## INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad - 500043
MECHANICAL ENGINEERING
TUTORIAL QUESTION BANK

| Course Title | OPTIMIZATION TECHNIQUES |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Course Code | AMEB12 |  |  |  |
| Programme | B.Tech |  |  |  |
| Semester | IV |  |  |  |
| Course Type | Core |  |  |  |
| Regulation | IARE - R18 |  |  |  |
| Course Structure | Lectures | Tutorials | Practical | Credits |
|  | 3 | 1 | - | 4 |
| Course Coordinator | Dr. Paidi Raghavulu, Professor, ME |  |  |  |
| Course Faculty | Mrs. T Vanaja Assistant Professor, ME |  |  |  |

## COURSE OBJECTIVES (COs):

| The course should enable the students to: |  |
| :---: | :--- |
| I | Formulate the mathematical model of real time problems and optimize with LLP techniques. |
| II | Establish the problem formulation and optimization by using transportation, assignment models. |
| III | Apply Sequencing and replacement models for optimized decisions |
| IV | Apply Game theory, Inventory models for effective operational control. |
| V | Visualize application of Waiting line, Dynamic programming, Simulation models in real <br> time applications.. |

COURSE OUTCOMES (COs):

| CO 1 | Formulate the mathematical model of real time problems and optimize with LLP techniques. |
| :--- | :--- |
| CO 2 | Establish the problem formulation and optimization by using transportation, assignment models |
| CO 3 | Apply Sequencing and replacement models for optimized decisions. |
| CO 4 | Apply Game theory, Inventory models for effective operational control. |
| CO 5 | Visualize application of Waiting line, Dynamic programming, Simulation models in real time <br> applications.. |

## COURSE LEARNING OUTCOMES (CLOs):

Students, who complete the course, will have demonstrated the asking to do the following:

| AMEB12.01 | Understand the characteristics, phases, types of operation research models and its applications. |
| :---: | :---: |
| AMEB12.02 | Visualize modeling principles scope, decision making, general methods for solving OR models. |
| AMEB12.03 | Understand linear programming concepts, problem formulation and graphical models. |
| AMEB12.04 | Understand simplex method and artificial variable techniques. |
| AMEB12.05 | Comprehend two-phase method and Big-M method of linear programming. |
| AMEB 12.06 | Apply to build and solve transportation models of balanced . |
| AMEB12.07 | Understand the degeneracy model problem of transportation, unbalanced type-maximization. |
| AMEB12.08 | Apply to build assignment models for optimal solution. |
| AMEB12.09 | Understand variants of assignment model and travelling salesman model. |
| AMEB12.10 | Understand the flow shop sequencing model of ' $n$ ' jobs through two machines and three machines. |
| AHSB11.11 | Solving the linear differential equations using Laplace transform. |
| AHSB11.12 | Understand the concept of Laplace transforms to the real-world problems of electrical circuits, harmonic oscillators, optical devices, and mechanical systems |
| AMEB12.11 | Comprehend job shop sequencing of two jobs through 'm' machines. |
| AMEB12.12 | Understand the concept of replacement of items that deteriorate with time when money value is not counted |
| AMEB12.13 | Understand the concept of replacement of items that deteriorate with time when money value is $n$ counted . |
| AMEB12.14 | Visualize the replacement of items that fail completely and group replacement. |
| AMEB12.15 | Understand minimax (maximini) criterion, optimal strategy, solution od games with saddle point |
| AMEB12.16 | Visualize dominance principle while solving game theory problem. |
| AMEB12.17 | Apply to solve m*2, $2 * \mathrm{n}$ model of games and graphical method. |
| AMEB12.18 | Understand the concepts of deterministic inventory model and purchase inventory model with one price break and multiple price breaks. |
| AMEB12.19 | Visualize stochastic inventory models - demand may be discrete variable or continuous variable. |
| AMEB12.20 | Understand the concepts of waiting line model of single channel and multi server model. |
| AMEB12.21 | Visualize dynamic programming concepts and models |
| AMEB12.22 | Comprehend the simulation models, phases of simulation, application of simulation |
| AMEB12.23 | Visualize the application of simulation for inventory and queuing problems. |


| S. No. | Question | Blooms <br> Taxonomy <br> Level | Course <br> Outcomes | Course <br> Learning <br> Outcomes |
| :--- | :--- | :--- | :--- | :--- |

MODULE - 1

## DEVELOPMENT OF O.R AND ALLOCATION

| Part - A (Short Answer Questions) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Explain scope of operations Research? | Understand | CO 1 | AMEB12.01 |
| 2 | State the applications of operations Research? | Remember | CO 1 | AMEB12.01 |
| 3 | List different characteristics of operations Research? | Remember | CO 1 | AMEB12.01 |
| 4 | Write about physical model of operations Research? | Understand | CO 1 | AMEB12.01 |
| 5 | Describe about simulation models of operations Research? | Understand | CO 1 | AMEB12.01 |
| 6 | Discuss the importance of operations Research in the decision making process? | Remember | CO 1 | AMEB 12.02 |
| 7 | List out the principles of modeling. | Remember | CO 1 | AMEB12.02 |
| 8 | State the methods of solving OR models. | Understand | CO 1 | AMEB12.02 |
| 9 | Define model and explain its importance. | Remember | CO 1 | AMEB12.02 |
| 10 | Define feasible region? | Understand | CO 1 | AMEB12.03 |
| 11 | Explain general representation of LPP? | Remember | CO 1 | AMEB12.03 |
| 12 | Discuss objective function in brief? | Understand | CO 1 | AMEB12.03 |
| 13 | Describe optimal solution? | Remember | CO 1 | AMEB12.03 |
| 14 | Explain about decision variables? | Understand | CO 1 | AMEB12.03 |
| 15 | Describe about non- negativity constraints? | Remember | CO 1 | AMEB12.04 |
| 16 | Explain about constraints of a LPP? | Understand | CO 1 | AMEB12.04 |
| 17 | Define slack variables with examples? | Remember | CO 1 | AMEB 12.04 |
| 18 | State surplus variables with examples? | Understand | CO 1 | AMEB 12.04 |
| 19 | Explain about artificial variables? | Remember | CO 1 | AMEB12.05 |
| 20 | Explain computational steps of Big-M method | Remember | CO 1 | AMEB 12.05 |
| Part B (Long Answer Questions) |  |  |  |  |
| 1 | What are the phases of Operations Research and briefly explain them? | understand | CLO 1 | AMEB 12.04 |
| 2 | Explain the main characteristics of Operations Research. |  | CLO 1 | AMEB12.04 |
| 3 | What is a model? List the various classification schemes of Operations Research models. | Remember | CLO 1 | AMEB12.04 |
| 4 | Describe the scope of Operations Research. | Understand | CO 1 | AMEB12.02 |
| 5 | Explain general methods for solving OR models | Understand | CO 1 | AMEB12.02 |
| 6 | Describe the terminology involved in formulating a linear programming problem? | Understand | CO 1 | AMEB12.03 |
| 7 | Explain applications of LPP in production management? | Remember | CO 1 | AMEB 12.03 |
| 8 | Explain step by step procedure of graphical method of solving Linear Programming Problem. | Understand | CO 1 | AMEB12.03 |
| 9 | What are the limitations of graphical method? | Understand | CO 1 | AMEB12.03 |
| 10 | A firm manufactures two types of products A and B and sells them at a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines G and H . Type A requires one minute of processing time on G and two minutes on H ; type B requires one minute on G and one minute on H . The machine G is available for not more than 6 hour 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem and find the optimum solution graphically. | Understand | CO 1 | AMEB12.03 |
| 11 | Explain the structure of an LPP with example? | Remember | CO 1 | AMEB12.04 |


| 12 | Discuss the algorithm of simplex method to solve an LPP? | Remember | CO 1 | AMEB 12.04 |
| :---: | :--- | :--- | :--- | :--- |
| 13 | Explain assumptions to solve LPP using simplex? |  |  |  |


| Part C( Critical Analytical Questions) |  |  |  | AMEB 12.03 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Solve the following LP problem graphically. $\begin{aligned} & \text { Maximize } \mathrm{Z}=2 \mathrm{x}_{1}+\mathrm{x}_{2} \quad \text { Subjective to constraints } \\ & \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6 \\ & \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2 \\ & \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 1 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 . \end{aligned}$ | Understand | CO 1 |  |
| 2 | Solve the following LPproblem using Simplex method. Maximize $Z=6 x_{1}+8 x_{2}$ subject to constraints | Understand | CO 1 | AMEB12.04 |
| 3 | Solve the following LPP by two-phase method $\begin{aligned} & \text { Minimize } \mathrm{Z}=3 \mathrm{x}_{1}+4 \mathrm{x}_{2} \text { subject to constraints } \\ & 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 8 \\ & 5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \geq 12 \\ & \text { and } \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$ | Understand | CO 1 | AMEB12.04 |
| 4 | Solve the following LPP by Big-M ( penalty) method Minimize $Z=5 x_{1}+3 x_{2}$ subject to constraints $\begin{array}{ll} 2 \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq & 12 \\ 2 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq & 10 \\ 5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq & 10 \end{array}$ <br> and $\quad x_{1}, x_{2} \geq 0$ | Remember | CO 1 | AMEB 12.05 |
| 5 | Solve the following LPP by Big-M method <br> Maximize $Z=4 x_{1}+5 x_{2}+x 3$ subject to constraints $\begin{aligned} & \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=10 \\ & 2 \mathrm{x}_{1}-\mathrm{x}_{2} \geq 1 \\ & 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x} 3 \leq 40 \\ & \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0 \end{aligned}$ | Understand | CO 1 | AMEB 12.05 |
|  |  |  |  |  |
|  | TRANSPORTATION AND ASSIGNM | NT PROBL |  |  |
| Part A(Very Short Answer Questions) |  |  |  |  |
| S. No. | Question | Blooms Taxonomy Level | Course Outcomes | Course <br> Learning Outcomes |
| 1 | Explain mathematical model of a transportation problem? | Understand | CO 2 | AMEB 12.06 |
| 2 | What are different methods of solving transportation problems to get basic feasible solution? | Remember | CO 2 | AMEB12.06 |
| 3 | Why is LCM is optimal than NWCR in solving transportation problem? | Understand | CO 2 | AMEB 12.06 |
| 4 | Why does Vogel's approximation method provide a good initial feasible solution? | Remember | CO 2 | AMEB12.06 |
| 5 | What are the methods to test for optimality in transportation problem? | Understand | CO 2 | AMEB 12.06 |
| 6 | Describe balanced problem in transportation? | Understand | CO 2 | AMEB 12.06 |
| 7 | Explain MODI method in brief? | Understand | CO 2 | AMEB 12.06 |
| 8 | What is degeneracy in transportation problem? | Remember | CO 2 | AMEB 12.07 |
| 9 | Define unbalance problem in transportation? | Remember | CO 2 | AMEB 12.07 |
| 10 | Explain how the unbalanced problem is solved? | Remember | CO 2 | AMEB 12.07 |
| 11 | Explain constraints of a transportation problem? | Remember | CO 2 | AMEB 12.07 |
| 12 | What is assignment problem? | Understand | CO 2 | AMEB 12.08 |
| 13 | Explain applications of assignment problem? | Remember | CO 2 | AMEB 12.08 |
| 14 | Give the mathematical representation of an assignment problem | Understand | CO 2 | AMEB12.08 |




|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |




|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |


|  | Machine A | 8 | 3 | 7 |  | 2 | 5 |  | 1 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Machine B | 3 | 4 | 5 |  | 2 | 1 |  | 6 |  |  |  |  |
|  | Machine C | 8 | 7 | 6 |  | 9 | 10 |  | 9 |  |  |  |  |
| 9 | Describe the step by step procedure of graphical method for processing two jobs through 'm' machines |  |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.11 |
| 10 | Use graphical method to minimize the time. Time required to process the following jobs on the machines shown,, i.e.,Foreach machine find the job |  |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB 12.11 |
|  | JOB-1 S <br>   <br>  T | Sequence |  | A | B |  | C | D | D | E |  |  |  |
|  |  | Time |  | 3 | 4 |  | 2 | 6 |  | 2 |  |  |  |
|  | JOB-2 | Sequence |  | B | C |  | A | D | $\mathrm{E}$ |  |  |  |  |
|  |  |  |  | 5 | 4 |  | 3 |  | 26 |  |  |  |  |
|  | which should be done first. Also calculate the total time elapsed to complete both the jobs. |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Part C (Critical Analytical Questions) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | We have five jobs each of which must go through two machines in the order BA, processing times are given in the table below |  |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB12.10 |
|  | Job No. | o. |  | 2 | 3 |  |  | 5 | total elapsed |  |  |  |  |
|  | Machine | A |  | 2 | 18 |  |  | 20 |  |  |  |  |  |
|  | Machine | B |  | 12 | 14 |  |  |  |  |  |  |  |  |
|  | Determine a sequence for the five jobs that will minimize the total elapsed time. Also compute idle times for each of the machine |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | Automobile repair center has six cars for repair. The repair consists of two steps procedure viz. dent removing and painting. The time estimates are as follows: |  |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB12.10 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Car Number | 1 |  | 2 |  | 3 |  | 4 | 5 | 6 |  |  |  |
|  | Time estimate (dent removing) | 16 |  | 10 |  | 11 |  | 138 | 8 | 18 |  |  |  |
|  | Time Estimate (painting) | 15 |  |  |  |  |  | $\begin{array}{l\|l} \hline 11 & 1 \end{array}$ | $12$ | $14$ |  |  |  |
|  | Determine a sequence for the six cars that will minimize the total elapsed time. Also compute idle times for each of the machine and prepare Gantt chart |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | Find the sequence that minimizes the total time required in forming the |  |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB12.10 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 1 | 2 | 3 |  | 4 | 5 |  | 6 |  |  |  |  |
|  | Machine A | 8 | 3 | 7 |  | 2 | 5 |  | 1 |  |  |  |  |
|  | Machine B | 3 | 4 | 5 |  | 2 | 1 |  | 6 |  |  |  |  |
|  | Machine $\mathbf{C}$ | 8 | 7 | 6 |  | 9 | 10 | 9 | 9 |  |  |  |  |
|  | following jobs on three machine in the order ACB and also find idle time of each machine and idle time of each machine. |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Explain step by step Procedure to solve by graphical method to minimize the time required to process the two jobs on ' $n$ " machines |  |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.11 |



|  | Rs.12, 200 and its sc (Maintenance and op <br> When the machine sh | paling <br> 2 <br> 500 <br> ald be | e is Rcost <br> 3 <br> 800 <br> repla |  | From <br> 1800 <br> 5 | $\begin{aligned} & \text { 1 exper } \\ & \text { o be as } \\ & \hline \\ & \hline 6 \\ & \hline \end{aligned}$ |  | e the lows. <br> 7 <br> 3200 | nning |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Explain briefly individual replacement policy and Group replacement of items that fail completely (suddenly) |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.14 |
| 10 | The management of a large hotel is considering the periodic replacement of light bulbs fitted in it's room .There are 500 rooms in the hotel and each room has 6 bulbs. The management is now following the policy of replacing the bulbs as they fail at the total cost of Rs: 3 per bulb.The management feels that this cost can be reduced to Rs: 1 by adopting the group replacement method. On the basis of the information given below, evaluate the alternative and make a recommendation to the management. |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB12.14 |
| Part C (Critical Analytical Questions) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | A manufacturer is offered two machines A and B. A is priced at Rs 5000 and running costs are estimated at Rs 800 for each of the first five years, increasing by Rs. 200 per year in the sixth and subsequent years. Machine B, which has the same capacity as A, costs Rs 2500 but will have running costs of Rs 1200 per year for six years, increasing by Rs 200 per year thereafter. If money is worth $10 \%$ per year, which machine should be purchased? (Assume that machines will eventually soldl for scrap at a negligible price.) |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.14 |
| 2 | The data collected in are given below <br> Resale value(Rs) <br> Cost of Spares(Rs) <br> Cost of Labour <br> Find the time when th |  | $\begin{aligned} & \text { a Ma } \\ & 000 \\ & 00 \\ & 000 \\ & \text { ine sh } \end{aligned}$ | achine $\begin{gathered} 2 \\ 30,000 \\ 4,270 \\ 16,000 \\ \text { nould be } \end{gathered}$ | the co $\begin{array}{cc}  & \\ 00 & 2( \\ 0 & 4 \\ 00 & 18 \\ \text { be repl } \\ \hline \end{array}$ | $\begin{aligned} & \text { ost of } \mathrm{v} \\ & \\ & 3 \\ & 0,400 \\ & 4,880 \\ & 8,000 \\ & \text { laced? } \\ & \hline \end{aligned}$ | which <br> 14 <br> 5, <br> 21 | $h$ is R <br> 4 <br> 4,400 <br> 5,700 <br> 1,000 | $\begin{gathered} 60,000 \\ \\ 5 \\ 9,650 \\ 6,800 \\ 25,000 \end{gathered}$ | Understand | CO 3 | AMEB12.13 |
| 3 | Find the time when the machine should be replaced? <br> A manual stamper currently valued at RS 1000 is expected to last 2 years and costs Rs 4000 per year to operate. An automatic stamper which can be purchased for Rs 3000 will last for 4 years and can be operated at an annual cost of Rs 3000 . If money carries the rate of interest $10 \%$ per year, determine which stamper should be purchased. |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.13 |
| 4 | A factory has a large number of bulbs all of which must be in working condition. The morality of the bulbs is given in the following table. <br> If a bulb fails in service, it costs Rs 3.50 to replace but if all bulbs are replaced at a time it costs Rs 1.20 each. Find the optimum group replacement policy. ( Assume 1000 bulbs are available initially). |  |  |  |  |  |  |  |  | Remember | CO 3 | AMEB12.13 |
| 5 | There are 1000 bulbs in use, and it costs Rs 10 to replace an individual bulb which has burn out. If all the bulbs were replaced simultaneously it would cost Rs 4 per bulb. It is proposed to replace all bulbs at fixed intervals of time, whether or not they have burn out, and to continue replacing burnt out bulbs as and when they fail. At what intervals all the bulbs should be replaced. At what group replacement price per bulb would a policy of strictly individual replacement becime preferable to the adopted policy. |  |  |  |  |  |  |  |  | Understand | CO 3 | AMEB12.13 |


|  | Part A (Very Short Answer Questions) |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Define a player. |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.15 |
| 2 | Explain a strategy. |  |  |  |  |  |  |  | Remember | CO 4 | AMEB 12.15 |
| 3 | Define a pure strategy |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.15 |
| 4 | Define a two-person zero-sum game. |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.15 |
| 5 | Describe n-person zero-sum game. |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.15 |
| 6 | What are the characteristics of a two-person zero-sum game? |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.15 |
| 7 | Discuss a mixed strategy. |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.16 |
| 8 | What is the advantage of a mixed strategy over a pure strategy? |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.16 |
| 9 | state the principle of dominance. |  |  |  |  |  |  |  | Remember | CO 4 | AMEB 12.16 |
| 10 | Describe a mixed strategy. |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.17 |
| 11 | Explain $2 \times \mathrm{n}$ game mode;? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.17 |
| 12 | Define inventory |  |  |  |  |  |  |  | Understand | CO 4 | AMEB 12.18 |
| 13 | What is the necessity of maintaining inventory? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.18 |
| 14 | Explain different types of variables used in inventory? |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.18 |
| 15 | What are the different types of inventory models? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.18 |
| 16 | Why many organizations hold safety stocks as part of their inventory. |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.18 |
| 17 | What is a reorder point? |  |  |  |  |  |  |  | Understand | CO 4 | AMEB 12.18 |
| 18 | What is the EOQ.? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.18 |
| 19 | Explain discrete probabilistic demand model |  |  |  |  |  |  |  | Understand | CO 4 | AMEB 12.19 |
| 20 | Describe safety stock and Reorder point |  |  |  |  |  |  |  | Remember | CO 4 | AMEB 12.19 |
|  | Part B (Long Answer Questions) |  |  |  |  |  |  |  |  |  |  |
| 1 | Explain two person zero sum game and n person game? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB 12.15 |
| 2 | Define pay of matrix and types of strategies in game theory? |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.15 |
| 3 | For the given payoff matrix and B. what is the saddle should A and B play in or |  | $\begin{aligned} & \text { ix, } \mathrm{Fi} \\ & \text { point } \\ & \text { der to } \end{aligned}$ | the <br> Wh get | oluti is th opti |  |  | the player A what strategies he play? | Understand | CO 4 | AMEB 12.15 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 1 | 2 | 3 | 4 | 5 | $6$ |  |  |  |
|  | Player A | 1 | 8 | 3 | 7 | 2 | 5 | $1$ |  |  |  |
|  |  | 2 | 3 | 4 | 5 | 2 | 1 | 6 |  |  |  |
|  |  | 3 | 8 | 7 | 6 | 9 | 10 | 9 |  |  |  |
| 4 | Solve the following game; |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.15 |
|  |  | 1 |  |  | 2 |  | Y3 |  |  |  |  |
|  | X1 | 4 |  |  | 0 |  | 6 |  |  |  |  |
|  | X2 | 8 |  |  | 2 |  | 10 |  |  |  |  |
|  | Find the value of game and strategies of players. |  |  |  |  |  |  |  |  |  |  |
| 5 | Discuss the step by step procedure of application of Principle of dominance for solving game theory problem. |  |  |  |  |  |  |  | Remember | CO 4 | AMEB12.16 |
| 6 | Solve the following $2 \times 2$ game without saddle point B <br> a. $A\left[\begin{array}{ll}5 & 1 \\ 3 & 4\end{array}\right]$ <br> B <br> b. $A\left[\begin{array}{ll}2 & 5 \\ 7 & 3\end{array}\right]$ |  |  |  |  |  |  |  | Understand | CO 4 | AMEB12.16 |





|  | this technique is used in practice. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Explain what factors must be considered when designing simulation experiment. | Remember | CO 5 | AMEB 12.19 |
| 5 | Discuss briefly the types of simulations? | Remember | CO 5 | AMEB12.19 |
| 6 | A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations customers arrive at a rate of 8 per hour and the clerk can, on an average, service 12 customers per hour. After starting your assumptions determine. <br> a. What is the average number of customer waiting for the service of the clerk <br> b. What is the average time a customer has to wait before being used? | Remember | CO 5 | AMEB 12.19 |
| 7 | Consider a single semen queuing system with poisons input and exponential service times. Suppose that mean arrival rate is 3 calling units per hour, the expected service time is 0.25 hours and the maximum permissible calling units is the system is two. Derive the steady state probability distribution of the number of calling units in the system. And then calculate the expected number in the system. | Understand | CO 5 | AMEB12.19 |
| 8 | A super market has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean 4 minutes, and if people arrive 3 in a poison fashion at the 10/hour. <br> a. What is the probability of having to wait for the service. <br> b. What is the expected percentage of idle time for each girl? <br> c. C. find the average length and average number of units in the system. | Remember | CO 5 | AMEB12.19 |
| 9 | Explain the application of Queuing systems? | Remember | CO 5 | AMEB 12.19 |
| 10 | In a departmental store one cashier is there to serve the customers. And the customers pick up their needs by themselves the arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming poisons arrival rate and exponential distribution for service rate. Find following: <br> a. Average number of customers in the system <br> b. Average number of customers in the queue of average queue length? <br> c. Average time a customer spends in the systems <br> d. Average time a customer waits before being served. | Understand | CO 5 | AMEB12.19 |
| 11 | Explain the advantages and disadvantages of simulation? | Understand | CO 5 | AMEB 12.19 |
| 12 | A television repairman finds that the time spent on his jobs has an exponential distribution with a mean of 30 minutes. If he repairs the sets in the order in which they came in, and if the arrival of sets follows a Poisson distribution with an approximate average rate of 10 per 8hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average, set just brought in? |  | CO 5 | AMEB12.19 |
| 13 | What is simulation? Discuss application of simulation? | Understand | CO 5 | AMEB12.19 |
| 14 | Discuss the advantages and disadvantages of simulation. | Understand | CO 5 | AMEB12.19 |
| 15 | Explain briefly steps of simulation process. | Understand | CO 5 | AMEB12.19 |
| 16 | Explain types of simulation. | Understand | CO 5 | AMEB12.19 |
| 17 | Explain Monte Carlo simulation. | Remember | CO 5 | AMEB 12.19 |
| 18 | what is simulation and discuss the What types of simulation? | Understand | CO 5 | AMEB 12.19 |
| 19 | Explain computer simulation? | Understand | CO 5 | AMEB12.19 |
| 20 | write the applications of simulation. | Understand | CO 5 | AMEB12.19 |
| CO 5 Part C (Critical Analytical Questions) |  |  |  |  |
| CO 5 | Customers arrive at box office windows being manned by a single individual, according to a Poisson input process with a mean rate of $20 / \mathrm{hr}$. the time required to serve a customer has an exponential distribution with a mean of 90 sec . Find the average waiting time of customers. Also determine the average number of customers in the system and average queue length. | Understand | CO 5 | AMEB 12.19 |
| 2 | At a certain petrol pump, customers arrive according to a poisson process with an average time of 5 minutes between arrivals. The service time is exponentially distributed with mean time of minutes. On the basis of information find out | Remember | CO 5 | AMEB12.19 |


|  | a. What would be the average queue length? <br> b. What would be the average number of customers in the queueing system? <br> c. What is the average time spent by a car in the petrol pump? <br> d. What is the average waiting time of a car before receiving petrol? |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | A company manufactures around 200 mopeds. Depending upon the availability of raw materials and other conditions. The daily production has been varying from 196 mopeds to 204 mopeds. Whose probability distribution are given below: <br> Finished mopeds are transported to a lorry that can accommodate only 200 mopeds. Random numbers are $82,89,78,24,53,61,18,45,04,23,50,77,54$ and 10 . Simulate the mopeds waiting. |  |  |  |  |  |  |  |  |  | Remember | CO 5 | AMEB 12.19 |
| 4 | A bakery keeps stock of a popular brand of cake. Previous experience show the daily demand pattern for the item with associated probabilities as givenbelow: <br> use the following sequence of random numbers to simulate the demand for next 10days. <br> Random numbers: $25,39,65,76,12,05,73,89,19,49$ <br> Also estimate the daily average demand for the cakes on the basis of the simulated data. |  |  |  |  |  |  |  |  |  | Understand | CO 5 | AMEB 12.20 |
| 5 | Explain in detail application of simulation for inventory models. |  |  |  |  |  |  |  |  |  | Under stand | CO 5 | AMEB 12.20 |

Prepared by:

|  | Finished mopeds are transported to a lorry that can accommodate only 200 mopeds. Random numbers are $82,89,78,24,53,61,18,45,04,23,50,77,54$ and 10 . Simulate the mopeds waiting. |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | A bakery ke show the dail givenbelow: <br> use the follo next 10days. Random num Also estimat simulated da | stoc <br> ema <br> 0 <br> 0.01 <br> g seq <br> rs: 25 <br> da | of a p pattern <br> 10 <br> 0.20 <br> ce of <br> ,65,76 <br> averag | r bra he ite <br> 20 <br> 0.15 <br> m nu <br> 5,73, <br> mand | cake <br> h asso <br> 30 <br> 0.50 <br> to si <br> 49 <br> e cak | vious <br> d prob <br> 40 <br> 0.12 <br> e the <br> the | erience lities as <br> 50 <br> 0.02 <br> and for <br> of the | Understand | 7 |
| 4 |  |  |  |  |  |  |  | Remember | 7 |
| 5 | a) Explain types simulation models <br> b) b) <br> Describe the steps involved in Monte-Carlo simulation.  |  |  |  |  |  |  | Understand | 9 |
| 6 |  |  |  |  |  |  |  | Remember | 10 |
| 7 | )Explain in detail the application of simulation in queuing problem. |  |  |  |  |  |  | Understand | 10 |
|  | )Explain in detail the application of simulation in queuing problem. Explain advantages and disadvantages of simulation. |  |  |  |  |  |  |  |  |

Preparedby: Mr. A. Somaiah, AssistantProfessor
Ms. T. Vanaja, Assistant Professor

