INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad-500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MATHEMATICAL METHODS IN ENGINEERING				
Course Code	BCCB02				
Programme	M.Tech				
Semester	I \quad M				
Course Type	Foundation				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Dr. J Suresh Goud, Associate Professor, FE				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Develop a basic understanding of a range of mathematics tools with emphasis on engineering applications.
II	Solve problems with techniques from advanced linear algebra, ordinary differential equations and multivariable differentiation.
III	Develop skills to think quantitatively and analyze problems critically.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts of probability, discrete, continuous random variables and determine probability distribution, sampling distribution of statistics like t, F and chi-square.
CO 2	Understand the foundation for hypothesis testing to predict the significance difference in the sample means and the use of ANOVA technique.
CO 3	Determine Ordinary linear differential equations solvable by nonlinear ODE's.
CO 4	Explore First and second order partial differential equations.
CO 5	Analyze the solution methods for wave equation, D'Alembert solution, and potential equation, properties of harmonic functions, maximum principle, and solution by variable separation method.

COURSE LEARNING OTCOMES (CLOs):

BCCB02.01	Describe the basic concepts of probability, discrete and continuous random variables
BCCB02.02	Determine the probability distribution to find mean and variance.
BCCB02.03	Discuss the concept of sampling distribution of statistics like t , F and chi-square.
BCCB02.04	Understand the foundation for hypothesis testing.
BCCB02.05	Apply testing of hypothesis to predict the significance difference in the sample means.
BCCB02.06	Understand the assumptions involved in the use of ANOVA technique.
BCCB02.07	Solve differential equation using single step method.
BCCB02.08	Solve differential equation using multi step methods.
BCCB02.09	Understand the concept of non- linear ordinary differential equations.
BCCB02.10	Understand partial differential equation for solving linear equations.
BCCB02.11	Solving the heat equation in subject to boundary conditions.
BCCB02.12	Solving the wave equation in subject to boundary conditions.
BCCB02.13	Understand the conditions for a complex variable to be analytic and entire function.
BCCB02.14	Understand the concept of harmonic functions.
BCCB02.15	Analyze the concept of partial differential equations by variable separation method.

TUTORIAL QUESTION BANK

19	200 digits were choosen at random from set of tables the frequency of the digits are											Understand	CO 1	BCCB02.03
	digit	0	1	2	3	4	5	6	7	8	9			
	frequ ency	18		23	21	16	25	22	20	21	15			
	Use chi square test to asset the correctness of the hypothesis that the digits are distributed in equal number in the table													
20	The following table gives the classification of 100 workers according to gender and nature of work. Test whether the nature of work is independent of the gender of the worker.											Understand	CO 1	BCCB02.03
	Stable						Unstable		Total					
	Male				40		20		60					
	Female				10		30		40					
	Total				50		50		100					
Part - C (Problem Solving and Critical Thinking Questions)														
1	If $\mathrm{f}(\mathrm{x})=\mathrm{k} e^{-\|x\|}$ is probability density function in the interval, $-\infty<x<\infty$, then find i) k ii) Mean iii) Variance iv) $\mathrm{P}(0<\mathrm{x}<4)$.											Understand	CO 1	BCCB02.01
2	A discrete random variable X has the following probability distribution											Understand	CO 1	BCCB02.01
	X	1	2	-	3		5	6						
	$\mathrm{P}(\mathrm{X}=\mathrm{x})$	2k	4k		6k	k	10k	12k	14k	4 k				
	Find (i) k (ii) $\mathrm{p}(\mathrm{X}<3) \quad$ (iii) $p(X \geq 5)$													
3	The probability that a man hitting a target is $1 / 3$. If he fires 5 times, determine the probability that he fires (i) At most 3 times (ii) At least 2 times											Understand	CO 1	BCCB02.02
4	The marks obtained in mathematics by 1000 students are normally distributed with mean 78% and standard deviation 11%. Determine (i)How many students got marks above 90% marks (ii)What was the highest mark obtained by the lowest 10% of the students (iii)Within what limits did the middle of 90% of the student lie.											Understand	CO 1	BCCB02.02
5	Average number of accidents on any day on a national highway is 1.8 . Determine the probability that the number of accidents is (i) at least one (ii) at most one.											Understand	CO 1	BCCB02.02
6	The life of electronic tubes of a certain types may be assumed to be normal distributed with mean 155 hours and standard deviation 19 hours. Determine the probability that the life of a randomly chosen tube is (i) between 136 hours and 174 hours. (ii) less than 117 hours (iii) will be more than 195 hours											Understand	CO 1	BCCB02.02
7	A mechanist making engine parts with axle diameters of 0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch with a S.D of 0.040 inch. Compute the statistic you would use to test whether the work is meeting the specifications.											Understand	CO 1	BCCB02.03
8	Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 pumpkins. the sample standard deviation of their weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are normal, test hypothesis that the true variances are equal.											Understand	CO 1	BCCB02.03
9	A survey distributi Male No of	A survey of 240 families with 4 children each revealed the following distribution.										Understand	CO 1	BCCB02.03
	Test whether the male and female births are equally popular.													

10	In an investigation on the machine performance, the following results are obtained.			Understand	CO 1	BCCB02.03
		No.of units inspected	No.of defective			
	Machine1	375	17			
	Machine2	450	22			
UNIT-II						
TESTING OF STATISTICAL HYPOTHESIS						
Part - A (Short Answer Questions)						
1	Distinguish between large and small samples with example.			Remember	CO 2	BCCB02.04
2	In a manufacturing company out of 100 goods 25 are top quality. find sample proportion.			Understand	CO 2	BCCB02.05
3	Construct the confidence interval for single mean if mean of sample size of 400 is 40 , standard deviation is 10 .			Understand	CO 2	BCCB02.05
4	Construct the confidence interval for single proportion if 18 goods are defective from a sample of 200 goods.			Understand	CO 2	BCCB02.05
5	Define sample proportion			Remember	CO 2	BCCB02.05
6	Define ANOVA.			Remember	CO 2	BCCB02.06
7	Explain ANOVA one - way classification.			Remember	CO 2	BCCB02.06
8	Define large sample.			Remember	CO 2	BCCB02.05
9	Write the test statistic for difference of means in large samples			Remember	CO 2	BCCB02.05
10	Write the test statistic for difference of proportions in large samples			Remember	CO 2	BCCB02.05
11	find the confidence interval for mean if mean of sample size of 144 is 150 , standard deviation is 2 .			Understand	CO 2	BCCB02.05
12	What is the probability of type-I error.			Remember	CO 2	BCCB02.04
13	Explain ANOVA two - way classification.			Understand	CO 2	BCCB02.06
14	In a random sample of 125 coca cola drinkers 75 said they prefer thumsup to pepsi. Test the null hypothesis $\mathrm{P}=0.5$ against alternative hypothesis $\mathrm{P}>0.5$.			Understand	CO 2	BCCB02.05
15	Write the procedure of test of hypothesis			Remember	CO 2	BCCB02.04
16	Define one tailed and two tailed test.			Remember	CO 2	BCCB02.04
17	In a random sample of 225 coca cola drinkers 80 said they prefer pepsi to fanta. Test the null hypothesis $\mathrm{P}=0.5$ against alternative hypothesis $\mathrm{P}>0.5$			Understand	CO 2	BCCB02.05
18	Define critical region or region of rejection.			Remember	CO 2	BCCB02.04
19	Define critical value or significant value			Remember	CO 2	BCCB02.04
20	How many types of errors in talking a decision about null hypothesis.			Remember	CO 2	BCCB02.04
Part - B (Long Answer Questions)						
1	The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches			Understand	CO 2	BCCB02.05
2	An ambulance service claims that it takes on the average 8.9 minutes to reach its destination In emergency calls. To check on this claim the agency which issues license to Ambulance service has then timed on fifty emergency calls getting a mean of 9.2 minutes with 1.6 minutes. What can they conclude at 5% level of significance?			Understand	CO 2	BCCB02.05
3	Experience had shown that 20% of a manufactured product is of the top quality. In one day's production of 400 articles only 50 are of top quality Test the hypothesis at 0.05 level.			Understand	CO 2	BCCB02.05
4	According to norms established for a mechanical aptitude test persons who are 18 years have an average weight of 73.2 with S.D 8.6 if 40 randomly selected persons have average 76.7 test the hypothesis $H_{0}: \mu=73.2$ againist alternative hypothesis : $\mu>73.2$.			Understand	CO 2	BCCB02.05
5	A sample of 100 electric bulbs produced by manufacturer 'A' showed a mean life time of 1190 hrs and $\mathrm{s} . \mathrm{d}$. of 90 hrs A sample of 75 bulbs produced by manufacturer 'B' Showed a mean life time of 1230 hrs with s.d. of 120 hrs . Is there difference between the mean life times of the two brands at a significance level of 0.05			Understand	CO 2	BCCB02.05
6	In a random sample of 60 workers, the average time taken by them to get to work is 33.8 minutes with a standard deviation of 6.1 minutes. Can we reject the null			Understand	CO 2	BCCB02.05

20	Three different methods of teaching statistics are used on three groups of students. Random samples of size 5 are taken from each group and the results are shown below the grades are on a 10-point scale Determine on the basis of the above data whether there is difference in the teaching methods						Understand	CO 2	BCCB02.06
Part - C (Problem Solving and Critical Thinking Questions)									
1	A sample of 900 members has mean of 3.4 and S.D of 2.61 is this sample has been taken from a large population mean 3.25 and S.D 2.61. Also calculate 95% confidence interval.						Understand	CO 2	BCCB02.05
2	It is claimed that a random sample of 49 tyres has a mean life of 15200 kms this sample was taken from population whose mean is 15150 kms and S.D is 1200 km test 0.05 level of signinficant.						Understand	CO 2	BCCB02.05
3	In 64 randomly selected hour production mean and S.D of production are 1.038 and 0.146 At 0.05 level of significant does this enable to reject the null hypothesis $\mu=1$ againist alternative hypothesis : $\mu>1$.						Understand	CO2	BCCB02.05
4	A trucking company rm suspects the claim that average life of certain tyres is at least 28000 miles to check the claim rm puts 40 of this tyres on its truck and gets a mean life time of 27463 miles with a S.D 1348 miles can claim be true.						Understand	CO 2	BCCB02.05
5	The mean height of 50 male students who participated in sports is 68.2 inches with a S.D of 2.5. The mean height of male students who have not participated in sports is 67.2 inches with a S.D of 2.8. Test the hypothesis that the height of the students who participated in sports more than the students who have not participated in sports.						Understand	CO 2	BCCB02.05
6	Studying the flow of traffic at two busy intersections between 4 pm and 6 pm to determine the possible need for turn signals. It was found that on 40 week days there were on the average 247.3 cars approaching the first intersection from the south which made left turn, while on 30 week days there were on the average 254.1 cars approaching the first intersection from the south made left turns . the corresponding samples S.DS are 15.2 and 12 . Test the significant difference of two means at 5\% level.						Understand	CO 2	BCCB02.05
7	A manufacturer claims that at least 95% of the equipment which he supplied to a factory conformed to specifications. An examination of sample of 200 pieces of equipments received 18 were faulty test the claim at 0.05 level.						Understand	CO 2	BCCB02.05
8	Among the items produced by a factory out of 500,15 were defective. In another sample of 400,20 were defective test the significant difference between two proportioins at 5% level.						Understand	CO 2	BCCB02.05
9	Marks obtained by students						Understand	CO 2	BCCB02.06
	Group A	Group B	Group C						
	16	15	15						
	17	15	14						
	13	13	13						
	18	17	14						
	students performance								
10	Three training methods were compared to see if they led to greater productivity after training. The productivity measures for individuals trained by different methods are as follows						Understand	CO 2	BCCB02.06
	Method 1	36 26	31	20	34	25			
	Method 2	40 29	38	32	39	34			
	Method 3 At the 0.05 level of si	$32-18$	100	21	33	27			
	At the 0.05 level of significance, do the three training methods lead to difference levels of productivity?								

UNIT -III

ORDINARY DIFFERENTIAL EQUATIONS
Part - A (Short Answer Questions)

1	Explain merits and demerits of Taylor Series method.	Remember	CO 3	BAEB01.07
2	Write the third order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
3	Write the Modified Euler formula to find the numerical solutions of ordinary differential equation.	Remember	CO 3	BAEB01.08
4	Write the second order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
5	Define ordinary differential equation.	Remember	CO 3	BAEB01.09
6	Explain types of ordinary differential equations.	Remember	CO3	BAEB01.09
7	Write short note on the methods of the numerical solution of ordinary differential equation.	Remember	CO 3	BAEB01.09
8	Explain single step methods.	Remember	CO 3	BAEB01.07
9	Write short note on step by step methods.	Understand	CO3	BAEB01.08
10	Define initial value problems.	Remember	CO3	BAEB01.09
11	Write short note on boundary value problems.	Understand	CO 3	BAEB01.09
12	Define mixed value problems.	Remember	CO3	BAEB01.09
13	Explain Taylor series method.	Remember	CO 3	BAEB01.07
14	Distinguish between analytical solution and numerical solution.	Remember	CO 3	BAEB01.09
15	Explain merits and demerits of Runge-Kutta Method Series method.	Remember	CO 3	BAEB01.08
16	Write a short note on Euler's method.	Remember	CO 3	BAEB01.08
17	Write the first order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
18	Explain fourth order Runge- Kutta method.	Remember	CO 3	BAEB01.08
19	Explain the advantaged of Runge- Kutta method over Taylor's Series method.	Understand	CO 3	BAEB01.08
20	Define Adams-Bashforth- Moulton method.	Remember	CO 3	BAEB01.08
	Part - B (Long Answer Questions)			
1	By using Taylor's series method find an approximate value of y at $\mathrm{x}=0.2$ for the differential equation $y^{\prime}-2 y=3 e^{x}, y(0)=0$.	Understand	CO 3	BAEB01.07
2	Using Euler's method solve for $\mathrm{x}=2$ for $\frac{d y}{d x}=3 \mathrm{x}^{2}+1, \mathrm{y}(1)=2$, taking step size (i) $\mathrm{h}=0.5$ and (ii) $\mathrm{h}=0.25$.	Analyze	CO 3	BAEB01.08
3	Solve by Euler's method, $\mathrm{y}^{1}=\mathrm{x}+\mathrm{y}, \mathrm{y}(0)=1$ and find the value of $\mathrm{y}(0.3)$ taking step size $\mathrm{h}=0.1$. compare the result obtained by this method with the result obtained by analytical methods	Remember	CO 3	BAEB01.08
4	Using Runge-Kutta method of fourth order, find $y(0.2)$ where $y^{\prime}=y-x$, $\mathrm{y}(0)=2, \mathrm{~h}=0.2$.	Understand	CO 3	BAEB01.08
5	Apply the $4^{\text {th }}$ order Runge-Kutta method to find an approximate value of y when $\mathrm{x}=1.2$ in steps of 0.1, given that $y^{\prime}=x^{2}+y^{2}, \mathrm{y}(1)=1.5$	Understand	CO 3	BAEB01.08
6	Solve $y^{1}=x^{2}-y, y(0)=1$, using Taylor's series method and compute $y(0.1)$, $\mathrm{y}(0.2), \mathrm{y}(0.3)$ and $\mathrm{y}(0.4)$ (correct to 4 decimal places).	Understand	CO 3	BAEB01.07
7	By using Euler's method solve the differential equation from $y^{\prime}+y=0, y(0)=1$, find $y(0.04)$, taking step size $\mathrm{h}=0.01$.	Analyze	CO 3	BAEB01.08
8	Using modified Euler's method find the approximate value of x when $x=0.3$ given differential equation $d y / d x=x+y$ and $y(0)=1$.	Understand	CO 3	BAEB01.08
9	Find $y(2.5)$ from the differential equation $\frac{d y}{d x}=\frac{x+y}{x}, \mathrm{y}(2)=2, \mathrm{~h}=0.25$ using Runge-Kutta method of second order.	Analyze	CO 3	BAEB01.08
10	Estimate $y(0.2)$, given $y^{\prime}=3 x+\frac{y}{2}, y(0)=1$ by using Runge-Kutta method, taking $\mathrm{h}=0.1$.	Remember	CO 3	BAEB01.08

11	Using Taylor's series method find an approximate value of y at $\mathrm{x}=0.1$ given $\mathrm{y}(0)=1$ for the differential equation $y^{\prime}=3 x+y^{2}$	Understand	CO 3	BAEB01.07
12	Using Euler's method solve for $y^{\prime}=y^{2}+x, y(0)=1$ find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$	Understand	CO 3	BAEB01.08
13	Solve $y^{\prime}=x+y$, given $y(1)=0$. Find $y(1.1)$ and $y(1.2)$ by Tayor's series method.	Analyze	CO 3	BAEB01.08
14	Given the differential equation $y^{1}=y-x, y(0)=2$ find $y(0.2)$ using $R-K$ method take $\mathrm{h}=0.1$.	Understand	CO 3	BAEB01.08
15	Find $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using modified Euler's formula given differential equation dy $/ \mathrm{dx}=\mathrm{x}^{2}-\mathrm{y}, \mathrm{y}(0)=1$	Understand	CO 3	BAEB01.08
16	Given $y^{\prime}=x+\sin y, y(0)=1$ compute $y(0.2)$ and $y(0.4)$ with $\mathrm{h}=0.2$ using Euler's Modified method.	Understand	CO 3	BAEB01.08
17	Employ Taylor's method to obtain approximate value of $y(1.1)$ and $y(1.3)$, for the differential equation $y^{\prime}=x \cdot y^{\frac{1}{3}}, y(1)=1$. Compare the num,erical solution obtained with exact solution.	Analyze	CO 3	BAEB01.08
18	Use Mile's predictor - corrector method to obtain the solution of the equation $y^{\prime}=x-y^{2}$ at $x=0.8$ given that $y(0)=0, y(0.2)=0.02, y(0.4)=0.0795, y(0.6)=0.1762$	Understand	CO 3	BAEB01.08
19	Obtain the solution of $y^{\prime}=x^{2}(1+y), y(1)=1$ at $x=1(0.1) 1.2$ by any numerical method and estimate $x=1.3$ by Adam's method.	Remember	CO 3	BAEB01.08
20	If $\frac{d y}{d x}=2 e^{x} y, y(0)=2$ find $y(0.4)$ using Adam's predictor corrector formula by calculating $y(0.1), y(0.2)$ and $y(0.3)$ using Euler's Modified formula.	Understand	CO 3	BAEB01.08
Part - C (Problem Solving and Critical Thinking)				
1	Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y^{\prime}=x y+y^{2}, y(0)=1$.	Understand	CO 3	BAEB01.08
2	Find $y(0.1), y(0.2), z(0.1), z(0.2)$ given $\frac{d y}{d x}=x+z, \frac{d z}{d x}=x-y^{2}$ and $y(0)=2 . z(0)=1$ by using Taylor's series method.	Analyze	CO 3	BAEB01.07
3	Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{d y}{d x}=x+x^{2} y, y(0)=1$.	Understand	CO 3	BAEB01.08
4	Solve first order differential equation $\frac{d y}{d x}=\frac{y-x}{y+x}, \mathrm{y}(0)=1$ and estimate $\mathrm{y}(0.1)$ using Euler's method(5 steps).	Analyze	CO 3	BAEB01.08
5	Using modified Euler's method to find $\mathrm{y}(0.2)$ and $\mathrm{y}(0.4)$ given differential equation $y^{\prime}=y+e^{x}, \mathrm{y}(0)=0$.	Remember	CO 3	BAEB01.08
6	Given the differential equation $\frac{d y}{d x}=-x y^{2}, y(0)=2$. Compute $y(0.2)$ in steps of 0.1 , using modified Euler's method.	Understand	CO 3	BAEB01.08
7	Find the solution of differential equation $\frac{d y}{d x}=x-y, y(0)=1$ at $x=0.1,0.2,0.3$, 0.4 and 0.5 using modified Euler's method.	Understand	CO 3	BAEB01.08
8	Given $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}$ at $x=1.4$ given that $y(1)=1, y(1.1)=0.996, y(1.2)=0.986, y(1.3)=0.972$.by Adams-	Analyze	CO 3	BAEB01.08

	Bashforth-Moulton method.			
9	Find the solution of $\frac{d y}{d x}=x-y$ at $x=0.4$ subject to the condition $y=1$ at $x=0$ and $h=0.1$ using Milne's method. Use Euler's modified method to evaluate $y(0.1), y(0.2)$ and $y(0.3)$.	Understand	CO 3	BAEB01.08
10	Solve the initial value problem $y^{\prime}+y^{2}=e^{x}, y(0)=1$ from $x=0$ at $x=0.5$ taking $h=0.1$ using Adams-Bashforth-Moulton method. Starting values may be taken from Runge-Kutta method.	Remember	CO 3	BAEB01.08
UNIT -IV				
PARTIAL DIFFERENTIAL EQUATIONS AND CONCEPTS IN SOLUTION TO BOUNDARY VALUE PROBLEMS				
Part - A (Short Answer Questions)				
1	Define order with reference to partial differential equation	Remember	CO 4	BAEB01.10
2	Form the partial differential equation by eliminate the arbitrary constants from $z=a x^{3}+b y^{3}$	Understand	CO 4	BAEB01.10
3	Form the partial differential equation by eliminating arbitrary function $\mathrm{z}=\mathrm{f}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$	Analyze	CO 4	BAEB01.10
4	Solve the partial differential equation $p \sqrt{x}+q \sqrt{y}=\sqrt{z}$	Understand	CO 4	BAEB01.10
5	Write short note on complete integral with reference to nonlinear partial differential equation	Remember	CO 4	BAEB01.10
6	Define general integral with reference to nonlinear partial differential equation	Remember	CO 4	BAEB01.10
7	Solve the partial differential equation $\mathrm{p}^{2}+\mathrm{q}^{2}=\mathrm{m}^{2}$	Understand	CO 4	BAEB01.10
8	Solve the partial differential equation $\mathrm{z}=\mathrm{px}+\mathrm{qy}+\mathrm{p}^{2} \mathrm{q}^{2}$	Understand	CO 4	BAEB01.10
9	Define degree with reference to partial differential equation	Remember	CO 4	BAEB01.10
10	Write the heat one dimension equation	Remember	CO 4	BAEB01.11
11	Eliminate the arbitrary constants from $\mathrm{z}=\left(\mathrm{x}^{2}+\mathrm{a}\right)\left(\mathrm{y}^{2}+\mathrm{b}\right)$	Understand	CO 4	BAEB01.10
12	Form the partial differential equation by eliminating a and b from $\log (a z-1)=x+a y+b$	Analyze	CO 4	BAEB01.10
13	Form the partial differential equation by eliminating the constants from $(x-a)^{2}+(y-b)^{2}=z^{2} \cot ^{2} \alpha$ where α is a parameter.	Understand	CO 4	BAEB01.10
14	Define non-linear partial differential equation.	Remember	CO 4	BAEB01.10
15	Define particular integral with reference to nonlinear partial differential equation.	Remember	CO 4	BAEB01.10
16	Define singular integral with reference to nonlinear partial differential equation.	Remember	CO 4	BAEB01.10
17	Solve $p-x^{2}=q+y^{2}$	Understand	CO 4	BAEB01.10
18	Solve the partial differential equation $\mathrm{x}(\mathrm{y}-\mathrm{z}) \mathrm{p}+\mathrm{y}(\mathrm{z}-\mathrm{x}) \mathrm{q}=\mathrm{z}(\mathrm{x}-\mathrm{y})$.	Understand	CO 4	BAEB01.10
19	Find a complete integral of $\mathrm{f}=\mathrm{xpq}+\mathrm{yq}^{2}-1=0$.	Understand	CO 4	BAEB01.10
20	Find a complete integral of $f=\left(p^{2}+q^{2}\right) y-q z=0$	Understand	CO 4	BAEB01.10
Part - B (Long Answer Questions)				
1	Form the partial differential equation by eliminating arbitrary function from $f\left(x^{2}+y^{2}+z^{2}, z^{2}-2 x y\right)=0$	Understand	CO 4	BAEB01.10
2	Solve the partial differential equation $\mathrm{p}^{2} \mathrm{z}^{2} \sin ^{2} \mathrm{x}+\mathrm{q}^{2} \mathrm{z}^{2} \cos ^{2} \mathrm{y}=1$.	Understand	CO 4	BAEB01.10
3	Solve the partial differential equation $x^{2} p^{2}+x p q=z^{2}$.	Understand	CO 4	BAEB01.10
4	Solve the partial differential equation $\mathrm{q}^{2}-\mathrm{p}=\mathrm{y}-\mathrm{x}$.	Understand	CO4	BAEB01.10
5	Find the temperature in a thin metal rod of length L, with both ends insulated and with initial temperature in the rod in $\sin \left(\frac{\pi x}{L}\right)$.	Analyze	CO 4	BAEB01.11
6	Form a partial differential equation by eliminating $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.	Understand	CO 4	BAEB01.10
7	Evaluate the partial differential equation $\left(x^{2}-y z\right) p+\left(y^{2}-z x\right) q=z^{2}-x y$	Understand	CO 4	BAEB01.10

8	Solve the partial differential equation $\left(z^{2}-2 y z-y^{2}\right) p+(x y+z x) q=x y-z x$	Analyze	CO 4	BAEB01.10
9	Solve the partial differential equation ($m z-n y$) $p+(n x-l z) q=(l y-m x)$	Understand	CO 4	BAEB01.10
10	Evaluate the partial differential equation $\mathrm{y}^{2} \mathrm{zp}+\mathrm{x}^{2} \mathrm{zq}=\mathrm{xy}^{2}$	Understand	CO 4	BAEB01.10
11	Solve the partial differential equation $z\left(p^{2}-q^{2}\right)=x-y$	Understand	CO 4	BAEB01.10
12	Find $u_{x x}=u_{y}+2 u$ with $u(0, y)=0$ and $\frac{\partial u(0, y)}{\partial x}=1+e^{=3 y}$.	Analyze	CO 4	BAEB01.11
13	Solve the partial differential equation $p-x^{2}=q+y^{2}$.	Understand	CO 4	BAEB01.10
14	Find the partial differential equation $q=p x+p^{2}$.	Understand	CO 4	BAEB01.10
15	Evaluate the partial differential equation $z^{2}=p q x y$.	U Remember	CO 4	BAEB01.10
16	Solve the partial differential equation $z=p^{2} x+q^{2} y$	Understand	CO 4	BAEB01.10
17	Find the differential equation of all spheres whose centres lie on z -axis with a given radius r .	Understand	CO 4	BAEB01.10
18	Solve $y^{3} \frac{\partial z}{\partial x}+x^{2} \frac{\partial z}{\partial x}=0$	Understand	CO 4	BAEB01.11
19	Solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=6 e^{-3 x}$	Analyze	CO 4	BAEB01.11
20	An insulated rod OA of length l with insulated sides, has initial temperature $u(x, 0)$ for $0 \leq x \leq l$. The ends are insulated at $t=0$. Find the subsequent temperature distribution.	Understand	CO 4	BAEB01.11
Part - C (Problem Solving and Critical Thinking)				
1	Solve the partial differential equation $\left(x^{2}-y^{2}-y z\right) p+\left(x^{2}-y^{2}-z x\right) q=z(x-y) .$	Analyze	CO 4	BAEB01.10
2	Solve the partial differential equation $\left(\mathrm{x}^{2}-\mathrm{y}^{2}-z^{2}\right) \mathrm{p}+2 \mathrm{xyq}=2 \mathrm{xz}$	Remember	CO 4	BAEB01.10
3	Solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$ given that $\mathrm{u}=0$ when $\mathrm{t}=0$ and $\frac{\partial u}{\partial t}=0$ When $\mathrm{x}=0$ show also that as t tends to ∞, u tends to $\sin \mathrm{x}$.	Understand	CO 4	BAEB01.11
4	Solve the partial differential equation $p \cos (x+y)+q \sin (x+y)=z$	Understand	CO 4	BAEB01.10
5	Solve the differential equation $(y+z) p+(z+x) q=x+y$	Understand	CO 4	BAEB01.10
6	Solve the one dimensional heat flow equation $\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ given that $u(0, t)=0, u(L, t)=0, t>0$ and $u(x, 0)=3 \sin ((\pi x) / L), 0<x<L$.	Analyze	CO 4	BAEB01.11
7	Derive the complete solution for the one dimensional heat equation with zero boundary problem with initial temperature $u(x, 0)=x(L-x)$ in the interval ($0, \mathrm{~L}$).	Understand	CO 4	BAEB01.11
8	If a string of length l is initially at rest in equilibrium position and each of its points are given the velocity $V_{0} \sin ^{3} \frac{\pi x}{l}$, find the displacement $y(x, t)$.	Analyze	CO 4	BAEB01.11
9	Solve the partial differential equation $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$	Understand	CO 4	BAEB01.10
10	A bar 100 cm long, with insulated sides, has its ends kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.	Remember	CO 4	BAEB01.11

UNIT - V

MAJOR EQUATION TYPES ENCOUNTERED IN ENGINEERING AND PHYSICAL SCIENCES
Part - A (Short Answer Questions)

1	Write a short note on one dimensional wave equation.	Remember	CO 5	BCCB02.12
2	Explain method of separation of variables.	Remember	CO 5	BCCB02.15
3	Use D'Alembert principle of virtual work to verify that it gives the same equations of motion found by Newton.	Remember	CO 5	BCCB02.14
4	Explain about maximum principle.	Remember	CO 5	BCCB02.14
5	If the initial displacement is given to be zero then what is the initial velocity.	Remember	CO 5	BCCB02.12
6	If the string is released from rest and the initial non-zero displacement is given then what is the velocity.	Remember	CO 5	BCCB02.12
7	Examine the complex variable function $\mathrm{f}(\mathrm{z})=\frac{x-i y}{x^{2}+y^{2}}$ for analyticity in Cartesian form.	Understand	CO 5	BCCB02.13
8	Calculate all the values of k such that $\mathrm{f}(\mathrm{z})=e^{x}(\operatorname{cosky}+i \operatorname{sinky})$ is an analytic function.	Understand	CO 5	BCCB02.13
9	Obtain an analytic function $\mathrm{f}(\mathrm{z})$ whose imaginary part of the analytic function is $\mathrm{v}=e^{x}(x \sin y+y \cos y)$.	Understand	CO 5	BCCB02.13
10	Show that the function $\mathrm{f}(\mathrm{z})=\|z\|^{2}$ is continuous at all points of z but not differentiable at any $z \neq 0$.	Understand	CO 5	BCCB02.13
11	Define the term Analyticity of a complex variable function $\mathrm{f}(\mathrm{z})$.	Remember	CO 5	BCCB02.13
12	Define the term Continuity of a complex variable function $\mathrm{f}(\mathrm{z})$.	Remember	CO 5	BCCB02.13
13	Define the term Differentiability of a complex variable function $\mathrm{f}(\mathrm{z})$.	Remember	CO 5	BCCB02.13
14	If $w=f(z)=z^{2}+z$. Find its real and imaginary parts.	Understand	CO 5	BCCB02.13
15	Examine the complex variable function $\mathrm{f}(\mathrm{z})=z^{3}$ to analyticity for all values of z in Cartesian form.	Remember	CO 5	BCCB02.13
16	Verify whether the function $v=x^{3} y-x y^{3}+x y+x+y$ can be imaginary part of an analytic function $\mathrm{f}(\mathrm{z})$ where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$.	Understand	CO 5	BCCB02.13
17	Calculate the value of k such that $\mathrm{f}(\mathrm{x}, \mathrm{y})=x^{3}+3 k x y^{2}$ may be harmonic function.	Remember	CO 5	BCCB02.14
18	Show that the real part of an analytic function $\mathrm{f}(\mathrm{z})$ where $\mathrm{u}=2 \log \left(x^{2}+y^{2}\right)$ is harmonic.	Understand	CO 5	BCCB02.14
19	Determine the conjugate harmonic function if the real part of an analytic function $f(z)$ is $u=y^{2}-3 x^{2} y$ is harmonic function.	Understand	CO 5	BCCB02.14
20	Verify whether $\mathrm{u}=x^{2}-y^{2}-y$ of an analytic function can be harmonic function of an analytic function $\mathrm{f}(\mathrm{z})$ in the whole complex plane.	Understand	CO 5	BCCB02.14
Part - B (Long Answer Questions)				
1	A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=l$ is initially at rest its equilibrium position. If it is set to vibrate by giving each of its points a velocity $\lambda x(1-x)$, find the displacement of the string at any distance x from one end at any time t .	Understand	CO 5	BCCB02.12
2	Solve by the method of separation of variables $2 x z_{x}-3 y z_{y}=0$.	Understand	CO 5	BCCB02.15
3	Solve by the method of separation of variables $4 u_{x}+u_{y}=3 u$ and $u(0, y)=e^{-5 y}$	Understand	CO 5	BCCB02.15
4	A string is stretched and fastened to two points at $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$. Motion is started by displacing the string into the form $\mathrm{y}=\mathrm{k}\left(1 \mathrm{x}-\mathrm{x}^{2}\right)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time t	Understand	CO 5	BCCB02.12
5	A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=l$ is initially in a position given by $y=y_{0} \sin ^{3}((\pi x) / l)$.If it is released from rest from this position, find the displacement (x, t).	Understand	CO 5	BCCB02.12
6	Obtain the general solution of the one dimensional wave equation	Understand	CO 5	BCCB02.12

	$\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$			
7	A tightly streched string with fixed end points $x=0, x=l$ is initially in the position $y(x, 0)=f(x)$. it is set vibrating by giving to each of its points a velocity $\frac{\partial y}{\partial t}=g(x)$ at $t=0$. Find the displacement $y(x, t)$ in the form of Fourier series.	Understand	CO 5	BCCB02.12
8	Find the solution of the initial boundary value problem $\frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial^{2} y}{\partial x^{2}}$, $0 \leq x \leq 1, t \geq 0$, subject to $y(x, 0)=\sin \pi x, 0 \leq x \leq 1, y_{t}(x, 0)=0$.	Understand	CO 5	BCCB02.12
9	Solve the boundary value problem $u_{t t}=a^{2} u_{x x} ; 0<x<l ; t>0$ with $u(0, t)=0 ; u(l, t)=0$ and $u(x, 0)=0, u_{t}(x, 0)=\sin ^{3}\left(\frac{\pi x}{l}\right)$	Understand	CO 5	BCCB02.12
10	The points of trisection of a tightly stretched string of length l with fixed ends are pulled aside through a distance d on opposite sides of the position of equilibrium and the string is released from rest. Obtain an expression for the displacement of the string at any subsequent time and show that the midpoint of the string is always at rest.	Understand	CO 5	BCCB02.12
11	Show that the real part of an analytic function $\mathrm{f}(\mathrm{z})$ where $\mathrm{u}=e^{-2 x y} \sin \left(x^{2}-y^{2}\right)$ is a harmonic function. Hence find its harmonic conjugate.	Understand	CO 5	BCCB02.14
12	Prove that the real part of analytic function $\mathrm{f}(\mathrm{z})$ where $\mathrm{u}=\log \|z\|^{2}$ is harmonic function. If so find the analytic function by Milne Thompson method.	Understand	CO 5	BCCB02.14
13	Show that real part $\mathrm{u}=x^{3}-3 x y^{2}$ of an analytic function $\mathrm{f}(\mathrm{z})$ is harmonic. Hence find the conjugate harmonic function and the analytic function.	Understand	CO 5	BCCB02.14
14	Show that the real part of an analytic function $\mathrm{f}(\mathrm{z})$ where $\mathrm{u}=e^{-x}(x \sin y-y \cos y)$ is a harmonic function.	Understand	CO 5	BCCB02.14
15	If u and v are conjugate harmonic functions then show that $u v$ is also a harmonic function.	Understand	CO 5	BCCB02.14
16	If $f(z)=u+i v$ is an analytic function of z, then calculate $f(z)$ if $2 u+v=e^{2 x}[(2 x+y) \cos 2 y+(x-2 y) \sin 2 y]$.	Understand	CO 5	BCCB02.13
17	Prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)\|\operatorname{Realf}(z)\|^{2}=2\left\|f^{\prime}(z)\right\|^{2} \quad$ where $\mathrm{w}=\mathrm{f}(\mathrm{z})$ is an analytic function.	Understand	CO 5	BCCB02.13
18	Determine the imaginary part of an analytic function $\mathrm{f}(\mathrm{z})$ whose real part of an analytic function is $e^{x}(x \cos y-y \sin y)$.	Understand	CO 5	BCCB02.13
19	If $w=\varnothing+i \varphi$ represents the complex potential for an electric field where $\varphi=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ then determine the function φ.	Understand	CO 5	BCCB02.13
20	Prove that the real and imaginary parts of an analytic function $f(z)$ are harmonic.	Understand	CO 5	BCCB02.12
	Part - C (Problem Solving and Critical Thin			
1	Solve $4 u_{x}+u_{y}=3 u$ with $u(0, y)=3 e^{-y}-e^{-5 y}$ by separation of variables.	Understand	CO 5	BCCB02.15
2	Solve $\frac{\partial^{2} u}{\partial x \partial t}=e^{-t} \cos x$, given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t}=0$ when $x=0$. Show also that as t tends to ∞, u tends to $\sin x$	Understand	CO 5	BCCB02.12
3	Find the solution of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ corresponding to the	Understand	CO 5	BCCB02.12

	triangular initial deflection $f(x)=\left\{\begin{array}{cc}\frac{2 k}{l} x, & \text { where } 0<x<\frac{l}{2} \\ \frac{2 k}{l}(l-x), & \text { where } \frac{l}{2}<x<l\end{array}\right.$ and initial velocity equal to 0 .			
4	Solve the boundary value problem $u_{t t}=a^{2} u_{x x} ; 0<x<l ; t>0$ with $u(0, t)=0 ; u(l, t)=0$ and $u(x, 0)=0, u_{t}(x, 0)=u_{0} x(l-x)$.	Understand	CO 5	BCCB02.12
5	A tightly stretched string of length l has its ends fastened at $x=0, x=l$. The midpoint of the string is then taken to height h and then released from rest in that position. Find the lateral displacement of a point of the string at time t from the instant of release.	Understand	CO 5	BCCB02.12
6	If u is a harmonic, show that $w=u^{2}$ is not a harmonic function unless u is a constant.	Understand	CO 5	BCCB02.14
7	If $f(z)$ is an analytic function and $u-v=\frac{\cos x+\sin x-e^{-y}}{2 \cos x-e^{y}-e^{-y}}$ then determine the analytic function $\mathrm{f}(\mathrm{z})$ subjected to the condition $\mathrm{f}\left(\frac{\pi}{2}\right)=0$.	Understand	CO 5	BCCB02.13
8	Find an analytic function $\mathrm{f}(\mathrm{z})$ whose real part of it is $\left.\mathrm{u}=e^{x}\left[\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y\right)\right]$.	Understand	CO 5	BCCB02.13
9	Find an analytic function $\mathrm{f}(\mathrm{z})$ such that $\operatorname{Re}\left[f^{\prime}(z)\right]=3 x^{2}-4 y-3 y^{2}$ and $f(1+i)=0$.	Understand	CO 5	BCCB02.13
10	Find an analytic function whose real part is $\frac{\sin 2 x}{\cos 2 y-\cos 2 x}$.	Understand	CO 5	BCCB02.13

Prepared by:

Dr. J Suresh Goud, Associate Professor

