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UNIT-I

THEORY OF MATRICES




Solution for linear systems

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows,
each row consisting of an ordered set of ‘n’ numbers between [ ] (or) () (or) || || is called a matrix of

order m xn.

= [ajj Jmxn Where 1< ism, 1<j<n.

some types of matrics :

1. square matrix : A square matrix A of order nxn is sometimes called as a n- rowed matrix A (or)

simply a square matrix of order n

11 .
eg: is 2" order matrix
2 2

2. Rectangular matrix : A matrix which is not a square matrix is called a rectangular matrix,

1 -1 2
is a 2x3 matrix
2 3 4

3. Row matrix : A matrix of order 1xm is called a row matrix
eg: [l 2 3],

4, Column matrix : A matrix of order nx1 is called a column matrix

5. Unit matrix : if A= [a;] 1 Such that a; =1 for i = j and a;; = O for i#j, then A is called a unit matrx.




6. Zero matrix : it A = [aj] e Such thata; =0 V | and jthen Ais called a zero matrix (or) null matrix

0 0O
Eg: O,3= 0 0 0

7. Diagonal elements in a matrix A= [a;].x, the elements a; of A for which i =j. i.e. (a1, a....an) are
called the diagonal elements of A
1 2 3

Eg:A=|4 5 6] diagonal elements are 1,5,9
7 8 9

Note : the line along which the diagonal elements lie is called the principle diagonal of A

8. Diagonal matrix : A square matrix all of whose elements except those in leading diagonal are
zero is called diagonal matrix.
If d;, d;..... d, are diagonal elements of a diagonal matrix A, then A is written as A = diag

(dy,dy....dn)

30 0
Eg:A=diag(3,1,-2)= |0 1 O
0 0 -2

Scalar matrix : A diagonal matrix whose leading diagonal elements are equal is called a scalar
2 0 0
matrix. Eg:A= |0 2 O
0 0 2
. Equal matrices : Two matrices A = [a;] and b= [b;] are said to be equal if and only if (i) A and B
are of the same type(order) (ii) a;j= bj for every i&j
11. The transpose of a matrix : The matrix obtained from any given matrix A, by inter changing its

rows and columns is called the transpose of A. It is denoted by A" (or) A.

If A = [a;] mxn then the transpose of Ais A' = [b;] o, Where by = a; Also (A1) = A
) ) ) ]]




Note : A’ and B be the transposes of A and B repectively, then
(i) (AY) = A
(ii) (A+B)" = A'+B*
(iii) (KA)! = KA', K is a scalar
(iv) (AB)'= B'A

12. The conjugate of a matrix : The matrix obtained from any given matrix A, on replacing its

elements by corresponding conjugate complex numbers is called the conjugate of A and is denoted

by A

Note :if Aand B be the conjugates of A and B respectively then,

(i) (A) =A
(i) (A+B) = A+B
(iii) (KA)_:KA,_K_is a any complex number

(iv) (AB)=BA

2 3 2-5i —_ |2 =3I 2+5i
Eg;ifA= | . ) then A=| . )
-1 0 4i+3 43 1 0 -—-4i+3 243

13. The conjugate Transpose of a matrix

The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is

denoted by A°Thus A®= (Al) where A' is the transpose of A. Now A = [ag] mn = A® =[b;] nxm, where bij

aiji.e. the (i,j)™ element of A® conjugate complex of the (j, i) element of A

5 0

[ VR POV
0 1+i 4—| 2%3 2i A+i




Note: A= A" =(A)'and (A”)’ _,

14.

(i) Upper Triangular matrix : A square matrix all of whose elements below the leading diagonal are zero
is called an Upper triangular matrix. i.e, ajj-o for i»;

1 3 8
Eg; |0 4 -5
0 0 2

is an Upper triangular matrix

(ii) Lower triangular matrix ; A square matrix all of whose elements above the leading diagonal are zero
is called a lower triangular matrix. i.e, aj- for i< j

is an Lower triangular matrix

(iii) Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a
lower triangular matrix

15. Symmetric matrix : A square matrix A =[a;] is said to be symmetric if a; = a; for everyiand j

Thus A is a symmetric matrix iff A" = A

is a symmetric matrix

16. Skew — Symmetric : A square matrix A = [a;] is said to be skew — symmetric if a; = — a;; for every i and
j-




is a skew — symmetric matrix

Thus A is a skew — symmetric iff A=-A' A= Al

Note: Every diagonal element of a skew — symmetric matrix is necessarily zero.
Since aj=-aj; = q;j= 0
17. Multiplication of a matrix by a scalar.

Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by a scalar K, is called

the product of A by K and is denoted by KA (or) AK
Thus: A+ [aij] m«n then KA = [kaij] mxn = k[aij] mxn

18. Sum of matrices :

Let A = [a;] mxn ,B = [b;] mxn be two matrices. The matrix C = [c;] m« where ¢; = a;+b;; is called the

sum of the matrices A and B.

The sum of A and B is denoted by A+B. Thus [a;] mxn + [bj] mxn = [a@j+bj] mxn  ang [aj+by] mxn -

[ay] man + [by] mxn

19. The difference of two matrices : If A, B are two matrices of the same type then A+(-B) is taken as A —

B

Theorem 1: Every square matrix can be expressed as the sum of a symmetric and skew — symmetric

matrices in one and only way

Proof : let A be any square matrix. We can write

A=% (A+A")+ % (A-A1)=P+Q (say).
Where P = % (A+A")

Q=% (A-AY)




We have P! = {% (A+AY)}! = % (A+A")! since [(KA)' = KA']
=% [AY+(AY)']= % [A+A"]=P

P is symmetric matrix.

Now, Q'=[% (A-A)]" =% (A-AY)*
=% [A-(AY)] =% (A%-A)
=-% (A-A")=-Q
Q is a skew — symmetric matrix.
Thus square matrix = symmetric + skew — symmetric.
Then to prove the sum is unique.

It possible, let A = R+S be another such representation of A where R is a symmetric and S is a

skew — symmetric matrix.
R'=RandS'=-S
Now A' = (R+S)" = R'+S' = R-S and
% (A+A') = % (R+S+R-S) = R
% (A-A') = % (R+S-R+S) = S
=R =Pand S=Q
Thus, the representation is unique.
Theorem2: Prove that inverse of a non — singular symmetric matrix A is symmetric.

Proof : since A is non — singular symmetric matrix Al exists and AT = A

Now, we have to prove that A™ is symmetric we have (A%)" = (A")" = A (by (1)) Since (A™) =A™

therefore, A™ is symmetric.




Theorem3 : If A is a symmetric matrix, then prove that adj A is also symmetric
Proof : Since A is symmetric, we have AT = A ... (1)
Now, we have (adjA)" = adj A" [ since adj A = (AdjA)']
=adj A [by (1)]
(adjA)" = adjA therefore, adjA is a symmetric matrix.

20. Matrix multiplication: Let A = [a, Jmxn, B = [bylax, then the matrix C = [cy]my, Where ¢ is called the

product of the matrices A and B in that order and we write C = AB.
The matrix A is called the pre-factor & B is called the post — factor

Note : If the number of columns of A is equal to the number of rows in B then the matrices are said to

be conformable for multiplication in that order.

Theorem 4 : Matrix multiplication is associative i.e. If A,B,C are matrices then (AB) C= A(BC)

Proof : Let A= [a;] mxn B = [by] nxp and C= [C, Joxq

n
Then AB = [uy] mxp Where uy= Zaij bjk ______ (1)
j=1

P
Also BC = [v;] nxq where v; = Z bjk Cu
k=1

Now, A(BC) is an mxg matrix and (AB)C is also an mxqg matrix.

let A(BC) = [w;] mq Where wy is the (i,j)™ element of A(BC)

n
Then w;- Zaij Vi
j=1

= Zn:{aij {Zp:bjkckl H by equation (2)
k=1

=




(Since Finite summations can be interchanged)

P
= ZuikckI (from (1))
k=1

= The (i,j)" element of (AB)C
A(BC) = (AB)C
21. Positive integral powers of a square matrix:
Let A be a square matrix. Then A is defined A.A
Now, by associative law A® = A%.A = (AA)A
= A(AA) = AA®

Similarly we have A™'A = A A™" = A™ where m is a positive integer

Note 1: Multiplication of matrices is distributiue w.r.t. addition of matrices.

i.e, A(B+C) AB + AC
(B+C)A BA+CA

Note 2: If A is a matrix of order mxn then Al,=1,A=A

n
22. Trace of A square matrix : Let A = [a;] n«n the trace of the square matrix A is defined as Z a;; - And
i=1

is denoted by ‘tr A’




n

Thus trA = Zaii =ay+ant .....dm
i=1

a h g
Eg:A=|h b f|thentrA=a+b+c
g f ¢

Properties : If A and B are square matrices of order n and A is any scalar, then

(i) tr(AA)=AtrA
(ii) tr (A+B)=trA+1trB
(iii) tr(AB) = tr(BA)

23. Idempotent matrix : If A is a square matrix such that A” = A then ‘A’ is called idempotent matrix

24. Nilpotent Matrix : If A is a square matrix such that A"=0 where m is a +ve integer then A is called

nilpotent matrix.
Note : If m is least positive integer such that A™ = 0 then A is called nilpotent of index m

25. Involutary : If A is a square matrix such that A> = | then A is called involuntary matrix.

26. Orthogonal Matrix : A square matrix A is said to be orthogonal if AA' = A’A =1

Theorem 5: If A, B are orthogonal matrices, each of order n then AB and BA are orthogonal matrices.

Proof : Since A and B are both orthogonal matrices.

Consider (AB)" (AB) = (B'A") (AB)
=B'(AA)B

=BIB (by1)




=1 (by2)
.. AB is orthogonal
Similarly we can prove that BA is also orthogonal

Theorem 6 : Prove that the inverse of an orthogonal matrix is orthogonal and its transpose is also

orthogonal.
Proof : Let A be an orthogonal matrix
Then ATA=AA'=|
Consider A'A = |
Taking inverse on both sides (ATA)* =
AN A=
AN AN T =1
-.Ais orthogonal
Again AT.A = |
Taking transpose on both sides (A".A)"=1"
AT(AT) =1

Hence A'is orthogonal

Examples:

cos @ sin@
—-sin@ cosé

1. Show that A = [

} is orthogonal.

cos @ sin@
Sol: Given A = .
—-sin@ cosé




Al =

cos @ —sind
sing cosd

—sin@ cos @ sin@ cos @

Consider A.A" = {

cos @ sin@ } {cos@ —sin 9}

) cos’ @ +sin’ 0 —cosdsin @+ cosdsin @
—sin@cos@+cosdsind  cos’@+sin’ o

b

.. Alis orthogonal matrix.

-1 2 2
2. Prove that the matrix 1 2 -1 2 |isorthogonal.
2 2 -1

-1 2 2
Sol: Given A = 1 2 -1 2
2 2 -1

-1 2 2
Then AT = 1 2 -1 2
2 2 -1

. -1 2 2 -1 2 2
ConsiderA A'=={2 -1 2 2 -1 2
2 2 1|12 2 -1




AAT=|
Similarly AT .A =1
Hence A is orthogonal Matrix

0 2b c

3. Determine the values of a,b,cwhen |a b —cC | is orthogonal.
a -b c

Sol: - For orthogonal matrix AA =

0 2b c¢c||0 a a
SoAA'=|a b —c||2b b —-b|=1I
a -b c||c —-c ¢

4b? +c?  2b%*-c¢? —2b? +¢?
—) 2b? —¢c? a’+b*+c? a*-b*-c¢?
—2b%+c¢c® a?*-b*-c? a’+b*+c?

Solving 2b%-c? =0, a’-b*-c* =0

Wegetc= ++/2b a’=b*+2b’=3b>

= a= ++/3b
From the diagonal elements of |

4b*+c’= 1 = 4b*+2b’=1 (c’=2b?)




b=+

1
J6
J2b

1

7

27. Determinant of a square matrix:

then |A|:

28. Minors and cofactors of a square matrix

Let A =[a;] nxn be a square matrix when form A the elements of i row and j™ column are

deleted the determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by
| M|

The signed minor (-1) ™ | M;| is called the cofactor of a; and is denoted by A;..

8, &, a;
IfA= a,, a,, a,

a3l a32 a33




| A|=a1 [My| +a, [My, | +ai3 [Mys] (or)

= a11 Apn +ag, Ay +ags Ags

1 1 3
Eg: Find Determinant of |1 3 —3]| by using minors and co-factors.
-2 -4 -4

3 -3 0 -3 1 3
detA=1 — +3
-4 -4 |-2 -4 |-2 -4

=1(-12-12)-1(-4-6)+3(-4+6)
=-24+10+6=-8
Similarly we find det A by using co-factors also.

Note 1: If A is a square matrix of order n then |KA| =K" |A| , Where k is a scalar.

Note 2: If A is a square matrix of order n, then |A| = ‘AT‘

Note 3: If A and B be two square matrices of the same order, then |AB| = |A| |B|

29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =I| then B

is called inverse of A and is denoted by A™.

Theorem 7: The inverse of a Matrix if exists is Unique

Proof: Let if possible B and C be the inverses of ‘A’.
Then AB = BA =|

AC=CA=1




consider B = Bl =B(AC)

=(BA)C

Hence inverse of a Matrix is Unique

Note:1 (A1)'=A

Note 2: 1" =1
30. Adjoint of a matrix:
Let A be a square matrix of order n. The transpose of the matrix got from A

By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted

by adj A.
Note: For any scalar k, adj(kA) = k™" adj A

Note : The necessary and sufficient condition for a square matrix to posses inverse is that |A| #0

_L

A

3. Singular and Non-singular Matrices:

(adj A)

Note: if |A|;t0 then A™

A square matrix A is said to be singular if |A|= 0.
|A|¢0 then A is said to be non-singular.
Note: 1. Only non-singular matrices posses inverses.
2. The product of non-singular matrices is also non-singular.

Theorem 9: If A, B are invertible matrices of the same order, then




(i). (AB)* =B*A™!
(ii). (A" = (A™)*
Proof: (i). we have (B*A™) (AB) = B*(A"A)B

=B™(I B)

=B'B

(AB)'=B"A"

(ii). A'TA=AAT = |
Consider AA =I
= (ATA) =1
= AL (A =1

= (Al)—l — (A—l)l

Problems

1). Express the matrix A as sum of symmetric and skew — symmetric matrices. Where




32 5
ThenA'=|-2 7 4
6 -1 0

Matrix A can be written as A = % (A+A)+ % (A-A")

1 3 -2 6 3 +2 5
:>P=1/2(A+AT)=E 2 7 -1|+|-2 7 4
5 4 0 6 -1 0

3
0
11/2

1/2
0 -5/2
-1/2 5/2 0

A = P+Q where ‘P’ is symmetric matrix

‘Q’ is skew-symmetric matrix.

0
7
3/2

11/2
3/2
0




2. Find the adjoint and inverse of a matrix A =

A A, As
Soln: Adjointof A= | A,;, A, A,
Ay Ay Ay

Where Aij are the cofactors of the elements of a;.

Thus minors of aij are

Cofactors A= (-1) M;




MATRIX INVERSE METHOD

3). Solve the equations 3x+4y+5z = 18, 2x-y+8z =13 and 5x-2y+7z =20

Soln: The given equations in matrix form is AX = B




det A = 3(-7+16)-4(14-40)+5(-4+5) = 136

(-7+16) —(14-40) (-4+5)
co-factor matrixisD = | —(28+10) (21-25) - (-6-20)
(32+5) —(24-10) (-3-9)

. 9 -38 37
A'=1/detAadjA=—|26 -4 -14
1 26 -11

Ax=B=>x=A'B

9 -38 37718
_ LYl 4 _14|l13

136
1 26 -111|20

162 —494 - 740
_ L 468 —-52 —280
136
18+ 338-220




Solnisx=3,y=1, z=1

Sub — Matrix: Any matrix obtained by deleting some rows or columns or both of a given matrix is called
is submatrix.

1 56 7

8 9 10
Eg:letA=(8 9 10 5 |.Then 34 5 is a sub matrix of A obtained by deleting first row
34 5 -1 2x3

and 4™ column of A.

Minor of a Matrix: Let A be an mxn matrix. The determinant of a square sub matrix of A is called a minor

of the matrix.

Note: If the order of the square sub matrix is ‘t’ then its determinant is called a minor of order ‘t’.

be a matrix

21
—B :L) J is a sub-matrix of order ‘2’

|B| =2-3 =-1is a minor of order ‘2’




211
—C =3 1 2] isasub-matrix of order ‘3’
56 7

detc= 2(7-12)-1(21-10)+(18-5)

= 2(-5)-1(11)+1(13)

=-10-11+13 = -8 is a minor of order ‘3’

*Rank of a Matrix:

Let A be mxn matrix. If A is a null matrix, we define its rank to be ‘0’. If A is a non-zero matrix, we

say that r is the rank of A if

(i) Every (r+1)" order minor of A is ‘0’ (zero) &

(ii) At least one r'" order minor of A which is not zero.

Note: 1. It is denoted by p(A)
2. Rank of a matrix is unique.
3. Every matrix will have a rank.
4. If Ais a matrix of order mxn,
Rank of A < min(m,n)
5. If p(A) = r then every minor of A of order r+1, or more is zero.
6. Rank of the Identity matrix I, is n.
7. If A'is a matrix of order n and A is non-singular then p(A) = n
Important Note:

1. The rank of a matrix is <r if all minors of (r+1)" order are zero.




2. The rank of a matrix is 2r, if there is at least one minor of order ‘r’ which is not equal to zero.

PROBLEMS

1 2 3
1. Find the rank of the given matrix |3 4 4
710 12

1 2 3
Soln: Given matrix A= |3 4 4
710 12

- det A = 1(48-40)-2(36-28)+3(30-28)

= 8-16+6=-2#0

We have minor of order 3

p(A) =3

1
2. Find the rank of the matrix | 5
8

Sol: Given the matrix is of order 3x4

Its Rank < min(3,4) = 3

Highest order of the minor will be 3.

1 2 3
Let us consider the minor |5 6 7
8 7 0

Determinat of minor is 1(-49)-2(-56)+3(35-48)

=-49+112-39 = 24 # 0.




Hence rank of the given matrix is ‘3’.

* Elementary Transformations on a Matrix:

i). Interchange of i row and j™ row is denoted by R; ¢ R

(ii). If i row is multiplied with k then it is denoted by R, —K R;

(iii). If all the elements of i row are multiplied with k and added to the corresponding elements of |

row then it is denoted by R; — R; +KR;

Note: 1. The corresponding column transformations will be denoted by writing ‘'c’. i.e
¢ $>c, c—kg ¢ — ¢+ kg

2. The elementary operations on a matrix do not change its rank.

Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on

A, then B is said to be equivalent to A.
It is denoted as B~A.
Note :1.If Aand B are two equivalent matrices, then rank A = rank B.
2. If A and B have the same size and the same rank, then the two matrices are equivalent.
Echelon form of a matrix:
A matrix is said to be in Echelon form, if
(i). Zero rows, if any exists, they should be below the non-zero row.
(ii). The first non-zero entry in each non-zero row is equal to ‘1’.

(iii). The number of zeros before the first non-zero element in a row is less than the number of such

zeros in the next row.
Note: 1. The number of non-zero rows in echelon form of A is the rank of ‘A’.

2. The rank of the transpose of a matrix is the same as that of original matrix.

3. The condition (ii) is optional.




is a row echelon form.

0

0
1
0

0 0
0 O | isarow echelon form.
0 O

PROBLEMS

2 3 7
1. Find the rank of the matrix A= |3 —2 4 | by reducing it to Echelon form.
1-3-1

2 3 7

sol: GivenA= |3 -2 4
1-3-1

Applying row transformations on A.

1-3-1
A~ |3 =2 4|R, < R;
2 3 7

1-3-1
~10 7 7|R,>R;-3R;
09 9

Rs=> R;-2R;




1-3-1
~ O 1 1 RZ - R2/7,R39 R3/9
011

1-3-1
~01 1 |R;>R;-R,;
00 O

This is the Echelon form of matrix A.
The rank of a matrix A.

= Number of non — zero rows =2

4 4 -3 1
1 1 -10
For what values of k the matrix has rank ‘3’.
k 2 2 =2
99 kK 3

Sol: The given matrix is of the order 4x4

If its rank is 3 = det A =0

Applylng Rz - 4R2'R1, R3 94R3 - le, R4 - 4R4 - 9R1




4 -3

0 -1 -1
8—4k 8+3k 8-k
0  4k+27 3

Since Rank A=3 = det A=0

0o -1 -1
=4 8-4k 8+3k 8-k/=0
0  4k+27 3

= 1[(8-4k)3]-1(8-4k)(4k+27)] = 0
= (8-4k) (3-4k-27) = 0

= (8-4k)(-24-4k) =0

= (2-k)(6+k)=0

= k=2ork=-6

Normal Form:

I 0 |
Every mxn matrix of rank r can be reduced to the form (Or 0 j (or) (I,) (or) (Or j(or)

I 0
( ' by a finite number of elementary transformations, where |, is the r — rowed unit matrix.

Note: 1. If Ais an mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ =

¢ o)




2.Normal form another name is “canonical form”

4
3

into normal form, find its rank.

2
e.g: By reducing the matrix 1
0

-10

:Given A=

R; > Rs+R,

€= €3 - 2Cq, C3—7C3-3Cy, C4>Cq-4Cy




0 0
0 0 [c3 > 3 ¢c3-2¢, ¢4>3¢4-5¢;
0 18

0 0
0 0 | c;>c/-3, cs>cl/18
0 1

This is in normal form [I5 0]
Hence Rank of A is ‘3’.

Gauss — Jordan method

The inverse of a matrix by elementary Transformations: (Gauss — Jordan method)

suppose A is a non-singular matrix of order ‘n’ then we write A=1, A

Now we apply elementary row-operations only to the matrix A and the pre-factor I, of

the R.H.S
We will do this till we get |, = BA then obviously B is the inverse of A.




16 4
*Find the inverse of the matrix A using elementary operations where A={0 2 3
01 2

16 4
GivenA= |0 2 3
01 2

We canwrite A=13A

Applying Ri=>R;-3R,, we get

10
0 2
00




Applying R, > R,/2, we get

1 0 O 1 -8 10
01 0|=|0 2 -3 |A=I;3=BA
0 0 1 o -1 2

B is the inverse of A.

System of linear equations — Triangular systems:
Consider the system of n linear algebraic equations in n unknowns

dy1 Xpt+apXot+

az1 XptazXy+

Lower Triangular system:

Suppose the co-efficient matrix A is such that all the elements above the leading diagonal are

zero. That is, A is a lower triangular matrix of the form.




In this case the system will be of the form

ai X1 =b;

a1 X1+aznX; =b,

an1 Xat anXot

from above equations, we get

X1 = bi/an

Xy =

bz_az1x1__ %b}
1

11

The method of constructing the exact solution is called method of forward substitution.

Upper triangular system:

Suppose the co-efficient matrix A is such that all the elements below the leading diagonal are all

zero. i.e Ais an upper triangular matrix of the form.




Above system can be of the form

from the above equations, we get

a

nn

a
I {bn_l— nin bn} and so on.

a‘n—l, n-1

The method of constructing the exact solution is called method of backward substitution

Solution of linear systems — Direct methods
Method of Factorization (Triangularisation):
Triangular Decomposition Method:

This method is based on the fact that a square matrix A can be factorized into the form LU,

where L is the unit lower triangular matrix and U is the upper triangular matrix.




Note:

1. The principle minors of A must be non-singular
2. This factorization

Consider the linear system
a11 XtappXptansXs =b;
a1 X1+axXp+azsXs =b,
a1 X1+azXp+assxs =b3

which can be written in the form Ax =B

Xl
(2) and X=| X,
X3

0 ull u12 u13
0] U={0 U, Uy
1 0 0 ug,

1 0
WherelL= |1, 1

|31 |32

Then (1) =» LUX = B.

Y1
If we put UX=Y whereY =Y,

Ys

Then (2) becomes LY = B

The system is equals to y; = b,
L1i+y, =b,

l31y1+l32y2+y3 =bs




here y4,y,,ys are solved by forward substitution using (3) we get

u11 X1HUoXp+Us3X3 =
u22X2FtU23X3
u33X3

from these we can sole for x4,x,,x3 by backward substitution .

The method of computing L and U is outlined below from (2) * we get

0 ull u12 u13
0 0 Uy, U,g
1 0 0 Uy,

0
1

|32

Equating corresponding elements, we get

Uqp = an l1 U3y = @1 P |y = az1/a1; and

Uz = a1 31 Uy =a3; = b3 = az/an

Uiz=ais  lrUp + Uy = ay P 11315 + U = a5 D Uy = 8- a@n/an
lsiuptlsus, =as; P I3 = [a3-1s; Usp] / Uy, and

I31813+132853+U33 = @33 from which us; can be calculated.




Ex : Solve the following system by the method of factorization x+3y+8z =4, x+4y+3z = -2, x+3y+4z

Soln: The given system can write AX = B;

3 8 X 4
A= 4 3| X=|y|andB=|-2
3 4 z 1

LetA=LU

ul3

1 3 8
I21Ulz +U,, |21U13 + Uy =11 4 3
1 3 4

|31u12 + |32u22 I3lu13 + |32u23 + u33

2 u;=1,u=3,u;3=8

|21 Uy = 1 9 |21 =1 and |31U11 =1 9 |31 =1

from the equations l,;uq,+us,

[1u13+Uy3

Uy = 4-l1us,




By using I31u1,+13,U; = 3 and I3;uqs+3us3+uss = 4 we get

l33 = 4-131U13-155U53

= 4-1(8)-(0)5 = -4

LetUX=YwhereY=|y, | thenlLY=8B
Ys

From (2) y;=4, y,=-2 and y;+y; =1

ys=-3

from (1)

x=-29/4,y=7/4and z= %

Solution of Tridiagonal system:




Consider the system of equations defined by

biui+ciu, =d;

a,urtbyuy+cus = d,

anu,.;+bnun =dn

The co-efficient matrix is

This matrix is solved by using factorization method.

Ex : Solve the following tri-diagonal system of Equations 2x;+x, =2
X1+2X+X3 =2
Xo+2X3+X, = 2
X3+2X, =1
stepl:

soln: The given system of equations in matrix notation can be coriten as Ax = B




LetA=LU

w, 00 0
B, w, 0 0
0 B w, 0

Equating the corresponding elements of first row = wy = 2, w,0,; =1

9a1=1/2

Equating the corresponding elements of second row, we get B, =1, a;f,+w, =2 =

W2=3/2 a2=2/3

W3=4/3 0L3=%

equating the corresponding elements of fourth row, we get




Bs=1, o3Bstws =2 w, =5/4

substituting these values

Step2: LUX=B

LY = Bwhere UX =Y

2y;=2=2y, =1 yo+4/3y; =2 > y; =1

y1+3/2y,=29vy,=2/3 y3+5/4y,=1 >y, =0

step3: UX=Y




X1+ Y2 X=1

X,+2/3x%3 =2/3

X3+3/4X4 =1

Xa =0

solving the solution is given by

X1 =1, X2 =0 , X3 =1, Xg= 0




UNIT-II

LINEAR TRANSFORMATION




Eigen Values & Eigen Vectors

Def: Characteristic vector of a matrix:

Let A=[a;] be an nxn matrix. A non-zero vector X is said to be a Characteristic Vector of A if there

exists a scalar such that AX=AX.

Note: If AX=AX (X20), then we say ‘A’ is the eigen value (or) characteristic root of ‘A’.

Eg:LetA=[i ; x:[_ll]

AX=E ;}][—11]= [—11]:1'[—11]

=1.X

Here Characteristic vector of A is [ 1

_1] and Characteristic root of A is “1”.

Note: We notice that an eigen value of a square matrix A can be 0. But a zero vector cannot be an eigen

vector of A.

Method of finding the Eigen vectors of a matrix.

Let A = [a;] be a nxn matrix. Let X be an eigen vector of A corresponding to the eigen value A.
Then by definition AX =AX.

= AX = AIX
2  AX-AIX=0
2 (AADX=0

This is a homogeneous system of n equations in n unknowns.

Will have a non-zero solution X if and only |A-Al| =0

A-Al is called characteristic matrix of A

|A-Al] is a polynomial in A of degree n and is called the characteristic polynomial of A
|A-AI|=0 is called the characteristic equation

Solving characteristic equation of A, we get the roots , 4; 4, A3 ....... 4, These are called the
characteristic roots or eigen values of the matrix.




Corresponding to each one of these n eigen values, we can find the characteristic vectors.

Procedure to find eigen values and eigen vectors

Ain

Qon , .
be a given matrix

Characteristic matrix of Ais A — Al
8y,

a2n

a —A

nn

Then the characterstic polynomial is |A—/1I|

ail_/1 &
sayp(4)=|A—Al|= o1

a,—A

anl an2

The characteristic equation is |A-AI| = 0 we solve the @(A) = |A — Al| = 0, we get n roots, these are

called eigen values or latent values or proper values.

Let each one of these eigen values say A their eigen vector X corresponding the given value A is obtained

by solving Homogeneous system

a,

anl an 2

And determining the non-trivial solution.




PROBLEMS

Find the eigen values and the corresponding eigen vectors of [g _24]

8 —4]
2 2
Characteristic matrix = A — Al
_ [8 -\ -4 ]

2 2—A

Characteristic equation of Ais|A—11|=0

sol:Let A = [

8—\ —4
:>| 2 2-A
—B-N2—-N)+8=0

|=0

= 16+A>—10A+8=0
= A —10A+24=0
= (A-6)A—4)= 0

= A = 6,4 are eigen values of A

Consider system [8 A ] (2) =0

2 2—A

Eigen vector correspondingtoA = 4

Put A = 4 in the above system, we get

(G 3 G)=0)

= 4x; —4x,=0———(1)

2x1 — 2%, =0 ———(2)

from (1)and (2)we have x; = x,

letx; = &

s )-[2)-<
Eigen vector is = =a
X, a 1

[ﬂ is a Eigen vector of matrix A, corresponding eigen value A = 4

Eigen Vector correspondingtoA = 6

put A = 6 in the above system, we get

G DG)=0)




- le_4xZ=0___(1)
2x1_4x2=0___(2)

from (1) and (2) we have x; = 2x,

Say X, =a =X, =2«

. {Za} {2}
Eigen vector = =a
a 1

[ﬂ is eigen vector of matrix A corresponding eigen value A = 6

2. Find the eigen values and the corresponding eigen vectors of matrix [

2 0 1
Sol: LetA=|0 2 O
1 0 2

The characteristic equation is |A-Al|=0

2-A 0 1
ie.[AN]=| 0 2-A o0 |=0
1 0 2-A

=2-NR2-N?-0+[-2-N]=0
= 2-N)3—0A-2)=0

= A-2[-(A-2)2-1]=0

= A=2 [-A+4A-3]=0

= A-2)A-3)A-1) =0

= A=1,2,3
The eigen values of Ais 1,2,3.
For finding eigen vector the systemis (A—A)X =0

2—A 0 1 X1 0
=07 2 o Jle]-|g
1 0 2—M 1X3 0

Eigen vector corresponding toA =1




1 0 17[* 0
0 1 Of[*2|=10
1 0 111x3 0

X1+x3=0
x2:0

X1+x3=0

0 | is Eigen vector
[ 1

Eigen vector corresponding to A = 2

0 0 11[* 0
0 0 0 H - H
1 0 o0llxs 0
Here x; = 0 and x5 = 0 and we can take any arbitary value x, i.e x, = a (say)

X1 07 0
X2 | = [a :a[l
0

X3 0l

0
Eigen vector is [1]
0

Eigen vector corresponding to A = 3

-1 0 17 [* 0
o =1 o |[u]-|o

1 0 —111Ix3 0

here by solving we get x; = x3,x, = 0 say x3 =X
X1 =X, x,=0 ,x3=x
1
=a|0
1




1
Eigen vector is [O]
1

Properties of Eigen Values:

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen

values is equal to its determinant.

Proof: Characteristic equation of Ais |A-Al|=0

au_ﬂv &, a,

a a,-4A -+ a
i.e, 2 % " |expanding this we get

a, a,, ea —A

nn

(a, —4)(ay, —4)--+(a,, — 1) —ay, (a polynomial of degree n - 2)

+ a3 (a polynomial of degree n -2) +...=0

=(-1)" [/1“ —(a,, +ay, +...+a )4 +a polynomial of degree(n- 2)]: 0

(D" A" + (=)™ (Trace A)A"* +a polynomial of deg ree(n—2)inA=0

If A1, A, ..... A, are the roots of this equation

(D)™ (4)
(-nn

Further |A — M| = (—=1)"A" + ---. +a,
put A = 0 then |A| = a,

sumof the roots = =Tr(4A)s

(D" +a, A" T4a, A2+ L.+a,=0
(-D"ag _

Product of the roots = W = a,

but a, = |A] = detA

Hence the result

Theorem 2: If . is an eigen value of A corresponding to the eigen vector X, then A7 is eigen value A"

corresponding to the eigen vector X.

Proof: Since #. is an eigen value of A corresponding to the eigen value X, we have




Pre multiply (1) by A, A(AX) = A(+.X)
(AA)X = A(AX)

A= A(hX)

A’X= 22X

2% is eigen value of A>with X itself as the corresponding eigen vector. Thus the theorm is true for n=2
Let we assume it is true for n = k
i.e, A = A*X

Premultiplying (2) by A, we get
A(AX) = A(R*X)

(AA")X= 2(AX)= 2*(AX)

AIx= 24X

#51is eigen value of A" with X itself as the corresponding eigen vector.

Thus, by Mathematical induction., A" is an eigen value of A"
Theorem 3: A Square matrix A and its transpose A" have the same eigen values.
Proof: We have (A- Al)'= AT- A1"

=A- A

[(A- 21)T|=|AT- 21] (or)

|A- A1[=|AT- 21| HAT‘:WJ

|A- 21]=0 if and only if |A"- 21|=0




A is eigen value of A if and only if A is eigen value of AT
Hence the theorm

Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A'B and B A™ have

same eigen values.

Proof: Given A is invertble

i.e, Alexist

We know that if A and P are the square matrices of order n such that P is non-singular then A and
P AP have the same eigen values.

Taking A=B A" and P=A, we have

BA"and A'(B A™")A have the same eigen values

ie.,BA™ and (A" B)( A" A) have the same eigen values

ie.,B A'and (A" B)I have the same eigen values

ie.,B Atand A'B have the same eigen values

Theorem 5: If A, 4,, A, are the eigen values of a matrix A then k A, k 4, ..... k 4, are the eigen

value of the matrix KA, where K is a non-zero scalar.

Proof: Let A be a square matrix of order n. Then |KA- AKI| = |K(A- Al)| =K" |A- |

Since K20, therefore |KA- 2KI| = 0 if and only if |A—ll| =0

l.e,, K1isaneigen valueof KA<if Aisaneigenvalueof A

Thus k 24, k 4, ... k &, are the eigen svalues of the matrix KA if
Ay, A, ... A, are the eigen values of the matrix A

Theorem 6: If 2. is an eigen values of the matrix A then A+K is an eigen value of the matrix A+KI

Proof: Let & be an eigen value of A and X the corresponding eigen vector. Then by definition AX= AX




Now (A+KI)X

= AX + IKX =AX + KX

S(A+K)X

A+ Kis an eigen value of the matrix A + KI

Theorem 7: If A, A,.. A, are the eigen values of A, then A,—K, 4, —K, ... 2,—K,

arethe eigen values of the matrix (A— Kl), where K is anon — zeroscalar

Proof: Since A4, A5, .... A, are the eigen values of A.
The characteristic polynomial of A is

A= A= (A= 2) (Pg= 2) o (A= A)

Thus the characteristic polynomial of A-Kl is
[(A=KI)= 21| = |A=(k+ )1

Py K] o= A+ K] e [ — (K]
= [y —K) = 2[( — K) = 2. [(h, — K) — 2]

Which shows that the eigen values of A-Klared; — K, A, — K, ... ... A, — K

Theorem 8: If %, A, ... &, are the eigen values of A, find the eigen values of the matrix (4 — A}~
Proof: First we will find the eigen values of the matrix A- AI

Since /4. A, ... 7, are the eigen values of A

The characteristics polynomial is

|A-All =y —K) (A —K) oo (A, — K) (1) where K is scalar

The characteristic polynomial of the matrix (A- AL} is

|A- AI-KI| = |A-( A+K)1|




- Py = (A K] [ — (A K)o [ A, —( 24K)]
[ =) = K] [ =) — K] . [ Oy — 1) —K)]
Which shows that eigen values of (A- Al)are Ay — A, (A, —A) .. A, — A

We know that if the eigen values of Aare 2.,, 2, ... 2, then the eigen values of A*are A3, A2 ..... A2
Thus eigen values of (A—Al)?are(4, —1)*, (4, —A)%,....(4, — A)*
Theorem 9: If % is an eigen value of a non-singular matrix A corresponding to the eigen vector X, then 2~

L is an eigen value of A" and corresponding eigen vector X itself.

Proof: Since A is non-singular and product of the eigen values is equal to |A|, it follows that none of the

eigen values of Ais 0.

If . is an eigen vector of the non-singular matrix A and X is the corresponding eigen vector #.#0 and AX=
AX, Premultiplying this with A™, we get A" (AX) = A™*( 2X)
=(ATAX =AAX = IX =1A'X

AX= AAX = ANX =A71X (A £0)

-1. . _
Hence A is an eigen value of A™

Theorem 10: If

A is an eigenvalue of a non — singular matrix A, then }i is an eigen value of the matrix Adj A
Proof: Since 4. is an eigen value of a non-singular matrix, therfore %20

Also % is an eigen value of A implies that there exists a non-zero vector X such that AX = X

= (adj A)AX = (Adj A)(AX)
= [(adj A)A]X = A(adj A)X

— |AlZX = A (adj A)X |- (ade)A=W|]

:%X = (adj A) X or (adj A)ngx




Since X is a non — zero vector, therefore the relation (1)

A
it is clear that U is an eigen value of the matrix Adj A

A

. . . 1., .
Theorem 11: If  is an eigen value of an orthogonal matrix then 5 is also an eigen value

Proof: We know that if A is an eigen value of a matrix A, then ;’7 is an eigen value of A™

Since A is an orthogonal matrix, therefore A™ = A'

1

~is an eigen value of Al

But the matrices A and A" have the same eigen values, since the determinants |A- AI| and |A™- 21| are

same.

Hence} is also an eigen value of A.
Theorem 12: If 2. is eigen value of A then prove that the eigen value of B = apA*+a;A+a,l is a, A*+a; A+a,
Proof: If X be the eigen vector corresponding to the eigen value %, then AX = AX --- (1)

Premultiplying by A on both sides

= A(AX) = A(X)
= A'X = MAX) =20X) = AX

This shows that A% is an eigen value of A®
we have B = a,A%+a,A+a,l

o BX = (aA’+aA+a,l)X

= aOA2 X+a;AX+a; X

= aph? X+a; AX+a,X = (agh’ +a; A+ay )X

(agh>+a; h+a,) is an eigen value of B and the corresponding eigen vector of B is X.




Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and

P'AP have the same eigen values.

Proof: Consider the characteristic equation of P'AP

Itis |(P*AP)-AI| = | P*AP-APP| (o | = P'P)

= | PYHAN)P| = | P |ANI]| |P]
= |A-Ml| since [P |P] =1

Thus the characteristic polynomials of P"'AP and A are same. Hence the eigen values of P"'AP and A are

same.

Corollary 1: If A and B are square matrices such that A is non-singular, then A*B and BA™ have the same

eigen values.

Proof: In the previous theorem take BA™ in place of A and A in place of B.
We deduce that A*(BA™)A and (BA) have the same eigen values.

i.e, (A"B) (A'A) and BA™ have the same eigen values.

i.e, (A"B)l and BA™ have the same eigen values

i.e, A'B and BA™ have the same eigen values

Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have the same eigen

values.

Proof: Notice that AB=IAB = (B'B)(AB) = B (BA)B

Using the theorem above BA and B™ (BA)B have the same eigen values.
i.e, BA and AB have the same eigen values.

Theorem 15: The eigen values of a triangular matrix are just the diagonal elements of the matrix.




Proof: Let A = be a triangular matrix of order n

B3
) 0
ie.,

0 0. ...
i.e, (a1~ ) (aze- A) ..... (@nn- 4)=0
= A =ay,ay,...am

Hence the eigen values of A are a;1, as,.... a,, Which are just the diagonal elements of A.

Note: Similarly we can show that the eigen values of a diagonal matrix are just the diagonal elements of

the matrix.

Theorem 16: The eigen values of a real symmetric matrix are always real.

Proof: Let # be an eigen value of a real symmetric matrix A and Let X be the corresponding eigen vector

then AX= AX — — — —(1)

Take the conjugate AX =X

Taking the transpose X (A)7 = A1

Post multiplying by X, we get KT AX =23

Premultiplying (1) with XT , we get X'AX =X X

(2) - (3) gives (2-2)X X =0but X7¥ = 0 =4-4=0




= 1— A= Ais real. Hence the result follows

Theorem 17: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values

are orthogonal.

Proof: Let A4, A, be eigen values of a symmetric matrix A and let Xy, X, be the corresponding eigen

vectors.

Let A; # A, We want to show that X; is orthogonal to X2 (i.e., X;_TX: =0)

Sice Xy, X, are eigen values of A corresponding to the eigen values Ay, A, we have
(1)

Premultiply (1) by X7

= XIAX, = A, X7

Taking transpose to above, we have

= XA (X =] (7]

i.e, X]AX, = A, X[ X,

Premultiplying (2) by X1, we get X] AX, = A, X[ X,
Hence from (3) and (4) we get

(A, — A XX, =0
= XIX,=0

(A #2)
X, isorthogonal to X,

Note: If A is an eigen value of A and f(A) is any polynomial in A, then the eigen value of f(A) is f(A)

PROBLEMS
1. Find the eigen values and eigen vectors of the matrix A and its inverse, where
1 3 4
A=|0 2 5§

o 0 3




Sol: GivenA=|0 2 5§

134l
0 0 3

The characteristic equation of A is given by |A-Al| =0

1—A 3 4
= 0 2— 4 5

0 0 3—4A
=(1-A[z2-A)(EF-4)]=0
= 4 =1,2,3

Characteristic roots are 1,2,3

Characteristic vectar far A =1

Qg 3 47 [* 0
For A=1,becomes [0 1 5| |[X:|=10

0 0 211%s 0
= 3x, +4x, =10
X, + 5xg =10

2%, =0

3'-':='D:9-'3='DandX1=a

a 1 1

=| 0=/ 0 |is the solution where & is arbritary constant - X=|0

0 0 0

Is the eigen vector corresponding to A=1

Characteristic vector for A= 2

-1 3 47" 0
For A=2 becomes | 0 Q 5| |*X:|=10

0 0 111L¥*s Q

= —x, + 3x, +4x; =10

X% =0=x,=0




- X +3X, =0= X, =3X,

Letx, =k
x, = 3K

is the solution - X =|1
0

Is the eigen vector corresponding to A=2

1
Hence the characteristic vector is [{)l
0

Characteristic vector for A= 3
—2 3 4Tx] [o
For A=3,becomes| 0 -1 5(x,|=|0
0 0 0fx]| |0
= —2x,+3x,+4x; =10
—xX, +5x; =10
Savxg =K = x, =5K
19

.}-1 = ?h’

- X =10 is the eigen vector corresponding to A=3
2




. _ 11 1
Eigen values of A™"are —, —,—
Ay A Ag

= Eigen values of A™ are 1%%

We know Eigen vectors of A~ are same as eigen vectors of A.

2. Find the Eigen values of 34% + 54 — 64+ 2l where A = [

Sol:The characteristic equationof Ais|A—AI| = 0
1—4 2 —3

0 3—A 2

0 0 —2—-2A
=[(1-A)(3-A)(-2—-4)—-0]=0
= (1-A)(3-A)(2+4) =0 A=13 -2
Eigen valuesof A are 1,3,-2
We know that if Aisan eigen value of Aand f(A)is a pelynomial in A.

then the eigen value of f(A)is f(A)

Let f(A) =347 + 54 — 64 + 21
Then eigen values of f(A) are f(1), f(3) and f(-2)

f(1) = 3(1)>+5(1)%-6(1)+2(1) = 4

f(3) = 3(3)>+5(3)%-6(3)+2(1) = 110

f(-2) = 3(-2)>+5(-2)%-6(-2)+2(1) = 10

Eigen values of 34% + 54% — 64 + 21 are 4,110,10

Diagonalization of a matrix:

Theorem: If a square matrix A of order n has n linearly independent eigen vectors (Xy,X...X,)

corresponding to the n eigen values Ay, A,....A,, respectively then a matrix P can be found such that
P'AP is a diagonal matrix.

Proof: Given that (Xi,X,..X,) be eigen vectors of A corresponding to the eigen values AjA...A,
respectively and these eigen vectors are linearly independent Define P = (X,X..X,)

Since the n columns of P are linearly independent |P |0




Hence P exists

Consider AP = A[X{,X,...X,]
= [AX, AX;.....AX,]

= [AXy, AXpee AnXi]

_/11 0

0 4,
[X1,X5...Xn]

=PD

Where D = diag (4, 4,, 4;,

AP=PD

P(AP) = P (PD) = P*AP =(P'P)D

= PAP=(/\D

=D

= diag (4,4, 4,

Hence the theorem is proved.

Modal and Spectral matrices:

The matrix P in the above result which diagonalize the square matrix A is called modal matrix of A and

the resulting diagonal matrix D is known as spectral matrix.

Note 1:If X3,X,...X,are not linearly independent this result is not true.

2: Suppose A is a real symmetric matrix with n pair wise distinct eigen values A,4,--- 4,
then the corresponding eigen vectors X;,X,... X, are pairwise orthogonal.

Hence if P = (ey,€z...en)

Where e; = (X1 /|| X4q]), €2 = (KXo 1 ||Xz]])....en = (Xn)/ [|Xnl|

then P will be an orthogonal matrix.




i.e, PTP=PP'=|
Hence P 1= PT

PlaP =D =P'AP=D

Calculation of powers of a matrix:

We can obtain the power of a matrx by using diagonalization

Let A be the square matrix then a non-singular matrix P can be found such that D = P

‘AP

D?=(P'AP) (P*AP)

=P 'A(PPHAP

=P'A’®P  (since PP =I)
Simlarly D® = P 'A%

In general D" = P*A"P

To obtain A", Premultiply (1) by P and post multiply by P

Then PD"P* = P(P'A'P)P*

=(PPHA" (PP =A" = A" =PD"P™
A0 0 0
0 A4 0 0

Hence A" = P Pt

o 0 o0 A

n

PROBLEMS

—2
1. Determine the modal matrix P of = { 2
—1
matrix.
Sol: The characteristic equation of Ais |A-Al| =0
—2-1 2 -3
i.e, 2 1—4 —6|=0
-1 -2 =4
which gives (A—5)(A+ 3)* =0

Thus the eigen values are A=5, A=-3 and A=-3

2 =3
1 —&|. Verify that P *AP is a diagonal
-2 0




-7 2
whenA=5=| 2 —4
-1 -2

1
By solving above we get X; = [ 2 l
—1

Similarly, for the given eigen value A=-3 we can have two linearly independent eigen vectors X, =

2 3
[—1] and Xy = Gl
0 1

P=(X, X, Xj)

1 2 3

P=1|2 —1 0|=modalmatrixof 4
—1 0 1

NowdetP =1(—1)—2(2)+3(0—1)= —8

detp 8|2 * ¢

adf P 1{_1 —2
-1 -2 =5

-1 -2 3 -2 2
-2 4 <] ] [ 2 1 —6]
-1 -2 —-51l-1 -2 0
-5 —-10 15
[ 6 —12 —lSl
3 G 15
—40 0 0
. [ 24 0 l
] o 24

0
-3 0 |=diag (5,—3,—3)
0 0 —3

Hence P™1AP is a diagonal matrix.

2. Find a matrix P which transform the matrix A =

1 0 -1
{l 2 1 ] to diagonal form. Hence calculate A*
2 2 3

Sol: Characteristic equation of A is given by |A-Al| =0




34
—(1-D[2-DBE-N-—2]-0-1[2—-2(2—40}= 0
—(A-1)(A—-2)(A—-3)=0

= A=1,1=2,1=3

Thus the eigen valuesof Aare 1,2, 3
If x4, X5, X3 be the components of an eigen vector corresponding to the eigen value A, we have
1—4 Q -1 J[*1 4]
[A-AIX=| 1 2—4 1 ol = |0
2 2 3 —Allxg ]

For A= 1,eigen vectors are given by
0 0 —177* 0
1 1 1 x: =0 i.e, 0.X1+0.X2+0.X3=0 and X1+X2+X3=0
2 2 2 1% 0

x3=0 and X;+X,+X3=0

X3=0, X1=-X;

X1=1, X2='1, X3=0

Eigen vector is [1,-1,0]

Also every non-zero multiple of this vector is an eigen vector corresponding to A=1
For A=2, A=3 we can obtain eigen vector [-2,1,2]"and [-1,1,2]"

1 -2 -1
P=|-1 1 1

2

The Matrix P is called modal matrix of A




NowP AP =

1 -2 =11 0 O]
=l-1 1 1[0 16 0
0 2 2|0 0 81]

65 66 40
130 130 81

[—49 —50 —4Gl

Cayley - Hamilton Theorem:

Every square matrix satisfies its own characterstic equation

PROBLEMS

1 -2 1
1. Show that the matrix A=|1 -2 3] satisfies its characteristic equation Hence find A™
o -1 2

Sol: Characteristic equation of A is det (A-Al) =0
1—4 —2 2

= 1 —2-—4 3 |=0 C2->C2+C3
0 -1 2—-4




1—-2 0 2
(1—4| 1 1 3 |=0
o 1 2-12
A—At+i-1=0
By Cayley — Hamilton theorem, we have A*-A%+A-I1=0
1 -2 2 -1 0 0 -1 2 -2
A=|1 -2 3| A’=|-1 -1 2| A*=|-2 2 -1
0 -1 2 -1 0 1 -11 0

-1 2 -2][-1 0 0|1 -22[[t00
A-A+A-1=|-2 2 -1|-|-1 -1 2|+|1 -2 3|-|0 1 O
-11 0| |-1 0 1|0 -12]|001

o o o0
=10 0 0|=0
o 0 0

Multiplying with A™ we get A>— A + [ =A""

-1 0 0] |1 -2 2] |1 -1 2 -2

0
At=|-1 -1 2|-|1 -2 3|+|0 0|=|-2 2 -1
1

-1 0 1|10 -1 2| |0 -1 1 0

. Using Cayley - Hamilton Theorem find the inverse and A of the matrix A =
7 2 =2
-6 -1 2
5] 2 -1

7 2 =2
Sol: LetA=|—-6 —1 2
6 2 -1

The characteristic equation is given by |A-Al|=0

-1 2 -2
le,-6 -1-4 2 (=0
6 2 -1-2




1 0 -1
(1—A)70 1 1 =0
6 2 —(1+4)

AP —GATLT7i—-3=0

By Cayley — Hamilton theorem we have A*-5A%+7A-3I1=0.....(1)

Multiply with A™ we get

A= = [4T — 54+ 71]

25 8 -8 9 26 -26
AN=|-24 -7 8 |AN=-78 -25 26
24 8 -7 B 26 -25

-3 -2 2
Alzé 6 5 -2
-6 -2 5

Multiply (1)with A,we get

A —54* L 747 —34=0

395 130 -130] [175 56 -56] [21 6 -6
-390 -125 130 |-|-168 -49 56 |+|-18 -3 6
1390 130 -125) [ 168 56 -69| |18 6 -3
241 80 -80
~-240 -79 80
240 80 -79

Problems

2 21 -1 2 =2
1. Diagonalizethematrix (i) | 1 3 1)1 2 1
-1 2 2 -1 -1 0




1 3
3. Verify Cayley — Hamilton Theorem forA=|2 ¢ 5]. Hence find A™.
3 5 6

Linear dependence and independence of Vectors :

Show that the vectors (1,2,3), (3,-2,1), (1,-6,-5) from a linearly dependent set.

1 3 1

Sol.  The Given Vector X; =|2 |X, =|-2|X;=|-6
3 1 -5
The Vectors Xy, X, X3 from a square matrix.
1 3 1
Let A=|2 -2 -6
3 1 -5
1 3 1
Then |[Al=|2 -2 -6
3 1 -5
= 1(10+6)-2(15-1)+3(-18+2)
=16+32-48=0
The given vectors are linearly dependent .- |A|=0
2. Show that the Vector X;=(2,2,1), X»=(1,4,-1) and X3=(4,6,-3) are linearly independent.
Sol. Given Vectors X;=(2,-2,1) X,=(1,4,-1) and X3=(4,6,-3) The Vectors X;, X;, X3 form a
square matrix.
2 1 4

A=-2 4 6
1 -1 -3

2 1 4
Then |[A=|-2 4 6
1 -1 -3
=2(-12+6)+2(-3+4)+1(6-16)
=-20#0
The given vectors are linearly independent




Real and complex matrices

Conjugate of a matrix:

If the elements of a matrix A are replaced by their conjugates then the resulting

matrix is defined as the conjugate of the given matrix. We denote it with A

2+3i 5 — | 2-3i 5
e.gIf A= . .| then A= . i
6-71 -5+i 6+71 —-5-1i

The transpose of the conjugate of a square matrix:

If A is a square matrix and its conjugate is A, then the transpose of A is (Z)T .
It can be easily seen that (Z)T = AT
It is denoted by A’
A'=(A) =AT
Note: If A?and B’ be the transposed conjugates of A and B respectively, then
i) (A%) =A i) (A£B) =A"£B iii) (KA)" = KA’ iv)
(AB)" =B’A’
Hermitian matrix:
A square matrix A such that A=A (or) (K)T =A is called a hermitian matrix

4  1+3i — 4 1-3i 0 4  1+3i
e.g A= i then A= ) and A'= i
1-3i 7 1+31 7 1-3i 7

Here (_A)T =A, Hence A is called Hermitian

Note:

1) The element of the principal diagonal of a Hermitian matrix must be real
2) A hermitian matrix over the field of real numbers is nothing but a real symmetric.

Skew-Hermitian matrix

A square matrix A such that A =-A (or) (K)T =-Ais called a Skew-Hermitian matrix

3 2+i — [ 3 2-i —r | 3 =2-i
e.g. Let A= .. |then A= .. |and (A) =l . .
240 i —2—i i 2-1 i




A is skew-Hermitian matrix.

Note:

1) The elements of the leading diagonal must be zero (or) all are purely imaginary

2) A skew-Hermitian matrix over the field of real numbers is nothing but a real skew-symmetric
matrix.

Unitary matrix:
A square matrix A such that (K)T =A"

ie (A) A=A(A) =I
If A’ A=Ithen A is called Unitary matrix

Theorem: The Eigen values of a Hermitian matrix are real.
Proof: Let A be Hermitian matrix. If X be the Eigen vector corresponding to the eigen value A
of A, then AX= AX

Pre multiplying both sides of (1) by X? we get
XAX =X’
Taking conjugate transpose of both sides of (2)

We get (X°AX ) =(2X“X )’

ie X°A(x?Y = 2x°(x?Y | (ABCY =C?B’A? and (KAY = KA’]

(or) X?A’X = AX“X [-.-(x")g =X, (A7) = A}
From (2) and (3), we have
AXIX = AXX
ie (A-2)X'X=0=1-1=0
= A=A( XX #0)

.. Hence 4 is real.
Note: The Eigen values of a real symmetric are all real
Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or) Zero
Proof: Let A be the skew-Hermitian matrix
If X be the Eigen vector corresponding to the Eigen value A of A, then
AX =X (or)(iA) X =(i1) X

From this it follows that i1 is an Eigen value of iA




Which is Hermitian (since A is skew-hermitian)
A=A
Now (iA) =iA? =—iA? =—i(— A)=iA
Hence iA isreal. Therefore 4 must be either
Zero or purely imaginary.
Hence the Eigen values of skew-Hermitian matrix are purely imaginary or zero
Theorem 3: The Eigen values of an unitary matrix have absolute value .
Proof: Let A be a square unitary matrix whose Eigen value is 4 with corresponding eigen vector
X
= AX=iX (1)
— AX =X =X A =IXT - (2)

—\T

Since A is unitary, we have (A) A=1-(3)

(1) and (2) given X' A (AX)=14X X

ie X X=A2X X From (3)

— Tx(l—zi):o

Since X' X #0,we must have 1— A4 =0
= 1i=1
Since |4 :m
We must have |[1|=1

Note 1: From the above theorem, we have “The characteristic root of an orthogonal matrix is unit
modulus”.

2. The only real eigen values of unitary matrix and orthogonal matrix can be + 1
Theorem 4: Prove that transpose of a unitary matrix is unitary.

Proof: Let A be a unitary matrix
Then AA’ = A’ A=1

Where A’ is the transposed conjugate of A.




Hence A" is a unitary matrix.
PROBLEMS
: . 3 2+i
1) Find the eigen values of A:{ . ) }
—2+1 i
3 2+i
—2+1 i

Sol: we haveA:{
— -3 2-i T i —2+i

So A= . land A" = i .

2+1 —1

—2—i i

— A=-A
Thus A is a skew-Hermitian matrix.
. The characteristic equation of Ais |[A—41|=0
T 1Bi=A =2+i
= A = ] . =0
-2+1 —1-A
— A -2i1+8=0
= A=4i,-2i are the Eigen values of A

1. 3

i 2=
2) Find the eigen values of A= 2
) '\/§

2
V3

_ 1
2 2 |and

Now A= Ve

5> -
V3
2

1.
-=i
2

(Z‘)T - ﬁ

1.

i
2
i

1
2

—T 10
We can see that A .A= 01 =1

Thus A is a unitary matrix
~. The characterstic equation is|A— 11| =0




1 -3

Which gives /1:£+i—and—+1i and
2 2 2 2

A=1/23+1/2i
Hence above A values are Eigen values of A.

3 7—4i -2+5i
3) IfA=| 7+4i -2 3+i | then show that
—2-51  3-i 4

A is Hermitian and iA is skew-Hermitian.

3 7-4i -2+5i
Sol:  Given A=| 7+4i -2 3+i | then
-2-5i  3-i 4
7+4i -2-5i 3 7-4i
2 3-i |And(A) =| T+4i -2
—2+51  3+i 4 —2-51  3-i

A= (Z)T Hence A is Hermitian matrix.

Let B=iA

3i 4471 -5-2i
ieB=|-4+7i —-2i —1+3i| then
5-2i 1+3i 4

3 4-T7i -5+2i
B=|-4-7i 2i -1-3i
5+2i 1-3i -4

“3i  —4-T7i 5+2i 3i
4-T7i  2i 1-3i | =(-1)| —4+7i
542 -1-3i -4 5-2i

—2+5i
3+i
4




: (E)T =B
-.B=iA is a skew Hermitian matrix.
4) If A and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix.

Sol: Given A and B are Hermitan matrices
. (K) —A And( )

Now (AB—BA) =(AB-BA)

(AB BA)
~(AB) ~(BA) =(B) (A) (A (B)
=BA-AB (By (1))
—(AB-BA)
Hence AB-BA is a skew-Hemitian matrix.

a+ic —-b+id| . | : £ 2,12, 2. 12
is unitary if and only if a“+b*+c“+d“=1

5) Show that A=
) {b+id a—ic

a+ic —b+id}

Sol: Given A=
{b+id a-—ic

a—ic —b—id}

Then A= . .
{b—ld a+ic

— a—ic b-id
Hence A’ =(A)T = ' :
—b—-id a+ic
AAY — a+ic —-b+id | a—ic b-id
“|b+id a-ic |-b-id a+ic

_(a®+b*+c*+d? 0
0 a’+b*+c?+d?

- AA’ =1 ifand only if a®+b?+c?+d?=1

6) Show that every square matrix is uniquely expressible as the sum of a Hermitian
matrix and a skew- Hermitian matrix.

Sol. Let A be any square matrix




4

Now (A+A?) = A7+ (A7)
=A"+A

(A 9 0 _ 9 9 - - .
+A) = A+ A" = A+ A" is a Hermitian matrix.
%(A+ A‘g) is also a Hermitian matrix
0\? 0 0\?
Now (A-A%) = A’ —(A’)
=N -A=—(A-AY

Hence A— A’ is a skew-Hermitian matrix

%(A— A‘g) is also a skew —Hermitian matrix.

Unigueness:

Let A =R+S be another such representation of A
Where R is Hermitian and

S is skew-Hermitian
Then A’ =(R+S)’
=R%+5S°
=R-S (~R"=R,8’=-3)
~R :%(A+ A’)=P and S :%(A— A’)=Q

Hence P=R and Q=S
Thus the representation is unique.

0 1+2i
-1+2i 0

10 0 1+2i
Sol: we have | — A= -

7) Given that A:{

} , show that (1 — AYI + A)™" is a unitary matrix,

0 1| |[-1+21 O




a1 1 -1-2i
HA) _1—i4i2—1i{1—2i 1 }

1 1 -1-2i
S 6l1-2i 1

Let B=(1-A)I+A)"

1 —1—21{ 1 —1—2i}_1{1+(1—2i)(—1—2i) —1—2i—1—2i}
"6 1

1-2i 1 [1-2i 1 6| 1-2i+1-2i  (-1-2i)1-2i)+

[ —4 24
2-4i -4

6|2+4i -4 6|-2+4i -4

0 1 -4 2-4i[ -4 2+4i
B(B) =—|, _
36|2-4 4 -2+41 -4
136 0] [1 0 |
36| 0 36| [0 1]

(5] -

— -4 2+4i — 4 2+4i
Now B:E{ " I} and (B)T :1{ - I}

i.e., B is unitary matrix.
- (I = AXI + A)™is a unitary matrix.

8) Show that the inverse of a unitary matrix is unitary.




Sol: Let A be a unitary matrix. Then AA’ =

ie (AA) =1

:>(A”)_1 At=]

=(AY) A=

Thus A™ is unitary.




UNIT-III
DIFFERENTIAL

EQUATIONS OF FIRST ORDER AND
THEIR APPLICATIONS




ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER

& FIRST DEGREE

Definition: An equation which involves differentials is called a Differential equation.

Ordinary differential equation: An equation is said to be ordinary if the derivatives have reference to

only one independent variable.

2
d ¥+3d—y+2y:ex
dx dx

Ex. (1) d—y+7xy:x2 2)
dx

(1) Partial Differential equation: A Differential equation is said to be partial if the derivatives in the

equation have reference to two or more independent variables.

(82)2 oz )

OX oy
0z 16/4
— 4 y_ —
ox "oy

Order of a Differential equation: A Differential equation is said to be of order ‘n’ if the n*™ derivative

22

is the highest derivative in that equation.

E.g: (1). (*+1). :—; +2xy =4x°

Order of this Differential equation is 1.

d’y dy o
(2) XW—(Zx—l)&Hx—l)y =e

Order of this Differential equation is 2.

d*y (dyjz
(3). — +5| —| +2y=0.

dx

dx




Order=2 , degree=1.

A%y v .
(4). ey + 3,2 O Orderis 2.

Degree of a Differential equation: Degree of a differential Equation is the highest degree of the
highest derivative in the equation, after the equation is made free from radicals and fractions in its
derivations.

dy 4 (%2 :
Eg:1) y=x.——+ (dxj on solving we get

1
\

(1-x7) [g}f—zw.%—(l— v?) =0. Degree =2

- )
Tr¥_[1+ [z—;j'] /2 onsolving . we get

2,
dx?

2) a.

5 A2y 5 dy, 2
a®.(cz)* = [1+ (30)7]° Degree=2

Formation of Differential Equation : In general an O.D Equation is Obtained by eliminating the arbitrary

constants ¢;,c,C3

Where c;,c,,C3, C, are arbitrary constants.

Differentiating (1) successively w.r.t x, n- times and eliminating the n-arbitrary

constants c;,c ,,----c, from the above (n+1) equations, we obtain the differential equation F(x , v,

PROBLEMS

1.0btain the Differential Equationy= Ae ™ 1B 5 py Eliminating the arbitrary Constants:

Sol.y= Ae™* + B eg5*
y1 = A(—2)e ™ + B(5) e

v, =A(4).e"** +B(25) e

Eliminating A and B from (1), (2) & (3).




Y1 =0
25y,

|:> -'L:r: - 3_11-?1'10y :0-
The required D. Equation obtained by eliminating A & B is
y2-3y1-10y =0

2). Log (%):cx

Sol:

=>

idy

ydx

=>

@)in (1) =>

3) sin™!x +sin”?

¥ =cC.
Sol: Given equation )

1 1 dy
+

vi—x J1—ytdx

dx 2

O ot
V1—X

4) y= e*[Acosx +B sinx]

Sol: Given equation is y = *[Acosx +B sinx]

dy

o = 2% [Acosx +B sinx] + €% [-Asinx +B cosx]




dy

— =y + &% (-Asinx +B cosx).
dx

2
= M_Zy

o 2 +2y =0 is required equation

=0 is the required equation.

6) y=a g% 4 bE—Ex

z_ dy _
T E -2y =0

7) Find the differential equation of all the circle of radius

Sol. The equation of circles of radius a is (x — h)* + (v — k)* = a® where (h ,k) are the

co-ordinates of the centre of circle and h,k are arbitrary constants.
. 4 (8¥y2 93 _
Sol: [1 [dxj ¥ =
8) Find the differential equation of the family of circle passing through the origin and having their
centre on x-axis.
Ans: Let the general equation of the circle is x*+y*+2gx+2fy+c=0 .

Since the circle passes through origin, so c=0 also the centre (-g,-f) lies on x-axis. So the y-
coordinate of the centre i.e, f=0. Hence the system of circle passing through the origin and

having their centres on x-axis is x+y*+2gx=0.




dy ) el
Ans. 2Xxy . —+x° — y° =0.
dx

9) sin*(xy) + 4x =c.

dy 7.2
Ans: x.d—“ +y+4. V1 —x-y" =0
X

ETX
10) y=

x%#1

dy

Sol: (x*+ 1) .S+ 2xy -1=0.

11) r=a(1l+cost)

Sol: r=a(1l+cost)

Put a value from (1) in (2).

—r .
= . 5ind
1+cos8

- i i
-r ESLnE;n cusgjn
= i
2oos E;q

= -r tan'S'Hf2
ar . 8, —
Hence = rtan 3(2- 0.

Differential Equations of first order and first degree:

¥

The general form of first order ,first degree differential equation is z—x = f(x,y) or [Mdx + Ndy =0

Where M and N are functions of x and y]. There is no general method to solve any first order
differential equation The equation which belong to one of the following types can be easily

solved.




In general the first order differential equation can be classified as:

(1). Variable separable type
(2). (a) Homogeneous equation and
(b)Non-Homogeneous equations which to exact equations.

(3) (a) exact equations and
(b)equations reducible to exact equations.
4) (a) Linear equation &

(b) Bernoulli’s equation.

Type -1 : VARIABLE SEPARABLE:

-

If the differential equation %=f(x,y) can be expressed of the form z—x=;:x or f(x) dx —g(y)dy =0

where f and g are continuous functions of a single variable, then it is said to be of the form variable

separable.

General solution of variable separable is [ f{x)dx — [ g(¥)dy=c

Where c is any arbitrary constant.

PROBLEMS:

1) tan y% = sin(x+y) + sin(x-y).

Sol: Given that sin(x+y) + sin(x-y) = tan V%

c—D

%) cos(2)]

= 2siNX.CosX = tany :—x [Note: sinC+sinD :23in(c:

= 2sinx = tany secy Z—x

General solution is Zf sinxy dx = fser_':}r tany .dy

=> -2C0SX =Ssecy +C




=> secy+2cosx+c=0.//
2) Solve (x*+ 1) :—x+ (v* + 1) =0, y(0) =1.
Sol: Given (x? + 1). 24 (v2 + 1) =0
dx

= dx + dy :0

541 4T

On Integrations

= I (1+1X2)dx + I (1+1y2)dy =0

=>tan ! x+tan"ly =

Giveny(0)=1 => Atx=0,y=1

(2)in (1) =>tan™! 0 +tan™! 1 =c.
=> O+§ =C

=> Cc= E

Hence the required solution is tan™" x +tan™ ' y = =

Exact Differential Equations:
Def: Let M(X,y)dx +N(x,y) dy =0 be a first order and first degree Differential Equation where
M & N are real valued functions of x,y . Then the equation Mdx + Ndy =0 is said to be an

exact Differential equation if 3 a function f =.

df (6. y)] :%dXJr%dy

Condition for Exactness: If M(x,y) & N (x,y) are two real functions which have continuous
partial derivatives then the necessary and sufficient condition for the Differential equation
aM AN
Mdx+ Ndy =0 is to be exact is By = Ax
Hence solution of the exact equation M(x,y)dx +N(x,y) dy =0. Is
[Mdx + [Ndy =c.

(y constant) (terms free from x).

*kkhkhkhkkikk




PROBLEMS

X

1) Solve (1+ ey}dx + ey(l—ﬁjdy =0
y

Sol: Hence M=1+e'& N= ey(l—g)

ﬂ o aN x(-1 x X 1
oy = o (DR e | ) Ha=De ()

M _ 2 i anN _ X -
5y - ¢ D& = e ()

8M _ 8N o
By A equation Is exact

General solution is

[Mdx + [Ndy =c.

(y constant) (terms free from x)

f(l—e;%]dx + [0dy =c.

2. Solve (8¥'+1) .cosx dx + ¥ sinx dy =0.

N
— =e%cosx

Ans: (8¥'+1) . sinx =c e
3. Solve (r+sinf —casf) dr +r (sinf + cosf) df = 0.
Ans: r? +2r(sin @ —cos 9) = 2c

oM _oN

— = = sinf + cosd.
or 00




4. Solve [y(1 —i) +cos y] dx+ [ x +logx —xsiny]dy =0.

1
Sol: hence M =y(1 —;) +cosy, N = x +logx —xsiny.

E.‘rz'_ll . E'.'\-'_ll .
3y - +-siny oo = L1+, -siny

anN

— = 3,50 the equation is exact

General sol [Mdx + [Ndy =c.

(y constant) (terms free from x)

[ly+Z+cosyldx + [e.dy =c.

— Y(x+ logx) +x cosy =c.
5. Solve ysin2xdx — (v*+cosx) .dy =O0.
6. Solve (cosx-xcosy)dy — (siny+(ysinx))dx =0

Sol: N =cosx-x cosy & M = -siny-ysinx

aM

N . .
5, = -SinX - cosy 3y = ~CoSy -sinx

oM aN

P the equation is exact.
o

General sol [Mdx + [Ndy =c.

(y constant) (terms free from x)

=>[(—siny — ysinx).dx + [o.dy =c
=> -xsiny+ ycos X =C
=> yCosX — Xsiny =c.
7. Solve (sinx . siny - x ) dy = (e* +cosx-cosy) dx
Ans: xe¥ +sinx.cosy =c.
8. Solve (x*+y*-a%) x dx +(x*-y*-b?) .y .dy =0
Ans: x*+2x%y*-2a?x%-2b%* =c .




REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO

EXACT USING INTEGRATING FACTORS
Definition: If the Differential Equation M(x,y) dx + N (x,y ) dy = 0 be not an exact differential
equation. It Mdx+Ndy=0 can be made exact by multiplying with a suitable function u (x,y) = 0.
Then this function is called an Integrating factor(l.F).

Note: There may exits several integrating factors.

Some methods to find an |.F to a non-exact Differential Equation Mdx+N dy =0

Case -1: Integrating factor by inspection/ (Grouping of terms).

Some useful exact differentials
1. d(xy) = xdy +y dx
2. d® = IR

37
xdy—ydx

4@ =

) = x dx +y dy

1’:

dlogy) =
d(log())
dtan()) = M

d (i’ﬂ,ﬂ_l(zj ) xd_, —ydx

xt4y®

dlog(xy) ~ = iy

10. d(log(x* + ¥%))

11, d(i—fj

PROBLEMS:
1. Solve xdx +y dy+”* yéx =,

+y




Sol: Given equation x dx +y dy + u =0

o

“en=o

on Integrating

=2 __";"

— tan” 1(%) =C.
2.Solve y(x*. e*¥ — y) dx +x (y +x. ) dy = 0.
Sol: Given equation is on Regrouping
We get yx’e™” dx - yidx+ xy dy +x*e* dy =0.

x*e*¥ (ydx+ xdy)+ y (x dy — ydx ) = 0

Dividing by x*

e™ (ydx + xdy) +() . ( ”“I;dx) =0
d (e*) +(§3. d +(§] =0

on Integrating

2
e” +1/2Gj =C isrequired G.S.

3. Solve (1+xy) xdy + (1-yx)ydx =0
Sol: Given equation is (1+xy) x dy +(1-yx ) y dx =0.
(xdy +y dx ) +xy (xdy—ydx)=0.
Divided by x?y* =>  (X2X128%) 4 (2202,

Ea =¥

dlxev)

= (& )+ dy-—dx =0.

On integrating 1 logy —log x =log ¢
Xy

-—-logx +log y =log c.

4. Solve ydx —x dy = a (x* + v*) dx
Sol: Given equation is ydx —x dy = a (x* + v*) dx

rdx -2 d
== - adx

I-\.x - _:' .l




= d[tan1 X adx)
y

. aX . .
Integrating on tan 1; = ax +c where c is an arbitrary constant.

Method -2: If M(x,y) dx + N (x,y) dy =0 is a homogeneous differential equation and

Mx +Ny = 0 then ! is an integrating factor of Mdx+ Ndy =0.
Mx -+ Ny

1.Solve X2y dx— (x*+y3)dy =0
Sol : Given equation is X%y dx — (X*+ y* ) dy = 0------=r=---=---- (1)
Where M= Xy & N= (x*-y*)
Consider Zw = xz&% = -3x°

oM N o
ay * A equatlon IS not exact .

But given equation(1) is homogeneous differential equation then
So Mx+ Ny = x(x%y) —y (+ y®) = - y* #0.
ot
= ke Ny vy*

-1

Multiplying equation (1) by =

3 3
dx - X_;Ay dy = 0----m-eememmmeeeaeeee )

4

-y

_ >__ dX x3+ _,-3

¥3 —ya

This is of the form M;dx + N;dy =0

3

dy =0

+y°

4

For M; = - =& Ny =

AM1 2 ; 2
=>— = i&ﬂ :3i
8y y4 dx y4

E"'di
— equatlon (2) is an exact D.equation.




General sol _[ M, dx + I N,dy =c

(y constant) (terms free from x in N;)

=>[Trdx o+ [dy =c.

_IE
=>_5 +logly|=c

2.5olve yidx+ (x*—xy— y)dy=0

Ans: (X-y). ' = cl¥(x+y).

3.S0lve y( ¥*—2 x) dx+x (2 y2— x%)dy=0

Sol:Given equationisy( ¥*—2 x*) dx+x (2 ¥ — x°)dy =0 ---------- 1)
Itis the form Mdx +Ndy =0
Where M=y( ¥>—2 x%),N= x (2 ¥v>— x%)

Consider ZH = 3y2-2x2&%: 2y?-3x°

oM aN

e . .
dy © x equation is not exact .

Since equation(1) is Homogeneous differential equation then
Consider Mx+Ny=x[y( ¥*—2 x%) J+y[x (2 ¥*— x?)]
=3xy( ¥*— x?)=o0.

=> |.F. = 1

3xy (37~ #°)
1

Bxy (% - x

2 ny2 2 2
= Y 22X2 dx + x2y2 X2 dy=0
3xyly” —x 3xyly” —x
Now it is exact

(yz_xz)_x y2+(y2—x2) -
3x(y2—x2) dx + 3y(y2—x2) dy=0

Multiplying equation (1) by - We get




dx dy 2ydy  2xdx _
(XW}Z(VZ—XZ) 2y )~

log x +log y +1 log (v* —x?) 1 log (y*-x%)=logc =>xy = ¢

4. Solve r (8%+r*) d8 -8 (8%+2r%) dr =0

Ans: %Hogﬁ' - log r* =c.

Method- 3: If the equation Mdx + N dy =0 is of the form y. f(x,y).dx+x.g(x,y) dy=0& Mx- Ny = 0

1

then is an integrating factor of Mdx+ Ndy =0.

Mx— Ny

Problems:

1. Solve (xy sinxy +cosxy) ydx + ( xy sinxy —cosxy )x dy =0.
Sol: Given equation (xy sinxy +cosxy) ydx + ( xy sinxy —cosxy )x dy =0
Equation (1) is of the form vy. f(xy) .dx + x . g ( xy) dy =0.
Where M =(xy sinxy + cos xy ) y

N= (xy sinxy- cos xy) x

.".equation (1) is not an exact
Now consider Mx-Ny
Here M =(xy sinxy + cos xy ) y
N= (xy sinxy- cos xy) x

Consider Mx-Ny =2xycosxy

Integrating factor = L

2xyCoENy




So equation (1) x I.F

Xy Sin Xy -+C0s Xy )y dxs (xy sin xy —cos xy) dy =0
2Xy COS Xy 2Xy COS Xy

N

:(ytanxy+f—{)dx+(ytanxy-f—_)dy:O

= Mj dx + Nj dx =0
Now the equation is exact.
General solj Midx + j N; dy =c.

(y constant) (terms free from x in N,)

=>[(ytanxy —i]dx + J.%dy =C.

yvlog|seexy|
=>", +logx +(-logy) =log c

=> log|sec(xy)| +log" =log c.
=>2 . secxy =C.

2. Solve (1+xy) y dx + (1-xy) x dy =0
Sol: LF=——

xSy

ol it Dydxe [y =

2x=y

-1 1 1
=> +-logx < logy =c.
g & &

XY

—1 X
=>—— +log() =  where c'=2c.
N ¥

o

3. Solve (2xy+1)ydx+ ( 1+ 2xy-x’y’) x dy =0

1
Ans: logy + +——=cC.

xTy®  Bx® oyl
4. solve (xy* +xy +1 ) ydx +( x’y*- xy+1 ) xdy =0

Ans: xy -i + Iog(f-r_) =C.




M 8N

Method -4: If there exists a continuous single variable function f (X) such that ==

~f(x),then LF. of Mdx + N dy =0 is &' )

PROBLEMS
1.Solve (3xy —2ay?) dx + (x* — 2axy) dy =0
Sol: Given equation is ( 3xy — 2a_1’:) dx + (x: — 2axy)dy =0
This is of the form Mdx+ Ndy =0

=> M=3xy-2ay &N =x"— 2axy

E—w = 3x-day &%: 2x-2ay

anN

7 g equation not exact.

(3x —4ay)—(2x - 2ay)
x(x - 2ay)

Now consider ———=

[=dx
=>e * =X isan Integrating factor of (1)

equation (1) Multiplying with I.F then

[.3:{-"'- -1 5'3-2 I (x®— 2axy)
S e

xdy=0
=> (3x%y -2ay’x) dx + (x*-2ax’y) dy =0

Itis the form M.dx + N.dy =0




M, =3x%y —2ay’x, N, = x* — 2ax’y

oM,

= 3x* — daxy, %zSX2 — Aaxy

oy  OX

.’.equation is an exact

General sonMldx + INldy: C.
(y constant) (terms free from x in N,)
= [(3x?y — 2ay?x)dx + [0dy = ¢

=> X’y —ax’y’ =c.

2. Solve ydx-xdy+(1+x>)dx + x“sin y dy = 0

Sol : Given equation is (y+1+x*) dx + (x* siny — x) dy =0.

M= y+1+x:& N =x? siny —x

ax

= 2xsiny-1

oM ON

— ;é& = > the equation is not exact.

oy

oM oN

So consider %y oX :(1—22X_S|ny+1):—22x_smy+2:—2(x§|ny—1):—_2
x?siny —x x?siny—x  x(xsiny-1)  x

Equation (1) X I.F




It is the form of Mdx+ N; dy =0.

Gen soln =>f (? T 2% T ljlﬂTJ.' +f Siﬂ}’d}’ =0

N |
=>"% - = +X- COSY =C.
a x

=>x° —y— 1— xcosy = cx.

3. Solve 2xy dy — (x*+y?+1)dx =0

arZ 1
Ans. X+<Z—+-=r¢.

4. Solve (x*+y?) dx -2xy dy =0
Ans: x2-y?=cx.
aN 8M

dx 4y

— g(y) (is a function of y alone) then &- gy

Method -5: For the equation Mdx + N dy =0 if

is an integrating factor of M dx + N dy =0.
Problems:
1 .Solve (3x%y*+2xy)dx +(2x°y*-x%) dy =0
Sol: Given equation (3x’y*+2xy)dx +(2x’y*-x?) dy =0
Equation of the form M dx + N dy =0.

Where M =3x’y*+2xy & N = 2x°y*-x?
M =12x°y* + 2X,® =6x°y°® —2x

oy OX

+ —; equation (1) not exact.

aN M
dx 8y

So consider

T . - £
1y I o

I -
ILF=el U0 -




2,,4 3,,3 2
equation (1) x| :[de[zy_},yo
y y

2
= (3x2y2 + Qde + (szy - X—Zjdy =0
y y

It is the form Midx + N; dy =0

General sol [M,dx+ [N,dy=c

(y constant) (terms free from x in N,)

=>[(3x%y>+ D)dx+ [ody =c.

:>3;r'_'," + _... =C.
3 =¥

3..2 .'-t':
=>x*y° +— =C.

1
o

2. Solve (xy*+y) dx + 2(x?y*+x+y*) dy =0

8N 3M,

Loz 30! (4xy®+2)—(3xy +1)
dx dy | LD LSt 4 1
Sol: ———— = = = - =g(y).

¥

LFzelabldy _

Gen sol: J(xy* +y? Jx+ [(2y° Wy = ¢

a P

+¥° x+=— =c.
&

3 . solve (y*+2y)dx + ( xy® +2 y* — 4x) dy =0

AN aM,

dx ay-

\ -
o 2y = — =8y

a

o~ -
lF=eld

2
Gen soln : J'(y+7jdx +I2ydy =C.




(+

4. Solve (y+ y)dx + xy dy =0
Ans: X + Xy =C.
5. Solve (xy>+y) dx + 2(x*y*+x+y”)dy =0.

Ans: (X%+y*-1) e* =c.
LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER:

Def: An equation of the form %+ P(x).y = Q(x) is called a linear differential equation of

first order iny.

Working Rule: To solve the liner equation %+ P(x).y =Q(x)
X

—elp)ax

first find the integrating factor I.F
General solutionis yx I.F = JQ(x)xI.F.dx+c

Note: An equation of the form%— plv)x = q(y) called a linear Differential equation of first

o

orderin x.

Then integrating factor =e- p(¥)dy

General solutionis =x X LF= [Q(y)x1.Fdy+c

PROBLEMS:
1. Solve (1+y?) dx=( tan "ty —x) dy

1

Sol: Given equation is (1+ y?) :—x =(tan "y-x)

dx (1 tany
1+y?

il Cves ) . X=

It is the form of :—I +ply).x=Qly)

o

r 1

LF =e/PY = g/5m®




-1, -1 E]
=> General solution is  x. ™" 3:fmn—2y.eta” Ydy +¢
l1+y
=>x. e Y =[t. efdt+c
[puttanty =t
= 12dy=dt]
1+y

=x. e Y ot et -e” +C

=> X.Emn oy :taﬂ,_l },IETE?‘E Sy _E" -y +C

=>x =tan "t y— 1 +clet®™ ¥ is the required solution

2. Solve (x+y+1) :_; =1.

iy
Sol: Given equation is (x+y+1) = 1.

dx
=>== — x=y+l.
dy

It is of the form :i +ply).x= Qfy)

Where p(y)=-1;Q(y) = 1+y

P r
=>|F=g! PIEY _omldy _ ¥

General solutionis x X I.LF = JQ(y)x|.Fdy+c

=>x.e ¥=[(1+y)eYdy+c

=>x.e ¥=[eVdy+ [yeVdy+ ¢
xe ¥ = eV — yxe VeV 4
xe ¥ =- e (24 v) +c.//

1 .

3.Solvey* + y = g




Sol: Given equationis y* + v = e®

g
It is of the form d—’

2+ p(x).y = 0(x)
Where p(x) =1 Q(x) = Eax

P r
= |F= e pilxidx = g dx —e®

General solutionis yxI.F= fQ(x)xI.F.dX+C

= vy e*=] e e*dx + ¢
=>vy. e* =[e'dt+c
=y, e* =e'+c
=y e*= e +¢
4. Solve xj—x +y =log x

Sol : Given equation is X. L y =log x

X

Itis of the form == +p(x)y = Q(x)

Where p(x) = i& Q(x)="2=

x

_ log=x

General solution is yx LF=JQ(X)x I.F.dx+c

1
= y.X = fﬂfxxd.x—c

=>vy .X =X (logx-1) +c.

5. Solve (1+y?) + (x- efen »)2L

dax

. . . od
Sol : Given equation is — + —

T¥

-

It is of the form 'Z—j +p(y) X= qqy)




Emn._"_";
Where p(y)=1_13_:,Q(X): 14y

roroa wr -
I.F = g F'J'_.'d_‘,' = g’ 14y g3 — Ef’ﬂ?’! _‘,.'I

General solution is xx LLF= [Q(y)x|.Fdy+c.

[Note: put tan™'y =t

=> 1'” d}:r = dt]

g sinlx
6.solve 224+ Y = -
@x  xlogx  fog%

—C0S 2X
+C

Ans: ylogx = >

7. :—; + (y-1). Cosx = e*™cos?x

Ans: y.ei™ = 14 Ty esinx e

4

dy 2X y= 1 given y=0, when x= 1.

8. —+ .
dx 1+x2 (1+x2)?

Ans:y(1+x%) = tan”lx —%

dy tany
9.Solve —Z——- =(1+x) e¥.secy

T

Sol : The above equation can be written as

Divided by secy => CoS Yy Z_; _siny

14
Put siny=u

_ dy _du
=>C0sy - =1




Differential Equation (1) is :—; — 1171 .u=(1+x) e*

this is of the form g— plx).u =@ Qx

Where p(x) =i Q(x) =(1+x) e*

r—1

=> IL.LF= E'rp':x}dx =g Tex ¥ —gloE(1+x)

General solution is ux L.LF= [Q(y)xI.Fdy+c

= U — 1+ x) exidx +c

1+x
1

=> U —=[ e¥dx +¢

1+x

=> (sin y)l:l:: e* +c

(Or)
=>siny = (1+x) e* +c. (1+x) is required solution.

10. Solve Z—x - ytanx =

¥

AnNs :

11 .Solve :—x—yx =yle

1 —_—
Ans: e = =COSX+C.

y

:—“ =2xy’+y e

X

x
x%+c.
13. % +ycosx = wv3sinx
Ans : j— =(1+2sinx ) +¢c g nx
= e TE™E=_(1+2sinx) e TE™E 4,
% +ycotx= _v: sin’x cos® x

Ans: ysinx (c + cos® x) =3,




BERNOULLI’S EQUATION :

(EQUATIONS REDUCIBLE TO LINEAR EQUATION)

Q(x)

Def: An equation of the form z—; +p(x).y =0 (:ci

is called Bernoulli’s Equation, where P&Q are function of x and n is a real constant.

Working Rule:

Case -1 : If n=1 then the above equation becomes Z—x +p.y=0Q.

=> General solution of % +(P-Q)y=0is

Id—y + (P —Q)dx = c by variable separation method.
y

Case -2: If n #1 then divide the given equation (1) by ¥

-n Gy 1-n

=V

Then take ¥ ™™ =

— dy du
(1-n)y "2 ==
- dx dx

=y " & = 1 du
- dx l-ndx

Then equation (2) becomes

1 du

I-nax | PKX). u=Q

du
=t (1-n) p.u = (1-n)Q which is linear and hence we can solve it.

Problems:




g
1.Solvex=+y=xy*
dx
. L o.o_dy - I
Sol: Given equation is X=Z+y=X ¥y
£
. . . dy 1 2.6
Given equation can be written as —— + (;) V =Xy
e dy
Which is of the form ot p(x).y =Qv"
g

Where p(x) =§Q(x) =x°& n=6

ivi 6,1 dv 11
Divided byy > o

(3)in (2)

Which is a Linear differential equation in u

rpl’x"-dx -5 rid.‘-t‘ _e1
I.F= e- ey =g T x =g Lo gx

&

General solution is u.I.F =] Q(x) x I.F.dx +¢

.%dx+c

1 5xf -
(or) == —7 +cx*
B 2

2y L) =
2. Solve . (=¥ xy)=1




. Lo gy 2
Sol: Given equation is — (% _1’3 +xy) =1

dx 5 1
This can be written asd— =X .y= xiyd =>3.

) in (1)

This is a Linear Differential Equation in ‘ u’

P(y)dy [odne
e &Y rray

General solution = u.l.LF=[Q(y)x|.Fdy+c

¥
= [y*.eT T dy +c

dy 2
3. Solve -ty tanx = v~ sec X
L

-
— | tanxdx

IF= e e

.1
General solution— cos x=-x +c .

o

2. dy .
4, (1-x7) d—“+xy= visin1x
£

Sol: Given equation can be written as




Which is a Bernoulli’s equation in‘y‘

dy
Divided by_v3:> i L=

. 1 du N _osmix OU O 2xX  —2sinT'x
(2)in (1) :>——:E +1_x= R 3&—1_)(2. =T

Which is a Linear differential equation in u

i

oo -
nix) - d P .
| F= e/ P& _ 70 ¥ cglog(1=x7) =(1—x7)

General solution = u.LF=]Q(X)x|.F.dx+c

:>L=[l —x%)=f hm_.::{(l —xN)dx+ ¢

1—x*

=-2 [xsin_lx +wW1—x% J+c

g
e = =2xy’+y. e~
dx

APPLICATION OF DIFFERENTIAL EQUATIONS OF FIRST ORDER
ORTHOGONAL TRAJECTORIES (O.T)

Def: A curve which cuts every member of a given family of curves at a right angle is an orthogonal

trajectory of the given family.
Orthogonal trajectories in Cartesian co-ordinates:

Working rule:To find the family of O.T in Cartesian form . Let f(x,y,c) =0




be the given equation of family of curves in Cartesian form.
Step: (1) Differentiate with respectto ‘x ‘and obtain F(x, vy, _1’1 )=0

of the given family of curves.

(2) Replace & by — s (2)
dx dy

Then the Differential Equation of family of O.T is

F(X, Y, —%) ) [ —— 3).

o

(3) Solve equation(3) to get the equation of family of O.T’s of equation(1).

PROBLEMS:
1. Find the O.T’s of family of semi-cubical parabolas ay’=x® where a is a parameters.

Sol : The given family of semi-cubical parabola is ay*=x’

Differentiating with respectto ‘x ‘=>a 2yd—y =3x°
X

x dv
Eliminating ‘a‘=>—7% .2y. —
& ¥ y dx




2 2
:>X_+y_:l
3c 2c

2. Find the O.T of the family of circles x*+y*+2gx+c =0, Where g is the parameter

Sol:  x*+y*+2gx+c =0. (1) is represents a system of co- axial circles with g as
parameter

Differentiating with respectto ‘x © => 2x+ ZyE +29 =0
Substituting equation from (2) in (1)
=>  X*+y? -(2x+ 2y :—; ) X +¢ =0.

=> y?-x%-2xy Z—x +¢=0

dy dx
Replace . by — =

=> y2-x2-2xy (—5)+c=0

=> y*-x’+2xy [Z—xj +¢=0

This can be written as

dy _d_y

‘ ’

Which is a linear equationin ‘u

f—ldy .
— 1F= e ¥ =e leE¥ !




General solutionis u .l .F =IQ(y).I Fdy+K

S =I—_(C+ y2)ldy+k
’ y

NG
:_z——y‘l'k
y y

3. Find the O.T’s of the family of parabolas through origin and foci on y —axis.

Sol : The equation of the family of parabolas through the origin and foci on y-axis is

parameter

dy

= 2x=4a .—
dx

X
Ans: XY
2 ¢

4. Find the O.T of the one parameter family of curves e*+ e =c.

Sol: Given equationis &%+ e ¥=c,
—r Y
Differentiating with respective X' ="+ e™¥(—")=c
X

0T e+ ¥ (_:xj=c

Ans:e’ —e " =K.
5. Find the O.T of the family of circle passing through origin and centre on x-axis.

Hint : Given family of circles is x*+y*+2gx=0 .

x2
Ans: —=-y +c.

¥

x’=4ay where a is




6. Prove that the system of parabolas y’=4a(x+a) is self orthogonal
ORTHOGONAL TRAJECTORIES IN POLAR FORM
Working Rule: To find the O.T of a given family of curves in polar-co ordinates.

Let f(r, 8,c) =0 (1) be the given family of curves in polar form.

1) Differentiating with respect tof and obtain F [ r, E'JZ—;] =0 by eliminating the
parameter c.
2dd

2.) Replace % by — = then the Differential Equation of family of O.T

F[r,0,—r? :—f_']:o

3.) Solve the above equation to get the equation of O.T of (1)

Problems:

1. Find the O.T of family of

a) x= +y= =a= where aisaparameter.

b) = o ;; - =1 A is a parameter, is self —orthogonal
=%t =
c) rsin28 = A, Aisaparameter

Ans:r*cos2 8 =C*

. Find the O.T of family of curves r" =a" cosn &
Ans: r"=csinné
3. Find the O.T of family of curves r=2a (cos & + sin &)
ans: r=(cos@-siné).c

4. Find the O.T of family of curves r" sinn & =a"

Ans: r"=c" secnf




5. Find the O.T of the co focal and coaxial parabolas r

Ans: r= =

1—cosd

NEWTON’S LAW OF COOLING

STATEMENT:The rate of change of the temperature of a body is proportional to the difference of the

temperature of the body and that of the surrounding medium.

Let'8' be the temperature of the body at time ‘t’ and #o be the temperature of its surrounding

medium(usually air). By the Newton’s law of cooling , we have

g g
'Z_‘_OL (8 —Bo)=>— % k(8 — Bo) kis+ve constant

=log (8 —Bo) = -kt +c.
If initially 6= 0, is the temperature of the body at time t=0 then
c=log (0, —6,) = log (8 —Bo) =kt+log (6, — 6,)

6-6

b)
(6, -6,

)

= log ( =-kt.

f=60+(6,-0,). e™**

Which gives the temperature of the body at time ‘t" .

Problems:




1 Abody is originally at 80°C and cools down to 60°C in 20 min . If the temperature of the air is 40"
Cfind the temperature of body after 40 min.

Sol: By Newton’s law of cooling we have

di

—, = k(€ — 80) where 80 is the temperature of the air.

daé
=1-9)

Here fo =40 ¢

=—k[dt = log(0-6,)=—kt+logc

= log( & —40)=-kt+logc

g —a0

= log ) =-kt

c

& —40

Solving (2) & (3) =ce ™™ =20
= 40e "% =20

=> k:;—ﬂlogZ

When t=40°C =>equation (1)is & = 40 + 40 o~ (55 los2)40

= 40 +40 e~ 1°%
=40+ ( 40 x1 )
—8=50°C
2 . An object whose temperature is 75°C cools in an atmosphere of constant temperature 25°C,
at the rate of k 8.8 being the excess temperature of the body over that of the temperature. If
after 10min , the temperature of the object falls to 65°C , find its temperature after 20 min. Also

find the time required to cool down to 55°C.

Sol : We will take one minute as unit of time.

It is given that Z—E =-ké




Initially when t=0 =& =75° — 25% = 50°
= ¢=50°
Hence C=50= 0 =50e™"

When t= 10 min = 8=65" — 25% = 40°

= 40=50 ¢ 1%

The value of & when t=20 =8 =ce™**
§ = 5020k

6 =50( 2)’

When t=20 =8 = 32°C.

Hence the temperature after 20min =32°+25°=57°C
When the temperature of the object = 55°C

0 =55"-25° =30°C

Let t, be the corresponding time from equ. (2)

From equation (3)

From Equ(4) we get




3
=t =10 k’igﬁ; =22.9min
log %

3. A body kept in air with temperature25°C cools from 140°C to 80°C in 20 min. Find when the body

cools down in 35°C.

dé

Sol : By Newton’s law of cooling % =—k(©6-6,)= 7

0
= log(0—6,)=—kt+cHere 8o=25%

= log (6 —25) = -kt +c

When t=0, 8 =140° ¢ = log (115) =c

= c=log (115).

= kt=-log (¢ —25)+log 115 @)

When t=20,8=80%¢

— log (80-25)= -20k + log 115

=20k =log (115) - log(55)

log11s —log(#—25)

kt

(2)/ (3) =>

20k log1i5-logss

t _ loglis-log(#-25)

20~ loglis—logss

t _ leg11s-logil1d)

When 8 =35C =—=—

20 logl1i5-log5s

St =208 _3;

20 log (3)
= temperature =20 x 3.31 =66.2
The temp will be 35°C after 66.2 min.
4 . If the temperature of the air is 20°C and the temperature of the body drops from 100°C to
80°C in 10 min. What will be its temperature after 20min. When will be the temperature40°C .

Sol: log (8 —20) =-kt+logc

1 3
c=80° C and 1% = -,




10 log(2) )
t= = =4.82min

log (5)

5. The temperature of the body drops from 100 °C to 75°C in 10 min. When the surrounding air is at

20%C temperature. What will be its temp after half an hour.When will the temperature be 25 °c.

Sol : — =-k(8 — fo)

dé
de

log (8 —20) =kt +logc

whent=0, # =100% =>c=80

11

when t=10, 8 =75% =5 g 10k - =

1331
when t=30min  =>8 =20+80 (E) = 46°C

log5—1og 80

= 74.86 min
(log11-log16)

when 8=25% =>t= 10

LAW OF NATURAL GROWTH OR DECAY

Statement : Let x(t) or x be the amount of a substance at time ‘ t’ and let the substance be getting
converted chemically . A law of chemical conversion states that the rate of change of amount x(t) of a

chemically changed substance is proportional to the amount of the substance available at that time

x (or) — = -kx ; (k>0)

Where k is a constant of proportionality

Note: Incase of Natural growth we take

= =kx (k>0)

PROBLEMS




1 The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially

1
100 and increased to 332 in one hour. What was the value of N after lz hrs

Sol: The differentialequation to be solved is i—" =kN

:>'i—“ = kdt

= [E& = [kdt

N

= logN=kt+logc

When t=0sec, N =100 = 100=c = ¢ =100
When t =3600sec, N =332 = 332=100 &%

332
asook _ 332
—e 100

3
Now when t =2 hors =5400 sec then N=?
= N =100 g0

— N :100[ EEEI}I}k ]

332

= N=100 [m]

= N=605.

2 . In a chemical reaction a given substance is being converted into another at a rate proportional to the

th
amount of substance unconverted. If (gj of the original amount has been transformed in 4 min, how

much time will be required to transform one half.

Ans: t=13 mins.




3. The temperature of a cup of coffee is 92%¢, when freshly poured the room temperature being 24°¢.
In one min it was cooled to 80°C. How long a period must elapse, before the temperature of the

cup becomes 65°C.
Sol: : By Newton’s Law of cooling,
% =-k(@ —8o) ; k0
Bo =24°C= log(f — 24 )=-kt+logc

When t=0; & =92 = c=68
When t=1; 8= 80%=¢e™

= k=|og@.
68

When & = 65°C ,t=?

_ 65x41

82

=0.576min

RATE OF DECAY OR RADIO ACTIVE MATERIALS
Statement : The disintegration at any instant is proportional to the amount of material present in
it.

If u is the amount of the material at any time ‘t’ , then :—: = - ku , where k is any constant (k

L

>0).

Problems:
1) If 30% of a radioactive substance disappears in 10days,how long will it take for 90% of it to
disappear.
Ans: 64.5 days
2)  The radioactive material disintegrator at a rate proportional to its mass. When mass is 10
mgm , the rate of disintegration is 0.051 mgm per day . how long will it take for the mass to be

reduced from 10 mgm to 5 mgm.




Ans: 136 days.
3. Uranium disintegrates at a rate proportional to the amount present at any instant. If M; and M,

are grams of uranium that are present at times T; and T, respectively, find the half-life of uranium.

(T2-T1)log2

Ans: T = ]
log i~

]
et
L g

4. The rate at which bacteria multiply is proportional to the instantaneous number present. If the
original number double in 2 hrs, in how many hours will it be triple.

Ans: 2222 phyrs,

log?
5. a) If the air is maintained at 30°C and the temperature of the body cools from 80°C to
60°C in 12 min, find the temperature of the body after 24 min.
Ans:  48°C
b) If the air is maintained at 150°C and the temperature of the body cools from 70°C

to 40°C in 10 min, find the temperature after 30 min.




UNIT -1V

HIGHER ORDER DIFFERENTIAL
EQUATIONS AND THEIR APPLICATIONS




LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER

di’tj. d’ﬂ—l . d’ﬂ—EJ.
Definition: An equation of the form _dx” + P1(X) - —dx”—l + Py(X) -

Pn(x) .y = Q(x) Where P1(x), P2(x), Ps(x)
called a linear differential equation of order n.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
. - dnj dn_l_‘}' d’ﬂ—z
Def: An equation of the form PR Py - -1

P1, P2, Ps......Pp, are real constants and Q(x) is a continuous function of x is called an linear

¥
+P;. m + + Pn .y = Q(X) where

differential equation of order ‘ n’ with constant coefficients.

Note:

1. Operator D =
d:

dy
Dy T dx

2. Operator %Q:IQ ie D'Q is called the integral of Q.

To find the general solution of f(D).y =0 :
Where f(D) = D"+ P; D"* + P, D" + +Py, is a polynomial in D.

Now consider the auxiliary equation : f(m) =0

ief(m)= m"+P,m"+P,m"?+

where p1,p2,p3 pn are real constants.

Let the roots of f(m) =0 be my, my, ms......my,.

Depending on the nature of the roots we write the complementary function
as follows:

Consider the following table

S.No Roots of A.E f(m) =0 Complementary function(C.F)

1. my, My, ..M, are real and distinct. | y. = c1€™*+ ce M +.. 4+ c ™




my, My, ..M, are and two roots are
equal i.e., my, m; are equal and Ye = (C1+Cox)e™*+ cze™* +. .+ ¢ g™
real(i.e repeated twice) &the rest

are real and different.

my, My, ..m, are real and three Ve = (C1HCoX+Cax?)e™™ + cge™*+. .+ cre™”
roots are equal i.e., mg, m, , ms are
equal and real(i.e repeated thrice)
&the rest are real and different.

Two roots of A.E are complex say Yo = €% (cpcosfix + cosinfix)+ c3e™* +...+ cpe™
a+iffa -if and rest are real and
distinct.

If ct+if3 are repeated twice & rest |y, = ™ [(ci+cox)cosfSx + (Cat+cax) sinffx)]+ cse™s*

are real and distinct +...+ce™*

If c+if5 are repeated thrice & rest |y, = & [(ci+cox+ Cax?)cosfFX + (Cq+Cox+ Cex?) sinff
are real and distinct X)]+ c.e™ + + cpe™

If roots of A.E. irrational say y, =e” [Cl cosh /X + ¢, sinh \/ﬁXJJr ce™ +
a £,/ and rest are real and

distinct.

Solve the following Differential equations :

3.,

e
1. Solve

ey

3ﬂ+2 =0
- dj: y_

Sol: Given equation is of the form f(D).y = 0
Where f(D)=(D*-3D +2)y=0
Now consider the auxiliary equation f(m) =0
f(m)=m*-3m+2=0 = (m-1)(m-1)(m+2) =0
=>m=1,1,2
Since m; and m; are equal and mg is -2
We have Y. = (Ci+Cox)e* + cae™
Solve (D*-2 D*-3D? +4D +4)y =0
Sol: Given f(D) = (D*-2D®*-3D? +4D +4) y=0
= A.equation f(m)=(m*-2m*-3m? +4m+4)=0
= (Mm+1)°M-2)2=0




= m=-1,-1,2,2
=y, = (Cr+Cox)e™ +(Ca+cax)e™
3. Solve (D* +8D%*+ 16) y = 0
Sol: Given f(D) = (D* +8D*+ 16) y = 0
Auxiliary equation f(m) = (m*+8 m*+ 16) =0
=2 (m?+4)2=0
= (M+2i)* (M+2i)° =0
& m=2i 2i,-2i,-2i

Y. = €% [(ci+cox)c0s2x + (Ca+Cax) sin2x)]

4. Solve y"+6y'+9y =0; y(0) = -4, y'(0) = 14
Sol:  Given equation is y**+6y"+9y = 0
Auxiliary equationf(D) y =0 = (D*+6D +9) y=0
A.equation f(m) =0 = (m? +6m +9) = 0
= m=-3,-3
ye = (cteox)e™
Differentiate of (1) w.rtox = y' =(ci+cox)(-3e™) + c,(e)
Giveny; (0)=14 = c;=-4&cC;=2
Hence we get y =(-4 + 2x) (&)

111 + 4y11 +y1 =0

111

. Solve 4y
Sol: Given equation is 4y*™ + 4y'! +y* =0
That is (4D*+4D?+D)y=0
Auxiliary equation f(m) =0

4m* +4m?+m=0

m(4m? +4m + 1) =0

m@m + 1)? =

m=0,-1/2 ,-1/2

y =Cy+ (Co+ Cax) €™
. Solve (D*-3D +4)y=0

Sol: Given equation (D? - 3D +4) y =0
AE. f(m) =0




v/
X)

-
L

_ o v/ -
y = ez" (C1COST/X + Cy8in

-
L

General solution of f(D) y = Q(x)
Isgivenbyy =y:+Y,
i.e.y =C.F+P.l
Where the P.I consists of no arbitrary constants and P.1 of f (D) y = Q(x)

Is evaluated as P.I = }% . Q)

Depending on the type of function of Q(Xx).
P.1 is evaluated as follows:
1. P.1 of f (D) y = Q(x) where Q(x) =e* for (a) # 0

. — 1 — ax
Casel: P'I_f_.gg;'Q(X) f{g}e

Provided f(a) #0
Case 2: If f(a) = 0 then the above method fails. Then

if f(D) = (D-a)< O(D)

(i.e ‘a’is arepeated root k times).

Then P.I = — -e™ | Lci x* provided @ (a) #0

i
|

@ Laj)

2. P.1 of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ¢ a ¢ is constant then

1
P.l= E . Q(X)

sinax
Case 1: In f(D) put D* = - &® 3 f(-a”) # 0 then P.1 =
D)p (-a%) # 0 then ?(?)
Case 2: If f(-a%) =0 then D? + a% is a factor of O(D?) and hence it is a factor of f(D).
Then let f(D) = (D? + a%) .®(D?).

sinax _ sinax 1 sinax 1 —xcosax

e ) " (D7 +a)o(D) o) D'+ ola) 2a




COs ax COs ax 1 cosax 1 xsinax

f(D) (D’+a’)®(D’) ®(-a’)D’+a’ @f-a’) 2a

. P.I'for f(D) y = Q(x) where Q(x) = x“ where k is a positive integer f(D) can be
express as f(D) =[1+ @(D)]

o ' 1
Expressf(ﬂ:i = Trom) [1+ O(D)]

Hence P.1 =
= [1J_r E’J(D)] T XK
. P.1of f(D) y = Q(x) when Q(X) = e V where ‘a’ is a constant and V is function of x.

where V =sin ax or cos ax or x*

1
Then P.I —m Q(X)

1
=——e™V
f (D)

=e™[ (V]

fD+

V is evaluated depending on V.
_f | +a

. P.lof f(D) y = Q(x) when Q(x) = x V where V is a function of x.

1
Then P.I = F Q(x)

== XV
fip)

_ 1

=[x O] -V

. 1.P.l. of f(D)y:Q(x) where Q(x):x v where v is a function of x.

Then P.1. -— xQ(X )—ix v=1.P.of 1 x"(cosax +isin ax)

f(D) f(D) f(D)

=|.P.of Lx”‘eiaX

f (D)

m4iax

ii. P.I. = 1 xmcosax:R.P.ofix e

f(D) f(D)




Formulae

© (14D

" (1+D)?

1.
2.
3.
4.
S.
6.
7.
8.
9.

1

. —=(1-D)'=1+D+D*+D*+

1-D
1

. —=@1+D)'=1-D+D*-D*+

1+D

!1_13\_2: (1-D)?=1+2D +3D?+4D° +

=(1+D)?=1-2D +3D*-4D%+

!1_13\_2: (1-D)*=1+3D +6D?+10D° +

=(1+D)*=1-3D+6D*-10D°%+

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS:

Find the Particular integral of f(D) y = @** when f(a) #0

Solve the D.E (D? + 5D +6) y = &*

Solve y'+4y'+4y =4¢e%*:y(0)=-1,y'(0) =3

Solve y'! + 4y" +4y= 4cosx+3sinx , y(0) =1, y*(0) = 0
Solve (D?+9) y = cos3x

Solve yM!t + 2yt -yt 2y = 1-4%3

Solve the D.E (D®- 7 D? + 14D - 8) y = €* c0s2X

Solve the D.E (D®- 4 D?-D + 4) y = e¥ cos2x

Solve (D? - 4D +4) y =x%sinx + e** + 3

21_.

10. Apply the method of variation parameters to solve ——; +y = cosecx

dx?

11. Solve%:3x+2y,%+5x+3yzo

12. Solve (D? + D - 3) y =x%e™*
13. Solve (D*-D-2) y =3e* y(0)=0,y' (0)=-2
SOLUTIONS:

1)

Particular integral of f(D) y = 2“* when f(a) #0

Working rule:




Case (i):

In f(D), put D=a and Particular integral will be calculated.

Particular integral= leﬂ - e®¥= i e“" provided f(a) #£0
Case (ii) :

If f(a)= 0, then above method fails. Now proceed as below.

If f(D)= (D-a)*@(D)

i.e. ‘@’ is a repeated root k times, then

- L
ar

: provided g (a) #0

dia)  k

Particular integral=
2. Solve the Differential equation(D?+5D+6)y=¢*
Sol : Given equation is (D*+5D+6)y=e"
Here Q( x) =e *
Auxiliary equation is f(m) = m’*+5m+6=0
m>+3m+2m+6=0
m(m+3)+2(m+3)=0
m=-2 or m=-3
The roots are real and distinct

C.F=y=cie®+c,e™

1
Particular Integral = y,= 0y Q(x)

.

S SR

=—— e . N
D2+5D+6 (D+2)(D+3)

PutD=1inf(D)




X

1
Particular Integral = y,= F .e
a“

General solution is y=y.+y,

-
at

y=Cle-2X+C2 e—3x + -
=

3) Solve y*-4y*+3y=4e* y(0) = -1, y*(0) = 3

Sol : Given equation is y*'-4y'+3y=4e*

dy

ie. 12 -4 z—: +3y=4e*
it can be expressed as
D?y-4Dy+3y=4e*
(D*-4D+3)y=4e*
Here Q(x)=4e*; (D)= D*-4D+3
Auxiliary equation is f(m)=m?-4m+3 =0
m2-3m-m+3 =0
m(m-3) -1(m-3)=0 =>m=3 or 1
The roots are real and distinct.
C.F= ye=ce¥*+coe* ----> (2)
P= Y=~ > QU0
1

_\ = 3x
Y= bz spia

4e
1

—————— . 4e¥
(D-1)(D-2)

Put D=3

4e* 4 e*

Y» = 31D-3) 2(D-3)

General solution is y=yc+Y,

y=cie¥+c, e*+2xe>

Equation (3) differentiating with respect to ‘x’

y'=3c,e®*+c e +2e ¥ +6xe




By data, y(0) = -1, y*(0)=3
From (3), -1=c;+cC;
From (4), 3=3ci+C+2
3Ci+co=1
Solving (5) and (6) we get ¢c;=1 and ¢, = -2
y=-2e * +(1+2x)e*
(4). Solve y*'+4y'+4y= 4cosx + 3sinx, y(0) = 0, y*(0) = 0

Sol: Given differential equation in operator form

(D‘2 + 4D + 4)y=4cosx +3sinx
A.Eism’+4m+4=0
(m+2)*=0 then m=-2, -2

v C.Fis ye= (cq + &x)E —2x

decosx+3sinx

ut Dz =-
(D2+4D +4) P

P.lis =yp=

dcosx+3sing  (4D-3)4cosx+3sing)

Y= 4D +3) © (4D-3)(4D +3)

(4D-3)4cosx+3siny)
16D -9

put D? =-

(4D—-3 ) 4cosx+35inx)
—-16-9

|-+1 yp:

—lésinx+12cosx—12cosx—9siny)

=25

“*General equation is y = y+y,

y=(ci+ X)€%  +sinx

By given data, y(0) = 0+*c; =0 and




Diff (1) w.r.. t. y' = (c; + czx)(—ZJE_zx + E_zx(cz) +COSX
given y'(0) =0
(2) =-2¢; + c,+1=0 gy =-1
"*Required solution is y = —X& ™~ ¥ +sinx

5. Solve (D*+9)y = cos3x
Sol:Given equation is (D*+9)y = cos3x

AEism*+9=0

Ve = C.F = ¢; cos3x+ ¢,5in3x

cos3x cos53x

=P.I= =
ve DZ+5 D2+ 32

X X
= sin3x = g sin3x

2(3)
General equationisy = y+y,

¥
Y = €1€C0S3X + C,€0s3x + g sin3x

6. Solve y''+2y™! - y'-2y= 1-4x°
Sol:Given equation can be written as

(D*+2D*—D —2)y=14

AEis(m*+2m*—m—2)=o0

(m? — 1)(m+2)=0
m? =1o0rm=2

m=1,-1,-2




CF=c,8" +c,€ * 4™ 2

1
" (D3+2D?-D-2)

P.I (1-4x°)

-1
(D3 +2D2-I)
2

(1-4x%)

(D3+2D*-D) ,_
—— 7 (14
2

—1  (D*+2D?-D) (D3*+2D?-D)* (D*+2D?-D)?

=7 [ 5 + 2 + 2 +..] (1—4X3)

- _71[1+%(D3 +2D% - D)+%(D2 —4D3)+%(— D3)}(1—4x3)

SR CRIHCRELICEY
== [(1-ax?) E (—24) +§ (—24%) - (12x%)
- %1[-4x3+6x2 -30x +16] =

= [2x°-3x +15x -8]
The general solution is

y=C.F+P.l

y=c€" +c,8 "+ 687 7% 4 [2x3-3x% +15x -8]
7. Solve (D3 —7D*+ 14D -8)y=e” cos2x

Given equation is
(D® —7D?+ 14D -8)y = €™ cos2x

AEis(m* —7m* + 14m—8)=o0




(m-1) (m-2)(m-4)=0
Thenm=1,2,4
2 4x

C.F= C]_E * + CZE - + C3E

e*cos2y
(D3-7D2+14D —8)

P.l=

: 1
X
(D+1)3-7(D+1)2+14(D+1)-8

=g . Cos2x

o 1

f(D+a)
1

" (D3-4D%+3D )

.COS2X

1
"(—4D+3D+16 )

.cos2x (Replacing D? with -2%)

1
. T . .CcoSs2x
(16—D )
1a+D

"(16-D )(164D)

.COS2X

16+D
.- . - .cos2x
256-D2
16+D
.. . ...cos2x
256—(—4)

-
&

e
(16cos2x — 2sin2x)
&0

X

= zi(8cos 2x —sin 2x)
260

X

= (8c0s2x—sin2x)
130

General solutionisy =y +y,




X

y=ce*+c,e” +ce + ;—O(Scos 2x—sin 2x)

8.Solve (D? — 4D +a)y=x*sinx + e°*+3
Sol:Given {Dz — 4D +a)y = x* sinx + e** +3
AEis(m* —4m+4)=0
(m — 2)2 =0then m=2,2

CF.=(c + czx)sz

1 A, 1 e 1
= o7 (x“sinx)+ —e™" + (3)

s P R o 5 P I M — a2
I_\D =} I_\D I\D =] IND =}

2 sinx+ 8% +3
P.I=

1 5 .
Now (x<sinx)=

F— 22
(D—2)

1 2 ix
p— (x<) (ILPof €°7%)

- 1P of — (x%) (™)

.-' _;-|~;2
(D—-2)

1

=|.P of (E:.x:]. P (l’z)

On simplification, we get

BTN .
m (.L g1 H.L) i [(220x+244)cosx+(40x+33)sinx]

1 2y xz 2y
and P (E‘ J‘):—(E‘ J‘),

{D—21 2
L ey £

1

ra _q\iz
(D—2)

3
(3)=1

1 xz . 3
P.I = — [(220x+244)cosx+40x+33)sinx] +— (e=") +7
& &
Y=Yt VYp

o 1 x2 -
y=(c1 + Cx)e~" + P [(220x+244)cosx+(40x+33)sinx] + — (E"‘J‘) +1
& &

Variation of Parameters :




Working Rule :
2

Reduce the given equation of the form % + P(X)%+Q(x)y =R

Find C.F.
vRdx

Take P.I. y,=Au+Bv where A= —[——-—and B =] ulex :
uv:- —vu uv- —vu

Write the G.S. of the given equation Y=Y +Y,

d>y
9. Apply the method of variation of parameters to solve E +y = cosecx

Sol: Given equation in the operator form is (D‘2 + l)j.-‘ = f0Secx
AEis(m*+1)=0
Sm=di
The roots are complex conjugate numbers.
vv C.F. is yc=C,COSX + C,sinX

Let y, = Acosx + Bsinx be P.I. of (1)

dr du 7 . 7
U—-v—=C08"X+ SIN“X=1
dx dx

A and B are given by

vRdx SINY COSEC X
A= ————— = [T T gx=- | dx=-x
uvt —vu't / 1 ‘J-

B= jﬂxl = f COSX.cosecx dx = f cotx dx = log(sinx)

uv' —vu
'ry,= -XCosx +sinx. log(sinx)
*+ General solution is y = y.+ y,,.
Y = C1€0SX + C,pSinx-xcosx +sinx. log(sinx)
10. Solve (-ﬁl-JD2 — 4D+1)y=100

Sol:A.Eis (4m? —4m+ 1)=0




(2m— 1)2 = (thenm=".

v

C.F = (c1+cpx) ez

| 100 100 &% 100 100
" (4D2-4D+1) (2D-1)27 (0-1)%

Hence the general solution is y = C.F +P.1

-

y= (c1+cyx) £z +100

Applications of Differential Equations:

11. The differential equation satisfying a beam uniformly loaded ( w kg/meter) with one end fixed and

the second end subjected to tensile force p is given by

dz_'L' 1 2
El ﬁ =py - wX

(e

I:l -
Show that the elastic curve for the beam with conditions y:O:d;Lat x=0 is given by y =
N

nep

2
WX 2 P
(1-coshnx) + > where "1™ =—
E

Sol:The given differential equation can be written as

-1 -
y= WX~ (or)
L 2E

2EI

The auxiliary equation is (‘ff?‘l2 — '?’12) =0=>m=nand m=-n

N CF=y. = Clejz;_- +c2€_”k




12. A condenser of capacity ‘C’ discharged through an inductance L and resistance R in series and the

charge q at time t satisfies the equation Ld_*i-' +R d_+ +E = 0. Given that L=0.25H, R = 2500hms, c=2 * 10

dzﬁ' dag q

— d
®farads, and that when t =0, change q is 0.002 coulombs and the current d—f =0, obtain the value of ‘q’

in terms of t.

Sol:

Given differential equation is




d%g

d
~ 2 +1000-7 42 10% =0

(D* +1000D + 2 = 105)q=0
itsA.Eism® + 1000m+ 2 = 10%=0

~1000++10° —8x10°  —1000+1000~/7i

2 2

=-500 T 1323i

—300%

Thus the solution is q= & (c1c051323t+c,sin1323t)

When t=0, q=0.002 since ¢;=0.002

Now z—? = -500e°°*(c, c0s1323t + ¢, sin1323t )+ e >°* x1323(— ¢, sin1323t + ¢, c0s1323t)

When t :O,d—q:O
dt

There fore c,=0.0008
Hence the required solution is ¢ = € °°*(0.002c0s1323t +0.0008sin 1323t )

13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by
the particle in passing between points which are at distances 4 and 2 meters from the Centre of force
and are on the same side of it.

d?x a
Sol: TheequatlonofS.H.Mlsﬁby X

2m
Give time period =—=
i

We have the solution of (1) is x=acos [it




Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion

respectively be t; sec and t, sec

* 2 -1 4 . T

Sty =—C08T (o) since [4= 5cos(= T1)]
T 2 &

and t,==cos ™1 (2) since [2= 5cos(— t4)]
T =’

.
Z

time required in passing through these points

-
=

tz‘tl =% [C'DS_:l (

)- cos™t (%)] = 0.33sec
ps

=

’

differentiating (2) w.r.to ‘t

dx —5m | T
—= sin— T
dt 2

dy -0 AT =
dx _TT\[25 — 2
dt 2

When x=4 metersv=—v5% — 42 =471 m/sec

When x=2 meters v=;—L V21 m/sec

14. A body weighing 10kgs is hung from a spring. A pull of 20kgs will stretch the spring to 10cms. The
body is pulled down to 20cms below the static equilibrium position and then released. Find the
displacement of the body from its equilibrium position at time t seconds the maximum velocity and the

period of oscillation.

Sol:Let 0 be the fixed end and A be the other end of the spring. Since load of 20kg attached to A

stretches the spring by 0.1m.




Let e(AB) be the elongation produced by the mass ‘m’ hanging in equilibrium.

If ‘k’ be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B
Mg =T =ke
20=Ty=k*0.1

K = 200kg/m

Let B be the equilibrium position when 10kg weight is

1
10=Teg=k * AB=>AB = HGD=O.05m

Now the weight is pulled down to c, where BC=0.2. After any time t of its release from c, let the weight

be at p, where BP=x.
Then the tension T = k *AP

= 200(0.05+x) = 10 + 200x

'+ The equation of motion of the body is
where g =9.8m/sec’
10 d?x
T 9.adt?
=10 - (10+200x)

a2 x -
= dﬂ:-,u‘x where it =14

This shows that the motion of the body in simple harmonic about B as centre and the period of

2m
oscillation =—= 0.45sec
7.

Also the amplitude of motion being B C=0.2m, the displacement of the body from B at time t is given by

x = 0.2cosect




X =0.2cosect =0.2cos14t m.

Maximum velocity = [4 (amplitude) = 14 * 0.2 = 2.8m/sec




UNIT -V
FUNCTIONS OF SINGLE AND SEVERAL
VARIABLES




MEAN VALUE THEOREMS

I Rolle’s Theorem:

Let f(x) be a function such that

(i). It is continuous in closed interval [a,b]

(ii). It is differentiable in open interval (a,b) and

(iii). f(a) = f(b).

Then there exists at least one point ‘c’ in (a,b) such that
f(c) = 0.

Geometrical Interpretation of Rolle’s Theorem :

Let f:[a,b] > R be a function satisfying the three conditions of Rolle’s theorem. Then the graph.

N4

[
1
1

Y
T;\7 .
|
i

X=C

y=f(x) in a continuous curve in [a,b].

There exist a unique tangent line at every point x=c, where a<c<b

The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are equidistant
from the X-axis.

By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which the
tangent line is parallel to the x-axis and also it is parallel to chord of the curve.

1. Verify Rolle’s theorem for the function f(x) = sinx/e* or e™ sinx in [0,rt]
Sol: i) Since sinx and e are both continuous functions in [0, mt].
Therefore, sinx/e* is also continuous in [0,m].

ii) Since sinx and e” be derivable in (0,1), then f is also derivable in (0,m).




iii) f(0) = sin0/e® = 0 and f(r)= sin /e ™ =0
.. f(0) = f(m)
Thus all three conditions of Rolle’s theorem are satisfied.

.. There exists c €(0, i) such that f'(c)=0

e’ cosx—sinxe*  cosx—sin x

Now f~(x) = @) = -

cosc—sinc

c

fi(c)=0 => 0

cosc=sinc=>tanc=1
c=1/4€(0,n)

Hence Rolle’s theorem is verified.

x* +ab

2. Verify Rolle’s theorem for the functions l0g
X(a+b)

J in[a,b] , a>0, b>0,

x2+abj

Sol: Let f(x)= log [x(a+b)

= log(x*+ab) — log x —log(a+b)

(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].

2
(i) 1) = — .2X—£:X2;ab
X° +ab X X(X®+ab)

f(x) exists for all xe (a,b)

a’+ab
=logl=0
a’ +ab} 9

(iii). f(a) = Iog{




b? +ab
f(b) = log ———— | =log1=0
) g{b2+ab} J

f(a) = f(b)
Thus f(x) satisfies all the three conditions of Rolle’s theorem.
So, 3 ¢ € (a, b) =f'(c) =0,

c’—ab

2—=0:>c2:ab
c(c”+ab)

= c=+/ab e(a,b)

Hence Rolle’s theorem verified.
3. Verify whether Rolle ’s Theorem can be applied to the following functions in the intervals.
i) f(x) = tan x in[0, nt] and ii) f(x) = 1/x* in [-1,1]

(i) f(x) is discontinuous at x = 1t/2 as it is not defined there. Thus condition (i) of Rolle ’s Theorem is not
satisfied. Hence we cannot apply Rolle ’s Theorem here.

.. Rolle’s theorem cannot be applicable to f(x) = tan x in [0,m].
(ii). f(x) = 1/x*in [-1,1]

f(x) is discontinuous at x= 0.

Hence Rolle ’s Theorem cannot be applied.
4. Verify Rolle’s theorem for the function f(x) = (x-a)"(x-b)" where m,n are positive integers in [a,b].
Sol: (i). Since every polynomial is continuous for all values, f(x) is also continuous in[a,b].

(ii) f(x) = (x-a)"(x-b)"

f1(x) = m(x-a)™ " (x-b)"+(x-a)™.n(x-b)"*
= (x-a)™ ™ (x-b)"[m(x-b)+n(x-a)]

=(x-a)™*(x-b)"*[(m+n)x-(mb+na)]




Which exists.

Thus f(x) is derivable in (a,b)
(iii) f(@) =0and f(b) =0

.. f(a) =f(b)
Thus three conditions of Rolle’s theorem are satisfied.
.. There exists ce(a,b) such that f'(c)=0
(c-a)™*(c-b)"*[(m+n)c-(mb+na)]=0
= (m+n)c-(mb+na)=0 =>(m+n)c = mb+na

=c=mb+na €(a,b)

.. Rolle’s theorem verified.

5. Using Rolle ’s Theorem, show that g(x) = 8x>-6x>-2x+1 has a zero between

Oand 1.

Sol: g(x) = 8x*-6x>-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1)
Now g(0)=1and g(1)=8-6-2+1=1

Also g(0)=g(1)

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1].

Therefore, there exists a number ce(0,1) such that g*(c)=0.

Now g'(x) = 24x*-12x-2

. gYc)=0=>24c*12c-2 =0

=c ie c=0.630r-0.132

3+421
12




only the value ¢ =0.63 lies in (0,1)
Thus there exists at least one root between 0 and 1.
6. Verify Rolle’s theorem for f(x) = x® -2x */* in the interval (0,8).
Sol: Given f(x) = x 2 2x 13
f(x) is continuous in [0,8]
fi(x) = 2/3 . 1/x'2-2/3 . 1/x*7* = 2/3(1/x"? = 1/x*")
Which exists for all x in the interval (0,8)
.. fis derivable (0,8).
Now f(0) = 0 and (8) = (8)**-2(8)"/* = 4-4 =0
i.e., f(0) = f(8)
Thus all the three conditions of Rolle’s Theorem are satisfied.
.. There exists at least one value of c in(0,8) such that f'(c)=0
11

ie. ———=0=>c=1€(0,8)
c® ¢

2
3

Hence Rolle’s Theorem is verified.
7. Verify Rolle’s theorem for f(x) = x(x+3)e™? in [-3,0].

Sol: - (i). Since x(x+3) being a polynomial is continuous for all values of x and e™? is also continuous for

-x/2

all x, their product x(x+3)e™* = f(x) is also continuous for every value of x and in particular f(x) is

continuous in the [-3,0].

(ii). we have f1(x) = x(x+3)( -1/2 e*?)+(2x+3)e™?

o X* +3X
=e™" [2x+3- > ]

=e™?[6+x-x*/2]




Since f'(x) doesnot become infinite or indeterminate at any point of the interval(-3,0).
f(x) is derivable in (-3,0)

(iii) Also we have f(-3) =0 and f(0) =0
. f(-3)=f(0)

Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0].
Hence there exist at least one value c of x in the interval (-3,0) such that f*(c)=0
i.e., % e 2(6+c-c?)=0 =>6+c-c’=0 (e™/*#0 for any c)

=> c*+¢-6 = 0 => (c-3)(c+2)=0

c=3,-2
Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem.
Il. Lagrange’s mean value Theorem

Let f(x) be a function such that (i) it is continuous in closed interval [a,b] & (ii) differentiable in (a,b).

Then 3 at least one point c in (a,b) such that

f(b)-f(a)
b-a

f(c) =

Geometrical Interpretation of Lagrange’s Mean Value theorem:

Let T :[a,b] > R be a function satisfying the two conditions of Lagrange’s theorem. Then the graph.

1. y=f(x) is continuous curve in [a,b]




2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By

f(b)-f(a)
b-a

Lagrange’s theorem there exists at least one point € € (a,b) > f(c) =

Geometrically there exist at least one point c on the curve between A and B such that the tangent line is
L xd
parallel to the chord AB
1. Verify Lagrange’s Mean value theorem for f(x)= x>-x*-5x+3 in [0,4]
Sol: Let f(x)= x>-x*-5x+3 is a polynomial in x.
.. Itis continuous & derivable for every value of x.
In particular, f(x) is continuous [0,4] & derivable in (0,4)
Hence by Lagrange’s Mean value theorem 3 ce (0,4) >

f(4)- f(0)

()=
(c) 40

f(4) -
i.e., 3c-2¢-5= M
4
Now f(4) = 4>-4>-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3

f(4)-f(0) (31-3) _
4 4

7

From equation (1), we have

3¢%-2¢-5 =7 => 3¢%-2¢-12 =0

C: =

2+/4+144 24148 1+./37
6 6 3

1+/37
We see that T lies in open interval (0,4) & thus Lagrange’s Mean value theorem is verified.

2. Verify Lagrange’s Mean value theorem for f(x) = log, X in [1,e]




Sol: - f(x) = log, X

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence LM.V.T is

applicable here. By this theorem, 3 a point c in open interval (1,e) such that

f)-f()_1-0_ 1

f(c) = =
e-1 e-1 e-1

1
e-1

But f'(c)= i ==> E =
e-1 c

Note that (e-1) is in the interval (1,e).
Hence Lagrange’s mean value theorem is verified.

3. Give an example of a function that is continuous on [-1, 1] and for which mean value theorem does

not hold with explanations.

Sol:- The function f(x) = |x|is continuous on [-1,1]

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative does
not exist in (-1,1) at x=0.

b-a -1 -1 .
4.If a<b, P.T <Tan"b-Tan"a< using Lagrange’s Mean value theorem. Deduce the

1+b? 1+a’

following.

i).z+i<Tan‘1£<£+l
4 25 3 4

S5z+4

i). <Tan'2< T+2
20

Sol: consider f(x) = Tan™ x in [a,b] for O<a<b<1
Since f(x) is continuous in closed interval [a,b] & derivable in open interval (a,b).

We can apply Lagrange’s Mean value theorem here.




Hence there exists a point c in (a,b)>

fg- [ @
b-a

Herefl(x)=1 ! &hence f'(c) = !

+Xx? 1+¢®

Thus 3 ¢, a<c<b >

1 Tan'b-Tan'a
1+c? b—a

(1)

We have 1+a’<1+c’<1+b?

111
1+a? 1+c¢? 1+b?

From (1) and (2), we have

1 Tanb-Tana 1
> >
1+ a? b—a 1+b?

b—a; <Tan*b-Tanta< b-a
l1+a

Hence the result

Deductions: -

(i) We have b- ~<Tan"b-Tan"a< b—a2
1+b 1

4
Take b = 3 & a=1, we get




4
<Tant()—Tant@) <3
(3) @ 1+1°

:i+£<Tan‘l(ﬂ)<£+1
25 4 3 4 6

(ii) Taking b=2 and a=1, we get

2_12 <Tan'2-Tan1< 2_1 :>1<Tan’12—f<l
1+2 1+1 5 4 2

2+

:>1+£<Tan‘12<
5 4

4+5x 2+ T
—

+<Tan?2<

5. Show that forany x>0, 1 + x< e*< 1 + xe".
Sol: - Let f(x) = e* defined on [0,x]. Then f(x) is continuous on [0,x] & derivable
on (0,x).
By Lagrange’s Mean value theorem 3 a real number c €(0,x) such that

f)-1(0) ..
T e

Note that O<c<x => e’<e‘<e* ( e is an increasing function)

X

=1< € - < e* From (1)
X

=> x<e*-1<xe”

=> 1+x<e*<1+xe*,




5
6. Calculate approximately 245 by using L.M.V.T.

Sol:- Let f(x) = 3/X =x/° & a=243 , b=245
Then f'(x) = 1/5 x ¥* & f(c) = 1/5¢ **

By L.M.V.T, we have

f(b)-f(a)

- (o

_ f(245)—F(243) _1
245-243 5°

-4
c5

f (245) =f(243)+2/5c*"
c lies b/w 243 & 245 take c= 243

4

3/245 = (243) V° +2/5(243) 5 = (35)5 +Z (35) 5

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049
7. Find the region in which f(x) = 1-4x-x* is increasing & the region in which it is decreasing using

M.V.T.
Sol: - Given f(x) = 1-4x-x
f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b) V a,b €R
.. f satisfies the conditions of L.M.V.T on every interval on the real line.
f1(x)= - 4-2x= -2(2+x)V xR
f(x)=0if x=-2
for x<-2, f(x) >0 & for x>-2 , f*(x)<0
Hence f(x) is strictly increasing on (-oo, -2) & strictly decreasing on (-2,°°)
8. Using Mean value theorem prove that Tan x > x in 0<x<7w/2

Sol:- Consider f(x) = Tan x in [5, X] where 0< & <x<n/2




Apply LLM.V.T to f(x)

3 a points ¢ such that 0< & <c<x<m/2 such that

Tanx-Tan¢&
X=¢

=sec’Cc ==>

Tanx-Tan & = (x-&£)sec’ ¢
Take£ —0+0thenTanx = xsec” x
But sec’c>1.
Hence Tan x > x
9. If f'(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a constant in that interval.
Sol:- Let f(x) be function defined in [a,b] & let f'(x) =0 V x in [a,b].
Then f'(t) is defined & continuous in [a,x] where a<x<b.
& f(t) exist in open interval (a,x).

By L.M.V.T 3 a point c in open interval (a,x) 3

f00-1(@) _s(q

X—a

But it is given that f'(c) = 0
ST -f@@=0
1) =f(a) V x
Hence f(x) is constant.
10 Using mean value theorem

STi)x>log (1+x) > ~— x>0

o

i) /6 + (\/3/15) < sin(0.6) <n/6 + (1/6)




i) 1+x <e* <1+xe* ¥x>0
i) == <tan™v -tan™u < = where 0 < u <v hence deduce
Q) w4+ (3/25) < tan"P4/3) <m/a+ (1/6)
Ill. Cauchy’s Mean Value Theorem

If f: [a,b] &R, g:[a,b] >R > (i) f,g are continuous on [a,b] (ii) f,g are differentiable on (a,b)
(i) gl(x) #0Vvx € (a,b), then

f'(c) _ f(b)-f(a)

- = ’b =
Ja pointce(a,b)> g'c) g(b)-g(a)

1. Find c of Cauchy’s mean value theorem for
1

f(x)=vx & g(x)=
) o) \/; in [a,b] where O<a<b

Sol: - Clearly f, g are continuous on [a,b] = R*

-1

1
f'(x)=-"=and g'(X)=——1
2XA/ X which exits on (a,b)

We have 2+/x
.. f, g are differentiable on (a,b) c R

Also g' ()20, V x €(a,b) c R

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so dce(a,b) >

f(b)-f(a) _ f*(c)
g(b)—-g(@ g'(c)

1
Jo-va _2Jc __ \h—a _-2cfc_ o

>

1 1 -1 “Ja_db 24

Vo Ja  2cc Jab

Since a,b >0, Vab is their geometric mean and we have a<Vab <b




ce(a,b) which verifies Cauchy’s mean value theorem.
2. Verify Cauchy’s Mean value theorem for f(x) = e* & g(x) = e™in [3,7] &
find the value of c.
Sol: We are given f(x) = e* & g(x) = e™
f(x) & g(x) are continuous and derivable for all values of x.
=>f & g are continuous in [3,7]
=>f & g are derivable on (3,7)
Also g'(x) = e*#0 V x €(3,7)
Thus f & g satisfies the conditions of Cauchy’s mean value theorem.

Consequently, 3 a point ¢ €(3,7) such that

F(M-1G) _ f1(c) . e’ —¢e° _ €
9(N-9@) g'(c) e’-e’ -e

= _e7+3 — _e2c

=>2c=10

=>c=5€(3,7)

Hence C.M.T. is verified




FUNCTIONS OF SEVERAL VARIABLES

Jacobian (J): Letu=u(x,y), Vv =Vv(x,y) are two functions of the independent variables x,y.

The jacobian of (u, v) w.rt(x ,y) is given by
wary _ Glww) _ ., “;.-
163 = 3T | |

Note: 3 = 2Y) qng 32 2 95 Y) yen 331 21
o(x,y) o(u,v)

Similarlyofu=u(x,y,z),v=v(xVy,z),w=w(X,V, 2)

Then the Jacobian ofu,v,w w.r.to x,y, zis given by

Solved Problems:
o(X, Y,2)
o(u,v,w)

1. Ifx+y?=u, y+z°=v,z+x*=wfind

Sol: Given x+y?=u, y+z°=v,z+x*=w
B 1 2y 0
We have ——— Ve Uy ¥ =lo 1 2z
o ' ' 2¢ 0 1

=1(1-0) - 2y(0 - 4xz) + 0
=1-2y(-4x2)
=1+ 8xyz

gix.y.z) 1 1
I:> E-.'::-: I'::|I|..I-.'. = " _ VLLET “'.] —_ _1 a E'{F.‘z
3 lxy.e

il

2. S.Tthefunctionsu=x+y+z,v=x?+y*+2z°-2xy—2yz-2xz and w=x>+y*+7°
-3xyz are functionally related. (07 S-1)
Sol: Given u=x+y+z

v =X+ VP + 22 22Xy — 2yz -2xzZ

w=x3+y + 722 -3xyz




we have

1 1
2x —2v — 2z 2y —2x — 2z 2z —2v —2x

-

3x? —3yz 3yt — 3xz 3z=— 3xv
1 1 1
=6| x—v—=z y—x—= Z—yV—Xx
x— Yz _v: —xz z® — Xy
C, >C —C,
c, >C, —C,
0 0 1
=6 2X -2y 2y -2z Z-y—X
X2—yz—-y24xz Y -xz—-7°+xy 7°-Xy

=6[2(x - ) (Y° + Xy — Xz -2°)-2(y - 2)(X’ + X2 — yz - Y?)]
=6[2(X - Y)Yy -2)(x +y +2Z)-2(y - 2)(Xx - y)(x +y + Z)]
=0
Hence there is a relation between u,v,w.

Ifx+y+z=u,y+z=uv,z=uvw then evaluate Z‘“ (06 S-1)
Sol: x+y+z=u
y+z=uv
Z=uvw
y=uv-uvw=uv (1-w)

X=u-uv=u(l-v)

1—w
vil—w) u(l—w)
vw Uw
R, >R, +R,
1—w U
u
vw Uw

uv [ u-uv +uv]




= u?v

4. fu=x*-y?,v=2xy wherex=rcos8,y=rsin#é STZ;E' =4r® (07 S-2)

Sol: Given u=x*-y* Vv = 2xy

=r’cos? 8 — r’sin® & = 2rcos 8 r sin &

=r?(cos® 8 —sin® &) =r’sin2 8

=r’cos2 8

g B ‘ 2rcos2f r(—sin26)2 ‘
| B 2rsin2f r* (cos26)2

v, Vg

cos28 —rsin2 &

= (@2n(2n) ‘ sin2@ r (cos28)
= 4r? [rcos®28 + rsin“28 |
=4r%(r)[ cos?28 + sin?28 |
=4r3

Auwaaw)

Aixnz)

find (08 S-4)

Sol: Givenu= = ,v

X

We have

1 -1
= 1[-1(1-1) -1(-1-1) + (1+1) ]




=0-1(-2) + (2)
=2+2
=4
Assignment
& (x y.2) — _ _
Calculate T ifx=yvw ,y= ywu ,z=+uvr and u=rsiné cos@ , v=rsind sind
W =1 cost

6. Ifx=e"secd,y= e tandP.T Z“E : EE =1

Sol: Given x =e"secf ,y = €' tanf

x.=e'secd =x x5= e'sech tané
v,=e'tand =y , vg=e sec’d
X2 —y? = &% (sec’d - tand)
= 2r=log (x*—y?*)
=2 r=%log (xX* - y*)
1 1

X
- = _(2)=—"
" —yz( 9 (x* =y

2 X2
1 1 -y

- = (2y)=——
2 X2_y2( y) (X2_y2)

_ =zecd  _ 1/co=f _ 1

r, =

tanf  zin® /cozd  sind

= sind =X | 8 =sin?&)

Blxa) e sech tan#
— = ‘ , = e¥ sec?d - y e"sech tand
& (r.d) e zec2d

= % sec H[sec’d - tan’8 | = e sech




Functional Dependence

Two functions u and v are functionally dependent if their Jacobian

Awe)

2

If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent.

** Maximum & Minimum for function of a single VVariable:

To find the Maxima & Minima of f(x) we use the following procedure.

Q) Find f(x) and equate it to zero

(i) Solve the above equation we get Xo,X; as roots.

(iii)  Then find f}(x).

If 5 (X)x = x0) > O, then f(x) is minimum at xo

If f(X)x=x0,< 0, f(x) is maximum at xo. Similarly we do this for other stationary
points.

PROBLEMS:
1. Find the max & min of the function f(x) = x°> -3x*+5 (°08 S-1)
Sol: Given f(x) = x* -3x* + 5
f1(x) = 5x* — 12x°
for maxima or minima  f*(x) =0

5x*—12x3=0
X =0, x=12/5
f11(x) = 20 x® — 36 X

At x=0=> f(x)=0. So fis neither maximum nor minimum at x = 0




At x=(12/5) => f(x) =20 (12/5)° — 36(12/5)
=144(48-36) /25 =1728/25> 0
So f(x) is minimum at x = 12/5
The minimum value is f (12/5) = (12/5)° -3(12/5)* + 5

** Maxima & Minima for functions of two Variables:

Working procedure:

1. Find ? and ? Equate each to zero. Solve these equations for x & y we get the pair of

values (a, bl) (az,b,) (az ,bs)

ox2' oxoy

2 2
Find 1=9 1 o 2°f

I. If In-m?>0and | <Oat (ay,b;)then f(x,y) is maximum at (a,bs) and

maximum value is f(a;,b;)

If In-m?>0and | >0at (ay,b;)then f(x ,y) is minimum at (az,b;) and minimum
value is f(az,b1) .

If In-m*<0andat (a, bl) then f(x, y) is neither maximum nor minimum at (a, b1).

In this case (a;, b1) is saddle point.

If In-m?=0andat (as, bl), no conclusion can be drawn about maximum or

minimum and needs further investigation. Similarly we do this for other stationary

points.

PROBLEMS:

1. Locate the stationary points & examine their nature of the following functions.
u=x*+y*-2x% +4xy -2y*, (x>0, y>0)
Sol: Given u(x ,y) = x* + y* -2x% +4xy -2y

For maxima & minima a_u =0, 8_u: 0

OX oy

?-4x3-4x+4y20 =X -x+y=0

%:4y3+4x-4y:0 =V +x-y=0

Adding (1) & (2),




X3+y3=0

Q = X2 —2x = X = 0,4/2,—/2
Hence (3) =y=0, V2,2
_ & (du _ _ o _ 2
_E(E) Jl&n_ﬁ =12y -4

2

1= 2Us 10 4, m= ou
OoX oxoy
In—m?=(12x*-4)(12y*-4)-16
At(—vZ, V2),In—m?=(24-4)(24-4)-16 =(20) (20)—16 > 0and |1=20>0
The function has minimum value at (— v2, +2)
At (0,0), In—m? = (0— 4)(0 -4) -16 =0
(0,0) is not a extreme value.

Investigate the maxima & minima, if any, of the function f(x) = x*y? (1-x-y).

Sol: Given f(x) =Y (1-xy) =Xy Xy -y
? = 3x2y? — 43y -3x%y° ? = 2%y — 2xy -3y

For maxima & minima 22 =0 and

=2 Y -4y 3%y = 0 => Xy (3-4x-3y)=0
2 27y —-2xy 3% = 0 => x°y(2-2x-3y) =0
From (1) & (2) 4x+3y-3=0
2x+3y-2=0
2x=1 =>x=%
4(%)+3y-3=0=>3y=3-2,y=(1/3)
_ o't

I
ox?

= 6xy*-12x%y* -6xy°

2
(2 '; ](1,2,1,3) = 6(1/2)(1/3)? -12 (1/2)%(1/3)? -6(1/2)(1/3)* = 1/3 - 1/3-1/9 = -1/9
X

2
or _ofa = 6x%y -8 X%y — 9%y
oxoy ox\ oy




o’ f
oxoy

2
n= g o3 ot -6x%y

12

] w2 ) = 6(LI2(113) -8 (LU2)¥(L/3) -0(1/2)°(1/3)° = 553

2

2 g

(?J w2ar = 2(112)* -2(112)* -6(L12)(L/3) =5 -2- % = -

In-m? =(-1/9)(-1/8) (-1/12)? =% - 2 =22 =1 >oandl= 31 <0

72 144 144 14

The function has a maximum value at (1/2, 1/3)

) ) 11 11 1 1 1(1 1 1
~Maximumvalueis f| =, = |=| =x=[|[1-=-Z |=—| =-Z |=—
23 8 9 2 3) 72\2 3) 432

3. Find three positive numbers whose sum is 100 and whose product is maximum.
Sol: Let x ,y ,z be three +ve numbers.
Then x+y+2z=100
= z=100-x-y
Let f (x,y) = Xyz =xy(100 — x — y) =100xy —x’y-xy?
For maxima or minima 22 = 0 and ? =
ar
A

7 = 100x —x? -2xy = 0 => x(100 —x -2y) = 0

.

=100y —2xy-y* =0 =>y(100- 2x -y) =0

From (1) & (2)
100-2x -y =0
200 -2x -4y =0
-100+3y =0 =>3y=100 => y=100/3
100 — x —(200/3) =0 => x =100/3

2
_Et

| =
OX?

2
(aa—‘;] (100/3 , 100/3 ) = - 200/3
X

o’ f a(af

= —| — | =100 -2x -2y
oxoy  ox\oy




2
(; ;yj (100/3 , 100/3 ) = 100 —(200/3) —(200/3) = -(100/3)
X

2
(a ! ] (100/3 , 100/3 ) = - 200/3
oy

In -m? = (-200/3) (-200/3) - (-100/3)* = (100)* /3
The function has a maximum value at (100/3, 100/3)

e atx=100/3,y=1003 .7 = 100—1(3)0 _120 _ 120

The required numbers are x = 100/3, y = 100/3, z = 100/3
4. Find the maxima & minima of the function f(x) = 2(x* —y?) —x* +y*
Sol: Given f(x) = 2(x* —y?) —x* +y* = 2x% —2y? —x* +y*

- « . r L':._.'-
For maxma&mwma% =0 and i

s

%:4X-4x3:0 :>4X(1-X2):0 =x=0 1)(:11

Yty ray=0 =>-ay(Ly)=0 =y=0y=x1

2
| = (‘9 ‘;J = 4-12¢°
OX

m= o°f = o) =0
OXOy ax[]
i

=2 =4 412

= G

we have In — m? = (4-12x%)( -4 +12y* ) - 0
= -16 +48x? +48y? -144x%y
= 48x? +48y? -144x%y* -16
At(0,+1)
In-m?=0+48-0-16=32>0
|=4-0=4>0
f has minimum valueat (0, +1)

f(x,y) =20y x*" +y'




f(0,+1)=0-2-0+1 = -1

The minimum value is ‘-1 °.

i)  At(x1,0)
In—-m?= 48+0-0-16=32>0
1=4-12=-8<0
f has maximum value at (+1,0)
f(x.y)=2(x"—y") x" +y*
f(£1,0)=2-0-1+0=1
The maximum value is ‘1 .
i) At (0,0),(x1,+£1)
In—-m?<0
| =4 -12x°
(0,0) & (x1,£1) aresaddle points.
f has no max & min valuesat (0,0),(x 1, +£1).

*Extremum : A function which have a maximum or minimum or both is called
‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations Z‘ =0 and

Z— =0 i.e the pairs (ay, b), (az, b2) are called

Stationary.

*Maxima & Minima for a function with constant condition :L.agranges
Method




2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X, vy, 2).
3. Substitute the value of x , y, z in equation (1) we get the extremum.
Problem:

1. Find the minimum value of X* +y* +z°, given x +y + z =3a (°08 S-2)

Sol: u = x* +y* +7°
@=x+y+z-3a=0
Using Lagrange’s function
F(x,y,z)=u(X,y,z)+v @(x,Yy,2)
For maxima or minima

}'?:2x+}'20

oz A=

From (1), (2) & (3)
y=-2X=-2y=-2z
XxX=y—=—2=2
D=x+x+x-3a=0
rx=a

rx=y=zZ=a

Minimum value of u = a® + a° + a°> =3 a°




