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UNIT-I
DEFLECTION OF BEAMS

Introduction:

In all practical engineering applications, when we use the different components, normally we
have to operate them within the certain limits i.e. the constraints are placed on the
performance and behavior of the components. For instance we say that the particular
component is supposed to operate within this value of stress and the deflection of the

component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but
there may be the deflection which is the more rigid condition under operation. It is obvious
therefore to study the methods by which we can predict the deflection of members under
lateral loads or transverse loads, since it is this form of loading which will generally produce

the greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential

equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for

beams that are not stressed beyond the elastic limit.
2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear stresses is

neglected.

It can be shown that the deflections due to shear deformations are usually small and hence

can be ignored.
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the
action of loads the beam deflect to a position A'B' under load or infact we say that the axis of
the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the

elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds

good.
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If we look at the elastic line or the deflection curve, this is obvious that the curvature at every

point is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes X
and y, x-axis coincide with the original straight axis of the beam and the y — axis shows the

deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us
construct the normal which intersect at point O denoting the angle between these two normal
be di




But for the deflected shape of the beam the slope i at any point C is defined,

’[ani=d—3'r U | e ¢ i=d—3'r Assuming tani =i
dx dx

Futher

ds=Rdi

howey er,

ds = dx [usually for smallcury ature]
Hence

ds =dx = Rdi

di _ 1

dx R
substitutingthevalueafi, one gat

d [dy]:l rdzg,r 1

or

a\E) R R
Fromthesimplebendingtheory
M_E _El
T R"MR
sothe basic differentialequation governingthe deflectionofbeam sis
d?y
h=EI
i

This is the differential equation of the elastic line for a beam subjected to bending in the
plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection

curve as it is frequently called.

Relationship between shear force, bending moment and deflection: The relationship

among shear force,bending moment and deflection of the beam may be obtained as
Differentiating the equation as derived

dM_g, o'y
di dy®
Thus,

d*y

T

Re calling TM=F
i

F=El

Therefore, the above expression represents the shear force whereas rate of intensity of

loading can also be found out by differentiating the expression for shear force




Therefare if 'y'isthe deflection of the l[oadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
[ =_1
slope i
dzy
B.M=EI
At
I2|3'_-,-'
Shearforce = El
di®
dqg,r

loaddistribution = EI

diF

Methods for finding the deflection: The deflection of the loaded beam can be obtained
various methods.The one of the method for finding the deflection of the beam is the direct

integration method, i.e. the method using the differential equation which we have derived.
Direct integration method: The governing differential equation is defined as

dty or M _ dy
rd Bl du?

bl = EI
onintegrating one get,
d_y= _[de +A - - -- thiseqguation gives the slope
de T El
of theloadedbeam.

Integrate once againto get the deflection.

y=”%dx+ﬁx+5

Where A and B are constants of integration to be evaluated from the known conditions of

slope and deflections for the particular value of x.

Ilustrative examples : let us consider few illustrative examples to have a familiarty with the

direct integration method




Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is

subjected to a concentrated load W at the free end, it is required to determine the deflection

of the beam

In order to solve this problem, consider any X-section X-X located at a distance x from the

left end or the reference, and write down the expressions for the shear force abd the bending

moment

SF|_, = -w
BM|,_, = -W.x

Therefore M| _, = -W.x
the gaverming equation — = ig
Bl dx
substituting the value of M interms of x then integrating the equation one get
M _ dy
El i
iy __ W

dxt  El

iy _ W
IF_I ﬁd}{

dy _ Wl

dx 2El
Integrating oncemare,

dy Wyt

——=-——t Ad

'[dx / ZEl [ Ao

3
y = e +Ax +B
BEI

+ A,

The constants A and B are required to be found out by utilizing the boundary conditions as

defined below

leatx=L;y=0 —ommemmemeemeeeen (1)




atx=L;dy/dx=0  -------m-mmmmmee- 2

Utilizing the second condition, the value of constant A is obtained as

W
=
While employing the first condition yields
WP
Y= —ﬁhﬂ\L +B
EEI
Wl wl®
~BEl ZEl
W - 3wl ol
S ~ "BEI
e
- 3E

Substituting thevalues of A andBwe get
y=1—I-WH3 L WL _WBI
El| G&El 2Bl 3EI
The slope aswell as the deflection would be
maximum at the free end hence putting »=0 we get,

_wl®
Ymax =~ =ET

2
—_ L
[Slnpe]maxm _+E

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is

subjected to U.d.l with rate of intensity varying w / length.The same procedure can also be

adopted in this case




M o_ dly
Bl a4
dzj,r:_wxz
Tz ZE
dty s
=]- dx
IH—’ 2EI
dj.f:_wx3
dx  BEI
dy Wi
- di +] Ad
'[dx / = J Ao
4
W
=-_"_ _+Ax+B
= o

Boundary conditions relevant to the problem are as follows:
1. Atx=L;y=0

2. At x=L; dy/dx =0

The second boundary conditions yields

3
Wy
A=+
BEI
whereasthe first boundary conditions yields

_ wlt owl?

~Z4El BEI
_wkt
aEl
[ 2 4
Thus, le _w il }{_WLI

El| 24 b =

B0 Y™ wilbe at x =0




Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply
supported beam is subjected to a uniformly distributed load whose rate of intensity varies as

w / length.

wi

2

.?JI

In order to write down the expression for bending moment consider any cross-section at

distance of x metre from left end support.

wi ‘ wi
—— x —
2 = = 2

I
5. Fl =w[§]-w.}{

(i

_wel i
I
The differential equation which gives the elastic curve for the deflected beam is
dhy _ M _ 1 [wl.}{_wxz}

&f Bl EILZ2 2
dy _ [ wlx it
—= = —dx- | —dx+A
dx I2E| * I2E| *
2 3
Zowihe e
4El  BEI
Integrating,once more one gets
wlie? e
= - +Ax+B 0 - 1
b = 7 1= I 0

Boundary conditions which are relevant in this case are that the deflection at each support

must be zero.




le.atx=0;y=0:atx=1ly=0

let us apply these two boundary conditions on equation (1) because the boundary conditions
are ony, This yields B = 0.

4 4

_owl ol
12El 24El
wif’
24El
2o the equation which gives the deflection curve is
1 IWL}{3 et WL3}{I

Bz 28 23

'-|||' =
Futher

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e.

at the position where the load is being applied ].So if we substitute the value of x = L/2

o e} 2060500

Syt

Vo™ = " 3EAE

Conclusions

(1) The value of the slope at the position where the deflection is maximum would be zero.

(i) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

_ 1 wla  wt wlx
Elf 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear

force and rate of loading.
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Deflection (y)

&
JE1= | et /ivfé.
2 2 2

L

Slope (dy/dx) /F| W
24
2 3 3 -WL3
El_d_ﬁ'f= Fwlw®  dwer”  wl 24
d |71z 24 24 m

3" degree Polynomial

So the bending moment diagram would be

Bending Moment

¥ -
o

IWL}{ Wt

£
e ‘.l>\} M.
: 2
Single degre® shear force

equation In 'x’
Shear Force

Shear force is obtained by
taking

third derivative.

dgy:wL
di 2

El -y

Rate of intensity of loading

d43,r
dx?

El = -y
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Case 4: The direct integration method may become more involved if the expression for entire
beam is not valid for the entire beam. Let us consider a deflection of a simply supported
beam which is subjected to a concentrated load W acting at a distance 'a' from the left end.

W
A i 5 C
a o b L
a1
Let R; & R, be the reactions then,
W
A lB C

R1

B.M for the portion AB

M =Fix D<xda

B.M for the portion BC

My =Ry x-Wix-a)a<xgl

so the differential equation for the two caseswould be,
4

EIE: Ry

2
E|§T§:R1H-W(x-aj

These two equations can be integrated in the usual way to find ‘y' but this will result in four
constants of integration two for each equation. To evaluate the four constants of integration,
four independent boundary conditions will be needed since the deflection of each support

must be zero, hence the boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required

to evaluate these constants may be defined as follows:

12




(a) at x=0; y =0 in the portion ABi.e. 0 <x<a

(b) at x =1; y =0 in the portion BCie.a<x <1

(c) at x = a; dy/dx, the slope is same for both portion
(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R; is obtained as

R1—Wh
a+h
Hence
dy _ Wb
= 4 L= T
Elﬂf a+|:u}{ Dixza (1
dy _ Wb
—_= - - T [,
T (a+h)}{ W - a) atunil (2)
integrating (17 and (2] we get,
dy _ Wb 4
it SN Ve P Dfxda--------
dx 2(a+by = )
W - 2
Elﬂ= Wh_ o W a) ks aixil-------- ()

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence

letting

K;L:Kz:K

Hence

13




EI-L = Ltk O<xca------ 3
dx 2(a+b] = )
;

dy _ Wb, W[x-a)
El—= - +k AT [ F
dx 2(a+b) 7 A @
Integrating agian egquation (3)and (4] we get
Wb 4
= B .
Ely Eﬁ+hf{+kx+h Oixia (5]
3
Ely = Wb }{3_W(K a) +hx+ky aixél------ (B)
B(a+h) B
Lilizing condition (a)in equation (3) yields
ky, =0

Ltilizing condition (bl in equation (B) yields

3

Wh o g W(l-a)
0= [* - +kl+k
Bla+b] B *

Whooo W[ -a)
k,=- | -k
“TTBfarn B
Buta+b=lI,

Thus,

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition
(d) is that,

At x = a; y; the deflection is the same for both portion

14




Therefare l-l'lllfrnm equ ation 5 - |1‘mm equation 6

ar
W3 ek, =Y H3_W|:x—aj3 +hx +k
B(a+h) P Blath) b *
3
Wb g Wb, W(a-a
& +hkathky = - +ka +k
Bla+b). 3 Ela+h) B AT
Thus, k,=0,
oR
2 3
k4:—Wh(g+h:' +“é':' “k[a+b) =0
Wh(a+h)
kia +b)=- +
(a +b] = =
3
k:_Wh(a+h)+ Wb
B Ga+h)
s0 the deflection equations for each partion of the beam are
Who 4
Ely = +hkx +k
TP
Whi®  Whia+bix | W'k
= - + ----ford€x<a----- 7
B(a L) B B(a +b) orbexsa-----(7)
and for other portion
3
Wb o W (x-a)
Ely = - +kx +k
TEET N 3 H TR
Substituting the value of 'k'inthe above equation
3 w(x-a) Whia+h 3
- Wh  Whear  Wh(atblx Wb Forfora<x<l----- (&)

G(a+h) B B Bla+h)
so either of the equation (71 or (B)may be used ta find the deflection at x=a
hence substituting x = ain either of the equation we get

Yl =- Wa’h?
=2 3EI{a +b)
ORifa=b=V2
_ i
max™  4GE]
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in a
more simpler way. Let us considering the origin at the point of application of the load,

: X
( /2 - X xl x W
A
b, |/2 x=0 B
W/Z : \‘72
X
Wy

Wil
B'ML:-: = T[j— }{]

substituting the value of Minthe governing equation for the deflection

Wil
diy _ 212
A El
2
d_'_-,-'=1_ Wl s Wy LA
% [l 4 4
2 2
NN TN 73 P
El g 12

Boundary conditions relevant for this case are as follows
(atx=0;dy/dx=0
hence, A=0

(ii) at x = 1/2; y = 0 (because now | / 2 is on the left end or right end support since we have

taken the origin at the centre)

16




Thus,

Wik oy
= - +B
2 OB
i
48

Hence he equation which governsthe deflection would be
_ 1 [wnd el
=1

12 48
Hence
3
ki r“| - :—ﬁ At the centre
ma® latx 15E]
d L2
[d_i]maxm atx:t% =:|:ﬁ Atthe ends

Hence the integration method may be bit cumbersome in some of the case. Another

limitation of the method would be that if the beam is of non uniform cross section,

i.e. it is having different cross-section then this method also fails.
So there are other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending moment for

different sections.
2. Area moment methods

3. Energy principle methods

17




UNIT -1l
DEFLECTION BY ENERGY METHODS

Principle of Virtual Work

Many problems in structural analysis can be solved by the principle of virtual work. Consider
a simply supported beam as shown in Fig.5.1a, which is in equilibrium

under the action of real forces F1,F2,....., atco-ordinates1,2,....,n respectively.
Fn
Let ul,u,,..., be the corresponding displacements due to the action of
un
forces F,, F,,......., F,. Also, it produces real internal stresses o, and real internal

strains & inside the beam. Now, let the beam be subjected to second system of

forces (which are virtual not real) &,,0F,,......,0F, In equilibrium as shown in

Fig.5.1b. The second system of forces is called virtual as they are imaginary and they  are

not part of the  real loading. This  produces a displacement
configurationdu,, du, ,......... ,0U, . The virtual loading system produces virtual internal

stresses e and virtual internal strains 5%; inside the beam. Now, apply the

second system of forces on the beam which has been deformed by first system of

forces. Then, the external loads F; and internal stresses o;; do virtual work by

moving along  Su; and S&;. The product Z F.ou, is known as the external virtual

work. It may be noted that the above product does not represent the conventional

work since each component is caused due to different source i.e. du; is not due

18




to F,. Similarly the productzaij5<9ij Is the internal virtual work. In the case of is the internal
virtual work. In the case of is the internal virtual work. In the case configuration éu, ,ou,
peeeneeens ,0U, . The virtual loading system produces virtual internal

stresses  §g; and virtual internal strains 5, inside the beam. Now, apply the
second system of forces on the beam which has been deformed by first system of

forces. Then, the external loads F, and internal stresses oy do virtual work by
moving along  su,and Sg,. The product ZFiéUi is known as the external virtual
work. It may be noted that the above product does not represent the conventional

work since each component is caused due to different source i.e. su, 1s not due

to F,. Similarly the product zaijggij is the internal virtual work. In the case of

19




deformable body, both external and internal forces do work. Since, the beam is in
equilibrium, the external virtual work must be equal to the internal virtual work.
Hence, one needs to consider both internal and external virtual work to establish

equations of equilibrium.

/X Y 74

Fig. 5.1a : Actual system of forces.

5F, 5F, 5F.

X Y Y y %
77 I Su, I Bu, I Su. Ij.HPr‘“I

Fig. 5.1b : virtual system of forces.

Principle of Virtual Displacement

A of true forces moving through the corresponding virtual displacements of the system

i.e. (j(FjJujis equal to the total internal virtual work for every kinematically

admissible (consistent with the constraints) virtual displacements That is virtual
displacements should be continuous within the structure and also it must satisfy boundary
conditions. deformable body is in equilibrium if the total external virtual work done by the

system
20




where o
DRy,
= Iaij 0E;;
dv

Fi and og¢; are the virtual strains due to

virtual displacementsou; .

Principle of Virtual Forces

For a deformable body, the total external complementary work is equal to the total
internal complementary work for every system of virtual forces and stresses that satisfy

the equations of equilibrium.

where 5 are the virtual stresses due to virtual forces oF. and g are the true
ij i ]

strains due to the true displacementsu; .

As stated earlier, the principle of virtual work may be advantageously used to
calculate displacements of structures. In the next section let us see how this can be used
to calculate displacements in a beams and frames. In the next lesson, the truss deflections

are calculated by the method of virtual work.

Unit Load Method

The principle of virtual force leads to unit load method. It is assumed throughout our
discussion that the method of superposition holds good. For the derivation of unit load
method, we consider two systems of loads. In this section, the principle of virtual forces
and unit load method are discussed in the context of framed structures. Consider a
cantilever beam, which is in equilibrium under the action of

a first system of forces F, F,,....., F, causing displacements Uy, U,,....., U, as shown in

Fig. 5.2a. The first system of forces refers to the actual forces acting on the
21




structure. Let the stress resultants at any section of the beam due to first system of forces
be axial force ( P ), bending moment ( M ) and shearing force (V ). Also the

corresponding incremental deformations are axial deformation (d&), flexural
deformation (d@) and shearing deformation (dA) respectively.

For a conservative system the external work done by the applied forces is equal to the
internal strain energy stored. Hence,

Now, consider a second system of forces OF OF 5. SF. . which are virtual and

causing virtual displacements sy, &, ....., Sup respectively (see Fig. 5.2b). Let the
virtual stress resultants caused by virtual forces be P, M,and &V, at any cross

section of the beam. For this system of forces, we could write

n L 2 L 2 L 2
LZ s Pds M ds oV ds (5.4)

:j [ [

2., "' 2EA , 2El , 2AG

where R, M, and oV, are the virtual axial force, bending moment and shear force

respectively. In the third case, apply the first system of forces on the beam, which

has been deformed, by second system of forces o, O, ,....,oF, as shown in Fig

5.2c. From the principle of superposition, now the deflections will be

(up+ Uy ), (U + 80, ),......, (U, + AU, ) respectively

22




F, F.

; L —IW e -

uy

Fig. 5.2a : Actual system.

ot
N

A

oF, SF.

i h 4 Y

'—l = ‘1 -
Su, 6";

F, + BF, F.: + &F,

Su,

-

F. + &F,

-

Fig. 5.2c : Combined system.

u, + du,

In equation (5.5), the term on the left hand side (ZéFjuj), represents the work done

by virtual forces moving through real displacements. Since virtual forces act

23




at its full value, does not appear in the equation. Subtracting equation (5.3)

and (5.4) from equation (5.5) we get,

n L L L

> Fu; = [oRd®+[M,do+ (5.6)
[ov.da

j=1 0 0 0

From Module 1, lesson 3, we know that

d®=_Pds,d49: d}t:V_dS.Hence,
Mds and
EA El AG
n L L L
Zé]: u oPPds M Mds 6V Vds (5.7)
o, EA , AG

Note that does not appear on right side of equation (5.7) as the virtual system
resultants act at constant values during the real displacements. In the present

case 6P, =0 and if we neglect shear forces then we could write equation (5.7) as

n M Mds
> oFu,
ivi =
J E| (5.8)
j=1 0

24




If the wvalue of a particular displacement is required, then choose the

corresponding force g = and all other forces OF; =0 (j=12,....i-1i+1...,n).

Then the above expression may be written as,

"M Mds
@u=[_" (5.9)
i El

0

where oM, are the internal virtual moment resultants corresponding to virtual force

at i-th co-ordinate, o =1. The above equation may be stated as,

(unit virtual load ) unknown true displacement
(5.10)
= J(virtual stress  resultants )(real deformations) ds.

The equation (5.9) is known as the unit load method. Here the unit virtual load is
applied at a point where the displacement is required to be evaluated. The unit load method
is extensively used in the calculation of deflection of beams, frames and trusses.
Theoretically this method can be used to calculate deflections in statically determinate and
indeterminate structures. However it is extensively used in evaluation of deflections of
statically determinate structures only as the method requires a priori knowledge of internal

stress resultants.
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M, as shown in Fig 5.3a.

Example
A cantilever beam of span L is subjecteif to a tip\moment
3L
Evaluate slope and deflection at a point | 1from left support. Assume EI of
3—the
given beam to be constant. 40
1
? Xe
m, A7 ' §
1 c X
A7 :
’ B
l“ 3L4 % + 1
c
[ L N N 34 2l
I "l r L
Fig. 5.3a Example 5.1 Fig. 5.3c. B. M. diagram of the beam due to unit moment at C.

-3u4

Fig. 5.3d B.M.D due to unit load at C

Fig. 5.3b : B. M. diagram of the beam due to moment M,.

Slope at C
To evaluate slope atC, a virtual unit moment is applied at C as shown in Fig 5.3c.
The bending moment diagrams are drawn for tip moment Mg and unit moment

applied at C and is shown in fig 5.3b and 5.3c respectively. Let (¢ be the rotation

at C due to moment Mo applied at tip. According to unit load method, the rotation

26




at C, ¢

is calculated as,

27




MM ()
0o = [—

¢ El

M (x)

where M, (X) and

resultant at any section x . Substituting the value of d\/lv(x)

expression, we get

H@Mdx (0)Mdx
wa=] B +]

0 3L/4 El

_3ML

0

° 4EI

Vertical deflection at C

1)

are the virtual moment resultant and real moment

and M (x) in the above

(2)

To evaluate vertical deflection at C, a unit virtual vertical force is applied ac C as

shown in Fig 5.3d and the bending moment is also shown in the diagram.

According to unit load method,

L
M ()M (x)dx
Qu =]—
" El
3L [
In the present M, (x)= —X[]
case, —] [
14
and M(x)=+M,

28
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(4)
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Example 5.2

Find the horizontal displacement at joint B of the frame ABCD as shown in Fig.
5.4a by unit load method. Assume El to be constant for all members.

B El
c
5 kN 4 ¥
M,
El El 5M
25
+
25
A AD e
o168
+
1' 25m
== >

Fig. 5.4 a Example 5.2

5 kN

\ A
7777 fo.60]

Fig. 5.4 c. Bending moment diagram of the frame for external loading.

/ \
< 777 e

| !
| 10 kN

10 kN

Fig. 5.4 b. Reactions.

The reactions and bending moment diagram of the frame due to applied external loading
are shown in Fig 5.4b and Fig 5.4c respectively. Since, it is required to calculate
horizontal deflection at B, apply a unit virtual load at B as shown in Fig. 5.4d. The

resulting reactions and bending moment diagrams of the frame are shown in Fig 5.4d.
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SkN

A
< 777 &

A

o

' !

N

Fig. 5.4 d. Reactions and bending moment diagram of the frame for unit vertical load applied at B.

Now horizontal deflection at B, uy may be calculated as

° oM
M) xu® = [ v (XM (x)dx

El

A

"M (M) M (IM()dx M (x)M(x)dx

S R

R El . El El

*(x)(5x)dx  2°2(2.5-x)10(2.5—x )dx
:J + J +0
, El ’ El

® (5% 2°20(2.5-x)dx
T,

J

. Bl El

_625 3125 9375
T3EI T 3ElI  3EI
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937.5
u =

—— (=)

Hence, A 3E]

Example

(2)

Find the rotations of joint B and C of the frame shown in Fig. 5.4a. Assume EI to be

constant for all members.

r1
B c
=l / \D
r {
l A
0.4 ’ 0.4

A g \
v— &

Fig. 5.5b. Reaction and B. M. diagram for the unit moment applied at C.
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Rotation at B

Apply unit virtual moment at B as shown in Fig 5.5a. The resulting bending moment
diagram is also shown in the same diagram. For the unit load method, the relevant equation

is,

"M (x)M (x)dx
W0 | (1)
° El

A

wherein, & s the actual rotation at B, &M, () is the virtual stress resultant in the

frame due to the virtual load and > M (X) 4 is the actual deformation of the frame

ha

due to real forces.
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NOW 1 (x)=10(2.5-x) and oM (¥)=0.4(25-x)

Substituting the values of (X)vand SM, (x) inthe equation (1),

25

%=4 ] (2.5-x)’dx
El ,
4 Y 5% 25
=__ 16.25x —_+i‘°’; :E @)
El < 2 3 3El
fo

Rotation at C

For evaluating rotation at C by unit load method, apply unit virtual moment at C as shown
in Fig 5.5b. Hence,

"M (x)M (x)dx
Mxo _ '[ v 3
‘ El

A

#°10(2.5-x)(0.4x)

O = | N dx
4 Y2.5X X3/2,5 31.25
T = — (4)
oo J
El<2 3 3EI
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Unit Displacement Method

Consider a cantilever beam, which is in equilibrium under the action of a system of

forces F,F,,...,F,. Let UyU,,...,u,be the corresponding displacements and
P,M and V be the stress resultants at section of the beam. Consider a second

system of forces (virtual) OF, OF, causing virtual

displacements(u,,[U,,.....,[1u,. Let [IR, ,[IM, [V, be the virtual axial force,

and

bending moment and shear force respectively at any section of the beam.

Apply the first system of forces F,F,.,....,F, on the beam, which has been

previously bent by virtual forces [JF,[JF,,....,[JF,. From the principle of virtual

displacements we have,

(5.11)
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The left hand side of equation (5.11) refers to the external virtual work done by the system
of true/real forces moving through the corresponding virtual displacements of the system.
The right hand side of equation (5.8) refers to internal virtual work done. The principle
of virtual displacement states that the external virtual work of the real forces multiplied
by virtual displacement is equal to the real stresses multiplied by virtual strains
integrated over volume. If the value of a particular force element is required then choose
corresponding virtual displacement as unity. Let

us say, it is required to evaluate F, then choose [Tu, (11711 and [u; (1070 i=23,...,Nn.

From equation (5.11), one could write,

(1) Fy= [ M(M,)ds
—

(5.12)
where, [11)Mm, I8 the internal virtual stress resultant for fy -/ H1. Transposing the
0, '
above equation, we get

(oM,);Mds
H:I El (5.13)
The above equation is the statement of unit displacement method. The above
equation is more commonly used in the evaluation of stiffness co-efficient kij :
Apply real displacements ULy in the structure. Inthat set  y, j71and the other
Un
all displacementsu; (i J013,...,n). For such a case the quantity  Fj in

o
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displacement [Tup [1[711. Now according to unit displacement method,

(1) K, :J- (é]vlv)lM ,ds
——
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UNIT - 11

Stresses in thin cylinders

If the wall thickness is less than about 7% of the inner diameter then the cylinder may be
treated as a thin one. Thin walled cylinders are used as boiler shells, pressure tanks,
pipes and in other low pressure processing equipments. In general three types of
stresses are developed in pressure cylinders viz. circumferential or hoop stress,

longitudinal stress in closed end cylinders and radial stresses. These stresses are

demonstrated in figure-9.1.1.1.

(a) (b) (c)

F- (a) Circumferential stress (b) Longitudinal stress and (c) Radial stress

developed in thin cylinders.
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In a thin walled cylinder the circumferential stresses may be assumed to be
constant over the wall thickness and stress in the radial direction may be neglected for
the analysis. Considering the equilibrium of a cut out section the circumferential
stress [JJJand longitudinal stress 1z can be found. Consider a section of thin
cylinder of radius r, wall thickness t and length L and subjected to an internal pressure p
as shown in figure-9.1.1.2(a). Consider now an
element of included angle dii7at an angle of [J(1from vertical. For equilibrium we

may write

T

2 prdoL cos 6 = 2a,tL

0

pr
This gives 6o =—

t
Considering a section along the longitudinal axis as shown in figure-9.1.1.2 (b)

we may write pir’ = [1; 010 (ro>-ri?)

where ri and r, are internal and external radii of the vessel and since ri[1]ro = r (say)

and ro—ri=t we have []; =
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"T _______ :Ecz
<A\
P .
e \17__ o :E___
\41 _______ [

(a) (b)
F- (a) Circumferential stress in a thin cylinder (b) Longitudinal stress in a
thin cylinder
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Thin walled spheres are also sometimes used. Consider a sphere of internal
radius r subjected to an internal pressure p as shown in figure-9.1.1.3. The
circumferential and longitudinal stresses developed on an element of the surface
of the sphere are equal in magnitude and in the absence of any shear stress due
to symmetry both the stresses are principal stresses. From the equilibrium

condition in a cut section we have

01 = 02=—

Q

I

F- Stresses in a spherical shell

Design Principles

Pressure vessels are generally manufactured from curved sheets joined by
welding. Mostly V- butt welded joints are used. The riveted joints may also be
used but since the plates are weakened at the joint due to the rivet holes the
plate thickness should be enhanced by taking into account the joint efficiency. It
is probably more instructive to follow the design procedure of a pressure vessel.

We consider a mild steel vessel of 1m diameter comprising a 2.5 m long
41




cylindrical section with hemispherical ends to sustain an internal pressure of (
say) 2MPa.

The plate thickness is given by _ proy t where oy is the tensile yield stress. The

minimum plate thickness should conform to the “Boiler code” as given in table-

Minimum plate thickness

Boiler diameter(m) | <0.90 | 0.94 to|1.4t01.80 | >1.80
1.37
Plate thickness | 6.35 8.00 9.525 12.70

(mm)

The factor of safety should be at least 5 and the minimum ultimate stresses of
the plates should be 385 MPa in the tension, 665 MPa in compression and 308

MPa in shear.

This gives t;> 2x10°x0.5

. i.e., 13 mm. Since this value is more than the value
(385x10°/ 5)

prescribed in the code the plate thickness is acceptable. However for better
safety we take tc =15mm. Thickness ts of the hemispherical end is usually

taken as half of this value and we take ts~ 8mm.

Welded Joint

;
The circumferential stress developed in the cylinder oo = p_
t

* . With p=2MPa ,
r=0.5m and tc = 15 mm, o6 =67 MPa and since this is well below the allowable
stress of 100 MPa ( assumed) the butt welded joint without cover plate would be
adequate.

Consider now a butt joint with 10mm cover plates on both sides, as shown in

figure-
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= 15 mmthick plate

Filletweld

F- Longitudinal welded joint with cover plates.

The stress induced in the weld o is given by F¢ = 26uLtcsin45°

where L is the weld length. We may now write Fc = op t.L and therefore ow is

t 15
given by ow = 0y o =67X , Which gives ow = 71 MPa which

t.2sin45 10x2xsin45
again is adequate. For increased safety we may choose the butt joint with 20mm

thick cover plates. The welding arrangement of the vessel is shown in figure-
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Full penetration butt weld 8 mm thick plate

(

Filletweld N

N tm

Longitudinal joint

15 mm thick plate

F- The welding arrangement of the joint.
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Riveted Joint

The joints may also be riveted in some situations but the design must be
checked for safety. The required plate thickness must take account the joint
efficiency n.

This gives tc = pr Substituting p = 2MPa, r =0.5m, n = 70 % and oty = (385/5)

NOyy

MPa we have tc = 18.5 mm. Let us use mild steel plate of 20 mm thickness for
the cylinder body and 10mm thick plate for the hemispherical end cover. The
cover plate thickness may be taken as 0.625t. i.e. 12.5 mm. The hoop stress is
now given by oo - Pr _sompa and therefore the rivets must withstand oot i.e. 1
[

MN per meter.
We may begin with 20mm diameter rivets with the allowable shear and bearing

stresses of 100 MPa and 300 MPa respectively. This gives bearing load on a

single rivet Fp = 300x10°x0.02x0.02 = 120 kN. Assuming double shear
T

the shearing load on a single rivet Fs = 100x10°%x2x _(0-02)2 =62.8kN.
4
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The rivet pitch based on bearing load is therefore (120 KN/ 1MN per meter)
i.e. 0.12m and based on shearing load is (62.8 kN/ 1IMN per meter) i.e. 0.063m.
We may therefore consider a minimum allowable pitch of 60mm. This gives
approximately 17 rivets of 20 mm diameter per meter. If two rows are used the
pitch is doubled to 120mm. For the hemispherical shaped end cover the bearing
load is 60 kN and therefore the rivet pitch is again approximately 60 mm.

The maximum tensile stress developed in the plate section is
ot = 1x10%[(1-17x0.02)x0.02] = 75.76 MPa which is a safe value considering the
allowable tensile stress of 385 MPa with a factor of safety of 5. A longitudinal
riveted joint with cover plates is shown in figure-9.1.2.3 and the whole riveting

arrangement is shown in figure-9.1.2.4.

20 mm thick plate

12.5 mmthick plates

20 mm diameter
rivets at 120 mm pitch

F- A longitudinal joint with two cover plates
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12.5 mm thick
cover plates

20 mm thick plate

20 mm ¢ rivets
[ _ g omme e @
§ ! +, Y1 \60 mm pitch length
+! +
|
+ o+ o+
+ + 4 + |+1+
[
+ 1 4N
\ \_/
+ o+ 10 mm thick plate

10 mm thick cover plates

20 mm ¢ rivets @ 120mm pitch length

9.1.2.4F- General riveting arrangement of the pressure vessel.
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Summary of this Lesson

Stresses developed in thin cylinders are first discussed in general and then
the circumferential (o) and longitudinal stresses (o, ) are expressed in terms of
internal pressure, radius and the shell thickness. Stresses in a spherical shell
are also discussed. Basic design principle of thin cylinders are considered.
Design of both welded and riveted joints for the shells are discussed.
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UNIT-1V

Introduction

A strucure in which the laws of statics are not sufficient to determine all the unknown
forces or moments is said to be statically indeterminate. Such structures are analyzed
by writing the appropriate equations of static equilibrium and additional equations

pertaining to the deformation and constraints known as compatibility condition.

The statically indeterminate structures are frequently used for several advantages. They
are relatively more economical in the requirement of material as the maximum bending
moments in the structure are reduced. The statically indeterminate are more rigid leading
to smaller deflections. The disadvantage of the indeterminate structure is that they are
subjected to stresses when subjected to temperature changes and settlements of the
support. The construction of indeterminate structure is more difficult if there are

dimensional errors in the length of members or location of the supports.

This chapter deals with analysis of statically indeterminate structures using various force

methods.

Analysis of Statically Indeterminate Beams

The moment area method and the conjugate beam method can be easily applied for the
analysis of statically indeterminate beams using the principle of superposition.
Depending upon the degree of indeterminacy of the beam, designate the excessive
reactions as redundant and modify the support. The redundant reactions are then treated
as unknown forces. The redundant reactions should be such that they produce the
compatible deformation at the original support along with the applied loads. For example
consider a propped cantilever beam as shown in Figure 5.1(a). Let the reaction at B be R as
shown in Figure 5.1(b) which can be obtained with the compability condition that the

downward vertical deflection of B due to applied loading (i.e. &, shown in Figure
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5.1(c)) should be equal to the upward vertical deflection of B due to R (i.e. &, shown

in Figure 5.1(d)).

ﬂ 2 l Y Y Y W W Y W B ﬂ 2 l wow W W Wy B
B
(&) (b)
g l WOW WY Y Y F _ =~ _J_rddd I&D

hhh__“'“‘==,_ Tﬂ‘u g I
- R

(c) (d)

Figure 5.1

Example Determine the support reactions of the propped cantilever beam as shown in Figure

5.2(a).

I” :
5

e i =& i
| | —4

e
SN

Figure 5 2(a)

Solution: The static indeterminacy of the beam is =3 — 2 = 1. Let reaction at B is R acting in

the upward direction as shown in Figure 5.2(b). The condition available is that the &, =0,
l F
B

Figure 2.2(b)

Sy
Fr
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(a) Moment area method

The bending moment diagrams divided by EI of the beam are shown due to P and R in Figures

5.2(c) and (d), respectively.

L Liz Lrz y
I .J"l"l. .
FL a
2RI
(c)
RL
EI '
L L3 . 20053 N
[ ™ 1
(d)

Figure 5. 2(c-d)

Since in the actual beam the deflection of the point B is zero which implies that the deviation

of point B from the tangent at A is zero. Thus,

1 L FL{L L | RL2L
——¥X=¥X—|—+—|+—xlx—|— =10
or 2 2 2RI\Z 3 P Erl 3

5P AE
R=— Am‘=T[(Dm3 - D )T, +(D,, - DT, |

Taking moment about A , the moment at A is given by

MA=PX%—EXL=ﬁ

16 1 D]
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The vertical rection at A is
am T % ) % (1]
t

The bending moment diagram of the beam is shown in Figure 5.2(e).

5FL
32

Figure 5.2(e)

3FL
16

(b) Conjugate beam method

The corresponding conjugate beam of the propped cantilever beam and loading acting on

it are shown in Figure 5.2(f).

o M
BT "

A b
=TT -
EE‘I /\/L'/w i

Li3 L2

el
1

Figure 2.2(f)

The unknown R can be obtained by taking moment about B i.e.

1 L RL{L L 1 RL {24
- —x—= [—+—J+—x£x—[—j=ﬂ

K=K —

2 2 ZERIVZ 3 2 ErL 3
SF
R
lé
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Example 5.2 Determine the support reactions of the fixed beam with internal hinge as shown in
Figure 5.3(a).

) et
"y
3

- .

g

A
b
¥
A
%..
L

Figure 2.5(a)

Solution: The static indeterminacy of the beam is = 4-2-1 =1 Let the shear in the internal hinge
be R . The free body diagrams of the two separated portions of the beam are shown in Figure
5.3(b) along with their M/EI diagrams. The unknown R can be obtained with the condition that

the vertical deflection of the free ends of the two separated cantilever beams is identical.

e
S
Q
.
by

1
l
T
|

(- Ry

Bi

=@

Figure 5.3(b)

Consider AC : The vertical displacement of C is given by

1 (F-R)a 2a
fp=tay=—— K@Y ————— ¥ —
oM Ei 3
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or Ap=-

Consider CB : The vertical displacement of C is given by

1 Rbh 2k
o=t =——ghx——
[ ] mF 3

RbE
¢ 3ET

Equating the ©¢ from Egs. (i) and (ii)

) (F-R)a’ B _Rb3

IET JET

Solving for R will give

_ Fa?
(a2 +5%)

The reactions at the supports are given by

_ Pyl M, Phia
(' +5") [f]

Pt Pab

) (4] Me= o eh ¢]

Va

Vs

T (@ + B
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Example 5.3 Determine the support reactions of the fixed beam with one end fixed and other

supported on spring as shown in Figure 5.4(a). The stiffness of spring is .

k= Bl

%
B 2 Y ¥ ¥Y¥Y ¥ ¥Y¥Y YY ¥ ¥ Y ¥ V¥ Y A

§ k=EIL?

7

Fy

Y

L
Figure 5.4(a)

Solution: The static indeterminacy of the beam is = 3-2 =1. Let the force in the spring be R .
The free body diagram of the beam along with the M/EI diagram and spring are shown in Figure
5.4(b) and (c), respectively. The unknown R can be obtained with the condition that the vertical

deflection of the free end of the beam and spring is identical.
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R |
« ¥ >|
(b)
i 3L/4 3
€ *|
wi? g
2E7
AL
B .
L 2L13 \I
[~ “
(c)

Figure 5.4(b)-(c)

Using moment area theorem, the deflection of free end A of the beam is

1 wi® 3L 1 RL 2L
A==t =| _x el lx T ——-_x ®lx
4T s [ ] 4 2 EI 3

3 2RI R

_wit rRE
A" smr Al

The downward deflection of spring is

_RE
BF

fy=

= | o

Equating &, and &,

R wI' RD
EI  BEI 3EBI

R=_
3d
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The bending moméht atB

L 3wl
M5.=wax——LxL
2 32

13wl

3z [f)]

The vertical reaction at B

V3=wa—E
3d
291,
-== (1]

The force in the spring _ 3*£ (compressive)
3d

The bending moment diagram of the beam is shown in Figure 5.4(d).

Iw i’
2048
O T
2 >
1wk o 3L 31132
32 =
16

Figure 5.4(d)

Example 5.4 Determine the support reactions of the fixed beam as shown in Figure 5.5(a).

The beam carries a uniformly distributed load, w over the left half span.
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¥ ¥V ¥Y¥ ¥YYY¥ Y¥YY

T
A
by

NS

|
!
1

Figure 5.5(a)

Solution: The static indeterminacy of the beam is = 4-2 =2. Let the reactions at B be the
unknown as shown in Figure 5.5(b).

W MB

vivvv vyl 7
.

B

e
AN

Figure 5.5(b) I I

]

(a) Moment Area Method

The free body diagram of the beam is shown below along with their M/EI diagrams. The

unknowns Vs and 7 can be obtained with the condition that the vertical deflection and

slope at B are zero.
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WLQ ]
QEl
(c)
Vel
EI ¢
Li3 |
(d)
L Liz N
r* *
Mg . My
B EI
(e

Figure 5.5 MVE! diagram due to (o) applied external load, () Mz and (&) due to M5
Since the change of slope between points A and B is zero (due to fixed supports at A

and B ), therefore, according to the first moment area theorem,

48;,=10

or iy ¥ S (M




Vol My _wi' or (i)

(t] 2]

1wZ? Swi?
102 ey
13132 L o

ol
I

Figure 5.5(f)

(b) Conjugate Beam Method

The corresponding conjugate beam (i.e. free-free beam) and loading on it are

shown in Figure 5.5(g).

Vil T
[ _\_\_\__\_\_‘"‘—‘—\—\.
Bl [T
v w L L 4 L 4 L 4 L 4 L 4 L 4 L 4 L3
MB -!'1 -~ Y Y F Y - - - - F 3 - 3 B
i ]
L L
Lg T Jfﬂ_:';_ﬂ_:-lﬂ_ﬂ———
W
R |
82l L

—= Figure 5.5(g)
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Considering vertical equilibrium of all forces acting on Conjugate beam

2
lex@ — %}(L - 1X£X£ =1
2 Er Er 3 2 BET

Vel I
or YBE _aeo B

7 ™ g (i

Taking moment about A

1 VLN L (A L {1 L wi*) L
—xlw B kDo R [k 2- —x—xw— w—=1
2 Ei 3 vy 2 32 BEM) B

2
or Vgl My wi
6 2 384

(iv)

Solving egs. (iii) and (iv)

3wl
Vp="r
Y

S I
M =
#1032

Example 5.5 The end B of a uniform fixed beam sinks by an amount D . Determine the end
reactions using moment area method.

Solution: The degree of indeterminacy is 2. Let end reactions due to settlement at B be ", and
Mg as

shown in Figure 5.6(b). The M/EI diagram of the beam is shown in Figure 5.6(c).
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< L >
, (@)
(b) i
M,
Bl
VB
Bl
(©
6 EIA
L2
6 EIA
2
L (d)

Figure 5.6(a)-(d)

Applying first moment area theorem between A and B

Vgl
Mj—lx 52

A8, = L%
4F Ei 2 EI

L=1

M, =22 or (i)




Applying second moment area theorem between point A and B

Vel
IBH__BX x£ l in,xﬁ
Ri 2 2 7 3
or
L MI WD
IET 3R]
Solving egs. (i) and (ii)
8 8LA 12EA
Mg = Z and E-T A

By equilibrium conditions, the reactions at support A are

Example 5.6 Determine the support reactions of the continuous beam as shown in Figure 5.7(a).

A g i gk GC db b B MR . A BN R R ¥ v ¥ lc

B £

7 LAY

— 1 —h— 1 —

Figure 5.7(a)

Solution: The static indeterminacy of the beam is = 3-2 =1. Let the vertical reaction at B be the
unknown R

as shown in Figure 5.7(b). The M/EI diagrams of the beam are shown in Figure 5.7(c).
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A ¥¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ w

Figure 2.7 ()

o 520 wi?

- IRL
2E]
|s 2L/3 |

Figure 5.7(c)

Because of symmetry of two spans the slope at B, &, = 0. As a result

2
tag = Exw'{' w L E— lx—RL w L £=|:I
3 2ET 8 2 2RI 3
or r=¥L
4

or
The vertical reaction at A and C are

1 Swi
VA=VC=wL—§x—

4
-2ve (1]
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The bending moment diagram of the beam is shown in Figure 5.7(d).

Gyl Gyl
128 128
Pl T el T
- N
| 3L/8 | \Vw,ﬂ? | 3018
&

Figure 5.7(d)

Recap

In this course you have learnt the following

Introduction to statically indeterminate structure.

Analysis of statically indeterminates beam using moment area and conjugate beam method.

To demonstrate the application of moment area and conjugate beam method through

illustrative examples.
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UNIT -V

Three Moment Equation

Objectives

In this course you will learn the following

Derivation of three moment equation for analysis of continous beams.

Demonstration of three moment equation using numerical examples.

Three Moment Equation

The continuous beams are very common in the structural design and it is necessary to
develop simplified force method known as three moment equation for their analysis. This
equation is a relationship that exists between the moments atﬂﬂgree points in continuous beam.
The points are considered as three supports of the indetermidate beams. Consider three points
on the beam marked as 1, 2 and 3 as shown in Figure 5.25(a). Let the bending moment at

these points is Af;, Af, and and the corresponding vertical displacement of these points are
Ay, A, and A, respectively. Let and L, be the distance between points 1 —2 and 2 — 3,

respectively.
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3
é | L » I, —) @
Figure 5.25(a)
M, l l M, M,
1% £ % 43 Ly PO
/ A2y \

Figure 5.25(b)

Figure 5.25(d)

The continuity of deflected shape of the beam at point 2 gives
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831 = B33

(5.4)
From the
Figure 5.25(d)
where
_ ho =4
8 = "1‘1%—‘{"‘2 By = 3Tz%mol (5.6)
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Using the bending moment diagrams shown in Figure 5.25(c) and the second moment area

theorem,

2 2
821 =LXL[M1L1 +M2L1 + ﬂlf]_]

i Ef il 3
(5.7)
2 2
A A Mo L
Bgg = Lx : 371 + 271 + A7y (5.8)
Loy Al f 3

where A4 and A, are the areas of the bending moment diagram of span 1-2 and 2-3,

respectively considering the applied loading acting as simply supported beams.

Substituting from Eqgs. (5.7) and Egs. (5.8) in Egs. (5.4) and Egs. (5.5).

L L L L 64.% 64T M — A=A
FA = T V8 e WP N UV 28 e ) O 1% _ A’zxz_l_ﬁg (A, 1:'+'(3 3) 59
1 1 2 i i, i Ly (5.9)

The above is known as three moment equation .

Sign Conventions

The and Af, are positive for sagging moment and negative for hogging moment.

Similarly, areas and are positive if it is sagging moment and negative for hogging
moment. The displacements and are positive if measured downward from the reference

axis.

MM,
4.4 4
ALd, A,
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Example Analyze the continuous beam shown in Figure 5.26(a) by the three moment
equation. Draw the shear force and bending moment diagram.

120 kN
l 40 kNim
p Beyidid i diiliiiiiile
f— 1.5m —>I(__l.5m e B —

Figure 5.26(a)

Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26
(b). Since supports A and C are simply supported

MH=MC=D

20 kdin
l ~r45 i

A B C
Figure 5. 26(k)

Applying the three moment equation to span AB and BC ( 4;= A,= 4;=0)

My, E 20 E+E Mo E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3w T =T

or M ;=-56.25 KN.m
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The reactions at support A, B and C are given as

- 4125 kNVA= 120=1.5-56.25
3

_A40x3x1.5-56.25

Vo ;

=41.25kN

;=120 +40 % 3-41.25-41.25=157.5kN

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d),

respectively.

41.25 41.25 78.75

777 ZTTZ77T7774
y /
Z + v
AFIIIIIIIIIIY.

F T T T T T T T T T T Tr

41.25

\\\\\\\\\

78.775

ST T F T rrrd 7875

(d)
Figure 5.26{c)-(d)
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Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The effect of a fixed support is reproduced by adding an imaginary span 4 Aas

shown in Figure 5.27 (b). The moment of inertia, /,of the imaginary span is infinity so that it

will never deform and the compatibility condition at the end A , that slope should be is zero, is

satisfied.

Ap

120 kN 40 keim

A § l _B 1'r'\"r\rLr‘1'r1'rC

—  L5m—sfe—1.5m —te sm ——]
Figure 5.27(a)
120 kN 40 kM

& I=m % i ’ I

e—— 7, —k— 1.5m —sle— 1.5m —>f 3m ———

Figure 5.27(b)

90 kM :
| 45 kN

A B (B¢
Figure 5.27(c) Simply supported moment diagram

60 60 92

45

60 60

Figure 5.27(d) Shear force diagram (k1)
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2 NP

Figure 5.27(e) Bending moment diagram (kI9m)

Applying three moment equation to the span .4,.4and AB :

L L
M| 2 |+ 200 4 _n+§+MB§=_ﬁx1f2xgnx3x1_5
@ w I i 3%l

2M, + M,=-135 (0

or

Span AB and BC :

My, E Mg E_'_E + M E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3x T =T

or M+ 4M,=-225 (ii)
Solving Egs. (i) and (ii), & ,=—45kNmand Af,=—45kNm

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e),

respectively.

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure

5.28(b). Since the support A is simply supported, if,=0 The moment at D is
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Ma=-20%x2=-40kNm.

Applying three moment equation to the span AB and BC :

M, i 20, i+i oM, E =_ﬁx1f2:<8[lx4x2_ﬁxEHxlDExﬁxE
I F3r 37 dwl fx 3T

or 60y + M = —456 (i)

Span BC and CD : ( 4, =-20kMm )

M, 6 £ 20, i_'_i e a =_ﬁxEHxlDExﬁxB_ﬁxlfleﬁﬂxﬁx(ﬁ+4)f3
i a2 21 B3 fxdf

or M g+ 5M o = =556 (ii)
Solving Egs. (i) and (ii) will give Af, =-59.448kNm and Af.=-99310kbm .

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively.
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[ 2m e 2 e g e 2 P 4y e 2
Figure 5.28(a) Given Beam

160
08

80 l

¥ y
Figure 5.28(b) Simply supported Bending moment diagram (kIN'm)

89.885
65.36
25.138 " 20 20
T + C ol o+
: = & - = 40
54 .86 30.115 30.115

78.64
Figure 5.28(c) Shear force diagram (kIN)

Figure 5.28(d) Bending moment diagram (kINm)

Example 5.25 Analyze the continuous beam show in Fig. 5.29(a) by the three moment
equation method if support B sinks by an amount of 10 mm. Draw the shear force and

bending moment diagram. Take flexural rigidity &r = 48000 kMNm? .
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A 5|

&
% T @ 10mm 37 @ 27 @D

4

m T
[ 4m e 6 »le b ——

Figure 5.29(a) Given Beam

Solution: Since support A and D are simply supported. My=M,=10

Applying the three moment equation for span AB and BC : ( i#,=0)

= =
we |2 e a4y 8 ] ae [ 6] 6xEx10x107 6EGOx107)
1 TaEY; T, 7 -

or b, + M . = 600 (i)

Span BC and CD :

-3
MBE+EMC E_'_i +Mﬂi =_ﬁx£'><1|:|x1|:|
3f ir 27 27 fi

or My + 5 = =556 (ii)

Solving Egs. (i) and (ii), Af,=111.72kNm and
M, =-T0.344 kMNm. The bending moment diagram is shown
in Figure 5.29(b).
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70.344

praattilne—.

H:22
Figure 5.29(b) Bending moment diagram (kNm)

Example 5.22 Analyze the continuous beam shown in Figure 5.26(a) by the three moment
equation. Draw the shear force and bending moment diagram.

120 kN
40 tMNom
4 l Beyidid il idiliile
b= 15m —e—ys; »e 3w —

Figure 5.26(a)

Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26

(b). Since supports A and C are simply supported

My=Mna=0
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20 kdin
l ~r45 i

A B C
Figure 5. 26(k)

Applying the three moment equation to span AB and BC ( 4,= 4,= 4,=0)

My, E I E_'_E + M E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3x T =T

or M ;=-56.25 KN.m

The reactions at support A, B and C are given as

- 4125 kNVA= 120=1.5-56.25
3

Ak 3wl -56.25
3

VC
= 41.25 kN

7, =120+ 40 x 3 -41.25-41.25=157.5kN

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d),

respectively.
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41.25

4195 7875
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Y

+
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/
’/
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78.775
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\\\\\\\\\

41.25

ST T T T T rrrd 78?5

(d)
Figure 5.26(c)-(d)
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Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The effect of a fixed support is reproduced by adding an imaginary span 4 Aas

shown in Figure 5.27 (b). The moment of inertia, /,of the imaginary span is infinity so that it

will never deform and the compatibility condition at the end A , that slope should be is zero, is

satisfied.

Ap

120 kN 40 keim

A § l _B 1'r'\"r\rLr‘1'r1'rC

—  L5m—sfe—1.5m —te sm ——]
Figure 5.27(a)
120 kN 40 kM

& I=m % i ’ I

e—— 7, —k— 1.5m —sle— 1.5m —>f 3m ———

Figure 5.27(b)

90 kM :
| 45 kN

A B (B¢
Figure 5.27(c) Simply supported moment diagram

60 60 92

45

60 60

Figure 5.27(d) Shear force diagram (k1)
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Figure 5.27(e) Bending moment diagram (kI9m)

Applying three moment equation to the span .4,.4and AB :

L L
M| 2 |+ 200 4 _n+§+MB§=_ﬁx1f2xgnx3x1_5
@ w I i 3%l

2M, + M,=-135 (0

or

Span AB and BC :

My, E Mg E_'_E + M E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3x T =T

or M+ 4M,=-225 (ii)
Solving Egs. (i) and (ii), & ,=—45kNmand Af,=—45kNm

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e),

respectively.

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure

5.28(b). Since the support A is simply supported, if,=0 The moment at D is
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Ma=-20%x2=-40kNm.

Applying three moment equation to the span AB and BC :

M, i 20, i+i oM, E =_ﬁx1f2:<8[lx4x2_ﬁxEHxlDExﬁxE
I F3r 37 dwl fx 3T

or 60y + M = —456 (i)

Span BC and CD : ( 4, =-20kMm )

M, 6 £ 20, i_'_i e a =_ﬁxEHxlDExﬁxB_ﬁxlfleﬁﬂxﬁx(ﬁ+4)f3
i a2 21 B3 fxdf

or M g+ 5M o = =556 (ii)
Solving Egs. (i) and (ii) will give Af, =-59.448kNm and Af.=-99310kbm .

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively.
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[ 2m e 2 e g e 2 P 4y e 2
Figure 5.28(a) Given Beam

160
08

80 l

¥ y
Figure 5.28(b) Simply supported Bending moment diagram (kIN'm)

89.885
65.36
25.138 " 20 20
T + C ol o+
: = & - = 40
54 .86 30.115 30.115

78.64
Figure 5.28(c) Shear force diagram (kIN)

Figure 5.28(d) Bending moment diagram (kINm)

Example Analyze the continuous beam show in Fig. 5.29(a) by the three moment equation
method if support B sinks by an amount of 10 mm. Draw the shear force and bending

moment diagram. Take flexural rigidity Er = 43000 :Nm? .
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[ 4m e 6 »le b ——

Figure 5.29(a) Given Beam

Solution: Since support A and D are simply supported. My=M,=10

Applying the three moment equation for span AB and BC : ( i#,=0)

= =
we |2 e a4y 8 ] ae [ 6] 6xEx10x107 6EGOx107)
1 TaEY; T, 7 -

or b, + M . = 600 (i)

Span BC and CD :

-3
MBE+EMC E_'_i +Mﬂi =_ﬁx£'><1|:|x1|:|
3f ir 27 27 fi

or My + 5 = =556 (ii)

Solving Egs. (i) and (ii), Af,=111.72kNm and
M, =-T0.344 kMNm. The bending moment diagram is shown
in Figure 5.29(b).
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70.344

praattilne—.

H:22
Figure 5.29(b) Bending moment diagram (kNm)

Example 5.22 Analyze the continuous beam shown in Figure 5.26(a) by the three moment
equation. Draw the shear force and bending moment diagram.

120 kN
40 tMNom
4 l Beyidid il idiliile
b= 15m —e—ys; »e 3w —

Figure 5.26(a)

Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26

(b). Since supports A and C are simply supported

My=Mna=0
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20 kdin
l ~r45 i

A B C
Figure 5. 26(k)

Applying the three moment equation to span AB and BC ( 4,= 4,= 4,=0)

My, E I E_'_E + M E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3x T =T

or M ;=-56.25 KN.m

The reactions at support A, B and C are given as

- 4125 kNVA= 120=1.5-56.25
3

Ak 3wl -56.25
3

VC
= 41.25 kN

7, =120+ 40 x 3 -41.25-41.25=157.5kN

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d),

respectively.
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4195 7875

Y
Y

+

/IIIIIIIIIIII/

/
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78.775
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(d)
Figure 5.26(c)-(d)
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Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The effect of a fixed support is reproduced by adding an imaginary span 4 Aas

shown in Figure 5.27 (b). The moment of inertia, /,of the imaginary span is infinity so that it

will never deform and the compatibility condition at the end A , that slope should be is zero, is

satisfied.

Ap

120 kN 40 keim

A § l _B 1'r'\"r\rLr‘1'r1'rC

—  L5m—sfe—1.5m —te sm ——]
Figure 5.27(a)
120 kN 40 kM

& I=m % i ’ I

e—— 7, —k— 1.5m —sle— 1.5m —>f 3m ———

Figure 5.27(b)

90 kM :
| 45 kN

A B (B¢
Figure 5.27(c) Simply supported moment diagram

60 60 92

45

60 60

Figure 5.27(d) Shear force diagram (k1)
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Figure 5.27(e) Bending moment diagram (kI9m)

Applying three moment equation to the span .4,.4and AB :

L L
M| 2 |+ 200 4 _n+§+MB§=_ﬁx1f2xgnx3x1_5
@ w I i 3%l

2M, + M,=-135 (0

or

Span AB and BC :

My, E Mg E_'_E + M E =_ﬁx1;"2x9[lx3x1.5_ﬁx2f3x45x3x1.5
I I I I 3x T =T

or M+ 4M,=-225 (ii)
Solving Egs. (i) and (ii), & ,=—45kNmand Af,=—45kNm

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e),

respectively.

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment

equation. Draw the shear force and bending moment diagram.

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure

5.28(b). Since the support A is simply supported, if,=0 The moment at D is
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Ma=-20%x2=-40kNm.

Applying three moment equation to the span AB and BC :

M, i 20, i+i oM, E =_ﬁx1f2:<8[lx4x2_ﬁxEHxlDExﬁxE
I F3r 37 dwl fx 3T

or 60y + M = —456 (i)

Span BC and CD : ( 4, =-20kMm )

M, 6 £ 20, i_'_i e a =_ﬁxEHxlDExﬁxB_ﬁxlfleﬁﬂxﬁx(ﬁ+4)f3
i a2 21 B3 fxdf

or M g+ 5M o = =556 (ii)
Solving Egs. (i) and (ii) will give Af, =-59.448kNm and Af.=-99310kbm .

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively.
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Figure 5.28(a) Given Beam
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Figure 5.28(b) Simply supported Bending moment diagram (kIN'm)

89.885

65.36
25.138 3 20 20

54.86 30.115 30.115

78.64
Figure 5.28(c) Shear force diagram (kIN)

Figure 5.28(d) Bending moment diagram (kINm)

Example 5.25 Analyze the continuous beam show in Fig. 5.29(a) by the three
moment equation method if support B sinks by an amount of 10 mm. Draw the

shear force and bending moment diagram. Take flexural rigidity zr = 4g000 &Nm? .
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Figure 5.2%(a) Given Beam

Solution: Since support A and D are simply supported.  if,=44,=10

Applying the three moment equation for span AB and BC : ( i#,=0)

= =
My i + 2M i+£ + M, i =63<E:<ID:<1D +ﬁE(1nx1n )
f I 3r 37 4 .

or 6y + M, = 600 (i)

Span BC and CD :

=
at| S Ne ane [ 50 6] ar, [ 8] _ExEx10x10
37 T 21 f
or My + 5M = =551 (ii)

Solving Egs. (i) and (ii), Af,=111.72kMNm and
M, =-T0.344 kMNm. The bending moment diagram

is shown in Figure 5.29(b).
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AT e

111.72
Figure 5.29(b) Bending moment diagram (kINm)

Example Determine the support reactions of the propped cantilever beam as

shown in Figure 5.2(a).

I” :
5

e iR S
| | —4

PEa
SRR

Figure 5.2(a)

Solution: The static indeterminacy of the beam is =3 — 2 = 1. Let reaction at B is R
acting in the upward direction as shown in Figure 5.2(b). The condition available is

that the 4, =0.
lP
B

Figure 5.2(b)

P
SRR
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(c¢) Moment area method

The bending moment diagrams divided by EI of the beam are shown due to P an
R in Figures 5.2(c) and (d), respectively.

L Li3 L Liz "
* .rl"l. >
FL a
2ET
(c)
R
Er *
L Li3 » 2L13 N
% i *
(d)

Figure 5. 2(c-d)

Since in the actual beam the deflection of the point B is zero which implies that

the deviation of point B from the tangent at A is zero. Thus,

1 L FL{L L | RLF24
-——r—X—| =+ —|+—xLlx—| — |[=10
or 2 2 2EI\Z2 3 P 3

5P AE
R == A =[Oy -DOCHD,, - DL )C]

Taking moment about A , the moment at A is given by

MA=PX%—EXL=ﬁ

16 1 D]

The vertical rection at A is

d
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P 1LF
e (1)

The bending moment diagram of the beam is shown in Figure 5.2(e).

5FPL
32

Figure 5.2(e)

3FL
16

(d) Conjugate beam method

The corresponding conjugate beam of the propped cantilever beam and

loading acting on it are shown in Figure 5.2(f).

Li3 L2

-+ el
% .-|-=.

Figure 2.2(f)

The unknown R can be obtained by taking moment about B i.e.

1 L FL L L | R 24
-——xX—E— | —+—|+=—xlx—| —|=0
2 2 EEI(E 3] P EI[E]

5

F

R=__
16

Jai
PL . %
ZEF )
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Recap

In this course you have learnt the following

Derivation of three moment equation for analysis of continous beams.

Demonstration of three moment equation using numerical examples.
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