

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

AERONAUTICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	INTRO	DU	CTION TO RO	BOTICS		
Course Code	AME55	53				
Programme	B.Tech					
Semester	VI	AE				
Course Type	OPEN ELECTIVE					
Regulation	IARE - R16					
	Theory Practical					al
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits
	4		-	3	-	-
Chief Coordinator	Mr. A Anudeep Kumar, Assistant Professor					
Course Faculty	Mr. A	Anuc	deep Kumar, Ass	istant Professo	r	

COURSE OBJECTIVES:

The cou	The course should enable the students to:				
Ι	Develop the knowledge in various robot structures and their workspace.				
II	Develop the skills in performing kinematics analysis of robot systems.				
III	Provide the knowledge of the dynamics associated with the operation of robotic systems.				
IV	Provide the knowledge and analysis skills associated with trajectory planning.				
V	Understand material handling and robot applications in industries.				

COURSE OUTCOMES (COs):

CO 1	Understand characteristic features of robots and usage of different grippers for industrial applications.
CO 2	Understand direct and inverse kinematics of robot structure.
CO 3	Illustrate Differential Kinematics of planar and spherical manipulators.
CO 4	Understand classification of robot actuators and trajectory planning.
CO 5	Remember material handling and applications in manufacturing.

AME553.01	Differentiate between automation and robotics.
AME553.02	Classify robots and describe its anatomy.
AME553.03	Specify various types of industrial sensors.
AME553.04	Classify various grippers.
AME553.05	Discuss about motion analysis of robot.
AME553.06	Understand methods for calculating the kinematics and inverse kinematics of a robot manipulator.
AME553.07	Describe D-H notations, joint coordinates and. world coordinates.
AME553.08	Discuss about homogeneous transformation.
AME553.09	Describe the differential kinematics of planar manipulators.
AME553.10	Illustrate Lagrange-Euler formulation.
AME553.11	Discuss jacobian and robot dynamics.
AME553.12	Illustrate Newton-Euler formulation.
AME553.13	Describe Joint space scheme.
AME553.14	Illustrate cubic polynomial fit.
AME553.15	Classify types of motion.
AME553.16	Explain actuators and classify them.
AME553.17	Illustrate various robot applications in manufacturing.
AME553.18	Discuss the role of robots in material handling.
AME553.19	Explain work cell design.
AME553.20	Discuss the role of robots in assembly and inspection.

COURSE LEARNING OUTCOMES (CLOs):

TUTORIAL QUESTION BANK

	UNIT- I					
	INTRODUCTION TO ROBOTICS					
	Part - A (Short Answer Questions)					
S No	QUESTIONS	Blooms	Course	CLO Code		
		Taxonomy	Outcomes			
		Level				
1	Define Fixed automation.	Remember	CO 1	AME553.01		
2	Explain the working principle of Magnetic grippers.	Understand	CO 1	AME553.04		
3	Define Flexible automation.	Remember	CO 1	AME553.01		
4	Define a Robot.	Remember	CO 1	AME553.01		
5	Define the anatomy of robot.	Remember	CO 1	AME553.01		
6	List the different types of joints used in robots.	Understand	CO 1	AME553.01		
7	List the factors in gripper's selection.	Remember	CO 1	AME553.04		
8	Define the position and orientation of robot.	Remember	CO 1	AME553.02		
9	Differentiate types of joints used in robots	Understand	CO 1	AME553.02		
10	List the factors in gripper's design.	Remember	CO 1	AME553.04		
11	Define manipulator.	Understand	CO 1	AME553.02		
12	List the applications of programmable automation.	Remember	CO 1	AME553.01		
13	Explain the Vacuum cups used in vacuum gripper.	Understand	CO 1	AME553.04		
14	Define industrial automation.	Understand	CO 1	AME553.01		
15	List types of industrial automation.	Remember	CO 1	AME553.01		

16	Define mechanical gripper.	Understand	CO 1	AME553.04
17	List out the disadvantages of mechanical gripper.	Understand	CO 1	AME553.04
18	Define the role of sensor in robot.	Remember	CO 1	AME553.03
19	Classify end effectors.	Understand	CO 1	AME553.04
20	Define SCARA robot.	Remember	CO 1	AME553.02
	Part - B (Long Answer Questions)			
1	Explain the different types of joints used in robots with neat sketch.	Understand	CO 1	AME553.02
2	Explain RPY representation of orientation.	Understand	CO 1	AME553.02
3	Discuss the advantages and disadvantages of using robots in industry.	Remember	CO 1	AME553.01
4	Compare hard automation with soft automation.	Understand	CO 1	AME553.01
5	Discuss in detail about programmable automation.	Remember	CO 1	AME553.01
6	Describe the role of automation in industries and classify automation.	Understand	CO 1	AME553.01
7	Discuss fixed automation in detail and illustrate one example.	Remember	CO 1	AME553.01
8	Illustrate Cartesian coordinate configuration robot with a neat sketch.	Understand	CO 1	AME553.02
9	Discuss programmable automation in detail and illustrate one example.	Understand	CO 1	AME553.01
10	Illustrate cylindrical configuration robot with a neat sketch.	Remember	CO 1	AME553.02
11	Discuss fixed automation in detail and illustrate one example.	Understand	CO 1	AME553.01
12	Describe polar configuration robot with a neat sketch.	Understand	CO 1	AME553.02
13	Explain hydraulic drive used in industrial robot.	Remember	CO 1	AME553.03
15	Differentiate between cartesian coordinate and cylindrical robot.	Understand	CO 1	AME553.02
16	Explain electric drive used in industrial robot.	Remember	CO 1	AME553.03
17	Discuss mechanical grippers used in robots and list out its advantages.	Understand	CO 1	AME553.04
18	Explain vacuum gripper with a neat sketch and list out its disadvantages.	Understand	CO 1	AME553.04
19	Discuss the benefit of using pneumatic drive used in robots.	Remember	COL	AME553.03
20	Differentiate between vacuum gripper and magnetic gripper.	Understand	CO I	AME553.04
1	Part - C (Problem Solving and Critical Thinking (Juestions)	CO 1	AN (E552.04
1	Explain the various factors in gripper's selection and design.	Understand		AME553.04
2	Classify sensors used in robots and explain each of them in detail.	Remember	CO 1	AME553.03
3	At time t the excitation voltage to a resolver is 24 v and $vs_1 = 1/v$ and $vs_2 = -17V$. What is the angle?	Understand	01	AME333.03
4	What is the resolution in degrees of an encoder with 10 tracks?	Understand	CO 1	AME553.03
5	What is the output value of an absolute encoder if the shaft angle is 1 rad	Remember	CO 1	AME553.03
-	and the encoder has 8 tracks?			
6	Describe magnetic gripper in detail with a neat sketch.	Understand	CO 1	AME553.04
7	Describe resolvers used in robots with a neat sketch.	Understand	CO 1	AME553.03
8	Explain four types of robot controls in detail.	Remember	CO 1	AME553.03
9	Describe potentiometer used in robots with a neat sketch.	Understand	CO 1	AME553.03
10	Differentiate between polar configuration robot and jointed-arm	Remember	CO 1	AME553.02
	configuration robot.			
	UNIT-II			
	MOTION ANALYSIS AND KINEMATIC	S		
	Part – A (Short Answer Questions)		~~ •	
1	Define forward kinematics of a robot.	Understand	CO 2	AME553.05
2	Define manipulator kinematics of a robot.	Understand	CO 2	AME553.05
3	Define inverse kinematics of a robot.	Understand	CO 2	AME553.05
4	Write about transformations used in robot kinematics.	Understand	CO 2	AME553.05
5	State a method to solve forward kinematic problems.	Remember	CO 2	AME553.05
0	State a mathed to solve inverse kinematic mehlems	Demember	CO_2	AME553.08
/	Define composite rotation matrix	Understand	CO_2	AME553.08
9	Write homogeneous representation	Understand	CO_2	AME553.08
10	State the D-H notations	Understand	CO 2	AME553.07
11	State how many linear and rotary joints are present in LRL robot	Remember	CO 2	AME553.05
12	Define position control of a robot.	Remember	CO 2	AME553.05
13	State singularity of a robot manipulator.	Understand	CO 2	AME553.05
14	Define force control of a robot.	Understand	CO 2	AME553.05
15	Define redundancy of a robot.	Understand	CO 2	AME553.05
16	Classify location of the end effector of a robot manipulator.	Remember	CO 2	AME553.06

1.5		TT 1	00.2	
17	Define joint space of a robot manipulator.	Understand	CO 2	AME553.06
18	Define world space of a robot manipulator.	Remember	CO 2	AME553.06
19	State how many linear and rotary joints are present in LL robot.	Understand	CO 2	AME553.06
20	State how many linear and rotary joints are present in RR robot.	Remember	CO 2	AME553.06
	Part - B (Long Answer Questions)		~~ •	
1	Explain Direct kinematics of a manipulator with a neat sketch.	Understand	CO 2	AME553.06
2	Discuss inverse kinematics of a manipulator with a neat sketch.	Remember	CO 2	AME553.06
3	Explain about homogenous transformation used in robot manipulator	Understand	CO 2	AME553.08
	kinematics.			
4	Describe composite rotation matrix of a robot manipulator in detail.	Remember	CO 2	AME553.08
5	Explain joint space of a robot manipulator.	Understand	CO 2	AME553.06
6	Describe world space of a robot manipulator.	Understand	CO 2	AME553.06
7	Discuss Denavit - Hartenberg convention in detail.	Remember	CO 2	AME553.06
8	Explain the forward kinematics transformation of a LL robot of 2 D.O.F with a neat sketch.	Understand	CO 2	AME553.06
9	Describe the forward kinematics transformation of a RR robot of 2 D.O.F with a neat sketch.	Understand	CO 2	AME553.06
10	Explain the inverse kinematics transformation of a LL robot of 2 D.O.F with a neat sketch.	Remember	CO 2	AME553.06
11	Describe the inverse kinematics transformation of a RR robot of 2 D.O.F with a neat sketch.	Understand	CO 2	AME553.06
12	Differentiate between joint space and world space of a robot manipulator.	Understand	CO 2	AME553.06
13	Find the resultant rotation matrix that represents a rotation of Φ angle about	Remember	CO 2	AME553.06
	the OY axis followed by a rotation of θ angle about the OZ axis followed by a rotation of α angle about the OX axis.			
14	$P_{uvw}(4,3,2)^T$ with respect to rotated O,U,V,W coordinate system	Understand	CO 2	AME553.06
	corresponding points P_{xyz} with respect to reference coordinate system, if it			
15	has been rotated about OZ axis. $g(y,y,y)$ are given by $(4,2,2)^T$ which are rotated shout Y axis of the	Understand	CO 2	AME552.06
15	$q(u,v,w)$ are given by $(4,3,2)$ which are folded about X-axis of the reference frame by angle of 45° . Determine the point q_{xyz} .	Understand	02	AME555.00
16	One point $p_{uvw} = (6,5,4)^T$ are to be translated a distance +6 units along OX	Remember	CO 2	AME553.06
	axis and -4 units along the OZ axis using appropriate homogeneous matrix,			
	determine the new points p _{xyz} .			
17	Determine the translated vector for the given vector $v = 25i+10j+20k$	Understand	CO 2	AME553.06
	perform a translation by a distance of 8 units in "x" direction, 5 units in "y"			
10	direction and 0 units in "z" direction.	D 1	<u> </u>	A) (E552.06
18	The coordinates of point P in frame $\{1\}$ are $[3.0, 2.0, 1.0]^{T}$. The position	Remember	CO 2	AME553.06
	vector P is rotated about the Σ – axis by 45°. Find the coordinates of point Q,			
10	Frame (1) and (2) have coincident origins and differ only in orientation	Understand	CO 2	AME552.06
19	Frame $\{1\}$ and $\{2\}$ have coincident origins and different only in orientation. Frame $\{2\}$ is initially coincident with frame $\{1\}$. Cartain rotations are carried	Understand	02	AME333.00
	out about the axis of the fixed frame $\{1\}$ first rotation about x_{-} axis by 45^{0}			
	then about y-axis by 30° and finally about y-axis by 60° Obtain the			
	equivalent rotation matrix ${}^{1}\mathbf{R}_{2}$			
20	Two coordinate frames $\{1\}$ and $\{2\}$ are initially coincident. Frame $\{2\}$ is	Understand	CO 2	AME553.05
20	rotated by 45° about a vector $\mathbf{k} = [0.5, 0.866, 0.707]^{\text{T}}$ passing through the	Onderstand	002	71012555.05
	origin. Determine the new description of frame {2}.			
	Part - C (Problem Solving and Critical Thinking O	uestions)	1	
1	Determine the inverse kinematic solution of a RRR robot configuration with	Understand	CO 2	AME553.06
	three DOF with 2D manipulator.			
2	Determine the forward kinematic solution of a DDD robot configuration with	Understand	CO 2	AME552.0C
2	three DOE with 2D manipulator	Understand		AME333.00
1	unce DOF with 2D manipulator.			

3	An LL robot has two links of variable length.	Understand	CO 2	AME553.06
	Assume that the origin of the global coordinate system is defined at joint J_1 ,			
	a) The coordinate of the end-effector point if the variable link length			
	are 3m and 5m. b) Variable link lengths if the end-effector is located at (3.5)			
	x			
	$J_1(0, 0)$ $L_2 = 3 m$			
	Y			
4	Fig: LL Robot	Domomhor	CO 2	AME552.06
4	An KK robot has two mixs of length Thi. Assume that the origin of the global coordinate system is at J_1 .	Kemember	02	AME333.00
	a) Determine the coordinate of the end-effector point if the joint			
	rotations are 30 ^o at both joints.			
	\mathbf{Y}			
	J ₂			
	(x_2, y_2) $\alpha - \theta$			
	$L_2 = 1 \text{ m}$ $L_3 = 1 \text{ m}$ $+$ (1.0)			
	J1 _ 0			
	(0, 0)			
	L			
	2			
	Fig: RR Robot			
5	For the point $a_{uvw} = (6,2,4)^T$ perform following operations.	Understand	CO 2	AME553.06
	a. Rotate 30^0 about the <i>X</i> axis, followed by translation of 6 units along			
	Y axis. b Translate 6 units along Y axis followed by rotation of 30 ⁰ about X			
	axis.			
	c. Rotate 60° about Z axis followed by translation of 10 units along the rotated U axis			
6	For the vector $v=25i+10j+20k$, perform a translation by a distance of 8 in the	Understand	CO 2	AME553.06
	x-direction, 5 in the y-direction and 0 in the z-direction.		~~ •	
7	For the point $3i+7j+5k$ perform the translation of 6 units along Y axis and then rotate 30^0 about X axis	Remember	CO 2	AME553.06
8	Find the transformation matrices for the following operations on the point	Understand	CO 2	AME553.06
	\hat{j}_{i-8} \hat{j}_{i+3} \hat{k}			
	2t - 6j + 5k Rotate 30 ⁰ about x-axis and then translate -5 units along y-axis			
9	Determine the forward kinematic solution of a spherical robot RRL	Understand	CO 2	AME553.06
10	configuration with three DOF with 2D manipulator.		00.0	
10	Determine the inverse kinematic solution of a spherical robot RRL configuration with three DOF with 2D manipulator	Kemember	CO 2	AME553.06
	UNIT -III	I		
	KINEMATICS AND DYNAMICS			
1	Part - A (Short Answer Questions)	Remember	CO 3	AME553 11
2	Define differential kinematics of a robot manipulator.	Remember	<u>CO 3</u>	AME553.09

3	List the steps involved in kinematics model.	Understand	CO 3	AME553.09
4	Define spherical manipulator.	Remember	CO 3	AME553.09
5	Name a method to solve Forward Kinematics.	Remember	CO 3	AME553.09
6	Define degree of freedom of a robot manipulator.	Understand	CO 3	AME553.09
7	Define planar manipulator.	Understand	CO 3	AME553.09
8	Define lagrangian method of approach a robot manipulator.	Remember	CO 3	AME553.10
9	Name the manipulator in which all the links perform spherical motions about	Understand	CO 3	AME553.10
	a common stationary point.			
10	State the lagrangian function.	Understand	CO 3	AME553.10
11	List out forces to be considered in Newton Euler method.	Understand	CO 3	AME553.12
12	Write the kinetic energy of Lagrange- Euler Formulation.	Remember	CO 3	AME553.10
13	List out the advantages of Lagrange Formulation.	Remember	CO 3	AME553.10
14	Write the potential energy of Lagrange- Euler Formulation.	Understand	CO 3	AME553.10
15	List out moments to be considered in Newton-Euler method.	Remember	CO 3	AME553.11
16	Define the dynamics of a two-link planar robot.	Remember	CO 3	AME553.09
17	Name the manipulator which consists of open loop and closed loop chains.	Understand	CO 3	AME553.11
18	Define Homogeneous Transformation Matrix of a manipulator.	Remember	CO 3	AME553.11
19	Sketch a two-link planar manipulator.	Remember	CO 3	AME553.11
20	Define position of any point in space, relative to a reference frame.	Understand	CO 3	AME553.11
	Part – B (Long Answer Questions)			
1	Derive the Jacobian matrix for the 2-link planar manipulator.	Understand	CO 3	AME553.11
2	Differentiate clearly with reference to 2-jointed manipulator of RR type and	Understand	CO 3	AME553.09
	LL type.			
3	Explain the differential kinematics of planar manipulators.	Remember	CO 3	AME553.09
4	Differentiate between planar manipulators and spherical manipulators	Understand	CO 3	AME553.09
5	Explain the differential kinematics of spherical manipulators.	Understand	CO 3	AME553.09
6	Explain the Lagrange Euler's formulation for robot arm.	Remember	CO 3	AME553.10
7	Explain Newton-Euler formulation of a robotic system.	Understand	CO 3	AME553.12
8	Derive the equation of motion for a single link manipulator given the mass	Understand	CO 3	AME553.12
	and length of the link.			
		r		1
9	Derive Lagrange-Euler formulation for the joint force/torque.	Understand	CO 3	AME553.10
10	Explain the Kinematic energy applied to robot arm dynamics analysis.	Understand	CO 3	AME553.10
11	Derive Lagrangian-Euler formulation of joining force/torque for single link	Remember	CO 3	AME553.10
	manipulator of given length and mass.			
12	Explain the Potential energy as applied to robot arm dynamics analysis.	Understand	CO 3	AME553.11
13	Derive Newton-Euler formulation of joining force/torque for single link	Remember	CO 3	AME553.12
	manipulator of given length and mass.		~~ ^	
14	Explain the joint velocities as applied to robot arm dynamics analysis.	Understand	CO 3	AME553.12
15	Differentiate between Newton-Euler formulation and Lagrange-Euler	Understand	CO 3	AME553.12
	formulation.	• ``		
1	Part – C (Problem Solving and Critical Think	ing)	00.1	AME552.00
1	A moving frame $\{1\}$ is represented by the following rotation matrix R,	Understand	CO 3	AME553.09
	where α is the angle of rotation of the frame {1} with respect to the base			
	frame. If a is a function of time, find the angular velocity of frame {1}.			
	$\begin{bmatrix} C\alpha & -S\alpha & 0 \end{bmatrix}$			
	$^{0}\mathbf{R} = \begin{bmatrix} S\alpha & C\alpha & 0 \end{bmatrix}$			

2	Calculate the velocity of the tip of the two-link, planar, RR- manipulator arm	Remember	CO 3	AME553.09
	shown in below fig.			
	×2			
	Y2			
	P			
	$Y_1 \dot{\theta} = $			
	t la Z			
	Yo A H			
	1°			
	θ1			
	L			
	$\theta_1 \rightarrow X_0 \rightarrow Z_1$			
	Track.			
	2*			
	20			
	Fig: A two-link, RR planar manipulator.			
3	Determine the manipulator jacobian matrix for the 3-DOF articulated shown	Understand	CO 3	AME553.09
	in below fig.			
	Z ₀ Y ₃			
	h. α la			
	θ_1 L_2			
	$\dot{\theta}_2 = \frac{\dot{\theta}_3}{1-\frac{1}{2}}$			
	θ_2 θ_3 θ_3			
	$Z_1 \longrightarrow Y_0$			
	X ₀			
	Fig: 3-DOF articulated manipulator arm.			
4	For the manipulator shown in figure below, obtain the jacobian to express the	Remember	CO 3	AME553.09
	cartesian velocities in terms of the joint velocities. Obtain the singularities of			
	the manipulator.			
	$\langle 0, \dot{\theta}_1, \dot{\theta}_1 \rangle$			
	$ +$ $ +$ $ +$ $ +$ $\theta_2, \dot{\theta}_3$			
	$d_2, d_2 \longrightarrow$			
	- }}\\\\\/}\\\\/}\\\\			
	Fig: A 3-DOF RPR arm of a manipulator.			
5	Derive the equation of motion for a single link manipulator since the more	Understand	CO 2	AME552 10
5	and length of the link.	Understand	005	ANIE333.10
6	Using the L-E formulation determine the equation of motion for a Revolute-	Understand	CO 3	AME553.10
	Prismatic (RP) robot arm manipulator shown in below fig.			

		1		
7	Fig: RP manipulator. Compute the effective inertia, coupling inertia for a single link manipulator of mass m ₁ and length 'a ₁ ' as shown in below fig.	Remember	CO 3	AME553.11
	(Vx			
	θ, -~~			
	Fig: Single link manipulator.			
8	Explain following as applied to a robot arm, and also discuss their	Understand	CO 3	AME553.12
	a) Centrifugal force			
	b) Gravity term.			
	UNIT -IV			
-	TRAJECTORY PLANNING AND ACTUATO	ORS		
1	Part – A (Short Answer Questions)	D 1	CO 4	AN (E552.12
2	List the disadvantages of joint space scheme in trajectory planning	Remember	CO 4	AME553.13
3	List the parameters involved in path planning with 3rd degree polynomial	Remember	C04	AME553.13
4	Classify types of motions used in robot manipulator.	Remember	CO 4	AME553.13
5	List the advantages of joint space scheme in trajectory planning.	Understand	CO 4	AME553.13
6	Define straight line motion in robot manipulator.	Remember	CO 4	AME553.15
7	Define joint interpolated motion in robot manipulator.	Understand	CO 4	AME553.13
8	List the advantages of Cartesian-space scheme in trajectory planning.	Understand	CO 4	AME553.13
9	List the disadvantages of Cartesian-space scheme in trajectory planning	Understand	CO 4	AME553.13
10	Define the Joint space trajectory planning.	Understand	CO 4	AME553.13
11	Classify actuators used in robot manipulator.	Kemember	<u>CO 4</u>	AME553.16
12	Define ultrasonic provimity sensors.	Understand	CO 4	AME553.16
13	Explain the working of DC servo Motor	Understand	CO 4	AME553.10
15	Define the principle of a Resolver.	Remember	CO 4	AME553.16
16	List the characteristics of actuators used in robot manipulator.	Understand	CO 4	AME553.16
17	Define the pneumatic actuator used in robot manipulator.	Understand	CO 4	AME553.16
18	List out the components used in pneumatic actuators.	Remember	CO 4	AME553.16
19	Mention the advantages of pneumatic actuators.	Remember	CO 4	AME553.16

20	List out the disadvantages of pneumatic actuators.	Understand	CO 4	AME553.16
	Part – B (Long Answer Questions)			
1	Describe different path control modes in robotics.	Understand	CO 4	AME553.13
2	Briefly explain trajectory planning for robotics.	Understand	CO 4	AME553.13
3	Explain trajectory planning with respect to PTP robot considering modified	Remember	CO 4	AME553.13
	constant velocity of joint.			
4	Explain the parameters involved in the path planning with 3rd degree	Understand	CO 4	AME553.13
	polynomial.			
5	Discuss the general considerations in trajectory planning.	Understand	CO 4	AME553.13
6	Explain path planning with a block diagram.	Understand	CO 4	AME553.13
7	Differentiate between joint-space and cartesian space.	Remember	CO 4	AME553.13
8	Discuss the general considerations of joint interpolated trajectory.	Understand	CO 4	AME553.13
9	Explain trajectory planning with 5 th order polynomial.	Understand	CO 4	AME553.16
10	Explain the working principle of proximity sensor with a neat sketch.	Understand	CO 4	AME553.16
11	Discuss the role of feedback in robots and classify robot components.	Remember	CO 4	AME553.16
12	Compare between DC motors and Stepper motors used in robot manipulator.	Understand	CO 4	AME553.16
13	Explain features and application of hydraulic actuators in robotics	Understand	CO 4	AME553.16
14	Explain the performance and selection criteria of electric motors in robotics.	Understand	CO 4	AME553.16
15	Enlist the main elements of a hydraulic system used in robot and explain	Remember	CO 4	AME553.16
	their functions briefly.			
16	Briefly classify actuators used in robot manipulator.	Understand	CO 4	AME553.16
17	Explain stepper motor with a neat sketch and list out its advantages and	Remember	CO 4	AME553.16
	disadvantages.			
18	Enlist the main elements of a pneumatic system used in robot and explain	Understand	CO 4	AME553.16
	their functions briefly.			
19	Explain the types of touch sensors with neat sketches.	Understand	CO 4	AME553.16
20	Explain tactile sensors and the range sensors with a neat sketch.	Understand	CO 4	AME553.16
	Part – C (Problem Solving and Critical Think	ing)		
1	Determine the time required for each joint of a three-axis RRR manipulator	Understand	CO 4	AME553.14
	to travel the following distances using slew motion; joint 1, 1000; joint 2,			
	300; and joint 3, 600. All joints travel at a rotation velocity of 150/s.			
2	Explain trajectory planning and show how trajectory planning is done in case	Remember	CO 4	AME553.14
	of PTP (Point-to-point) robot having constant maximum velocity and finite			
	acceleration and deceleration.			
3	A single link rotary robot is required to move from $\Theta(0)=45^{\circ}$ to $\Theta(2)=90^{\circ}$ in	Understand	CO 4	AME553.14
	two seconds. Joint velocity and acceleration are zero at initial and final			
	positions. What is the highest degree polynomial that can be used to			
	accomplish the motion?			
4	Find expressions for the joint motion parameters by using cubic polynomial	Remember	CO 4	AME553.14
	fit in joint space scheme. Use the following data: $\Theta(0)=2^{\circ}$, $\Theta(f)=7^{\circ}$ t=3sec.	** 1 1	<u> </u>	
5	One of the joints of articulated robot has to travel from initial angle of 20° to	Understand	CO 4	AME553.14
	final angle of 84° in 4 seconds. Using 3rd degree polynomials calculate joint			
	angles at one, two, three seconds.	TT. 1 · 1	<u> </u>	
6	A single cubic trajectory given by $q(t) = 30 + t^2 - 6t^3$ is used for a period of	Understand	CO 4	AME553.14
	s determine the start and goal positions, velocity and acceleration of the end			
7	Design a single polynomial trainstory which starts from the initial residence f	Domomter	CO 4	AME552 14
/	Design a single polynomial trajectory which starts from the initial position of $Q(0)=10^{0}$ passes through a via point $Q(1)=5^{0}$ and then store at final equilation	Kemember	004	AME553.14
	$\Theta(0)=10^{\circ}$, passes through a via point $\Theta(1)=5^{\circ}$ and then stops at final angular position $\Theta(2)=50^{\circ}$. The velocities of stort and stop positions are 0.			
0	position $O(2)=50$. The velocities of start and stop positions are 0.	Understand	CO 4	AME552 14
0	A single-link root with a rotary joint is monothermore to $\Theta(f) = 75^{\circ}$ in 2 seconds. Find	Understand	004	ANIE333.14
	the coefficients of a cubic that accomplishes this motion and brings the			
	manipulator to rest at the goal			
		ll		l
	ELECTRIC ACTUATORS AND DOROTIC ADDI I	CATIONS		
	Part - A (Short Answer Questions)			
1	List out the industrial applications of robots	Understand	CO 5	AME553 17
2	State the features of robot in machine unloading applications	Remember	<u> </u>	AME553.17
2	What are the features of robot in machine loading applications?	Understand	<u> </u>	AME553.17
5	to have the reactives of robot in machine roading appreations:	Understand		111112333.17

4	List out motorial transfor applications	Domomhon	CO 5	AME552 17
4	Define nick and place operation performed by robot	Remember	CO 5	AME553.17
5	List out advantages of rebot are welding	Remember	CO 5	AME553.17
7	Sate the considerations of robots in material handling	Understand	CO 5	AME553.17
/ Q	List out advantages of robot spray cogting	Understand	CO 5	AME553.17
0	State the considerations of Pohots in material handling	Understand	CO 5	AME553.17
9	List out problems encountered in emplying robots to are welding	Understand	CO 5	AME552.18
10	Close if y verious methods of part presentation in essembly process	Damamhar	CO 5	AME552.18
11	Define outemption in inspection	Understand	CO 5	AME552.20
12	List out the features of welding relation	Damamhar	CO 5	AME553.20
13	Classify userious according tobol.	Kennennber Um de nate m d	CO 5	AME553.18
14	Classify various assembly systems configuration	Duderstand	<u> </u>	AME553.20
15	List out the sensors used in robotic arc weiding.	Kemember	<u> </u>	AME553.18
10	Define work volume of a robot.	Understand	<u> </u>	AME553.18
1/	Define remote control compliance device for assembly operations	Remember	<u> </u>	AME553.18
18	Classify workcell control.	Understand	<u> </u>	AME553.20
19	List out considerations in workcell design.	Remember	<u> </u>	AME553.20
20	Define interlock in robotic workcell design.	Understand	CO 5	AME553.20
	Part - B (Long Answer Questions)		~~ <i>-</i>	
1	Explain spray painting by robots and list out the advantages.	Understand	CO 5	AME553.17
2	Discuss various methods of part presentation in assembly process.	Remember	CO 5	AME553.17
3	Explain function of robots in assembly and inspection.	Understand	CO 5	AME553.20
4	Explain pick-and-place robots for machining operation of die casting.	Understand	CO 5	AME553.17
5	Describe the features of welding robot and list out its advantages.	Remember	CO 5	AME553.17
6	Explain pick-and-place robots for machining operation of plastic moulding.	Understand	CO 5	AME553.17
7	Explain compliance devices used for assembly operations with a neat sketch.	Understand	CO 5	AME553.18
8	Explain use of robots in the fields of welding and painting.	Remember	CO 5	AME553.17
9	Discuss with the neat diagram how robot can be gainfully employed in the	Understand	CO 5	AME553.17
	inspection methods of component made in large number.			
10	Briefly explain various sensors used in robotic arc welding.	Understand	CO 5	AME553.17
11	Classify various assembly systems configuration.	Understand	CO 5	AME553.20
12	Briefly explain the role of robot in machine loading applications.	Remember	CO 5	AME553.20
13	Discuss the importance of work cell design for industrial application.	Understand	CO 5	AME553.19
14	Briefly explain peg-in-hole assembly with a neat sketch.	Remember	CO 5	AME553.17
15	Discuss the steps involved in assembly operations.	Understand	CO 5	AME553.20
16	Explain sensor based inspection.	Understand	CO 5	AME553.17
17	Discuss the role of robots in non-industrial applications.	Remember	CO 5	AME553.20
18	Explain vision based inspection.	Understand	CO 5	AME553.20
19	Explain arc welding robot requirements.	Understand	CO 5	AME553.17
20	Discuss the importance of robot in assembly task.	Remember	CO 5	AME553.20
Part – C (Problem Solving and Critical Thinking)				
1	Explain the principles for robot application and application planning.	Understand	CO 5	AME553.17
2	Differentiate between sensor based inspection and visual based inspection.	Understand	CO 5	AME553.20
3	Explain the importance of robot safety in industrial applications.	Understand	CO 5	AME553.17
4	Classify robot workcell and explain any two types with neat sketches.	Remember	CO 5	AME553.19
5	Differentiate between intermittent transfer and continuous transfer.	Understand	CO 5	AME553.18
6	Classify in-line robot work cell in detail.	Understand	CO 5	AME553.18
7	Differentiate between non-synchronous transfer and continuous transfer.	Remember	CO 5	AME553.18
8	Explain mobile robot workcell with a neat sketch.	Understand	CO 5	AME553.19
9	Explain automated guided vehicle and list out its applications in detail.	Understand	CO 5	AME553.18
10	Discuss the robot qualitative justification in detail.	Remember	CO 5	AME553.17

Prepared by: Mr. A Anudeep Kumar, Assistant Professor