, 0) 

SB= (3/9, 6 /9) 
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Example 2 
 

Solve by graphical method 
 

 

 

 

 

 
 

 
 

Solution: 
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UNIT -IV 
 

 

INTRODUCTION: 
 

In previous chapters, we have seen how to solve the problems, where decision is made in single stage, one time 

period. But we may come across situations, where we may have to make decision in multistage, i.e. optimization 

of multistage decision problems. Dynamic programming is a technique for getting solutions for multistage 
decision problems. A problem, in which the decision has to be made at successive stages, is called a multistage 

decision problem. In this case, the problem solver will take decision at every stage, so that the total effectiveness 

defined over all the stages is optimal. Here the original problem is broken down or decomposed into small 
problems, which are known as sub problems or stages which is much convenient to handle and to find the 

optimal stage. For example, consider the problem of a sales manager, who wants to start from his head office 

and tour various branches of the company and reach the last branch. He has to plan his tour in such a way that he 
has to visit number of branches and cover less distance as far as possible. He has to divide the network of the 

route connecting all the branches into various stages and workout, which is the best route, which will help him 

to cover more branches and less distance. We can give plenty of business examples, which are multistage 

decision problems. The technique of Dynamic programming was developed by Richard Bellman in the early 
1950. 

 
The computational technique used is known as Dynamic Programming or Recursive Optimization. We do 

not have a standard mathematical formulation of the Dynamic Programming Problem (D.P.P). For each problem, 

depending on the variables given, and objective of the problem, one has to develop a particular equation to fit 

for situation. Though we have quite good number of dynamic programming problems, sometimes to take 

advantage of dynamic programming, we introduce multistage nature in the problem and solve it by dynamic 

programming technique. Nowadays, application of Dynamic Programming is done in almost all day to day 

managerial problems, such as, inventory problems, waiting line problems, resource allocation problems etc. 

Dynamic programming problem may be classified depending on the following conditions. 

Dynamic programming problems may be classified depending on the nature of data available as Deterministic and 

Stochastic or Probabilistic models. In deterministic models, the outcome at any decision stage is unique, 

determined and known. In Probabilistic models, there is a set of possible outcomes with some probability 

distribution. 

The possible decisions at any stage, from which we are to choose one, are called ‗states‘. These may be finite or 

infinite. States are the possible situations in which the system may be at any stage. 

Total number of stages in the process may be finite or infinite and may be known or unknown. Now let us try to 

understand certain terms, which we come across very often in this chapter. 

Stage: A stage signifies a portion of the total problem for which a decision can be taken. At each stage there are 

a number of alternatives, and the best out of those is called stage decision, which may be optimal for that stage, 

but contributes to obtain the optimal decision policy. 

State: The condition of the decision process at a stage is called its state. The variables, which specify the 

condition of the decision process, i.e. describes the status of the system at a particular stage are called state 

variables. The number of state variables should be as small as possible, since larger the number of the state 

variables, more complicated is the decision process. 

Policy: A rule, which determines the decision at each stage, is known as Policy. A policy is optimal one, if the 

decision is made at each stage in a way that the result of the decision is optimal over all the stages and not only 

for the current stage. 
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Principle of Optimality: Bellman‘s Principle of optimality states that ‗‗An optimal policy (a sequence of 

decisions) has the property that whatever the initial state and decision are, the remaining decisions must 

constitute an optimal policy with regard to the state resulting from the first decision.‘‘ 

This principle implies that a wrong decision taken at a stage does not prevent from taking optimal decision for the 

reaming stages. This principle is the firm base for dynamic programming technique. In the light of this, we can 

write a recurrence relation, which enables us to take the optimal decision at each stage. 

Steps in getting the solution for dynamic programming problem: 

• Mathematical formulation of the problem and to write the recursive equation (recursive relation 

connecting the optimal decision function for the ‗n‘ stage problem with the optimal decision 

function for the (n – 1) stage subproblem). 

• To write the relation giving the optimal decision function for one stage subproblem and solve it. 

• To solve the optimal  decision function for  2-stage, 3-stage ............... (n – 1) stage and then n- 

stage problem. 

 

COMPUTATIONAL PROCEDURE IN DYNAMIC PROGRAMMING: 
 

Discrete or Continuous systems: There are two ways of solving (computational procedure) recursive equations 

depending on the type of the system. If the system is continuous one the procedure is different and if the system 

is discrete, we use a different method of computation. If the system is discrete, a tabular computational scheme 

is followed at each stage. The number of rows in each table is equal to the number of corresponding feasible 

state values and the number of columns is equal to the number of possible decisions. In case of continuous 

system, the optimal decision at each stage is obtained by using the usual classical technique such as 

differentiation etc. 

 Forward and Backward Equations: If there are ‗n‘ stages, and recursive equations for each stage is f1, f2 

……fn and if they are solved in the order f1 to fn and optimal return for f1 is r1 and that of f2 is r2 and so 

on, then the method of calculation is known as forward computational procedure. 

 On the other hand, if they are solved in the order from fn, fn-1, ….. f1, then the method is termed as 

backward computational procedure. (e.g. Solution to L.P.P. by dynamic programming). 

 
The Algorithm 
 Identify the decision variables and specify objective function to be optimized under certain limitations, if 

any. 

 Decompose or divide the given problem into a number of smaller sub-problems or stages. Identify the state 

variables at each stage and write down the transformation function as a function of the state variable and 

decision variables at the next stage. 

 Write down the general recursive relationship for computing the optimal policy. Decide whether forward or 

backward method is to follow to solve the problem. 

 Construct appropriate stage to show the required values of the return function at each stage. 

 Determine the overall optimal policy or decisions and its value at each stage. There may be more than one 

such optimal policy. 

 

 

 
 

 

 

 

 

 

IARE Optimization Techniques Page | 103 



CHARACTERISTICS OF DYNAMIC PROGRAMMING: 
 

The basic features, which characterize the dynamic programming problem, are as follows: 
 Problem can be sub-divided into stages with a policy decision required at each stage. A stage is a device to 

sequence the decisions. That is, it decomposes a problem into sub-problems such that an optimal solution to 

the problem can be obtained from the optimal solution to the sub-problem. 

 Every stage consists of a number of states associated with it. The states are the different possible conditions 

in which the system may find itself at that stage of the problem. 

 Decision at each stage converts the current stage into state associated with the next stage. 

 The state of the system at a stage is described by a set of variables, called state variables. 

 When the current state is known, an optimal policy for the remaining stages is independent of the policy of 

the previous ones. 

 To identify the optimum policy for each state of the system, a recursive equation is formulated with ‗n‘ stages 

remaining, given the optimal policy for each stage with (n – 1) stages left. 

 Using recursive equation approach each time the solution procedure moves backward, stage by stage for 

obtaining the optimum policy of each stage for that particular stage, still it attains the optimum policy 

beginning at the initial stage. 

 

PROBLEMS 
 

Problem 1. (Product allocation problem) 
 

A company has 8 salesmen, who have to be allocated to four marketing zones. The return of profit from each 

zone depends upon the number of salesmen working that zone. The expected returns for different number of  

salesmen in different zones, as estimated from the past records, are given below. Determine the optimal allocation 

policy. 

 

 SALES MARKETING IN ZONES Rs. X 000  

No. of . 

Salesmen 
Zone 1 Zone 2 Zone 3 Zone 4 

0 45 30 35 42 

1 58 45 45 54 

2 70 60 52 60 

3 82 70 64 70 

4 93 79 72 82 

5 101 90 82 95 

6 108 98 93 102 

7 113 105 98 110 

8 118 110 100 110 

 

Solution:  
 

Maximize Z = f1 (x1) + f2 (x2) + f3 (x3) + f4 (x4) 

 

Subject to: x1 + x2 + x3 + x4 8 and x1, x2, x3 and x4 are non-negative integers. 
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4 4 
 

No. of Salesmen in zone 1. 0 1 2 3 4 5 6 7 8 

No. of Salesmen in zone 2. 8 7 6 5 4 3 2 1 0 

 

 
Construct a table to calculate the return from the above combination. 

 
Zone 1 

Salesmen 

 
0 1 2 3 4 5 6 7 8 

Return  45 58 70 82 93 101 108 113 118 

Zone 2  

Return 

30 

45 

60 

70 

79 

90 

98 

105 

110 

 

 
 

75 88 100 112 123 141 138 143 148 

90 103 115 127 138 146 153 158 

105 118 130 142 153 161 168 

115 128 140 152 163 171 

124 137 149 161 172 

135 148 160 172 

143 156 168 

150 163 

155 

Salesmen 

 
0 

1 

2 

3 

4 

5 

6 

7 

8 

 

 
 

Number of salesmen. 0 1 2 3 4 5 6 7 8  

Zone 1 0 0 0 1 2 3 4 4 4 3 

Zone 2 0 1 2 2 2 2 2` 3 4 5 

Outcome in Rs. × 1000 75 90 105 118 130 142 15 
3 

162 172 172 

 

 
Now in the second stage, let us combine zone 3 and zone 4 and get the total market returns. 

Combination of zone 3 and zone 4. 

 

Zone 3 

Salesmen 

  
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

Return.  35 45 52 64 72 82 93 98 100 

Zone 4            

Salesmen Return.          

0 42 77 97 94 106 114 124 136 140 142 

1 54 89 99 106 118 126 136 147 152  

2 60 95 105 112 124 132 142 153   
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3 70 105 115 122 134 142 152 

4 82 117 127 134 146 154  

5 95 130 140 147 159   

6 102 137 147 154    

7 110 145 155     

8 110 145      

 

Now the table below shows the allocation and the outcomes for zone 3 and zone 4. 
 

Number of Salesmen 0 1 2 3 4 5 6 7 8 

Zone 3 0 1 1 2 3 5 1 1 2 3 

Zone 4 0 0 1 1 1 0 5 6 5 5 

Return in Rs. × 1000 77 97 99 106 118 130 140 147 147 159 

 
In third stage we combine both zones 1 & 2 outcomes and zones 3 and 4 outcomes. 

Zones 1 and 2 and zones 3 and 4 combined. 

 
 

Zones 1& 2 

Salesmen 
(0, 0) 

0 

(0, 1) 

1 

(0, 2) 

2 

(1, 2) 

3 

(2, 2) 

4 

(3, 2) 

5 

(4, 2) 

6 

(4, 

3) 

7 

(4, 4)(3, 

5) 

8 

Return. 75 90 105 118 130 142 153 163 172 

Zones 3 & 
4 

          

Salesmen Retur 
n. 

         

0(0,0) 77 152 187 182 195 207 219 230 240 247 

1(1,0) 97 172 187 202 215 302 239 243 260  

2(1,1) 99 174 189 204 217 229 241 252   

3(2,1) 106 181 196 211 224 236 248    

4 (3,1) 118 193 208 223 236 248     

5(5,0) 130 205 220 235 248      

6(1,5) 140 215 230 245       

7(1,6)           

( 2,5) 147 222 237        

8( 3,5) 159 234         

 

Optimal allocation is: 
 

 

 

Salesmen 0 1 2 3 4 5 6 7 8 

Zone 1 0 0 1 0 1 2 3 4 4 

Zone 2 0 0 0 2 2 2 2 2 3 

Zone 3 0 1 1 1 1 1 1 1 1 
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Zone 4 0 0 0 0 0 0 0 0 0 

Total return in Rs. × 
1000 

152 187 187 202 215 302 239 243 26 
0 

 

The above table shows that how salesmen are allocated to various zones and the optimal outcome for the 

allocation. Maximum outcome is Rs. 260 × 1000. 

Problem 2. 
 

The owner of a chain of four grocery stores has purchased six crates of fresh strawberries. The estimated 

probability distribution of potential sales of the strawberries before spoilage differs among the four stores. The 

following table gives the estimated total expected profit at each store, when it is allocated various numbers of 

crates: 

 
 

Number of Crates 1 2 3 4 

0 0 0 0 0 

1 4 2 6 2 

2 6 4 8 3 

3 7 6 8 4 

4 7 8 8 4 

5 7 9 8 4 

6 1 10 8 4 

 

 
For administrative reasons, the owner does not wish to split crates between stores. However he is willing to 

distribute zero crates to any of his stores. 

 

Solution 
 

Let the four stores be considered as four stages in dynamic programming formulation. The decision variables xi 

(i = 1, 2, 3 and 4) denote the number of crates allocated to the i th stage. Let f (xi) be the expected profit from 

allocation of xi crates to the store ‗i‘, then the problem is: 

Maximize Z = f1 (x1) + f2 (x2) + f3 (x3) + f4 (x4) subject to x1 + x2 + x3 + x4 = 6 and all xi = 0 
 

 
 

No. of 

crates 

 0 1 2 3 4 5 6 

Profit.  0 6 8 8 8 8 8 

No. of 
crates 

Profit.        
  

0 0 0 6 8 8 8 8 8 

1 2 2 3 10 10 10 10  

2 3 3 9 11 11 11   

3 4 4 10 12 12    
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4 4 4 10 12     

5 4 4 10      

6 4 4       

 

 
 

No. of 
crates 

0 1 2 3 4 5 6 

Store 3 0 1 2 2 2 2 3 2 

Store 4 0 0 0 1 2 3 3 4 

Profit 0 6 8 10 11 12 12 

 

 
 

No. of 
crates 

 0 1 2 3 4 5 6 

Profit  0 4 6 7 7 7 7 

No. of 
crates 

Profi 
t 

       

0 0 0 4 6 7 7 7 7 

1 2 2 6 8 9 9 9  

2 4 4 8 10 11 11   

3 6 6 10 12 12    

4 8 8 12 14     

5 9 9 13      

6 10 10       

 

 
 

No. of 

crates 

0 1 2 3 4 5 6 

Store 1 0 1 2 1 2 1 2 1 2 1 2 

Store 2 0 0 0 1 1 2 2 3 3 4 4 

Profit. 0 4 6 6 8 8 10 10 12 12 14 

 

 
 

No. of crates  0 

0, 0 

1 

1, 0 

2 

2, 0 

3 

2, 1 

4 

2,2 

5 

2, 
3 

6 

3 2 

Profit  0 6 8 10 11 12 12 

No. of crates Profi 
t 

       

0 (0, 0) 0 0 6 8 10 11 12 12 

1 (1, 0) 4 4 10 12 14 15 16  

2 (2, 0), (1, 1) 6 6 12 14 16 17   

3 (2, 1), (1, 2) 8 8 14 16 18    

4 (2,2), (1, 3) 10 10 16 18     
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5(2, 3), (1, 4) 12 12 18      

6 (2, 4) 14 14       

 

 

All the four stores combined at 3 rd stage 
 
 

No. of 
crates 

0 1 2 3 4 5 6 

Store 1    2 1 1 2 1 2 1 1 2 1 2 1 2 1 2  1 2 1 2 1 

Store 2    0 1 0 1 2 0 1 0 2 3 1 2 0 1 3  4 2 3 1 2 

Store 3    1 1 2 1 1 2 2 2 1 1 2 2 2 2 1  1 2 2 2 2 

Store 4    0 0 0 0 0 0 0 1 0 0 0 0 1 1 0  0 0 0 1 1 

Profit. 0 6 10 12 14 16 18 

Maximum profit is Rs. 18/- 
 

Problem 3 (Cargo load problem) 
 

A vessel is to be loaded with stocks of 3 items. Each item ‗i‘ has a weight of wi and a value of vi. The maximum 

cargo weight the vessel can take is 5 and the details of the three items are as follows: 

j wj vj 

1 1 30 

2 3 80 

3 2 65 

Develop the recursive equation for the above case and find the most valuable cargo load without exceeding the 

maximum cargo weight by using dynamic programming. 

Solution: 

Let us represent the three items as xj ( j = 1, 2, 3) and we have to take decision how much of each item is to be 

loaded into the vessel to fulfill the objective. Let fj (xj) is the value of optimal allocation for the three items, and 

if f (s, x ) is the value associated with the optimum solution f 
*
 (s) for (j = 1, 2 

 
Now as the weight value of item number 1 is 1 (= w1) only and the maximum load (W) that can be loaded is 5 

the largest value of item number one that can be loaded is = W/w1 = 5/1 = 5. The tabular computation for stage 1 

is: 

x1 0 1 2 3 4 5 
f 

*
 (s) 

1 x* 
1 

s - - - - - - - - 

0 0      0 0 

1 0 30     30 1 

2 0 30 60    60 2 

3 0 30 60 90   90 3 

4 0 30 60 90 120  120 4 

5 0 30 60 90 120 15 
0 

150 5 
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The entries in the above table are obtained as  follows: As the five items can be loaded as   W/w1 = 5, when   

load is zero the value is 30 × 0 = 0, when load is 1, value 30 × 1 = 30 and so on. The maximum in the row is 

written in 8th column, i.e. 0, 30, 60… 150. And the load for that weight is written in the last column. Similarly 

we can write for item number 2. 

Specimen calculations: 

For zero load: [80 × 0 + f1 (0 + 3 × 0) = 0. 

For load 1: [80 + 0] = 80. 

The load of item 2 that can be loaded is W/w2 = 5/3 = 1. Hence in the table for x2 only 0 and 1 are shown. 

Value of 80 x2 +f 
*
 (s – 3x2). 

 
 

x2 0 1     f 
*
 (s) 

2 
x 
* 
2 

s - - - - - - - - 

0 0 + 0 = 0      0 0 

1 0 + 30 = 30      30 0 

2 0 + 60 = 60      60 0 

3 0 + 90 = 90 80 + 0 = 80     90 0 

4 0 + 120 = 80 + 30 =     120 0 
 120 110   

5 0 = 150 = 80 + 60 =     150 0 
 150 140   

 
As all the maximum values are due to item number 1, the item number 2 is not loaded into the cargo. Hence here 

x2 = 0. 

For stage 3, the items that can be loaded into cargo is S/w3 = 5/2 = 2. Hence 0, 1, 2 are shown in the table. 

 
x3 0f 1 2    f 

*
 (s) 

3 x* 
3 

s - - - - - - - - 

0 0 + 0 = 0      0 0 

1 0 + 30 = 30      30 0 

2 0 + 60 = 60 65 + 0 = 65     65 1 

3 0 + 90 = 90 65 + 35 = 
95 

    95 1 

4 0 + 120 = 
120 

65 + 60 = 
125 

130 + 0 = 
130 

   130 2 

5 0 + 150 = 
150 

65 + 90 = 
155 

130 + 30 = 
160 

   160 2 

In the above table, x1 = 1, x2 = 0 and x3 = 2 and the maximum value is 160, therefore answer is: 

x*
1 = 1, x*

3 = 2 and f*3 = 160. 
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Problem 4: 

In a cargo-loading problem, there are four items of different weight per unit and value as shown below. The 

maximum cargo load is restricted to 17 units. How many units of each item is loaded to maximize the value? 

Item 
(i) 

Weight (w1) Value 
(v1) 

1 1 1 

2 3 5 

3 4 7 

4 6 11 

Solution 

Let x1, x2, x3 and x4 be the items loaded then we have to maximize sum of xi vi, i.e. 

Maximize Z = a1 x1 + a2 x2 + a2 x3 + a4 x4 s.t. 

a1 x1 + a2 x2 + a2 x3 + a4 x4 17 and all ai are = 0. 

For item number 1f1 (x1) = Max [a1 v1] where the value of a1 may be anything between maximum weight (W) 

allowed divided by item weight (w). Here W/w = 17/1 = 17. 

For item number 2, f2 (x2) = Max [a2 v2 + f1 (x2 – a2 w2)] For item number 3, f3 (x3) = Max [a3 v 3 + f2 ( x3 

– a3 w3)] For item number 4, f4 (x4) = Max [ a4 v4 + f3 ( x4 – a4 w4)] 

In general, for item „i‟ fi (xi) = Max. [av + fi – 1 (xi – ai wi) is the recursive equation. 

In the given problem the recursive equations are: 

1. x1v1 

 
2. 5x2 + f 1 (x2 – 3x2) 

3. 7x3 + f 2 (x3 – 4x3 ) 

 

4. 11x4 + f3 (x4 – 6x4) 

Substituting the value stage by stage, the values are tabulated in the table given below: (Remember as there are 4 

items, this is a 4-stage problem. 
 

xi Stage 
1 

= x1v Stage 
2 

= 5 x2 + 

f1(x2– 

3x2) 

Stage 
3 

= 7x3 + 

f2(x3 – 

4x3) 

Stage 
4 

= 11x4 + 

f3(x4 – 

6x4) 

 

 w1 = 
1 

v1 = 1 w2 = 
3 

v2 = 5 w3 = 
4 

v3 = 7 w4 = 
6 

v4 = 11 F* (xI) I 

 x1 f1 (x1) x 

2 

f2 (x2) x3 f (x3) x4 f4 (x4)  

0 0 0 0  0  0  0 

1 1 1 0  0  0  1 

2 2 2 0  0  0  2 

3 3 3 1 5 + 0 = 5 0  0  5 
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4 4 4 1 5 + 1 = 6 1 7 + 0 = 7 0  7 

5 5 5 1` 5 + 2 = 7 1 7 + 1 = 8 0  8 

6 6 6 2 10 + 0 = 
10 

1 7 + 2 = 9 1 11 + 0 = 
11 

11 

7 7 7 2 1 0 + 1 = 
11 

1 7 + 5 = 12 1 11 + 1 = 
12 

12 

8 8 8 2 10 + 2 = 
12 

2 14 + 0 = 
14 

1 11 + 2 = 
13 

14 

9 9 9 3 15 + 0 = 
15 

2 14 = 1 = 
15 

1 11 + 5 = 
16 

16 

10 10 10 3 15 + 1 = 
16 

2 14 + 2 = 
16 

1 11 + 7 = 
18 

18 

11 11 11 3 15 + 2 = 
17 

2 14 + 5 = 
19 

1 11 + 8 = 
19 

19 

12 12 12 4 20 + 0 = 
20 

3 21 + 0 = 
21 

2 22 + 0 = 
22 

22 

13 13 13 4 20 + 1 = 
21 

3 21 + 1 = 
22 

2 22 + 1 = 
23 

23 

14 14 14 4 20 + 2 = 
22 

3 21 + 2 = 
23 

2 22 + 2 = 
24 

24 

15 15 15 5 25 + 0 = 
25 

3 21 + 5 = 
26 

2 22 + 5 = 
27 

27 

16 16 16 5 25 + 1 = 
26 

4 28 + 0 = 
28 

2 22 + 7 = 
29 

29 

17 17 17 5 25 + 2 = 
27 

4 28 + 1 = 
29 

2 22 + 8 = 
30 

30 

 

Answer: To maximize the value of the cargo load 1 unit of item 1, 1 unit of item 3 and 2 units of item 4. The 

maximum value of the cargo is 30. 

Problem 5: 

In a cargo-loading problem, there are four items of different unit weight and value. The maximum cargo load is 6 

units. How many units of each item are loaded to maximize the value? 

 

Item Weight 
(wi) 

Value per unit. 

1 1 1 

2 3 3 

3 4 5 

4 4 4 

 

Solution: 
 

The model is: Maximize Z = 1a + 3b + 5c + 4d subject to 1a + 3b + 4c + 4d =6 units. And a, b, c, d all = 0. 

Number of units of ‗a‘ = W /w = 6 / 1 = 6 

‗b‘ = 6 / 3 = 2 

‗c‘ = 6 / 4 =  1 
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‗d‘ = 6 / 4 = 1 

Let us combine weights c and d first. 
 
 

 W 0 4 8 12 16 

C 0 1 2 3 4 

W d Z Z 0 5 10 15 20 

0 0 0  0 0, 5 8, 
10 

  

4 1 4  4, 
4 

4, 5    

8 2 8  8, 
8 

    

Here for c = 1 and d = 1 the element (4, 5) has selected instead of (8, 8) and (8, 10) because it is within the given 

limit of maximum load 6 units. 

 
 

C 
D 

W 
Z 

0 

0 
0 
0 

1 

0 
4 
5 

1 

1 
4 
5 

 

 

 

For Table 2 let us combine ‗a‘ and ‗b‘ 
 
 

   W 0 1 2 3 4 5 6 

   a 0 1 2 3 4 5 6 

W b Z Z 0 1 2 3 4 5 6 

0 0 0  0 1, 1 2, 2 3, 3 4, 4 5, 5 6, 6 

3 1 3  3, 3 3, 3      

6 2 6  6, 6       

           

 

 
 

A 0 0 1 0 6 

B 0 1 0 2 0 

W 0 3 3 6 6 

Z 0 3 3 6 6 

Now combining, a and b with c and d we get. 
 
 

    W 0 4 4 

    c 0 1 1 

    d 0 0 1 

W a b Z Z 0 5 5 

0 0 0 0  0 4, 5(0,0,1,0) 4, 5(0, 0, 1, 
1) 
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3 0 1 3  3, 3(0,1,0,0) 1, 5(0, 1, 1, 
0) 

 

3 1 0 3  (1, 0,0,0,) (1, 0, 1, 0)  

6 0 2 6  6, 6(0, 2, 0, 
0) 

  

6 6 0 6  (6, 1,0,0)   

 

 

Maximum weight = 6 units, a = 6, b = 0, c = 0 and d = 0 or a = 0, b = 2 , c = 0 and d = 0 Substituting the values 

in the model we get, Maximize Z = 1a + 3b + 5c + 4d and 

1a + 3b + 4c + 4d = 6 

1 × 6 + 0 × 0 + 0 × 0 + 0 × 0 = 6 or 0 × 0 + 3 × 2 + 0 × 0 + 0 × 0 = 6 and 

1 × 6 + 3 × 0 + 4 × 0 + 4 × 0 = 6. 

Problem 6: 
 

Determine the value of u1 , u2, and u3 so as to Maximize u1. u2. u3 subject to u1 + u2 + u3 = 10 and u1, u2 and 

u3 all = 0. 

Solution 

 
This can be treated as a 3-stage problem, with the state variable xi and the return fi (xi), such that 

At stage 3,x3 = u1 + u2 + u3 = 10, 

at stage 2,x2 = x3 – u3 = u1 + u2, 

at stage 1x1 = x2 – u2 = u1. 

and the returns are: 

f3 (x3) = max [u3 f2 (x2)] 

f2 (x2) = max [ u2 f1(x1)] 

Since u1 = (x2 – u2) 

f1 (x1) = u1 

f2 (x2) = max [ u2 ( x2 – u2)] = max [ u2 x2 – u2
2] 

Differentiating [u2 x2 – u2
2] w.r.t. u2 and equating to zero (to find the maximum value) 

u2 – 2 u2 = 0 or u2 = (x2/2), therefore, 

f2 (x2) = (x2/2) . x2 – (x2/2)2 = (x2
2/4) 

Differentiating [u3 . (x3 – u3)2 / 4] w.r.t. u3 and equating to zero, (1/4) [u3 . 2 (x3 – u2) (–1) + (x3 – u3)2] = 0 or 

(x3 – u3) (– 2 u3 + x3 – u3) = 0 or (x3 – u3) (x3 – 3u3) = 0. 

Now, either u3 = x3, which is trivial as u1 + u2 + u3 = x3 or u3 = (x3/3) = (10/3) Therefore, u2 (x2/2) = (x3 – 

u3)/2 = (1/2) [10 – (10/3)] = (10/3)u1 = x2 – u2 = (20/3) – (10/3) = (10/3) 

Therefore, u1 = u2 = u3 = (10/3) and maximum (u1 . u2. u3) = (1000/27). 
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UNIT-V 
 

Introduction to quadratic approximation:- 
 

Quadratic approximation is an extension of linear approximation, where we are adding one more term, which is 

related to the second derivative. The formula fo r the quadratic approximation of a function f(x) for values of x 

near x"0" is : 

 

 

 

 

Compare this to the old formula for the linear approximation of f: 
 

 

 

We got from the linear approximation to the quadratic one by adding one more term that is related to the second 

derivatives: 

 

 

 

 

 
 
 

These are more complicated and so are only used when higher accuracy is needed. 

The quadratic approximation also uses the point x=a to approximate nearby values, but uses a parabola instead 

of just a tangent line to do so. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

This gives a closer approximation because the parabola stays closer to the actual function. 
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Algorithm to Convert a CFG into Greibach Normal Form 
 
 

Step 1 − If the start symbol S occurs on some right side, create a new start symbol S‘ and a new production S‘ 

→ S. 

Step 2 − Remove Null productions. (Using the Null production removal algorithm discussed earlier) 

Step 3 − Remove unit productions. (Using the Unit production removal algorithm discussed earlier) 

Step 4 − Remove all direct and indirect left-recursion. 

Step 5 − Do proper substitutions of productions to convert it into the proper form of GNF. 

 
 

Example: Convert the following grammar G into Greibach Normal Form (GNF). 

S→ X A|BB 

B → b|SB 

X → b 

A → a 

To write the above grammar G into GNF, we shall follow the following steps: 

1. Rewrite G in Chomsky Normal Form (CNF) It is already in CNF. 

2. Re-label the variables 

S with A1 

X with A2 

A with A3 

B with A4 

After re-labeling the grammar looks like: 

A1 → A2 A3|A4A4 

A4 → b|A1 A4 

A2 → b 

A3  → a 

Identify all productions which do not conform to any of the types listed below: 

Ai → Aj xk such that j > I 

Zi → Aj xk such that j ≤ n 

Ai → axk such that xk ∈ V ∗ and a ∈ T 

A4  → A1 A4 .................. identified 

A4 → A1 A4 |b. 

To eliminate A1 we will use the substitution rule A1 → A2 A3|A4A4 . 

Therefore, we have A4 → A2 A3A4 |A4A4 A4|b 

The above two productions still do not conform to any of the types in step 3. 
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Substituting for A2 → b 

A4 → bA3 A4 |A4A4A4 |b 

Now we have to remove left recursive production 

A4 → A4A4 A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → A4 A4 |A4A4Z 

 
At this stage our grammar now looks like 

A1 → A2 A3|A4A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → A4 A4 |A4A4Z 

A2 → b 

A3 → a 

All rules now conform to one of the types in step 3. 

But the grammar is still not in Greibach Normal Form! 

All productions for A2 , A3 and A4 are in GNF 

for A1 → A2 A3|A4A4 

Substitute for A2 and A4 to convert it to GNF 

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4 

for Z → A4 A4 |A4A4Z 

Substitute for A4 to convert it to GNF 

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4 Z|bZ A4Z 8. Finally the grammar in  

GNF is 

A1 → bA3 |bA3 A4A4 |bA4 |bA3A4 Z A4|bZ A4 

A4 → bA3 A4 |b|bA3 A4Z|bZ 

Z → bA3 A4 A4 |bA4|bA3 A4 Z A4|bZ A4 |bA3A4 A4 Z|bA4Z|bA3 A4Z A4 Z|bZ A4Z 

A2 → b 

A3 → a 

 
Convert the following CFG into CNF 

S → XY | Xn | p 

X → mX | m 

Y → Xn | o 
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Solution 

Here, S does not appear on the right side of any production and there are no unit or null productions in the 

production rule set. So, we can skip Step 1 to Step 3. 

Step 4 

Now after replacing 

 

 

 

 

We obtain 

 
 

And after replacing 

 

 

 
We obtain 

X in S → XY | Xo | p 

with 

mX | m 

 
 

S → mXY | mY | mXo | mo | p. 

 
 

X in Y → Xn | o with the right side of 

X → mX | m 

 
Y → mXn | mn | o. 

Two new productions O → o and P → p are added to the production set and then we came to the final GNF as 

the following − 

S → mXY | mY | mXC | mC | p 

X → mX | m 

Y → mXD | mD | o 

O → o 

P → p 

 
 

Types of Non-Linear Programming Problems:- 

In the preceding two chapters we considered a number of alternative strategies for exploiting linear 

approximations to nonlinear problem functions. In general we found that, depending upon the strategy 

employed, linearization‘s would either lead to vertex points of the linearized constraint sets or generate descent 

directions for search. In either case, some type of line search was required in order to approach the solution of 

non-corner-point constrained problems. Based upon our experience with unconstrained problems, it is 

reasonable to consider the use of higher order approximating functions since these could lead directly to better 

approximations of non-corner-point solutions. For instance, in the single-variable case we found that a quadratic 

approximating function could be used to predict the location of optima lying in the interior of the search interval. 

In the multivariable case, the use of a quadratic approximation (e.g., in Newton‘s method) would yield good 

estimates of unconstrained minimum points. Furthermore, the family of QuasiNewton methods allowed us to 

reap some of the benefits of a quadratic approximation without explicitly developing a full second-order 
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approximating function at each iteration. In fact, in the previous chapter we did to some extent exploit the 

acceleration capabilities of quasi-Newton methods by introducing their use within the direction generation 

mechanics of the reduced gradient and gradient projection methods. 

Thus, much of the discussion of the previous chapters does point to the considerable algorithmic potential of 

using higher order, specifically quadratic, approximating functions for solving constrained problems. In this 

chapter we examine in some detail various strategies for using quadratic approximations. We begin by briefly 

considering the consequence of direct quadratic approximation, the analog of the successive LP strategy. 

Then we investigate the use of the second derivatives and Legrangian constructions to formulate quadratic 

programming (QP) sub problems, the analog to Newton‘s method. Finally, we discuss the application of quasi- 

Newton formulas to generate updates of quadratic terms. 

We will find that the general NLP problem can be solved very efficiently via a series of sub problems consisting 

of a quadratic objective function and linear constraints, provided a suitable line search is carried out from the 

solution of each such subproblem. The resulting class of exterior point algorithms can be viewed as a natural 

extension of quasi-Newton methods to constrained problems. 

Direct Quadratic Approximation:- 

The solution of the general NLP problem is by simply replacing each nonlinear function by its local quadratic 

approximation at the solution estimate x0 and solving the resulting series of approximating sub problems. If 

each function ƒ(x) is replaced by its quadratic approximation 

 

 

then the subproblem becomes one of minimizing a quadratic function subject to quadratic equality and 

inequality constraints. While it seems that this subproblem structure ought to be amendable to efficient solution, 

in fact, it is 

not. To be sure, the previously discussed strategies for constrained problems can solve this subproblem but at no 

real gain over direct solution of the original problem. For a sequential strategy using subproblem solutions to be 

Effective, the subproblem solutions must be substantially easier to obtain than the solution of the original 

problem. Recall from the discussion in Section 9.2.3 that problems with a quadratic positive-definite objective 

function and linear constraints can be solved in a finite number of reduced gradient iterations provided that 

quasi-Newton or conjugate gradient enhancement of the reduced gradient direction vector is used. Of course, 

while the number of iterations is finite, each iteration requires a line search, which strictly speaking is itself not a 

finite procedure. However, as we will discover in Chapter 11, there are specialized methods for these so-called 

QP problems that will obtain a solution in a finite number of iterations without line searching, using instead 

simplex like pivot operations. Given that QP problems can be solved efficiently with truly finite procedures, it 

appears to be desirable to formulate our approximating sub problems as quadratic programs. Thus, assuming that 

the objective function is twice continuously differentiable, a plausible solution strategy would consist of the 

following steps: 
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Direct Successive Quadratic Programming Solution 

Given x 0, an initial solution estimate, and a suitable method for solving QP sub problems. 

Step 1. Formulate the QP problem 

 

 

 

 
 

Step 2. Solve the QP problem and. 

Step 3. Check for convergence. If not converged, repeat step 1. 

As shown in the following example, this approach can be quite effective. 

Example 1 

Solve the problem 
 

 
 

 

 
 

From the initial feasible estimate x 0 = (2, 1) using the direct successive QP strategy. 

At x0, ƒ(x 0) = 12.25, h(x0) = 0, and g(x 0) = 2 > 0. The derivatives required to construct the QP subproblem are 
 

 

 

 

 

 
 

Thus, the first QP subproblem will be 
 

 

 

 

 

 

 
 

Since the first constraint can be used to eliminate one of the variables, that is, 

d1 = - 2d2 

the resulting single-variable problem can be solved easily analytically to give 
 
 

Thus, the new point becomes 
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At which point 

 
 

Note that the objective function value has improved substantially but that the equality constraint is violated. 

Suppose we continue with the solution procedure. The next subproblem is 

 

 

 

 

 

 

 

 

 

 
 

 

 

Note that both the objective function value and the equality constraint violation are reduced. The next two 

iterations produce the results 

x(3)  = (1.00108, 1.99313) ƒ(x(3)) =  5.00457 h(x(3)) = - 4.7 * 10-3 

x(4)  = (1.00014, 1.99971) ƒ(x(4)) =  5.00003 h(x(4)) = -6.2 * 10-6 

The exact optimum is x* (1, 2) with ƒ(x*)  5.0; a very accurate solution has been obtained in four iterations. As 

is evident from Figure 10.1, the constraint linearization‘s help to define the search directions, while the quadratic 

objective function approximation effectively fixes the step length along that direction. Thus, the use of a 

nonlinear objective function approximation does lead to non-vertex solutions. However, as shown in the next 

example, the self-bounding feature of the quadratic approximation does not always hold. 
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Direct Quadratic Approximation:- 

Example 2 

Suppose the objective function and equality constraint of Example 10.1 are interchanged. Thus, consider the 

problem 

 

 

 

 

 

The optimal solution to this problem is identical to that of Example 10.1. With the starting point x
0
 = (2, 1) the 

first subproblem becomes 

 

 

 

 

 

 
The solution to this subproblem is d

0
 = (1.7571, 0.24286), at which both constraints are tight. Thus, a 

subproblem corner point is reached. The resulting intermediate solution is 

x
1
 = x

0
 + d

0
 = (0.24286, 0.75714) 

With  

ƒ(x
(1)

) =  0.18388 h(x
(1)

) = 9.7619 g(x(1)) = 0 

Although the objective function value decreases, the equality constraint vio- lation is worse. The next 

subproblem becomes 

 

 

 

 

 

 

 
 

The resulting new point is 
 

x(2)  = (0.32986, 0.67015) 

ƒ(x
(2)

) = 0.2211 h(x
(2)

) = 4.1125 g(x
(2)

) = 0 
 

Again, g(x) is tight. The next few points obtained in this fashion are 
 

x
(3)

  = (0.45383, 0.54618) 
 

x
(4)

  = (—0.28459, 1.28459) 
 

x
(5)

  = (—0.19183, 1.19183) 
 

These and all subsequent iterates all lie on the constraint g(x) = 0. Since the objective function decreases 
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toward the origin, all iterates will be given by the intersection of the local linearization with g(x) = 0. Since the 

slope of the linearization becomes larger or smaller than -1 depending upon which side of the constraint 

‗‗elbow‘‘ the linearization point lies, the successive iterates simply follow an oscillatory path up and down the 

surface g(x)=0. 

Evidently the problem arises because the linearization cannot take into account the sharp curvature of the 

constraint h(x) = 0 in the vicinity of the optimum. Since both the constraint and the objective function shapes 

serve to define the location of the optimum, both really ought to be taking into ac-count. 

 
Quadratic Approximation of the Legrangian Function:- 

The examples of the previous section suggest that it is desirable to incorporate into the subproblem definition 

not only the curvature of the objective function but also that of the constraints. However, based on 

computational considerations, we also noted that it is preferable to deal with linearly constrained rather than 

quadratically constrained sub problems. Fortunately, this can be accomplished by making use of the 

Legrangian function, as will be shown below. For purposes of this discussion, we first consider only the 

equality- constrained problem. The extension to inequality constraints will follow in a straightforward fashion. 

Consider the problem 

Minimize ƒ(x) 

Subject to h(x) = 0 

Recall that the necessary conditions for a point x* to be a local minimum are that there exist a multiplier v* 

such that 

Qx L(x*, v*) = Qƒ* — v*T  Qh* = 0 and h(x*) = 0 (10.1) 

 

 

Sufficient conditions for x* to be a local minimum (see Theorem 5.7 of Chapter 5) are that conditions (10.1) 

hold and that the Hessian of the La- grangian function, 

 

 
 

Satisfies 
 

 

 

for all d such that (Qh)*Td = 0 (10.2) 

 

 
Given some point , we construct the following subproblem expressed in terms of the variables d: 
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We now observe that if d* = 0 is the solution to the problem consisting of (10.3) and (10.4), then x must satisfy 

the necessary conditions for a local minimum of the original problem. First note that if d* = 0 solves the sub- 

problem, then form (10.4) it follows that h(x) = 0; in other words, x is a feasible point. Next, there must exist 

some v* such that the subproblem functions satisfy the Legrangian necessary conditions at d* = 0. Thus, since 

the gradient of the objective function (10.3) with respect to d at d* = 0 is Qƒ(x) and that of (10.4) is Qh(x), it 

follows that 

 

 

 

Note that the second derivative with respect to d of (10.4) is zero, since it is a linear function in d. Consequently, 

 

the above inequality implies that d T Qx2L ( , v*)d is positive also. Therefore, the pair ( , v*) satisfies the 

sufficient conditions for a local minimum of the original problem. This demonstration indicates that the 

subproblem consisting of (10.3) and (10.4) has the following very interesting features: 

1. If no further corrections can be found, that is, d = 0, then the local minimum of the original problem will 

have been obtained. 

2. The Lagrange multipliers of the subproblem can be used conveniently as estimates of the multipliers 

used to formulate the next subproblem. 

3. For points sufficiently close to the solution of the original problem the quadratic objective function is 

likely to be positive definite, and thus the solution of the QP subproblem will be well behaved. 

By making use of the sufficient conditions stated for both equality and in- equality constraints, it is easy to arrive 

at a QP subproblem formulation for the general case involving K equality and J inequality constraints. If we let 

 

 

 

 

 

 

 
 

 

 

 

 

The algorithm retains the basic steps outlined for the direct QP case. Namely, given an initial estimate x 
0
 as  

well as u
0
 and v

0
 (the latter could be set equal to zero, we formulate the subproblem [Eqs. (10.7), (10.8a), and 
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(10.8b)]; solve it; set x(t+1) = x(t) + d; check for convergence; and  repeat, using as next estimates of u and v  

the corresponding multipliers obtained at the solution of the sub problem. 

 
Quadratic Approximation of the Legrangian Function:- 

Example 3 

Repeat the solution of the problem of Example 10.1 using the Legrangian QP subproblem with initial estimates 

x
0
 = (2, 1)T, u

0
 = 0, and v

0
 = 0. The first subproblem becomes 

 

 

 

 

 

 

 

This is exactly the same as the fist subproblem of Example because with the initial zero estimates of the 

multipliers of the constraint terms of the Legrangian will vanish. The subproblem solution is thus, as before, 

d
0
 = (—0.92079, 0.4604)

T
 

Since the inequality constraint is loose at this solution, u(1) must equal zero. The equality constraint multiplier 

can be found from the solution of the Legrangian necessity conditions for the subproblem. Namely, 

 

 

 

 

 

 

 

 

 

 

 

Thus, v
(1)

 = 2.52723. Finally, the new estimate of the problem solution will be x
(1)

 = x
0
 + d

0
, or 

x
(1)

  = (1.07921, 1.4604)
T
 ƒ(x

(1)
) = 5.68779 h(x

(1)
) = —0.42393 

as was the case before. 

The second subproblem requires the gradients 
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The quadratic term is therefore equal to 
 

 

 

 

 

 
 

The complete problem becomes 
 

 

 

 

 

 

 

 

 

The solution is d
(1)

 = (0.00614, 0.38450). Again, since g˜(d
(1)

; x
(1)

 )> 0, u
(2)

 = 0, and the remaining equality 

constraint multiplier can be obtained from 

 

 

 
or 

 

 

 

 

 
Thus, 

 

 

 

with 
 

 

 

Continuing the calculations for a few more iterations, the results obtained are 
 

 

 

 

 

and 
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It is interesting to note that these results are essentially comparable to those obtained in Example 10.1 without 

the inclusion of the constraint second derivative terms. This might well be expected, because at the optimal 

solution 

(1, 2) the constraint contribution to the second derivative of the Legrangian is small: 
 

 

 

 

 

The basic algorithm illustrated in the preceding example can be viewed as an extension of Newton‘s method to 

accommodate constraints. Specifically, if no constraints are present, the subproblem reduces to 

 

 

 

 

Quadratic Approximation by Legrangian Function Problems:- 

Example 4 

Consider the problem of Example 10.2 with the initial estimate x
0
 = (2, 2.789) and u = v = 0. The first 

subproblem will be given by 

 

 

 

 

 

 
 

The solution is d 
0
 = (-1.78316, -2.00583). The inequality constraint is tight, so both constraint multipliers must 

be computed. The result of solving the system 

 

 

 

 

 

is v
(1)

 = -0.00343 and u
(1)

 = 0.28251. 

At the corresponding intermediate point, 

x 
(1)

 = (0.21683, 0.78317)
T
 

we have  

ƒ(x
(1)

) = 0.1698 h(x
(1)

) = 13.318 g(x
(1)

) = 0 

Note that the objective function decreases substantially, but the equality constraint violation becomes very large. 

The next subproblem constructed at x
(1)

 with multiplier estimates u
(1)

 and v
(1)

 is 
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The subproblem solution is d 
(1)

 = (+0.10434,-0.10434)
T
, and the multipliers are v

(2)
 = -0.02497, u

(2)
 = 0.38822. 

At the new point x
(2)

 = (0.40183,0.59817)
T
, the objective function value is 0.24036 and the constraint value is 

2.7352. 

The results of the next iteration, 

x
(3)

 = (0.74969, 0.25031)
T
 ƒ(x

(3)
) = 0.18766 h(x

(3)
) = 13.416 

Indicate that the constraint violation has increased considerably while the objective function value has decreased 

somewhat. Comparing the status at x
(1)

 and x
(3)

, it is evident that the iterations show no real improvement. In 

fact, both the objective function value and the equality constraint violation have increased in proceeding from 

x(1) to x(3). 

The solution to the problem of unsatisfactory convergence is, as in the unconstrained case, to perform a line 

search from the previous solution estimate in the direction obtained from the current QP subproblem solution. 

However, since in the constrained case both objective function improvement and reduction of the constraint 

infeasibilities need to be taken into account, the line search must be carried using some type of penalty function. 

For instance, as in the case of the SLP strategy advanced by Palacios-Gomez, an exterior penalty function of the 

form 

 

 

 

 

could be used along with some strategy for adjusting the penalty parameter R. This approach is illustrated in the 

next example. 

 
Example 5 

Consider the application of the penalty function line search to the problem of Example 10.4 beginning with the 

point x
(2)

 and the direction vector d
(2)

 = (0.34786, -0.34786)
T
 which was previously used to compute the point 

x(3) directly. 

Suppose we use the penalty function 

P(x, R) = ƒ(x) + 10{h(x)
2
 + [min(0, g(x)]

2
 } 

and minimize it along the line 
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Note that at P 75.05, while at 1, P 1800.0. Therefore, a minimum ought to be found in the range 0 1. 

Using any convenient line search method, the approximate minimum value P 68.11 can be found with 0.1. The 

resulting point will be 

x
(3)

 = (0.43662, 0.56338)
T
 

with ƒ(x
(3)

) = 0.24682 and h(x
(3)

) = 2.6053. 
 

To continue the iterations, updated estimates of the multipliers are required. Since is no longer 

the optimum solution of the previous subproblem, this value of d cannot be used to estimate the multipliers. The 

only available updated multiplier values are those associated with d 
(2)

, namely v
(3)

 = 0.005382 and u
(3)

= 0.37291. 

 
The results of the next four iterations obtained using line searches of the penalty function after each subproblem 

solution are shown in Table 10.1. As is evident from the table, the use of the line search is successful in forcing 

convergence to the optimum from poor initial estimates. The use of the quadratic approximation to the 

Legrangian was proposed by Wilson. Although the idea was pursued by Beale and by Bard and Greestadt, it has 

not been widely adopted in its direct form. 

As with Newton‘s method, the barriers to the adoption of this approach in engineering applications have been 

two fold: first the need to provide second derivative values for all model functions and, second, the sensitivity 

solution estimates. Far from the optimal solution, the function second derivatives and especially the multipler 

estimates will really have little 

Table 10.1 Results for Example 10.5 
 

 

 

 

 

 

 
 

 

 

 

relevance to defining a good search direction. (For instance, Table 10.1, v
(3)

 = -5.38 x 10
-3

, while v* = -2.) Thus, 

during the initial block of iterations, the considerable computational burden of evaluating all second derivatives 

may be entirely wasted. A further untidy feature of the above algorithm involves the strategies required to adjust 

the penalty parameter of the line search penalty function. First, a good initial estimate of the parameter must 

somehow be supplied; second, to guarantee convergence, the penalty parameter must in principle be increased to 

large values. 
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Variable metric methods for Constrained optimization:- 

The desirable improved convergence rate of Newton‘s method could be approached by using suitable 

update formulas to approximate the matrix of second derivatives. Thus, with the wisdom of hindsight, it is not 

surprising that, as first shown by Garcia Palomares and Mangasarian, similar constructions can be applied to 

approximate the quadratic portion of our Legrangian sub problems. The idea of approximating using quasi- 

Newton update formulas that only require differences of gradients of the Legrangian function was further 

developed by Han and Powell. The basic variable metric strategy proceeds as follows. 

 
Constrained Variable Metric Method:- 

Given initial estimates x 
0
, u

0
, v

0
 and a symmetric positive-definite matrix H

0
. 

Step 1. Solve the problem 

 

 

 

 
 

 

 

Step 2. Select the step size along d
(t)

 and set x
(t
 
+1)

 = x
(t)

 + d 
(t)
. 

Step 3. Check for convergence. 

Step 4. Update H
(t)

 using the gradient difference 
 

 

 
in such a way that H

(t
 
+1)

 remains positive definite. 

The key choices in the above procedure involve the update formula for H
(t)

 and the manner of selecting. Han 

considered the use of several well known update formulas, particularly DFP. He also showed that if the initial 

point is sufficiently close, then convergence will be achieved at a super linear rate without a step-size procedure 

or line search by setting = 1. However, to assure convergence from arbitrary points, a line search is required. 

Specifically, Han recommends the use of the penalty function 

 

 
 

 

 

 

 

 

 

 

 

where R and are suitably selected positive numbers. 
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Powell, on the other hand, suggests the use of the BFGS formula together with a conservative check that ensures 

that H
(t)

 remains positive definite. Thus, if 

 
 

and 
 

 

 

 

Then define 
 

 

 

 

 

 

 

and calculate 
 
 

 

Finally, this value of w is used in the BFGS updating formula, 
 

 
 
 

Note that the numerical value 0.2 is selected empirically and that the normal BFGS update is usually stated in 

terms of y rather than w. 

On the basis of empirical testing, Powell proposed that the step-size procedure be carried out using the penalty 

function 

 

 

 
 

where for the first iteration 
 

 
 

and for all subsequent iterations t 
 

 

 

 

 

The line search could be carried out by selecting the largest value of , 0 <= <=1, such that 
 

 

 

 

 

 

IARE Optimization Techniques Page | 131 



However, Powell prefers the use of quadratic interpolation to generate a sequence of values of k until the more 

conservative condition 

 

 

 

is met. It is interesting to note, however, that examples have been found for which the use of Powell‘s heuristics 

can lead to failure to converge. Further refinements of the step-size procedure have been reported, but these 

details are beyond the scope of the present treatment. We illustrate the use of a variant of the constrained 

variable metric (CVM) method using update (10.11), penalty function (10.12), and a simple quadratic 

interpolation-based step-size procedure. 

 
Variable metric methods for Constrained optimization:- 

Example 

Solve the problem 
 
 

 

 

 

 
 

using the CVM method with initial metric H
0
 = I. 

At the initial point (2, 1), the function gradients are 
 

 

Therefore, the first subproblem will take the form 
 

 
 

 

 

 

 

It is easy to show that the problem solution lies at the intersection of the two constraints. Thus, d
0
 = (-4, 2)

T
, and 

the multipliers at this point are solutions of the system 

 

 

 

 

or 
 

 

 
For the first iteration, we use the penalty parameters 

 

 

 

 

IARE Optimization Techniques Page | 132 



 

The penalty function thus take the form 
 
 

 

We now conduct a one-parameter search of P on the line 

Suppose we conduct a bracketing search with . Then 

P(0 + 0.1) = 9.38875 and p(0.1 + 2(0.1)) = 13.78 

 

 

 
Clearly, the minimum on the line has been bounded. Using quadratic interpolation on the three trial points of 

= 0, 0.1, 0.3,  we obtain dash = 0.1348 with P( ) = 9.1702. Since this is a reasonable improvement 

over P(0), the search is terminated with this value of . The new point is 

X
(1)

 = (2, 1)
T
 + (0.1348)(-4, 2) = (1.46051, 1.26974) 

We now must proceed to update the matrix H. Following Powell, we calculate 

z = x
(1)

 – x
0
 (-0.53949, 0.26974)

T
 

Then 
 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Note that both gradients are calculated using the same multiplier values u
(1)

 ,v
(1)

. By definition, 
 

 

Next, we check condition (10.9): 
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Note that H
(1)

 is positive definite. 

This completes on iteration. We will carry out the second in abbreviated form only. 

The subproblem at x(1) is 

 

 

 

 

 
 

 

The solution of the quadratic program is  

d
(1)

 = ( -0.28911, 0.35098) 

At this solution, the inequality is loose, and hence u
(2)

 = 0. The other multiplier value is v
(2)

 = 4.8857. 

The penalty function multipliers are updated using (10.13) and (10.14): 

 

 

 

 

 

 

 

The penalty function now becomes 
 

 

 

where 
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The iterations continue with an update of H
(1)

 .The details will not be elaborated since they are repetitious. The 

results of the next four iterations are summarized below. 

 

 

 

 

 
 

 

 

Recall that in Example 10.3, in which analytical second derivatives were used to formulate the QP subproblem, 

comparable solution accuracy was attained in four iterations. Thus, the quasi-Newton result obtained using only 

first derivatives is quite satisfactory, especially in view of the fact that the line searches were all carried out only 

approximately. 

It should be reemphasized that the available convergence results (super linear rate) [6, 11] assume that the 

penalty function parameters remain unchanged and that exact line searches are used. Powell‘s modifications 

(10.13) and (10.14) and the use of approximate searches thus amount to useful heuristics justified solely by 

numerical experimentation. 

Finally, it is noteworthy that an alternative formulation of the QP subproblem has been reported by Biggs as 

early as 1972. The primary differences of that approach lie in the use of an active constraint strategy to select the 

inequality constraints that are linearized and the fact that the quadratic approximation appearing in the 

subproblem is that of a penalty function. In view of the overall similarity of that approach to the Legrangian- 

based construction, we offer no elaboration here, but instead invite the interested reader to study the recent 

exposition of this approach offered in reference 13 and the references cited therein. It is of interest that as 

reported by Bartholomew Biggs, a code implementing this approach (OPRQ) has been quite successful in 

solving a number of practical problems, including one with as many as 79 variables and 190 constraints. This 

gives further support to the still sparse but growing body of empirical evidence suggesting the power of CVM 

approaches. 
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