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JNTU Hyderabad - III Year B.Tech. 

CE-II Sem (A60131) Structural 

Analysis – II 

SYLLABUS 
 

( L-T-P/D 4-0-0) 
 

UNIT – I 
 

MOMENT DISTRIBUTION METHOD – Analysis of single bay - single storey portal frames 

including side sway. Analysis of inclinedframes 

KANI’S METHOD: Analysis of continuous beams including settlement of supports. Analysis of 

single bay single storey and single bay two storey frames by Kani’s method including side sway. 

Shear force and bending moment diagrams. Elastic curve. 
 

UNIT – II 
 

SLOPE DEFLECTION METHOD – Analysis of single bay - single storey portal frames by slope 

deflection method including side sway. Shear force and bending moment diagrams. Elastic curve. 

TWO HINGED ARCHES: Introduction – Classification of two hinged arches – Analysis of two 

hinged parabolic arches – secondary stresses in two hinged arches due to temperature and elastic 

shortening of rib. 
 

UNIT-III 
 

APPROXIMATE METHODS OF ANALYSIS: Analysis of multi-storey frames for lateral loads: 

Portal method, Cantilever method and Factor method. Analysis of multi-storey frames for gravity 

(vertical) loads. Substitute frame method. Analysis of Mill bends. 

UNIT –IV 
 

MATRIX METHODS OF ANALYSIS: Introduction - Static and Kinematic Indeterminacy - 

Analysis of continuous beams including settlement of supports, using Stiffness method. Analysis of 

pin-jointed determinate plane frames using stiffness method – Analysis of single bay single storey 

frames including side sway, using stiffness method. Analysis of continuous beams up to three degree 

of indeterminacy using flexibility method. Shear force and bending moment diagrams. Elastic curve. 
 

UNIT – V 
 

INFLUENCE LINES FOR INDETERMINATE BEAMS: Introduction – ILD for two span 

continuous beam with constant and variable moments of inertia. ILD for propped cantilever beams. 

INDETERMINATE TRUSSES: Determination of static and kinematic indeterminacies – Analysis 

of trusses having single and two degrees of internal and external indeterminacies – Castigliano’s 

second theorem. 
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                         UNIT I 

ANALYSIS OF PLANE FRAMES 

MOMENT DISTRIBUTION METHOD 
 

MOMENT DISTRIBUTION METHOD 

 
This method of analyzing beams and frames was developed by Hardy Cross in 1930. Moment 

distribution method is basically a displacement method of analysis. But this method side 
steps the calculation of the displacement and instead makes it possible to apply a series of 
converging corrections that allow direct calculation of the end moments. This method of 
consists of solving slope deflection equations by successive approximation that may be 

carried out to any desired degree of accuracy. Essentially, the method begins by assuming 
each joint of a structure is fixed. Then by unlocking and locking each joint in succession, the 
internal moments at the joints are distributed and balanced until the joints have rotated to 

their final or nearly final positions. This method of analysis is both repetitive and easy to 
apply. Before explaining the moment distribution method certain definitions and concepts 
must beunderstood. 

 

Sign convention: In the moment distribution table clockwise moments will be treated+ve and 
anticlockwise moments will be treated –ve. But for drawing BMD moments causing 

concavity upwards (sagging) will be treated +ve and moments causing convexity upwards 
(hogging) will be treated –ve. 

 

Fixed end moments: The moments at the fixed joints of loaded member are called 

fixedend moment. FEM for few standards cases are given in previous chapter. 

 

Distribution factors: If a moment ‘M’ is applied to a rigid joint ‘o’, as shown in figure, 
theconnecting members will each supply a portion of the resisting moment necessary to 
satisfy moment equilibrium at the joint. Distribution factor is that fraction which when 
multiplied with applied moment ‘M’ gives resisting moment supplied by the members. To 
obtain itsvalue imagine the joint is rigid joint connected to different members. If applied 

moment M cause the joint to rotate an amount ‘’ , then each member rotates by same 
amount. 

From equilibrium requirement 

 

 
M = M1 + M2 + M3 + …… 
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Member relative stiffness factor: In majority of the cases continuous beams and frames 
willbe made from the same material so that their modulus of electricity E will be same for all 
members. It will be easier to determine member stiffness factor by removing term 4E & 3E 
from equation (4) and (5) then will be called as relative stiffness factor. 

 

Carry over factors: Consider the beam shown infigure 
 
 

 

 
+ve BM of  at A indicates clockwise moment of  at A. In other words the moment ‘M’ at 

the pin induces a moment of  at the fixed end. The carry over factor represents the fraction 

of M that is carried over from hinge to fixed end. Hence the carry over factor for the caseof 

far end fixed is +. The plus sign indicates both moments are in the samedirection. 

 

 
MOMENT DISTRIBUTION FOR FRAMES WITH NO SIDE SWAY 

 
 

The analysis of such a frame when the loading conditions and the geometry of the frame 
is such that there is no joint translation or sway, is similar to that given for beams. 

Q. Analysis the frame shown in figure by moment distribution method and draw  
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BMD assume EI isconstant. 

  

 

 

 

 



 

MOMENT DISTRIBUTION 
 
 

 
 
 

 

 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

DISTRIBUTION 
FACTOR 



 

 
 

 
 
 

MOMENT DISTRIBUTION METHOD FOR FRAMES WITH SIDE SWAY 

 

Frames that are non symmetrical with reference to material property or geometry 
(different lengths and I values of column) or support condition or subjected to non-
symmetrical loading have a tendency to side sway. 

 

 
Analyze the frame shown in figure by moment distribution method. Assume EI is 
constant. 
 

 

A. Non SwayAnalysis: 

First consider the frame without side sway 
 
 

 

DISTRIBUTION FACTOR 
 
 

 



 

 

 

 

DISTRIBUTION OF MOMENTS FOR NON-SWAY ANALYSIS 
 
 

 

 
 

 
 

 

By seeing of the FBD of columns R = 1.73 – 0.82 
 

(Using Fx =0 for entire frame) = 0.91 KN 

 
Now apply R = 0.91 KN acting opposite as shown in the above figure for the sway 
analysis. Sway analysis: For this we will assume a force R

’
 is applied at C causing the 

frame to deflect as shown in the following figure. 
 



 

 
 

Since both ends are fixed, columns are of same length & I and assuming joints B & 
C are temporarily restrained from rotating and resulting fixed end moment are 

Assume 
 

 

Moment distribution table for sway analysis: 
 

 

 
 

 

 

 



 

’ 

Free body diagram of columns 
 

 

 

Using F x = 0 for the entire frame R = 28 + 28 = 56 KN 
 

Hence R
’
 = 56KN creates the sway moments shown in above moment distribution table. 

Corresponding moments caused by R = 0.91KN can be determined by proportion. Thus final 
moments are calculated by adding non sway moments and sway. 

 
Moments calculated for R = 0.91KN, as shown below. 

 

 

BMD 



 

5.Q. Analysis the rigid frame shown in figure by moment distribution method and draw 

BMD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Non SwayAnalysis: 

First consider the frame held from side sway 
 

 

 



 

 

DISTRIBUTION FACTOR 

 

 

DISTRIBUTION OF MOMENTS FOR NON-SWAY ANALYSIS 
 

 
 



 

FREE BODY DIAGRAM OF COLUMNS 
 

Now apply R = 5.34KN acting opposite 

 
Sway analysis: For this we will assume a force R

’
is applied at C causing the 

frame to deflect as shown in figure 
 

 

 

Applying Fx = 0 for frame 
as a Whole, R = 10 – 3.93 – 
0.73 = 5.34 KN 



 

 
 

Assume 
 
 

 
MOMENT DISTRIBUTION FOR SWAY ANALYSIS 

 

 
 

 

Using Fx = 0 for the entire frame R
’
= 11.12 kN 

 
Hence R

’
= 11.12 KN creates the sway moments shown in the above moment distribution table. 

Corresponding moments caused by R = 5.34 kN can be determined by proportion. Thus final 
moments are calculated by adding non-sway moments and sway moments determined for R = 
5.34 KN as shown below. 



 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

 

PART B : KANI’S METHOD OF ANALYSIS 

 
This method was developed by Dr. Gasper Kani of Germany in 1947. This method offers an 

iterative scheme for applying slope deflection method. We shall now see the application of 

Kani’s method for different cases. 

BEAMS WITH NO TRANSLATION OF JOINTS: 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 

 
 

 
 

 

 
 



 

 

EXAMPLES:  

 

Ex.1: 
 

 
 
 

 
 
 

 
 

 
 
 
 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 



 

 
 

Ex.2: 
 

 



 



 



 

 

Ex.2: 
 

In a continuous beam shown in fig.  The support ‘B’ sinks by 10mm. Determine the moments by 

Kani’s method & draw BMD. 

 

 



 

 

 
 



 

 

 

 
 

 
 

 
 
 
 



 

 

 

 
 



 

ANALYSIS OF FRAMES WITH NO TRANSLATION OF JOINTS 
The frames, in which lateral translations are prevented, are analyzed in the same way as continuous 
beams. The lateral sway is prevented either due to symmetry of frame and loading or due to support 
conditions. The procedure is illustrated in following example. 

Example-5. Analyze the frame shown in Figure 8 (a) by Kani’s method. Draw BMD. 

 

Fig-8(a) 

Solution: 

(a) Fixed endmoments: 
 
 

 
 

(b) Rotationfactors: 
 

 

Joint Member Relative Stiffness (k) k 
Rotation factor 

= -½k/ k 

B BC 3I/6 = 0.5I 0.83I -0.3 

BA I/3 = 0.33I -0.2 

C CB 3I/6 = 0.5I 0.83I -0.3 

CD I/3 = 0.33I -0.2 

 
 

(c) Sum of FEM: 

 
 



 

(d) Iteration process: 

Joint B C 

Rotation 
Contribution 

M’BA M’BC M’CB M’CD 

Rotation   
-0.2 

 
-0.3 

 
-0.3 

 
-0.2 

 

Factor 
 

Iteration 1 
Stated with 
end B taking 

M’AB=0 and 
Assuming M’CB=0 

-0.2(-120+0) 
=24 

-0.3(-120+0) 
=36 

-0.2(120+36+0) 
= -46.8 

-0.2(120+36+0) 
= -31.2 

Iteration 2 -0.2(-120-46.8) 
=33.6 

-0.3(-120-46.8) 
=50.04 

-0.3(120+50.04) 
= -51.01 

-0.2(120+50.04) 
= -34.01 

Iteration 3 -0.2(-120-51.01) 
=34.2 

-0.3(-120-51.01) 
=51.3 

-0.3(120+51.3) 
= -51.39 

-0.2 (120+51.3) 
= -34.26 

Iteration 4 -0.2(-120-51.39) 
=34.28 

-0.3(-120-51.39) 
=51.42 

-0.3(120+51.42) 
= -51.43 

-0.2 (120+51.42) 
= -34.28 

      

The fixed end moments, sum of fixed and moments, rotation factors along with rotation 

contribution values at the end of each cycle in appropriate places is shown in figure 8(b). 

 

 
Fig-8(b) 

(e) Final moments: 



 

Member 
MFij 2M’ij(kNm) M’ji(kNm) 

(kNm) Final moment = 

(ij) MFij+ 2M’ij+ M’ji 

AB 0 0 34.28 34.28 

BA 0 2 x 34.28 0 68.56 

BC -120 2 x 51.42 -51.43 -68.59 

CB 120 2 x (-51.43) 51.42 68.56 

CD 0 2 x (-34.28) 0 -68.56 

DC 0 0 -34.28 -34.28 

 
BMD is shown below in figure-8 (c) 

 

 



 

UNIT II: ANALYSIS OF FRAMES AND ARCHES 

THE SLOPE DEFLECTION METHOD 

 
In the slope-deflection method, the relationship is established between moments at the 
ends of the members and the corresponding rotations and displacements. 

The slope-deflection method can be used to analyze statically determinate and 

indeterminate beams and frames. In this method it is assumed that all deformations are 

due to bending only. In other words deformations due to axial forces are neglected. In 

the force method of analysis compatibility equations are written in terms of unknown 

reactions. It must be noted that all the unknown reactions appear in each of the 

compatibility equations making it difficult to solve resulting equations. The slope- 

deflection equations are not that lengthy in comparison. The basic idea of the slope 

deflection method is to write the equilibrium equations for each node in terms of the 

deflections and rotations. Solve for the generalized displacements. Using moment- 

displacement relations, moments are then known. The structure is thus reduced to a 

determinate structure. The slope-deflection method was originally developed by 

Heinrich Manderla and Otto Mohr for computing secondary stresses in trusses. The 

method as used today was presented by G.A.Maney in 1915 for analyzing rigid jointed 

structures. 

 

 
FUNDAMENTAL SLOPE-DEFLECTION EQUATIONS: 

The slope deflection method is so named as it relates the unknown slopes and 

deflections to the  applied  load  on  a  structure.  In  order  to  develop  general  form  

of slope deflection equations, we will consider the typical span AB of a continuous 

beam which is subjected to arbitrary loading and has a constant EI. We wish to relate 

the beams internal end moments in terms of  its  three  degrees  of  freedom,  namely  

its angular displacements and linear displacement which could be caused by relative 

settlements between the supports. Since we will be developing a formula, moments and 

angular displacements will be considered positive, when they act clockwise on the 

span. The linear displacement will be considered positive since this displacement 

causes the chord of the span and the span’s chord angle to rotate clockwise. The slope 

deflection equations can be obtained by using principle of superposition by considering 

separatelythemomentsdevelopedateachsupportsduetoeachofthedisplacements 

 and then the load. 



 

 
 

 

 

Case A: fixed-end moments 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



 

Case B: rotation at A, (angular displacement at A) 

 

 

Consider node A of the member as shown in figure to rotate while its far end B is fixed. To 
determine the moment needed to cause the displacement, we will use conjugate beam 

` 
method. The end shear at A acts downwards on the beam since is clockwise. 

 

 
 

 

 

 

 

Case C: rotationatB, (angular displacement atB) 

 

 
In a similar manner if the end B of the beam rotates to its final position, while end A is held 

fixed. We can relate the applied moment to the angular displacement and the reaction moment 
 

 
 

 

Case D: displacement of end B related to end A 

 
If the far node B of the member is displaced relative to A so that so that the chord of the 
member rotates clockwise (positive displacement) .The moment M can be related to 
displacement by using conjugate beam method. The conjugate beam is free at both the ends 
as the real beam is fixed supported. Due to displacement of the real beam at B, the momentat 



 

` ` 
the end B of the conjugate beam must have a magnitude of .Summing moments about B we 
have, 

 

 

 

 

 
 

By our sign convention the induced moment is negative, since for equilibrium it acts counter 
clockwise on the member. 

 

 
If the end moments due to the loadings and each displacements are added together, then 

the resultant moments at the ends can be writtenas, 
 

 



 

 

 

 

 

 
 

 

FIXED END MOMENT TABLE 
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GENERAL PROCEDURE OF SLOPE-DEFLECTION METHOD 

 

 Find the fixed end moments of each span (both ends left &right).

 Apply the slope deflection equation on each span & identify the unknowns.
 Write down the joint equilibrium equations.

 Solve the equilibrium equations to get the unknown rotation & deflections.
 Determine the end moments and then treat each span as simply supported 

beam subjected to given load & end moments so we can work out the 
reactions & draw the bending moment & shear force diagram.

 
Numerical Examples 

 

 
1. Q. Analyze two span continuous beam ABC by slope deflection method.Then 
draw Bending moment & Shear force diagram. Take EIconstant. 

 
 

 
Fixed end moments are 
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Slope deflection equations are 
 

 

In all the above 4 equations there are only2unknowns and accordinglythe 

boundary 

conditions are 

 

 

Solving the equations (5) & (6), we get 
 
 

 

Substituting the values in the slope deflections we have, 
 

Reactions: Consider the free body diagram of the beam 
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Find reactions using equations of equilibrium. 

 

 
Span AB: MA = 0 , RB×6 = 100×4+75-51.38 

RB = 70.60 KN 

V =0, RA+RB =100KN 

RA = 100-70.60=29.40 KN 

Span BC: MC = 0, RB×5 = 20×5× +75 

RB = 65 KN 

V=0 RB+RC = 20×5 = 100KN 

RC = 100-65 = 35 KN 

 
 

Using these data BM and SF diagram can be drawn 
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Max BM: 

 

 
Span AB: Max BM in span AB occurs under point load and can be found 
geometrically, 

 

 

Span BC: Max BM in span BC occurs where shear force is zero or changes its sign. 
Henceconsider SF equation w.r.t C 

 

 

 
Max BM occurs at 1.75m 

from 
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2. Q. Analyze continuous beam ABCD by slope deflection method and thendraw 
bending moment diagram. Take EIconstant. 

 
 

 

 

 

 

 

Slope deflection equations are 
 

 

 

 

In all the above equations there are only 2 unknowns and accordingly the boundary 

conditions are  
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Solving equations (5) & (6), 
 

Substituting the values in the slope deflections we have, 
 
 

 

Reactions: Consider free body diagram of beam AB, BC and CD as shown 
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Span AB: 
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Maximum Bending Moments: 

 

 
Span AB: Occurs under point load 

 

 
Span BC: Where SF=0, consider SF equation with C as reference 

 

 
3. Q. Analyse the continuous beam ABCD shown in figure by slope deflectionmethod. 

The support B sinks by 15mm.Take E =200 10
5
 KN/m

2
 and I =12010 

-6
m

4 

 
 

 
 

 

 

 
 

 

FEM due to yield of support B 
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For span AB: 
 

 
For span BC: 

 

 
Slope deflection equations are 

 

In all the above equations there are only2unknowns and accordinglythe 

boundary 

conditions are 
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Solving equations (5) & (6), 
 

 

 

 
 

Substituting the values in the slope deflections we have, 
 

 

 

 
Consider the free body diagram of continuous beam for finding reactions 

 
 

 

 
REACTIONS 

 

 
Span AB: 
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ANALYSIS OF FRAMES (WITHOUT & WITH SWAY) 

 
 

The side movement of the end of a column in a frame is called sway. Sway can be 
prevented by unyielding supports provided at the beam level as well as geometric or 
load symmetry about vertical axis. 

 
 

Frame with sway 
 

 

Sway prevented by unyielding support 
 

4. Q. Analyse the simple frame shown in figure. End A is fixed and ends B & Care 
hinged. Draw the bending momentdiagram. 
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Slope deflection equations are 
 

 
 
 

 

In all the above equations there are only 3 unknowns and accordingly the boundary 

conditions are 
 

 
Solving equations (7) & (8) & (9), 
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Substituting the values in the slope deflections we have, 
 

 
 
 

 

 

SPAN BC: 

 

 

 

Column BD: 

REACTIONS: 

SPAN AB: 
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 Analyse the portal frame and then draw the bending momentdiagram 
 
 

 

 

A. This is a symmetrical frame and unsymmetrically loaded, thus it is an 
unsymmetrical problem and there is a sway ,assume sway toright 
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FEMS: 

 

 
Slope deflection equations are 
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Reactions: consider the free body diagram of beam and columns 

Column AB: 

 

 

 
Span BC: 

 
 

Column CD: 



 

101 

 

 
 

 
 

Check: 
 

Hence okay 
 

 

 

 
 

6. Q. Frame ABCD is subjected to a horizontal force of 20 KN at joint C as 
shown in figure. Analyse and draw bending moment diagram. 
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The frame is symmetrical but loading is unsymmetrical. Hence there is a sway, 
assume sway towards right. In this problem 

 
FEMS 

 

 
Slope deflection equations: 
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105 

 

 

 
 

Reactions: Consider the free body diagram of various members 

 
Member AB: 

 
 

 

Span BC: 

 

Column CD: 
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 Analyse the portal frame and draw theB.M.D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A. It is an unsymmetrical problem, hence there is a sway be towards right. 

 
FEMS: 

 
 

Slope deflection equations: 
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Reactions: Consider the free body diagram 
 
 

 

 

Span BC: 
 

 

Column CD: 
 

Check: 

 
 

Member AB: 
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PART B : TWO HINGED ARCHES 

INTRODUCTION 

Mainly three types of arches are used in practice: three-hinged, two-hinged and hingeless 

arches. In the early part of the nineteenth century, three-hinged arches were commonly 

used for the long span structures as the analysis of such arches could be done with 

confidence. However, with the development in structural analysis, for long span 

structures starting from late nineteenth century engineers adopted two-hinged and 

hingeless arches. Two-hinged arch is the statically indeterminate structure to degree one. 

Usually, the horizontal reaction is treated as the redundant and is evaluated by the method 

of least work. In this lesson, the analysis of two-hinged arches is discussed and few 

problems are solved to illustrate the procedure for calculating the internal forces. 

ANALYSIS OF TWO-HINGED ARCH 

A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch, we have 

four unknown reactions, but there are only three equations of equilibrium available. 

Hence, the degree of statical indeterminacy is one for two- hingedarch. 
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The fourth equation is written considering deformation of the arch. The unknown 

redundant reaction Hbis calculated by noting that the horizontal displacement of hinge B 

is zero. In general the horizontal reaction in the two hinged arch is evaluated by 

straightforward application of the theorem of least work (see  module 1, lesson 4), which 

states that the partial derivative of the strain energy of a statically indeterminate structure 

with respect to statically indeterminate action should vanish. Hence to obtain, horizontal 

reaction, one must develop an expression for strain energy. Typically, any section of the 

arch (vide Fig 33.1b) is subjected to shear forceV, bending moment M and the axial 

compression N .  The strain energy due to bending Ubis calculated from the following 

expression. 

 
 
 

The above expression is similar to the one used in the case of straight beams. However, in 

this case, the integration needs to be evaluated along the curved arch length. In the above 

equation, s is the length of the centerline of the arch, I  is the moment of inertia of the 

arch cross section, E is the Young’s modulus of  the arch material. The strain energy due 

to shear is small as compared to the strain energy due to bending and is usually neglected 

in the analysis. In the case of flat arches, the strain energy due to axial compression can 

be appreciable and is givenby, 
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The total strain energy of the arch is given by 
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16 

 

1 

 

 

 

 

 

 

 

 

TEMPERATURE EFFECT 
 
Consider an unloaded two-hinged arch of span L. When the arch undergoes a uniform 
temperature change of T, then its span would increase by C°TLα if it were allowed to 
expand freely (vide Fig 33.3a). α is the co-efficient of thermal expansion of the arch 
material. Since the arch is restrained from the horizontal movement, a horizontal force is 
induced at the support as the temperature is increase 
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Now applying the Castigliano’s first theorem, 

 

 

Solving for H, 

 

 

The second term in the denominator may be neglected, as the axial rigidity is quite 

high. Neglecting the axial rigidity, the above equation can be written as 
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Example 

A semicircular two hinged arch of constant cross section is subjected to a concentrated load 

as shown in Fig. Calculate reactions of the arch and draw bending moment diagram. 
 
 

 
 
 

Solution: 
 

Taking moment of all forces about hinge B leads to, 
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From figure, 
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Bending moment diagram 
 

Bending moment M at any cross section of the arch is given by, 
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Using equations (8) and (9), bending moment at any angle θ can be computed. The 

bending moment diagram is shown in Fig. 
 
 

 

 
 
 

Example 

 

A two hinged parabolic arch of constant cross section has a span of 60m and a rise of 

10m. It is subjected to loading as shown in Fig.. Calculate reactions of the arch if the 

temperature of the arch is raised by. Assume co-efficient of thermal expansion as 
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Taking A as the origin, the equation of two hinged parabolic arch may be written as, 

 

 
The given problem is solved in two steps. In the first step calculate the horizontal reaction due to 

40kN load applied at C. In the next step calculate the horizontal reaction due to rise in 

temperature. Adding both, one gets the horizontal reaction at the hinges due to 40kN combined 

external loading and temperature change. The horizontal reaction due to load may be calculated 

by the following equation, 

 
 

 

 
 

 

Please note that in the above equation, the integrations are carried out along the x- axis instead of 

the curved arch axis. The error introduced by this change in the variables in the case of flat arches 

is negligible. Using equation (1), the above equation (3) can be easily evaluated. 

The vertical reaction A is calculated by taking moment of all forces about B. Hence, 
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Table 1. Numerical integration of equations (8) and (9) 
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UNIT III: APPROXIMATE METHODS OFANALYSIS 

OF BUILDING FRAMES 

 
INTRODUCTION 

 
The building frames are the most common structural form, an analyst/engineer 

encounters in practice. Usually the building frames are designed such that the beam 

column joints are rigid. A typical example of building frame is the reinforced concrete 

multistory frames. A two-bay, three-storey building plan and sectional elevation are 

shown in Fig. In principle this is a three dimensional frame. 

However, analysis may be carried out by considering planar frame in two perpendicular 
directions separately for both vertical and horizontal loads as shown in Fig. 36.2 and 
finally superimposing moments appropriately. In the case of building frames, the beam 
column joints are monolithic and can resist bending moment, shear force and axial force. 
Any exact method, such as slope-deflection method, moment distribution method or 
direct stiffness method may be used to analyse this rigid frame. However, in order to 
estimate the preliminary size of different members, approximate methods are used to 
obtain approximate design values of moments, shear and axial forces in various members. 
Before applying approximate methods, it is necessary to reduce the given indeterminate 
structure to a determinate structure by suitable assumptions. These will be discussed in 
this lesson. In next section, analysis of building frames to vertical loads is discussed and 
in section after that, analysis of building frame to horizontal loads will be discussed. 
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SUBSTITUTE FRAME METHOD 

 
Consider a building frame subjected to vertical loads as shown in Fig.36.3. Any typical 

beam, in this building frame is subjected to axial force, bending moment and shear force. 

Hence each beam is statically indeterminate to third degree and hence 3 assumptions are 

required to reduce this beam to determinate beam. 

 
Before we discuss the required three assumptions consider a simply supported beam. In 

this case zero moment (or point of inflexion) occurs at the supports as shown in 

Fig.36.4a. Next consider a fixed-fixed beam, subjected to vertical loads as shown in Fig. 

36.4b. In this case, the point of inflexion or point of zero moment occurs at 0.21L from 

both ends of the support. 
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Now consider a typical beam of a building frame as shown in Fig.36.4c. In this case, the 

support provided by the columns is neither fixed nor simply supported. 

 

For the purpose of approximate analysis the inflexion point or point of zero 
 

 

the point of zero moment varies depending on the actual rigidity provided by the 

columns. Thus the beam is approximated for the analysis as shown in Fig. 
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For interior beams, the point of inflexion will be slightly more than 0.1L . An experienced 

engineer will use his past experience to place the points of inflexion appropriately. Now 

redundancy has reduced by two for each beam. The third assumption is that axial force in 

the beams is zero. With these three assumptions one could analyse this frame for vertical 

loads. 

 

 
Example 36.1 

 
 

Analyse the building frame shown in Fig. 36.5a for vertical loads using approximate 

methods. 
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Solution: 

In this case the inflexion points are assumed to occur in the beam at0.1L0.6mfrom columns  

as shown in Fig. 36.5b. The calculation of beam moments is shown in Fig. 36.5c. 
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ANALYSIS OF BUILDING FRAMES TO LATERAL (HORIZONTAL) LOADS 

 
A building frame may be subjected to wind and earthquake loads during its life time. 

Thus, the building frames must be designed to withstand lateral loads. A two-storey two-

bay multistory frame subjected to lateral loads is shown in Fig.36.6. The actual deflected 

shape (as obtained by exact methods) of the frame is also shown in the figure by dotted 

lines. The given frame is statically indeterminate to degree 12. 
 
 

 
 

Hence it is required to make 12 assumptions to reduce the frame in to a statically 

determinate structure. From the deformed shape of the frame, it is observed that inflexion 

point (point of zero moment) occur at mid height of each column and mid point of each 

beam. This leads to 10 assumptions. Depending upon how the remaining two 

assumptions are made, we have two different methods of analysis: i) Portal method and 

ii) cantilever method. They will be discussed in the subsequent sections. 
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PORTAL METHOD 

In this method following assumptions are made. 

 
1) An inflexion point occurs at the mid height of eachcolumn. 

2) An inflexion point occurs at the mid point of eachgirder. 

3) The total horizontal shear at each storey is divided between the columns of that storey 

such that the interior column carries twice the shear of exterior column. 

 
The last assumption is clear, if we assume that each bay is made up of a portal thus the 

interior column is composed of two columns (Fig. 36.6). Thus the interior column carries 

twice the shear of exterior column. This method is illustrated in example 36.2. 

 
Example  

 

Analyse the frame shown in Fig. 36.7a and evaluate approximately the column end 

moments, beam end moments and reactions. 

Solution: 

The problem is solved by equations of statics with the help of assumptions made in the 

portal method. In this method we have hinges/inflexion points at mid height of columns 

and beams. Taking the section through column hinges M.N,Oweget, (ref. Fig. 36.7b). 
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Column and beam moments are calculated as, (ref. Fig. 36.7f) 

 
M BC5x1.57.5 kN.m;M BA15x1.522.5 kN.m 

 
M BE30 kN.m 

 
M EF10x1.515 kN.m ;M ED30x1.545 kN.m 

 
M EB30kN.m M EH30kN.m 

 
M HI5x1.57.5 kN.m ;M HG15x1.522.5 kN.m 

 
M HE30 kN.m 

 
 

Reactions at the base of the column are shown in Fig. 36.7g. 



143 
 

142 

CANTILEVER METHOD 

 

The cantilever method is suitable if the frame is tall and slender. In the cantilever method 

following assumptions are made. 

 

An inflexion point occurs at the mid point of eachgirder.An inflexion point occurs at mid height of 

eachcolumn.In a storey, the intensity of axial stress in a column is proportional to its horizontal 

distance from the center of gravity of all the columns in that storey. Consider a cantilever beam 

acted by a horizontal load P as shown in Fig. 36.8. In such a column the bending stress in the 

column cross section varies linearlyfrom its neutral axis. The last assumption in the cantilever 

method is based on this fact. The method is illustrated in example36.3. 

 

Example 36.3 

 

 

Estimate approximate column reactions, beam and column moments using cantilever method of the 

frame shown in Fig. 36.8a. The columns are assumed to have equal cross sectional areas. 

 

 

Solution: 

 

This problem is already solved by portal method. The center of gravity of all column passes 

through centre column. 
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Taking a section through first storey hinges gives us the free body diagram as shown in 

Fig. 36.8b. Now the column left of C.G. i.e.CBmust be subjected to tension and one on 

the right is subjected to compression. 

 
From the third assumption, 

 
 

 
Taking moment about O of all forces gives, 

 
 

 

 
Taking moment about R of all forces left of R , 

 
 
 

 

Taking moment of all forces right of S about S , 
 
 
 

 
 

Moments 

MCB51.57.5 kN.m 

MCF7.5 kN.m 

M FE15 kN.m 

M FC7.5 kN.m 

M FI7.5 kN.m 

M IH7.5 kN.m 

M IF7.5 kN.m 

 
Tae a section through hinges J,K,L(ref. Fig. 36.8c). Since the center of gravity 
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passes through centre column the axial force in that column is zero. 

 
 
 

Taking moment about hinge L ,Jy can be evaluated. Thus, 
 
 
 

 

 
Taking moment of all forces left of P about P gives, 

 
 

 
 

Similarly taking moment of all forces right of Q about Q gives, 

 
 
 
 

Moments 
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M BC51.57.5 kN.m ; M BA151.522.5 kN.m 

M BE30 kN.m 
    

M EF101.515 kN.m ; M ED301.545 kN.m 

 
M EB30 kN.m 

M 
EH 

 
30 kN.m 

 

M HI51.57.5 kN.m ; M HG151.522.5 kN.m 

M HE30 kN.m 
    

 
 

PART B 

Approximate Lateral Load Analysis by Portal Method 

 

Portal Frame 
Portal frames, used in several Civil Engineering structures like buildings, factories, bridges have 

the primary purpose of transferring horizontal loads applied at their tops to their foundations. 

Structural requirements usually necessitate the use of statically indeterminate layout for portal 

frames, and approximate solutions are often used in their analyses. 
 

Assumptions for the Approximate Solution 

In order to analyze a structure using the equations of statics only, the number of 

independent force components must be equal to the number of independent equations of 

statics. 

If there are nmore independent force components in the structure than there are 

independent equations of statics, the structure is statically indeterminate to the nth degree. 

Therefore to obtain an approximate solution of the structure based on statics only, it will 

be necessary to make nadditional independent assumptions. A solution based on statics 

will not be possible by making fewer than n assumptions, while more than n assumptions 

will not in general be consistent. 

Thus, the first step in the approximate analysis of structures is to find its degree of statical 

indeterminacy (dosi) and then to make appropriate number of assumptions. 

For example, the dosi of portal frames shown in (i), (ii), (iii) and (iv) are 1, 3, 2 and 1 

respectively. Based on the type of frame, the following assumptions can be made for 

portal structures with a vertical axis of symmetry that are loaded horizontally at thetop 

1. The horizontal support reactions areequal 

2. There is a point of inflection at the center of the unsupported height of each fixed 

basedcolumn 
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Some additional assumptions can be made in order to solve the structure 

approximately for different loading and support conditions. 

3. Horizontal body forces not applied at the top of a column can be divided into two 

forces (i.e., applied at the top and bottom of the column) based on simple supports 

4. For hinged and fixed supports, the horizontal reactions for fixed supports can be 

assumed to be four times the horizontal reactions for hinged supports Example 

Draw the axial force, shear force and bending moment diagrams of the frames loaded as 

shown below. 
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Analysis of Multi-storied Structures by Portal Method 

Approximate methods of analyzing multi-storied structures are important because such 

structures are statically highly indeterminate. The number of assumptions that must be 

made to permit an analysis by statics alone is equal to the degree of statical 

indeterminacy of the structure. 

Assumptions 

The assumptions used in the approximate analysis of portal frames can be extended for 

the lateral load analysis of multi-storied structures. The Portal Method thus formulated is 

based on three assumptions 

1. The shear force in an interior column is twice the shear force in an exterior column. 

2. There is a point of inflection at the center of eachcolumn. 

3. There is a point of inflection at the center of eachbeam. 

 
 

Assumption 1 is based on assuming the interior columns to be formed by columns of two 

adjacent bays or portals. Assumption 2 and 3 are based on observing the deflected shape 

of thestructure. 

Example 

Use the Portal Method to draw the axial force, shear force and bending moment diagrams 

of the three-storied frame structure loaded as shown below. 
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Analysis of Multi-storied Structures by Cantilever Method 

Although the results using the Portal Method are reasonable in most cases, the method 

suffers due to the lack of consideration given to the variation of structural response due to 

the difference between sectional properties of various members. The Cantilever Method 

attempts to rectify this limitation by considering the cross- sectional areas of columns in 

distributing the axial forces in various columns of a story. 

Assumptions 

The Cantilever Method is based on three assumptions 

1. The axial force in each column of a storey is proportional to its horizontal distance 

from the centroidal axis of all the columns of thestorey. 

2. There is a point of inflection at the center of eachcolumn. 

3. There is a point of inflection at the center of eachbeam. 
 

Assumption 1 is based on assuming that the axial stresses can be obtained by a method 

analogous to that used for determining the distribution of normal stresses 
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on a transverse section of a cantilever beam. Assumption 2 and 3 are based on 

observing the deflected shape of the structure. 

Example 

Use the Cantilever Method to draw the axial force, shear force and bending moment 

diagrams of the three -storied frame structure loaded as shown below. 

 

 

 

 

Approximate Vertical Load Analysis 

Approximation based on the Location of Hinges 

If a beam AB is subjected to a uniformly distributed vertical load of w per unit length 

[Fig. (a)], both the joints A and B will rotate as shown in Fig. (b), because although the 

joints A and B are partly restrained against rotation, the restraint is not complete. Had the 

joints A and B been completely fixed against rotation [Fig. (c)] the points of inflection 
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would be located at a distance 0.21L from each end. If, on the other hand, the joints A 

and B are hinged [Fig. (d)], the points of zero moment would be at the end of the beam. 

For the actual case of partial fixity, the points of inflection can be assumed to be 

somewhere between 0.21 L and 0 from the end of the beam. For approximate analysis, 

they are often assumed to be located at one-tenth (0.1 L) of the span length from each end 

joint. 

 

 
 

Depending on the support conditions (i.e., hinge ended, fixed ended or continuous), a 

beam in general can be statically indeterminate up to a degree of three. Therefore, to 

make it statically determinate, the following three assumptions are often made in the 

vertical load analysis of a beam 

1. The axial force in the beam iszero 

2. Points of inflection occur at the distance 0.1 L measured along the span from the left 

and rightsupport. 

Bending Moment and Shear Force from Approximate Analysis 

Based on the approximations mentioned (i.e., points of inflection at a distance 

0.1 L from the ends), the maximum positive bending moment in the beam is 

calculated to be 

M(+) = w(0.8L)
2
/8 = 0.08 wL

2
, at the midspan of the beam The 

maximum negative bending moment is 

M() = wL
2
/8 0.08 wL

2
 = 0.045 wL

2
, at the joints A and B of the beam 

The shear forces are maximum (positive or negative) at the joints A and B and are 

calculated to be 

VA = wL/
2
, and VB = wL/2 

Moment and Shear Values using ACI Coefficients 

Maximum allowable LL/DL = 3, maximum allowable adjacent span difference = 20% 

1. PositiveMoments 
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(i) For EndSpans 

(a) If discontinuous end is unrestrained, M(+) =wL
2
/11 

(b) If discontinuous end is restrained, M(+) =wL
2
/14 

(ii) For Interior Spans, M(+) =wL
2
/16 

2. NegativeMoments 

(i) At the exterior face of first interiorsupports 

(a) Two spans, M(-) =wL
2
/9 

(b) More than two spans, M(-) = wL
2
/10 

(ii) At the other faces of interior supports, M(-) =wL
2
/11 

(iii) Forspansnotexceeding10,ofwherecolumnsaremuchstifferthanbeams, 

M(-) = wL2/12 

(iv) At the interior faces of exteriorsupports 

(a) If the support is a beam, M(-) =wL
2
/24 

(b) If the support is a column, M(-) =wL
2
/16 

3. ShearForces 

(i) In end members at first interior support, V =1.15wL/2 

(ii) At all other supports, V =wL/2 

[where L = clear span for M(+) and V, and average of two adjacent clear spans for M(-)] 

 
Example 

Analyze the three-storied frame structure loaded as shown below using the approximate 

location of hinges to draw the axial force, shear force and bending moment diagrams of 

the beams and columns. 
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UNIT IV: MATRIX METHOD OF ANALYSIS 

 
THE DIRECT STIFFNESS METHOD 

 
INTRODUCTION 

 
All known methods of structural analysis are classified into two distinct groups:- 

 
1. force method of analysisand 

2. displacement method ofanalysis. 

In module 2, the force method of analysis or the method of consistent deformation is 

discussed. An introduction to the displacement method of analysis is given in module 3, 

where in slope-deflection method and moment- distribution method are discussed. In this 

module the direct stiffness method is discussed. In the displacement method of analysis 

the equilibrium equations are written by expressing the unknown joint displacements in 

terms of loads by using load- displacement relations. The unknown joint displacements 

(the degrees of freedom of the structure) are calculated by solving equilibrium equations. 

The slope-deflection and moment-distribution methods were extensively used before the 

high speed computing era. After the revolution in computer industry, only direct stiffness 

method isused. 

The displacement method follows essentially the same steps for both statically 

determinate and indeterminate structures. In displacement /stiffness method of analysis, 

once the structural model is defined, the unknowns (joint rotations and translations) are 

automatically chosen unlike the force method of analysis. Hence, displacement method of 

analysis is preferred to computer implementation. The method follows a rather a set 

procedure. The direct stiffness method is closely related to slope-deflectionequations. 

The general method of analyzing indeterminate structures by displacement method may 

be traced to Navier (1785-1836). For example consider a four member truss as shown in 

Fig.23.1.The given truss is statically indeterminate to second degree as there are four bar 

forces but we have only two equations of equilibrium. Denote each member by a number, 

for example (1), (2), (3) and (4). 

 

Let αibe the angle, the i-th member makes with the horizontal. Under the 
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action of external loads Px and Py, the joint E displaces to E’. Let u and v be its vertical 

and horizontal displacements. Navier solved this problem as follows. 

 
In the displacement method of analysis u and v are the only two unknowns for this 

structure. The elongation of individual truss members can be expressed in terms of these 

two unknown joint displacements. Next, calculate bar forces in the members     by     

using     force–displacement     relation.      

The unknown displacements may be calculated by solving the equilibrium equations. In 

displacement method of analysis, there will be exactly as many equilibrium equations as 

there are unknowns. 

 

 
Let an elastic body is acted by a force F and the corresponding displacement be u in the 

direction of force. In module 1, we have discussed force- displacementrelationship. The 

force (F) is related to the displacement (u) for the linear elastic material by therelation 
 
 

F ku (23.1) 
 

where the constant of proportionality k is defined as the stiffness of the structure and it 

has units of force per unit elongation. The above equation may also be written as 
 

 
 

u aF (23.2) 
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The constant ais known as flexibility of the structure and it has a unit of displacement per 

unit force. In general the structures are subjected to n forces at n different locations on the 

structure. In such a case, to relate displacement atito load at j, it is required to use 

flexibility coefficients with subscripts. Thus theflexibility coefficient aijis the deflection 

at idue to unit value of force applied at j . Similarly the stiffness coefficientkijis defined as 

the force generated ati 



160 
 

due to unit displacement atjwith all other displacements kept at zero. Toillustrate this 

definition, consider a cantilever beam which is loaded as shown in Fig.23.2. The two 

degrees of freedom for this problem are vertical displacementatB and 

rotation at B. Let them be denoted by  and   (=θ1 ). Denote thevertical force P byand the 

tip moment M by. Now apply a unit vertical force along calculate deflection   and  . The 

vertical deflection is denoted by flexibility coefficient and rotation is denoted by 

flexibilitycoefficient . Similarly, by applying a unit force along   , one could calculate 

flexibility coefficient   and    . Thus    is the deflection at 1 corresponding to due to unit 

force applied at 2 in the direction of By using the principle of superposition, the 

displacements and are expressed as the sum of displacements due to loads andacting 

separately on the beam. Thus, 

  

 

 
 

The above equation may be written in matrix notation as 

uaP
 

 
 
 
 
 
 
 
 



 

The forces can also be related to displacements using stiffness coefficients. Apply a unit 

displacement along (see Fig.23.2d) keeping displacement as zero. 

Calculate the required forces for this case as  k11and k21  .Here,  k21  represents 

force developed along P2 when a unit displacement along is  introduced  keeping=0. 

Apply a unit rotation along(vide Fig.23.2c),keeping0. 

Calculate the required forces for this configuration k12and k22. Invoking the 

principle of superposition, the forces P1 and P2 are expressed as the sum of 

forces developed due to displacements and acting separately on the beam. Thus, 

Pku




kis defined as the stiffness matrix of the beam. 

 

In this lesson, using stiffness method a few problems will be solved. However this 

approach is very rudimentary and is suited for hand computation. A more formal 

approach of the stiffness method will be presented in the next lesson. 

 

 

A SIMPLE EXAMPLE WITH ONE DEGREE OF FREEDOM 

 

Consider a fixed–simply supported beam of constant flexural rigidity EI and span 

L which is carrying a uniformly distributed load of w kN/m as shown in Fig.23.3a. 

If the axial deformation is neglected, then this beam is kinematically 

indeterminate to first degree. The only unknown joint displacement is θB.Thus 

the degrees of freedom for this structure is one (for a brief discussion on degrees of 

freedom, please see introduction to module 3).The analysis of above structure by stiffness 

method is accomplished in following steps: 

 

Recall that in the flexibility /force method the redundants are released (i.e. made zero) to 

obtain a statically determinate structure. A similar operation in the stiffness method is to 

make all the unknown displacements equal to zero by altering the boundary conditions. 

Such an altered structure is known as kinematically determinate structure as all joint 

displacements are known in this case. In the present case the restrained structureisobtained 

by preventing the rotation at B as shown in Fig.23.3b. Apply all the external loads on the 

kinematically determinate structure. Duetorestraint at B, a moment MB is developed at B. 

In the stiffness method weadopt the following sign convention. Counterclockwise moments 

and counterclockwise rotations are taken as positive, upward forces and displacements are 

taken as positive.  
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TWO DEGREES OF FREEDOM STRUCTURE 

 
Consider a plane truss as shown in Fig.23.4a.There is four members in the truss and they 

meet at the common point at E. The truss is subjected to external loadsandacting at E. In 

the analysis, neglect the self weight of members. Thereare two unknown displacements at 

joint E and are denoted byand.Thus the structure is kinematically indeterminate to second 

degree. The applied forces and unknown joint displacements are shown in the positive 

directions. The members are numbered from (1), (2), (3) and (4) as shown in the figure. 

The length and 

axial rigidity of i-th member is liand EAirespectively. Now it is soughtto evaluate 

andby stiffness method. This is done in following steps: 

In the first step, make all the unknown displacements equal to zero by altering the 
boundary conditions as shown in Fig.23.4b. On thisrestrained/kinematically determinate 

structure, apply all the external loads except the joint loads and calculate the reactions 
corresponding to unknown joint displacements and. Since, in the present case, there are no 

external loads other than the joint loads, the reactions (RL )1and (RL ) 2 will be equal to 

zero. Thus, 

 
In the next step, calculate stiffness coefficients k11, k21, k12  andk22  .This is done as 

follows. First give a unit displacement along u1 holdingdisplacement along   to zero and 

calculate reactions at E correspondingto unknown displacements and in  thekinematically  

determinate structure. They are denoted by k11,k21. The joint stiffness k11,k21of thewhole 

truss is composed of individual member stiffness of the truss. This 

isshowninFig.23.4c.NowconsiderthememberAE.Undertheactionofunit displacement along, 

the joint E displaces to. Obviously the new length is not equal to length AE. Let us denote 

the new length of themembersbyl1+ ∆l1, where l, is the change in length of the member 

AE′. The member AE ′also makes an angle with the horizontal. This isjustified as l1 is 

small. From the geometry, the change in length of the members AE′is 

 (23.11a) 
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The elongation ∆l1 is related to the force in the member AE’ , 

FAE’ by 

 

Thus from (23.11a) and (23.11b), the force in the members AEis 

 

This force acts along the member axis. This force may be resolved alongand 

directions . Thus the horizontal component of force  
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Expressions of similar form as above may be obtained for all members. The sum of all 

horizontal components of individual forces gives us the stiffness coefficient 

 

k11and sum of all vertical component of forces give us the required stiffness coefficient 

k21 . 
 

 

EA1 

k11= 
 
 

(23.15) 

 
 
 
 

 
 

B. Joint forces in the original structure corresponding to unknown 

displacements u1 and u2are 

 

 
(23.17) 

 

 
Now the equilibrium equations at joint E states that the forces in the original structure are 

equal to the superposition of (i) reactions in the kinematically restrained structure 

corresponding to unknown joint displacements and (ii) reactions in the restrained 

structure due to unknown displacements themselves. This may be expressed as, 
 

 
 

 

cos
2
θ1+ 

EA2 

cos
2
θ2 + 

EA3 

cos
2
θ3 + 

EA4 
cos

2
 
θ4     

l1 
 

l2 
 

l3 
 

l4 
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Example 

 
 

Analyze the plane frame shown in Fig.23.5a by the direct stiffness method. Assume that 

the flexural rigidity for all members is the same. Neglect axial displacements. 
 
 

Solution 

In the first step identify the degrees of freedom of the frame .The given frame has three 

degrees of freedom (see Fig.23.5b): 

 

B. Two rotations as indicated by u1 and u2and 

C. One horizontal displacement of joint B and C as indicated by u3 . 

In the next step make all the displacements equal to zero by fixing joints B and C as 

shown in Fig.23.5c. On this kinematically determinate structure apply all the external 

loads and calculate reactions corresponding to unknown joint displacements .Thus, 
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Similarly, apply a unit rotation along u2and calculate reactions corresponding to 

three degrees of freedom (see Fig.23.5e) 

 
 

k12 0.5EI 

 
 

k22EI 

 
 

k320 (5) 

 
 

Apply a unit displacement along u3and calculate joint reactions corresponding to 

unknown displacements in the kinematically determinate structure. 
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as 

 
 
 
 

 
 
 

 

Finally applying the principle of superposition of joint forces, yields 
 
 
 
 
 
 

 

Now, 

 

there are no loads applied along u1,u2 and u3.Thus the 
 
 

 

unknown displacements are, 
 
 
 

 

 
Solving 

 
 
 

u  18.996 

1 EI 



185 
 

 
 

u 
2 

14.502 


  EI 

u  270.587 

3  (8) 

  EI 
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Example 24.1 

 
 

Analyse the two member truss shown in Fig. 24.12a. Assume EA to be constant 

for all members. The length of each member is 5m. 
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The co-ordinate axes, the number of nodes and members are shownin 

 
Fig.24.12b. The degrees of freedom at each node are also shown. By inspection 

it is clear that the displacement u3u4u5u60. Also the external loads are 

 
 

p15 kN ;p20 kN. (1) 

 
 

Now member stiffness matrix for each member in global co-ordinate system is 

θ130. 
 

 

 
 
 

 

The global stiffness matrix of the truss can be obtained by assembling the two 

member stiffness matrices. Thus, 
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Again stiffness matrix for the unconstrained degrees of freedom is, 
 
 
 

 
Writing the load displacement-relation for the truss for the unconstrained degrees 

of freedom 
 

{ pk} k11{uu} (6) 

 

 
 
 
 
 
 

 
 

 
Support reactions are evaluated using equation (24.30). 

 

 

{ pu} k21{uu} 

 

Substituting appropriate values in equation (9), 
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by equilibrium of joint 

1. Also, p3p550 

 
Now force in each member is calculated as follows, 

 

 
Member 1:l0.866 ;m0.5 ;L5m. 

 
 

p'k'u'


k'T u(11) 



190 
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DIRECT STIFFNESS METHOD: BEAMS 

In the earlier section, a few problems were solved using stiffness method from 
fundamentals. The procedure adopted therein is not suitable for computer 
implementation. In fact the load displacement relation for the entire structure was 
derived from fundamentals. This procedure runs into trouble when the structure 
is large and complex. However this can be much simplified provided we follow 
the procedure adopted for trusses. In the case of truss, the stiffness matrix of the 
entire truss was obtained by assembling the member stiffness matrices of 
individualmembers. 

 
In a similar way, one could obtain the global stiffness matrix of a continuous 
beam from assembling member stiffness matrix of individual beam elements. 
Towards this end, we break the given beam into a number of beam elements. 
The stiffness matrix of each individual beam element can be written very easily. 
For example, consider a continuous beam ABCD as shown in Fig. 27.1a. The 

given continuous beam is divided into three beam elements as shown inFig. 

 
27.1b. It is noticed that, in this case, nodes are located at the supports. Thus 
each span is treated as an individual beam. However sometimes it is required to 
consider a node between support points. This is done whenever the cross 
sectional area changes suddenly or if it is required to calculate vertical or 
rotational displacements at an intermediate point. Such a division is shown inFig. 

27.1c. If the axial deformations are neglected then each node of the beam will 
have two degrees of freedom: a vertical displacement (corresponding to shear) 
and a rotation (corresponding to bending moment). In Fig. 27.1b, numbers 
enclosed in a circle represents beam numbers. The beam ABCD is divided into 
three beam members. Hence, there are four nodes and eight degrees of 
freedom. The possible displacement degrees of freedom of the beam are also 
shown in the figure. Let us use lower numbers to denote unknown degrees of 
freedom (unconstrained degrees of freedom) and higher numbers to denote 
known (constrained) degrees of freedom. Such a method of identification is 
adopted in this course for the ease of imposing boundary conditions directly on 
the structure stiffness matrix. However, one could number sequentially as shown 
in Fig. 27.1d. This is preferred while solving the problem on acomputer. 
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In the above figures, single headed arrows are used to indicate translational and 

double headed arrows are used to indicate rotational degrees of freedom. 

BEAM STIFFNESS MATRIX. 

 
Fig. 27.2 shows a prismatic beam of a constant cross section that is fully 

restrained at ends in local orthogonal co-ordinate system x'y'z' . The beam ends 

 
are denoted by nodes j and k . The x' axis coincides with the centroidal axis of  

the member with the positive sense being defined from j to k . Let L be the length 

of the member, Aarea of cross section of the member and Izzis the moment of 

inertia about z'axis. 
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Two degrees of freedom (one translation and one rotation) are considered at 
each end of the member. Hence, there are four possible degrees of freedom for 

this member and hence the resulting stiffness matrix is of the order 44 . In this 
method counterclockwise moments and counterclockwise rotations are taken as 
positive. The positive sense of the translation and rotation are also shown in the 
figure. Displacements are considered as positive in the direction of the co- 
ordinate axis. The elements of the stiffness matrix indicate the forces exerted on 
the member by the restraints at the ends of the member when unit displacements 
are imposed at each end of the member. Let us calculate the forces developed in 
the above beam member when unit displacement is imposed along each degree 
of freedom holding all other displacements to zero. Now impose a unit 
displacement along y' axis at j end of the member while holding all other 
displacements to zero as shown in Fig. 27.3a. This displacement causes both 
shear and moment in the beam. The restraint actions are also shown in the 
figure. By definition they are elements of the member stiffness matrix. In 
particular they form the first column of element stiffnessmatrix. 

 
In Fig. 27.3b, the unit rotation in the positive sense is imposed at j end of th 

beam while holding all other displacements to zero. The restraint actions are 
shown in the figure. The restraint actions at ends are calculated referring to 

tables given in lesson … 
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In  Fig.  27.3c,  unitdisplacementalong y' axisatend k is imposed and 
corresponding restraint actions are calculated. Similarly in Fig. 27.3d, unit 
rotation about z' axis at end k is imposed and corresponding stiffness coefficients 

are calculated. Hence the member stiffness matrix for the beam memberis 
 

The stiffness matrix is symmetrical. The stiffness matrix is partitioned to separate 

the actions associated with two ends of the member. For continuous beam 

problem, if the supports are unyielding, then only rotational degree of freedom 
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shown in Fig. 27.4 is possible. In such a case the first and the third rows and 

columns will be deleted. The reduced stiffness matrix will be, 

 

 

 

 
Instead of imposing unit displacement along y'atj end of the member in Fig. 

27.3a, apply a displacement u'1 along y'at j end of the member as shown in 
 

Fig. 27.5a, holding all other displacements to zero. Let the restraining forces 

developed be denoted by q11,q21,q31andq41. 
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Now, give displacements u'1,u'2,u'3and u'4 simultaneously along displacement 
 

degrees of freedom 1,2,3 and 4 respectively. Let the restraining forces developed 

at member ends be q1,q2,q3andq4respectively as shown in Fig. 27.5b along 

 
respective degrees of freedom. Then by the principle of superposition, the force 

displacement relationship can be written as, 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

 

qku' (27.5) 
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BEAM (GLOBAL) STIFFNESS MATRIX. 

 
The formation of structure (beam) stiffness matrix from its member stiffness 

matrices is explained with help of two span continuous beam shown in Fig. 

27.6a. Note that no loading is shown on the beam. The orthogonal co-ordinate 

system xyz denotes the global co-ordinatesystem. 
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For the case of continuous beam, the x - and x' - axes are collinear and other 

axes ( yand y' , z and z' ) are parallel to each other. Hence it is not requiredto 

transform member stiffness matrix from local co-ordinate system to global 
coordinate system as done in the case of trusses. For obtaining the global 
stiffness matrix, first assume that all joints are restrained. The node and member 
numbering for the possible degrees of freedom are shown in Fig 27.6b. The 
continuous beam is divided into two beam members. For this member there are 
six possible degrees of freedom. Also in the figure, each beam member with its 
displacement degrees of freedom (in local co ordinate system) is also shown. 

 
Since the continuous beam has the same moment of inertia and span, the 

member stiffness matrix of element 1 and 2 are the same. They are, 
 
 
 

 

The local and the global degrees of freedom are also indicated on the top and 
side of the element stiffness matrix. This will help us to place the elements of the 
element stiffness matrix at the appropriate locations of the global stiffness matrix. 
The continuous beam has six degrees of freedom and hence the stiffness matrix 

is of the order 6 X 6 . Let Kdenotes the continuous beam stiffness matrix of 

order 6 X 6 . From Fig. 27.6b, Kmay be written as, 
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The 4 x 4 upper left hand section receives contribution from member 1 (AB) and 

 
4 x 4 lower right hand section of global stiffness matrix receives contribution 
frommember 2. The element of the global stiffness matrix corresponding to global 

degrees of freedom 3 and 4 [overlapping portion of equation 27.7] receives 

element from both members 1 and 2. 

 

 

Formation of load vector. 

 
Consider a continuous beam ABC as shown in Fig. 27.7. 

 

 

We have two types of load: member loads and joint loads. Joint loads could be 

handled very easily as done in case of trusses. Note that stiffness matrix of each 
member was developed for end loading only. Thus it is required to replace the 

member loads by equivalent joint loads. The equivalent joint loads must be 
evaluated such that the displacements produced by them in the beam should be 

the same as the displacements produced by the actual loading on the beam. This 
is evaluated by invoking the method of superposition. 
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The loading on the beam shown in Fig. 27.8(a), is equal to the sum of Fig. 

 
27.8(b) and Fig. 27.8(c). In Fig. 27.8(c), the joints are restrained against 
displacements and fixed end forces are calculated. In Fig. 27.8(c) these fixed end 
actions are shown in reverse direction on the actual beam without any load. 

Since the beam in Fig. 27.8(b) is restrained (fixed) against any displacement, the 

displacements produced by the joint loads in Fig. 27.8(c) must be equal to the 

displacement produced by the actual beam in Fig. 27.8(a). Thus the loads shown 
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in Fig. 27.8(c) are the equivalent joint loads .Let, p1,p2,p3,p4,p5 and p6 be the 

equivalent joint loads acting on the continuous beam along displacement 

degrees of freedom 1,2,3,4,5 and 6 respectively as shown in Fig. 27.8(b). Thus th 

global load vector is, 
 
 

 
 

Solution of equilibrium equations 

 
After establishing the global stiffness matrix and load vector of the beam, the 

load displacement relationship for the beam can be writtenas, 

 

PKu (27.9) 

 
wherePis the global load vector, uis displacement vector and Kis the 

 
global stiffness matrix. This equation is solved exactly in the similar manner as 

discussed in the lesson 24. In the above equation some joint displacements are 

known from support conditions. The above equation may be written as 
 

 

 
displacements. And pu, uudenote respectively vector of unknown forces  and 

unknown displacements respectively. Now expanding equation(27.10), 
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{ pk} k11{uu} k12{uk} (27.11a) 

{ pu} k21{uu} k22{uk} (27.11b) 
 

 

Since ukis known, from equation 27.11(a), the unknown joint displacements 

 
can be evaluated. And support reactions are evaluated from equation (27.11b), 

after evaluating unknown displacement vector. 

 

 
Let R1,R3andR5be the reactions along the constrained degrees of freedom as 

 
shown in Fig. 27.9a. Since equivalent joint loads are directly applied at the 

supports, they also need to be considered while calculating the actual reactions. 

 
Thus, 

 

 

 
 
 
 
 

The reactions may be calculated as follows. The reactions of the beam shown in 

Fig. 27.9a are equal to the sum of reactions shown in Fig. 27.9b, Fig. 27.9c and 

Fig. 27.9d. 
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In the next lesson few problems are solved to illustrate the method so far 

discussed. 

In the last lesson, the procedure to analyse beams by direct stiffness method has 

been discussed. No numerical problems are given in that lesson. In this lesson, 

few continuous beam problems are solved numerically by direct stiffness method. 
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Example 1 

 
 

Analyse the continuous beam shown in Fig. 28.1a. Assume that the supports are 

unyielding. Also assume that EI is constant for all members. 

 
 

 
The numbering of joints and members are shown in Fig. 28.1b. The possible 

global degrees of freedom are shown in the figure. Numbers are put for the 

unconstrained degrees of freedom first and then that for constrained 

displacements. 

The given continuous beam is divided into three beam elements Two degrees of 

freedom (one translation and one rotation) are considered at each end of the 

member. In the above figure, double headed arrows denote rotations and single 

headed arrow represents translations. In the given problem some displacements 

are zero, i.e., u3u4u5u6u7u80 from support conditions. 

In the case of beams, it is not required to transform member stiffness matrix from 

local co-ordinate system to global co-ordinate system, as the two co-ordinate 

system are parallel to each other. 
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and flexural rigidity of all members is the same. 

Member 2:L4m, node points 2-3. 

 
 

 

First construct the member stiffness matrix for each member. This may be done 

from the fundamentals. However, one could use directly the equation (27.1) 

given in the previous lesson and reproduced below for the sakeconvenience. 
 

The degrees of freedom of a typical beam member are shown in Fig. 28.1c. Here 

equation (1) is used to generate element stiffness matrix. 

Member 1:L4m, node points 1-2. 

The member stiffness matrix for all the members are the same, as the length 
 

On the member stiffness matrix, the corresponding global degrees of freedom 

are indicated to facilitate assembling. 

 

Member 3:L4m, node points 3-4. 
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The assembled global stiffness matrix of the continuous beam is of the 

order8 x 8. The assembled global stiffness matrix may be written as,  

 
 
 

 
 

Now it is required to replace the given members loads by equivalent joint 

loads. The equivalent loads for the present case is shown in Fig. 28.1d. 

The displacement degrees of freedom are also shown in Fig. 28.1d. 
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hus the global load vector corresponding to unconstrained degree of freedom is, 
 
 

 
 
 
 

Writing the load displacement relation for the entire continuous beam, 



 

246 

 
 
 
 
 
 

 

 
 

wherepis the joint load vector, uis displacement vector.u1and 
 
 
 
 
 
 

 

 
Thus displacements are, 

 
 

 

 
 
 
 
 

 

We know that u3u4 u5u6 u7u8 0 . Thus solving for unknowns 

u2, yields 
   

 
 
 
 
 
 
 
 
 

 


 
 
 
 
 
 
 
 
 

 


  

 



 

The unknown joint loads are given by, 

The actual reactions at the supports are calculated as, 
 
 
 

 
 
 
 
 
 
 
 

 
Member end actions for element 1 

 

 

 
 
 
 
 
 
 
 

Member end actions for element 2 
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Member end actions for element 3 
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Example 2 

 

Analyse the continuous beam shown in Fig. 28.2a. Assume that the supports are 

unyielding. Assume EI to be constant for all members. 

 
 

The numbering of joints and members are shown in Fig. 28.2b. The global 

degrees of freedom are also shown in the figure. 

The given continuous beam is divided into two beam elements. Two degrees of 
freedom (one translation and one rotation) are considered at each end of the 
member. In the above figure, double headed arrows denote rotations and single 
headed arrow represents translations. Also it is observed that displacements 

u3u4u5u60from support conditions. 

 
First construct the member stiffness matrix for each member. 

Member 1:L4m, node points 1-2. 

The member stiffness matrix for all the members are the same, as the length and 

flexural rigidity of all members is the same. 

 
 

 

On the member stiffness matrix, the corresponding global degrees of freedom 

are indicated to facilitateassembling. 
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Member 2: L4m, node points 2-3. 

 
 
 
 
 
 

 
The assembled global stiffness matrix of the continuous beam is of order 66 . 

The assembled global stiffness matrix may be written as, 

 
 
 

 
 

 

Now it is required to replace the given members loads by equivalent joint loads. 

The equivalent loads for the present case is shown in Fig. 28.2c. The 

displacement degrees of freedom are also shown in figure. 
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Thus the global load vector corresponding to unconstrained degree of freedom 

is, 
 

 

Writing the load displacement relation for the entire continuous beam, 
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We know that u3u4u5u60 . Thus solving for unknowns u1 and u2 , yields 
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Example 30.1 

 
 

Analyze the rigid frame shown in Fig 30.4a by direct stiffness matrix method. 

 

Assume E200GPa;IZZ1.3310
4

m
4and A0.04m

2. The flexural rigidity EI and axial 

rigidity EA are the same for both thebeams. 

 
 

 

Solution: 

 
The plane frame is divided in to two beam elements as shown in Fig. 30.4b. The 

numbering of joints and members are also shown in Fig. 30.3b. Each node has 
three degrees of freedom. Degrees of freedom at all nodes are also shown in the 

figure. Also the local degrees of freedom of beam element are shown in the 
figure asinset. 
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Formulate the element stiffness matrix in local co-ordinate system and then 

transform it to global co-ordinate system. The origin of the global co-ordinate 

system is taken at node 1. Here the element stiffness matrix in global co- 

ordinates is only given. 

 
 

Member 1:L6m;θ90node points 1-2;l0andm1. 
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The load vector corresponding to unconstrained degrees of freedom is (vide 

30.4d), 

 

 

In the given frameconstraint degrees of freedom are u1,u2,u3,u7,u8,u9. 
 

Eliminating rows and columns corresponding to constrained degrees of freedom 

from global stiffness matrix and writing load-displacement relationship for only 

unconstrained degree of freedom, 
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Example 30.2 

 
 

Analyse the rigid frame shown in Fig 30.5a by direct stiffness matrix method. 

 
Assume E200 GPa ;IZZ1.3310

5
m

4 
and A0.01m

2. The flexural rigidity EI and 

axial rigidity EA are the same for all beams. 
 
 



270 
 

Solution: 

 
The plane frame is divided in to three beam elements as shown in Fig. 30.5b. 

The numbering of joints and members are also shown in Fig. 30.5b. The possible 
degrees of freedom at nodes are also shown in the figure. The origin of the 
global co- ordinate system is taken at A(node1). 
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Now formulate the element stiffness matrix in local co-ordinate system and then 

transform it to global co-ordinate system. In the present case three degrees of 

freedom are considered at each node. 
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The load vector corresponding to unconstrained degrees of freedom is, 
 

 

 

 
In the given frame, constraint (known) degrees of freedom are 
u1,u2,u3,u10,u11,u12. Eliminating rows and columns corresponding to constrained 
degrees of freedom from global stiffness matrix and writing load displacement 
relationship, 
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Let R1,R2,R3,R10,R11,R12be the support reactions along degrees of freedom 1, 2, 

3,10,11,12 respectively. Support reactions are calculated by 
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Unit 5: INFLUENCE LINES FOR INDETERMINATE BEAMS 

DEFINITION INFLUENCE LINES 

Influence lines are important in thedesign of structures that resist large live 

loads.shear and moment diagrams are important in determining the maximum 

internal force in a structure.If a structure is subjected to a live or moving load, 

the variation in shear andmoment is best described using influencelines. 

 
 
An influence line represents the variation of the reaction, shear, moment, or 
deflection at a specific point in a member as a concentrated force moves over 
the member. 

Once the influence line is drawn, the location of the live load which will cause the 
greatest influence on the structure can be found very quickly.Therefore, 
influence lines are important in the design of a structure where the loads move 
along the span (bridges, cranes, conveyors, etc.). 

Although the procedure for constructing an influence line is rather simple, it is 
importantto remember the difference between constructing an influence line 
and constructing a shear or moment diagram.Influence lines represent the 
effect of amoving load only at a specified point on a member, whereas shear 
and moment diagrams represent the effect of fixed loads at allpointsalong the 
member. 

Procedure for determining theinfluence line at a pointPforanyfunction (reaction, 
shear, or moment). 

 
 

1. Place a unit load (a load whose magnitude is equal to one) at a point, x, along 
the member. 

2. Use the equations of equilibrium to find the value of the function (reaction, 
shear, or moment) at a specific point P due the concentrated load atx. 

3. Repeat steps 1 and 2 for various values of x over the wholebeam. 
4. Plot the values of the reaction, shear, or moment for themember. 

 

Construction of Influence Lines using Equilibrium Methods 

The most basic method of obtaining influence line for a specific response 
parameter is to solve the static equilibrium equations for various locations of the 
unit load. The general procedure for constructing an influence line is described 
below. 

1. Define the positive direction of the response parameter under consideration 

through a free body diagram of the wholesystem. 
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2..For a particular location of the unit load, solve for the equilibrium of the whole 
system and if required, as in the case of an internal force, also for a part of the 
member to obtain the response parameter for that location of the unit load.This 
gives the ordinate of the influence line at that particular location of theload. 

 
3. Repeat this process for as many locations of the unit load as required to 
determine the shape of the influence line for the whole length of the member. It is 
often helpful if we can consider a generic location (or several locations) x of the 
unitload. 

 

4. Joining ordinates for different locations of the unit load throughout the length 

of the member,we get the influence line for that particular responseparameter. 

 
The following three examples show how to construct influence lines for a support 

reaction, a shear force and a bending moment for the simply supported beam AB . 

 

Example .1 Draw the influence line for (vertical reaction at A ) of beam AB in 

Fig. E6.1. 
 

 

 
Solution: 
 
 

Free body diagram of AB : 
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So the influencelineof : 
 
 

 
 
 
 
 
 
 
 
 

Example 6.2 Draw the influence line for (shear force at mid point) ofbeam 

AB in Fig. E6.2. 
 

 

Solution: 
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For 
 
 
 
 
 
 
 
 
 
 

 

So the influence line for vc 
 

Example 6.3 Draw the influencelinefor (bendingmomentat ) 

for beam AB in Fig.E6.3. 
 

 

 
 

Solution: 
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For  
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For 
 
 
 
 

 

 
 

So, the influenceof  MD : 
 

 
 
 

MÜLLER BRESLAU PRINCIPLE FOR QUALITATIVE INFLUENCE LINES 

 
In 1886, Heinrich Müller Breslau proposed a technique to draw influence 

lines quickly. The Müller Breslau Principle states that the ordinate value of 

an influence line for any function on any structure is proportional to the 

ordinates of the deflected shape that is obtained by removing the restraint 

corresponding to the function from the structure and introducing a force 

that causes a unit displacement in the positive direction. 

 
 

Let us say, our objective is to obtain the influence line for the support 

reaction at A for the beam shown in Figure 38.1. 
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Simply supported beam 
 

 
First of all remove the support corresponding to the reaction and apply a 
force (Figure 38.2) in the positive direction that will cause a unit 
displacement in the direction of RA. The resulting deflected shape will be 
proportional to the true influence line (Figure 38.3) for the support reaction 
at A. 

 
 
 

 
 
 
 
 
 
 
 

Figure 38.2: Deflected shape of beam 



285  

 
 
 
 

 

Figure 38.3: Influence line for support reaction A 
 

 
The deflected shape due to a unit displacement at A is shown in Figure 38.2 

and matches with the actual influence line shape as shown in Figure 38.3. 

Note that the deflected shape is linear, i.e., the beam rotates as a rigid 

body without any curvature. This is true only for statically determinate 

systems. 

 
 

Similarly some other examples are given below. 
 

 
Here we are interested to draw the qualitative influence line for shear at 

section 

 
C of overhang beam as shown in Figure 38.4. 

 
 

 
 

 
Figure 38.4: Overhang beam 
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As discussed earlier, introduce a roller at section C so that it gives freedom 

to the beam in vertical direction as shown in Figure 38.5. 

 
 
 

Now apply a force in the positive direction that will cause a unit 
displacement in the direction of VC. The resultant deflected shape is shown 
in Figure 38.5. Again, note that the deflected shape is linear. Figure 38.6 
shows the actual influence, which matches with the qualitative influence. 

 
 
 

 

 
Figure 38.5: Deflected shape of beam 

 
 

 

 

 

 

 

Figure 38.6: Influence line for shear at section C 
 

 
In this second example, we are interested to draw a qualitative influence 

line for moment at C for the beam as shown in Figure 38.7. 
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Figure 38.7: Beam structure 
 

 
In this example, being our objective to construct influence line for moment, 

we will introduce hinge at C and that will only permit rotation at C. Now 

apply moment in the positive direction that will cause a unit rotation in the 

direction of 

 
Mc. The deflected shape due to a unit rotation at C is shown in Figure 38.8 
and matches with the actual shape of the influence line as shown in Figure 
38.9. 

 
 

 
 

Figure 38.8: Deflected shape of beam 
 

 
 

 
Figure 38.9: Influence line for moment at section C 

 
 
 
 
 
 
 

Maximum shear in beam supporting UDLs 
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If UDL is rolling on the beam from one end to other end then there are two 

possibilities. Either Uniformly distributed load is longer than the span or 

uniformly distributed load is shorter than the span. Depending upon the 

length of the load and span, the maximum shear in beam supporting UDL 

will change. Following section will discuss about these two cases. It should 

be noted that for maximum values of shear, maximum areas should be 

loaded. 

 
 

UDL LONGER THAN THE SPAN 

 
Let us assume that the simply supported beam as shown in Figure 38.10 is 
loaded with UDL of w moving from left to right where the length of the load 
is longer than the span. The influence lines for reactions RA, RB and shear at 
section C located at x from support A will be as shown in Figure 38.11, 

38.12 and 38.13 respectively. UDL of intensity w per unit for the shear at 
supports A and B will be given by 

 
 

 
Figure 38.10: Beam Structure 

 

Figure 38.11: Influence line for support reaction at A  
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Figure 38.13: Influence line for shear at section C 

 
 
 

Suppose we are interested to know shear at given section at C. As shown in 

Figure 38.13, maximum negative shear can be achieved when the head of 

the load is at the section C. And maximum positive shear can be obtained 

when the tail of the load is at the section C. As discussed earlier the shear 

force is computed by intensity of the load multiplied by the area of 

influence line diagram covered by load. Hence, maximum negative shear is 

 
given by 

 
 
 

and maximum positive shear is given by 
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UDL SHORTER THAN THE SPAN 

 
When the length of UDL is shorter than the span, then as discussed earlier, 

maximum negative shear can be achieved when the head of the load is at 

the section. And maximum positive shear can be obtained when the tail of 

the load is at the section. As discussed earlier the shear force is computed 

by the load intensity multiplied by the area of influence line diagram 

covered by load. The example is demonstrated in previous lesson. 

 
 

 
Maximum bending moment at sections in beams supporting UDLs. 

 

Like the previous section discussion, the maximum moment at sections in 

beam supporting UDLs can either be due to UDL longer than the span or 

due to ULD shorter than the span. Following paragraph will explain about 

computation of moment in these twocases. 

 
 

UDL longer than the span 
 

Let us assume the UDL longer than the span is traveling from left end to 

right hand for the beam as shown in Figure 38.14. We are interested to 

know maximum moment at C located at x from the support A. As discussed 

earlier, the maximum bending moment is given by the load intensity 

multiplied by the area of influence line (Figure 38.15) covered. In the 

present case the load will cover the completed span and hence the  

moment at section C can be givenby 
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Figure 38.14: Beam structure 
 

 
 
 
 
 

Figure 38.15: Influence line for moment at section C 
 

 
 
 
 
 
 

Suppose the section C is at mid span, then maximum moment is given by 
 

 
 
 

UDL shorter than the span 
 

As shown in Figure 38.16, let us assume that the UDL length y is smaller 

than the span of the beam AB. We are interested to find maximum bending 

moment at section C located at x from support A. Let say that the mid point 
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of UDL is located at D as shown in Figure 38.16 at distance of zfrom 

support A. Take moment with reference to A and it will bezero. 
 
 

 
 
 

Figure 38.16: Beam loaded with UDL shorter in length than span 
 

 
 
 

To compute maximum value of moment at C, we need to differentiate 

above given equation with reference to z and equal to zero. 
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Therefore, 
 

 
 
 

 

 
Using geometric expression, we can state that 

 

 
 
 
 

 
The expression states that for the UDL shorter than span, the load should 

be placed in a way so that the section divides it in the same proportion as it 

divides the span. In that case, the moment calculated at the section will 

give maximum momentvalue. 
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INDETERMINATE TRUSSES 

 
A difficulty arises in determining the number of releases required to return the 

completely stiff equivalent of a truss to its original state. 

 
Consider the completely stiff equivalent of a plane truss shown in Fig. 16.9(a); 

we are not concerned here with the indeterminacy or otherwise of the support 

system which is therefore omitted. In the actual truss each member is assumed 

to be capable of resisting axial load only so that there are two releases for each 

member, one of shear and one of moment, a total of 2M releases. Thus, if we 

insert a hinge at the end of each member as shown in Fig. 16.9(b) we have 

achieved the required number, 2M, of releases. However, in this configuration, 

each joint would be free to rotate as a mechanism through an infinitesimally 

small angle, independently of the members; the truss is then excessively pin- 

jointed. This situation can be prevented by removing one hinge at each joint as 

shown, for example at joint B in Fig. 16.9(c). The member BC then prevents 

rotation of the joint at B. Furthermore, the presence of a hinge at B in BA and at 

B in BE ensures that there is no moment at B in BC so that the conditions for a 

truss are satisfied. 

 

 
From the above we see that the total number, 2M, of releases is reduced by 1 

for each node. Thus the required number of releases in a plane truss is 

 
 

r =2M − N (16.4) 

so that Eq. (16.3) becomes  

ns=3(M − N +1)−(2M − N)  

or  

ns= M −2N +3 (16.5) 
 
 

Equation (16.5) refers only to the internal indeterminacy of a truss so that the 

degree of indeterminacy of the support system is additional. Also, returning to 

the simple triangular truss of Fig. 16.7(a) we see that its degree of internal 

indeterminacy is, from Eq. (16.5), given by 

 
ns=3−2×3+3=0 

 
 

A similar situation arises in a space truss where, again, each member is required 

to resist axial load only so that there are 5M releases for the complete truss. 

This could be achieved by inserting ball joints at the ends of each member. 

However, we would then be in the same kind of position as the plane truss of 



295 
 

Fig. 16.9(b) in that each joint would be free to rotate through infinitesimally 

small angles about each of the three axes (the members in the plane truss can 

only rotate about one axis) so that three constraints are required at each node, 

a total of 3N constraints. Therefore the number of releases is given by 

 
r =5M −3N 

 
 

so that Eq. (16.2) becomes 
 

 
ns=6(M − N +1)−(5M −3N)  

or  

ns= M −3N +6 (16.6) 
 

For statically determinate plane trusses and space trusses, i.e. 

ns= 0, Eqs (16.5) and (16.6), respectively, becomes 
 

 
M =2N −3 M =3N −6 (16.7) 

 

 

which are the results deduced in Section 4.4 (Eqs (4.1) and 

(4.2)). 

 
 

 
KINEMATIC INDETERMINACY 

 
We have seen that the degree of statical indeterminacy of a structure is, in fact, 

the number of forces or stress resultants which cannot be determined usingthe 

equations of staticalequilibrium 

Analysis of Statically Indeterminate Structures 
 

 
Another form of the indeterminacy of a structure is expressed in terms of its 

degrees of freedom; this is known as the kinematic indeterminacy, nk, of a 

structure and is of particular relevance in the stiffness method of analysis 

where the unknowns are the displacements. 

 

A simple approach to calculating the kinematic indeterminacy of a structure is 

to sum the degrees of freedom of the nodes and then subtract those degrees of 

freedom that are prevented by constraints such as support points. It is 

therefore important to remember that in three-dimensional structures each 

node possesses 6 degrees of freedom while in plane structures each node 

possess three degrees of freedom. 
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EXAMPLE 16.1 Determine the degrees of statical and kinematic indeterminacy 

ofthe beam ABC shown in Fig. 16.10(a). 
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