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UNIT-I 

DEFLECTION OF BEAMS 

Introduction:  

In all practical engineering applications, when we use the different components, normally we 

have to operate them within the certain limits i.e. the constraints are placed on the 

performance and behavior of the components. For instance we say that the particular 

component is supposed to operate within this value of stress and the deflection of the 

component should not exceed beyond a particular value.  

In some problems the maximum stress however, may not be a strict or severe condition but 

there may be the deflection which is the more rigid condition under operation. It is obvious 

therefore to study the methods by which we can predict the deflection of members under 

lateral loads or transverse loads, since it is this form of loading which will generally produce 

the greatest deflection of beams.  

Assumption: The following assumptions are undertaken in order to derive a differential 

equation of elastic curve for the loaded beam  

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 

beams that are not stressed beyond the elastic limit.  

2. The curvature is always small.  

3. Any deflection resulting from the shear deformation of the material or shear stresses is 

neglected.  

It can be shown that the deflections due to shear deformations are usually small and hence 

can be ignored.  
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the 

action of loads the beam deflect to a position A'B' under load or infact we say that the axis of 

the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the 

elastic line or deflection curve.  

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 

moment M varies along the length of the beam and we represent the variation of bending 

moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 

good.  

 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 

point is different; hence the slope is different at different points.  

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x 

and y, x-axis coincide with the original straight axis of the beam and the y – axis shows the 

deflection.  

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 

construct the normal which intersect at point O denoting the angle between these two normal 

be di  
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But for the deflected shape of the beam the slope i at any point C is defined,  

 

This is the differential equation of the elastic line for a beam subjected to bending in the 

plane of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection 

curve as it is frequently called.  

Relationship between shear force, bending moment and deflection: The relationship 

among shear force,bending moment and deflection of the beam may be obtained as  

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of 

loading can also be found out by differentiating the expression for shear force 
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Methods for finding the deflection: The deflection of the loaded beam can be obtained 

various methods.The one of the method for finding the deflection of the beam is the direct 

integration method, i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as  

 

Where A and B are constants of integration to be evaluated from the known conditions of 

slope and deflections for the particular value of x.  

Illustrative examples : let us consider few illustrative examples to have a familiarty with the 

direct integration method  
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Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is 

subjected to a concentrated load W at the free end, it is required to determine the deflection 

of the beam  

 

In order to solve this problem, consider any X-section X-X located at a distance x from the 

left end or the reference, and write down the expressions for the shear force abd the bending 

moment  

 

The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below  

i.e at x= L ; y= 0          -------------------- (1)  
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at x = L ; dy/dx = 0      -------------------- (2)  

Utilizing the second condition, the value of constant A is obtained as 

 

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 

subjected to U.d.l with rate of intensity varying w / length.The same procedure can also be 

adopted in this case  
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Boundary conditions relevant to the problem are as follows:  

1. At x = L; y = 0  

2. At x= L; dy/dx = 0  

The second boundary conditions yields  
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Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 

supported beam is subjected to a uniformly distributed load whose rate of intensity varies as 

w / length.  

 

In order to write down the expression for bending moment consider any cross-section at 

distance of x metre from left end support.  

 

 

Boundary conditions which are relevant in this case are that the deflection at each support 

must be zero.  
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i.e. at x = 0; y = 0 : at x = l; y = 0  

let us apply these two boundary conditions on equation (1) because the boundary conditions 

are on y, This yields B = 0.  

Futher  

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. 

at the position where the load is being applied ].So if we substitute the value of x = L/2  

 

Conclusions  

(i) The value of the slope at the position where the deflection is maximum would be zero.  

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.  

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear 

force and rate of loading.  
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Deflection (y)  

 

 

Slope (dy/dx)  

 
 

Bending Moment  

 

So the bending moment diagram would be  

 

Shear Force  

Shear force is obtained by 

taking  

third derivative.  

 

 

Rate of intensity of loading  
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Case 4: The direct integration method may become more involved if the expression for entire 

beam is not valid for the entire beam. Let us consider a deflection of a simply supported 

beam which is subjected to a concentrated load W acting at a distance 'a' from the left end. 

 

Let R1 & R2 be the reactions then,  

 

 

These two equations can be integrated in the usual way to find ‘y' but this will result in four 

constants of integration two for each equation. To evaluate the four constants of integration, 

four independent boundary conditions will be needed since the deflection of each support 

must be zero, hence the boundary conditions (a) and (b) can be realized.  

Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required 

to evaluate these constants may be defined as follows: 
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(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a  

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l  

(c) at x = a; dy/dx, the slope is same for both portion  

(d) at x = a; y, the deflection is same for both portion  

By symmetry, the reaction R1 is obtained as  

 

 

 

 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting  

K1 = K2 = K  

Hence 
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Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition 

(d) is that,  

At x = a; y; the deflection is the same for both portion  
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in a 

more simpler way. Let us considering the origin at the point of application of the load,  

 

 

Boundary conditions relevant for this case are as follows  

(i) at x = 0; dy/dx= 0  

hence, A = 0  

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have 

taken the origin at the centre)  
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Hence the integration method may be bit cumbersome in some of the case. Another 

limitation of the method would be that if the beam is of non uniform cross section,  

 

i.e. it is having different cross-section then this method also fails.  

So there are other methods by which we find the deflection like  

1. Macaulay's method in which we can write the different equation for bending moment for 

different sections.  

2. Area moment methods 

3. Energy principle methods 
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UNIT -II 

DEFLECTION BY ENERGY METHODS 

 

Principle of Virtual Work 

Many problems in structural analysis can be solved by the principle of virtual work. Consider 

a simply supported beam as shown in Fig.5.1a, which is in equilibrium 

under the action of real forces F1 , F2 ,......., 

Fn 

at co-ordinates 1,2,....., n respectively. 

Let u1 , u2 ,......, 

un 

be  the  corresponding  displacements  due  to  the  action  of 

forces F1 , F2 ,......., Fn . Also, it produces real internal stresses ij and real internal 

strains  ij 
inside the beam. Now, let the beam be subjected to second system of 

forces  (which  are  virtual  not  real) F1 ,F2 ,......,Fn 
in  equilibrium  as  shown  in 

Fig.5.1b. The second system of forces is called virtual as they are imaginary and they are 

not part of the real loading. This produces a displacement 

configuration u1 ,u2 ,.........,un . The virtual loading system produces virtual internal 

stresses ij and virtual internal strains ij 
inside the beam. Now, apply the 

second system of forces on the beam which has been deformed by first system of 

forces. Then, the external loads  Fi and internal stresses ij do virtual work by 

moving along ui and ij . The product Fiui 
is known as the external virtual 

work. It may be noted that the above product does not represent the conventional 

work since each component is caused due to different source i.e. ui 
is not due 
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to Fi . Similarly the productijij is the internal virtual work. In the case of is the internal 

virtual work. In the case of is the internal virtual work. In the case configuration u1 ,u2 

,.........,un . The virtual loading system produces virtual internal 

stresses ij and virtual internal strains ij 
inside the beam. Now, apply the 

second system of forces on the beam which has been deformed by first system of 

forces. Then, the external loads  Fi and internal stresses ij do virtual work by 

moving along ui and ij . The product Fiui 
is known as the external virtual 

work. It may be noted that the above product does not represent the conventional 

work since each component is caused due to different source i.e. ui 
is not due 

to Fi . Similarly the product 

 

 

ijij 
is the internal virtual work. In the case of 
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deformable body, both external and internal forces do work. Since, the beam is in 

equilibrium, the external virtual work must be equal to the internal virtual work. 

Hence, one needs to consider both internal and external virtual work to establish 

equations of equilibrium. 

 

 

 

 

 

  

 Principle of Virtual Displacement 

A of true forces moving through the corresponding virtual displacements of the  system  

i.e. Fiui is  equal  to  the  total  internal  virtual  work  for  every kinematically 

admissible (consistent with the constraints) virtual displacements That is virtual 

displacements should be continuous within the structure and also it must satisfy boundary 

conditions. deformable body is in equilibrium if the total external virtual work done by the 

system  
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where ij 

Fi ui  

ij  ij  
dv 

 

 

Fi  and i  are the virtual strains due to 

virtual displacements ui . 

 

 

 Principle of Virtual Forces 

For a deformable body, the total external complementary work is equal to the total 

internal complementary work for every system of virtual forces and stresses that satisfy 

the equations of equilibrium. 

 

Fi  ui 
ij  ij  dv (5.2) 

 

where ij 
are the virtual stresses due to virtual forces Fi 

and ij are the true 

strains due to the true displacements ui . 

As stated earlier, the principle of virtual work may be advantageously used to 

calculate displacements of structures. In the next section let us see how this can be used 

to calculate displacements in a beams and frames. In the next lesson, the truss deflections 

are calculated by the method of virtual work. 

 

 Unit Load Method 

The principle of virtual force leads to unit load method. It is assumed throughout our 

discussion that the method of superposition holds good. For the derivation of unit load 

method, we consider two systems of loads. In this section, the principle of virtual forces 

and unit load method are discussed in the context of framed structures. Consider a 

cantilever beam, which is in equilibrium under the action of 

a first system of forces F1, F2 ,....., Fn causing displacements u1, u2 ,....., un as shown in 

Fig. 5.2a. The first system of forces refers to the actual forces acting on the 
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0 

structure. Let the stress resultants at any section of the beam due to first system of forces 

be axial force ( P ), bending moment ( M ) and shearing force (V ). Also the 

corresponding incremental deformations  are  axial  deformation  ( d),   flexural 

deformation ( d) and shearing deformation ( d) respectively. 

For a conservative system the external work done by the applied forces is equal to the 

internal strain energy stored. Hence, 

 

Now, consider a second system of forces F1 ,F2 ,.....,Fn , which are virtual and 

causing virtual displacements u1,u2 ,.....,un respectively (see Fig. 5.2b). Let the 

virtual stress resultants caused by virtual forces be Pv ,M v and Vv at any cross 

section of the beam. For this system of forces, we could write 

 

n L 2 L 2 L 2 

1 
Fu 

P ds M  ds V  ds 

 
v  

v  
v 

(5.4) 

2 i 1 
i i 

2EA 0 2EI 0    2AG 

where Pv ,M v and Vv are the virtual axial force, bending moment and shear force 

respectively. In the third case, apply the first system of forces on the beam, which 

has been deformed, by second system of forces F1,F2  ,.....,Fn as shown in Fig 

5.2c. From the principle of superposition, now the deflections will be 

u1 u1 , u2 u2 ,......, un un respectively 
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In equation (5.5), the term on the left hand side Fju j , represents the work done 

by virtual forces moving through real displacements. Since virtual forces act 
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

0 

at its full value,  does not appear in the equation. Subtracting equation (5.3) 

and (5.4) from equation (5.5) we get, 

 

n L L L 

Fju j  PvdM vd 

Vvd

(5.6) 

j 1 0 0 0 

 

From Module 1, lesson 3, we know that 

 

d
Pds 

, d 
Mds

 

 

 

 

and 

 
d

Vds 
. Hence, 

EA EI AG 

 

 

n L L L 

F u P Pds M Mds V Vds 

 
v  

v  
v 

(5.7) 

 


j 1 

j    j 
EA

 0 EI 
 

0 AG 

Note that does not appear on right side of equation (5.7) as the virtual system 

resultants act at constant values during the real displacements. In the present 

case Pv  0 and if we neglect shear forces then we could write equation (5.7) as 

 

n 

Fjuj  

L 
M Mds 

 v 

EI 

 

(5.8) 

j 1 0 
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0 

 

If the value of a particular displacement is required, then choose the 

corresponding force Fi   

1 

and all other forces Fj  0 j 1,2,....,i 1, i 1,...., n . 

Then the above expression may be written as, 

 

L 
M Mds 

(1)u  
v
 (5.9) 

i 
EI 

 

where Mv are the internal virtual moment resultants corresponding to virtual force 

at i-th co-ordinate, Fi  1 . The above equation may be stated as, 

 

(unit virtual load  ) unknown true displacement  

(5.10) 

virtual stress resultants real deformations ds. 

 

The equation (5.9) is known as the unit load method. Here the unit virtual load is 

applied at a point where the displacement is required to be evaluated. The unit load method 

is extensively used in the calculation of deflection of beams, frames and trusses. 

Theoretically this method can be used to calculate deflections in statically determinate and 

indeterminate structures. However it is extensively used in evaluation of deflections of 

statically determinate structures only as the method requires a priori knowledge of internal 

stress resultants. 
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Example  

A cantilever beam of span L is subjected to a tip moment 

⎛ 3L ⎞  

 

M0 as shown in Fig 5.3a. 

Evaluate slope and deflection at a point  ⎜  
 

given beam to be constant. 

from left support. Assume EI  of 
the 

4 







Slope at C 
 

To evaluate slope at C , a virtual unit moment is applied at C as shown in Fig 5.3c. 

The bending moment diagrams are drawn for tip moment  M0 and unit moment 

applied at C and is shown in fig 5.3b and 5.3c respectively. Let c be the rotation 

at C due to moment M0 applied at tip. According to unit load method, the rotation 
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at C , c is calculated as, 
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0 

0 

 

(1)

L 
M 

 
v 

xM xdx  

(1) 

 

 

where 

 

M v x





and 

 

M x

c 
EI 

 

are  the  virtual  moment  resultant  and  real  moment 

resultant at any section x . Substituting the value of M v x

expression, we get 

and M xin the above 

 

3L / 4 1Mdx 
L   0Mdx 

(1)c   
0 

 

 



EI 

 


3ML 

 
3L / 4 

 

 

 

(2) 

c 
4EI 

 

Vertical deflection at C 
 

To evaluate vertical deflection at C , a unit virtual vertical force is applied ac C  as 

shown  in  Fig  5.3d  and  the  bending  moment  is  also  shown  in  the  diagram. 

According to unit load method, 

 

 

(1)u 

L 
M 

 
v 

xM xdx  

(3) 

A 
EI  
3L 

In the present 
case, 

 

and 

Mv x  



 4 

M xM 0 

 x 




EI 



29 
 

A 



3 L 

3L 

4   x M 

u  
4 dx 

0 EI 
3L 
3 


M

 
 

 

4  



L 
x dx 

EI 0   4 

3L 


M

 
3L 

 x 

x
2  4 



EI 4 2 

9ML
2
 


32EI 

 

( ) (4) 

0 
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Example 5.2 

Find the horizontal displacement at joint B of the frame ABCD as shown in Fig. 
5.4a by unit load method. Assume EI  to be constant for all members. 

 

 

 

 

 

The reactions and bending moment diagram of the frame due to applied external loading 

are shown in Fig 5.4b and Fig 5.4c respectively. Since, it is required to calculate 

horizontal deflection at B, apply a unit virtual load at B as shown in Fig. 5.4d. The 

resulting reactions and bending moment diagrams of the frame are shown in Fig 5.4d. 
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A 

 

 

 

 

 

Now horizontal deflection at B, uB may be calculated as 
 

D 
M 

(1) u 
B  
 

v
 
xM xdx 

 

(1) 
H 

EI 

 

B 
M xM xdx 

C 
M xM xdx 

D 
M xM xdx 


 v 

 v 
 v   

A EI B EI C EI 

 

5 x5xdx 
2.5 

22.5 x102.5 xdx 

  0 

0 EI 0 EI 

 

5 5x
2 dx 

2.5 
202.5 x2 

dx 

 

0 EI 0 EI 

 


625 


312.5 


937.5 

3EI 3EI 3EI 
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Hence, 
u  

937.5 
( ) (2) 

A 
3EI 

 

Example  
Find the rotations of joint B and C of the frame shown in Fig. 5.4a. Assume EI  to be 

constant for all members. 
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A 

 

Rotation at B 

 

Apply unit virtual  moment at B as shown in Fig 5.5a. The resulting bending moment 

diagram is also shown in the same diagram. For the unit load method, the relevant equation 

is, 

 

 

(1) 

D 
M 

 
v 

xM xdx  

(1) 

B 
EI 

 

wherein, B  is the actual rotation at B, Mv (x) is the virtual stress resultant in the 

frame due to the virtual load and D M (x)
dx

 is the actual deformation of the frame 

 

due to real forces. 

 

A EI 
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3 

A 



0 



Now
, 

M x102.5 xand M x0.42.5 x

Substituting the values of M (x) and Mv (x) in the equation (1), 

 

B  
2.5 

2.5 x2 
dx 

EI  0 

4   5x
2

 

 6.25x 

2.5 

x  

 


62.5 
 

(2) 

EI  2 3 

0
 

3EI 

 

Rotation at C 
 

For evaluating rotation at C by unit load method, apply unit virtual moment at C as shown 

in Fig 5.5b. Hence, 

 

 

(1) 

D 
M 

 
v 

xM xdx  

(3) 

C 
EI 

 

2.5
102.5 x0.4x

C    EI 
dx 

 

4 2.5x
2

 

 
x

3 


 


2.5 


31.25  

(4) 

EI  2 3 3EI 

0 

 

 

 

v 

4 
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

 

Unit Displacement Method 

Consider a cantilever beam, which is in equilibrium under the action of a system of 

forces F1, F2 ,....., Fn .  Let u1, u2 ,....., un be  the  corresponding  displacements  and 

P, M and V be the stress resultants at section of the beam. Consider a second 

system of forces (virtual) F1,F2  

,.....,Fn 

causing virtual 

displacements u1,u2 ,.....,un .  Let Pv ,M v 

and 

Vv be  the  virtual  axial  force, 

bending moment and shear force respectively at any section of the beam. 

Apply  the  first  system  of  forces F1, F2 ,....., Fn on  the  beam,  which  has  been 

previously  bent  by  virtual  forces 

displacements we have, 

F1,F2 ,.....,Fn .  From  the  principle  of  virtual 

 

 

n 

 
j 1 

Fju j 
M x M x ds 

 v 

EI 


Tv 

V 

 

 

 

(5.11) 
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The left hand side of equation (5.11) refers to the external virtual work done by the system 

of true/real forces moving through the corresponding virtual displacements of the system. 

The right hand side of equation (5.8) refers to internal virtual work done. The principle 

of virtual displacement states that the external virtual work of the real forces multiplied 

by virtual displacement is equal to the real stresses multiplied by virtual strains 

integrated over volume. If the value of a particular force element is required then choose 

corresponding virtual displacement as unity. Let 

us say, it is required to evaluate F1 , then choose u1 1 and ui  0 

From equation (5.11), one could write, 

i 2,3,....., n . 

 

1F1 M (Mv )1 ds 

EI 

 

(5.12) 

 

where, M v 

1 

is the internal virtual stress resultant for 
u

1 

1. Transposing the 

above equation, we get  

 

F1 





(Mv )1 Mds 

EI 

 

 

 

(5.13) 

 

The above equation is the statement of unit displacement method. The above 

equation is more commonly used in the evaluation of stiffness co-efficient kij  . 

Apply real displacements u1,....., 

un 

in the structure. In that set u2  1 and the other 

all  displacements ui  

0 

(i 1,3,......, n) .  For  such  a  case  the  quantity Fj in 
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displacement u1 1. Now according to unit displacement method, 

 

1k12 (Mv )1 M 2ds 

EI 

 

(5.14) 
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UNIT - III 

 

Stresses in thin cylinders 

 

If the wall thickness is less than about 7% of the inner diameter then the cylinder may be 

treated as a thin one. Thin walled cylinders are used as boiler shells, pressure tanks, 

pipes and in other low pressure processing equipments. In general three types of 

stresses are developed in pressure cylinders viz. circumferential or hoop stress, 

longitudinal stress in closed end cylinders and radial stresses. These stresses are 

demonstrated in figure-9.1.1.1. 

 

 

 
 

(a) (b) (c) 

 F- (a) Circumferential stress (b) Longitudinal stress and (c) Radial stress 

developed in thin cylinders. 

p 

t 2r t 

C 
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In a thin walled cylinder the circumferential stresses may be assumed to be 

constant over the wall thickness and stress in the radial direction may be neglected for 

the analysis. Considering the equilibrium of a cut out section the circumferential 

stress and longitudinal stress z can be found. Consider a section of thin 

cylinder of radius r, wall thickness t and length L and subjected to an internal pressure p 

as shown in figure-9.1.1.2(a). Consider now an 

element of included angle dat an angle of from vertical. For equilibrium we 

may write 





2 

2prdL cos 2tL 

0 

 

pr 

This gives = 

t 

Considering a section along the longitudinal axis as shown in figure-9.1.1.2 (b) 

we may write pr
2 

= z (ro
2
-ri

2
) 

where ri  and ro  are internal and external radii of the vessel and since riro  = r (say) 

and ro – ri = t we have z = 
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(a) (b) 

 F- (a) Circumferential stress in a thin cylinder  (b) Longitudinal stress in a 

thin cylinder 

z 

P 

t 

r 

p d

 
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Thin walled spheres are also sometimes used. Consider a sphere of internal 

radius r subjected to an internal pressure p as shown in figure-9.1.1.3. The 

circumferential and longitudinal stresses developed on an element of the surface 

of the sphere are equal in magnitude and in the absence of any shear stress due 

to symmetry both the stresses are principal stresses. From the equilibrium 

condition in a cut section we have 

1 = 2= 

 

 

 

 F- Stresses in a spherical shell 
 

 

 

 

Design Principles 

 

Pressure vessels are generally manufactured from curved sheets joined by 

welding. Mostly V– butt welded joints are used. The riveted joints may also be 

used but since the plates are weakened at the joint due to the rivet holes the 

plate thickness should be enhanced by taking into account the joint efficiency. It 

is probably more instructive to follow the design procedure of a pressure vessel. 

We consider a mild steel vessel of 1m diameter comprising a 2.5 m long 



P 

2 

1 
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cylindrical section with hemispherical ends to sustain an internal pressure of ( 

say) 2MPa. 

The plate thickness is given by
 

pryt 
t
 where yt is the tensile yield stress. The 

minimum plate thickness should conform to the “Boiler code” as given in table-  

 

Minimum plate thickness 
 

Boiler diameter(m) 0.90 0.94 to 

1.37 

1.4 to 1.80 1.80 

Plate thickness 

(mm) 

6.35 8.00 9.525 12.70 

 

The factor of safety should be at least 5 and the minimum ultimate stresses of 

the plates should be 385 MPa in the tension, 665 MPa in compression and 308 

MPa in shear. 

This gives tc  2x10
6 
x0.5 

, i.e., 13 mm. Since this value is more than the value 
(385x10

6 
/ 5) 

 

prescribed in the code the plate thickness is acceptable. However for better 

safety we take tc =15mm. Thickness ts of the hemispherical end is usually 

taken as half of this value and we take ts8mm. 

 

Welded Joint 

pr 
The circumferential stress developed in the cylinder = 

tc 

 

 

. With p=2MPa , 
 

r=0.5m and tc = 15 mm, =67 MPa and since this is well below the allowable 

stress of 100 MPa ( assumed) the butt welded joint without cover plate would be 

adequate. 

Consider now a butt joint with 10mm cover plates on both sides, as shown in 

figure-  
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15 mm thick plate 

 

 

 

 

 

 

 

 

 

 

Fillet weld 

 

 

 

 

 F- Longitudinal welded joint with cover plates. 
 

 

 

The stress induced in the weld w is given by Fc = 2wLtcsin450
 

where L is the weld length. We may now write Fc  =  t.L and therefore w  is 

t 15 
given by w  =  0  

= 67x 
o

 

tc 2 sin 45 10x2x sin 45 

which gives w  = 71 MPa which 

again is adequate. For increased safety we may choose the butt joint with 10mm 

thick cover plates. The welding arrangement of the vessel is shown in figure-  
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Full penetration butt weld 8 mm thick plate 

Fillet weld 

Longitudinal joint 

1 m  

 

 

 

 

 

15 mm thick plate 

 

 F- The welding arrangement of the joint. 
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Riveted Joint 

 

The joints may also be riveted in some situations but the design must  be 

checked for safety. The required plate thickness must take account the joint 

efficiency η. 

This gives tc = pr 

ty 

Substituting p = 2MPa, r = 0.5 m, η = 70 % and ty = (385/5) 

 

MPa we have tc  = 18.5 mm. Let us use mild steel plate of 20 mm thickness for 

the cylinder body and 10mm thick plate for the hemispherical end cover. The 

cover plate thickness may be taken as 0.625tc i.e. 12.5 mm. The hoop stress is 

now given by = 

 

MN per meter. 

pr 
50MPa 

tc 

and therefore the rivets must withstand tc   i.e. 1 

We may begin with 20mm diameter rivets with the allowable shear and bearing 

stresses of 100 MPa and 300 MPa respectively. This gives bearing load on a 

single rivet Fb = 300x106x0.02x0.02 = 120 kN. Assuming double shear 


the shearing load on a single rivet FS = 100x106x2x (0.02)
2 
62.8kN. 

4 
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The rivet pitch based on bearing load is therefore (120 kN/ 1MN per meter) 

i.e. 0.12m and based on shearing load is (62.8 kN/ 1MN per meter) i.e. 0.063m. 

We may therefore consider a minimum allowable pitch of 60mm. This gives 

approximately 17 rivets of 20 mm diameter per meter. If two rows are used the 

pitch is doubled to 120mm. For the hemispherical shaped end cover the bearing 

load is 60 kN and therefore the rivet pitch is again approximately 60 mm. 

The    maximum    tensile    stress    developed    in    the    plate    section    is 

t = 1x106/[(1-17x0.02)x0.02] = 75.76 MPa which is a safe value considering the 

allowable tensile stress of 385 MPa with a factor of safety of 5. A longitudinal 

riveted joint with cover plates is shown in figure–9.1.2.3 and the whole riveting 

arrangement is shown in figure-9.1.2.4. 

 

 

20 mm thick plate 

 

12.5 mm thick plates 

 

20 mm diameter  

rivets at 120 mm pitch 

 

 

 

 

 

 

 

 F- A longitudinal joint with two cover plates 
 

 

 



47 
 

 

 

 

 

 

 

20 mm thick plate 

20 mm rivets @ 

 

 

 

 

12.5 mm thick 

cover plates 

+ + 

+ + 

 + 
+ 

+   
+ 

+  
+  

+ + 

+ + + + + 

+ + + 

+ + 

+ + 

60 mm pitch length 

 

 

 

 

 

10 mm thick plate 

10 mm thick cover plates 

20 mm rivets @ 120mm pitch length 

 

 

 

9.1.2.4F- General riveting arrangement of the pressure vessel. 
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  Summary of this Lesson 

 

 

Stresses developed in thin cylinders are first discussed in general and then 

the circumferential ( ) and longitudinal stresses ( z ) are expressed in terms of 

internal pressure, radius and the shell thickness. Stresses in a spherical shell 

are also discussed. Basic design principle of thin cylinders are considered. 

Design of both welded and riveted joints for the shells are discussed. 
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             UNIT-IV 

                   Introduction 
 

A strucure in which the laws of statics are not sufficient to determine all the unknown 

forces or moments is said to be statically indeterminate. Such structures are analyzed 

by writing the appropriate equations of static equilibrium and additional equations 

pertaining to the deformation and constraints known as compatibility condition. 

 

The statically indeterminate structures are frequently used for several advantages. They 

are relatively more economical in the requirement of material as the maximum bending 

moments in the structure are reduced. The statically indeterminate are more rigid leading 

to smaller deflections. The disadvantage of the indeterminate structure is that they are 

subjected to stresses when subjected to temperature changes and settlements of the 

support. The construction of indeterminate structure is more difficult if there are 

dimensional errors in the length of members or location of the supports. 

 

This chapter deals with analysis of statically indeterminate structures using various force 

methods. 

 

 Analysis of Statically Indeterminate Beams 

 

The moment area method and the conjugate beam method can be easily applied for the 

analysis of statically indeterminate beams using the principle of superposition. 

Depending upon the degree of indeterminacy of the beam, designate the excessive 

reactions as redundant and modify the support. The redundant reactions are then treated 

as unknown forces. The redundant reactions should be such that they produce the 

compatible deformation at the original support along with the applied loads. For example 

consider a propped cantilever beam as shown in Figure 5.1(a). Let the reaction at B be R as 

shown in Figure 5.1(b) which can be obtained with the compability condition that the 

downward vertical deflection of B due to applied loading (i.e.   shown in Figure 
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5.1(c)) should be equal to the upward vertical deflection of B due to R (i.e.  
 
shown 

in Figure 5.1(d)). 

 

 

 

Example Determine the support reactions of the propped cantilever beam as shown in Figure 

5.2(a). 
 

 

 

Solution: The static indeterminacy of the beam is = 3 – 2 = 1. Let reaction at B is R acting in 

the upward direction as shown in Figure 5.2(b). The condition available is that the . 
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(a) Moment area method 

 

The bending moment diagrams divided by EI of the beam are shown due to P and R in Figures 

5.2(c) and (d), respectively. 

 

 

 

Since in the actual beam the deflection of the point B is zero which implies that the deviation 

of point B from the tangent at A is zero. Thus, 

 

 

or  
 

   

 

Taking moment about A , the moment at A is given by 
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The vertical rection at A is 

  
 

The bending moment diagram of the beam is shown in Figure 5.2(e). 
 

 

 

(b) Conjugate beam method 

 

The corresponding conjugate beam of the propped cantilever beam and loading acting on 

it are shown in Figure 5.2(f). 

 

 

 

  The unknown R can be obtained by taking moment about B i.e. 
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Example 5.2 Determine the support reactions of the fixed beam with internal hinge as shown in 

Figure 5.3(a). 
 

 

 

Solution: The static indeterminacy of the beam is = 4-2-1 =1 Let the shear in the internal hinge 

be R . The free body diagrams of the two separated portions of the beam are shown in Figure 

5.3(b) along with their M/EI diagrams. The unknown R can be obtained with the condition that 

the vertical deflection of the free ends of the two separated cantilever beams is identical. 

 

 

 

Consider AC : The vertical displacement of C is given by 
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 or 

 

  

 

  Consider CB : The vertical displacement of C is given by 

 

 

 

   Equating the  from Eqs. (i) and (ii) 

 

 

    Solving for R will give 

 

 

 

  The reactions at the supports are given by 

 

  

     
 

 
 

 

 

 



55 
 

 

 

Example 5.3 Determine the support reactions of the fixed beam with one end fixed and other 

supported on spring as shown in Figure 5.4(a). The stiffness of spring is . 

 

 

 

 

 

 

 

 

 

Solution: The static indeterminacy of the beam is = 3–2 =1. Let the force in the spring be R . 

The free body diagram of the beam along with the M/EI diagram and spring are shown in Figure 

5.4(b) and (c), respectively. The unknown R can be obtained with the condition that the vertical 

deflection of the free end of the beam and spring is identical. 
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Using moment area theorem, the deflection of free end A of the beam is 
  

 

 

 

  The downward deflection of spring is 

 

 

  Equating  and  
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  The bending moment at B 

 

 
 

  The vertical reaction at B 

 

 

 

  The force in the spring (compressive) 
 

 

The bending moment diagram of the beam is shown in Figure 5.4(d). 

 

 

 
 

Example 5.4 Determine the support reactions of the fixed beam as shown in Figure 5.5(a). 

The beam carries a uniformly distributed load, w over the left half span. 
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Solution: The static indeterminacy of the beam is = 4-2 =2. Let the reactions at B be the 

unknown as shown in Figure 5.5(b). 

 

 

 

(a) Moment Area Method 

The free body diagram of the beam is shown below along with their M/EI diagrams. The 

unknowns  and  can be obtained with the condition that the vertical deflection and 

slope at B are zero. 
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Since the change of slope between points A and B is zero (due to fixed supports at A 

and B ), therefore, according to the first moment area theorem, 

 

 

 

 

 

 

   or 
 

 

 

 

 

 

 

(i) 
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 or (ii) 
 

  Solving equations (i) and (ii) 
 

 
 

  
 

  The bending moment diagram of the beam is shown in Figure 5.5(f) 

 

 

 

(b) Conjugate Beam Method 
 

 

The corresponding conjugate beam (i.e. free-free beam) and loading on it are 

shown in Figure 5.5(g). 
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  Considering vertical equilibrium of all forces acting on Conjugate beam 

 

 

 

 

  or 
 

 

 Taking moment about A 

 

 

 

 

  or 

 

  Solving eqs. (iii) and (iv) 

 

 

 

 

Example 5.5 The end B of a uniform fixed beam sinks by an amount D . Determine the end 

reactions using moment area method. 

 

 

Solution: The degree of indeterminacy is 2. Let end reactions due to settlement at B be  and 

 as 

shown in Figure 5.6(b). The M/EI diagram of the beam is shown in Figure 5.6(c). 

(iii) 

(iv) 
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  Applying first moment area theorem between A and B 

 

 

 

 

  or (i) 
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  Applying second moment area theorem between point A and B 

 

 

  or

 
    

Solving eqs. (i) and (ii) 

 

 

 

By equilibrium conditions, the reactions at support A are 

 

    
       and 

    
 

 

 

 

Example 5.6 Determine the support reactions of the continuous beam as shown in Figure 5.7(a). 

 

 

Solution: The static indeterminacy of the beam is = 3-2 =1. Let the vertical reaction at B be the 

unknown R 

as shown in Figure 5.7(b). The M/EI diagrams of the beam are shown in Figure 5.7(c). 
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 Because of symmetry of two spans the slope at B ,  As a result 

 

 

or 

 

or 

 

The vertical reaction at A and C are 
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The bending moment diagram of the beam is shown in Figure 5.7(d). 

 

 

 

 

 

 

Recap 

In this course you have learnt the following 

 

Introduction to statically indeterminate structure. 

 

 

Analysis of statically indeterminates beam using moment area and conjugate beam method. 

 

To demonstrate the application of moment area and conjugate beam method through 

illustrative examples. 
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UNIT  - V 

Three Moment Equation 

 

Objectives 

In this course you will learn the following 

 

Derivation of three moment equation for analysis of continous beams. 

 

 

Demonstration of three moment equation using numerical examples. 

 

 

Three Moment Equation 

 

The continuous beams are very common in the structural design and it is necessary to 

develop simplified force method known as three moment equation for their analysis. This 

equation is a relationship that exists between the moments at three points in continuous beam. 

The points are considered as three supports of the indeterminate beams. Consider three points 

on the beam marked as 1, 2 and 3 as shown in Figure 5.25(a). Let the bending moment at 

these points is ,   and and the corresponding vertical displacement of these points are 

,   and , respectively. Let      and   be the distance between points 1 – 2 and 2 – 3, 

respectively. 
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The continuity of deflected shape of the beam at point 2 gives 
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From the 

Figure 5.25(d) 

                                                     
(5.4) 

 

 

           and             (5.5) 

 

where  

 

 

 

                  and (5.6) 



69 
 

 

 

Using the bending moment diagrams shown in Figure 5.25(c) and the second moment area 

theorem, 

 

                                

(5.7) 

                          (5.8) 

where    and    are  the  areas of  the  bending  moment  diagram  of  span  1-2 and 2-3, 

respectively considering the applied loading acting as simply supported beams. 

 

Substituting from Eqs. (5.7) and Eqs. (5.8) in Eqs. (5.4) and Eqs. (5.5). 

 

 (5.9) 

The above is known as three moment equation . 

Sign Conventions 

The  and   are positive for sagging moment and negative for hogging moment. 

Similarly, areas and are positive if it is sagging moment and negative for hogging 

moment. The displacements and      are positive if measured downward from the reference 

axis. 
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Example  Analyze the continuous beam shown in Figure 5.26(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

 

    

 

 Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26 

(b). Since supports A and C are simply supported 

 

 

 

 

 

 

 

 

Applying the three moment equation to span AB and BC ( = = = 0) 

 

 

or =-56.25 kN.m 
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The reactions at support A , B and C are given as 

 

= 41.25 kN 

 

= 41.25 kN 
 

 

 = 120 + 40 3 – 41.25 – 41.25 = 157.5 kN 

 

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d), 

respectively. 
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Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The effect of a fixed support is reproduced by adding an imaginary span as 

shown in Figure 5.27 (b). The moment of inertia, of the imaginary span is infinity so that it 

will never deform and the compatibility condition at the end A , that slope should be is zero, is 

satisfied. 
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Applying three moment equation to the span and AB : 

 

 

or 

 

Span AB and BC : 

 

 

 

or + = – 225 (ii) 

 

Solving Eqs. (i) and (ii), = – 45 kNm and = – 45 kNm 

 

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e), 

respectively. 

 

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure 

5.28(b). Since the support A is simply supported,  The moment at D is 

+ = – 135 (i) 



75 
 

. 

 

Applying three moment equation to the span AB and BC : 

 

 

 

 

 

or                     (i) 

 

Span BC and CD : (  ) 

 

 

or                        (ii) 

 

Solving Eqs. (i) and (ii) will give    and  . 

 

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively. 
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Example 5.25 Analyze the continuous beam show in Fig. 5.29(a) by the three moment 

equation method if support B sinks by an amount of 10 mm. Draw the shear force and 

bending moment diagram. Take flexural rigidity . 
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Solution: Since support A and D are simply supported. 

 

 Applying the three moment equation for span AB and BC : ( ) 

 

 

 

or                                        (i) 

 

Span BC and CD : 

 

 

 

or                                     (ii) 

 

Solving Eqs. (i) and (ii),  and 

. The bending moment diagram is shown 

in Figure 5.29(b). 
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Example 5.22 Analyze the continuous beam shown in Figure 5.26(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

 

    

 

 Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26 

(b). Since supports A and C are simply supported 
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Applying the three moment equation to span AB and BC ( = = = 0) 

 

 

or =-56.25 kN.m 

 

The reactions at support A , B and C are given as 

 

= 41.25 kN 

 

= 41.25 kN 
 

 

 = 120 + 40 3 – 41.25 – 41.25 = 157.5 kN 

 

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d), 

respectively. 
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Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The effect of a fixed support is reproduced by adding an imaginary span as 

shown in Figure 5.27 (b). The moment of inertia, of the imaginary span is infinity so that it 

will never deform and the compatibility condition at the end A , that slope should be is zero, is 

satisfied. 
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Applying three moment equation to the span and AB : 

 

 

or 

 

Span AB and BC : 

 

 

 

or + = – 225 (ii) 

 

Solving Eqs. (i) and (ii), = – 45 kNm and = – 45 kNm 

 

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e), 

respectively. 

 

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure 

5.28(b). Since the support A is simply supported,  The moment at D is 

+ = – 135 (i) 
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. 

 

Applying three moment equation to the span AB and BC : 

 

 

 

 

 

or                     (i) 

 

Span BC and CD : (  ) 

 

 

or                        (ii) 

 

Solving Eqs. (i) and (ii) will give    and  . 

 

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively. 
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Example Analyze the continuous beam show in Fig. 5.29(a) by the three moment equation 

method if support B sinks by an amount of 10 mm. Draw the shear force and bending 

moment diagram. Take flexural rigidity . 
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Solution: Since support A and D are simply supported. 

 

 Applying the three moment equation for span AB and BC : ( ) 

 

 

 

or                                        (i) 

 

Span BC and CD : 

 

 

 

or                                     (ii) 

 

Solving Eqs. (i) and (ii),  and 

. The bending moment diagram is shown 

in Figure 5.29(b). 
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Example 5.22 Analyze the continuous beam shown in Figure 5.26(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

 

    

 

 Solution: The simply supported bending moment diagram on AB and AC are shown in Fig 5.26 

(b). Since supports A and C are simply supported 

 

 

 

 



88 
 

 

 

 

 

Applying the three moment equation to span AB and BC ( = = = 0) 

 

 

or =-56.25 kN.m 

 

The reactions at support A , B and C are given as 

 

= 41.25 kN 

 

= 41.25 kN 
 

 

 = 120 + 40 3 – 41.25 – 41.25 = 157.5 kN 

 

The bending moment and shear force diagram are shown in Figures 5.26(c) and (d), 

respectively. 

 

 

 



89 
 

 



90 
 

 

 

 

Example 5.23 Analyze the continuous beam shown in Figure 5.27(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The effect of a fixed support is reproduced by adding an imaginary span as 

shown in Figure 5.27 (b). The moment of inertia, of the imaginary span is infinity so that it 

will never deform and the compatibility condition at the end A , that slope should be is zero, is 

satisfied. 
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Applying three moment equation to the span and AB : 

 

 

or 

 

Span AB and BC : 

 

 

 

or + = – 225 (ii) 

 

Solving Eqs. (i) and (ii), = – 45 kNm and = – 45 kNm 

 

The shear force and bending moment diagram are shown in Figures 5.27(d) and (e), 

respectively. 

 

Example 5.24 Analyze the continuous beam shown in Figure 5.28(a) by the three moment 

equation. Draw the shear force and bending moment diagram. 

 

Solution: The simply supported moment diagram on AB , BC and CD are shown in Figure 

5.28(b). Since the support A is simply supported,  The moment at D is 

+ = – 135 (i) 
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. 

 

Applying three moment equation to the span AB and BC : 

 

 

 

 

 

or                     (i) 

 

Span BC and CD : (  ) 

 

 

or                        (ii) 

 

Solving Eqs. (i) and (ii) will give    and  . 

 

The bending moment and shear force diagram are shown in Figures 5.28(d) and (c), respectively. 
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Example 5.25 Analyze the continuous beam show in Fig. 5.29(a) by the three 

moment equation method if support B sinks by an amount of 10 mm. Draw the 

shear force and bending moment diagram. Take flexural rigidity . 
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Solution: Since support A and D are simply supported. 

 

 Applying the three moment equation for span AB and BC : ( ) 

 

 

 

or                                        (i) 

 

Span BC and CD : 

 

 

 

or                                     (ii) 

 

Solving Eqs. (i) and (ii),  and 

. The bending moment diagram 

is shown in Figure 5.29(b). 
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Example Determine the support reactions of the propped cantilever beam as 

shown in Figure 5.2(a). 
 

 

 

Solution: The static indeterminacy of the beam is = 3 – 2 = 1. Let reaction at B is R 

acting in the upward direction as shown in Figure 5.2(b). The condition available is 

that the . 
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(c) Moment area method 

 

The bending moment diagrams divided by EI of the beam are shown due to P and 

R in Figures 5.2(c) and (d), respectively. 

 

 

 

Since in the actual beam the deflection of the point B is zero which implies that 

the deviation of point B from the tangent at A is zero. Thus, 

 

 

or  
 

   

 

Taking moment about A , the moment at A is given by 
 

 

  
 

The vertical rection at A is 
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The bending moment diagram of the beam is shown in Figure 5.2(e). 
 

 

 

(d) Conjugate beam method 

 

The corresponding conjugate beam of the propped cantilever beam and 

loading acting on it are shown in Figure 5.2(f). 

 

 

 

  The unknown R can be obtained by taking moment about B i.e. 
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Recap 

In this course you have learnt the following 

 

Derivation of three moment equation for analysis of continous beams. 

Demonstration of three moment equation using numerical examples. 

 


