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Analysis — 11
SYLLABUS
(L-T-P/D 4-0-0)
UNIT -1

MOMENT DISTRIBUTION METHOD - Analysis of single bay - single storey portal frames
including side sway. Analysis of inclinedframes

KANI’S METHOD: Analysis of continuous beams including settlement of supports. Analysis of
single bay single storey and single bay two storey frames by Kani’s method including side sway.
Shear force and bending moment diagrams. Elastic curve.

UNIT —11

SLOPE DEFLECTION METHOD - Analysis of single bay - single storey portal frames by slope
deflection method including side sway. Shear force and bending moment diagrams. Elastic curve.

TWO HINGED ARCHES: Introduction — Classification of two hinged arches — Analysis of two
hinged parabolic arches — secondary stresses in two hinged arches due to temperature and elastic
shortening of rib.

UNIT-I111

APPROXIMATE METHODS OF ANALYSIS: Analysis of multi-storey frames for lateral loads:
Portal method, Cantilever method and Factor method. Analysis of multi-storey frames for gravity
(vertical) loads. Substitute frame method. Analysis of Mill bends.

UNIT -IV

MATRIX METHODS OF ANALYSIS: Introduction - Static and Kinematic Indeterminacy -
Analysis of continuous beams including settlement of supports, using Stiffness method. Analysis of
pin-jointed determinate plane frames using stiffness method — Analysis of single bay single storey
frames including side sway, using stiffness method. Analysis of continuous beams up to three degree
of indeterminacy using flexibility method. Shear force and bending moment diagrams. Elastic curve.

UNIT -V

INFLUENCE LINES FOR INDETERMINATE BEAMS: Introduction — ILD for two span
continuous beam with constant and variable moments of inertia. ILD for propped cantilever beams.

INDETERMINATE TRUSSES: Determination of static and kinematic indeterminacies — Analysis
of trusses having single and two degrees of internal and external indeterminacies — Castigliano’s
second theorem.
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UNIT |
ANALYSIS OF PLANE FRAMES

MOMENT DISTRIBUTION METHOD

MOMENT DISTRIBUTION METHOD

This method of analyzing beams and frames was developed by Hardy Cross in 1930. Moment
distribution method is basically a displacement method of analysis. But this method side
steps the calculation of the displacement and instead makes it possible to apply a series of
converging corrections that allow direct calculation of the end moments. This method of
consists of solving slope deflection equations by successive approximation that may be
carried out to any desired degree of accuracy. Essentially, the method begins by assuming
each joint of a structure is fixed. Then by unlocking and locking each joint in succession, the
internal moments at the joints are distributed and balanced until the joints have rotated to
their final or nearly final positions. This method of analysis is both repetitive and easy to
apply. Before explaining the moment distribution method certain definitions and concepts
must beunderstood.

Sign convention: In the moment distribution table clockwise moments will be treated+ve and
anticlockwise moments will be treated —ve. But for drawing BMD moments causing
concavity upwards (sagging) will be treated +ve and moments causing convexity upwards
(hogging) will be treated —ve.

Fixed end moments: The moments at the fixed joints of loaded member are called
fixedend moment. FEM for few standards cases are given in previous chapter.

Distribution factors: If a moment ‘M’ is applied to a rigid joint ‘o’, as shown in figure,
theconnecting members will each supply a portion of the resisting moment necessary to
satisfy moment equilibrium at the joint. Distribution factor is that fraction which when
multiplied with applied moment ‘M’ gives resisting moment supplied by the members. To
obtain itsvalue imagine the joint is rigid joint connected to different members. If applied
moment M cause the joint to rotate an amount ‘€ , then each member rotates by same
amount.

From equilibrium requirement

M=M;+ My, +Ms+

= K,8 + K,8 + K,6=0YK

: e G,
In general DF T (6)




Member relative stiffness factor: In majority of the cases continuous beams and frames
willbe made from the same material so that their modulus of electricity E will be same for all
members. It will be easier to determine member stiffness factor by removing term 4E & 3E
from equation (4) and (5) then will be called as relative stiffness factor.

K, = LL for far end fixed

for far end hinged

Carry over factors: Consider the beam shown infigure

We have shown that

ap BBk o B
Tl gk

BMatA (EISX)  =[(3M/2L)x—M],., = =
at x=L 2

dx*<

+ve BM of at A indicates clockwise moment of at A. In other words the moment ‘M’ at
the pin induces a moment of at the fixed end. The carry over factor represents the fraction
of M that is carried over from hinge to fixed end. Hence the carry over factor for the caseof
far end fixed is +. The plus sign indicates both moments are in the samedirection.

MOMENT DISTRIBUTION FOR FRAMES WITH NO SIDE SWAY

The analysis of such a frame when the loading conditions and the geometry of the frame
is such that there is no joint translation or sway, is similar to that given for beams.

Q. Analysis the frame shown in figure by moment distribution method and draw
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BMD assume EI isconstant.

Mgag= Mgga = Mgcp= Mepec = Mecg= Mgge= 0

s 7% 5X6°
FBC=- 3 =—15KNm

M NG 516"_ =
FCB= > =15KNm

Member Relative stiffness (K)

BA Us

BC I'6
CB 16=0.171

2US =0.151

- xlzo_ls)l
4




MOMENT DISTRIBUTION

Jt

Member
DF
FEM
Balance
c.O
Balance
c.O
Balance
c.oO
Balance

c.0

Final L 12.78

moments




MOMENT DISTRIBUTION METHOD FOR FRAMES WITH SIDE SWAY

Frames that are non symmetrical with reference to material property or geometry
(different lengths and 1 values of column) or support condition or subjected to non-
symmetrical loading have a tendency to side sway.

Analyze the frame shown in figure by moment distribution method. Assume EI is
constant.
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A. Non SwayAnalysis:

First consider the frame without side sway

Mgag= Mpga= Mgcp= 0

FBC=

16x1x4%
- 5—::— 10.24KNm

FCB=

-“—)'\(;-4,){'—1:2.56KN|11
52

DISTRIBUTION FACTOR

Relative
stiffness K
BA I5=021
BC I'5=021
CB I/5=0.21
CD I/5=0.21

Member




DISTRIBUTION OF MOMENTS FOR NON-SWAY ANALYSIS

Joint A B

Member AB
DEFE 0
FEM 0
Balance
cO
Balance
cO
Balance
Cc.O
Balance

C.O

Final

moments

1.73KIN

_/, > 1.36 KNM

l

By seeing of the FBD of columns R = 1.73 — 0.82

(Using F =0 for entire frame) =091 KN <+—

Now apply R = 0.91 KN acting opposite as shown in the above figure for the sway
analysis. Sway analysis: For this we will assume a force R is applied at C causing the
frame to deflect as shown in the following figure.




Since both ends are fixed, columns are of same length & I and assuming joints B &
C are temporarily restrained from rotating and resulting fixed end moment are

Assume

, ) , , 6EIl
Mag = Mgy = Mcp = Mpe = =74

LZ
M}, = —100KNm
M., = M., = M}, = —100KNm

Moment distribution table for sway analysis:

Joint

Member
D.F
FEM
Balance
CcO

Balance

Cco
Balance

C.0

Balance
CcCO
Balance

C.0

Final

moments




Free body diagram of columns

Q}_—\“%zs KN ﬁr\—> 28 KN

1 60 KNM

80 KNM 80 KNM
28 KN 28 KN

Using F x = 0 for the entire frame R = 28 + 28 = 56 KN

Hence R = 56KN creates the sway moments shown in above moment distribution table.
Corresponding moments caused by R = 0.91KN can be determined by proportion. Thus final
moments are calculated by adding non sway moments and sway.

Moments calculated for R = 0.91KN, as shown below.

0.91
MAB = 2.89 +¥(—80) = 1.59KNm

0.91
Mgy = 5.78 + ——(~60) = 4.81KNm

0.91
MBC =-5.78 +'¥(60) = —4.81KNm
091
Mcp = 2.72 +——(60) = 3.7KNm
0.91
Mcp = =272 +——(~60) = ~3.7KNm

0.91
My =-136 +¥(—80) = —2.66KNm

3./ KNM

/
/| \
* 3. 7KNM

S OSSN

N A

1.59 2.66
KNM —. .. .KNM




5.Q. Analysis the rigid frame shown in figure by moment distribution method and draw

BMD

4 111}

10 K¥>
3m

:sz\

A. Non SwayAnalysis:

First consider the frame held from side sway

FEMS

10 X 3 x 42
MeaB= — —————= —9.8KNm
10 X 4 x 32
Mga = ———— = 7.3KNm

FBC= -

M 20x4
'T‘*:—IOKNm

20x 4
MEgce-= 3 = 10KNm

MFC[): MFDC: 0




DISTRIBUTION FACTOR

Relative

Joint Member stiffness k

B BA I
x; =0.111I

BC 21/4=0.51
CB 21/4=0.51
CD I

X —
1 4

=410 1

DISTRIBUTION OF MOMENTS FOR NON-SWAY ANALYSIS

Joint

Member
D.F
FEM
Release jt.
‘D
cO

Initial
moments
Balance
cO
Balance
C.0O
Balance
C.O

Balance

Final

moments




FREE BODY DIAGRAM OF COLUMNS

12.49 KNI

4 m
Applying Fx = 0 for frame
as a Whole, R=10-3.93 -
0.73=5.34 KN <

10 KN—
5 11

ri\_— 6.07 KN

B

AgE—3.93KN

|

Now apply R = 5.34KN acting opposite

s

1

Sway analysis: For this we will assume a force R is applied at C causing the

frame to deflect as shown in figure

0.73 KN




Since ends A & D are hinged and columns AB & CD are of different lengths

a 3EL . ' 3EI .-
MBA = _FA. MCD= —FA .

3EI ..

’ —7A
MBA e L-i
Mo,  3EI
L3

Assume

M}, = —16KNm, Mz = 0
ML, = —49KNm, M. =0

MOMENT DISTRIBUTION FOR SWAY ANALYSIS

Joint B
Member
D.F
FEM

Balance
CcO
Balance
CcO
Balance
Cc.0
Balance
Cc.0
Balance
Cc.0

Balance

Final

moments

Using Fx = 0 for the entire frame R'= 11.12 kN —»

Hence R'= 11.12 KN creates the sway moments shown in the above moment distribution table.
Corresponding moments caused by R = 5.34 kN can be determined by proportion. Thus final

moments are calculated by adding non-sway moments and sway moments determined for R =
5.34 KN as shown below.




MAB =0
Mg, = 12.49 +

i 16.36) = 4.63KN
T 2( .36) = 4. m

5.34
Mgc = —12.49 + ——(16.36) = ~4.63KNm

5.34
n = Z. + — ) — .
Mcp = 2.92 55_412(35 11) = 19.78KNm

Mpc =0
20 KNm

(=35.11) = —19.78KNm

4.63KNm

4.63KN -
m

17.4KNm {




PART B : KANI'S METHOD OF ANALYSIS

This method was developed by Dr. Gasper Kani of Germany in 1947. This method offers an
iterative scheme for applying slope deflection method. We shall now see the application of
Kani’s method for different cases.

BEAMS WITH NO TRANSLATION OF JOINTS:

Fig.L(c)
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Let AB represent a beam in a frame, or a continuous structure under transverse
loading, as show in fig. 1 (a) let the Map & Mgpa be the end moment at ends A & B
respectively.

Sign convention used will be: clockwise moment +ve and anticlockwise moment —ve.

The end moments in member AB may be thought of as moments developed due
to a superposition of the following three components of deformation.




Thus the final moment Map & Mga can be expressed as super position of three
moments

Mag = Mgag + 2M:m + M'BA
Mgpa = Mppa+ 2My, + M,

For member AB we refer end ‘A’ as near end and end ‘B’ as far end. Similarly
when we refer to moment Mgy, B 1s referred as near end and end A as far end.

The member ‘AB’ is regarded as completely fixed. (Fig. 1 b). The fixed end
moments for this condition are written as Mrag & Mrga, at ends A & B respectively.

The end A only is rotated through an angle 85 by a moment 2M,, inducing a

moment M, at fixed end B.

Next rotating the end B only through an angle 6 by moment 2M,, while keeping

end ‘A’ as fixed. This induces a moment M, atend A.

Hence above equations can be stated as follows. The moment at the near end of a
member 1s the algebraic sum of (a) fixed end moment at near end. (b) Twice the rotation
moment of the near end (¢) rotation moment of the far end.

Rotation factors:
Fig. 2 shows a multistoried frame.

C
AN

-

Fiq- 2

Consider various members meeting at joint A. If no translations of joints occur,
applying equation (1), for the end moments at A for the various members meeting at A
are given by:




Mag = Mpap+ 2M ', + My,
Mac=Mgac + 2M . + M,
Map = Mgap + 2 Mi&D + MIDA
Mag = Mpag + 2M,, + M,
For equilibrium of joint A, ZM =0
S IMpap+ 2ZM,, +IM,, =0
where |
YMrap =Algebraic sum of fixed end moments at A of all members meeting at A.

M, = Algebraic sum of rotation moments at A of all member meeting at A.

¥ M,, = Algebraic sum of rotation moments of far ends of the members meeting at A.
from equation (2)

ZMIAB: - % [ZMFAB +ZM;3A]

: 4EI
We know that 2M ,;, = 3 22 9, = 4EKap 04

AB

. I ) .
Where Kag = —28- | relative stiffness of member AB
AB

MIAB =2E KAB OA
S IM,, = 2E0, TKap (5) (Atrigid joint A all the members undergo same
rotation 0, )

Dividing Equation (4)/(5) gives

MiAB _ K.g
M FAB 2K 5
M, = ZKAB 2M

AB

Substituting value of ZM ,;, from (3) in (5)

M, = [_ij S [ZMFAB +2MIBA]

2) 3K,
=Usp [EM,, +IM,,,

] K
where Upp=-— —22-

3 3K is called as rotation factor for member AB at joint A.

AB




Analysis Method:
In equation (6) ZMrpap 1s a known quantity. To start with the far end rotation
moments M, are not known and hence they may be taken as zero. By a similar

approximation the rotation moments at other joints are also determined. With the
approximate values of rotation moments computed, it 1s possible to again determine a
more correct value of the rotation moment at A from member AB using equation (6).

The process is carried out for sufficient number of cycles until the desired degree
of accuracy is achieved.

The final end moments are calculated using equation (1).
EXAMPLES:

Ex.1:

Analyze the continuous beam shown in fig.

35 kN
2ANm 22 kNm ‘L

o

P, B % C
‘S T wt® 1™ @&
= A1 m hd Am

Aﬂ )
R e VORI < ; -
be m Sht 4

Solution:
a) Fixed end moments:
b(3a—1)M 2.5(3x1.5-4)

Mpap= ——— = x24=1.88 kNm

12 0

_ 1.5(3x2.5-4)

2

x24 =7.88 kNm




b) Modification in fixed end moments:

Actually end ‘D’ is a simply supported. Hence moment at D should be zero. To
make moment at D as zero apply —8 kNm at D and perform the corresponding carry over
to CD.

Modified MFDC =8-8=0

Modified Mpcp=—16 + %(-8) =-20 kNm

Now joint D will not enter the iteration process.

c) Rotation Factors:

) Rotation Factor
Relative

Joint stiffness (K)

B I/4=0.251
[/4=0.251
/4=0.251

x— =0.251

d) Sum of fixed end moments at joints:
XM =7.88+8 =15.88 kNm
IMpc =8 — 20 =—12kNm

.38
z q(lE !

(\ld_c 2

B

(_7r.£¢; 3

Cytle 4




e) Iteration process

Joint B

Rotation ‘ M

: M,
M., CB

D
Contribution
Rotation factor —0.25 ] -0.25 -0.25 [ -0.25
Iteration 1 —0.25 x (15.88 +| 025 x (15.88+0 —0.25 x (-12-3.97 [ -0.25 x (-12 -3.97 +
started at B 0+0)=-3.97 |0 397 +0)=3.97 [ 0)=3.97
assuming M
=0 & taking
M, =0
M, = 0.

Iteration 2 —0.25 x (15.88 + —0.25 x (-12-4.96 | -0.25 (=12 -4.96 +

0t 307 | 0 Fassso c0y=121|0)
397 == +3.97)= 496 '

4.96 =424

Iteration 3 025 x(-12 | -025(-12 -5.03 +
—0.25(1588 + 0| —0.25(15.88 +0 +
—5.03+0)=426|0)

=426

Iteration 4 025 x(-12 | =025 (-12-5.03 +
—0.25(15.88 + 0 [ —0.25 (1588 +0+

+4.26) = =5.04 | 426)= -5.04

+424)=-503 | 424)=-5.03

-5.03+0)=4.26 | 0)
=4.26

Iteration process has been stopped after 40 cycle since rotation contribution values are
becoming almost constant. Values of fixed end moments, sum of fixed end moments,
rotation factors along with rotation contribution values after end of each cycle in
appropriate places has been shown 1 fig. 4 (b).

f) Final moments

Final moments
Me(‘i‘j‘)be‘ FEM Mg, (kNm) 2M; (KNm) (= My, +2M; + M, )
(KNm)
AB 1.88 0 316
BA 7.88 2 (-5.04) = 10.08 22

BC 2 (-504) = -10.08 122

CB 2x426=8.52 11.48
CD 2x4.26=28.52 -11.48




BMD i1s shown below:

24¥Nm %2 kNm

36 kN

|
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Analyze the continuous beam shown in fig.

{

fij’m

>

SN w S

b . @ Am ,I,B, ,_'"S ! 3Am

Solution:

a) Fixed end moments:

5x4*
Mgag = — >1<2 = — 6.67 kNm

Mpga =+ 6.67 KNm

= —3.75kNm

Mgcg = + 3.75 kNm
M(‘D = -25x2=-5kNm




b) Modification in fixed end moments:
Since Mcp = — 5 kNm; Mcg = + 5SkNm, for this add 1.25 kNm to Mgcp and do the
corresponding carry over to Mgpc

o Now Mcp= 5 kNm
Modified Mype = —3.75 + % (1.25)=—3.13 kNm

Now jomt C will not enter in the iteration process.

¢) Rotation factors:

Rotation Factor

Member Relative stiffness Ue. 1 . K

BA /4 =0.251 -0.2

BC 3 LSL e 0.3
473

CB 1.51/3 =0.51 0.5
CD 0 . 0

d) Sum of fixed end moments at joints:
YMpg =6.67 -3.13=3.54 kNm

e) Iteration Process

Joint B

Rotation Contribution My, (kNm)

Rotation factor -0.2

Iteration 1 started at B
taking M,; = 0 —02x(3.54+0+0)==0.71 | —03x(3.54+0+0)=-1.06

& M-;=0




Since ‘B’ is the only joint needing rotation correction, the iteration process will
stop after first iteration. Value of FEMs, sum of FEM at joint, rotation factors along with
rotation contribution values in appropriate places 1s shown in fig. 5 (b)

Aﬂf&e# o -5

(H) Final moments:

Final moments
Me(‘i‘j‘)b“ FEM Mj;; (kNm) 2M; (kNm) . (= My, +2M, + M, )
(kNm)
AB - 6.67 0 —7.38
BA 6.67 2% (-0.71) = 525

BC -3.13 2 x (=1.06) =5.25

CB +5
CD -5

DC 0

FBD of each span along with reaction values which have been calculated from statics are
shown below:

zﬁkum 'Y‘(\’M N
Y D

A 8
Ao

16.53 kN

1.56 kN




BMD and SFD are shown below

5KN/m

J.¢ SFD

\1\\\\\ +

“\\\\\\\\\
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Ex.2:

In a continuous beam shown in fig. The support ‘B’ sinks by 10mm. Determine the moments by
Kani’s method & draw BMD.

’YWY(\"?‘:’”‘/M
A/L___ Em

Take =12 x 107 mm* & E =2 x 10° N/mm?

Solution:

(a) Calculation of FEM:
2067 6x2x10° x1.2x107* x10" %10

Meap = — _
T (6000)* x10°

— 60 —40
——100 kNm




MT—BA =+60 —40=20 kNm

_50x3x2% 6x2x10° x1.2x107* x10" x10
Mgpce = - +

5 (5000)* x10°
= 24+576
=33.6 kNm
50x3*x2 . 6x2x10° x1.2x107* %10 x10
5 (5000)° x10°
=364 57.6
=93.6 kNm
C & D are at same level

- Mecp — — 20;(24' — ~26.67 KNm

Mepe =+ 26.67 kNm

Mgcg =+

b) Modification in fixed end moments:

Since end ‘D’ 1s a simply supported, moment at ‘D’ is zero. To make moment at
D as zero apply a moment of — 26.67 kNm at end D and perform the corresponding carry

over to CD.

. Modified Mgpe =+ 26.67 =26.67 =0

Modified Mycp = — 26.67 + é (=26.67)

=—-40 kNm

Other FEMs will be same as calculated earlier. Now joint ‘D’ will not enter the iteration

process.

¢) Rotation factors:

Relative stiffness

Member
(K)

Rotation Factor

BA V6=0.171
BC I/5=021

CB I5=0.21

D ixl/4—0.191




d) Sum of fixed end moments:

XM =20+ 33.6 = 53.6 kNm

XM=

¢) Iteration process:

93.6 =40 = 53.6 kNm

Joint

B

Rotation
Contribution
Rotation factor

[teration 1
(Started at B by
taking M, =0

and assuming
M ;=0
Iteration 2

[teration 3

[teration 4

M, (kKNm)

~0.23
~0.23 x (53.6 +
0+0)=-12.33

~0.23 (53.6 —
10.17) ==10.00
~0.23
(53.6-10.89)
~=-9.82

—0.23 (53.6
~10.94)

=-9.81

M. (kNm)

-0.27
027 x (53.6 +
0+0)= —14.47

~0.27 (53.6 -10.17)
=-11.73

~0.27 (53.6 -10.89)
=11.53

~0.27 (53.6 ~10.94)
=_11.52

M, (kNm)

~0.26
—0.26x(53.6 -
1447+ 0)=-10.17

—0.26 (53.6 -11.73)
=-10.89
—0.26 (53.6 -11.53)
=-10.94

—0.26 (53.6 -11.52)
=-10.94

M, (kNm)

—0.24
~0.24 (53.6 — 14.47)

10.96=-9.39

~0.24 (53.6 -11.73)
—10.05
~0.24 (53.6 -11.53)
~-10.10

—0.24 (53.6 -11.52)
=-10.1

Iteration process has been stopped after fourth cycle since rotation contribution values are
becoming almost constant. Values of FEMs, sum of fixed end moments, rotation factors
along with rotation contribution values after end of each cycle in appropriate places has
been shown in Fig. 7 (b).

&
%_Loo 35.6
cyers T
RYCLBY W32
CNAR3 -4.32 153
rawidy w.5

g -5 (w)




) Final moments:

Member
@ij)

FEM Mgy
(kNm)

2M, (kNm)

Final moments
(= My, +2M, + M, )
(kNm)

AB

- 100

0

-109.81

BA

2% (-9.81)=-19.62

+0.38

BC

2 % (=11.52) = -23.04

—-0.38

CB

2 % (~10.94) = -21.88

60.2

CD

2 x(=10.1)=-20.2

—60.2

DC

0

0

20x6%/8 =90
KNM

50x3x2/5 = 60
KNM

20x4%/8 = 40KNM




ANALYSIS OF FRAMES WITH NO TRANSLATION OF JOINTS

The frames, in which lateral translations are prevented, are analyzed in the same way as continuous
beams. The lateral sway is prevented either due to symmetry of frame and loading or due to support
conditions. The procedure is illustrated in following example.

Example-5. Analyze the frame shown in Figure 8 (a) by Kani’s method. Draw BMD.

A0 Ki\l}m

Solution:

(a) Fixed endmoments:

Mgag = Mega = Mpecp = Mepe =0
- 40x6°
12
Mpcg = +120kNm.

Mgrc = = -120kNm.

(b) Rotationfactors:

Rotation factor
Relative Stiffness (k)

=-¥%k/ R

31/6 = 0.5I

1/3=0.33

31/6 = 0.5I

1/3=0.33

(c) Sum of FEM:
SMps =-120+0=-120
EMpe = 12040 =+120




(d) Iteration

process:

Joint

B

Rotation
Contribution

M’ea

Rotation

Factor

-0.2

-0.3

-0.2

Iteration 1
Stated with
end B taking
M’ag=0 and
Assuming M’cg=0

-0.2(-120+0)
=24

-0.3(-120+0)
=36

-0.2(120+36+0)
=-46.8

-0.2(120+36+0)
=-31.2

Iteration 2

-0.2(-120-46.8)
=33.6

-0.3(-120-46.8)
=50.04

-0.3(120+50.04)
=-51.01

-0.2(120+50.04)
=-34.01

Iteration 3

-0.2(-120-51.01)
=34.2

-0.3(-120-51.01)
=51.3

-0.3(120+51.3)
=-51.39

-0.2 (120+51.3)
=-34.26

Iteration 4

-0.2(-120-51.39)
=34.28

-0.3(-120-51.39)
=51.42

-0.3(120+51.42)
=-51.43

-0.2 (120+51.42)
=-34.28

The fixed end moments, sum of fixed and moments, rotation factors along with rotation

contribution values at the end of each cycle in appropriate places is shown in figure 8(b).

B

=

0
2,

(e) Final moments:




Member

2M’jj(kNm)

(if)

(kNm) Final moment =

MEij+ 2M’j5+ M'ji

34.28

2x51.42

2 x (-51.43)

2 x (-34.28)

BMD is shown below in figure-8 (c)




UNIT II: ANALYSIS OF FRAMES AND ARCHES

THE SLOPE DEFLECTION METHOD

In the slope-deflection method, the relationship is established between moments at the
ends of the members and the corresponding rotations and displacements.

The slope-deflection method can be used to analyze statically determinate and
indeterminate beams and frames. In this method it is assumed that all deformations are
due to bending only. In other words deformations due to axial forces are neglected. In
the force method of analysis compatibility equations are written in terms of unknown
reactions. It must be noted that all the unknown reactions appear in each of the
compatibility equations making it difficult to solve resulting equations. The slope-
deflection equations are not that lengthy in comparison. The basic idea of the slope
deflection method is to write the equilibrium equations for each node in terms of the
deflections and rotations. Solve for the generalized displacements. Using moment-
displacement relations, moments are then known. The structure is thus reduced to a
determinate structure. The slope-deflection method was originally developed by
Heinrich Manderla and Otto Mohr for computing secondary stresses in trusses. The
method as used today was presented by G.A.Maney in 1915 for analyzing rigid jointed
structures.

FUNDAMENTAL SLOPE-DEFLECTION EQUATIONS:

The slope deflection method is so named as it relates the unknown slopes and
deflections to the applied load on a structure. In order to develop general form
of slope deflection equations, we will consider the typical span AB of a continuous
beam which is subjected to arbitrary loading and has a constant EI. We wish to relate
the beams internal end moments in terms of its three degrees of freedom, namely
its angular displacements and linear displacement which could be caused by relative
settlements between the supports. Since we will be developing a formula, moments and
angular displacements will be considered positive, when they act clockwise on the
span. The linear displacement will be considered positive since this displacement
causes the chord of the span and the span’s chord angle to rotate clockwise. The slope
deflection equations can be obtained by using principle of superposition by considering
separatelythemomentsdevelopedateachsupportsduetoeachofthedisplacements

0,& 6z & Aiand then the load.




deflection
curve

FI 1s constant
positive sign convention

Case A: fixed-end moments

MAB = FEMAB. MEA =FEMBA




Case B: rotation at A, (angular displacement at A)

Consider node A of the member as shown in figure to rotate while its far end B is fixed. To
determine the moment needed to cause the displacement, we will use conjugate beam

method. The end shear at A acts downwards on the beam since is clockwise.

Mg

—L
B
=sa| bealn

,—;—‘-‘:—ﬂ?l)

"‘_['I-"I — 0, ll'u'[;.B [1[\13,,, L]—— 0

2[I z El

1 Mga L 1 Mga
FEeLfs- [R5+ eal =0

4EIl El

Myp = =8, Mg, =—6,

Case C: rotationatB, (angular displacement atB)

In a similar manner if the end B of the beam rotates to its final position, while end A is held
fixed. We can relate the applied moment to the angular displacement and the reaction moment

Mag = Z—EIEH Mga —4—]:'93

Case D: displacement of end B related to end A

If the far node B of the member is displaced relative to A so that so that the chord of the
member rotates clockwise (positive displacement) .The moment M can be related to
displacement by using conjugate beam method. The conjugate beam is free at both the ends
as the real beam is fixed supported. Due to displacement of the real beam at B, the momentat




the end B of the conjugate beam must have a magnitude of .Summing moments about B we
have,

'

real beam

(a)

conjugate beam

(b)

.‘E(L}]E_ ILE(L}E_ A= 0

2El 3 2 El

By our sign convention the induced moment is negative, since for equilibrium it acts counter
clockwise on the member.

If the end moments due to the loadings and each displacements are added together, then
the resultant moments at the ends can be writtenas,

2El 3A
MAE =T[25A + BE —T] T FEMAH

2EI 3A
MEF{ = T[ZEH + BA _T] + FEMEIA




FIXED END MOMENT TABLE
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GENERAL PROCEDURE OF SLOPE-DEFLECTION METHOD

Find the fixed end moments of each span (both ends left &right).
Apply the slope deflection equation on each span & identify the unknowns.
Write down the joint equilibrium equations.

Solve the equilibrium equations to get the unknown rotation & deflections.

Determine the end moments and then treat each span as simply supported
beam subjected to given load & end moments so we can work out the
reactions & draw the bending moment & shear force diagram.

Numerical Examples

1. Q. Analyze two span continuous beam ABC by slope deflection method.Then
draw Bending moment & Shear force diagram. Take Elconstant.

A

4
2

Fixed end moments are

Wab? 100 x 4 x 22
Mpp- — T = = —44.44 KNm
Wa’b 100 x 4? X 2
Mga-= 2 - 62
wl? 20 x 5°
S T 12
v WZ_ 20 x 52
_ e e A2
Since Ais fixed 64, =0&65& O, # 0

= 88.89KNm

= —41.67KNm

= 41.67 KNm




Slope deflection equations are

2EI1 2EI El
MAE = MFAB + T[EBA + EB] = —4‘1-4"—1- + ?BB = —‘1-444 + ?BE

2EI 4EIl 2EI
MEA = MFBA +T[2E'B + BA] = 88.89 + TBB = 88.89 + TBE

2EI 4EI 2EI
MEE = Mpgc +T[Zag + E'E] = —"-1-]. 6? + ?Bg +?B

2El

2EI 4E]
Mcg = Mpcg +——[20¢ + 0] = 41.67 + e +—=0g

L
In all the above 4 equations there are only2unknowns 05& ¢ gang accordinglythe
boundary

conditions are

Mps + Mgc =0
Mcg = 0 as end C is simply supported.

Solving the equations (5) & (6), we get

20.83

El
41.67

El

Substituting the values in the slope deflections we have,

20.83

= —4444+ = (- =2)=-51.38 KNm

= 88.89 + 2—“ (— 2‘:3) = 75 KNm

.= 4167+ 4—“(— 22) + 2 (- 222) = —75KNm
El 5 El
4E1( 41.67) ZEI( 20.83) =

5 g )75 El

Reactions: Consider the free body diagram of the beam

MCB = 41.67 +

2.0 KN M

A

AFQ_

Rz 29 kO p T 7060, R EShn




Find reactions using equations of equilibrium.

Span AB: Ma =0, Rpx6 = 100x4+75-51.38
Rg = 70.60 KN
V=0, Ra+Rp=100KN
Ra = 100-70.60=29.40 KN
Span BC: Mc = 0, Rpx5 = 20x5x +75
Rg = 65 KN
V=0 Rg+R¢ = 20x5 = 100KN
Rc = 100-65 = 35 KN

Using these data BM and SF diagram can be drawn

100 kN

a ; iam[mc
7€ 2

S1.38 s

A




E5.00KN

2910 kN

3S.00KkN

Span AB: Max BM in span AB occurs under point load and can be found
geometrically,

75-51.38
6

) X 4 = 46.20KNm

Span BC: Max BM in span BC occurs where shear force is zero or changes its sign.
Henceconsider SF equation w.r.t C

Sx=35-20x=0

35 =
x = —=].75m
20

Max BM occurs at 1.75m
from

= My =35 % 1.75 — 20X % = 30.625 KNm




2. Q. Analyze continuous beam ABCD by slope deflection method and thendraw
bending moment diagram. Take Elconstant.

Ao ke frn

O, =0&06p&6, 0

. Wab? 100 x 4 x 22
AB= LZ s 62
Wa’b 100 X 4% x 2

BA= L2 62
wl2 20 x 52
Mgc= — i —41.67KNm
wl2 _ 20 X 52 R
CB= 12 v 12 = g m
Mcp = —20 X 1.5 = —30 KNm

= —44.44 KNm

= 88.89KNm

Slope deflection equations are

2El 2El El
Mag = Mpap +——[260, + 6] = —44.44 + —0, = —44.44+ —6,

2El 4EI
MBA = MFBA + T[EBB + EA] = BH.89 + TB‘B =
2El 4EI
MBC =MFHE+T[EEB+ E,:]= —41.67 + ?BE +?B

2EI1 4El 2EI
MCB = MFCEI +T[ZBL -+ EB] = 41.67 + TB‘E +—0=0

5
Mcp = —20 X 1.5 = —30 KNm

In all the above equations there are only 2 unknowns and accordingly the boundary

conditions are




Mgy + Mgc =0
Mg+ M, =0

2E1] 4EI] 2El

Mgy + Mg = 88.89 + —0; — 41.67 +— 8, + 0, = 47.22 + —El6, +=EIf. = 0

4E1 2EI 2EI 4E1

Mcg + Mcp = 41.67 + —6c +—8; — 30 = 11.67 + =8 +—8. = 0

Solving equations (5) & (6),

32 67

“El
1.75

C=_

El

Substituting the values in the slope deflections we have,

32.67

)— -01 KNm

2El

Mg, = 88.89 + — 32"’) = 67.11KNm

Mgc = —41.67 + 4—‘:'(— =7) +2(22) = —67.11KNm

4El( L 75) 2EI(’ 32.67

5 El 5 El
M:n = —30KNm

Map = —44.44 + = X x (-
x (-

Mcg = 41.67 + ) = 30KNm

100 kN
a k@\ (o AT &7 30

Reactions: Consider free body diagram of beam AB, BC and CD as shown




S7.42 Ka

B3 KN T ¥

_t_-

H A SBwr 20 KN
20KMm 9

A S S JD

; ST
<t &1 it TN 30 x =
‘Ra:ICKN

i Ry = &1 G5kv
P amadl b g~ = Re= ST 42 kn Rz 4258

Kt

20 KN
— 2O KN iy l
D

i
30 20

Span AB:
Rg X6 =100X 4+ 067.11- 061
R =67.69KN
Ra =100- Rz =32.31 KN
Span BC:
Rc X 5=20 X2 X 5+30-67.11
Rc =42.58 KN

Rz =20 X 5- R¢ =57.42KN




Maximum Bending Moments:

Span AB: Occurs under point load

67.11-61

Mpax=133.33 — 61 — — X 4 = 68.26KNm

Span BC: Where SF=0, consider SF equation with C as reference

S, =42.58-20x =0

42.58
X = w— = 2 13m
20

M= 42.58 X 2.13 — 20 X — 30 = 15.26KNm

2.13%
2

3. Q. Analyse the continuous beam ABCD shown in figure by slope deflectionmethod.
The support B sinks by 15mm.Take E =200 105 KN/m2 and 1 =12010 '6m4

/OO KN

o L o |
[ gz

Je
A

A. 6, =0&65&06, #0A=15mm

@ Wab®> 100 x 4 x2°
AB= 2 62
Wa?b 100 x 4% x 2
A3 = 62
Mgy o e L R ercain
BC= 12 — 12 _— 3 m

wl? _ 20 % 52 AR
CB = 12 = 12 = . m

Mqsp = —20 X1.5= —30 KNm

= —4444 KNm

= 88.89KNm

FEM due to yield of support B




cEl 8

SEYTE
L’l.

5

NNSNRRSY

For span AB:

&El 6r2Z00x10%x120x10™% 15
—6KNm

I'h"]_.u-} = ["'r"I[]__.\ = —F."_"I.= — - =

S 1000

For span BC:

&El 6x200%10%x120x10™% 15
Mac =M =—A= - = B.64KNm
L2 52 1000

Slope deflection equations are

2E1 A El El
MAB — MFAB +T[29A + BB — 33] = _44.44 + ?93 —-— 6 = —50.4‘4 +?93

2EI A 2E1
Mgy = Mg, +T[295 + 6,4 — 33] = 88.89 + THB —6=182.89 +TBB

2EI A 4EI
Mgc = Mpge +T[293 + 6, + 3;] = —41.67 + —0, +—6, + 8.64

5 5
4E1 2EI
= _33.03 +T95 +_9C

5
2EI A 4E1 2E1
MCB = MFCB +T[29C . 98 + 3?] = 41.67 -+ ?GC +?93 + 8.64
4E1 2EI
= 50.31 +T9C +T98

In all the above equations there are only2unknowns and accordinglythe
boundary

conditions are

MEJ’-'I + MHE =D
Meg + Mep =0

Mgy + Mgc = 82.89 + == — 33.03 + =0, +—6; = 49.86 + —EI6, +=Elf; = 0

My + Mcp = 5031+ 226, +==6, —30 = 20.31 + =6, + =6, =0




Solving equations (5) & (6),

31.35

BT T T
971

o = —

El

Substituting the values in the slope deflections we have,

3135

o el Bl (_ 3135\_ oy
Mg 50.44 + = x( = ) 60.89 KNm

2E1 31.35

My, = 8289+ 2 x (—222) = 61.99KNm

4E1 31.35 2El

My = —33.03+ Z2(- Z=) + Z2(=2) = —61.99KNm

Mcp = 5031+ 2 =2) + 22 (- =) = 30kNm

El 5 El

Mqp = —=30KNm

Consider the free body diagram of continuous beam for finding reactions

[0 KA
@199 699 __ own/m 30 -

AL 1@' W\MM

20 KN

, | Rgz 56-40kn . '
Rz 33495 kel Rg= C&-5SSwm R4 ’fz

REACTIONS

Span AB:

-2 |
— D

I R =20kw -




R X6 =100X 4+ 61.99-60.89
R = 066.85KN
R =100- Rg =33.15 KN

Span BC:

Rp X 5=20 x§ X 5+ 61.99 — 30

Rg =50.40 KN

Rc=20 X 5- Rg=43.00KN




ANALYSIS OF FRAMES (WITHOUT & WITH SWAY)

The side movement of the end of a column in a frame is called sway. Sway can be

prevented by unyielding supports provided at the beam level as well as geometric or
load symmetry about vertical axis.

[ Aal
[

1)

s

Frame with sway

\L .

e

Sway prevented by unyielding support

4. Q. Analyse the simple frame shown in figure. End A is fixed and ends B & Care
hinged. Draw the bending momentdiagram.

1 IR s A

PR
=

b S <




MBA + MEC +MBD Z{]
Mg =10
Mpg=20

Mg, + ME,_, +ME.D = 53.33+ =85 — 26.67 + — 0 + —0; + 10+ El6; + =6, =

36.66 + Emg +2 E!HC —9,;. =0
3EI 3ET

Mcﬂ—zﬁﬁ?-l'_gc HHZD
MDB —_— _].|:I+EIHD + 2 BE' =]

=10 KNm

Slope deflection equations are

2E1 2E(21)
Mﬂﬂ = MFHE' +T[23A + HE] = _106.6? + 6 HE'

2EI
= ~106.67 + =6,

2E1 2E(20) 4El
MBA = MFBA +T[293 + BA] = 53.33 + 6 ZEB = 53.33 + THE

2E1 3EI 3E1
MBI'__ = MFEC +T[235 + EC] = _26 6? + THE

2E1 3EI 3El
MEE - MF-I:B + [ZBE + BE] - 26 6.?+ TH‘E 4 95'

ZE 2E1 2E1
Mﬂﬂ - MFHD +_[293 + HD] - ].D + TZHE 4 ED

EI
=10+ El6; +—6p
2EI 2EI

2E1
MDE = MFDE +T[295 + Hﬂ] = _1{] + TZBD +T

E
= 10 +EI8, +—86,

In all the above equations there are only 3 unknowns and accordingly the boundary
conditions are

Solving equations (7) & (8) & (9),

8.83




Substituting the values in the slope deflections we have,

: 2
M,z = —106.67 +§(—8.83) = —112.56KNm

4
Mg, = 53.33 + 3 (~8.83) = 41.56KNm
3 3
Myc = —26.67 +=(~8.83) +7(~13.36) = —49.94KNm

3 3
Mcg = 26.67 +>(~1336) +7(~8.83) =0

1
Mgp = 10 — 8.83 +(14.414) = 8.38KNm

1
Mpp = 10 +=(~8.83) + (14.414) =0

l I RO pns LS

] e

P o T~ i

L
Py

REACTIONS:

SPAN AB:

41.56 — 112.56 + 120 X 2
b= - = 28.17KN

R, = 120 — Ry = 91.83KN

SPAN BC:

4994 +20x4x2
B 4

= 52.485KN

Rc = 20 X 4 — Ry = 27.515KN

Column BD:




_ 20x2-838

= 7.92KN
4

Hp = 12.78KN

Analyse the portal frame and then draw the bending momentdiagram

&0

A. This is a symmetrical frame and unsymmetrically loaded, thus it is an
unsymmetrical problem and there is a sway ,assume sway toright




Bﬁ = D,Hﬂ = D,BE iﬂ,gc =0
FEMS:

wab? 80 x 5x 32
Mgc- Iz = — — = = —56.25KNm
wazb_ 80 x 3 x 52

Mg - T = 93.75 KNm

Slope deflection equations are

2E1 A
MAE ZMFAE +T|:23A+ BE_BE]
_El_ 3EIA

—2°F 8

2E1 A
MBA = MFBA +T[EHE + B'q_ _EI:I
=0 2E 20 0 Bﬂ = EIf@ EEIE.
=0+ (26, 40~ z)—mﬂ—?
MBI'__ = MFEC +T[?..HB + Ec] = —5&25 + ?(ZHE + H{]
El El
2EI 2E1
MI'__H = MFCB +T[29r_— + BE] = g3.?5 + T[zﬂc + BE]
El

El

Mep =M +2EI[EB + 8 3‘&]— 0+ 25!(25‘ +0 35)
cp = Mpep T o D = 1 C T
3EIA
8

= EIf, -

2E1 A
MDE =MFDC +T[Zﬂﬂ +EC_3_:|
A\ El_ 3EI

—:}+25I(0+e 3) g A
=0+ (046 -33) = 70—

In the above equation there are three unknowns, 8g, 8-& A.accordingly the boundary
conditions are joint conditions, My, + My, =0, M, + M., =0

" Mag +Mpa  Mcp +M
shear condition, H, + Hp, + ¥ Py = 0, w =0

4




Now, Mg, + Mpe = EIfg —==A— 5625 + =6 + =6 =-50.25+=0p =06, —

3EI

—A=0
]
Mcg + Moy = 93.75 + 20, + =6+ Elf, ——— = 9375+ =8 + — 6, — — =

a8
0
Mg + Mg, + My + My ==8, ——+Elf, —==A+ Elf, ———+=6, — = A=
Ho,+ Ze. —Ea=0
2 2 2

. EIA= El8, + EI6,

Substitute in (7) & (8), equation (9),
3El 3El

50.25+ =85 +—8c — — (8 + 8c) = 0

y 9El El
-§ 2 — —— ~ =
50.25+ = 8-= 60

93.75+=8 + —8c — — (8 + 8¢c) = 0

El 9El
9375-? GBT GC =0

Solving equations (10) & (11), we get

41.25
O =

. El
By equation (10),
9EI 9
ElI6: =8 [—56.25 +TBB] =8 [—56.25 +§(41.25) = —78.75
—78.75

Oc El
EIA= EI6; + E16,=41.25 — 78.75 = —37.5
—37.5

El
Substituting these values in slope deflection equation, we have,

1 3
Myp = 5(4125) —=(~37.5) = 34.69KNm




-
My, = 4125 — = (=37.5) = 5531KNm

1 1
Myc = —56.25 + = (41.25) + £ (~78.75) = —55.31KNm

1 1
Mcg = 93.75 +=(~78.75) + 7 (41.25) = 64.69KNm

3
Mcp = ~78.75 — = (~37.5) = —64.69KNm

1 3
Mpc == (~7875) - =(~37.5) = ~25.31KNm

~

L ayeeq
77

.
Guea f |

Y
#1777

Reactions: consider the free body diagram of beam and columns

Column AB:

_ 34.69 +55.31

= 22.5KN
4 4

Span BC:

55.31 —64.69 +80 x 3
B g
R.=80—-R; =51.17KN

Column CD:

= 28.83KN

100




_ 64.69 +25.31

= 22.5KN
o 4

Check:
*H=0,Hy +Hp=0,225-225=0

Hence okay

6. Q. Frame ABCD is subjected to a horizontal force of 20 KN at joint C as
shown in figure. Analyse and draw bending moment diagram.

lQOKN

31

101



The frame is symmetrical but loading is unsymmetrical. Hence there is a sway,
assume sway towards right. In this problem

FEMS

wlL? 10 x 42
Mgag= —T= T = —13.33KNm
wl? 10 x 4?2

Mgga = = = 13.33KN
FBA= 5 12 m

wL 90 x 10

MFBC: —‘?z T= —112.5KNm

wL 20x10
MFCB R

=]112.5KNm
8

Slope deflection equations:

2El A 2El A
Map = Mgag +T[29‘°‘ + 8 — 33] = —13.33 + T(u +085—3—
El 3EIA

= —1333+ 85 ——

2El A
MEA = MFBA +T[ZEB+ HA—EE]
= 13.33

+2EI(29 +0 Bﬂ)—1333+EIE} EEIa
4 - 4) B8

2El 2E3I
MBC = MFELE + _[263 + BL] = —1125+ _EZBE + EL]

L 10
= 1125+5E19 +3EIE+
B ' 5 87 g "€

2EI 2E3I
MCB = MFCE +T[ZBE + EB] = 1125 + F[ZB‘E + BE]
BEI 3EI

=112.5+—08. + —8
5 ¢ 5 B

2El A A
MCD :MFCD+T[ZBE+ B‘D—EE]: 0+ _(ZBc'l'D—BI)

2EI

4
3EIA

= El6c ——5

2El A
MDC = MFDE +T‘[ZB‘D + BC - 33]

e.) El 3EI
2 “ 8

—D+2EI(D+EI 3
=0+ 08— 37

102



In the above equation there are three unknowns, 8g, 8-& A, accordingly the boundary
conditions are,
Joint conditions, Mgy + Mge =0, Mg + Mep = 0
Shear condition, Hy +Hp+¥Py =0, Hy+Hp+40=0
Hy X4 = Mpg + Mp, —lﬂxalx%

Mag + Mgy — 80
HA = 1

HDX4:MED+ Mpe

Mep + M
Hp = CD DC

4
Mg + Mg, —BIZI_I_MCD + Mpc
N 4 4
MA.E- + MBA +MCD + MDE +80=0

+40 =0

NIBA + MBC — 0

3El 6EIl 3EI
13.33 + Elfg —TA - 1125 +?93 + — =

5
2.2El8g + 0.6EI8; —0.375EIA —99.17 =0

Mcg + Mcp =0

6El 3EI JEIA
112.5+?BE+?HB+ Elf; — 3 =10

112.5+2.2 EIB+0.6EI0g —0.375 EIA= 0

MAB + MBA +MCD T MDC +80=0

El 3EIA 3El 3EIA EI 3El
—-13.33 +?93 -T+ 13.33 + ElBg —TA + ElB¢ —T'i' ?GC —?A'i' 80=0

I.5EI8g + 1.5EIB; — 1.5EIA+80 =0

Solving equations (7), (8)& (9)

103



_ 66.34

El

Substituting these values in slope deflection equation, we have,

1 3
M5 = ~13.33 + = (72.65) — =(66.34) = —1.88KNm
3
My = 72.65 — £(66.34) = 61.10KNm
6 3
Myc = —112.5 +7 (72.65) +2(~59.64) = —61.10KNm

6 %
Mcp = 1125 +§(—59.64) +§(72.65) = 84.52KNm

3
Mcp = —59.64 —=(66.34) = —84.52KNm

1 3
My = E(—59.64) —§(66.34) = —54.70KNm

QO kw
L ~ &

3 ¢'{//
‘*‘Lf" 2 r‘

} /=2 t: 5}')1“/%.’-’ K
777

-~

Reactions: Consider the free body diagram of various members

Member AB:

61.10-188 —-10x 4 x 2
Hy = 7 = —5.195 KN

Span BC:

84.52 - 61.10+90 X 5

Rg =90 — R¢ = 38.34KN

Column CD:

_ 84.52+54.7

= 34.81KN
L 4
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Analyse the portal frame and draw theB.M.D.

QOKN/m
ra& f‘(:hm

1S 1

2m

KA7777 ]

8A=ﬂ,eu={],aﬂiﬂ.aciﬂ l:

A. Itis an unsymmetrical problem, hence there is a sway be towards right.

FEMS:

Mgap= Mgga= 0 = Mgep= Mepc

» wlL? : 20 x 52 =
ol ik = : m

wl? 20 x 52
Mgcp = o T = 41.67KNm

Slope deflection equations:

2El A 2E1 A
MAB =MFAEI +T[ZHA+ 83—3—]= (D+HB—3—)

LI~ 3 3
_ 2EI 2EIA

= —tlg —

3 3

2EI A
MBA = MFEA +T[2E|B + HA - EI]

2El A 4El 2El
= T(ZBB +0- 35) = m—fpy ——

3 3
2EI 2E(1.5)1
MBE = MFEIE + T[EBB + E!.:] = —41.67 + L

= 416?+6EIE1 +3EIH
- ‘ 5 875 €

(265 + 6¢)
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2El 2E(1.5)1
MCE = MFCB +T[ZEC + EB] = 416? + T[ZEE + EB]

6El 3EI
= 41.67 +—6c + =64

5
2EI A 2EI A
Mcp = Mgcp +T[25c + 8p — EE] =0+ —(ZE}E +0-3-

4
3EIA
= Elf, —

2El A
MDC - MFU‘E +T[ZBD + Ec — BE]

—n+2EI(n+e 35)_EIB 3EI
B €T3 "2

In the above equation there are three unknowns, 8g, 6-& A, accordingly the boundary
conditions are,
Joint conditions, Mg, + Mg =0, Mz + M, =0

Shear condition, H, + H, =0, . —2 ; oA 4 Heo :Mﬂc +40=0

4(Myg + Mg, ) +3(Mep + Mpc) =10

4519 ZEIA 4167+6E16 +3EIB —0
EE Rl n s

2E]

2.53E16; + 0.6E18; ——A — 41.67 = 0
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Mg+ M, =0

6E1 3EI 3EIA
41.67+?9C +?93+5195— =0

41.67+2.2 EI6.+0.6E16, —0.375EIA= 0
4(Mpg + Mgy ) +3(Mep + Mpc) =0

4(2E16 2EIA | 4EI 2E1A)+3E19
3 B 3 3 B 3 ( c

3EIA EI _ 3EI _
+—0, ——A)

2 8

8EIf +45E168, —7.53 EIA=0

Solving equations (7), (8)& (9)

Substituting these values in slope deflection equation, we have,

2 2
Mag =7(25.46) — 3 (12.8) = 8.44KNm

4 2

Mga = 5(25.46) —(12.8) = 25.4KNm
6 3

Mgc = —41.67 + £ (25.46) + 2 (~23.17) = —25.4KNm

6 3
Mcg = 41.67 +=(~23.17) + £ (20.46) = 28.5KNm

3
Mcp = ~23.17 — £ (12.8) = ~28.5KNm

1 3
Mpc = =(~23.17) — £ (12.8) = ~16.65KNm
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o i
T 2BSOL£
A\./’ B¢ Liip
77777

1665 \g
777 =

Reactions: Consider the free body diagram

O RN/, 28 ST

2540 2
Bmc

= =3
(=S ‘LC
25.40 A<
28S0
So 4ty
A
Ba K""';g‘\_jD
=a Jr e
=%
Member AB: o
254+ 844
Hyu =T: 11.28 KN
|
Span BC: | o =
i -
dad 15
28.5—25.4+20x5x§- 254G | \ 28/S0
Re = =51.64KN o— i
5 e c2-5 o
Ry = 20 X 5 —51.64 = 48.36KN
Column CD:
28.5+ 16.65 é‘
D=~ 11.28KN ) Slyly
/668 Z*.
Check:
YH=0,H, +Hy,=0 Satisfied, hence okay = vD
1o EKN-m
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PART B : TWO HINGED ARCHES

INTRODUCTION

Mainly three types of arches are used in practice: three-hinged, two-hinged and hingeless
arches. In the early part of the nineteenth century, three-hinged arches were commonly
used for the long span structures as the analysis of such arches could be done with
confidence. However, with the development in structural analysis, for long span
structures starting from late nineteenth century engineers adopted two-hinged and
hingeless arches. Two-hinged arch is the statically indeterminate structure to degree one.
Usually, the horizontal reaction is treated as the redundant and is evaluated by the method
of least work. In this lesson, the analysis of two-hinged arches is discussed and few
problems are solved to illustrate the procedure for calculating the internal forces.

ANALYSIS OF TWO-HINGED ARCH

A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch, we have
four unknown reactions, but there are only three equations of equilibrium available.
Hence, the degree of statical indeterminacy is one for two- hingedarch.

Fig. 33.1a Two - hinged arch.
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¢
7

Structure
before applying
external load

D

Fig. 33.2b.

The fourth equation is written considering deformation of the arch. The unknown
redundant reaction Hpis calculated by noting that the horizontal displacement of hinge B
is zero. In general the horizontal reaction in the two hinged arch is evaluated by
straightforward application of the theorem of least work (see module 1, lesson 4), which
states that the partial derivative of the strain energy of a statically indeterminate structure
with respect to statically indeterminate action should vanish. Hence to obtain, horizontal
reaction, one must develop an expression for strain energy. Typically, any section of the
arch (vide Fig 33.1b) is subjected to shear forceV, bending moment M and the axial
compression N . The strain energy due to bending Uyis calculated from the following
expression.
U, M

== 33.1
)3ET (33.1)

The above expression is similar to the one used in the case of straight beams. However, in
this case, the integration needs to be evaluated along the curved arch length. In the above
equation, s is the length of the centerline of the arch, 1 is the moment of inertia of the
arch cross section, E is the Young’s modulus of the arch material. The strain energy due
to shear is small as compared to the strain energy due to bending and is usually neglected
in the analysis. In the case of flat arches, the strain energy due to axial compression can
be appreciable and is givenby,




o L
124E

The total strain energy of the arch is given by

ds +[ N (33.3)

U=
II"'EI 14E

‘/" Structure before
~—_ — ¥ applyingH

Fig. 33.2c.

Fig. 33.2d.




From Fig. 33.2b and Fig 33.2c, the bending moment at any cross section of the
arch (say D ), may be written as

M=M,-H(h-1) (3p.5)
The axial compressive force at any cross section (say D ) may be written as
N=N,+Hcosé (33.6)

Where & is the angle made by the tangent at Dwith horizontal (vide Fig 33.2d).
Substituting the value of A and & in the equation (33.4),

STT o A — 1
U _o__fMo=HG-)) 1},4.;“{% 0s8ds (33.7a)

GH 4 H !

—II‘M:'_HHJH’SH +Hcosé cosBds = 0
\E EA

Solving for 7, yields

* M, ’ LN
- {—1 ds + {m—d5+[—tns¢?ds+
Er EI ) Ed :

das =10
EAd

’[Hcosz 8
]

R
{ij ds — |—3cosﬁds
He EI » B4

{ J—dj +.[ cos’ 6 ds

o &1 » EA

Using the above equation, the horizontal reaction Afor any two-hinged
symmetrical arch may be calculated. The above equation is valid for any general
type of loading. Usually the above equation is further simplified. The second term
in the numerator is small compared with the first terms and is neglected in the
analysis. Only in case of very accurate analysis second term s considered. Also
for flat arched, cosf =1as £ is small. The equation (33.8) is now written as,

(33.9)
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As axial rigidity is very high, the second term in the denominator may also be
neglected. Finally the horizontal reaction is calculated by the equation

[ﬂj ds
H-= [
[La’s
» EI

For an arch with uniform cross section EI is constant and hence,

[ M, ¥ ds
ok

[7%ds
5

In the above equation, A, is the bending moment at any cross section of the arch
when one of the hinges is replaced by a roller support. ¥ is the height of the arch
as shown in the figure. If the moment of inertia of the arch rib is not constant,

then equation (33.10) must be used to calculate the horizontal reaction & .

TEMPERATURE EFFECT

Consider an unloaded two-hinged arch of span L. When the arch undergoes a uniform
temperature change of T, then its span would increase by C°TLa if it were allowed to
expand freely (vide Fig 33.3a). a Is the co-efficient of thermal expansion of the arch
material. Since the arch is restrained from the horizontal movement, a horizontal force is
induced at the support as the temperature is increase
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Now applying the Castigliano’s first theorem,

“Hy' . tHcos 6,
~—ds + | —————ds
v bd

i ;I-': . .:.
[—ds+|
o BT

cos' 6
——ds

Lt

The second term in the denominator may be neglected, as the axial rigidity is quite

high. Neglecting the axial rigidity, the above equation can be written as




Example

A semicircular two hinged arch of constant cross section is subjected to a concentrated load
as shown in Fig. Calculate reactions of the arch and draw bending moment diagram.

Solution:

Taking moment of all forces about hinge B leads to,

_40x22
30

P
-
iy

=203 3 kN (D

> Fy=0 =R, =1067 kN (T)
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From figure,
3 =Rsing
x=R(l-cos&)
ds = Rd#f

_13.267

tan &, =8 =ﬁj.13°=%89qmd

Now, the horizontal reaction H may be calculated by the following expression,

(M Fds
Het @)
[fﬁ:ds
;

Now 1M, the bending moment at any cross section of the arch when one of the
hinges is replaced by a roller support is given by,
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My=R_x=R_R{l-cos&)

M, =R_R(l1-cosd)-40(x-8)
=R, R(1-cosf)—40{R(1-cos) -8} 6 <6<r

Integrating the numerator in equation (3),

X

'j'[ﬁ-:m R(1-cos &) —40{R(1- cos &) — 8} | R sin & Rad

g,

T &
[M,ds = [R_R*(1-cosE)sinfd6 +
0 0

2593
=R R’ |(1-cos6)sinfdé+R’
G

([R,, R(1—cos8)sind— 40{R(1 - cos 6)sin & — 8sin 6} ]d6
-

x1BE3

TEIS

=R, R'[cose]  +R([R, R(-cos6)] ~ —[40R(-cos8)] * +[40x8(-cos6)] ]
L L F Ol

F R L F Ak L
=0533R_R*+ R*[14667R_ R|-[40R(1 4667)]+ [40x8(1 4667) ]]
=52761.00+225(645.275 - 410.676) =105545.775

The value of denominator in equation (3), after integration is,

[37ds = [ (Rsin6)’ RdE

(1—-cos28 ) ATy .
——— WHA=R|—|=5301.46
= ,.|d |37
Hence, the horizontal thrust at the support is,

_ 105545.775

=19.80 kN
530146 1990 kN

Bending moment diagram
Bending moment M at any cross section of the arch is given by,
M=M,-Hy

=R, R(l-cosf)-HRsin 6
=43095(1-cos8)— 208 5sin &

M = 430.05(1— cos &) — 298 5 sin & — 40(15(1 - cos 6) - 8)
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Using equations (8) and (9), bending moment at any angle 6 can be computed. The
bending moment diagram is shown in Fig.

93.74kN.m

Example

A two hinged parabolic arch of constant cross section has a span of 60m and a rise of
10m. It is subjected to loading as shown in Fig.. Calculate reactions of the arch if the
temperature of the arch is raised by. Assume co-efficient of thermal expansion as

a=12x10"%/°C,
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Taking A as the origin, the equation of two hinged parabolic arch may be written as,
(1)

The given problem is solved in two steps. In the first step calculate the horizontal reaction due to
40kN load applied at C. In the next step calculate the horizontal reaction due to rise in
temperature. Adding both, one gets the horizontal reaction at the hinges due to 40kN combined
external loading and temperature change. The horizontal reaction due to load may be calculated
by the following equation,

[_-‘Lj’ oy ds
H =1
[ 7 ds

For temperature loading, horizontal reaction is given by,

al

Where L is the span of the arch.

For 40 kN load,

5 1 &
[M,yds=[R, xydx+ [[R, x—40(x-10)]yax (3)

o 10

Please note that in the above equation, the integrations are carried out along the x- axis instead of
the curved arch axis. The error introduced by this change in the variables in the case of flat arches
is negligible. Using equation (1), the above equation (3) can be easily evaluated.

The vertical reaction A is calculated by taking moment of all forces about B. Hence,
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R, =-L[40x50]=3333 KN
» 50

R =067 KN.
Now consider the equation (3),

(M vdce (33331 r—10 24 59[3333 200r-10)) 2 -2 x%ya
4 'ax = {[(33. ¥f—X——x"Jax+ i X— X— —X——X"ax
j II:-I' i j{ }1‘(31" 3{]11} X jl: :I." [}{“' }I:EI"' 3[]_'-1} X

0 0 12

=6480.76+ 69404 00 = 74885 75 (4)

¢ 60 E
j;}': dy = f [%x—%x:} dx

=3200

Hence, the horizontal reaction due to applied mechanical loads alone is given by,

!

[ M,y dx )
o 75885.7

H =" = —2371 KN &

oL 3200 (6)
[y dx
0

The horizontal reaction due to rise in temperature is calculated by equation (2b),

g 12107 x60x40  EI=x12x107° » 6040
27 3200 - 7
/g 3200
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Taking £=200 kN/mm® and I=0.0333m"
H,=5004 KN. ()
Hence the total horizontal thrust H = H, + H, =83.65 kN.

When the arch shape is more complicated, the integrations .[ﬂds and .an"s
[} [

are accomplished numerically. For this purpose, divide the arch span in to »

equals divisions. Length of each division is represented by (As), (vide Fig.33.5b).

At the midpoint of each division calculate the ordinate y, by using the

equation y =§x —%xl. The above integrals are approximated as,

M

y 12
[ =2l ds = —5(M,), ¥, (As), (8)
. EI Er< "

a

1 3 1 " .
j;—ffhEEU'},'{ﬂs}, (9)
] iml

The complete computation for the above problem for the case of extemnal loading
is shown in the following table.

T i T
|
|
|
|
I

I
I
l
l
1

® ® ®@ ® ® @

Table 1. Numerical integration of equations (8) and (9)
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Horizontal | Correspond | Momentat | (Af,), v, (As),
distance x ing v, that
Measured (m) Paint (Af,),
from A (m) (kNm)
3 19 99.99 1139.886
9 5.1 299.97 9179.082
15 7.5 299.95 13497.75
21 9.1 259.93 14192.18
27 9.9 219.91 13062.65
33 9.9 179.89 10685.47
39 9.1 139.87 76.36.902
45 7.5 99.85 4493.25
21 9.1 59.83 1830.798
a7 19 19.81 225.834
> 759438

e

* oo | co| =1 | on| | ca|pa | =

=

2 (M,),y(8s) 750438 .0

1= % 3 - -
> )74, | 32003

This compares well with the horizontal reaction computed from the exact
integration.
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UNIT I1l: APPROXIMATE METHODS OFANALYSIS
OF BUILDING FRAMES

INTRODUCTION

The building frames are the most common structural form, an analyst/engineer
encounters in practice. Usually the building frames are designed such that the beam
column joints are rigid. A typical example of building frame is the reinforced concrete
multistory frames. A two-bay, three-storey building plan and sectional elevation are
shown in Fig. In principle this is a three dimensional frame.

However, analysis may be carried out by considering planar frame in two perpendicular
directions separately for both vertical and horizontal loads as shown in Fig. 36.2 and
finally superimposing moments appropriately. In the case of building frames, the beam
column joints are monolithic and can resist bending moment, shear force and axial force.
Any exact method, such as slope-deflection method, moment distribution method or
direct stiffness method may be used to analyse this rigid frame. However, in order to
estimate the preliminary size of different members, approximate methods are used to
obtain approximate design values of moments, shear and axial forces in various members.
Before applying approximate methods, it is necessary to reduce the given indeterminate
structure to a determinate structure by suitable assumptions. These will be discussed in
this lesson. In next section, analysis of building frames to vertical loads is discussed and
in section after that, analysis of building frame to horizontal loads will be discussed.
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SECOND FLOOR

|

FIRST FLOOR

|

g,

[ ]

Sectional Elevation Along C1 - Cs3
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Fig.36.2 ldealized frame for analysis

Fig.36.3 Building frame subjected to vertical loads
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SUBSTITUTE FRAME METHOD

Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any typical
beam, in this building frame is subjected to axial force, bending moment and shear force.
Hence each beam is statically indeterminate to third degree and hence 3 assumptions are
required to reduce this beam to determinate beam.

Before we discuss the required three assumptions consider a simply supported beam. In
this case zero moment (or point of inflexion) occurs at the supports as shown in
Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads as shown in Fig.
36.4b. In this case, the point of inflexion or point of zero moment occurs at 0.21L from
both ends of the support.

Inflection
point l
) /AL o]

|

Deflected shape

7 / *2
wL
/ 3 8

Bending moment diagram

Fig.36. 4a Simply Supported beam
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Inflection
point

v

0.21L
- -—

L =

Deflected shape

Bending moment diagram

Fig.36. 4b Fixed - Fixed beam

Now consider a typical beam of a building frame as shown in Fig.36.4c. In this case, the
support provided by the columns is neither fixed nor simply supported.

For the purpose of approximate analysis the inflexion point or point of zero

: (0+0.21L ) :
moment is assumed to occur at | ——~—— l ~ 0.1L from the supports. In reality

the point of zero moment varies depending on the actual rigidity provided by the
columns. Thus the beam is approximated for the analysis as shown in Fig.
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L
Fig.36.4c

Assumed inflection
point

A | A

g " ~ L
085w L 0i045WL, V™ 93

! |

Bending moment diagram

Fig.36.4d
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For interior beams, the point of inflexion will be slightly more than 0.1L . An experienced
engineer will use his past experience to place the points of inflexion appropriately. Now
redundancy has reduced by two for each beam. The third assumption is that axial force in
the beams is zero. With these three assumptions one could analyse this frame for vertical
loads.

Example 36.1

Analyse the building frame shown in Fig. 36.5a for vertical loads using approximate
methods.

Fig.36.5a
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Fig.36.5 b

Solution:

In this case the inflexion points are assumed to occur in the beam at0.1L(=0.6m) from columns

as shown in Fig. 36.5b. The calculation of beam moments is shown in Fig. 36.5c.
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Bending moment diagrams |
Fig.36.5¢c

F2KN.
Fil

4

D Gi
FITT L7777 /TIT7

Fig.36.5d Axial force in columns
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ANALYSIS OF BUILDING FRAMES TO LATERAL (HORIZONTAL) LOADS

A building frame may be subjected to wind and earthquake loads during its life time.
Thus, the building frames must be designed to withstand lateral loads. A two-storey two-
bay multistory frame subjected to lateral loads is shown in Fig.36.6. The actual deflected
shape (as obtained by exact methods) of the frame is also shown in the figure by dotted
lines. The given frame is statically indeterminate to degree 12.

Fig.36.6 Shear in columns

S
L

bcarrd

5m | 5m

Fig.36.7a Two storey building frame
subjected to lateral load of Example 36.2

Fig.36.7b

Hence it is required to make 12 assumptions to reduce the frame in to a statically
determinate structure. From the deformed shape of the frame, it is observed that inflexion
point (point of zero moment) occur at mid height of each column and mid point of each
beam. This leads to 10 assumptions. Depending upon how the remaining two
assumptions are made, we have two different methods of analysis: i) Portal method and




PORTAL METHOD
In this method following assumptions are made.

1) An inflexion point occurs at the mid height of eachcolumn.
2) An inflexion point occurs at the mid point of eachgirder.

3) The total horizontal shear at each storey is divided between the columns of that storey
such that the interior column carries twice the shear of exterior column.

The last assumption is clear, if we assume that each bay is made up of a portal thus the
interior column is composed of two columns (Fig. 36.6). Thus the interior column carries
twice the shear of exterior column. This method is illustrated in example 36.2.

Example

Analyse the frame shown in Fig. 36.7a and evaluate approximately the column end
moments, beam end moments and reactions.

Solution:

The problem is solved by equations of statics with the help of assumptions made in the
portal method. In this method we have hinges/inflexion points at mid height of columns
and beams. Taking the section through column hinges M.N,Oweget, (ref. Fig. 36.7b).

SF,=0 = V+2W+V=20

or ¥ =5kN
Taking moment of all forces left of hinge R about R gives,

Vx1.5-M,%x2.5=0
M, =3 kN({{)
Column and beam moments are calculates as,

M =5x1.5=75kNm : My =+7.5kKN.m
M. =-7.5kN.m

Taking moment of all forces left of hinge S aboutS gives,

5x1.5-0,%x2.5=0

0, =3kN(T)

.‘~:O

Taking a section through column hinges J.K.L we get, (ref. Fig. 36.7c¢).
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,‘J
-—

.

Fig.36.7d
SF, =0 =  V42V4V'=60

or ¥'=15 kN
Taking moment of all forces about P gives (vide Fig. 36.7d)

> M, =015x1.5+5x1.5+3x2.5-J,%x2.5=0
15 kN({)

J,
I‘J

15 kN(T)
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Fig.36.7e

Fig.36.7f
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Column and beam moments are calculated as, (ref. Fig. 36.71)

M gc=5x1.5=7.5 KN.m;M ga=15x1.5=22.5 kN.m
M ge=—30 kN.m

M gr=10x1.5=15 kKN.m ;M gp=30x1.5=45 kKN.m
M gg=—30kN.m M gy=—30kN.m

M i=5x1.5=7.5 KN.m ;M pc=15x1.5=22.5 KN.m

M pe=—30 kN.m

Reactions at the base of the column are shown in Fig. 36.7g.
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CANTILEVER METHOD

The cantilever method is suitable if the frame is tall and slender. In the cantilever method
following assumptions are made.

An inflexion point occurs at the mid point of eachgirder.An inflexion point occurs at mid height of
eachcolumn.In a storey, the intensity of axial stress in a column is proportional to its horizontal
distance from the center of gravity of all the columns in that storey. Consider a cantilever beam
acted by a horizontal load P as shown in Fig. 36.8. In such a column the bending stress in the
column cross section varies linearlyfrom its neutral axis. The last assumption in the cantilever
method is based on this fact. The method is illustrated in example36.3.

Example 36.3
Estimate approximate column reactions, beam and column moments using cantilever method of the
frame shown in Fig. 36.8a. The columns are assumed to have equal cross sectional areas.

Solution:

This problem is already solved by portal method. The center of gravity of all column passes
through centre column.

R
@

Fig.36.8b
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Taking a section through first storey hinges gives us the free body diagram as shown in
Fig. 36.8b. Now the column left of C.G. i.e.CBmust be subjected to tension and one on
the right is subjected to compression.

From the third assumption,

Taking moment about O of all forces gives,

20x1.5-M x10=0

M, =3kN{) 0, =3kN(T)

Taking moment about R of all forces left of R,

V,*x1.5-3%25=0

Vy =5 kN(«)
Taking moment of all forces right of S about S ,

Moments

Mcg=5-1.5=7.5 KN.m
Mcg=-7.5 kN.m

M =15 kN.m

M gc=—7.5 kN.m

M g=7.5 kN.m

M \n=7.5 kN.m

M \=7.5 kN.m

Tae a section through hinges J,K,L(ref. Fig. 36.8c). Since the center of gravity
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passes through centre column the axial force in that column is zero.

3kN

@0

Fig.36.8c

Taking moment about hinge L ,Jy can be evaluated. Thus,

20x<3+40x1.5+3x10-J x10=0

J,=15kN{) oz, =15KkN(T)

3

Taking moment of all forces left of P about P gives,

5x1.5+3%2.5-15x2.5+V,x1.5=0
V, =15kN(«)

Similarly taking moment of all forces right of Q about Q gives,
5x1.543x2.5-15%254¥V, x1.5=0

V, =15kN(«)

> Fy=0 V,+V,+V, —60=0

Vi

Moments
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M gc=5-1.5=7.5 kN.m ; M ga=15-1.5=22.5
M ge=—30 kN.m
M g=10-1.5=15 kKN.m ; M g=30-1.5=45

M
M gg=—30 kN.m B =30 KN.m

M p=5-1.5=7.5 KN.m ; M pe=15-1.5=22.5

M pe=—30 kN.m

PART B

Approximate Lateral Load Analysis by Portal Method

Portal Frame
Portal frames, used in several Civil Engineering structures like buildings, factories, bridges have

the primary purpose of transferring horizontal loads applied at their tops to their foundations.
Structural requirements usually necessitate the use of statically indeterminate layout for portal
frames, and approximate solutions are often used in their analyses.

Assumptions for the Approximate Solution

In order to analyze a structure using the equations of statics only, the number of
independent force components must be equal to the number of independent equations of
statics.

If there are nmore independent force components in the structure than there are
independent equations of statics, the structure is statically indeterminate to the nth degree.
Therefore to obtain an approximate solution of the structure based on statics only, it will
be necessary to make nadditional independent assumptions. A solution based on statics
will not be possible by making fewer than n assumptions, while more than n assumptions
will not in general be consistent.

Thus, the first step in the approximate analysis of structures is to find its degree of statical
indeterminacy (dosi) and then to make appropriate number of assumptions.

For example, the dosi of portal frames shown in (i), (ii), (iii) and (iv) are 1, 3, 2 and 1
respectively. Based on the type of frame, the following assumptions can be made for
portal structures with a vertical axis of symmetry that are loaded horizontally at thetop

1. The horizontal support reactions areequal

2. There is a point of inflection at the center of the unsupported height of each fixed

basedcolumn
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Some additional assumptions can be made in order to solve the structure
approximately for different loading and support conditions.

3. Horizontal body forces not applied at the top of a column can be divided into two
forces (i.e., applied at the top and bottom of the column) based on simple supports

4. For hinged and fixed supports, the horizontal reactions for fixed supports can be
assumed to be four times the horizontal reactions for hinged supports Example

Draw the axial force, shear force and bending moment diagrams of the frames loaded as

shown below.

Solution

(1) For this frame, dosi=3x 3+4 -3 x4=1:1e., Assumption ] = Hy=Hp=102=5k
SdIMa=0=10x10-Vpx 15=0=Vp=6.67k

S2E =0 Va+Vp=0=>V,=-6.67k

10k

LR R bt i e e
< hee

£
6.67

o Anun
= OGO

.
v

[ 2000000

el
v
A

g

Reactions AFD (k) SFD (k)

(1)dosi=3x3+6-3x4=3

Assumption 1 = Hy =Hp = 10/2 =5 k, Assumption 2 = BMg = BMr =0
~BMp=0= Hy x 5 +M, =0= M, =-25 k-ft: Similarly BMg =0 = Mp =-25
SAIMA=0=-25-25+10x 10-Vpx 15=0= Vp=3.33k

2By =0=>Va+Vp=0=>V,=-333k
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vy

R et

dosi=3x4+6-3x5~1=2: .. Assumption 1 and 2= BMg=BM=0

. BMe = 0 (bottom) = ~Hj x 5 + My = 0 = M, = 5Ha: Similarly BM¢ = 0 = Mp = 5Hp
Also BMg = 0 (free body of EBCF) = 10x 5~ Vpx 15=0= Vp=3.33 k

SD2E =02 Va+ V=0V, =-Vp=-333k

BMc=0(betweenEand G) = Vy x 7.5-Hyx 5=0=> Hy=-5k=> M, =5H, =-25
2 F, =0 (entire structure) > Hy +Hp + 10=0=>-5+Hp + 10=0=>Hp=-5k = Mp=5Hp =-25

(iv) dosi=3 x 5+ 9 — 3 x 6 =6= 6 Assumptions needed to solve the structure
Assumption 1 and2 > H,: Hg: He=1:2: 1> H, =10/4=25k Hg=5k Hc =25k
SMaA=Mc=25x5=125k-ft, Mg=5x5=25

The other 4 assumptions are the assumed internal hinge locations at midpoints of columns and one beam

10k

Reactions

1.67 1.67
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u
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Analysis of Multi-storied Structures by Portal Method

Approximate methods of analyzing multi-storied structures are important because such
structures are statically highly indeterminate. The number of assumptions that must be
made to permit an analysis by statics alone is equal to the degree of statical
indeterminacy of the structure.

Assumptions

The assumptions used in the approximate analysis of portal frames can be extended for
the lateral load analysis of multi-storied structures. The Portal Method thus formulated is
based on three assumptions

1. The shear force in an interior column is twice the shear force in an exterior column.

2. There is a point of inflection at the center of eachcolumn.

3. There is a point of inflection at the center of eachbeam.

Assumption 1 is based on assuming the interior columns to be formed by columns of two

adjacent bays or portals. Assumption 2 and 3 are based on observing the deflected shape

of thestructure.
Example
Use the Portal Method to draw the axial force, shear force and bending moment diagrams

of the three-storied frame structure loaded as shown below.

— 18" Column shear forces are at the ratio of 1:2:2:1.

.. Shear force i (V) columns IM., IN. KO. LP are

o [18x 1/1+2+2+1)=]3,[18x2/(1+2+2+1)=] 6"
6. 3" respectively. Similarly.

Ve =30x1/(6)=5. Vg =10. Vg =10. Vi =5 : and
Var=36x1/(6)=6.Vge=12 . Vec=12 . Vpg=6
Bending moments are

Mpg=3x10/2 =15 . Mpy= 30", Mgo= 30", Mp = 15~
Mg =5x10/2=25 . Mg =50 . Mex=50 . Mg =25
Map=6x10/2=30". Mg =60 . Mgxk=60 ., Mg =30’

2@10=20

— 6
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The rest of the calculations follow from the free-body diagrams

N
-

_‘% \12

E
Column BMD

Beam SFD Column AFD

Analysis of Multi-storied Structures by Cantilever Method

Although the results using the Portal Method are reasonable in most cases, the method
suffers due to the lack of consideration given to the variation of structural response due to
the difference between sectional properties of various members. The Cantilever Method
attempts to rectify this limitation by considering the cross- sectional areas of columns in
distributing the axial forces in various columns of a story.

Assumptions

The Cantilever Method is based on three assumptions

1. The axial force in each column of a storey is proportional to its horizontal distance
from the centroidal axis of all the columns of thestorey.

2. There is a point of inflection at the center of eachcolumn.

3. There is a point of inflection at the center of eachbeam.

Assumption 1 is based on assuming that the axial stresses can be obtained by a method

analogous to that used for determining the distribution of normal stresses
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on a transverse section of a cantilever beam. Assumption 2 and 3 are based on
observing the deflected shape of the structure.

Example
Use the Cantilever Method to draw the axial force, shear force and bending moment

diagrams of the three -storied frame structure loaded as shown below.

— 185—» The dotted line 1s the column centerline (at all tloors)

.. Column axial forces are at the ratio of 20: 5: —5: -20.

.. Axial force in (P) columns IM., JN. KO. LP are

[18 x 5 x 20/{20°+ 5%+ (=5)*+ (-20)°} =] 2.12,[18 x 5
x 5/(20%+ 5%+ (—5)* + (-20)%} =] 0.53-, —0.53", -2.12
respectively.

Silllﬂﬁl‘l}". ng = 330x20 (850‘) = 7.76;. P}‘J =194 . PGK o
—1.94", Py =-7.767; and

P,g = 696x20/(850) = 16.38 . Pgg = 4.09". Pc = -4.09 .
PDH =16.38

12"

‘_6;;

The rest of the calculations follow from the free-body diagrams

e

e XS

—
O
e
ssamsnaay

§"8"

2 3.10:76}:..5.8L

IO

1165 1165
;Iw‘v :ilg”
Column BMD Column SFD

glll.wlll - —

Approximate Vertical Load Analysis
Approximation based on the Location of Hinges
If a beam AB is subjected to a uniformly distributed vertical load of w per unit length

[Fig. (a)], both the joints A and B will rotate as shown in Fig. (b), because although the

joints A and B are partly restrained against rotation, the restraint is not complete. Had the

joints A and B been completely fixed against rotation [Fig. (c)] the points of inflection
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would be located at a distance 0.21L from each end. If, on the other hand, the joints A
and B are hinged [Fig. (d)], the points of zero moment would be at the end of the beam.
For the actual case of partial fixity, the points of inflection can be assumed to be
somewhere between 0.21 L and O from the end of the beam. For approximate analysis,
they are often assumed to be located at one-tenth (0.1 L) of the span length from each end
joint.

(@

Depending on the support conditions (i.e., hinge ended, fixed ended or continuous), a
beam in general can be statically indeterminate up to a degree of three. Therefore, to
make it statically determinate, the following three assumptions are often made in the
vertical load analysis of a beam

1. The axial force in the beam iszero

2. Points of inflection occur at the distance 0.1 L measured along the span from the left
and rightsupport.

Bending Moment and Shear Force from Approximate Analysis

Based on the approximations mentioned (i.e., points of inflection at a distance

0.1 L from the ends), the maximum positive bending moment in the beam is

calculated to be

M(+) = w(0.8L)%/8 = 0.08 wL?, at the midspan of the beam The

maximum negative bending moment is

M() = wL?/8 0.08 wL? = 0.045 wL?, at the joints A and B of the beam

The shear forces are maximum (positive or negative) at the joints A and B and are

calculated to be

VA =wL/%, and VB = wL/2

Moment and Shear Values using ACI Coefficients

Maximum allowable LL/DL = 3, maximum allowable adjacent span difference = 20%

1. PositiveMoments
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(i) For EndSpans

(a) If discontinuous end is unrestrained, M(+) =wL%/11
(b) If discontinuous end is restrained, M(+) =wL?/14
(ii) For Interior Spans, M(+) =wL?/16

2. NegativeMoments

(i) At the exterior face of first interiorsupports

(a) Two spans, M(-) =wL?%/9

(b) More than two spans, M(-) = wL?/10

(ii) At the other faces of interior supports, M(-) =wL?/11

(i) Forspansnotexceedingl10,0fwherecolumnsaremuchstifferthanbeams,
M(-) =wL2/12

(iv) At the interior faces of exteriorsupports

(a) If the support is a beam, M(-) =wL?%/24

(b) If the support is a column, M(-) =wL?/16

3. ShearForces
(i) In end members at first interior support, V =1.15wL/2
(i) At all other supports, V =wL/2

[where L = clear span for M(+) and V, and average of two adjacent clear spans for M(-)]

Example
Analyze the three-storied frame structure loaded as shown below using the approximate

location of hinges to draw the axial force, shear force and bending moment diagrams of

the beams and columns.

The maximum positive and negative beam moments and
shear forces are as follows.
For the 15 beam. M,=0.08x 1 x 15°=18
Mgy=0.045 x 1 x 15°=10.13
Ve=1x152=75k
For the 10' beam. M= 0.08 x 1 x 10° =8
My=0.045% 1 x 10°=4.5
V=1x102=5k
Axial Force P 1n all the beams =0

=20

@10

2
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The rest of the calculations follow trom the free-body diagrams

1
~
n
e

L

W

o
smesEae
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= b . .
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e

§ LELLDILED g i

0.48 L2 0.48
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e i 7] 77

Column BMD Column SFD (k) Beam AFD (k)
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UNIT IV: MATRIX METHOD OF ANALYSIS

THE DIRECT STIFFNESS METHOD

INTRODUCTION

All known methods of structural analysis are classified into two distinct groups:-

1. force method of analysisand

2. displacement method ofanalysis.

In module 2, the force method of analysis or the method of consistent deformation is
discussed. An introduction to the displacement method of analysis is given in module 3,
where in slope-deflection method and moment- distribution method are discussed. In this
module the direct stiffness method is discussed. In the displacement method of analysis
the equilibrium equations are written by expressing the unknown joint displacements in
terms of loads by using load- displacement relations. The unknown joint displacements
(the degrees of freedom of the structure) are calculated by solving equilibrium equations.
The slope-deflection and moment-distribution methods were extensively used before the
high speed computing era. After the revolution in computer industry, only direct stiffness
method isused.

The displacement method follows essentially the same steps for both statically
determinate and indeterminate structures. In displacement /stiffness method of analysis,
once the structural model is defined, the unknowns (joint rotations and translations) are
automatically chosen unlike the force method of analysis. Hence, displacement method of
analysis is preferred to computer implementation. The method follows a rather a set
procedure. The direct stiffness method is closely related to slope-deflectionequations.

The general method of analyzing indeterminate structures by displacement method may
be traced to Navier (1785-1836). For example consider a four member truss as shown in
Fig.23.1.The given truss is statically indeterminate to second degree as there are four bar
forces but we have only two equations of equilibrium. Denote each member by a number,
for example (1), (2), (3) and (4).

Let ajbe the angle, the i-th member makes with the horizontal. Under the
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action of external loads Px and Py, the joint E displaces to £°. Let u and v be its vertical

and horizontal displacements. Navier solved this problem as follows.

In the displacement method of analysis u and v are the only two unknowns for this
structure. The elongation of individual truss members can be expressed in terms of these
two unknown joint displacements. Next, calculate bar forces in the members by
using force—displacement relation.

The unknown displacements may be calculated by solving the equilibrium equations. In
displacement method of analysis, there will be exactly as many equilibrium equations as
there are unknowns.

Let an elastic body is acted by a force F and the corresponding displacement be u in the
direction of force. In module 1, we have discussed force- displacementrelationship. The
force (F) is related to the displacement (u) for the linear elastic material by therelation

F =ku (23.1)

where the constant of proportionality k is defined as the stiffness of the structure and it
has units of force per unit elongation. The above equation may also be written as
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Fig. 23.1 Four member truss

The constant ais known as flexibility of the structure and it has a unit of displacement per
unit force. In general the structures are subjected to n forces at n different locations on the
structure. In such a case, to relate displacement atito load at j, it is required to use
flexibility coefficients with subscripts. Thus theflexibility coefficient ajjis the deflection
at idue to unit value of force applied at j . Similarly the stiffness coefficientkijis defined as
the force generated ati
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due to unit displacement atjwith all other displacements kept at zero. Toillustrate this
definition, consider a cantilever beam which is loaded as shown in Fig.23.2. The two
degrees of freedom for this problem are vertical displacementatB and

rotation at B. Let them be denoted by and (=61 ). Denote thevertical force P byand the

tip moment M by. Now apply a unit vertical force along calculate deflection and . The
vertical deflection is denoted by flexibility coefficient and rotation is denoted by
flexibilitycoefficient . Similarly, by applying a unit force along , one could calculate
flexibility coefficient and . Thus is the deflection at 1 corresponding to due to unit
force applied at 2 in the direction of By using the principle of superposition, the
displacements and are expressed as the sum of displacements due to loads andacting
separately on the beam. Thus,

The above equation may be written in matrix notation as

ui=[al{P}

, (o, | [a, a,
where, -;u}=<l 1|=-: {a}j=| " "
) [y Ay

| .
;and {P}=/"" |=.
|5

P
a,
™,
A vB)
/

Fig. 23.2 (b) Cantilever beam with 4
unit load along P/./ Fig.23.2(a) Cantilever beam

Y

/

. 23.2 © Cantilever bsam with unit moment along P,

’
4 -

Fig. 23.2(d) Cantilever beam with unit displacement along u,
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The forces can also be related to displacements using stiffness coefficients. Apply a unit
displacement along (see Fig.23.2d) keeping displacement as zero.

Calculate the required forces for this case as kiiand ko1 .Here, k21 represents

force developed along P2 when a unit displacement along is introduced keeping=0.
Apply a unit rotation along(vide Fig.23.2c),keeping Q

Calculate the required forces for this configuration ki2and k22. Invoking the
principle of superposition, the forces P1 and P2 are expressed as the sum of

forces developed due to displacements and acting separately on the beam. Thus,

{Py=[k]{u}

where, lp =

kis defined as the stiffness matrix of the beam.

In this lesson, using stiffness method a few problems will be solved. However this
approach is very rudimentary and is suited for hand computation. A more formal
approach of the stiffness method will be presented in the next lesson.

A SIMPLE EXAMPLE WITH ONE DEGREE OF FREEDOM

Consider a fixed—simply supported beam of constant flexural rigidity EI and span

L which is carrying a uniformly distributed load of w kN/m as shown in Fig.23.3a.

If the axial deformation is neglected, then this beam is kinematically
indeterminate to first degree. The only unknown joint displacement is 5. Thus

the degrees of freedom for this structure is one (for a brief discussion on degrees of
freedom, please see introduction to module 3).The analysis of above structure by stiffness
method is accomplished in following steps:

Recall that in the flexibility /force method the redundants are released (i.e. made zero) to
obtain a statically determinate structure. A similar operation in the stiffness method is to
make all the unknown displacements equal to zero by altering the boundary conditions.
Such an altered structure is known as kinematically determinate structure as all joint
displacements are known in this case. In the present case the restrained structureisobtained
by preventing the rotation at B as shown in Fig.23.3b. Apply all the external loads on the
kinematically determinate structure. Duetorestraint at B, a moment Mp is developed at B.
In the stiffness method weadopt the following sign convention. Counterclockwise moments
and counterclockwise rotations are taken as positive, upward forces and displacements are
taken as positive.




Fig.23.3(a) Cantilever beam

W KN/m

AAYYYYPYRYVYYEP MO

A . - M,

Fig. 23.3b Kinematically determinate beam

Fig. 23.3 (d) Computation of stiffness co-efficients
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TWO DEGREES OF FREEDOM STRUCTURE

Consider a plane truss as shown in Fig.23.4a.There is four members in the truss and they
meet at the common point at E. The truss is subjected to external loadsandacting at E. In
the analysis, neglect the self weight of members. Thereare two unknown displacements at
joint E and are denoted byand.Thus the structure is kinematically indeterminate to second
degree. The applied forces and unknown joint displacements are shown in the positive
directions. The members are numbered from (1), (2), (3) and (4) as shown in the figure.
The length and

axial rigidity of i-th member is ljand EAirespectively. Now it is soughtto evaluate
andby stiffness method. This is done in following steps:

In the first step, make all the unknown displacements equal to zero by altering the
boundary conditions as shown in Fig.23.4b. On thisrestrained/kinematically determinate
structure, apply all the external loads except the joint loads and calculate the reactions
corresponding to unknown joint displacements and. Since, in the present case, there are no
external loads other than the joint loads, the reactions (R )1and (RL ) 2 will be equal to

zero. Thus,

In the next step, calculate stiffness coefficients k11, k21, k12 andk2 .This is done as

follows. First give a unit displacement along u1 holdingdisplacement along to zero and
calculate reactions at E correspondingto unknown displacements and in thekinematically
determinate structure. They are denoted by k11,k21. The joint stiffness k11,k210f thewhole
truss is composed of individual member stiffness of the truss. This
isshowninFig.23.4c.NowconsiderthememberAE.Undertheactionofunit displacement along,
the joint E displaces to. Obviously the new length is not equal to length AE. Let us denote
the new length of themembersbyl1+ Al1, where I, is the change in length of the member
AE’. The member AE 'also makes an angle with the horizontal. This isjustified as 1 is
small. From the geometry, the change in length of the members AE’is

(23.11a)
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The elongation Al1 is related to the force in the member AE",

Al = £E
V= E (23.11b)

Thus from (23.11a) and (23.11b), the force in the members AE[ is

EA
Fp =24

cos 6 (23.11c)

1

This force acts along the member axis. This force may be resolved alongand

directions . Thus the horizontal component of force

Fig 23.4a A four - member truss
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Fig. 23.4c Unit displacement along u,
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Fig.23.4d Unit displacement along u,
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Expressions of similar form as above may be obtained for all members. The sum of all
horizontal components of individual forces gives us the stiffness coefficient

k11and sum of all vertical component of forces give us the required stiffness coefficient
ko1 .

) EA2 )
EAros 61+ cos 07 +
ki1= — —
Ig 12

EA3 )
cos 63+

4 E 4 (23.15)

ey, = Z

i=1 i

4 FA.
Similarly, k12 =Z ]’S‘inﬁf cos b; (23.16)

i=1 i

B. Joint forces in the original structure corresponding to unknown
displacements u1 and upare

E2SEEY
S (23.17)

Now the equilibrium equations at joint E states that the forces in the original structure are
equal to the superposition of (i) reactions in the kinematically restrained structure
corresponding to unknown joint displacements and (ii) reactions in the restrained
structure due to unknown displacements themselves. This may be expressed as,
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P=Pw=P Liz .
For example take F 2 ; sing, °
6, =35°,68, =70° 6, =105°and &, =140°

Then.

: _) ,__'

lof

EA 2, EA
ky = ZTCOS' g, sin 6, =0.9367T

EA | EA
ki, = z = sin? 6, cosf; = 0.01357

174

Al =A: = A,

3

A, =4




EA
- :

0.9367 0.0135][u
0.0135 2.1853

1

Solving which, yields

&
Uy =1.06115

L
U, =0.451—
- EA
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Example

Analyze the plane frame shown in Fig.23.5a by the direct stiffness method. Assume that
the flexural rigidity for all members is the same. Neglect axial displacements.

Fig 23.5a Plane - frame of Example 23.1

Solution
In the first step identify the degrees of freedom of the frame .The given frame has three
degrees of freedom (see Fig.23.5b):

B. Two rotations as indicated by U1 and Upand

C. One horizontal displacement of joint B and C as indicated by U3 .

In the next step make all the displacements equal to zero by fixing joints B and C as
shown in Fig.23.5c. On this kinematically determinate structure apply all the external
loads and calculate reactions corresponding to unknown joint displacements .Thus,
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=24—-18=6 kN.m

(Rp ). =—24kN.m

(Rp ), =12 kKN.m
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Fig 23.5b Approximate deflected shape

¥
4

Fig 23.5c Kinematically restrained structure
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Fig.23.5d Unit displacement along u,

- ki

Fig 23.5e Unit displacement along u.
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P S L

Fig. 23.5f Unit displacement along u,
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AET  AET
k11=—+ N =1.667

46

~

2ET
;\'11 = _1 = [:'.SEI

6ET

Similarly, apply a unit rotation along U,and calculate reactions corresponding to
three degrees of freedom (see Fig.23.5e)

ko= 0.5El

koo=El

k3o=0 (5)

Apply a unit displacement along Usand calculate joint reactions corresponding to

unknown displacements in the kinematically determinate structure.
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Finally applying the principle of superposition of joint forces, yields

['Fl } 6 ‘ 1.667 0.5 —0.166) (1,
JF, t=4-24}+EI1 0.5 1 0 ‘ut
[_FgJ 12 | ‘\_—0.166 0 0056 '

2
=y

- “as there are no loads applied along U1,U2 and U3.Thus the

unknown displacements are,

1

1 5 —0.166] [6
0.5 1 0 124\

ET|
|-0.166 0 0.056 -24

Solving
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u =— 270.587

3

El
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Example 24.1

Analyse the two member truss shown in Fig. 24.12a. Assume EA to be constant
for all members. The length of each member is 5m.

~* 5kN

Fig 24.12(a) Example 24.1

Fig 24.12(b) Members and node numbering
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The co-ordinate axes, the number of nodes and members are shownin

Fig.24.12b. The degrees of freedom at each node are also shown. By inspection
it is clear that the displacement us=us,=Us=U=0. Also the external loads are

p=5 kN ;p=0 KN. (1)

Now member stiffness matrix for each member in global co-ordinate system is
(6:=30°).

0.75 0.433 —-0.75 —0.433

[H]:E 0.433 025 -0433 -025
5| -075 —-0433 0.5 0.433
—0.433 -025 0433 0.25

075 -0433 -0.75 0.433
]_ E4—0433 0.25 0433 -0.25
5| —0.75 0433 0.75 —0.433
0433 —-0.25 —-0433 0.25

-

The global stiffness matrix of the truss can be obtained by assembling the two
member stiffness matrices. Thus,

0.25 0
0.433 0 075 -0433
-0.25 0 -0433 025
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Again stiffness matrix for the unconstrained degrees of freedom is,
EA[15 0
k-2 0 )
5 0 05

Writing the load displacement-relation for the truss for the unconstrained degrees
of freedom

{ Pt =[kua]{uu} (6)
..P1} 3 E[l.ﬁ 0 }J'ul"
{PJ, S s5lo o5 ],“1_}

Support reactions are evaluated using equation (24.30).

{ pu} =[kaa J{uu}

Substituting appropriate values in equation (9),

—0.75 —0.433

EA| 0433 -025 )| 1 {16.66?"

{PH}ZT —0.75 0433 |4E| 0

0433 -0.25
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by equilibrium of joint

1. Also, ps+ps+5=0

Now force in each member is calculated as follows,

Member 1:1=0.866 ;m=0.5 ;L=5m.

{p}=lk]{u}

=[k][T {u} @)

(16.667)

{p'l}:i—E[—Ei.SGG]-' L=-2.88 kN

| 4E |

Member 2: [=-0866: m=05:L=5m.
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DIRECT STIFFNESS METHOD: BEAMS

In the earlier section, a few problems were solved using stiffness method from
fundamentals. The procedure adopted therein is not suitable for computer
implementation. In fact the load displacement relation for the entire structure was
derived from fundamentals. This procedure runs into trouble when the structure
is large and complex. However this can be much simplified provided we follow
the procedure adopted for trusses. In the case of truss, the stiffness matrix of the
entire truss was obtained by assembling the member stiffness matrices of
individualmembers.

In a similar way, one could obtain the global stiffness matrix of a continuous
beam from assembling member stiffness matrix of individual beam elements.
Towards this end, we break the given beam into a number of beam elements.
The stiffness matrix of each individual beam element can be written very easily.
For example, consider a continuous beam ABCD as shown in Fig. 27.1a. The
given continuous beam is divided into three beam elements as shown inFig.

27.1b. It is noticed that, in this case, nodes are located at the supports. Thus
each span is treated as an individual beam. However sometimes it is required to
consider a node between support points. This is done whenever the cross
sectional area changes suddenly or if it is required to calculate vertical or

rotational displacements at an intermediate point. Such a division is shown inFig.

27.1c. If the axial deformations are neglected then each node of the beam will
have two degrees of freedom: a vertical displacement (corresponding to shear)
and a rotation (corresponding to bending moment). In Fig. 27.1b, numbers
enclosed in a circle represents beam numbers. The beam ABCD is divided into
three beam members. Hence, there are four nodes and eight degrees of
freedom. The possible displacement degrees of freedom of the beam are also
shown in the figure. Let us use lower numbers to denote unknown degrees of
freedom (unconstrained degrees of freedom) and higher numbers to denote
known (constrained) degrees of freedom. Such a method of identification is
adopted in this course for the ease of imposing boundary conditions directly on
the structure stiffness matrix. However, one could number sequentially as shown
in Fig. 27.1d. This is preferred while solving the problem on acomputer.
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Fig. 27.1b Member and node numbering

9 7 10

t f f

2 3 B

® 506 06 56 6

2 3 4 5

Fig. 27.1c Member and node numbering
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Fig 27.1d Member and node numbering

In the above figures, single headed arrows are used to indicate translational and
double headed arrows are used to indicate rotational degrees of freedom.

BEAM STIFFNESS MATRIX.

Fig. 27.2 shows a prismatic beam of a constant cross section that is fully
restrained at ends in local orthogonal co-ordinate system x'y'z' . The beam ends

are denoted by nodes j and k . The x' axis coincides with the centroidal axis of
the member with the positive sense being defined from jto k . Let L be the length
of the member, Aarea of cross section of the member and I;is the moment of
inertia about z'axis.

Figure 27.2 Beam member
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Two degrees of freedom (one translation and one rotation) are considered at
each end of the member. Hence, there are four possible degrees of freedom for
this member and hence the resulting stiffness matrix is of the order 4-4 . In this
method counterclockwise moments and counterclockwise rotations are taken as
positive. The positive sense of the translation and rotation are also shown in the
figure. Displacements are considered as positive in the direction of the co-
ordinate axis. The elements of the stiffness matrix indicate the forces exerted on
the member by the restraints at the ends of the member when unit displacements
are imposed at each end of the member. Let us calculate the forces developed in
the above beam member when unit displacement is imposed along each degree
of freedom holding all other displacements to zero. Now impose a unit
displacement along y' axis at j end of the member while holding all other
displacements to zero as shown in Fig. 27.3a. This displacement causes both
shear and moment in the beam. The restraint actions are also shown in the
figure. By definition they are elements of the member stiffness matrix. In
particular they form the first column of element stiffnessmatrix.

In Fig. 27.3b, the unit rotation in the positive sense is imposed at j end of th
beam while holding all other displacements to zero. The restraint actions are
shown in the figure. The restraint actions at ends are calculated referring to
tables given in lesson ...

( a ) Unit translation along y' at end j

6 El,
e

’\X/ 1
» 4EIL
L

( b ) Unit rotation about Z at end j
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=

¢ 12 El
L

( ¢ ) Unit displacement along y'at end k

’

i
>

A
B El;

L?

L

( d ) Unit rotation about z'at end k

Fig. 27.3 Computation of beam stiffness matrix

In Fig. 27.3c, unitdisplacementalong y' axisatend k is imposed and
corresponding restraint actions are calculated. Similarly in Fig. 27.3d, unit
rotation about z' axis at end k is imposed and corresponding stiffness coefficients
are calculated. Hence the member stiffness matrix for the beam memberis

1 2

[ 12Er, GEI.

L_:
6E1,

.E._:
6EI,

IZ

I

I

I

i

I

I

I

!

12ET. T
- — |
I

I

I

1

I

I

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate
the actions associated with two ends of the member. For continuous beam
problem, if the supports are unyielding, then only rotational degree of freedom
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shown in Fig. 27.4 is possible. In such a case the first and the third rows and
columns will be deleted. The reduced stiffness matrix will be,

Instead of imposing unit displacement along y'atj end of the member in Fig.
27.3a, apply a displacement U, along yat jend of the member as shown in

Fig. 27.5a, holding all other displacements to zero. Let the restraining forces
developed be denoted by g11,021,0z1@ndqa:.

Fig. 27.4
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Now, give displacements u',u’;,u'sand u's simultaneously along displacement

degrees of freedom 1,2,3 and 4 respectively. Let the restraining forces developed
at member ends be 01,02,gsandgsrespectively as shown in Fig. 27.5b along

respective degrees of freedom. Then by the principle of superposition, the force
displacement relationship can be written as,

T q;,U,

X
e
k

Fig. 27.5 (b) Force - displacement relation

[ 12EI,  6EI, 12EI,  GEI, |

2 7

r I’ I’ I’

6EI.  A4EI. 6EI.  2EI.

5

I’ L I’ L
12E1. 6EI,  12EI. 6EI.

5

5 I? r I’
GEI. 2EI. 6EI.  4EI.

L L r L
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BEAM (GLOBAL) STIFFNESS MATRIX.

The formation of structure (beam) stiffness matrix from its member stiffness
matrices is explained with help of two span continuous beam shown in Fig.
27.6a. Note that no loading is shown on the beam. The orthogonal co-ordinate
system xyz denotes the global co-ordinatesystem.

3T_.x.
b S
/

z

Fig. 27.6 b
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For the case of continuous beam, the x - and x' - axes are collinear and other
axes (yandy', zand z') are parallel to each other. Hence it is not requiredto

transform member stiffness matrix from local co-ordinate system to global
coordinate system as done in the case of trusses. For obtaining the global
stiffness matrix, first assume that all joints are restrained. The node and member
numbering for the possible degrees of freedom are shown in Fig 27.6b. The
continuous beam is divided into two beam members. For this member there are
six possible degrees of freedom. Also in the figure, each beam member with its
displacement degrees of freedom (in local co ordinate system) is also shown.

Since the continuous beam has the same moment of inertia and span, the
member stiffness matrix of element 1 and 2 are the same. They are,

Global do f 1
Local do.f 1
k'y
s
kr-u

Global d.o.f 3 4 6

Local do f 1 2 : 4
(F K Fs ks
[kJ] F(?:l k::: k:y
k's1 k™ k™ k™u
_F(:-u e Eu kEa |

The local and the global degrees of freedom are also indicated on the top and
side of the element stiffness matrix. This will help us to place the elements of the
element stiffness matrix at the appropriate locations of the global stiffness matrix.
The continuous beam has six degrees of freedom and hence the stiffness matrix

is of the order 6 X 6 . Let [K]denotes the continuous beam stiffness matrix of
order 6 X 6 . From Fig. 27.6b, [K]may be written as,
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Member AB (1)

Member BC (2)
The 4 x 4 upper left hand section receives contribution from member 1 (AB) and

4 x 4 lower right hand section of global stiffness matrix receives contribution
frommember 2. The element of the global stiffness matrix corresponding to global

degrees of freedom 3 and 4 [overlapping portion of equation (27.7)] receives
element from both members 1 and 2.

Formation of load vector.

Consider a continuous beam ABC as shown in Fig. 27.7.

lP kN w kN/m 2P kN

BYVYVYVYVVYVY

C

&

‘I
T

L

Fig.27.7

We have two types of load: member loads and joint loads. Joint loads could be
handled very easily as done in case of trusses. Note that stiffness matrix of each
member was developed for end loading only. Thus it is required to replace the
member loads by equivalent joint loads. The equivalent joint loads must be
evaluated such that the displacements produced by them in the beam should be
the same as the displacements produced by the actual loading on the beam. This
is evaluated by invoking the method of superposition.
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( a ) Actual beam with loading
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( b ) Reaction in the restrained beam

le!L
»3

L

( ¢ ) Equivalent joint loads

Fig. 27.8

The loading on the beam shown in Fig. 27.8(a), is equal to the sum of Fig.

27.8(b) and Fig. 27.8(c). In Fig. 27.8(c), the joints are restrained against
displacements and fixed end forces are calculated. In Fig. 27.8(c) these fixed end
actions are shown in reverse direction on the actual beam without any load.

Since the beam in Fig. 27.8(b) is restrained (fixed) against any displacement, the
displacements produced by the joint loads in Fig. 27.8(c) must be equal to the
displacement produced by the actual beam in Fig. 27.8(a). Thus the loads shown
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in Fig. 27.8(c) are the equivalent joint loads .Let, p1,p2,p3,p4,ps and pe be the

equivalent joint loads acting on the continuous beam along displacement
degrees of freedom 1,2,3,4,5 and 6 respectively as shown in Fig. 27.8(b). Thus th
global load vector is,

_[m’; Pba]

_[E_i_'rp

wL?
12

4

Solution of equilibrium equations

After establishing the global stiffness matrix and load vector of the beam, the
load displacement relationship for the beam can be writtenas,

{PIK]{u} (27.9)

where{P}is the global load vector, {u}is displacement vector and [K]is the

global stiffness matrix. This equation is solved exactly in the similar manner as
discussed in the lesson 24. In the above equation some joint displacements are
known from support conditions. The above equation may be written as

(27.10)

{{pkﬂ_ ea] [k {{ }}

) k] Bl

displacements. And {p,}, {u,}denote respectively vector of unknown forces and




{ e} =[ku]{uu} +[ ka2 ]{u} (27.11a)
{ pu} =[kar]{uu} +[ ka2 J{ui (27.11b)

Since {ux}is known, from equation 27.11(a), the unknown joint displacements

can be evaluated. And support reactions are evaluated from equation (27.11b),
after evaluating unknown displacement vector.

Let R1,RsandRsbe the reactions along the constrained degrees of freedom as

shown in Fig. 27.9a. Since equivalent joint loads are directly applied at the
supports, they also need to be considered while calculating the actual reactions.

Thus,

The reactions may be calculated as follows. The reactions of the beam shown in
Fig. 27.9a are equal to the sum of reactions shown in Fig. 27.9b, Fig. 27.9c and
Fig. 27.9d.
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From the method of superposition,
R, =PTb+KHu4+K16u6 (27.13a)
R, =%—K;4144+K36116 (27.13b)

/8
R; —%‘— 2P+ K u, + Ksgug (27.13c)

‘.RI. P%-_ Ky Ky

=1 Pof dilk, Kyl (27.143)

u/ +2p K.,

«.-

Equation (27.14a) may be written as,

Pb/L K &

[

Pa',"lL e K14 A36 ] % (2714b)
“—;]+2PJ L Kss

Member end actions ¢,.q,.49;.g,are calculated as follows. For example consider
the first element 1.

-+ [K]s{mmlxl

In the next lesson few problems are solved to illustrate the method so far
discussed.

In the last lesson, the procedure to analyse beams by direct stiffness method has
been discussed. No numerical problems are given in that lesson. In this lesson,
few continuous beam problems are solved numerically by direct stiffness method.

236



Example 1

Analyse the continuous beam shown in Fig. 28.1a. Assume that the supports are
unyielding. Also assume that El is constant for all members.

l 10 kN 2 kN/m

Ly biibiv

Fig. 28.1a

The numbering of joints and members are shown in Fig. 28.1b. The possible
global degrees of freedom are shown in the figure. Numbers are put for the
unconstrained degrees of freedom first and then that for constrained
displacements.

The given continuous beam is divided into three beam elements Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. In the given problem some displacements
are zero, i.e., Us=Us=Us=Us=U7=Us=0 from support conditions.

In the case of beams, it is not required to transform member stiffness matrix from
local co-ordinate system to global co-ordinate system, as the two co-ordinate
system are parallel to each other.

>
=
'
w

ran s

AAAMAAN
NXNNNN

X

4

Figure 28.1c
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First construct the member stiffness matrix for each member. This may be done
from the fundamentals. However, one could use directly the equation (27.1)
given in the previous lesson and reproduced below for the sakeconvenience.

1
" 12EI,

o

6EI,

L.’
6EI .

L]
4EI.

4

The degrees of freedom of a typical beam member are shown in Fig. 28.1c. Here
equation (1) is used to generate element stiffness matrix.

Member 1:L=4m, node points 1-2.

The member stiffness matrix for all the members are the same, as the length
and _flexura] riajditv of all members is the same.
Glorard 0% 6 5 s

Ve [k']|=EI_

[ 0.1875
0.375

—0.1875

| 0375

0.375
1.0
—0.375

0.5

—0.1875
—0.375
0.1875

—0.375

1

0.375

0.5
—0.375

1.0

6

: (2)
3

1

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitate assembling.

Globald.o.f

k2] = E1.

Member 3:L=4m, node points 3-4.
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Global d.o.f : 2 8 7
0.375 —0.1875 0.375 ]

1.0 —0.375 0.5

l*|= Er..

0.1875

The assembled global stiffness matrix of the continuous beam is of

order8 x 8. The assembled global stiffness matrix may be written as,

Now it is required to replace the given members loads by equivalent joint
loads. The equivalent loads for the present case is shown in Fig. 28.1d.
The displacement degrees of freedom are also shown in Fig. 28.1d.
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Fig. 28.1 (d) Equivalent joint loads

hus the global load vector corresponding to unconstrained degree of freedom is,

y ~

=17 - i} ©)

Py} 1233

; LS

Writing the load displacement relation for the entire continuous beam,
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—-0187 0375 0375 —-0187
- 0375 0 . 375 0
- 0187 0 0375 . 0

0 0375 0 10 —-0375

0 —-0187 —0375 0187 ||
(7)

where{p }is the joint load vector, {u}is displacement vector.u;and

We know that us=us =Us=Usg =U7=Ug =0 . Thus solving for unknowns

Uy, yields

Thus displacements z;re,

—2.977 1.909
Uy =——— and w,=——
-EI____ EI:__
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The unknown joint loads are given by,
The actual reactions at the supports are calculated as,

na7s ] 3 .
5 0.715 |

1.116 |

—1.488|

—1.116|

0955 |

—0715)

1116 |

~1.488|

-1116/!
Member end actions for element 1

[ 0.1875 0375 —0.1875 0375]
0.375 10 -0375 05

1 -0.1875 -0.375 0.1875 -0375

| 0375 05  -0375 10

-1.116

Member end actions for element 2
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0.375 —0.1875 0.375 (0
1.0 —0.375 0.5 —-2.977

1
—-0.375 0.1875 —0375| EI_ 0
0.5 -0.375 1.0 1.909

J 2.98

| 54

—4.58

Member end actions for element 3

0.1875 —0.1875 0.375 [0

0.375 . —0.375 0.5 1 [1.909
Tl 01875 0.1875 —0375| EI_| 0

0.375 : —0.375 1.0 0




Example 2

Analyse the continuous beam shown in Fig. 28.2a. Assume that the supports are
unyielding. Assume EI to be constant for all members.

5 kN/m

AEIHHHHHHBHH'GHHH .
e %

4 m |
Pl

Fig. 28.2a

The numbering of joints and members are shown in Fig. 28.2b. The global
degrees of freedom are also shown in the figure.

The given continuous beam is divided into two beam elements. Two degrees of
freedom (one translation and one rotation) are considered at each end of the
member. In the above figure, double headed arrows denote rotations and single
headed arrow represents translations. Also it is observed that displacements
Us=U4=Us=Us=0from support conditions.

First construct the member stiffness matrix for each member.

Member 1:L=4m, node points 1-2.

The member stiffness matrix for all the members are the same, as the length and
flexural rigidity of all members is the same.

Globald.o.f 6 5 3 1

[ 0.1875 0.375 —0.1875 0.375 |

0.375 1.0 —0.375 0.5

[k']=EI_
_0.1875 —0.375 0.1875 —0.375

0.375 0.5 —0.375 1.0

On the member stiffness matrix, the corresponding global degrees of freedom
are indicated to facilitateassembling.
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Member 2: L=4m, node points 2-3.

Globald.o.f

3 1 - 2
[ 0.1875 0.375 -0.1875 0.375

. 0.375 1.0 -0.375 0.5 5
[*]= E1. (2)
-0.1875 -0.375 0.1875 -0375| 4

| 0.375 0.5 -0.375 10 | 2
The assembled global stiffness matrix of the continuous beam is of order 6-6 .

The assembled global stiffness matrix may be written as,

—-0.37

—0.37

—0.1875 —0.375
0.1875 0

0 1.0

0.375 0.1875 |

Now it is required to replace the given members loads by equivalent joint loads.
The equivalent loads for the present case is shown in Fig. 28.2c. The
displacement degrees of freedom are also shown in figure.
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Fig. 28.2b Node and member
T3

lZDkN

=
e

1

Fig. 28.2c Equivalent joint loads
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Thus the global load vector corresponding to unconstrained degree of freedom
is,

r p| [0]
pe)=1 1= )
P 6.67

; LS e

Writing the load displacement relation for the entire continuous beam,
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0.5 0 —0.375 0.5

1.0 0375 —0.375 0 0

0 0.375 0375 -0.1875 -0375 -0.1875

| -0375 -0375 -01875 01875 0 0

0.5 0 —0.375 0 1.0 0.375

g |

| 0375 0 —0.1875 0 0.375 01875 |

We know that us=u,=us=us=0 . Thus solving for unknowns u; and uz, yields

0 1 [:.0 0.5} 'ul']
= EI_ .
_6.67[ 105 1.0 {_uzj

1 [~1905]
“E | 1
Thus displacements are,

—1.905

U = and

The unknown joint loads are given by,

1]

—0.375
0.5

| 0375

0375 |
—0375
0
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Example 30.1

Analyze the rigid frame shown in Fig 30.4a by direct stiffness matrix method.

Assume E=200GPa;lzz=1.33-10"m*and A=0.04m The flexural rigidity El and axial
rigidity EA are the same for both thebeams.

48 kN
2m

i
e

¥

Fig. 30.4a Rigid Frame.

Solution:

The plane frame is divided in to two beam elements as shown in Fig. 30.4b. The
numbering of joints and members are also shown in Fig. 30.3b. Each node has
three degrees of freedom. Degrees of freedom at all nodes are also shown in the
figure. Also the local degrees of freedom of beam element are shown in the
figure asinset.
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Fig. 30.4b Node and member numbering.
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Formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. The origin of the global co-ordinate
system is taken at node 1. Here the element stiffness matrix in global co-
ordinates is only given.

Member 1:1=6m;6=90°node points 1-2;I=0andm=1.

[K]=[7] [¥] [7]

2 3 4 : 6
[1.48%10° 0 4.44x10°  1.48x10° 0 4.44x10° |
0 1.333x10° 0 0 ~1.333x10° 0
4.44 %10 0 17.78x10°  4.44x10° 0 8.88x10°
1.48x10° 0 4.44x10°  1.48x10° 0 4.44x10°
0 —1.333x10° 0 0 1.333x10° 0
| 4.44%10° 0 8.88x10°  4.44x10° 0 17.78x10" |

(1)

Member 2: L=4m : 6=0°; node points 2-3 ; /=1and m=0.

k)= [k]ir]

4 ;
2.0x10° 0 0

0 10x10° 10x10°
0 26.66x10° 8.88x10°
0 0

~10x10° ~10x10°

8.88x10° 26.66x10° |

(2)
The assembled global stiffness matrix [K] is of the order9x9. Carrying out

assembly in the usual manner, we get,
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—4.44 ) —1.48

18 kN.m

777777'> “—— 12kN

Fig. 30.4c Fixed end action due to external load in element (1) and (2)
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The load vector corresponding to unconstrained degrees of freedom is (vide

30.4d),

{pe}=1p;s 2 (4)
Ps )
In the given frameconstraint degrees of freedom are uj,uy,Us,Uz,Ug,Us.

Eliminating rows and columns corresponding to constrained degrees of freedom
from global stiffness matrix and writing load-displacement relationship for only
unconstrained degree of freedom,

12 2001.5 4.44 "u;

-24:=10° 0 : 1”5

—6 444 3

Solving we get,
"u;l J(w.lelO's l
Jug t=14-1.695x107 ¢
l_u& l -0.13x107

u,=6.28x10"°m., u,=-1.695x10""

Let R,..R,.R;.R,.R;.R,be the support reactions along degrees of freedom
1.2.3.7.8.9 respectively (vide Fig. 30.4e). Support reactions are calculated by
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Example 30.2

Analyse the rigid frame shown in Fig 30.5a by direct stiffness matrix method.

Assume E=200 GPa ;Izz=1.33-1OJ5m4 and A=0.01m? The flexural rigidity El and
axial rigidity EA are the same for all beams.

48 kN

Fig. 30.5a Rigid Frame of Example 30.2
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Solution:

The plane frame is divided in to three beam elements as shown in Fig. 30.5b.
The numbering of joints and members are also shown in Fig. 30.5b. The possible
degrees of freedom at nodes are also shown in the figure. The origin of the
global co- ordinate system is taken at A(nodel).

Fig. 30.5b Node and Member numbering.
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Now formulate the element stiffness matrix in local co-ordinate system and then
transform it to global co-ordinate system. In the present case three degrees of
freedom are considered at each node.

Member 1: L=4m . 6=90°; node points 1-2

Vo — Y
m==2_-1=1,
L

The following terms are common for all elements.

:%§=5x105kN1n: i§I=999sxuka

. ,
l;fj==4999x102kan: ifza=ﬁ666x103kxnn

k' ]= [T [ ]lr]
1 3 4 6
[ 0.50x10° ~1x10°  -0.50x10° 0 ~1x10° ]
0 5x10° 0 0 —~5x10° 0
2.66x10°  1x10° 0 1.33x10°
—0.50x10° 1x10° 0.50%10°

0 0

1.33x10° 1x10°
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Member 2: L =4 m : 6 =0° node points 2-3; I =landm=0.

e |= T [F]lr]
4
5.0x10°
0
0
~5.0%10°
0
0

Member 3:

_ Y.—» _
L

Ly

[ 0.50x10°

0
1x10°
—0.50x10°

0

1x10°

L=4m:

0 0
0.5x10° 1x10°
1x10°
0 0
—0.5%10°

1x10°

g=270°;

9
1x10°

0
2.66x10°
-1x10°
0

1.33x10°
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2.666x10°

—1x10°

1.33x10°

~5.0x10° 0 0

0 —0.5x10°  1x10°

0 —1x10°  1.33x10°
5.0x10° 0 0

0 0.5x10° —1x10°

0 -1x10°

2.666x10° |

node points 3-4

10
-0.50x10°

0
~1x10°
0.50x10°

0

~1x10° 2.66x10° |
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7777777 7777777

Fig . 30.5¢c Fixed end action due to external load.
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Fig. 30.5d Equivalent joint loads.
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The load vector corresponding to unconstrained degrees of freedom is,

.p;

Ps
Ps
Pq

Py

Ps

In the given frame, constraint (known) degrees of freedom are
U1,Uz,U3,U10,U11,U12. Eliminating rows and columns corresponding to constrained
degrees of freedom from global stiffness matrix and writing load displacement
relationship,

1.0 =500

Solving we get,

1.43x107
-3.84x107
-8.14x107
1.43%x107

-5.65%x107

13.85x107
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Let R1,R2,R3,R10,R11,R120€ the support reactions along degrees of freedom 1, 2,

3,10,11,12 respectively. Support reactions are calculated by

7 8
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Unit 5: INFLUENCE LINES FOR INDETERMINATE BEAMS

DEFINITION INFLUENCE LINES

Influence lines are important in thedesign of structures that resist large live
loads.shear and moment diagrams are important in determining the maximum
internal force in a structure.If a structure is subjected to a live or moving load,
the variation in shear andmoment is best described using influencelines.

An influence line represents the variation of the reaction, shear, moment, or
deflection at a specific point in a member as a concentrated force moves over
the member.

Once the influence line is drawn, the location of the live load which will cause the
greatest influence on the structure can be found very quickly.Therefore,
influence lines are important in the design of a structure where the loads move
along the span (bridges, cranes, conveyors, etc.).

Although the procedure for constructing an influence line is rather simple, it is
importantto remember the difference between constructing an influence line
and constructing a shear or moment diagram.Influence lines represent the
effect of amoving load only at a specified point on a member, whereas shear
and moment diagrams represent the effect of fixed loads at allpointsalong the
member.

Procedure for determining theinfluence line at a pointPforanyfunction (reaction,
shear, or moment).

1. Place a unit load (a load whose magnitude is equal to one) at a point, x, along
the member.

2. Use the equations of equilibrium to find the value of the function (reaction,
shear, or moment) at a specific point P due the concentrated load atx.

3. Repeat steps 1 and 2 for various values of x over the wholebeam.

4. Plot the values of the reaction, shear, or moment for themember.

Construction of Influence Lines using Equilibrium Methods

The most basic method of obtaining influence line for a specific response
parameter is to solve the static equilibrium equations for various locations of the
unit load. The general procedure for constructing an influence line is described
below.

1. Define the positive direction of the response parameter under consideration
through a free body diagram of the wholesystem.
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2..For a particular location of the unit load, solve for the equilibrium of the whole
system and if required, as in the case of an internal force, also for a part of the
member to obtain the response parameter for that location of the unit load.This
gives the ordinate of the influence line at that particular location of theload.

3. Repeat this process for as many locations of the unit load as required to
determine the shape of the influence line for the whole length of the member. It is
often helpful if we can consider a generic location (or several locations) x of the
unitload.

4. Joining ordinates for different locations of the unit load throughout the length
of the member,we get the influence line for that particular responseparameter.

The following three examples show how to construct influence lines for a support
reaction, a shear force and a bending moment for the simply supported beam AB .

Example .1 Draw the influence line for Ry (vertical reaction at A ) of beam ABin
Fig. E6.1.

Solution:

Free body diagram of AB :

> MaboutB)= 0= R,y(L) =1(L - %)
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So the influencelineof #a4:

Example 6.2 Draw the influence line for IV'i-‘(shear force at mid point) ofbeam
ABin Fig. E6.2.

1

e f—
Ry & Rs

Y M(about B)=0=>R, = 1—%

L
xX<—
2




D F =0V =Ry ==~1

X
L
VC

So the influence line for v,

Example 6.3 Draw the influencelinefor (bendingmomentat
for beam AB in Fig.E6.3.
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" M(about B) = U:>RA=1—§

2L
Xa<—

For 3

> M(about D)= 10
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2L 24
> MiaboutD)=0=Mp = RA(?]= e

So, the influenceof Mjp

Mp

MULLER BRESLAU PRINCIPLE FOR QUALITATIVE INFLUENCE LINES

In 1886, Heinrich Miiller Breslau proposed a technique to draw influence
lines quickly. The Miiller Breslau Principle states that the ordinate value of
an influence line for any function on any structure is proportional to the
ordinates of the deflected shape that is obtained by removing the restraint
corresponding to the function from the structure and introducing a force
that causes a unit displacement in the positive direction.

Let us say, our objective is to obtain the influence line for the support

reaction at A for the beam shown in Figure 38.1.
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Simply supported beam

First of all remove the support corresponding to the reaction and apply a
force (Figure 38.2) in the positive direction that will cause a unit
displacement in the direction of Ra. The resulting deflected shape will be
proportional to the true influence line (Figure 38.3) for the support reaction
at A.

Figure 38.2: Deflected shape of beam
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Figure 38.3: Influence line for support reaction A

The deflected shape due to a unit displacement at A is shown in Figure 38.2
and matches with the actual influence line shape as shown in Figure 38.3.
Note that the deflected shape is linear, i.e., the beam rotates as a rigid
body without any curvature. This is true only for statically determinate
systems.

Similarly some other examples are given below.

Here we are interested to draw the qualitative influence line for shear at
section

C of overhang beam as shown in Figure 38.4.

A B

Figure 38.4: Overhang beam
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As discussed earlier, introduce a roller at section C so that it gives freedom
to the beam in vertical direction as shown in Figure 38.5.

Now apply a force in the positive direction that will cause a unit
displacement in the direction of V. The resultant deflected shape is shown
in Figure 38.5. Again, note that the deflected shape is linear. Figure 38.6
shows the actual influence, which matches with the qualitative influence.

Figure 38.5: Deflected shape of beam

Figure 38.6: Influence line for shear at section C

In this second example, we are interested to draw a qualitative influence

line for moment at C for the beam as shown in Figure 38.7.

A
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Figure 38.7: Beam structure

In this example, being our objective to construct influence line for moment,
we will introduce hinge at C and that will only permit rotation at C. Now
apply moment in the positive direction that will cause a unit rotation in the
direction of

M.. The deflected shape due to a unit rotation at C is shown in Figure 38.8
and matches with the actual shape of the influence line as shown in Figure
38.9.

Figure 38.9: Influence line for moment at section C

Maximum shear in beam supporting UDLs
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If UDL is rolling on the beam from one end to other end then there are two
possibilities. Either Uniformly distributed load is longer than the span or
uniformly distributed load is shorter than the span. Depending upon the
length of the load and span, the maximum shear in beam supporting UDL
will change. Following section will discuss about these two cases. It should
be noted that for maximum values of shear, maximum areas should be
loaded.

UDL LONGER THAN THE SPAN

Let us assume that the simply supported beam as shown in Figure 38.10 is
loaded with UDL of w moving from left to right where the length of the load
is longer than the span. The influence lines for reactions R, Rg and shear at
section C located at x from support A will be as shown in Figure 38.11,

38.12 and 38.13 respectively. UDL of intensity w per unit for the shear at
supports A and B will be given by

| -

Figure 38.10: Beam Structure

X

Figure 38.11: Influence line for support reaction at A
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Figure 38.13: Influence line for shear at section C
E, =1ru><l><3.‘s<1=w—3
2 2

1 —w!
=-Wx—xl=]l=——r0
& 2 2

Suppose we are interested to know shear at given section at C. As shown in

Figure 38.13, maximum negative shear can be achieved when the head of

the load is at the section C. And maximum positive shear can be obtained

when the tail of the load is at the section C. As discussed earlier the shear

force is computed by intensity of the load multiplied by the area of

influence line diagram covered by load. Hence, maximum negative shear is
x WIE

=—l)(x>(—)(w'=—

given by 21 4

and maximum positive shear is given by

wi(l —x
A

- ]x(!—x}xw=—
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UDL SHORTER THAN THE SPAN

When the length of UDL is shorter than the span, then as discussed earlier,
maximum negative shear can be achieved when the head of the load is at
the section. And maximum positive shear can be obtained when the tail of
the load is at the section. As discussed earlier the shear force is computed
by the load intensity multiplied by the area of influence line diagram
covered by load. The example is demonstrated in previous lesson.

Maximum bending moment at sections in beams supporting UDLs.

Like the previous section discussion, the maximum moment at sections in
beam supporting UDLs can either be due to UDL longer than the span or
due to ULD shorter than the span. Following paragraph will explain about
computation of moment in these twocases.

UDL longer than the span

Let us assume the UDL longer than the span is traveling from left end to
right hand for the beam as shown in Figure 38.14. We are interested to
know maximum moment at C located at x from the support A. As discussed
earlier, the maximum bending moment is given by the load intensity
multiplied by the area of influence line (Figure 38.15) covered. In the
present case the load will cover the completed span and hence the
moment at section C can be givenby

X —
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Figure 38.14: Beam structure

Figure 38.15: Influence line for moment at section C

i-x)  wxl-x)
o 2

1
W —m]
2

Suppose the section C is at mid span, then maximum moment is given by

UDL shorter than the span

As shown in Figure 38.16, let us assume that the UDL length y is smaller
than the span of the beam AB. We are interested to find maximum bending
moment at section C located at x from support A. Let say that the mid point
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of UDL is located at D as shown in Figure 38.16 at distance of zfrom
support A. Take moment with reference to A and it will bezero.

| -

Figure 38.16: Beam loaded with UDL shorter in length than span

Hence, the reaction at B 15 given by

RF=WX.}JXEE=_W

And moment at C will be

W
ME:&Q—Q—E@+%—ﬂE

Substituting walue of reaction B in above equation, we can abtain

WpE W
Mr=%iﬂ—ﬂ—5@+%—ﬂi

To compute maximum value of moment at C, we need to differentiate
above given equation with reference to z and equal to zero.

dhd Wy ¥ B
= _T(I —x}—w(z+§—x}— 0
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Therefore,

Ya_vy=(z+L -
3—(3 x) (z+2 x)

The expression states that for the UDL shorter than span, the load should
be placed in a way so that the section divides it in the same proportion as it
divides the span. In that case, the moment calculated at the section will
give maximum momentvalue.
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NDETERMINATE TRUSSES

A difficulty arises in determining the number of releases required to return the

ompletely stiff equivalent of a truss to its original state.

onsider the completely stiff equivalent of a plane truss shown in Fig. 16.9(a);

e are not concerned here with the indeterminacy or otherwise of the support

system which is therefore omitted. In the actual truss each member is assumed

o be capable of resisting axial load only so that there are two releases for each
ember, one of shear and one of moment, a total of 2M releases. Thus, if we
nsert a hinge at the end of each member as shown in Fig. 16.9(b) we have
achieved the required number, 2M, of releases. However, in this configuration,
pach joint would be free to rotate as a mechanism through an infinitesimally
small angle, independently of the members; the truss is then excessively pin-
ointed. This situation can be prevented by removing one hinge at each joint as
shown, for example at joint B in Fig. 16.9(c). The member BC then prevents
otation of the joint at B. Furthermore, the presence of a hinge at B in BA and at
in BE ensures that there is no moment at B in BC so that the conditions for a

russ are satisfied.

rom the above we see that the total number, 2M, of releases is reduced by 1

or each node. Thus the required number of releases in a plane truss is

r=2M-N (16.4)
so that Eq. (16.3) becomes

n=3(M - N +1)-(2M - N)

ne=M -2N +3 (16.5)

quation (16.5) refers only to the internal indeterminacy of a truss so that the
degree of indeterminacy of the support system is additional. Also, returning to
he simple triangular truss of Fig. 16.7(a) we see that its degree of internal
ndeterminacy is, from Eq. (16.5), given by

n=3-2x3+3=0

A similar situation arises in a space truss where, again, each member is required
o resist axial load only so that there are 5M releases for the complete truss.
his could be achieved by inserting ball joints at the ends of each member.

owever, we would then be in the same kind of position as the plane truss of
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ig. 16.9(b) in that each joint would be free to rotate through infinitesimally
small angles about each of the three axes (the members in the plane truss can
bnly rotate about one axis) so that three constraints are required at each node,

a total of 3N constraints. Therefore the number of releases is given by

r=5M -3N

so that Eq. (16.2) becomes

ne=6(M - N +1)-(5M -3N)

ns=M -3N +6 (16.6)

For statically determinate plane trusses and space trusses, i.e.

ns=0, Egs (16.5) and (16.6), respectively, becomes

M =2N -3 M =3N -6 (16.7)

which are the results deduced in Section 4.4 (Eqs (4.1) and
(4.2)).

INEMATIC INDETERMINACY

e have seen that the degree of statical indeterminacy of a structure is, in fact,
he number of forces or stress resultants which cannot be determined usingthe

pquations of staticalequilibrium

Analysis of Statically Indeterminate Structures

Another form of the indeterminacy of a structure is expressed in terms of its

Hegrees of freedom; this is known as the kinematic indeterminacy, n, of a

structure and is of particular relevance in the stiffness method of analysis
here the unknowns are the displacements.

A simple approach to calculating the kinematic indeterminacy of a structure is

o sum the degrees of freedom of the nodes and then subtract those degrees of
reedom that are prevented by constraints such as support points. It is

herefore important to remember that in three-dimensional structures each
ode possesses 6 degrees of freedom while in plane structures each node

possess three degrees of freedom.
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XAMPLE 16.1 Determine the degrees of statical and kinematic indeterminacy

bfthe beam ABC shown in Fig. 16.10(a).

i
i

A B o r=1 r==2z r=2
[ ] A O
. 7
a) ()

STATICALLY INDETERMINATE TRUSSES

A truss may be internally and/or externally statically indeterminate. For a truss that is
externally statically indeterminate, the support reactions may be found by the methods
described in Section 16.4. For a truss that is internally statically indeterminate the
flexibility method may be emploved as illustrated in the following examples.

ExAMPLE 16.8 Determine the forces in the members of the truss shown in
Fig. 16.18(a); the cross-sectional area, A4, and Young’'s modulus, E, are the same
for all members.

The truss in Fig. 16.18(a) is clearly externally statically determinate but, from Eq.
(16.5), has a degree of internal statical indeterminacy equal to 1 (M =6, N =4). We
therefore release the truss so that it becomes statically determinate by ‘cutting’ one
of the members, say BD, as shown in Fig. 16.18(b). Due to the actual loads (P in this
case) the cut ends of the member BD will separate or come together, depending on
whether the force in the member (before it was cut) was tensile or compressive; we

shall assume that it was tensile.

B c B o F
Aep
Aep
Cut
A %'y N\p A D
7 777 7/4/2 %
FIGURE 16.18
Analyric of a F—Ly{
gtatically
indeterminate truse () (b} (c)

We are assuming that the truss is linearly elastic so that the relative displacement of
the cut ends of the member BD (in effect the movement of B and D away from or
towards each other along the diagonal BD) may be found using, say, the unit load
method as illustrated in Exs 13.6 and 15.7. Thus we determine the forces Fy , in the
members produced by the actval loads. We then apply equal and opposite unit loads
to the cut ends of the member BD as shown in Fig, 16.18(c) and calculate the forces,
F1; in the members. The displacement of B relative to D, Agp, is then given by

R FasF1 L
App =Y a,me (see Eq. (viii) in Ex. 15.7)

=1

The forces, Fs ;, are the forces in the members of the released truss due to the actual
loads and are not, therefore, the actual forces in the members of the complete truss.
We shall therefore redesignate the forces in the members of the released truss as Fy ;.
The expression for App then becomes

i
FoiFy L _
App =3 PR (i)

=1
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In the actual structure this displacement is prevented by the torce, Xpp, in the redun-
dant member BD. If, therefore, we calculate the displacement, agp, in the direction
of BD produced by a unit value of Xz, the displacement due to Xpp will be Xgpagp.
Clearly, from compatibility

App +XBpapp = 0 (i)

from which Xgp 18 found. Again, as in the case of statically indeterminate beams, agp
is a flexibility coefficient. Having determined Agp, the actval forces in the members
of the complete truss may be calculated by, say, the method of joints or the method of
sections.

InEq. (ii), app is the displacement of the released trussin the direction of BD produced
by a unit load. Thus, in using the unit load method to calculate this displacement, the

T4RLE 16.1

Member ] ¥ FL}' qu’jF1JL' 1??1 .Lj Fa,j

AB —-0.71 0 0.5L
BC -0.71 0 0.5L
cD —0.71 0.71FL 0.5L
BD 1.0 - 1.41%L
AC 1.0 2.0FL 1.41L
AD —0.71 0 0.5L

S =271PL Y =4382L

actual member forces (#1,;) and the member forces produced by the unit load (#7;)
are the same. Therefore, from Eq. (1)

amp = > (iii)
=1

The solution is completed in ‘Table 16.1.

From Table 16.1
2.71PL _ 4.82L

Substituting these values in Eq. (i) we have

2 7PL 4.821.
4 e g =0

from which
Xpp = —0.56P  (i.e. compression)

The actual forces, Fy ;, in the members of the complete truss of Fig. 16.18(a) are now
calculated using the method of joints and are listed in the final column of Table 16.1.

We note in the above that App 1s positive, which means that Agp 8 in the direction
of the unit loads, i.e. B approaches D and the diagonal BD in the released structure
decreases in length. Therefore in the complete structure the member BD, which pre-
vents this shortening, mustbe in compressionas shown; also agp will always be positive
since it contains the term F % j» Finally, we note that the cut member BD is included
in the calculation of the displacements in the released structure since its deformation,
under a unit load, contributes to agp.

CASTIGLIANO'S SECOND THEOREM :—
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“The partial derivative of the total strain energy stored with respect to a particular force gives the
corresponding deformation at that point.”

Mathematically,

The credit for developing method of least work goes to Alberto Cadiglianos who worked as an engineer in Ifalian
Railways. This method was presented in a thesis in partial fulfillment of the requirement for the award of diploma
engineering of associate engineer. He published a paper for finding deflections which is called Castiglianos first
theorem and in consequence thereof, method of least work which is also known as Cadiglianos second theorem.
Method of least work also mentioned earlier in a paper by an Italian General Menabrea who was not able to give a
satisfactory proof. Leonard Euler had also used the method about 50 years ago for derivation of equations for
buckling of columns wherein, Daniel Bemolli gave valuable suggestion to him.

Method of least work or Castiglianos second theorem is a very versatile method for the analysis of
indeterminate structures and specially to trussed type structures. The method does not however, accounts
for erection stresses, temperature stresses or differential support sinking. The reader is advised to use some
other method for the analysis of such indeterminate structures like frames and continuos beams.

It must be appreciated in general, for horizontal and vertical indeterminate structural systems, carrying vanous
tvpes of loads, there are generally more than one structural actions present at the same time including direct forces,
shear forces, bending moments and twisting moments. In order to have a precise analysis all redundant structural
actions and hence strain energies must be conddered which would make the method laborious and cumberzome.
Therefore, most of engineers think it sufficient to consider only the significant sfrain energy. The reader should
know that most of structural analysis approaches whether classical or matrix methods consider equilibrium of
forces and displacement/strain compatibility of members of a system.

The procedure for analysis has already been given. Utilizing that procedure, analyze the following
truss by the method of least work. Areas in () carry the units of 10~ m’ while the value of E can
be taken as 200 x 10° KN/m?.

4

AAD 2 2
a B

|<—3@4_5mm)|

where 1 = total degree of indeterminacy

b = number of bars.

r = total number of reactive components which the support can provide.
b+r=2j
10+3>2x6 1312 soi=1 . First degree internal indeterminancy.

L
U= 7 AR Strain energy due to direct forces induced dueto applied loads in a BDS Truss.

L—i]
lAE_

@—F
aX_ [
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IVofe:— We select the redundants in such a way that the stability of the structure is not
effected. Selecting member EC as redundant.

E F

* 4 5m

~
P B Cl15KN s AL

SKN?L z?ﬂ]KN

F-diagram B.D.S underthe action of applied loads & redundant.

5| S FD. due to applied

| load only.
10

45

B.M.D. due to applied
load only.

MMethod of moments and shears has been used to find forces in BDS due to applied loads.
has been made. Forces vertical in members in terms of redundant X may be determined by the me
joints as before. From table.

L _
> F. Cag =0  =-33122x10 ®+51.49 x107°X

or —33122+51.49%K = 0

[X = +6.433 KN|

The final member forces are obtained as below by putting value of X in column 5 of the tablg

Member Force (KN)

AB +5

BC +5.45
CD +10
EF — 9.55
BE +0.45
CF +10.45
CE +6.43
BF - 0.64
AE - 7.07
DF —14.14
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