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Solution for linear systems 

 

Matrix : A system of mn numbers real (or) complex arranged in the form of an ordered set of ‘m’ rows, 

each row consisting of an ordered set of ‘n’ numbers between [ ] (or) ( ) (or) || || is called a matrix of 

order m xn. 

 Eg: 
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        = [aij ]mxn where 1≤ i≤m, 1≤j≤n. 

some types of matrics : 

1. square matrix : A square matrix A of order nxn is sometimes called as a n- rowed matrix A (or) 

simply a square matrix of order n  
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2. Rectangular matrix : A matrix which is not a square matrix is called a rectangular matrix,  
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is a 2x3 matrix  

3. Row matrix : A matrix of order 1xm is called a row matrix 
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4. Column matrix : A matrix of order nx1 is called a column matrix 
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5. Unit matrix : if A= [aij] nxn such that aij = 1 for i = j and aij = 0 for i≠j, then A is called a unit matrx. 



Eg:I2 = 

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10

01
   I3=  

6. Zero matrix : it A = [aij] mxn  such that aij = 0 I and j then A is called a zero matrix (or) null matrix 

Eg: O2x3=  

7. Diagonal elements in a matrix A= [aij]nxn, the elements aij of A for which i = j. i.e. (a11, a22….ann) are 

called the diagonal elements of A 

Eg: A=  diagonal elements are 1,5,9 

 Note : the line along which the diagonal elements lie is called the principle diagonal of A 

8. Diagonal matrix : A square matrix all of whose elements except those in leading diagonal are 

zero is called diagonal matrix. 

If d1, d2….. dn are diagonal elements of a diagonal matrix A, then A is written as A = diag 

(d1,d2….dn) 

Eg : A = diag (3,1,-2)=   

9. Scalar matrix : A diagonal matrix whose leading diagonal elements are equal is called a scalar 

matrix. Eg : A=  

10. Equal matrices : Two matrices A = [aij] and b= [bij] are said to be equal if and only if (i) A and B 

are of the same type(order)          (ii) aij = bij for every i&j 

11. The transpose of a matrix : The matrix obtained from any given matrix A, by inter changing its 

rows and columns is called the transpose of A. It is denoted by A1 (or) AT. 

If A = [aij] mxn then the transpose of A is A1 = [bji] nxm, where bji = aij Also (A1)1 = A    
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Note : A1 and B1 be the transposes of A and B repectively, then  

(i) (A1)1 = A 

    (ii) (A+B)1 = A1+B1 

    (iii) (KA)1 = KA1, K is a scalar  

    (iv) (AB)1= B1A1 

12. The conjugate of a matrix : The matrix obtained from any given matrix A, on replacing its 

elements by corresponding conjugate complex numbers is called the conjugate of A and is denoted 

by  

 Note : if and  be the conjugates of A and B respectively then, 

 

(i)  = A 

    (ii) (A+B) = A+B 

    (iii) (KA) = KA, K is a any complex number  

    (iv) (AB)= B A 

 Eg ; if A= 

 

13. The conjugate Transpose of a matrix  

 The conjugate of the transpose of the matrix A is called the conjugate transpose of A and is 

denoted by Aθ Thus Aθ =  where A1  is the transpose of A. Now A = [aij]   Aθ =[bij] , where bij 

=         ij i.e. the (i,j)th element of Aθ conjugate complex of the (j, i)th element of A 

Eg: if A = 

2X3

  then   Aθ =

3x2
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Note: Aθ = =A 

14. 

 (i) Upper Triangular matrix : A square matrix all of whose elements below the leading diagonal are zero 

is called an Upper triangular matrix. i.e, aij=0  for  i> j 

Eg; 

 

is an  Upper triangular matrix  

 

 

 (ii) Lower triangular matrix ; A square matrix all of  whose elements above the leading diagonal are zero 

is called a lower triangular matrix. i.e, aij=0 for i< j 

 

Eg: 

                is an Lower triangular matrix 

 

(iii)  Triangular matrix: A matrix is said to be triangular matrix it is either an upper triangular matrix or a 

lower triangular matrix 

15. Symmetric matrix : A square matrix A =[aij] is said to be symmetric if aij = aji for every i and j 

Thus A is a symmetric matrix iff 1 = A  

 

 Eg:  is a symmetric matrix 

 

16. Skew – Symmetric : A square matrix A = [aij] is said to be skew – symmetric if aij = – aji for every i and 

j. 
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Eg :  is a skew – symmetric matrix 

 

 Thus A is a skew – symmetric iff  A= -A1                    (or)     -A= A1                                                            

Note: Every diagonal element of a skew – symmetric matrix is necessarily zero. 

 Since aij = -aij  aij = 0  

17. Multiplication of a matrix by a scalar. 

 Let ‘A’ be a matrix. The matrix obtain by multiplying every element of A by  a scalar K, is called 

the product of A by K and is denoted by KA (or) AK 

 Thus :  A + [aij]  then KA = [kaij]  = k[aij]  

18. Sum of matrices :  

 Let A = [aij]  ,B = [bij]  be two matrices. The matrix C = [cij]  where cij = aij+bij is called the 

sum of the matrices A and B. 

The sum of A and B is denoted by A+B. Thus [aij]  + [bij] = [aij+bij]   and                      [aij+bij]   = 

[aij]  + [bij]  

19. The difference of two matrices : If A, B are two matrices of the same type then A+(-B) is taken as A – 

B 

 Theorem 1: Every square matrix can be expressed as the sum of a symmetric and skew – symmetric 

matrices in one and only way 

Proof : let A be any square matrix. We can write  

 

 A= ½ (A+A1)+ ½ (A-A1)=P+Q (say). 

 Where P = ½ (A+A1) 

  Q = ½ (A-A1) 
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 We have P1 = {½ (A+A1)}1 = ½ (A+A1)1 since [(KA)1 = KA1]  

   = ½ [A1+(A1)1]= ½ [A+A1]=P 

 P is symmetric matrix. 

 

Now , Q1 = [ ½ (A-A1)]1 = ½ (A-A1)1 

 = ½ [A1-(A1)1] = ½ (A1-A) 

 = - ½ (A-A1)= -Q 

Q is a skew – symmetric matrix. 

Thus square matrix = symmetric + skew – symmetric.  

Then to prove the sum is unique. 

 It possible, let A = R+S be another such representation of A where R is a symmetric and S is a 

skew – symmetric matrix. 

 R1 = R and S1 = -S 

Now A1 = (R+S)1 = R1+S1 = R-S and 

 ½ (A+A1) = ½ (R+S+R-S) = R 

½ (A-A1) = ½ (R+S-R+S) = S 

R = P and S=Q 

Thus, the representation is unique. 

Theorem2: Prove that inverse of a non – singular symmetric matrix A is symmetric. 

Proof : since A is non – singular symmetric matrix A-1 exists and AT = A……………(1) 

 Now, we have to prove that A-1 is symmetric we have (A-1)T = (AT)-1 = A-1 (by (1)) Since   (A-1)T = A-1 

therefore, A-1  is symmetric.  



 

Theorem3 : If A is a symmetric matrix, then prove that adj A is also symmetric 

Proof : Since A is symmetric, we have AT = A … (1) 

Now, we have (adjA)T = adj AT [ since adj A1 = (AdjA)1] 

   = adj A [by (1) ] 

 (adjA)T = adjA therefore, adjA is a symmetric matrix. 

20. Matrix multiplication: Let A = , B = [bkj]nxp then the matrix C = [cij]mxp where cij is called the 

product of the matrices A and B in that order and we write C = AB. 

The matrix A is called the pre-factor & B is called the post – factor 

Note : If the number of columns of A is equal to the number of rows in B then the matrices are said to 

be conformable for multiplication in that order. 

Theorem 4 : Matrix multiplication is associative i.e. If A,B,C are matrices then (AB) C= A(BC) 

Proof :  Let A= [aij] B = [bjk]  and C=  

Then AB = [uik]  where uik= ------(1) 

Also BC = [vjl] where vjl = ------(2) 

Now, A(BC) is an mxq matrix and (AB)C is also an mxq matrix.  

let A(BC) = [wil]  where wil is the (i,j)th element of A(BC) 

Then    wil = 
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  =  

(Since Finite summations can be interchanged) 

=    (from (1)) 

= The (i,j)th element of (AB)C 

A(BC) = (AB)C 

21. Positive integral powers of a square matrix: 

 Let A be a square matrix. Then A2 is defined A.A 

Now, by associative law A3 = A2.A = (AA)A 

    = A(AA) = AA2 

 Similarly  we have Am-1A = A Am-1 = Am where m is a positive integer  

 

Note : In = I 

 On = 0 

Note 1: Multiplication of matrices is distributiue w.r.t. addition of matrices. 

 

 i.e,  A(B+C) = AB + AC 

  (B+C)A = BA+CA 

Note 2: If A is a matrix of order mxn then AIn = InA = A 

22. Trace of A square matrix : Let A = [aij]  the trace of the square matrix A is defined as   . And 

is denoted by ‘tr A’  
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Thus trA =   = a11+a22+ …….ann 

Eg : A =  then trA = a+b+c  

Properties :  If A and B are square matrices of order n and λ is any scalar, then 

(i) tr (λ A) = λ tr A 

(ii) tr (A+B) = trA + tr B 

(iii) tr(AB) = tr(BA) 

23. Idempotent matrix : If A is a square matrix such that A2 = A then ‘A’ is called idempotent matrix  

24. Nilpotent Matrix : If A is a square matrix such that Am=0 where m is a +ve integer then A is called 

nilpotent matrix. 

Note : If m is least positive integer such that Am = 0 then A is called nilpotent of index m 

25. Involutary : If A is a square matrix such that A2 = I then A is called involuntary matrix. 

26. Orthogonal Matrix : A square matrix A is said to be orthogonal if AA1 = A1A = I 

Theorem 5: If A, B are orthogonal matrices, each of order n then AB and BA are orthogonal matrices. 

Proof : Since A and B are both orthogonal matrices. 

 AAT = ATA =I -------- 1 

 BBT = BTB = I -------- 2 

 Now (AB)T = BTAT  

Consider (AB)T (AB) = (BTAT) (AB) 

  = BT(ATA)B 

  = BTIB (by 1) 

  = BTB 
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= I  (by 2) 

 AB is orthogonal  

 Similarly we can prove that BA is also orthogonal  

Theorem 6 : Prove that the inverse of an orthogonal matrix is orthogonal and its transpose is also 

orthogonal. 

Proof : Let A be an orthogonal matrix 

 Then AT.A = AAT= I 

 Consider ATA = I 

 Taking inverse on both sides (AT.A)-1 = I -1 

   A-1(AT) -1 = I 

   A-1(A-1) T = I 

 A-1 is orthogonal  

Again AT.A = I 

Taking transpose on both sides (AT.A) T = IT 

    AT(AT) T = I 

Hence AT is orthogonal 

 

Examples: 

1. Show that A =  is orthogonal. 

Sol: Given A =  
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AT =  

 

 Consider A.AT =    

  

 =  

  

A is orthogonal  matrix. 

 

2. Prove that the matrix is orthogonal. 

Sol: Given A =  

 

Then AT =  

 

Consider A .AT =   
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= =  

 

A.AT = I 

Similarly AT .A = I 

Hence A is orthogonal Matrix 

3. Determine the values of a,b,c when  is orthogonal. 

 

Sol: - For orthogonal matrix AAT =I 

 

 So AAT =  

 

  = I =                    

Solving 2b2-c2 =0, a2-b2-c2 =0 

We get c =     a2 =b2+2b2 =3b2 

  a =  

From the diagonal elements of I 

4b2+c2= 1  4b2+2b2=1 (c2=2b2) 
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  b =  

 a=  

 =  

 b=  

 c =  

 =  

27. Determinant of a square matrix: 

 

 If A =  then 
 

 

28. Minors and cofactors of a square matrix 

 Let A =[aij]  be a square matrix when form A the elements of ith row and jth column are 

deleted the determinant of (n-1) rowed matrix [Mij] is called the minor of aij of A and is denoted by 

|Mij|  

 The signed minor (-1) i+j |Mij| is called the cofactor of aij and is denoted by Aij.. 

If A =  then 
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| A | = a11 |M11| + a12 |M12 | +a13 |M13| (or)  

 = a11 A11 +a12 A12 +a13 A13 

 

Eg: Find Determinant of  by using minors and co-factors. 

Sol: A =  

  

 det A = 1  

 =1(-12-12)-1(-4-6)+3(-4+6) 

 = -24+10+6 = -8 

 Similarly we find det A by using co-factors also. 

Note 1: If A is a square matrix of order n then , where k is a scalar. 

Note 2: If A is a square matrix of order n, then  

Note 3: If A and B be two square matrices of the same order, then  

29. Inverse of a Matrix: Let A be any square matrix, then a matrix B, if exists such that AB = BA =I then B 

is called inverse of A and is denoted by A-1. 

Theorem 7: The inverse of a Matrix if exists is Unique 

Proof: Let if possible B and C be the inverses of ‘A’. 

 Then AB = BA =I 

  AC = CA= I 
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 consider B = BI  =B(AC) 

    =(BA)C 

    =IC 

             B=C 

Hence inverse of a Matrix is Unique 

Note:1 (A-1)-1 = A 

 

Note 2: I-1 = I 

30. Adjoint of a matrix: 

 Let A be a square matrix of order n. The transpose of the matrix got from A  

By replacing the elements of A by the corresponding co-factors is called the adjoint of A and is denoted 

by adj A. 

Note:  For any scalar k, adj(kA) = kn-1 adj A 

Note : The necessary and sufficient condition for a square matrix to posses inverse is that  

Note: if   then 

 

3. Singular and Non-singular Matrices: 

 A square matrix A is said to be singular if .                                                                      If  

 then A is said to be non-singular. 

Note: 1. Only non-singular matrices posses inverses. 

 2. The product of non-singular matrices is also non-singular. 

Theorem 9: If A, B are invertible matrices of the same order, then  
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(i). (AB)-1 = B-1A-1 

(ii). (A1)-1 = (A-1)1 

Proof: (i). we have (B-1A-1) (AB) = B-1(A-1A)B 

          = B-1(I B) 

        = B-1B 

      = I 

       (AB)-1 = B-1A-1 

 

(ii). A-1A = AA-1 = I 

      Consider A-1A =I 

      (A-1 A)1 = I1 

      A1. (A-1)1 = I 

     (A1)-1 = (A-1)1 

Problems 

1). Express the matrix A as sum of symmetric and skew – symmetric matrices. Where  

 

A =  

Sol: Given A =  
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Then AT =  

 

Matrix A can be written as A = ½ (A+AT)+ ½ (A-AT)  

 

P = ½ (A+AT) =  

   

    

 

Q= ½ (A-AT)  

 

 =  

s

 

 

A = P+Q where ‘P’ is symmetric matrix 

‘Q’ is skew-symmetric matrix. 
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2. Find the adjoint and inverse of a matrix A =   

Soln: Adjoint of A =  

 

 Where Aij are the cofactors of the elements of aij. 

Thus minors of aij are 

 

    

 

 

    

 

   

 

 

Cofactors Aij = (-1)i+j  Mij 
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Adjoint of A =       

 

 -4-2(-1) +3(14) = 40 

 

 

 

 

 

 

 

MATRIX INVERSE METHOD 

 

3). Solve the equations 3x+4y+5z = 18, 2x-y+8z =13 and 5x-2y+7z =20 

 

Soln: The given equations in matrix form is AX = B 
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det A = 3(-7+16)-4(14-40)+5(-4+5) = 136 

 

co-factor matrix is D =  

 

  D =  

 

 

Adj A = DT  =  

 

A-1 = 1/det A adj A =  

A x = B => x = A-1 B 
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Soln is x =3 , y=1, z=1 

 

Sub – Matrix: Any  matrix obtained by deleting some rows or columns or both of a given matrix is called 

is submatrix. 

 

E.g: Let A =  . Then  is a sub matrix of A obtained by deleting  first row 

and 4th   column of A. 

 

Minor of a Matrix: Let A be an mxn matrix. The determinant of a square sub matrix of A is called a minor 

of the matrix. 

Note: If the order of the square sub matrix is ‘t’ then its determinant is called a minor of order ‘t’. 

 

Eg: A = 

4X3              be  a matrix

 

 

 is a sub-matrix of order ‘2’ 

 = 2-3 = -1 is a minor of order ‘2’ 
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 is a sub-matrix of order ‘3’ 

 

detc=  2(7-12)-1(21-10)+(18-5) 

 

       = 2(-5)-1(11)+1(13) 

      = -10-11+13 = -8 is a minor of order ‘3’ 

*Rank of a Matrix: 

 Let A be mxn matrix. If A is a null matrix, we define its rank to be ‘0’. If A is a non-zero matrix, we 

say that r is the rank of A if 

(i) Every (r+1)th order minor of A is ‘0’ (zero) & 

(ii) At least one rth order minor of A which is not zero. 

Note: 1. It is denoted by  ρ(A) 

2. Rank of a matrix is unique. 

3. Every matrix will have a rank. 

4. If A is a matrix of order mxn, 

  Rank of A ≤ min(m,n) 

5. If ρ(A) = r then every minor of A of order r+1, or more is zero. 

6. Rank of the Identity matrix In is n. 

7. If A is a matrix of order n and A is non-singular then ρ(A) = n 

Important Note: 

1. The rank of a matrix is ≤r if all minors of (r+1)th order are zero. 
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2. The rank of a matrix is ≥r, if there is at least one minor of  order ‘r’ which is not equal to zero. 

PROBLEMS 

1. Find the rank of the given matrix  

Soln: Given matrix  A =  

 

→ det A = 1(48-40)-2(36-28)+3(30-28) 

              =  8-16+6 = -2 ≠ 0 

 

We have minor of order 3  

ρ(A) =3 

2. Find the rank of the matrix  

 

   Sol: Given the matrix is of order 3x4 

 

 Its Rank ≤ min(3,4) = 3 

 Highest order of the minor will be 3. 

Let us consider the minor  

Determinat of minor is 1(-49)-2(-56)+3(35-48) 

   = -49+112-39 = 24 ≠ 0. 
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Hence rank of the given matrix is ‘3’. 

* Elementary Transformations on a Matrix: 

i). Interchange of ith row and jth row is denoted by Ri ↔ Rj 

(ii). If ith row is multiplied with k then it is denoted by Ri K Ri 

(iii). If all the elements of ith row are multiplied with k and added to the corresponding elements of jth 

row then it is denoted by Rj  Rj +KRi 

Note: 1. The corresponding column transformations will be denoted by writing ‘c’. i.e  

ci ↔cj,    ci  k cj cj  cj + kci 

2. The elementary operations on a matrix do not change its rank. 

Equivalence of Matrices: If B is obtained from A after a finite number of elementary transformations on 

A, then B is said to be equivalent to A. 

It is denoted as B~A. 

Note   : 1. If A and B are two equivalent matrices, then rank A = rank B. 

2. If A and B have the same size and the same rank, then the two matrices are equivalent. 

Echelon form of a matrix: 

A matrix is said to be in Echelon form, if  

(i). Zero rows, if any exists, they should be below the non-zero row. 

(ii). The first non-zero entry in each non-zero row is equal to ‘1’. 

(iii). The number of zeros before the first non-zero element in a row is less than the number of such 

zeros in the next row. 

Note: 1.  The number of non-zero rows in  echelon form of A is the rank of ‘A’. 

2. The rank of the transpose of a matrix is the same as that of original matrix. 

3. The condition (ii) is optional. 



Eg:  1.  is a row echelon form. 

 

2.  is a row echelon form. 

 

PROBLEMS 

 

1. Find the rank of the matrix A =  by reducing it to Echelon form. 

sol: Given A =  

Applying row transformations on A. 

 

A ~  R1 ↔ R3 

~  R2 → R2 –3R1 

     R3→ R3 -2R1 

 



















0000

1100

0010

0001

















000000

000010

000001





















131

423

732





















131

423

732





















732

423

131















 

990

770

131



~  R2 → R2/7,R3→ R3/9   

   

~  R3 → R3 –R2 

 

This is the Echelon form of  matrix A.  

 The rank of a matrix A. 

 = Number of non – zero rows =2 

2. For what values of k the matrix   has rank ‘3’. 

Sol: The given matrix is of the order 4x4  

  If its rank is 3  det A =0 

 

A = 

 

 

 

Applying R2 → 4R2-R1, R3 →4R3 – kR1, R4 → 4R4 – 9R1 
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We get A ~  

 

Since Rank A = 3  det A =0  

 

 4  

 

 

 1[(8-4k)3]-1(8-4k)(4k+27)] = 0 

 (8-4k) (3-4k-27) = 0 

 (8-4k)(-24-4k) =0  

 (2-k)(6+k)=0  

 k =2 or k = -6 

 

Normal Form:  

 Every mxn matrix of rank r can be reduced to the form   (or) (Ir ) (or) (or)

 by a finite number of elementary transformations, where Ir is the r – rowed unit matrix. 

Note: 1. If  A is an mxn matrix of rank r, there exists non-singular matrices P and Q such that PAQ = 

 



























327400

838480

1100

1344

k

kkk

0

32740

83848

110









k

kkk










00

0rI









0

rI








 0rI










00

0rI



 

 

2.Normal form another name is “canonical form” 

 

e.g: By reducing the matrix into normal form, find its rank.  

Sol: Given A =  

 

A ~  R2 → R2 – 2R1 

    R3 → R3 – 3R1 

 

A ~  R3 → R3/-2 

 

A ~  R3 → R3+R2 

 

A ~  c2→ c2 - 2c1, c3→c3-3c1, c4→c4-4c1 
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A ~ c3 → 3 c3 -2c2, c4→3c4-5c2 

 

     

A ~  c2→c2/-3, c4→c4/18 

 

     

A~ c4 ↔ c3 

 

This is in normal form [I3 0] 

Hence Rank of A is ‘3’. 

Gauss – Jordan method 

 The inverse of a matrix by elementary Transformations: (Gauss – Jordan method) 

1. suppose A is a non-singular matrix of order ‘n’ then we write A = In A 

2. Now we apply elementary row-operations only to the matrix A and the pre-factor In of 

the R.H.S 

3. We will do this till we get In = BA then obviously B is the inverse of A. 

 



















18000

0030

0001

















1000

0010

0001

















0100

0010

0001



*Find the inverse of the matrix A using elementary operations where A=  

Sol: 

Given A =  

 

We can write A = I3 A 

 =  A 

 

Applying R3 →2R3-R2, we get 

 =  A 

Applying R1→R1-3R2, we get 

 =  A 

Applying R1 → R1+5R3, R2 → R2-3R3 , we get 

 

 = A   
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 Applying R2 → R2/2, we get                                                                           

= A  I3 = BA 

 B is the inverse of A. 

 

 

System of linear equations – Triangular systems: 

 

Consider the system of n linear algebraic equations in n unknowns  

 

a11 x1+a12x2+………+a1n xn    =b1 

a21 x1+a22x2+………+a2n xn  =b2 

--------------------------------------- 

--------------------------------------- 

an1 x1+an2x2+………+ann xn  =bn 

The given system we can write Ax =B 

i.e  

 

Lower Triangular system: 

Suppose the co-efficient matrix A is such that all the elements above the leading diagonal are 

zero. That is , A is a lower triangular matrix of the form. 
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A =  

In this case the system will be of the form  

 

a11 x1 =b1 

a21 x1+a22x2 =b2 

--------------------------------------- 

--------------------------------------- 

an1 x1+ an2x2+………+ann =bn 

 

from above equations, we get 

x1 = b1/a11 

x2 =  

 

The method of constructing the exact solution is called method of forward substitution. 

 

Upper triangular system: 

Suppose the co-efficient matrix A is such that all the elements below the leading diagonal are all 

zero. i.e A is an upper triangular matrix of the form. 
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Above system can be of the form 

 

a11 x1+a12x2+………+a1n xn=b1 

a22x2+………+a2n xn=b2 

--------------------------------------- 

--------------------------------------- 

ann xn=bn 

 

from the above equations, we get 

 

 

 

 

= and so on. 

 

The method of constructing the exact solution is called method of backward substitution 

Solution of linear systems – Direct methods 

Method of Factorization (Triangularisation): 

Triangular Decomposition Method: 

This method is based on the fact that a square matrix A can be factorized into the form LU, 

where L is the unit lower triangular matrix and U is the upper triangular matrix. 
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Note: 

1. The principle minors of A must be non-singular 

2. This factorization  

Consider the linear system 

a11 x1+a12x2+a13x3 =b1 

a21 x1+a22x2+a23x3 =b2 

a31 x1+a32x2+a33x3 =b3 

which can be written in the form Ax = B --------(1) 
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Where L = 
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Then (1)  LUX = B. 

If we put UX = Y where Y = 
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Then (2) becomes LY = B 

 

The system is equals to y1 = b1 

   l21+y2  =b2           (3) 

   l31y1+l32y2+y3 =b3  



 

 here y1,y2,y3 are solved by forward substitution using (3) we get 
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u11 x1+u12x2+u13x3 =y1 

u22x2+u23x3             =y2 

u33x3                        =y3 

from these we can sole for x1,x2,x3 by backward substitution . 

 

The method of computing L and U is outlined below from (2) * we get 
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Equating corresponding elements, we get 

u11 = a11 l21 u11 = a21  l21 = a21/a11 and 

u12 = a12 l31 u11 =a31  l31 = a31/a11 

u13 = a13      l21 u12 + u22 = a22  l21a12 + u22 = a22  u22 = a22- a21a12/a11 

     l31u12+l32u22 = a32          l32 = [a32-l31 u12] / u22  and 

     l31a13+l32a23+u33 = a33 from which u33 can be calculated. 

 



Ex : Solve the following system by the method of factorization x+3y+8z =4, x+4y+3z = -2, x+3y+4z 

=1 

Soln: The given system can write AX = B; 
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Let A = LU 

 

Where L = 
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 u11 = 1, u12 =3, u13= 8 

l21 u11 = 1  l21 =1 and l31u11 =1  l31 =1 

 

from the equations l21u12+u22 =4 and 

         l21u13+u23 =3, we get 

 

u22 = 4-l21u12 

 = 4-3 =1 

u23 = 3-l21u13 

 = 3-8 = -5 



By using l31u12+l32u22 = 3 and l31u13+l32u23+u33 = 4 we get 

 l33 = 4-l31u13-l32u23 

  = 4-1(8)-(0)5 = -4 
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Let UX = Y where Y = 
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 then LY = B 
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From (2) y1= 4, y2= -2 and y1+y3 =1 

    y3= -3 

 

from (1)  

x = - 29/4 , y =7/4 and z= ¾ 

 

Solution of Tridiagonal system: 



 

Consider the system of equations defined by  

 

b1u1+c1u2 =d1 

a2u1+b2u2+c2u3 = d2 

------------------------- 

anun-1+bnun =dn 

 

 

 

The co-efficient matrix is  
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This matrix is solved by using factorization method. 

 

Ex : Solve the following tri-diagonal system of Equations 2x1+x2  = 2 

           x1+2x2+x3 = 2 

         x2+2x3+x4 = 2 

          x3+2x4 =1 

step1: 

soln: The given system of equations in matrix notation can be coriten as Ax = B 
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Let A = LU 
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Equating the corresponding elements of first row  w1 = 2, w1α1 =1 

        α1 = ½  

 

Equating the corresponding elements of second row, we get β2 =1, α1β2+w2 =2   

w2 = 3/2     α2 = 2/3  

w3 = 4/3      α3 = ¾ 

 

equating the corresponding elements of fourth row, we get 

 



β4 =1 , α3β4+w4 = 2 w4 = 5/4  

 

substituting these values  
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Step2: LUX = B 

 LY = B where UX = Y 
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2y1 = 2  y1 =1  y2+4/3y3 =2   y3 =1 

y1 + 3/2 y2 = 2 y2 = 2/3      y3+5/4 y4 =1  y4 =0 

 

step3: UX = Y 
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x1+ ½ x2=1 

x2+2/3x3 =2/3 

x3+3/4x4 =1 

x4 =0 

solving the solution is given by  

x1 =1, x2 =0 , x3 =1, x4= 0 

 

 

 

 

 



 

 

 

 

UNIT-II 
LINEAR TRANSFORMATION 

 
 

 

 

 

 

 

 



Eigen Values & Eigen Vectors 

Def:  Characteristic   vector of a matrix: 

Let  A= [ aij] be  an  n x n  matrix.  A non-zero vector X is said to be a   Characteristic  Vector of A if there 

exists  a  scalar  such that AX=λX. 

Note:  If  AX=λX (X≠0), then  we  say ‘λ’  is   the   eigen  value (or) characteristic root of ‘A’. 

Eg: Let A=  
  
  

       X =  
 

  
  

AX =  
  
  

  
 

  
  =  

 
  

     
 

  
  

     

Here Characteristic vector of A is  
 

  
  and Characteristic root of A is “1”.  

Note: We notice that an eigen value of a square matrix A can be 0. But a zero vector cannot be an eigen 

vector of A.  

Method of finding the Eigen vectors of a matrix.  

Let A = [aij] be a nxn matrix. Let X be an eigen vector of A corresponding to the eigen value λ.  

Then by definition   AX = λX.  

 AX = λIX 

 AX –λIX = 0 

 (A-λI)X = 0 ------- (1)  

This is a homogeneous system of n equations in n unknowns.  

(1) Will have a non-zero solution X if and only |A-λI| = 0 

- A-λI is called characteristic matrix of A 

- |A-λI| is a polynomial in λ of degree n and is called the characteristic polynomial of A  

- |A-λI|=0 is called the characteristic equation  

Solving characteristic equation of A, we get the roots ,                 These are called the 

characteristic roots or eigen values of the matrix.  



- Corresponding to each one of these n eigen values, we can find the characteristic vectors.  

Procedure to find eigen values and eigen vectors  

Let A =  
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Then the characterstic polynomial is  IA 
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The characteristic equation is  |A-λ     we solve the   λ     λ      we get n roots, these are 

called eigen values or latent values or proper values.  

Let each one of these eigen values say λ their eigen vector X corresponding the given value λ is obtained 

by solving Homogeneous system 
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And determining the non-trivial solution.  

 

 

 



PROBLEMS 

1. Find the eigen values and the corresponding eigen vectors of   
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0Characteristic equation of A is A I   
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Eigen vector corresponding to λ    

Put λ    in the above system, we get  
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Eigen Vector corresponding to λ    
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from (1) and (2) we have x1 = 2x2 

Say  212  xx  
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2. Find the eigen values and the corresponding eigen vectors of matrix    
   
   
   

  

Sol: Let A =  
   
   
   

  

The characteristic equation is |A-λI|=0 

i.e. |A-λI| =  
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The eigen values of A is 1,2,3. 
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Properties of Eigen Values:   

Theorem 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen 

values is equal to its determinant.  

Proof: Characteristic equation of A is  |A-λI|=0 

i.e,  

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a







 
 


 
 
 

 

                       

    11 22 12nna a a a      (a polynomial of degree n – 2) 

+ a13 (a polynomial of degree n -2) + … = 0 

  0)2(deg)....()1( 1

2211   nreeofpolynomialaaaa n
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Theorem 2: If  is an eigen value of A corresponding to the eigen vector X, then  is eigen value An 

corresponding to the eigen vector X.  

Proof: Since  is an eigen value of A corresponding to the eigen value X, we have  



AX=  ----------(1)  

Pre multiply (1) by A, A(AX) = A( X)  

(AA)X = (AX) 

A2X= ( X)  

A2X= 2X 

2  is eigen value of A2 with X itself as the corresponding eigen vector. Thus the theorm is true for n=2 

Let we assume it is true for n = k 

i.e,, AKX = KX------------(2)  

Premultiplying (2) by A, we get 

A(AkX) = A( KX) 

(AAK)X= K(AX)= K( X) 

AK+1X= K+1X  

K+1 is eigen value of K+1 with X itself as the corresponding eigen vector.  

Thus, by Mathematical induction., n is an eigen value of An 

Theorem 3: A Square matrix A and its transpose AT have the same eigen values.  

Proof: We have (A- I)T = AT-  IT 

   = AT-  I 

|(A-  I)T|=|AT-  I| (or) 

|A-  I|=|AT-  I|   AAT          

|A-  I|=0 if and only if |AT-  I|=0 



 

Hence the theorm  

Theorem 4: If A and B are n-rowed square matrices and If A is invertible show that A-1B and B A-1  have 

same eigen values.  

Proof: Given A is invertble 

i.e, A-1 exist 

We know that if A and P are the square matrices of order n such that P is non-singular then A and   

 P-1 AP have the same eigen values.  

Taking A=B A-1 and P=A, we have 

B A-1 and A-1 (B A-1 )A have the same eigen values 

ie.,B A-1  and (A-1 B)( A-1 A) have the same eigen values 

ie.,B A-1 and (A-1 B)I have the same eigen values 

ie.,B A-1 and A-1 B have the same eigen values 

Theorem 5: If n ..,........., 21  are the eigen values of a matrix A then k 1, k 2, ….. k n are the eigen 

value of the matrix KA, where K is a non-zero scalar.  

Proof: Let A be a square matrix of order n. Then |KA- KI| = |K(A- I)| = Kn |A- I|  

Since K≠0, therefore |KA- KI| = 0 if and only if 0 IA   

AofvalueeigenanisifKAofvalueeigenanisKei  .,.  

Thus k 1, k 2 … k n are the eigen svalues of the matrix KA if 

1, 2 … n are the eigen values of the matrix A 

Theorem 6: If  is an eigen values of the matrix A then +K is an eigen value of the matrix A+KI  

Proof: Let  be an eigen value of A and X the corresponding eigen vector. Then by definition AX=  



Now (A+KI)X  

KXXIKXAX    

=(  

 

Theorem 7: If 1, 2 … n are the eigen values of A, then 1 – K, 2  – K, … n – K, 

scalarzerononaisKwhereKIAmatrixtheofvalueseigentheare  ),(  

Proof: Since  

The characteristic polynomial of A is  

|A – I| = ( 1 – ) ( 2 – )   … ( n – )-----------------------1 

Thus the characteristic polynomial of A-KI is  

|(A – KI) – I| = |A – (k+ )I| 

= [  

 

Which shows that the eigen values of A-KI are  

Theorem 8: If  are the eigen values of A, find the eigen values of the matrix  

Proof: First we will find the eigen values of the matrix A-  

Since  are the eigen values of A  

The characteristics polynomial is  

| A- ( (  

The characteristic polynomial of the matrix (A-  

|A- -KI| = |A-( +K)I|  



=  [ ( +K)]  

=  [ K)]   

Which shows that eigen values of (A- I) are  

We know that if the eigen values of A are then the eigen values of A2 are   

Thus eigen values of 22

2

2

1

2 ).....(,)(,)()(   nareIA  

Theorem 9: If  is an eigen value of a non-singular matrix A corresponding to the eigen vector X, then –

1 is an eigen value of A–1 and corresponding eigen vector X itself. 

Proof: Since A is non-singular and product of the eigen values is equal to |A|, it follows that none of the 

eigen values of A is 0.  

If s an eigen vector of the non-singular matrix A and X is the corresponding eigen vector ≠0 and AX=

. Premultiplying this with A–1, we get A–1(AX) = A–1( X) 

1 1 1( )A A X A X IX A X        

X = 
1 1 1A X A X X     )0(   

Hence 
1
is an eigen value of 1A  

Theorem 10: If

atrix Adj A 

Proof: Since  is an eigen value of a non-singular matrix, therfore ≠0 

Also  is an eigen value of A implies that there exists a non-zero vector X such that AX =  -----(1)  

 

 

 IAAadjA )(  

X
A

XAadjorXAadjX
A


 )()(  



Since X is a non – zero vector, therefore the relation (1)  

it is clear that 


A
 is an eigen value of the matrix Adj A 

Theorem 11: If  

Proof: We know that if  is an eigen value of a matrix A, then  is an eigen value of A–1  

Since A is an orthogonal matrix, therefore A–1 = A1 

 is an eigen value of   

But the matrices A and A1 have the same eigen values, since the determinants |A- I| and |A1- I| are 

same.  

Hence  is also an eigen value of A.  

Theorem 12: If  is eigen value of A then prove that the eigen value of B = a0A
2+a1A+a2I is a0

2+a1 +a2 

Proof: If X be the eigen vector corresponding to the eigen value , then AX = X --- (1)  

Premultiplying by A on both sides 

 

  

This shows that 
2 is an eigen value of A2  

a0A
2+a1A+a2I  

 a0A
2+a1A+a2I)X  

 a0A
2 X+a1AX+a2 X 

a0
2 X+a1 X+a2X  (a0

2 +a1 +a2 )X  

(a0
2 +a1 +a2 ) is an eigen value of B and the corresponding eigen vector of B is X.  



Theorem 14: Suppose that A and P be square matrices of order n such that P is non singular. Then A and 

P-1AP have the same eigen values.  

Proof: Consider the characteristic equation of P-1AP  

It is |( P-1AP)-λI| = | P-1AP-λ P-1IP| )( 1PPI   

= | P-1 (A-λI)P| = | P-1 | |A-λI| |P|  

= |A-λI| since |P-1 | |P| = 1 

Thus the characteristic polynomials of P-1AP and A are same. Hence the eigen values of P-1AP and A are 

same.  

Corollary 1: If A and B are square matrices such that A is non-singular, then A-1B and BA-1 have the same 

eigen values.  

Proof: In the previous theorem take BA-1 in place of A and A in place of B.  

We deduce that A-1(BA-1)A and (BA-1) have the same eigen values.  

i.e, (A-1B) (A-1A) and BA-1 have the same eigen values.  

i.e, (A-1B)I and BA-1 have the same eigen values 

i.e, A-1B and BA-1 have the same eigen values 

Corollary 2: If A and B are non-singular matrices of the same order, then AB and BA have the same eigen 

values.  

Proof: Notice that AB=IAB = (B-1B)(AB) = B-1 (BA)B 

Using the theorem above BA and B-1 (BA)B have the same eigen values.  

i.e, BA and AB have the same eigen values.  

Theorem 15: The eigen values of a triangular matrix are just the diagonal elements of the matrix.  



Proof: Let A = 

nn

n

n

a

aa

aaa

......00

..................

......0

......

222

11211

 be a triangular matrix of order n  

The characteristic equation of A is |A- I|=0  

i.e.,  

i.e, (a11- ) (a22- ) ….. (ann- )=0  

 a11 , a22 ,…. ann  

Hence the eigen values of A are a11 , a22 ,…. ann which are just the diagonal elements of A.  

Note: Similarly we can show that the eigen values of a diagonal matrix are just the diagonal elements of 

the matrix.  

 

Theorem 16: The eigen values of a real symmetric matrix are always real.  

Proof: Let  be an eigen value of a real symmetric matrix A and Let X be the corresponding eigen vector 

then AX=   

Take the conjugate   

Taking the transpose  

Since   

Post multiplying by X, we get ------- (2)  

Premultiplying (1) with  , we get 
T T

X AX X X ------ (3)  

(2) – (3) gives   0
T

X X   but  0     



     is real. Hence the result follows 

Theorem 17: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values 

are orthogonal.  

Proof: Let λ1, λ2 be eigen values of a symmetric matrix A and let X1, X2 be the corresponding eigen 

vectors.  

Let λ1 ≠ λ2. We want to show that X1 is orthogonal to X2 (i.e.,  

Sice X1, X2 are eigen values of A corresponding to the eigen values λ1, λ2 we have 

AX1= λ1X1 ----- (1)  AX2  = λ2 X2  ------- (2)  

Premultiply (1) by  

 

Taking transpose to above, we have 

   TTTTTTT XXXAX 21122   

-------- (3) s 

Premultiplying (2) by  

Hence from (3) and (4) we get  

 

 

1 2( )   

 
Note: If λ is an eigen value of A and f(A) is any polynomial in A, then the eigen value of f(A) is f(λ)  

 

PROBLEMS 

1. Find the eigen values and eigen vectors of the matrix A and its inverse, where  

A =  



Sol: Given A =   

The characteristic equation of A is given by |A-λI| = 0 
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X is the solution where  is arbritary constant 
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Is the eigen vector corresponding to 1  
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is the solution 
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Is the eigen vector corresponding to 2  
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X =   











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


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19

X is the eigen vector corresponding to 3  



Eigen values of A –1are  

1 1 1
1, ,

2 3
Eigen values of A are   

We know Eigen vectors of  A –1 are same as eigen vectors of A.  

2.  

 

  

 

 

 

 

 

Let f(A)  =  

Then eigen values of f(A) are f(1), f(3) and f(-2)  

f(1) = 3(1)3+5(1)2-6(1)+2(1) = 4 

f(3) = 3(3)3+5(3)2-6(3)+2(1) = 110 

f(-2) = 3(-2)3+5(-2)2-6(-2)+2(1) = 10 

Eigen values of  are 4,110,10 

Diagonalization of a matrix: 

Theorem: If a square matrix A of order n has n linearly independent eigen vectors (X1,X2…Xn) 

corresponding to the n eigen values λ1,λ2….λn respectively then a matrix P can be found such that 

 P-1AP is a diagonal matrix.  

Proof: Given that (X1,X2…Xn) be eigen vectors of A corresponding to the eigen values λ1,λ2….λn 

respectively and these eigen vectors are linearly independent Define P = (X1,X2…Xn)  

Since the n columns of P are linearly independent |P|≠0 



Hence P-1 exists 

Consider AP = A[X1,X2…Xn]  

= [AX1, AX2…..AXn]  

= [λX1, λ2X2….λnXn]  

[X1,X2…Xn] 



















n





...00

............

0...0

0...0

2

1

 

 

Where D = diag )..,.........,,( 321 n  

AP=PD 

P–1(AP) = P–1 (PD)  DPPAPP 11    

P–1AP = (I)D 

 

= diag )..,.........,,( 321 n  

Hence the theorem is proved.  

Modal and Spectral matrices:  

The matrix P in the above result which diagonalize the square matrix A is called modal matrix of A and 

the resulting diagonal matrix D is known as spectral matrix.  

Note   1: If X1,X2…Xn are not linearly independent this result is not true.  

2: Suppose A is a real symmetric matrix with n pair wise distinct eigen values 1 2, n    

then the corresponding eigen vectors X1,X2…Xn are pairwise orthogonal.  

Hence if P = (e1,e2…en) 

Where e1 = (X1 / ||X1||), e2 = (X2 / ||X2||)….en = (Xn)/ ||Xn||  

then P will be an orthogonal matrix.  



i.e, P
T
P=PP

T
=I  

Hence P
–1 

= P
T
 

P
–1

P
T
AP=D 

Calculation of powers of a matrix:  

We can obtain the power of a matrx by using diagonalization  

Let A be the square matrix then a non-singular matrix P can be found such that D = P
-

1
AP 

D
2
=(P

–1
AP) (P

–1
AP)  

= P
–1

A(PP
–1

)AP  

= P
–1

A
2
P        (since PP

–1
=I) 

Simlarly D
3
 = P

–1
A

3
P  

In general D
n
 = P

–1
A

n
P……..(1) 

To obtain A
n
, Premultiply (1) by P and post multiply by P

–1
 

Then PD
n
P

–1
 = P(P

–1
A

n
P)P

–1
 

= (PP
–1

)A
n
 (PP

–1
) = A

n  
1 PPDA nn
 

Hence An = P 

1

12
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PROBLEMS 

 

1. Determine the modal matrix P of  =  . Verify that  is a diagonal 

matrix.  

Sol: The characteristic equation of A is |A-λI| = 0 

i.e,  

0  

Thus the eigen values are λ=5, λ=-3 and λ=-3  



when λ=5  

By solving above we get X1 =  

Similarly, for the given eigen value λ=-3 we can have two linearly independent eigen vectors X2 = 

 

 

 

 

 

 

=  

 

  

 

 is a diagonal matrix.  

2. Find a matrix P which transform the matrix A = 

 

Sol: Characteristic equation of A is given by |A-λI| = 0 



i.e,  

 

 

 

 

If x1, x2, x3 be the components of an eigen vector corresponding to the eigen value λ, we have 

[A-λI]X =  

 

  i.e, 0.x1+0.x2+0.x3=0 and x1+x2+x3=0 

x3=0 and x1+x2+x3=0 

x3=0, x1=-x2 

x1=1, x2=-1, x3=0 

Eigen vector is [1,-1,0]T 

Also every non-zero multiple of this vector is an eigen vector corresponding to λ=1 

For λ=2, λ=3 we can obtain eigen vector [-2,1,2]T and [-1,1,2]T 

P =   

The Matrix P is called modal matrix of A 



P-1=
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Cayley - Hamilton Theorem:  

Every square matrix satisfies its own characterstic equation 

                                                                     PROBLEMS  

1. Show that the matrix A =  satisfies its characteristic equation Hence find A
-1

 

Sol: Characteristic equation of A is det (A-λI) = 0 

       C2   C2+C3 

 

 



 

 

By Cayley – Hamilton theorem, we have A3-A2+A-I=0 
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=  

Multiplying with A–1 we get A2 – A + I =A–1 
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2. Using Cayley - Hamilton Theorem find the inverse and A
4
 of the matrix A = 

 

Sol: Let A =  

The characteristic equation is given by |A-λI|=0  
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126

216

227

.,. 













ei  



 

 

 

By Cayley – Hamilton theorem we have A3-5A2+7A-3I=0…..(1) 

Multiply with A-1 we get 

A-1  

















































252678

262578

262679

7824

8724

8825
32 AA  

























526

256

223

3

11A  

 

 









































































3618

6318

6621

6956168

5649168

5656175

125130390

130125390

130130395

 

























7980240

8079240

8080241

 

Problems 

1. Diagonalize the matrix (i) 

2 2 1

1 3 1

1 2 2

 
 
 
  

(ii)

1 2 2

1 2 1

1 1 0

  
 
 
   

 



3. Verify Cayley – Hamilton Theorem for A = . Hence find A-1. 

 

Linear dependence and independence of Vectors : 

1. Show that the vectors (1,2,3), (3,-2,1), (1,-6,-5) from a linearly dependent set. 

Sol. The Given Vector 

























































5

6

1

1

2

3

3

2

1

321 XXX  

The Vectors X1, X2, X3 from a square matrix. 

Let 





















513

622

131

A  

Then 





















513

622

131

A  

= 1(10+6)-2(15-1)+3(-18+2) 

=16+32-48=0 

The given vectors are linearly dependent |A|=0 

2. Show that the Vector X1=(2,2,1), X2=(1,4,-1) and X3=(4,6,-3) are linearly independent. 

Sol. Given Vectors X1=(2,-2,1) X2=(1,4,-1) and X3=(4,6,-3) The Vectors X1, X2, X3 form a 

square matrix. 





















311

642

412

A  

Then 





















311

642

412

A  

=2(-12+6)+2(-3+4)+1(6-16) 

=-20≠ 0 

 The given vectors are linearly independent 



 |A|≠0 

 

Real and complex matrices 
Conjugate of a matrix: 

                          If the elements of a matrix A are replaced by their conjugates then the resulting 

matrix is defined as the conjugate of the given matrix. We denote it with A  

e.g If A=
2 3 5

6 7 5

i

i i

 
 
   

 then A =
2 3 5

6 7 5

i

i i

 
 
   

 

The transpose of the conjugate of a square matrix: 

                          If A is a square matrix and its conjugate is A , then the transpose of A  is  
T

A . 

It can be easily seen that  
T

A = TA  

It is denoted by A
 

   A
=  

T

A = TA  

Note: If A
and B

 be the transposed conjugates of A and B respectively, then 

      i)  A A


   ii)  A B A B
       iii)  KA KA

    iv) 

 AB B A
    

Hermitian matrix: 

                  A square matrix A such that A =
TA (or)  

T

A =A is called a hermitian matrix 

e.g A=
4 1 3

1 3 7

i

i

 
 
 

 then  A =
4 1 3

1 3 7

i

i

 
 
 

 and A
θ
=

4 1 3

1 3 7

i

i

 
 
 

 

    Here  
T

A =A, Hence A is called Hermitian 

Note: 

  1) The element of the principal diagonal of a Hermitian matrix must be real 

  2) A hermitian matrix over the field of real numbers is nothing but a real symmetric. 

 

Skew-Hermitian matrix  

          A square matrix A such that 
TA =- A (or)  

T

A =-A is called a Skew-Hermitian matrix 

 e.g. Let A=
3 2

2

i i

i i

  
 
   

 then A =
3 2

2

i i

i i

 
 
  

 and   













ii

ii
A

T

2

23
 

    
T

A =-A 



 A is skew-Hermitian matrix. 

Note: 

1) The elements of the leading diagonal must be zero (or) all are purely imaginary 

2) A skew-Hermitian matrix over the field of real numbers is nothing but a real skew-symmetric 

matrix. 

 

Unitary matrix: 

          A square matrix A such that  
T

A =
1A
 

                     i.e  
T

A A=A  
T

A =I 

             If A
A=I then A is called Unitary matrix 

 

Theorem: The Eigen values of a Hermitian matrix are real. 

Proof: Let A be Hermitian matrix. If X be the Eigen vector corresponding to the eigen value   

of A, then  AX =  X -------------------- (1) 

Pre multiplying both sides of (1) by X 
,we get 

XXAXX   ----------------------- (2) 

Taking conjugate transpose of both sides of (2) 

   We get    X AX X X
 

   

i.e           AKKAandABCABCXXXAX    

(or)    ,X A X X X X X A A
         

  
-------------------- (3) 

From (2) and (3), we have  

        X X X X    

i.e    0 0X X         

                                         0X X     

 Hence   is real. 

Note: The Eigen values of a real symmetric are all real 

Corollary: The Eigen values of a skew-Hermitian matrix are either purely imaginary (or) Zero 

Proof: Let A be the skew-Hermitian matrix 

            If X be the Eigen vector corresponding to the Eigen value   of A, then  

               ( )AX X or iA X i X    

            From this it follows that i  is an Eigen value of iA 



            Which is Hermitian (since A is skew-hermitian) 

            A A    

Now       iAAiiAAiiA  
 

            Hence i  is real. Therefore   must be either 

            Zero or purely imaginary. 

Hence the Eigen values of skew-Hermitian matrix are purely imaginary or zero 

Theorem 3: The Eigen values of an unitary matrix have absolute value l. 

Proof: Let A be a square unitary matrix whose Eigen value is   with corresponding eigen vector 

X 

                  1AX X   

                  AX X  
T T

TX A X   2  

    Since A is unitary, we have    3
T

A A I   

(1) and (2) given 
T T

X A     XXAX
T

  

i.e    
T T

X X X X   From (3)  

   1 0
T

X X    

  Since 0
T

X X  ,we must have 1 0   

                                                     1   

  Since  =   

We must have  =1 

Note 1: From the above theorem, we have “The characteristic root of an orthogonal matrix is unit 

modulus”. 

         2. The only real eigen values of unitary matrix and orthogonal matrix can be   1 

Theorem 4: Prove that transpose of a unitary matrix is unitary. 

 Proof: Let A be a unitary matrix 

             Then . .A A A A I    

               Where A
 is the transposed conjugate of A. 



                           
T T T

AA A A I      

                        
T T T

AA A A I     

                      
T T

T TA A A A I    

                      T T T TA A A A I
 

   

 Hence 
TA  is a unitary matrix. 

PROBLEMS 

1) Find the eigen values of A=
3 2

2

i i

i i

 
 
   

 

 Sol:   we have A= 
3 2

2

i i

i i

 
 
   

 

              So A =
3 2

2

i i

i i

  
 
  

 and 













ii

ii
AT

2

23
  

      A =
TA  

 Thus A is a skew-Hermitian matrix. 

 The characteristic equation of A is 0A I   

  0
2

23











ii

ii
AT

 


2 2 8 0i     

   4 , 2i i    are the Eigen values of A 

2) Find the eigen values of 





















i

i
A

2

1

2

3
2

3

2

1

 

and

i

i
ANow
























2

1

2

3
2

3

2

1

 

 
























i

i
A

T

2

1

2

3
2

3

2

1

 

 

We can see that 
1 0

.
0 1

T

A A I
 

  
 

 

Thus A is a unitary matrix 

 The characterstic equation is 0A I 
 



0

2

1

2

3
2

3

2

1












i

i
 

                                     

Which gives iandi
2

1

2

3

2

1

2

3



  and  

                           1/ 2 3 1/ 2i    

 Hence above   values are Eigen values of A. 

3)     If A=

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

i i

i i

   
 

  
 
    

 then show that  

         A is Hermitian and iA is skew-Hermitian. 

Sol:  Given A=

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

i i

i i

   
 

  
 
    

 then 

3 7 4 2 5

7 4 2 3

2 5 3 4

i i

A i i

i i

   
 

   
 
    

 And  

3 7 4 2 5

7 4 2 3

2 5 3 4

T

i i

A i i

i i

   
 

   
 
    

 

  
T

A A   Hence A is Hermitian matrix. 

Let B= iA 

i.e B=

3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

i i i

i i i

i i i

   
 
    
 
   

 then  

       

3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

i i i

B i i i

i i i

    
 

    
 
    

  

      
3 4 7 5 2

4 7 2 1 3

5 2 1 3 4

T

i i i

B i i i

i i i

    
 

  
 
        

B

iii

iii

iii



























43125

31274

25743

)1(  



          
T

B =-B 

  B= iA is a skew Hermitian matrix. 

4) If A and B are Hermitian matrices, prove that AB-BA is a skew-Hermitian matrix. 

Sol: Given A and B are Hermitan matrices  

            
T

A A   And  
T

B B ------------- (1) 

 Now    
TT

AB BA AB BA    

              
T

AB BA   

                   
T T T T T T

AB BA B A A B     

        BA AB   (By (1)) 

         AB BA    

 Hence AB-BA is a skew-Hemitian matrix. 

5) Show that A=
a ic b id

b id a ic

   
 
  

 is unitary if and only if a
2
+b

2
+c

2
+d

2
=1 

Sol:  Given A=
a ic b id

b id a ic

   
 
  

 

    Then 
a ic b id

A
b id a ic

   
  

  
 

Hence   













icaidb

idbica
AA

T
 

          

























icaidb

idbica

icaidb

idbica
AA

 

            =
2 2 2 2

2 2 2 2

0

0

a b c d

a b c d

   
 

   
 

       AA I   if and only if 
2 2 2 2 1a b c d     

6) Show that every square matrix is uniquely expressible as the sum of a Hermitian 

matrix and a skew- Hermitian matrix. 

    Sol. Let A be any square matrix  



             Now    A A A A
 

      

                                           A A   

             A A A A A A


        is a Hermitian matrix. 

             AA
2

1
 is also a Hermitian matrix  

  Now    A A A A
 

      

   A A   A A


    

               Hence A A  is a skew-Hermitian matrix  

                 
1

2
A A  is also a skew –Hermitian matrix. 

Uniqueness: 

            Let A =R+S be another such representation of A 

             Where R is Hermitian and  

                          S is skew-Hermitian 

 Then  A R S
    

                                R S    

    R S    ,R R S S   
 

     

    QAASandPAAR  

2

1

2

1
  

Hence P=R and Q=S 

                Thus the representation is unique. 

 

7) Given that A=
0 1 2

1 2 0

i

i

 
 
  

, show that    1
 AIAI  is a unitary matrix. 

Sol: we have 






















021

210

10

01

i

i
AI  



   
1 1 2

1 2 1

i

i

  
  

 
 And 

  






















021

210

10

01

i

i
AI  

   =
1 1 2

1 2 1

i

i

 
 
  

 

  
  














 

121

211

141

1
)(

2

1

i

i

i
AI  

          

1 1 21

1 2 16

i

i

  
  

   

Let    1
 AIAIB  








































1)21)(21(2121

2121)21)(21(1

6

1

121

211

121

211

6

1

iiii

iiii

i

i

i

i
B

 















442

424

6

1

i

i
B  

Now 
4 2 41

2 4 46

i
B

i

   
  

  
 and  

4 2 41

2 4 46

T i
B

i

  
  

   
 

 
4 2 41

2 4 436

T i
B B

i

   
  

  













442

424

i

i
 

          
36 0 1 01

0 36 0 136
I

   
     

   
 

   1
T

B B  

i.e., B is unitary matrix. 

   1
 AIAI is a unitary matrix. 

8) Show that the inverse of a unitary matrix is unitary. 



Sol: Let A be a unitary matrix. Then AA I   

        i.e   
1

1AA I


  

  
1

1A A I


   

  1 1A A I


    

Thus 
1A
 is unitary. 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 

UNIT-III 
DIFFERENTIAL 

EQUATIONS OF FIRST ORDER AND 
THEIR APPLICATIONS 

 

 

 

 

 

 

 

 

 

 

 



ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER 

& FIRST DEGREE 

Definition:  An equation which involves differentials is called a Differential equation. 

Ordinary differential equation:  An equation is said to be ordinary if the derivatives have reference to 

only one independent variable.   

Ex . (1) 
2dy

7xy x
dx

                  (2) 

2

x

2

d y dy
3 2y e

dx dx
    

(1) Partial Differential equation:  A Differential equation is said to be partial if the derivatives in the 

equation have reference to two or more independent variables. 

       E.g:   1. 

22

4
   

   
    

z z
z

x y
 

2.   2
 

 
 

z z
x y z

x y
 

Order of a Differential equation:   A Differential equation is said to be of order ‘n’ if the   derivative 

is the highest derivative in that equation. 

E.g :  (1). (x2+1) .    + 2xy  = 4x2 

                   Order of this Differential equation is   1. 

         (2)      xeyx
dx

dy
x

dx

yd
x  112

2

2

 

 

               Order of this Differential equation is 2. 

       (3).        + 5 

2
dy

dx

 
 
 

+2y =0 . 



                Order=2  , degree=1. 

        (4).      +     =0.                Order is 2. 

Degree of a Differential equation:    Degree of a differential Equation is the highest degree of the 

highest derivative in the equation, after the equation is made free from radicals and fractions in its 

derivations. 

  E.g  :  1 )   y = x .   +      on solving we get 

                                    (1- ) 2xy .  = 0 .  Degree = 2 

              2)   a.   =     on solving . we get  

.  Degree = 2 

Formation of Differential Equation : In general an O.D Equation is Obtained by eliminating the arbitrary 

constants c1,c2,c3--------cn from a relation like   .0,......,,, 21  ncccyx   ------(1). 

              Where c1,c2,c3,---------cn are arbitrary constants. 

                               Differentiating (1) successively w.r.t x, n- times and eliminating the n-arbitrary 

constants c1,c 2,----cn from the above (n+1) equations, we obtain the differential equation F(x , y,

 =0. 

PROBLEMS 

1.Obtain the Differential Equationy=  A  + B  by Eliminating the arbitrary Constants: 

Sol. y=  A  + B  --------------------(1). 

 + B(5)  ----------(2). 

  = A (4) .   + B(25)  ----------(3).  

    Eliminating A and B from (1), (2) & (3). 



 
 

0

25.4

52

2

52

1

52

52
















yee

yee

yee

xx

xx

xx

 

  0

254

52

11

2

1 

y

y

y

 

 -10y =0. 

The required D. Equation obtained by eliminating A & B is  

y2- 3y1 -10y  = 0 

2).   Log  cx
x

y







  

       Sol:         Log cx
x

y







 -------------(1). 

           =>         log y –log x= cx 

           =>   =c ---------------(2). 

                  (2) in (1)  =>   Log  







x
y =x[   ]. 

3)   = c. 

     Sol: Given equation )   = c 

  +     =0 

 
2

2

1

1

x

y

dx

dy




  

 

     4)  y =  [Acosx +B sinx] 

          Sol: Given equation is y =  [Acosx +B sinx] 

  = [Acosx +B sinx] + [-Asinx +B cosx] 



  = y + -Asinx +B cosx). 

   xBxAexBxAe
dx

dy

dx

yd xx sincoscossin
2

2

  

dy dy
y y

dx dx
    

= 
2

2
2 2 0

d y dy
y

dx dx
    is required equation  

     5)   y= a  + b. 

               Sol:     =  

      =>   ( ) .    +  2x.     =0 

       => ( ) .    +  2x.     =0 is the required equation. 

6)  y=a  + b  

         Sol:       -2y  =0 

7)  Find the differential equation of all the circle of radius  

Sol. The equation of circles  of radius a is   where (h ,k) are the  

co-ordinates of   the centre of circle and h,k are arbitrary constants. 

   Sol:       =   

8) Find the differential equation of the family of circle passing through the origin and having their 

centre on x-axis. 

Ans: Let the general equation of the circle is  x2+y2+2gx+2fy+c=0 . 

     Since the circle passes through origin, so c=0 also the centre (-g,-f) lies on x-axis. So the y-

coordinate of the centre i.e, f=0. Hence the system of circle passing through the origin and 

having their centres on x-axis is x2+y2+2gx=0. 



Ans.           2xy .  +  =0. 

9)    =c . 

Ans:  x .   +y+ 4.  =0 

 

10)     y=   

  Sol:  (   + 2xy -1=0. 

11)   r=a(1+cos  

 Sol:    r=a(1+cos  

  = - asin  

          Put a value from (1) in (2). 

 

 

                      =  -r tan  

        Hence         . 

Differential Equations of first order and first degree:    

The  general form of first order ,first degree differential equation is   f(x,y) or [Mdx + Ndy =0 

Where M and N are functions of x and y]. There is no general method to solve any first order 

differential equation The equation which belong to one of the following types can be easily  

solved. 



In general the first order differential equation can be classified as: 

    (1). Variable separable type 

    (2).  (a) Homogeneous equation and 

 (b)Non-Homogeneous equations which to exact equations. 

   (3)  (a) exact equations and 

           (b)equations reducible to exact equations. 

       4) (a) Linear equation & 

            (b) Bernoulli’s equation. 

 

Type –I  : VARIABLE  SEPARABLE: 

 If the differential equation  =f(x,y) can be expressed of the form  or f(x) dx –g(y)dy =0 

where f and g are continuous functions of a single variable, then it is said to be of the form variable 

separable. 

General solution of variable separable is = c 

  Where c is any arbitrary constant. 

PROBLEMS: 

1 )  tan y     =  sin(x+y) + sin(x-y). 

  Sol:  Given that   sin(x+y) + sin(x-y) = tan y  

 2sinx.cosx =  tan y     [Note: sinC+sinD =2sin( .cos( ] 

 2sinx = tany secy  

        General solution is   2  

                               =>   -2cosx  = secy +c  



                              =>   sec y + 2 cos x +c =0 .// 

2)   Solve  ( ) . + ( ) =0,  y(0) =1. 

  Sol: Given  ( ) . + ( ) =0 

  +   =0 

On Integrations 

   
0

1

1

1

1
22







  dy
y

dx
x

 

=>  +   =c ---------------(1) 

Given y(0)=1   =>  At x=0 ,y=1 ---------(2) 

(2) in (1)  =>  0 +  1 =c. 

                  => 0+   =c  

                    =>  c=  

Hence the required solution is  +   =   

Exact Differential Equations: 

Def:  Let M(x,y)dx +N(x,y) dy =0 be a first order and first degree   Differential Equation where 

M & N  are real valued functions of x,y . Then the equation Mdx + Ndy =0 is said to be an 

exact Differential equation if  a function f . 

d[f (x,y)]    =
f f

dx dy
x y

 


 
 

Condition for Exactness: If  M(x,y) & N (x,y) are two real functions which have continuous 

partial derivatives then the necessary and sufficient condition for the Differential equation 

Mdx+ Ndy =0 is to be exact is         =     

  Hence solution of the exact equation M(x,y)dx +N(x,y) dy =0. Is 

      +      = c. 

(y constant)         (terms free from x). 

-------------------********--------------- 



PROBLEMS 

1 ) Solve 011 






















 dy

y

x
edxe y

x

y

x

 

    Sol:  Hence      M = 1
x

ye &   N =  1

x

y x
e ( )

y
  

  =  
x

ye  ( &  =  
x

ye
1 

 
 y

  + )
1

x

ye ( )
y

 

  = 
x

ye  ( &  =  
x

ye  (  

     equation is exact  

  General solution is   

      +      = c. 

(y constant)         (terms free from x) 

      +      = c. 

=>

x

ye

1

y

  = c  

= > = C 

 

 

2.   Solve ( +1)  .cosx dx +    =0. 

  Ans:  ( +1)  . sinx =c                 = cosx 

3. Solve (r+sin cas  + r (sin  d  

  Ans:    crr 2cossin22    

 


 

M N

r
 =  sin . 



4. Solve [y( ) +cos y] dx+ [ x +logx –xsiny]dy =0. 

       Sol:  hence M = y( ) +cos y, N = x +logx –xsiny. 

 =  1+  -siny              =  1 +    -siny              

so the equation is exact 

                     General sol       +      = c. 

                   (y constant)    (terms free from x) 

      +      = c. 

y(x+ logx) +x cosy = c. 

5. Solve ysin2xdx – ( +cosx) .dy =0. 

6. Solve (cosx-xcosy)dy – (siny+(ysinx))dx =0 

   Sol:    N = cosx-x cosy   &  M = -siny-ysinx 

 =  -sinx - cosy         =  -cosy - sinx              

   the equation is exact. 

                     General sol       +      = c. 

                   (y constant)   (terms free from x) 

          =>       +      = c 

         =>  -xsiny+ ycos x =c 

         =>  ycosx – xsiny =c. 

7.  Solve ( sinx . siny - x ) dy  = ( cosx-cosy) dx 

     Ans:  x sinx.cosy  =c. 

8. Solve (x
2
+y

2
-a

2
) x dx +(x

2
-y

2
-b

2
) . y .dy  =0 

     Ans:  x
4
+2x

2
y

2
-2a

2
x

2
-2b

2
y

2
  =c . 

 



REDUCTION OF NON-EXACT DIFFERENTIAL EQUATIONS TO 

EXACT   USING INTEGRATING FACTORS 

Definition: If the Differential Equation M(x,y) dx + N (x,y ) dy = 0 be not an exact differential 

equation. It Mdx+Ndy=0 can be made exact by multiplying with a suitable function u (x,y)   0. 

Then this function is called an Integrating factor(I.F). 

Note: There may exits several integrating factors. 

 

Some methods to find an I.F to a non-exact Differential Equation Mdx+N dy =0  

Case -1:  Integrating factor by inspection/ (Grouping of terms). 

 

Some useful exact differentials 

1 .    d (xy)                  = xdy +y dx 

2.     d (                      =  

3.     d (                      =    

4.     d( )                 = x dx + y dy 

5.     d(log(  )             =    

6.     d(log( )               =     

7.     d( (  )           =    

8.     d ( (  )          =    

9.     d(log(xy))            =    

10.   d(log( ))     =    

11.    d(                     =     

 

PROBLEMS: 

1 . Solve xdx +y dy +     = 0. 



    Sol:  Given equation x dx + y dy +     = 0 

                           d(    ) + d(
1
 (  

                  on Integrating 

  +  
1
(   = c. 

2 . Solve y(x3. ) dx + x (y + x3.  dy = 0. 

  Sol:  Given equation is on Regrouping  

               We get  yx3  -  dx+ xy dy +x4  dy =0. 

x
3

(ydx+ xdy)+ y (x dy – ydx ) = 0 

                                       Dividing by x
3 

 (ydx + xdy) +(   . (  ) =0 

                                        d ( ) +(   .d +(   = 0 

           on Integrating    

2

xy y
e ½ C

x

 
  

 
 is required G.S. 

3.    Solve (1+xy) x dy + (1- yx ) y dx = 0  

   Sol:  Given equation is (1+xy) x dy +(1-yx ) y dx =0. 

                              (xdy + y dx ) + xy ( xdy – y dx ) = 0. 

                   Divided by x
2
y

2
  =>     ( ) + (  =0  

  ( ) +  dy -  dx =0. 

                    On integrating  =>
xy

1
+ log y – log x =log c 

-  - logx +log y =log c. 

4. Solve ydx –x dy = a (   dx 

Sol:  Given equation is ydx –x dy = a (   dx 

   = a dx 











  dxa

y

x
d 1tan  

Integrating on  
y

x1tan
 = ax +c where c is an arbitrary constant. 

 

Method -2: If  M(x,y) dx + N (x,y) dy =0 is a homogeneous differential equation and  

Mx +Ny   0 then  
NyMx

1
 is an integrating factor of Mdx+ Ndy =0. 

 

1 . Solve x
2
y dx – ( x

3
+ y

3
 ) dy = 0 

  Sol :  Given equation is  x
2
y dx – ( x

3
+ y

3
 ) dy = 0-----------------(1) 

      Where  M =  x
2
y    &   N =  (-x

3
- y

3
 ) 

                               Consider       =  x
2
&  =  -3x

2
 

     equation is  not exact . 

           But  given equation(1) is homogeneous differential equation then 

         So Mx+ Ny =  x(x
2
y) – y (x

3
+ y

3
) = - y

4 
0.  

            I.F  = 4

1 1


Mx Ny y
 

   Multiplying equation (1) by  

             =  >
2

4

x y

y
  dx - 

3 3

4





x y

y
dy = 0----------------------(2) 

            =  >-   dx -  

   This is of the form M1dx + N1dy = 0 

                     For  M1 = &  N1 = 
4

33

y

yx 
 

            = >   =  
23

4

x

y
&   =

4

23

y

x
 

           = >  =   equation (2) is an exact D.equation. 
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(y constant)         (terms free from x in N1) 

                               =>       +      = c.  

                                =>   + log |y| = c 

2.Solve   dx + (  

           Ans:   (x-y) .  = (x+y ). 

 

3. Solve  y(  + x (2  dy =0  

         Sol:Given equation is y(  + x (2  dy =0 -----------(1) 

It is  the form  Mdx +Ndy =0 

Where  M = y( , N=  x (2  

                Consider       =  3y
2
-2x

2
&  =  2y

2
-3x

2
 

     equation is not exact . 

          Since equation(1) is Homogeneous differential equation then 

                       Consider    Mx+ N y= x[y(   ] +y [x (2  

                                                            = 3xy (  0. 

                      =>     I.F.  =  

                Multiplying equation (1) by      we get 

 
 

 
 

0
3

2

3

2
22

22

22

22










 dy

xyxy

xyx
dx

xyxy

xyy
 

Now it is exact  

 
 

 
 

0
33 22

222

22

222










dy

xyy

xyy
dx

xyx

xxy
 



 +  =0. 

   
0

2

2

2

2
2222

















xy

xdx

xy

ydy

y

dy

x

dx
 

log x +log y +  log (  -  log (y
2
-x

2
)=logc xy = c 

4.  Solve  r ( + )  d  –  ( + ) dr =0  

   Ans:    + log -  log  =c. 

 

Method- 3:  If the equation Mdx + N dy =0 is of the form   y. f(x, y) .dx + x . g ( x, y) dy = 0 & Mx- Ny 

then    is an integrating factor of Mdx+ Ndy =0. 

Problems: 

      1 . Solve (xy sinxy +cosxy) ydx + ( xy sinxy –cosxy )x dy =0. 

         Sol:   Given equation (xy sinxy +cosxy) ydx + ( xy sinxy –cosxy )x dy =0 -------(1). 

 Equation (1) is of the form  y. f(xy) .dx + x . g ( xy) dy =0. 

Where M =(xy sinxy + cos xy ) y 

            N= (xy sinxy- cos xy) x 

x

N

y

M










 

equation (1) is not an exact 

Now consider  Mx-Ny 

                     Here M =(xy sinxy + cos xy ) y 

                                N= (xy sinxy- cos xy) x 

                              Consider Mx-Ny =2xycosxy 

                      Integrating factor   =   



                      So equation  (1) x I.F 

   
0

cos2

cossin

cos2

cossin






 dy

xyxy

xxyxyxy
dx

xyxy

yxyxyxy
 

 ( y tan xy +  ) dx + ( y tan xy -  ) dy =0 

M1 dx + N1 dx =0  

 Now the equation is exact. 

General sol  M1 dx   +   N1 dy = c.  

                       (y constant)   (terms free from x  in N1)  

                               =>  +   
-1

dy
y

   =c. 

  =>  +logx  + (-logy) =log c 

                        => log|sec(xy)| +log    =log c. 

                        =>  . secxy =c. 

2. Solve (1+xy) y dx + (1-xy) x dy =0 

    Sol :   I.F =  

                        =>  +      =c 

                         =>  +  logx -  log y =c. 

                          =>  +log( ) =      where  c1 = 2c. 

3.  Solve  ( 2xy+1) y dx + ( 1+ 2xy-x3y3) x dy =0 

        Ans:   log y  +  +  =c. 

4. solve (x2y2 +xy +1 ) ydx +( x2y2- xy+1 ) xdy =0  

  Ans:    xy -  + log( ) =c . 



--------------------------------------------------------------------------------------- 

Method -4: If there exists a continuous single variable function  xf  such that  

 =f(x),then I.F. of Mdx + N dy =0 is 
 dxxfe 

 

PROBLEMS 

1 . Solve ( 3xy – 2a ) dx + (  dy   =0 

  Sol: Given equation is ( 3xy – 2a ) dx + (  dy   =0 

This is of the form Mdx+ Ndy = 0 

                      =>   M = 3xy – 2a & N =  

  =  3x-4ay  &  =  2x-2ay   

     equation  not exact . 

            Now consider  
   

 ayxx

ayxayx

2

2243




  

 

                                   =>    =    = f(x). 

                    => xe
dx

x 

1

  is an Integrating factor of (1) 

                     equation (1) Multiplying with I.F then  

                  =>      x dx +      x dy = 0       

                  => (3x2y -2ay2x) dx + (x3-2ax2y) dy =0     

                        It is the form  M1dx + N1dy =0   



yaxxNxayyxM 23

1

22

1 2,23   

axyx
x

N
axyx

y

M
43,43 2121 









 

x

N

y

M








 11

 

equation is an exact 

         General sol 1M dx  + 1N dy = c. 

                               (y constant)   (terms free from x  in N1)  

  cdydxxayyx  023 22  

            = >  x
3
y –ax

2
y

2
 =c . 

 

 2 . Solve ydx-xdy+(1+  

       Sol : Given equation is  (y+1+  (  dy =0. 

                         M= y+1+ &  N =  

 =  1                  =  2x sin y -1         

x

N

y

M









  = > the equation is not exact. 

                 So consider 
   

  xyxx

yx

xyx

yx

xyx

yx

N

x

N

y

M

2

1sin

1sin2

sin

2sin2

sin

1sin21
22




























 

                      I.F = 
2

log2

1
2

)( 1

x
eee x

dx
xdxxf  



 

                   Equation (1) X I.F       =>  dy =0 



                       It is the form of M1dx+ N1 dy =0. 

                        Gen soln     => +  =0 

                                      =>  -  +x- cosy =c. 

                                          =>  

                 ------------------------------------------------------------------------- 

3. Solve  2xy dy – (x
2
+y

2
+1)dx =0   

             Ans:   -x +  +  

4. Solve (x
2
+y

2
) dx -2xy dy =0 

  Ans:  x
2
-y

2
=cx. 

Method -5:  For  the equation  Mdx + N dy = 0 if  = g(y)  (is a function of y alone) then   

is an integrating factor of  M dx + N dy =0.  

Problems: 

1 .Solve (3x2y4+2xy)dx +(2x3y3-x2) dy =0  

Sol:   Given equation (3x2y4+2xy)dx +(2x3y3-x2)  dy =0  -----------------(1). 

Equation of the form M dx + N dy =0. 

 Where   M =3x2y4+2xy       & N = 2x3y3-x2 

xyx
x

N
xyx

y

M
26,212 3232 









 

     equation  (1) not exact. 

            So consider   =     = g(y) 

              I.F =   =    =   = . 



      Equation (1)  x I.F   => 0
223

2

233

2

42








 








 
 dy

y

xyx
dx

y

xyyx

 

02
2

3
2

2
322 

















 dy

y

x
yxdx

y

x
yx  

                  It is the form   M1dx + N1 dy =0 
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 (y constant)  (terms free from x  in N1)  

                               =>  +      =c. 

                             =>  +  =c. 

                             =>   =c. 

2 . Solve  (xy
3
+y) dx + 2(x

2
y

2
+x+y

4
) dy =0 

  Sol:    =     =    = g(y). 

              I.F =   =      =y. 

         Gen sol:     cdyydxyxy  524 2  

   +  x +   =c . 

3  .   solve (y4+2y)dx + ( xy3 +2 y4 – 4x) dy =0 

Sol:    =     =    = g(y). 

              I.F =   =      =  

         Gen soln :  2

2
2

 
   

 
 y dx ydy c

y
. 



 +  

4. Solve (y+ y2)dx + xy dy =0 

        Ans: x + xy =c . 

5. Solve (xy3+y) dx + 2(x2y2+x+y4)dy =0. 

     Ans:   (x
2
+y

4
-1)   =c. 

LINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER: 

Def:  An equation of the form )().( xQyxP
dx

dy
  is called a linear differential equation of 

first order in y. 

Working Rule:   To solve the liner equation )().( xQyxP
dx

dy
  

first find the integrating factor   I.F =  

General solution is   y x I.F =   Q( x ) I .F.dx c  

 

Note:  An equation of the form is called a linear Differential equation of first 

order in x. 

 Then integrating factor =  

General solutionis = x  X I.F =   Q( y ) I .F.dy c  

PROBLEMS: 

1 . Solve (1+ y2) dx=( y –x ) dy 

    Sol: Given equation is (1+ y2) = ( y –x )   

 + ) . x =
2

1

1

tan

y

y





 

It is the form of  + p(y).x =  Q(y) 

    I.F =  dyype )(
   =    

Q(y) 



     => General solution is    x.  = cdye
y

y y 






1tan

2

1

.
1

tan
 

      = > x.   =   

[ put tan
-1

 y = t 


2

1

1
dy dt

y



] 

x.   = t .  -  +c 

 = >     x.   =   -   +c 

   = > x  =  + c/  is the required solution 

2. Solve (x+y+1)  = 1. 

Sol:  Given equation is  (x+y+1)  = 1.   

                      = >  = y+1. 

              It is of the form  + p(y).x =  Q(y) 

           Where    p(y) = -1  ; Q(y) = 1+y 

        = > I.F =   =    =    

General solution is  x  X I.F = Q( y ) I .F.dy c    

           = > x .  =  

            = > x .  =  

                = >         x   = -    y x  -   +c  

               = >            x   = -    +c .// 

3. Solve  



Sol:  Given equation is 
 

It is of the form   

            Where p(x) =1    Q(x) =  

            =>      I.F =       =   =  

            General solution is   y x I.F =   Q( x ) I .F.dx c  

                                =>    y.   =  

                            =>  y.    = cdtet   put    

                                => y.    = e
t
+c            

                       =>  y.  = +c 

4. Solve   x.   + y =log x 

    Sol : Given equation is x.   + y =log x  

It is of the form   +p(x)y = Q(x) 

                            Where p(x) = & Q(x)=  

                  i.e ,     +  . y =   

               =>      I.F =       =   =   =x. 

            General solution  is   y x I.F = cdxFIxQ  ..)(  

                            =>      y.x =    

     => y .x  = x (logx-1) +c. 

 

5 . Solve (1+y
2
) + (x-    = 0. 

 Sol :  Given equation is  

           It is of the form  + p(y) .x =  Q(y) 

 



 Where   p (y) = , Q(x)=  

 I.F  =    =    =  

              General solution  is   x x I.F = Q( y ) I .F.dy c   . 

              =   >    x .   =    dy +c  

             = >     x .   =   dt  +c 

[Note:  put   = t 

              = >  = dt ] 

              = > x .    =    dt  +c 

              = >   x .     =   + c  

              = >  x .     =   + c   

6. solve   + 
y

xlog x
 =  

Ans:   ylogx = 
2

2

cos x
 + c. 

7 .   + (y-1). Cosx = e
-sinx

cos
2
x 

Ans:   y.e
sinx

 =   +  + e
sinx

 +c  

8.   
21

2

x

x

dx

dy


 . y= 

2 2

1

1( x )
    given  y = 0 , when x= 1. 

  Ans : y(1+x
2
) =  

4


  

9. Solve      = (1+x)  . sec y 

  Sol :  The above equation can be written as  

            Divided by sec y       =>  cos y   -   =  (1+x)  ------------(1) 

                    Put     sin y = u 

                                       = > cos y   =  



           Differential Equation (1) is  –  . u = (1+x)  

             this is of the form   

            Where p(x) =        Q(x) =(1+x)  

            =>      I.F =       =   =    =  

   General solution  is   u x I.F = Q( y ) I .F.dy c    

                                =>    u.   =  

                              =>    u.   =  

                               =>  (sin y )  =  c 

                                                   ( Or) 

                                     = > sin y = (1+x) c . (1+x) is required solution. 

10. Solve   - ytanx  =  

         Ans :   =   +c . 

11 .Solve   – yx =  

        Ans:       = cosx + c.  

12.  .   = 2xy
2
 + y  

           Ans :     =    + c. 

13.  + ycos x =   sin x 

           Ans :   = (1+ 2 sinx ) + c                                     (or) 

= -(1+ 2 sinx ) + c . 

14.   + y cot x =  

              Ans:   ysinx (c +  =3. 

 

Q(x) 

 



 

BERNOULLI’S EQUATION : 

(EQUATIONS REDUCIBLE TO LINEAR EQUATION) 

Def:  An equation of the form  + p(x) .y =    ----- --------(1) 

is called Bernoulli’s Equation, where P&Q are function of x and n is a real constant. 

Working Rule:  

 Case -1 : If n=1 then the above equation becomes  + p. y = Q.         

              =>   General solution of 0)(  yQP
dx

dy
 is 

cdxQP
y

dy
 )( by variable separation method. 

Case -2:  If 1 then divide the given equation (1) by  

  .  + p(x) .     =Q ---------(2) 

                             Then take  = u 

                                          (1-n)  

   =  

        Then equation (2) becomes   

 + p(x) . u =Q 

 + (1-n) p.u = (1-n)Q which  is linear and hence we can solve it. 

 

Problems: 

Q(x) 

 



1  . Solve x  + y =  x3  

Sol:  Given equation is x  + y =  x3  

Given equation can be written as  =x2y6 

        Which is of the form   + p(x).y =Q  

Where p(x) = Q(x) = & n=6 

         Divided  by y6  =>   .    +   =      ---------------(2) 

                                    Take     = u 

   =                   }----------------(3) 

  =               }----------------(3) 

                     (3) in (2)     =>  -  u = -5x2 

                      Which is a Linear differential equation in u 

           I.F =       =   =   =  

                    General solution is  u .I.F = cdxFIxQ  ..)(  

cdx
x

x
x

u 
5

2

5

1
.5

1
.  

 =     +c   (or)   + c  

2.  Solve   ( xy ) =1 



   Sol:    Given equation is ( xy ) =1 

This can be written as
dx

dy
 -x .y=     =>  .   -  .y =  ---------------------(1) 

                Put       =u              

  .      =         ---------------(2). 

        (2) in (1)        u .y =  

                                       (Or)   + u .y = - . 

This is a Linear Differential Equation in ‘ u’  

                      I.F =   
P(y)dy

e     =   =  

                    General solution     u .I.F = Q( y ) I .F.dy c    

   u .     =      +c  



2

2


y

e

x
   = -2(     .    +c 

                                                        (or) 

x(2- )+ cx  =1. 

 

 

3.   Solve  +y tanx =  sec x 

  Ans:        I.F =       = xe x coscoslog   

                         General solution  cos x= -x +c . 

4.      (1- )   +xy =  x  

Sol: Given equation can be written as   



  +   y  =  x 

             Which is a Bernoulli’s  equation  in ‘ y ‘ 

   Divided by      . +    =  -----------(1). 

               Let        = u         

   =    = >   = -------------(2) 

(2) in (1)     + =  
2

1

2 1

sin2
.

1

2

x

x
u

x

x

dx

du











 

     Which is a Linear differential equation in u 

 I.F =       =   =    =  

                    General solution    u .I.F =   Q( x ) I .F.dx c  

  =  -  

                             = >       =  -2 [ x  +   ] +c  

5 .    = 2xy2 + y .  

Ans:       = -   . 

APPLICATION OF DIFFERENTIAL EQUATIONS OF FIRST ORDER  

ORTHOGONAL TRAJECTORIES  (O.T) 

Def:   A curve which cuts every member of a given family of curves at a right angle is an orthogonal 

trajectory of the given family. 

Orthogonal trajectories in Cartesian co-ordinates: 

Working rule:To find the family of O.T in Cartesian form . Let f(x,y,c) =0  ……(1) 



be  the  given equation of family of curves in Cartesian form. 

Step:   (1)  Differentiate with respect to  ‘ x ‘ and obtain  F(x, y,    ) = 0 ----------(2) 

of the  given family of curves. 

             (2) Replace   by    is (2) 

             Then the Differential Equation of family of O.T is 

                     F(x, y, ) =0 ----------------(3). 

        (3) Solve equation(3) to get the equation of family of O.T’s of equation(1). 

 

PROBLEMS: 

1 . Find the O.T’s of family of semi-cubical parabolas ay2=x3 where a is a parameters. 

Sol : The given family of semi-cubical parabola is ay2=x3  ---------------(1) 

               Differentiating with respect to  ‘x ‘ => a 2y
dx

dy
 = 3 -------------(2) 

Eliminating ‘a ‘ =>   .2y .   =3  

                           => 2
3

3
2

x
dx

dy

y

x
  

                      Replace     by  -     =>
2

3

3
2

x
dy

dx

y

x









  

                                                      => x
3

2
   =y 

                                                      => cydyxdx 



3

2
 

                                                       => c
yx




23

22

 



                                                       => 1
23

22


c

y

c

x
 

 

2. Find the O.T of the family of circles x
2
+y

2
+2gx+c =0, Where g is the parameter 

Sol:  x
2
+y

2
+2gx+c =0.   ---------(1) is represents a system of co- axial circles with g as 

parameter 

Differentiating with respect to   ‘x ‘  =>  2x+ 2y  + 2g =0--------------(2) 

   Substituting equation from (2) in (1) 

                                         =>    x
2
+y

2
  -(2x+ 2y     x +c =0. 

                                       =>   y
2
-x

2
-2xy      + c=0    

                Replace   by   

                =>   y
2
-x

2
-2xy   + c=0    

                    =>   y2-x2+2xy     + c=0       

 

  This can be written as     

                   2x.   -.    x2  =  
 

y

yc 2
 

                        This is a Bernoulli’s equation in x 

                  So put     x2  =  u        2x .    = 
dy

du
 

 -   u = 
 

y

yc 2
 

Which is a linear equation in  ‘ u ‘ 

  I.F =    
dy

ye

1


 =   =   



                    General solution is  u .I .F = Q( y ).I .F.dy K  

    x2  .   =
 

kdy
yy

yc





12

 

                                                   = 
1 

   
 

c y k
y

 


y

x 2

  = 
c

y
-y + k 

3. Find the O.T’s of the family of parabolas through origin and foci on y –axis. 

 Sol :   The equation of the family of parabolas through the origin and foci on y-axis is x2=4ay where a is 

parameter  

   2x =4a  .  

       =  

 Ans:  1
2

22


c

y

c

x
 

4. Find the O.T of the one parameter family of curves +  =c.   

   Sol:  Given equation is +  =c.  

Differentiating with respective   ‘x’ +  =c        

                                 O.T  +  =c    

                    Ans: kee xy  
. 

5. Find the O.T of the family of circle passing through origin and centre on x-axis.  

Hint : Given family of circles is x2+y2+2gx=0 .      

Ans:  = - y +c. 



 

6. Prove that the system of parabolas y2=4a(x+a) is self orthogonal 

ORTHOGONAL TRAJECTORIES IN POLAR FORM 

Working Rule: To find the O.T of a given family of curves in polar-co ordinates.  

Let  f(r,  -----(1)  be the given family of curves in polar form. 

1 .)  Differentiating with respect to  obtain  F [ r,  ] =0 by eliminating the 

parameter c. 

2.) Replace       by   r
2

   then the Differential Equation  of family of O.T 

                   F [ r, 2, r  ] =0 

3.)  Solve the above equation to get the equation of O.T of (1) 

 

Problems:  

1 . Find the O.T of family of  

a)   +   =   where a is a parameter. 

b)   +    =1     , is self –orthogonal 

c)  ,     

Ans: r
4
 cos 2  = C

4.
 

 

2 .  Find the O.T of family of curves r
n
 =a

n
 cosn  

      Ans:    r
n
 = c sin n  

3.  Find the O.T of family of curves r=2a (cos  + sin  

ans :    r =   sincos   . c 

4.     Find the O.T of family of curves rn sinn  =an 

Ans:    rn = cn  sec  



5. Find the O.T of the co focal and coaxial parabolas    r  =  

   Ans:  r =   

 

NEWTON’S LAW OF COOLING 

STATEMENT:The rate of change of the temperature of a body is proportional to the difference of the 

temperature of the body and that of the surrounding medium. 

Let   be the temperature of the body at time ‘t’ and  be the temperature of its surrounding 

medium(usually air). By the Newton’s law of cooling , we have 

 (  - k(      k is +ve constant 

  

 log   = -kt +c. 

       If initially = 1  is the temperature of the body at time t=0 then  

                 c = log  01       log  =-kt+ log  01    

   log 
 
 01

0








 (  = -kt.        


 
 01

0








  =  

=  +  01   .  

   Which gives the temperature of the body at time ‘t’  . 

 

Problems: 



1    A body is originally at 800C  and cools down to C  in 20 min . If the temperature of the air is 

Cfind the temperature of body after 40 min. 

Sol:  By Newton’s law  of cooling we have  

  = -k(  where  is the temperature of the air. 


 

  cktdtk
d

loglog 0

0




 




 

Here  =  c 

   log(  = -kt + log c 

   log( )  =-kt 

   =  

  --------------(1) 

              When t=0 ,  = C   80 = 40 +c 40 c ------------(2). 

When t=20 ,  = C60 = 40 +c  ------------(3). 

                    Solving (2)  &  (3)  c  

  40  =20 

                           =>     k =  log2 

  When   t= C   => equation (1) is    

                                                                    =  40 +40  

                                                                    = 40 + (  40 x   ) 

  = C 

2 .  An object whose temperature  is 75
0
C cools in an atmosphere of constant temperature 25

0
C, 

at the rate  of k  being the excess temperature of the body over that of the temperature. If 

after 10min , the temperature of the object falls to 65
0
C , find its  temperature after 20 min. Also 

find the time required to cool down to 55
0
C. 

Sol :  We will take one minute as unit of time. 

                         It is given that      = - k  



 c  ------------(1). 

           Initially when t=0    =  

  c=  

Hence 
kteC  .5050  -----------------(2)  

             When t= 10 min    =  

   40= 50  

  =   ---------------------(3). 

                   The value of  when t=20  c  

50  

50  

50  

When   t=20   = C. 

Hence the temperature after 20min =32
0
+25

0
=57

0
C 

When the temperature of the object = 55
0
C  

C000 302555 
 

Let t, be the corresponding time from equ. (2)  

1.5030
kt

e



----------------(4) 

From equation (3) 
 

10

1

10

5

4
.,.

5

4








  kk eeie

 

From Equ(4) we get 5

3
log

5

4
log

105

4
5030 1

10

1











t
t

 



 
 

min9.22

5
4log

5
3log

101 













 t

 

 
3.  A body kept in air with temperature250C  cools from 1400C to 800C in 20 min. Find when the body 

cools down in 350C. 

   Sol :  By Newton’s law of cooling   kdt
d

k
dt

d





0

0







 

  ckt  0log  Here     o =  

  log  = -kt +c -------------(1).  

           When t=0 ,  =  c     log (115)  =c 

   c =log (115). 

   kt = - log + log 115--------(2) 

 When   t=20 ,  =  c      

   log (80-25)= -20k + log 115 

20 k =log (115)  - log(55) ---------(3) 

 (2)/ (3)  =>    =   

 

 When  =  C        

     =  3. 31 

 temperature = 20   3.31  = 66.2 

      The temp will be C after 66.2 min. 

4 .   If the temperature of the air is C and the temperature of the body  drops from C   to 

C   in 10 min. What will be its temperature after 20min. When will be the temperature C .                  

Sol:    log  = -kt + log c   

                         c = C   and    =   . 



                               t =  =4.82min 

5. The temperature of the body drops from C  to C in 10 min. When the surrounding air is at 

 C  temperature. What will be its temp after half an hour.When will the temperature be C . 

 Sol :              = -k(  

                  log  = -kt + log c   

                 when t=0 ,  =    => c=80 

                    when  t=10 ,  =     = >    =   . 

                  when t =30min       =>  = 20 +80 ( ) = 46OC 

                when   = c  = > t =  10
 

min86.74
16log11log

80log5log





 

LAW OF NATURAL GROWTH OR DECAY 

Statement : Let x(t) or x be the amount of a substance at time ‘ t’ and let the substance be getting 

converted chemically . A law of chemical conversion states that the rate of change of amount x(t) of a 

chemically changed substance is proportional to the amount of the substance available at that time 

    (or)      =  - kx  ;  ( k >0) 

      Where k is a constant of proportionality 

Note: Incase of Natural growth we take  

    = k .x    (k > 0) 

 

PROBLEMS 



1   The number N of bacteria in a culture grew at a rate proportional to N . The value of N was initially 

100 and increased to 332 in one hour. What was the value of N after hrs
2

1
1  

Sol: The differentialequation to be solved is   = kN 

       =  k dt 

  

 log N = kt + log c 

N =  c  ------------(1). 

      When t= 0sec , N =100    100 =c    c =100 

        When  t =3600 sec , N =332    332 =100  

   =  

                         Now when  t =  hors  = 5400 sec then  N=? 

   N =100  

  N =100  

   N = 100     = 605. 

    N = 605. 

2 . In a chemical reaction a given substance is being converted into another at a rate proportional to the 

amount of substance unconverted. If 

th










5

1
of the original  amount has been transformed in 4 min, how 

much time will be required to transform one half. 

            Ans:  t= 13 mins. 



3. The temperature of a cup of coffee is C, when freshly poured  the room temperature being C. 

In one min it was cooled to C. How long a period must elapse, before the temperature of the 

cup becomes C. 

Sol:   :     By Newton’s Law of cooling, 

  = -k(    ;    k>0 

  = C  log (    ) = -kt + log c--------------(1). 

           When            t=0 ;       =92    c =68 

             When        t =1 ; C
56

68
ke  

  k = log 
68

56
. 

   When  C    , t =?  

                            Ans:  t  = min576.0
68

4165
2




 

RATE OF DECAY OR RADIO ACTIVE MATERIALS  

Statement : The disintegration at any instant is proportional to the amount of material present in 

it. 

 If  u is the amount of the material at any time ‘t’ , then  = - ku , where k is any constant (k 

>0). 

 

Problems: 

1) If 30% of a radioactive substance disappears in 10days,how long will it take for 90% of it to 

disappear. 

Ans:  64.5 days 

2)    The radioactive material disintegrator at a rate proportional to its mass. When mass is 10 

mgm , the rate of disintegration is 0.051 mgm  per day . how long will it take for the mass to be 

reduced from 10 mgm to 5 mgm. 



 Ans: 136 days. 

3. Uranium disintegrates at a rate proportional to the amount present at any instant. If M1 and M2 

are grams of uranium that are present at times T1 and T2 respectively, find the half-life of uranium. 

Ans:                 T  = . 

 

4. The rate at which bacteria multiply is proportional to the instantaneous number  present. If the 

original number double in 2 hrs, in how many hours will it be triple. 

Ans:      hrs. 

5. a) If the air is maintained at C   and the temperature of the body cools from C  to    

C  in 12 min, find the temperature of the body after 24 min. 

     Ans:      C 

b) If the air is maintained at C  and the temperature of the body cools from C 

       to C   in 10 min, find the temperature after 30 min.  
 

 

 

 
 
 



 
 
 
 
 
 
 
 

UNIT  - IV 
HIGHER ORDER DIFFERENTIAL 

EQUATIONS AND THEIR APPLICATIONS 
 

 

 

 

 

 

 

 

 

 

 



LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND HIGHER ORDER 

Definition: An equation of the form  + P1(x)  + P2(x)  + --------+  

Pn(x) .y = Q(x) Where P1(x), P2(x), P3(x)… …..Pn(x)  and   Q(x) (functions of x) continuous is 

called a linear differential equation of order n. 

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS 

Def: An equation of the form  + P1  + P2  + --------+ Pn .y = Q(x) where   

P1, P2, P3,…..Pn, are real constants and Q(x) is a continuous function of x is called an linear 

differential equation of order ‘ n’ with constant coefficients. 

 

 

Note:  

1. Operator D =   ; D
2
 =  ; …………………… D

n
 =  

                    Dy =   ; D
2
 y=  ; …………………… D

n
 y=  

2. Operator Q =    i e  D
-1

Q  is called the integral of Q. 

 

To find the general solution of f(D).y = 0 :  

 Where f(D) =  D
n
 + P1 D

n-1
 + P2 D

n-2
 +-----------+Pn is a polynomial in D. 

 Now consider the auxiliary equation : f(m) = 0 

i.e f(m) =  m
n
 + P1 m

n-1
 + P2 m

n-2
 +-----------+Pn  = 0  

where p1,p2,p3 ……………pn are real constants. 

Let the roots of f(m) =0 be m1, m2, m3,…..mn.   

Depending on the nature of the roots we write the complementary function  

as follows:  

Consider the following table   

S.No Roots of A.E f(m) =0 Complementary function(C.F) 

1. m1, m2, ..mn are real and distinct. yc = c1e
m

1
x
+ c2e

 m
2
x
 +…+ cne

m
n
x
 



2. m1, m2, ..mn are and two roots are 

equal i.e., m1, m2 are equal and 

real(i.e repeated twice) &the rest 

are real and different. 

 

yc = (c1+c2x)e
m

1
x
+ c3e

m
3
x
 +…+ cne

m
n
x
 

3. m1, m2, ..mn are real and three 

roots are equal i.e., m1, m2 , m3 are 

equal and real(i.e repeated thrice) 

&the rest are real and different. 

yc = (c1+c2x+c3x
2
)e

m
1
x
 + c4e

m
4
x
+…+ cne

m
n
x
 

4. Two roots of A.E  are complex say 

+i  -i  and rest are real and 

distinct.  

yc =  (c1 cos x + c2sin x)+ c3e
m

3
x
 +…+ cne

m
n

x
 

5. If ±i  are repeated twice & rest 

are real and distinct 

yc =  [(c1+c2x)cos x + (c3+c4x) sin x)]+ c5e
m

5
x
 

+…+ cne
m

n
x
 

6. If ±i  are repeated thrice & rest 

are real and distinct 

yc =  [(c1+c2x+ c3x
2
)cos x + (c4+c5x+ c6x

2
) sin

x)]+ c7e
m

7
x
 +………  + cne

m
n
x
 

7. If roots of A.E. irrational say 

  and rest are real and 

distinct. 

  xm

n

xmx

c
nececxcxcey  .......sinhcosh 3

321   

 

Solve the following Differential equations : 

1. Solve  - 3  + 2y = 0  

 : Given equation is of the form f(D).y = 0 

         Where  f(D) = (D
3
 -3D +2) y = 0  

         Now consider the auxiliary equation f(m) = 0 

 f(m) = m
3
 -3m +2 = 0    (m-1)(m-1)(m+2) = 0 

      m = 1 , 1 ,-2  

        Since m1 and m2 are equal and m3 is -2  

        We have   yc = (c1+c2x)e
x
 + c3e

-2x
 

2. Solve (D
4
 -2 D

3
 - 3 D

2
  + 4D +4)y = 0  

Sol: Given f(D)  = (D
4
 -2 D

3
 - 3 D

2
  + 4D +4) y = 0  

 A.equation  f(m) = (m
4
 -2 m

3
 - 3 m

2
  + 4m +4) = 0 

 (m + 1)
2
 (m – 2)

2
 = 0  



 m= -1 , -1 , 2 , 2  

 yc = (c1+c2x)e
-x

 +(c3+c4x)e
2x

 

3. Solve (D
4
 +8D

2
 + 16) y = 0  

Sol:  Given f(D) = (D
4
 +8D

2
 + 16) y = 0 

        Auxiliary equation f(m) =  (m
4
 +8 m

2
 + 16) = 0 

 (m
2
 + 4)

2
 = 0  

 (m+2i)
2
 (m+2i)

2
 = 0 

 m= 2i ,2i , -2i , -2i 

Yc =  [(c1+c2x)cos x + (c3+c4x) sin x)] 

 

4. Solve y
11

+6y
1
+9y = 0 ; y(0) = -4 , y

1
(0) = 14 

Sol:     Given equation is y
11

+6y
1
+9y = 0 

Auxiliary equationf(D) y = 0      (D
2
 +6D +9) y = 0 

         A.equation f(m) = 0   (m
2
 +6m +9) = 0 

     m = -3 ,-3 

yc = (c1+c2x)e
-3x

  -------------------> (1) 

               Differentiate of (1) w.r.to x      y
1
 =(c1+c2x)(-3e

-3x
 ) + c2(e

-3x
 )  

    Given y1 (0) =14     c1 = -4 & c2 =2  

     Hence we get  y =(-4 + 2x) (e
-3x

 )  

5. Solve  4y
111

 + 4y
11

 +y
1
 = 0  

Sol: Given equation is 4y
111

 + 4y
11

 +y
1
 = 0 

That is (4D
3
+4D

2
+D)y=0 

Auxiliary equation f(m) = 0 

  4m
3
 +4m

2
 + m = 0 

  m(4m
2
 +4m + 1) = 0 

  m(  = 0  

m = 0 , -1/2 ,-1/2  

  y =c1+ (c2+ c3x) e
-x/2

 

6. Solve (D
2
 - 3D +4) y = 0 

Sol: Given equation (D
2
 - 3D +4) y = 0 

A.E. f(m) = 0 



  m
2
-3m + 4 = 0 

  m =   =  

   i = 
2

7

2

3
i  

 y =   (c1 cos x + c2sin x)    

General solution of  f(D) y = Q(x)  

Is given by y = yc + yp 

i.e. y = C.F+P.I 

Where the P.I consists of no arbitrary constants and P.I of f (D) y = Q(x)  

 Is evaluated as   P.I =  . Q(x) 

 Depending on the type of function of Q(x). 

P.I is evaluated as follows: 

1. P.I of f (D) y = Q(x) where Q(x) =e
ax

 for (a) ≠ 0 

    Case1:   P.I =  . Q(x) =  e
ax

  =  e
ax

 

                      Provided f(a) ≠ 0 

     Case 2: If f(a) = 0 then the above method fails. Then   

if f(D) = (D-a)
k

(D) 

         (i.e  ‘ a’ is a repeated root k times). 

     Then P.I =  e
ax

  .  x
k
 provided  (a) ≠ 0 

2. P.I of f(D) y =Q(x) where Q(x) = sin ax or Q(x) = cos ax where ‘ a ‘ is constant then 

P.I =  . Q(x). 

Case 1: In f(D) put D
2
 = - a

2
 f(-a

2
) ≠ 0 then P.I =  2

sin

af

ax


 

Case 2: If  f(-a
2
) = 0  then D

2
 + a

2
 is a factor of (D

2
) and hence it is a factor of f(D). 

Then let f(D) = (D
2
 + a

2
) .Ф(D

2
).  

Then    a

axx

aaD

ax

aDaD

ax

Df

ax

2

cos1sin

)(

1

)()(

sin

)(

sin
2222222










  



  a

axx

aaD

ax

aDaD

ax

Df

ax

2

sin1cos

)(

1

)()(

cos

)(

cos
2222222 







  

 

3. P.I for f(D) y = Q(x) where Q(x) = x
k
 where k is a positive integer f(D) can be 

express as f(D) =[1± ]  

Express  =   = [1± ] 
-1

 

 Hence P.I =  Q(x). 

                    = [1± ] 
-1

 .x
k
 

4. P.I of f(D) y = Q(x) when Q(x) = e
ax

 V  where  ‘a’ is a constant and V is function of x. 

where V =sin ax or cos ax or x
k
 

Then P.I =  Q(x) 

     =  e
ax

 V 

    = e
ax

 [ (V)]  

&  V is evaluated depending on V. 

5. P.I of f(D) y = Q(x) when Q(x) = x V  where V is a function of x. 

Then P.I =  Q(x) 

     =   x V 

    = [x -  f
1
(D)]  V  

6. i. P.I. of f(D)y=Q(x) where Q(x)=x
m

v where v is a function of x. 

Then P.I. = )sin(cos
)(

1
..

)(

1
)(

)(

1
axiaxx

Df
ofPIvx

Df
xQ

Df

mm   

iaxmex
Df

ofPI
)(

1
..  

ii. P.I. 
iaxmm ex

Df
ofPRaxx

Df )(

1
..cos

)(

1
  

 



 

 

Formulae 

1.  = (1 – D)
-1

 = 1 + D + D
2
 + D

3
 + ------------------ 

2.  = (1 + D)
-1

 = 1 - D + D
2
 - D

3
 + ------------------ 

3. = (1 – D)
-2

 = 1 + 2D + 3D
2
 + 4D

3
 + ------------------ 

4.  = (1 + D)
-2

 = 1 - 2D + 3D
2
 - 4D

3
 + ------------------ 

5. = (1 – D)
-3

 = 1 + 3D + 6D
2
 + 10D

3
 + ------------------ 

6. = (1 + D)
-3

 = 1 - 3D + 6D
2
 - 10D

3
 + ------------------ 

I. HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS: 

1. Find the Particular integral of f(D) y = when f(a) ≠0 

2. Solve the D.E (D
2
 + 5D +6) y = e

x
 

3. Solve  y
11

+4y
1
+4y = 4 e

3x
 ; y(0) = -1 , y

1
(0) = 3 

4. Solve  y
11

 + 4y
1
 +4y= 4cosx+3sinx , y(0) = 1 , y

1
(0) = 0 

5. Solve (D
2
+9) y = cos3x  

6. Solve y
111

 + 2y
11

 - y
1
 – 2y = 1-4x

3
 

7. Solve the D.E (D
3
 - 7 D

2
 + 14D - 8) y = e

x
 cos2x 

8. Solve the D.E (D
3
 - 4 D

2
 -D + 4) y = e

3x
 cos2x  

9. Solve (D
2
 - 4D +4) y =x

2
sinx + e

2x
 + 3  

10. Apply the method of variation parameters to solve  + y = cosecx 

11.  Solve  = 3x + 2y ,  + 5x + 3y =0 

12.  Solve (D
2
 + D - 3) y =x

2
e

-3x
 

13.  Solve (D
2
 - D - 2) y =3e

2x
  ,y(0) = 0 , y

1
 (0) = -2 

SOLUTIONS: 

1) Particular integral of f(D) y = when f(a) ≠0 

       Working rule: 



Case (i): 

 In f(D), put D=a and Particular integral will be calculated. 

Particular integral= =  provided f(a) ≠0 

Case (ii) : 

 If f(a)= 0 , then above method fails. Now proceed as below. 

 If f(D)= (D-a)K (D) 

                  i.e. ‘a’ is a repeated root k times, then  

Particular integral=  .  provided (a) ≠0 

2. Solve the Differential equation(D
2
+5D+6)y=e

x
 

Sol : Given equation is (D2+5D+6)y=ex 

 Here Q( x) =e x 

 Auxiliary equation is f(m) = m2+5m+6=0 

 m2+3m+2m+6=0 

 m(m+3)+2(m+3)=0 

 m=-2 or  m=-3  

 The roots are real and distinct 

 C.F = yc= c1e
-2x +c2 e

-3x 

 Particular Integral = yp=  . Q(x) 

  = ex      =  ex 

 Put D = 1 in f(D) 

 P.I. =  ex 



 Particular Integral = yp=  . ex 

 General solution is y=yc+yp 

 y=c1e
-2x+c2 e

-3x +  

3)  Solve y
11

-4y
1
+3y=4e

3x
, y(0) = -1, y

1
(0) = 3 

  Sol : Given equation is y11-4y1+3y=4e3x 

 i.e.  - 4  +3y=4e
3x

 

it can be expressed as  

D
2
y-4Dy+3y=4e

3x
 

(D
2
-4D+3)y=4e

3x
 

Here Q(x)=4e
3x

; f(D)= D
2
-4D+3 

Auxiliary equation is f(m)=m
2
-4m+3 = 0 

m
2
-3m-m+3 = 0 

m(m-3) -1(m-3)=0 => m=3 or 1 

The roots are real and distinct. 

C.F= yc=c1e
3x

+c2e
x
 ---- (2) 

P.I.= yp=  . Q(x) 

= yp=  . 4e
3x

 

= yp=  . 4e
3x

 

Put D=3 

    
xx

xx

p xee
x

D

e

D

e
y 33

133

2
!1

2
32

4

313

4






  

General solution is y=yc+yp 

y=c1e
3x

+c2 e
x
+2xe

3x
 ------------------- (3) 

Equation (3) differentiating with respect to ‘x’ 

y
1
=3c1e

3x
+c2e

x
+2e

3x
+6xe

3x 
----------- (4) 



By data, y(0) = -1 , y
1
(0)=3 

From (3),  -1=c1+c2 ------------------- (5) 

From (4),  3=3c1+c2+2 

   3c1+c2=1  ------------------- (6) 

Solving (5) and (6) we get c1=1 and c2 = -2 

y=-2e 
x
 +(1+2x)e

3x
 

(4). Solve y11+4y1+4y= 4cosx + 3sinx, y(0) = 0, y1(0) = 0 

Sol:  Given differential equation in operator form 

( )y= 4cosx +3sinx 

A.E is m2+4m+4 = 0 

(m+2)2=0 then m=-2, -2 

 C.F is yc= (c1 + c2x)  

P.I is = yp=   put  = -1 

yp=  =  

=  

Put  = -1 

 yp=  

 =  =  = sinx 

 General equation is y = yc+ yp 

 y = (c1 + c2x)  + sinx ------------ (1) 

By given data, y(0) = 0 c1 = 0 and 



Diff (1) w.r.. t.  y1 = (c1 + c2x)  + (c2) +cosx  ------------ (2) 

given y1(0) = 0 

(2)  -2c1 + c2+1=0  c2 = -1 

 Required solution is y = +sinx 

5. Solve (D2+9)y = cos3x 

Sol:Given equation is (D2+9)y = cos3x 

A.E is m2+9 = 0 

  m =  3i 

yc = C.F = c1 cos3x+ c2sin3x 

yc =P.I =  =  

 =  sin3x =  sin3x 

General equation is y = yc+ yp 

y = c1cos3x + c2cos3x +  sin3x 

6. Solve y111+2y11 - y1-2y= 1-4x3 

Sol:Given equation can be written as  

 = 1-4x3 

A.E is  = 0 

( (m+2) = 0 

m=- 2 

m = 1, -1, -2 



C.F =c1  + c2  + c3  

P.I =  341 x  

  = )41 3x  

  = )41 3x  

 = [ 1 +  +  +  + …..]  341 x  

       333223 41
8

1
4

4

1
2

2

1
1

2

1
xDDDDDD 











  

= [ 1 -  +  -  D] 1-4 ) 

=  [(1-4 ) -  +  -  (-12  

= [-4x3+6x2 -30x +16] =  

=  [2x3-3x2 +15x -8] 

The general solution is 

y= C.F + P.I 

y= c1  + c2  + c3  + [2x3-3x2 +15x -8] 

7. Solve  -8)y =  cos2x 

Given equation is  

 -8)y =  cos2x 

A.E is  = 0 



(m-1) (m-2)(m-4) = 0 

Then m = 1,2,4 

C.F = c1  + c2  + c3  

P.I =  

  = . . Cos2x 

  









 v

aDf
eve

Df
IP axax 1

)(

1
.  

  = .  .cos2x 

  = .  .cos2x (Replacing D2 with -22) 

= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

= .  .cos2x 

=  (16cos2x – 2sin2x) 

 xx
ex

2sin2cos8
260

2
  

 xx
ex

2sin2cos8
130

  

General solution is y = yc + yp 



 xx
e

ecececy
x

xxx 2sin2cos8
130

4

3

2

21   

 

8. Solve  +4)y =  +3 

Sol:Given  +4)y =  +3 

A.E is  = 0 

(  = 0 then m=2,2 

C.F. = (c1 + c2x)  

P.I =  = +  (3) 

Now ) = ) (I.P of ) 

   = I.P of ) ) 

   = I.P of . ) 

On simplification, we get 

 =  [(220x+244)cosx+(40x+33)sinx] 

and ) = ), 

) =  

P.I =  [(220x+244)cosx+(40x+33)sinx] + ) +  

y = yc+ yp 

y= (c1 + c2x)  +  [(220x+244)cosx+(40x+33)sinx] + ) +  

Variation of Parameters : 



Working Rule : 

1. Reduce the given equation of the form   RyxQ
dx

dy
xP

dx

yd
 )(

2

2

 

2. Find C.F. 

3. Take P.I. yp=Au+Bv where A= 
1111 vuuv

uRdx
Band

vuuv

vRdx





  

4. Write the G.S. of the given equation pc yyy   

9. Apply the method of variation of parameters to solve  + y = cosecx 

Sol: Given equation in the operator form is ( ----------------(1) 

A.E is  = 0 

im   

The roots are complex conjugate numbers. 

  C.F. is yc=c1cosx + c2sinx 

Let yp = Acosx + Bsinx be P.I. of (1) 

  u  - v  = =1 

    A and B are given by 

 A= 



11 vuuv

vRdx
 -  dx = -  = - x 

 B = 
11 vuuv

uRdx


  =  = log(sinx) 

yp= -xcosx +sinx. log(sinx) 

  General solution is y = yc+ yp. 

y = c1cosx + c2sinx-xcosx +sinx. log(sinx) 

10. Solve (  +1)y = 100 

Sol:A.E is  = 0 



( then m = .  

C.F = (c1+c2x)  

P.I =  =  =  = 100 

Hence the general solution is y = C.F +P.I 

y= (c1+c2x)  + 100 

 

Applications of Differential Equations: 

11. The differential equation satisfying a beam uniformly loaded ( w kg/meter) with one end fixed and 

the second end subjected to tensile force p is given by 

EI  = py -  w  

Show that the elastic curve for the beam with conditions y=0=  at x=0 is given by y =  

(1-coshnx) +
p

wx

2

2

where  =  

Sol:The given differential equation can be written as 

 -  y = (or)   

 -  = (or)   

( )y =  -----------(1) 

The auxiliary equation is ( ) = 0 => m = n and m= -n 

  C.F = yc = c1  +c2  



P.I =   (  

  = ) 

  = ) 

  =  

=  

=  (  + ) 

  The general solution of equation (1) is given by y= C.F + P.I 

y= c1  +c2 +  ( + ) 

12. A condenser of capacity ‘C’ discharged through an inductance L and resistance R in series and the 

charge q at time t satisfies the equation L  + R  +
C

q
= 0. Given that L=0.25H, R = 250ohms, c=2 * 10

 6farads, and that when t =0, change q is 0.002 coulombs and the current  = 0, obtain the value of ‘q’ 

in terms of t. 

Sol: 

Given differential equation is 

L  + R  + 
C

q
 = 0 or  +  + 

LC

q
 = 0 -------------(1) 

Substituting the given values in (1), we get 

 +  +  = 0  or 



 + 1000  + q =0   or 

 ( q = 0 

Its A.E is  =0 

  m=
2

710001000

2

108101000 66 i



 

 = -500  1323i 

         Thus the solution is q= (c1cos1323t+c2sin1323t) 

        When t=0, q=0.002        since c1= 0.002 

Now    tctcetctce
dt

dq tt 1323cos1323sin13231323sin1323cos500 21

500

21

500    

When 0,0 
dt

dq
t  

There fore c2=0.0008 

Hence the required solution is  tteq t 1323sin0008.01323cos002.0500  
 

13. A particle is executing S.H.M, with amplitude 5 meters and time 4 seconds. Find the time required by 

the particle in passing between points which are at distances 4 and 2 meters from the Centre of force 

and are on the same side of it. 

Sol:       The equation of S.H.M is  = - -------------(1) 

             Give time period =  =4 

 =  

           We have the solution of (1) is x=acos t 



           a =5, =  

x = 5cos -------------(2) 

Let the times when the particle is at distances of 4 meters and 2 meters from the centre of motion 

respectively be t1 sec and t2 sec 

 t1 =    since [4= 5cos( )] 

            and  t2 =   since [2= 5cos( )] 

time required in passing through these points  

             t2-t1 = -  = 0.33sec 

differentiating (2) w.r.to ‘t’ 

 =  sin  

                =  

 =  

When x=4 meters v =  = 4.71 m/sec 

When x=2 meters v=  m/sec 

14. A body weighing 10kgs is hung from a spring. A pull of 20kgs will stretch the spring to 10cms. The 

body is pulled down to 20cms below the static equilibrium position and then released. Find the 

displacement of the body from its equilibrium position at time t seconds the maximum velocity and the 

period of oscillation. 

Sol:Let 0 be the fixed end and A be the other end of the spring. Since load of 20kg attached to A 

stretches the spring by 0.1m. 



Let e(AB) be the elongation produced by the mass ‘m’ hanging in equilibrium. 

If ‘k’ be the restoring force per unit stretch of the spring due to elasticity, then for the equilibrium at B 

 Mg = T =ke 

 20 = T0 = k * 0.1 

 K = 200kg/m 

 

Let B be the equilibrium position when 10kg weight is 

 10 = TB= k * AB => AB =  = 0.05m 

Now the weight is pulled down to c, where BC=0.2. After any time t of its release from c, let the weight 

be at p, where BP=x. 

Then the tension T = k *AP 

 = 200(0.05+x) = 10 + 200x 

 The equation of motion of the body is  

 = w –T  where g =9.8m/sec2 

                             =  

                  = 10 – (10+200x) 

  = - x  where  = 14 

This shows that the motion of the body in simple harmonic about B as centre and the period of 

oscillation = = 0.45sec 

Also the amplitude of motion being B C=0.2m, the displacement of the body from B at time t is given by 

x = 0.2cosect 



 X = 0.2cosect = 0.2cos14t m. 

Maximum velocity =  (amplitude) = 14 * 0.2 = 2.8m/sec 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

UNIT - V 

FUNCTIONS OF SINGLE AND SEVERAL 
VARIABLES 

 

 
 

 

 

 

 

 



MEAN VALUE THEOREMS 

I   Rolle’s Theorem: 

Let  f(x) be a function such that  

(i). It is continuous in closed interval [a,b] 

(ii). It is differentiable in open interval (a,b) and  

(iii). f(a) = f(b).  

Then there exists at least one point ‘c’ in (a,b) such that  

f1(c) = 0. 

Geometrical Interpretation of Rolle’s Theorem : 

Let Rbaf ],[:

 

be a function satisfying the three conditions of Rolle’s theorem. Then the graph. 

 

1. y=f(x) in a continuous curve in [a,b]. 

2. There exist a unique tangent line at every point x=c, where a<c<b 

3. The ordinates f(a), f(b) at the end points A,B are equal so that the points A and B are equidistant 

from the X-axis. 

4. By Rolle’s Theorem, There is at least one point x=c between A and B on the curve at which the 

tangent line is parallel to the x-axis and also it is parallel to chord of the curve. 

1. Verify Rolle’s theorem for the function f(x) = sinx/ex or e-x sinx in [0,π] 

Sol: i) Since sinx and ex are both continuous functions in [0, π].  

Therefore, sinx/ex is also continuous in [0,π]. 

ii) Since sinx and ex be derivable in (0,π), then f is also derivable in (0,π). 



iii) f(0) = sin0/e0 = 0 and f(π)= sin π/e π =0 

 f(0) = f(π) 

Thus all three conditions of Rolle’s theorem are satisfied. 



 

There exists c є(0, π) such that f1(c)=0 

Now 
xx

xx

e

xx

e

exxe
xf

sincos

)(

sincos
)(

2

1 



  

f1(c)= 0  => 0
sincos



ce

cc
 

cos c = sin c => tan c = 1 

c = π/4 є(0,π) 

Hence Rolle’s theorem is verified. 

2. Verify Rolle’s theorem for the functions 
2

log 
 
 

 

x ab

x( a b )
 in[a,b] , a>0, b>0,  

Sol: Let f(x)= 
2

log 
 
 

 

x ab

x( a b )
 

= log(x2+ab) – log x –log(a+b) 

(i). Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b]. 

(ii). f1(x) =  
)(

1
2.

1
2

2

2 abxx

abx

x
x

abx 





 

f1(x) exists for all xє (a,b) 

(iii). f(a) = 01loglog
2

2














aba

aba
 



 f(b) = 01loglog
2

2














abb

abb
 

f(a) = f(b) 

Thus f(x) satisfies all the three conditions of Rolle’s theorem. 

So,   c  (a, b)  f1(c) = 0,  

f1(c) = 0, 
2

2





c ab

c( c ab )
= 0   c2 = ab  

),( baabc 

  

Hence Rolle’s theorem verified. 

3. Verify whether Rolle ’s Theorem can be applied to the following functions in the intervals. 

i) f(x) = tan x in[0 , π] and ii) f(x) = 1/x2 in [-1,1] 

(i) f(x) is discontinuous at x = π/2 as it is not defined there. Thus condition (i) of Rolle ’s Theorem is not 

satisfied. Hence we cannot apply Rolle ’s Theorem here. 

 Rolle’s theorem cannot be applicable to f(x) = tan x in [0,π]. 

(ii). f(x) = 1/x2 in [-1,1] 

f(x) is discontinuous at x= 0. 

Hence Rolle ’s Theorem cannot be applied. 

4. Verify Rolle’s theorem for the function f(x) = (x-a)m(x-b)n where m,n are positive integers in [a,b]. 

Sol: (i). Since every polynomial is continuous for all values, f(x) is also continuous in[a,b]. 

(ii) f(x) = (x-a)m(x-b)n 

f1(x) = m(x-a)m-1(x-b)n+(x-a)m.n(x-b)n-1 

 = (x-a)m-1(x-b)n-1[m(x-b)+n(x-a)] 

 =(x-a)m-1(x-b)n-1[(m+n)x-(mb+na)] 



 Which exists. 

Thus f(x) is derivable in (a,b) 

(iii) f(a) = 0 and f(b) = 0 

 f(a) =f(b) 

Thus three conditions of Rolle’s theorem are satisfied. 

There exists cє(a,b) such that f1(c)=0 

(c-a)m-1(c-b)n-1[(m+n)c-(mb+na)]=0 

  (m+n)c-(mb+na)=0  => (m+n)c = mb+na 

c = mb+na  є(a,b) 

        m+n                                               

Rolle’s theorem verified. 

5. Using Rolle ’s Theorem, show that g(x) = 8x3-6x2-2x+1 has a zero between  

0 and 1. 

Sol: g(x) = 8x3-6x2-2x+1 being a polynomial, it is continuous on [0,1] and differentiable on (0,1) 

Now g(0) = 1 and g(1)= 8-6-2+1 = 1 

Also g(0)=g(1) 

Hence, all the conditions of Rolle’s theorem are satisfied on [0,1]. 

Therefore, there exists a number cє(0,1) such that g1(c)=0. 

Now g1(x) = 24x2-12x-2 

g1(c)= 0 => 24c2-12c-2 =0  

c= ie
12

213
c= 0.63 or -0.132 



only the value c = 0.63 lies in (0,1) 

Thus there exists at least one root between 0 and 1. 

6. Verify Rolle’s theorem for f(x) = x 2/3 -2x 1/3  in the interval (0,8).   

Sol: Given f(x) = x 2/3 -2x 1/3 

 f(x) is continuous in [0,8] 

f1(x) = 2/3 . 1/x1/3 -2/3 . 1/x2/3 = 2/3(1/x1/3 – 1/x2/3) 

Which exists for all x in the interval (0,8) 

f is derivable (0,8). 

Now f(0) = 0 and f(8) = (8)2/3-2(8)1/3 = 4-4 =0 

 i.e., f(0) = f(8) 

Thus all the three conditions of Rolle’s Theorem are satisfied. 

There exists at least one value of c in(0,8) such that f1(c)=0 

 ie. 0
11

3

2

3

1


cc

=> c = 1 є (0,8) 

Hence Rolle’s Theorem is verified. 

7. Verify Rolle’s theorem for f(x) = x(x+3)e-x/2 in [-3,0]. 

Sol: -  (i). Since x(x+3) being a polynomial is continuous for all values of x and e-x/2 is also continuous for 

all x, their product x(x+3)e-x/2 = f(x) is also continuous for every value of x and in particular f(x) is 

continuous in the [-3,0]. 

(ii). we have f1(x) = x(x+3)( -1/2  e-x/2)+(2x+3)e-x/2 

  = e-x/2 [2x+3-
2

32 xx 
] 

  =e-x/2[6+x-x2/2] 



Since f1(x) doesnot become infinite or indeterminate at any point of the interval(-3,0). 

f(x) is derivable in (-3,0) 

(iii) Also we have f(-3) = 0 and f(0) =0 

f (-3)=f(0)  

Thus f(x) satisfies all the three conditions of Rolle’s theorem in the interval [-3,0]. 

Hence there exist at least one value c of x in the interval (-3,0) such that f1(c)=0 

i.e., ½ e-c/2(6+c-c2)=0 =>6+c-c2=0  (e-c/2≠0 for any c) 

=> c2+c-6 = 0 => (c-3)(c+2)=0 

 c=3,-2 

Clearly, the value c= -2 lies within the (-3,0) which verifies Rolle’s theorem. 

II. Lagrange’s mean value Theorem 

Let f(x) be a function such that (i) it is continuous in closed interval [a,b] & (ii) differentiable in (a,b). 

Then  at least one point c in (a,b) such that 

f1(c) = 
ab

afbf



 )()(

 

Geometrical Interpretation of Lagrange’s Mean Value theorem: 

Let Rbaf ],[:
 
be a function satisfying the two conditions of Lagrange’s theorem. Then the graph. 

 

1. y=f(x) is continuous curve in [a,b] 



2. At every point x=c, when a<c<b, on the curve y=f(x), there is unique tangent to the curve. By 

Lagrange’s theorem there exists at least one point 
ab

afbf
cfbac






)()(
)(),( 1

  

Geometrically there exist at least one point c on the curve between A and B such that the tangent line is 

parallel to the chord 


AB  
 

1. Verify Lagrange’s Mean value theorem for f(x)= x3-x2-5x+3 in [0,4] 

Sol: Let f(x)= x3-x2-5x+3 is a polynomial in x. 

It is continuous & derivable for every value of x. 

In particular, f(x) is continuous [0,4] & derivable in (0,4) 

Hence by Lagrange’s Mean value theorem   c (0,4)  

f1(c)= 
04

)0()4(



 ff
 

i.e., 3c2-2c-5 = 
4

)0()4( ff 
   …………………….(1) 

Now f(4) = 43-42-5.4+3 =64-16-20-3=67-36= 31 & f(0)=3 

4

)0()4( ff 
= 7

4

)331(




 

From equation (1), we have 
 

3c2-2c-5 =7 => 3c2-2c-12 =0 

c =
3

371

6

1482

6

14442 






 

We see that 
3

371
lies in open interval (0,4) & thus Lagrange’s Mean value theorem is verified. 

2. Verify Lagrange’s Mean value theorem for f(x) = xelog  in [1,e] 



Sol: - f(x) = xelog  

This function is continuous in closed interval [1,e] & derivable in (1,e). Hence L.M.V.T is 

applicable here. By this theorem,  a point c in open interval (1,e) such that 

  f1(c) = 
1

1

1

01

1

)1()(













eee

fef
 

  But f1(c)= 
1

11

1

1




 ece
 

   c = e - 1 

Note that (e-1) is in the interval (1,e). 

Hence Lagrange’s mean value theorem is verified. 

3. Give an example of a function that is continuous on [-1, 1] and for which mean value theorem does 

not hold with explanations. 

Sol:- The function f(x) = x is continuous on [-1,1] 

But Lagrange Mean value theorem is not applicable for the function f(x) as its derivative does 

not exist in (-1,1) at x=0. 

4. If a<b, P.T 
2

11

2 11 a

ab
aTanbTan

b

ab








 
 using Lagrange’s Mean value theorem. Deduce the 

following. 

i). 
6

1

43

4

25

3

4

1   
Tan  

ii). 
4

2
2

20

45 1 


  
Tan  

Sol: consider f(x) = Tan-1 x in [a,b] for 0<a<b<1 

Since f(x) is continuous in closed interval [a,b] & derivable in open interval (a,b). 

We can apply Lagrange’s Mean value theorem here. 



Hence there exists a point c in (a,b) 

f1(c) = 
ab

afbf



 )()(
 

Here f1(x) = 
2

1

2 1

1
)(&

1

1

c
cfhence

x 


  

Thus  c, a<c<b  

ab

aTanbTan

c 






 11

21

1
 ------- (1) 

We have 1+a2<1+c2<1+b2 

222 1

1

1

1

1

1

bca 








 ……….. (2) 

From (1) and (2), we have 

2

11

2 1

1

1

1

bab

aTanbTan

a 











 

or  

2

11

2 11 b

ab
aTanbTan

a

ab








 

     
………………(3) 

Hence the result
 

Deductions: -  

(i) We have 
2

11

2 11 a

ab
aTanbTan

b

ab








 

 

Take 
3

4
b & a=1, we get 

 



 

6

1

4
)

3

4
(

425

3 1   
Tan  

 

(ii) Taking b=2 and a=1, we get 

 
1 1 1

2 2

2 1 2 1 1 1
2 1 2

1 2 1 1 5 4 2

    
      

 
Tan Tan Tan

 

 
4

2
2

45

1 1  
 Tan  

 
14 5 2
2

20 4

   
   Tan  

5. Show that for any x > 0, 1 + x < ex < 1 + xex. 

Sol: - Let f(x) = ex defined on [0,x]. Then f(x) is continuous on [0,x] & derivable   

             on (0,x). 

By Lagrange’s Mean value theorem  a real number c є(0,x) such that 

)(
0

)0()( 1 cf
x

fxf




  

 
x 0 x

c ce -e e -1
=e =e

x-0 x
 ………….(1) 

Note that 0<c<x => e0<ec<ex ( ex is an increasing function) 

=> x
x

e
x

e





1
1  From (1) 

=> x<ex-1<xex 

=> 1+x<ex<1+xex. 

2

3

34

4
)

3

4
(

9

25
3

34

11

1
3

4

)1()
3

4
(

9

16
1

1
3

4

1

2

11 














 

TanTanTan



6. Calculate approximately 
5 245  by using L.M.V.T. 

Sol:- Let f(x) = 5 x =x1/5 & a=243 , b=245 

Then f1(x) = 1/5 x- 4/5 & f1(c) = 1/5c- 4/5 

By L.M.V.T, we have 

)(
)()( 1 cf

ab

afbf





 

=> 5

4

5

1

243245

)243()245(






c

ff
 

=> f  (245) =f(243)+2/5c
-4/5

 

=> c lies b/w 243 & 245 take c= 243 

=> 5 245 = (243) 
1/5

 +2/5(243)
-4/5 

= 5

4

55

1

5 )3(
5

2
)3(



  

= 3+ (2/5)(1/81) = 3+2/405 = 3.0049 

7. Find the region in which f(x) = 1-4x-x2 is increasing & the region in which it is decreasing using 

M.V.T. 

Sol: - Given f(x) = 1-4x-x2 

     f(x) being a polynomial function is continuous on [a,b] & differentiable on (a,b)  a,b R 

f satisfies the conditions of L.M.V.T on every interval on the real line. 

f1(x)= - 4-2x= -2(2+x) xR 

f1(x)= 0 if  x = -2 

for x<-2, f1(x) >0 & for x>-2 , f1(x)<0 

Hence f(x) is strictly increasing on (-∞, -2) & strictly decreasing on (-2,∞) 

8. Using Mean value theorem prove that Tan x > x in 0<x</2 

Sol:- Consider f(x) = Tan x in  x,  where 0< <x</2 



 Apply L.M.V.T to f(x) 

  a points c such that 0< <c<x</2 such that 

   



c

x

TanxTan 2sec




   

  
c )sec -(x =Tan -Tan x 2

 

  
xxxTanthenTake 2sec00 

 

  But sec2c>1. 

Hence Tan x > x 

9. If f1(x) = 0 Through out an interval [a,b], prove using M.V.T f(x) is a constant in that interval. 

Sol:- Let  f(x) be function defined in [a,b] & let f1(x) = 0  x in [a,b]. 

 Then f1(t) is defined & continuous in [a,x] where axb. 

 & f(t) exist in open interval (a,x). 

 By L.M.V.T  a point c in open interval (a,x)  

 
)(

)()( 1 cf
ax

afxf






 

 But it is given that f1(c) = 0  

 
 0 = f(a)-f(x)

  

 x  f(a)=f(x) 
 

 Hence f(x) is constant. 

10   Using mean value theorem  

   S.T i) x > log (1+x)  >    x > 0  

         ii) π/6 + ( /15) < sin
-1

(0.6)   < π/6 + (1/6) 



i) 1+x  < e
x
  < 1+xe

x
     x > 0   

ii)   < tan
(-1)

v  - tan
(-1)

u <    where 0 < u <v hence deduce   

a)  π/4+ (3/25)  <  tan
(-1)

(4/3)  < π/4+ (1/6) 

III. Cauchy’s Mean Value Theorem 

If f: [a,b] R,  g:[a,b] R  (i) f,g are continuous on [a,b] (ii) f,g are differentiable on (a,b)  

thenbaxxgiii ),,(0)()( 1      

)()(

)()(

)(

)(
),(int

1

1

agbg

afbf

cg

cf
bacpoa




  

 

1. Find c of Cauchy’s mean value theorem for 

 x
xgxxf

1
)(&)( 

             
in [a,b] where 0<a<b 

Sol: - Clearly f, g are continuous on [a,b]  R+ 

 We have xx
xgnd

x
xf

2

1
)(

2

1
)( 11 

 a
 which exits on (a,b) 

 

+R  b)(a,on  abledifferenti are g f, 
  

Also g1 (x)0,  x (a,b)  R+ 

Conditions of Cauchy’s Mean value theorem are satisfied on (a,b) so c(a,b)  

  )(

)(

)()(

)()(
1

1

cg

cf

agbg

afbf






 

 

cab
c

cc

ab

ba

ab

cc

c

ab

ab

















2

2

2

1
2

1

11  

 Since a,b >0 , ab is their geometric mean and we have a<ab <b 



 c(a,b) which verifies Cauchy’s mean value theorem. 

2. Verify Cauchy’s Mean value theorem for f(x) = ex & g(x) = e-x in [3,7] &   

        find the value of c. 

Sol: We are given f(x) = ex & g(x) = e-x 

 f(x) & g(x) are continuous and derivable for all values of x. 

 =>f & g are continuous in [3,7] 

 => f & g are derivable on (3,7) 

 Also g1(x) = e-x 0  x (3,7) 

 Thus f & g satisfies the conditions of Cauchy’s mean value theorem. 

 Consequently,  a point c (3,7) such that 

 

c

c

c

e

ee

ee

e

e

ee

ee

cg
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1

1
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

















 

  =>  -e7+3 = -e2c   

  => 2c = 10 

    => c = 5(3,7)
 

  Hence C.M.T. is verified 

 

 

 

 

 

 

 



 

 

 

 

FUNCTIONS OF SEVERAL VARIABLES 

Jacobian (J): Let u = u (x , y) , v = v(x , y) are two functions of the independent variables  x , y. 

The jacobian of ( u , v ) w.r.t (x  , y ) is given by 

J (  )  =  =   

Note: 1
),(

),(

),(

),( 11 








 JJthen

vu

yx
Jand

yx

vu
J  

Similarly of u = u(x, y, z ) , v = v (x, y , z) , w = w(x, y , z)  

Then the Jacobian of u , v , w  w.r.to  x , y , z is given by  

J (  )  =    =  

Solved Problems: 

1. If x + y
2
 = u ,  y + z

2
 = v , z + x

2
 = w find  

),,(

),,(

wvu

zyx




   

Sol :  Given  x + y
2
 = u ,  y + z

2
 = v , z + x

2
 = w   

         We have      =   =    

                                           = 1(1-0) – 2y(0 – 4xz) + 0 

            = 1 – 2y(-4xz) 

            = 1 + 8xyz   

      =       =  

2. S.T the functions u = x + y + z , v = x
2
 + y

2
 + z

2
 -2xy – 2yz -2xz    and  w = x

3
 + y

3
 + z

3
 

-3xyz   are functionally related.  (’07  S-1) 

Sol:  Given   u = x + y + z 

                     v = x
2
 + y

2
 + z

2
 -2xy – 2yz -2xz 

           w = x
3
 + y

3
 + z

3
 -3xyz 



we have  

              =     

                          =   

                           =6  

 
322
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ccc

ccc




  

xyzxyzxzyxzyyzx

xyzzyyx




22222

2222

100

6
 

 

         =6[2(x - y) (y
2  

+  xy – xz -z
2
 )-2(y - z)(x

2 
+ xz – yz - y

2
)] 

=6[2(x - y)( y – z)(x + y + z) – 2(y – z)(x – y)(x + y + z)] 

=0 

 Hence there is a relation between u,v,w. 

3.  If x + y + z = u , y + z = uv , z = uvw then evaluate          (’06  S-1) 

Sol:     x + y + z = u 

             y + z = uv 

   z = uvw 

  y = uv – uvw = uv (1 – w) 

  x = u – uv = u (1 – v) 

              =   

                           =    

322 RRR    

   =    

   = uv [ u –uv +uv] 



   = u
2
v  

4. If u = x
2
 – y

2
 , v =2xy  where x = r cos  , y = r sin   S.T   = 4r

3
  (’07   S-2) 

Sol:  Given       u = x
2
 – y

2           
 ,                              v = 2xy   

                   =r
2
cos

2
 – r

2
sin

2
        = 2rcos  r sin  

        = r
2 

(cos
2

 – sin
2

        = r
2
 sin2  

        = r
2
 cos2  

            =     =   

                                                   = (2r)(2r)  

                                                  = 4r
2
 [rcos

2
2  + r sin

2
2  ] 

       =4r
2
(r)[ cos

2
2  + sin

2
2  ] 

     =4r
3
  

5.  If u =   , v =    , w =       find           (’08 S-4)  

Sol:  Given u =   , v =    , w =        

          We have  

              =     

             ux = yz(-1/x
2
)    =      ,          uy =       ,   uz =    

              =       ,    xz(-1/y
2
)   =          ,          

  =            ,    =         , = xy (-1/z
2
)     =       

                 =  

                              =  .  .     

                             =    

         = 1[-1(1-1) -1(-1-1) + (1+1) ] 



        = 0 -1(-2) + (2)  

        =2 + 2 

        =4 

Assignment  

Calculate      if x =   , y =    , z =   and u = r sin  cos  ,  v = r sin  sin   

,w = r cos  

6. If x = e
r
 sec  , y =  e

r
 tan  P.T  .   = 1     

Sol: Given x = e
r
 sec  , y =  e

r
 tan   

    =  ,         =        

        = e
r
 sec   = x   ,        = e

r
sec  tan  

       = e
r
 tan   = y   ,       = e

r
 sec

2
  

          x
2
 – y

2
 = e

2r
 (sec

2
 - tan

2
 ) 

 2r = log (x
2
 – y

2
 )  

   r = ½ log (x
2
 – y

2
 ) 

)(
)2(

1

2

1
2222 yx

x
x

yx
rx





   

)(
)2(

1

2

1
2222 yx

y
y

yx
ry









 

   =   =  =      

   =      , = sin
-1

( )  

        
222

2

2

1

1

1

yxx

y

x
y

x

y
x

















   

  =   (1/x)        =     

  =    = e
2r

 sec
2

 - y e
r 
sec  tan  

                                           = e
2r

 sec [sec
2

 - tan
2

 ] = e
2r

 sec  



  
 

2222

2222

1

)()(

),(

,

yxyxx

y

yx

y

yx

x

yx

r














 
    

            =[    -     ] 

             =      =       =   

 

 .   = 1 

 

Functional Dependence 

Two functions u and v are functionally dependent if their Jacobian  

J (  )  =  = = 0 

If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent. 

** Maximum & Minimum for function of a single Variable: 

To find the Maxima & Minima of f(x) we use the following procedure. 

(i) Find  f
1(x) and equate it to zero 

(ii) Solve the above equation we get x0,x1 as roots. 

(iii) Then find f
11

(x). 

If f
11

(x)(x = x0) > 0, then f(x) is minimum at x0 

If    f
11

(x)(x = x0) , <  0, f(x) is  maximum at x0 .  Similarly we do this for other stationary 

points. 

 

PROBLEMS: 

1. Find the max & min of the function f(x) = x
5
 -3x

4
 + 5  (’08  S-1) 

Sol: Given f(x) = x
5
 -3x

4
 + 5  

                   f
1
(x) = 5x

4
 – 12x

3
  

for maxima or minima    f
1
(x) =0 

5x
4
 – 12x

3
 = 0 

 x =0, x= 12/5 

               f
11

(x) = 20 x
3
 – 36 x

2
  

     At   x = 0 =>   f
11

(x) = 0.  So f is neither maximum nor minimum at x = 0 



At  x = (12/5) =>  f
11

(x) =20 (12/5)
3
 – 36(12/5) 

            =144(48-36) /25   =1728/25 > 0 

  So f(x) is minimum at x = 12/5 

The minimum value is f (12/5) = (12/5)
5
 -3(12/5)

4
 + 5  

 

** Maxima & Minima for functions of two Variables:  

Working procedure:  

1. Find  and   Equate each to zero. Solve these equations for x & y we get the pair of 

values (a1, b1) (a2,b2) (a3 ,b3) ……………… 

2. Find l =
2 2

2

 


  

f f
,m

x x y
 , n =  

2

2





f

y
 

3. i. If  l n –m
2
 > 0 and l  < 0 at   (a1,b1) then f(x ,y) is maximum at (a1,b1) and 

maximum value is f(a1,b1) 

ii.  If  l n –m
2
 > 0 and l  > 0 at   (a1,b1) then f(x ,y) is minimum at (a1,b1) and minimum 

value is f(a1,b1) . 

iii. If l n –m
2
 < 0 and at   (a1, b1) then f(x, y) is neither maximum nor minimum at (a1, b1). 

In this case (a1, b1) is saddle point. 

iv. If l n –m
2
 = 0 and at   (a1, b1) , no conclusion can be drawn about maximum  or 

minimum and needs further investigation.   Similarly we do this for other stationary 

points. 

 

PROBLEMS: 

1.  Locate the stationary points & examine their nature of the following functions.                                                    

 u =x
4
 + y

4
 -2x

2
 +4xy -2y

2
,   (x > 0, y > 0)   

Sol: Given u(x ,y) = x
4
 + y

4
 -2x

2
 +4xy -2y

2
   

         For maxima & minima 
u

x




= 0, 

u

y




= 0 

          = 4x
3
 -4x + 4y = 0    x

3
 – x + y = 0      -------------------> (1)  

          = 4y
3
 +4x - 4y = 0    y

3
 + x – y = 0      -------------------> (2)   

        Adding (1) & (2),    



      x
3
 + y

3
 = 0   

                                    x = – y -------------------> (3)      

(1)    x
3
 – 2x   x = 0, 2, 2   

Hence (3)    y = 0, - 2, 2   

        l = 
2

2

x

u




= 12x

2
 – 4, m =

yx

u



2

  = (   )   = 4 & n = 
2

2

y

u




  = 12y

2
 – 4  

       ln – m
2
 = (12x

2
 – 4 )( 12y

2
 – 4 ) -16  

     At ( ,     ), ln – m
2
 = (24 – 4)(24 -4) -16  = (20) (20) – 16    >  0 and l=20>0 

      The function has minimum value at ( ,     ) 

 At (0,0) , ln – m
2
 = (0– 4)(0 -4) -16  = 0  

    (0,0) is not a extreme value. 

2. Investigate the maxima & minima, if any, of the function f(x) = x
3
y

2
 (1-x-y).      

   

Sol: Given             f(x) = x
3
y

2
 (1-x-y)     = x

3
y

2
- x

4
y

2
 – x

3
y

3
  

           = 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
        = 2x

3
y – 2x

4
y -3x

3
y

2
  

For maxima & minima    = 0 and      = 0   

 3x
2
y

2
 – 4x

3
y

2
 -3x

2
y

3
   =  0    =>  x

2
y

2
(3 – 4x -3y) = 0 ---------------> (1) 

 2x
3
y – 2x

4
y -3x

3
y

2
    =   0    =>  x

3
y(2 – 2x -3y) = 0  ----------------> (2) 

 From (1) & (2)         4x + 3y – 3 = 0     

    2x + 3y - 2 = 0     

             2x = 1  => x = ½ 

4 ( ½) + 3y – 3 = 0  => 3y = 3 -2 , y = (1/3) 

     l = 
2

2

x

f




  = 6xy

2
-12x

2
y

2
 -6xy

3
  













2

2

x

f
(1/2,1/3) = 6(1/2)(1/3)

2
 -12 (1/2)

2
(1/3)

2
 -6(1/2)(1/3)

3
  = 1/3 – 1/3 -1/9 = -1/9  

     m =
yx

f



2

   = 
















y

f

x
 = 6x

2
y -8 x

3
y – 9x

2
y

2
  
















yx

f2

 (1/2 ,1/3) = 6(1/2)
2
(1/3) -8 (1/2)

3
(1/3) -9(1/2)

2
(1/3)

3
  =  =  

       n =
2

2

y

f




 = 2x

3
 -2x

4
 -6x

3
y   













2

2

y

f
 (1/2,1/3) =  2(1/2)

3
 -2(1/2)

4
 -6(1/2)

3
(1/3) =  -  -   =  -     

       ln- m
2
 =(-1/9)(-1/8) –(-1/12)

2
  =   -     =   =    > 0 and l = 0

9

1



 

The function has a maximum value at  (1/2 , 1/3)  

Maximum value is 
432

1

3

1

2

1

72

1

3

1

2

1
1

9

1

8

1

3

1
,

2

1




































f

 

3.  Find three positive numbers whose sum is 100 and whose product is maximum.  

Sol: Let x ,y ,z be three +ve numbers. 

        Then  x + y + z = 100 

   z = 100 – x – y 

 Let f (x,y) = xyz =xy(100 – x – y) =100xy –x
2
y-xy

2
  

For maxima or minima   = 0 and      = 0   

  =100y –2xy-y
2
  = 0  => y(100- 2x –y) = 0   ----------------> (1) 

 = 100x –x
2
 -2xy = 0 => x(100 –x -2y) = 0   ------------------> (2) 

  

                                   100 -2x –y = 0 

          200 -2x -4y =0 

                            -----------------------------   

        -100 + 3y  = 0   => 3y =100    =>  y =100/3 

               100 – x –(200/3) = 0        =>  x = 100/3 

l = 
2

2

x

f




  =- 2y          













2

2

x

f
 (100/3 , 100/3 ) = - 200/3  

m = 
yx

f



2

  = 
















y

f

x
 = 100 -2x -2y  
















yx

f2

 (100/3 , 100/3 ) = 100 –(200/3) –(200/3) = -(100/3)  

 n = 
2

2

y

f




   = -2x  













2

2

y

f
 (100/3 , 100/3 ) = - 200/3   

 ln -m
2
 = (-200/3) (-200/3) - (-100/3)

2
   = (100)

2
 /3  

The function has a maximum value at  (100/3 , 100/3)   

 i.e. at x = 100/3, y = 100/3        z  = 
100 100 100

100
3 3 3

    

    The required numbers are x = 100/3, y = 100/3,  z = 100/3 

4. Find the maxima & minima of the function  f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   

Sol: Given f(x) = 2(x
2
 –y

2
) –x

4
 +y

4
   = 2x

2
 –2y

2
 –x

4
 +y

4
    

         For maxima & minima   = 0 and      = 0   

         = 4x - 4x
3
 = 0   => 4x(1-x

2
) = 0   => x = 0  , x = ± 1 

        = -4y + 4y
3
 = 0    => -4y (1-y

2
) = 0   =>y = 0, y = ± 1   

l = 











2

2

x

f
 = 4-12x

2
  

m = 












yx

f2

=   
 

  

f

x y
 = 0 

n = 











2

2

y

f
= -4 +12y

2
   

we have ln – m
2
 = (4-12x

2
)( -4 +12y

2
 ) – 0 

        = -16 +48x
2
 +48y

2
 -144x

2
y

2
  

       = 48x
2
 +48y

2
 -144x

2
y

2
 -16  

i) At ( 0 , ± 1 )  

ln – m
2
 = 0 + 48 - 0 -16 =32 > 0 

l = 4-0 = 4 > 0  

f has minimum value at ( 0 , ± 1 )  

f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   



f ( 0 , ± 1 ) = 0 – 2 – 0 + 1  =  -1 

The minimum value is ‘-1 ‘.  

 

ii) At ( ± 1 ,0 )  

           ln – m
2
 =  48 + 0 - 0 -16 =32 > 0 

         l = 4-12 = - 8 < 0 

f has maximum value at ( ± 1 ,0 )  

 f (x ,y ) = 2(x
2
 –y

2
) –x

4
 +y

4
   

f ( ± 1 , 0 ) =2 -0 -1 + 0 = 1  

The maximum value is ‘1 ‘. 

iii)     At   (0,0) , (± 1 , ± 1)  

         ln – m
2
 < 0  

         l = 4 -12x
2
  

      (0 , 0)   &  (± 1 , ± 1)  are saddle points. 

  f has no max & min values at (0 , 0) , (± 1 , ± 1). 

 

*Extremum : A function which have a maximum or minimum or both is called                  

                       ‘extremum’  

*Extreme  value :- The maximum value or minimum value or both of a function is       

                             Extreme value.  

*Stationary points: - To get stationary points we solve the equations   = 0 and     

                                = 0 i.e the pairs (a1, b1), (a2, b2) ………….. are called  

        Stationary. 

*Maxima & Minima for a function with constant condition :Lagranges 

Method  

  Suppose f(x , y , z) = 0 ------------(1) 

                          ( x , y , z) = 0 ------------- (2)  

F(x , y , z) = f(x , y , z) +  ( x , y , z)  where  is called Lagrange’s constant.  

1. 




F

x
= 0  =>   +   = 0 --------------- (3)  







F

y
= 0   =>   +   = 0 --------------- (4) 





F

z
 = 0   =>   +   = 0 --------------- (5) 

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (x, y, z). 

3. Substitute the value of x , y , z in equation (1) we get the extremum. 

Problem: 

1. Find the minimum value of x
2
 +y

2
 +z

2
, given x + y + z =3a (’08 S-2) 

Sol: u = x
2
 +y

2
 +z

2
  

        = x + y + z - 3a = 0 

       Using Lagrange’s function  

F(x , y , z) = u(x , y , z) +  ( x , y , z)   

For maxima or minima  





F

x
 =   +   = 2x +  = 0 ------------ (1)  





F

y
  =   +   = 2y +  = 0 ------------ (2)  





F

z
  =   +   = 2z +  = 0 ------------ (3)  

 (1) , (2) & (3)  

 = -2x = -2y = -2z  

 

 = x + x + x - 3a = 0 

 = a  

 = y =z = a  

Minimum value of u = a
2
 + a

2
 + a

2
 =3 a

2
  


