TARE TO POR LIBERTY

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	MATHE	MATHEMATICAL METHODS IN ENGINEERING							
Course Code	BCCB02	BCCB02							
Programme	M.Tech								
Semester	I	ME							
Course Type	Foundati	ion							
Regulation	IARE - 1	R18							
			Theory		Practical				
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits			
	3		-	3	-	-			
Chief Coordinator	Dr. J Sur	resh C	Goud, Associate	Professor, FE					

COURSE OBJECTIVES:

The co	ourse should enable the students to:
I	Develop a basic understanding of a range of mathematics tools with emphasis on engineering applications.
II	Solve problems with techniques from advanced linear algebra, ordinary differential equations and multivariable differentiation.
III	Develop skills to think quantitatively and analyze problems critically.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts of probability, discrete, continuous random variables and determine
	probability distribution, sampling distribution of statistics like t, F and chi-square.
CO 2	Understand the foundation for hypothesis testing to predict the significance difference in the sample
	means and the use of ANOVA technique.
CO 3	Determine Ordinary linear differential equations solvable by nonlinear ODE's.
CO 4	Explore First and second order partial differential equations.
CO 5	Analyze the solution methods for wave equation, D'Alembert solution, and potential equation, properties of harmonic functions, maximum principle, and solution by variable separation method.

COURSE LEARNING OTCOMES (CLOs):

BCCB02.01	Describe the basic concepts of probability, discrete and continuous random variables
BCCB02.02	Determine the probability distribution to find mean and variance.
BCCB02.03	Discuss the concept of sampling distribution of statistics like t, F and chi-square.
BCCB02.04	Understand the foundation for hypothesis testing.
BCCB02.05	Apply testing of hypothesis to predict the significance difference in the sample means.
BCCB02.06	Understand the assumptions involved in the use of ANOVA technique.
BCCB02.07	Solve differential equation using single step method.
BCCB02.08	Solve differential equation using multi step methods.
BCCB02.09	Understand the concept of non- linear ordinary differential equations.
BCCB02.10	Understand partial differential equation for solving linear equations.
BCCB02.11	Solving the heat equation in subject to boundary conditions.
BCCB02.12	Solving the wave equation in subject to boundary conditions.
BCCB02.13	Understand the conditions for a complex variable to be analytic and entire function.
BCCB02.14	Understand the concept of harmonic functions.
BCCB02.15	Analyze the concept of partial differential equations by variable separation method.

TUTORIAL QUESTION BANK

	UNIT- I			
	INTRODUCTION TO PROBABILITY Part - A (Short Answer Questions)			
S No	QUESTIONS OUESTIONS	Blooms	Course	Course
5110		Taxonomy Level	Outcomes	Learning Outcomes (CLOs)
1	Define random variable. Write a short note on discrete and continuous random variables with a suitable example.	Remember	CO 1	BCCB02.01
2	Out of 24 mangoes, 6 mangoes are rotten. If we draw two mangoes. Obtain probability distribution of number of rotten mangoes that can be drawn.	Understand	CO 1	BCCB02.01
3	20% of items produced from a goods factory are defective. If we choose 5 items randomly then find the probability of non defective item.	Understand	CO 1	BCCB02.02
4	The mean and variance of a binomial distribution are 4 and $4/3$ respectively. Then find $P(x=1)$.	Understand	CO 1	BCCB02.02
5	In eight throws of a die 5 or 6 is considered a success. Find the mean number of success.	Understand	CO 1	BCCB02.02
6	The probability if no misprint in a book is e^{-4} . Find probability that a page of book contains exactly two misprints.	Understand	CO 1	BCCB02.02
7	Draft the recurrence relation for the poisson distribution.	Remember	CO 1	BCCB02.02
8	If a bank received on the average 6 bad cheques per day, find the probability that it will receive 4 bad cheques on any given day.	Understand	CO 1	BCCB02.02
9	Explain about Normal distribution.	Remember	CO 1	BCCB02.02
10	If X is normally distributed with mean 2 and variance 0.1, then find $P(x-2 \ge 0.01)$?	Understand	CO 1	BCCB02.02
11	If the probability of a defective bolt is 0.2, find (i) mean (ii) standard deviation for the bolts in a total of 400.	Understand	CO 1	BCCB02.02
12	If $\bar{x} = 47.5$, $\mu = 42.1$, $s = 8.4$, $n = 24$ then find t.	Understand	CO 1	BCCB02.03
13	What is the test statistic for t test for single mean and difference of means?	Remember	CO 1	BCCB02.03
14	Define degree of freedom. Find t _{0.05} when 16 degrees of freedom.	Remember	CO 1	BCCB02.03
15	Distinguish between t test for difference of means and F test.	Remember	CO 1	BCCB02.03
16	What is the test statistic for F test? Find $F_{0.99}$ with (28, 12) degrees of freedom.	Remember	CO 1	BCCB02.03
17	Write the formulae for sample mean, sample variance and sample standard deviation.	Remember	CO 1	BCCB02.03
18	What is the degree of freedom for chi square test in case of contingency table of order 4x3?	Remember	CO 1	BCCB02.03
19	What is the test statistic for chi square test?	Remember	CO 1	BCCB02.03
20	Find $\chi^2_{0.05}$ at 9 degrees of freedom.	Understand	CO 1	BCCB02.03
	Part - B (Long Answer Questions)	** 1	00.1	D CCC 02 01
1	A random variable X has the following probability function. X	Understand	CO 1	BCCB02.01
2	A continuous random variable has the probability density function	Understand	CO 1	BCCB02.01
	$f(x) = \begin{cases} kxe^{-\lambda x}, & \text{for } x \ge 0, \lambda > 0 \\ 0, & \text{otherwise} \end{cases}$ Determine (i) k (ii) Mean (iii) Variance.			
3	Out of 20 tape recorders 5 are defective. Find the standard deviation of defective in the sample of 10 randomly chosen tape recorders. Find (i) P(X=0) (ii) P(X=1) (iii) P(X=2) (iv) P (1 <x<4).< td=""><td>Understand</td><td>CO 1</td><td>BCCB02.02</td></x<4).<>	Understand	CO 1	BCCB02.02
4	Out of 800 families with 5 children each, how many would you expect to have (i)3 boys (ii)5girls (iii)either 2 or 3 boys? Assume equal probabilities for boys and girls.	Understand	CO 1	BCCB02.02

5	4 coins are tossed 160 times. Fit the Binomial distribution of getting number of heads.	Understand	CO 1	BCCB02.02
6	A car-hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused.	Understand	CO 1	BCCB02.02
7	The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.	Understand	CO 1	BCCB02.02
8	If a Poisson distribution is such that $P(X = 1) = \frac{3}{2}P(X = 3)$ then find (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$.	Understand	CO 1	BCCB02.02
9	If X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) P $(26 \le X \le 40)$ ii) P($X \ge 45$).	Understand	CO 1	BCCB02.02
10	In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution.	Understand	CO 1	BCCB02.02
11	1000 students have written an examination with the mean of test is 35 and standard deviation is 5. Assuming the distribution to be normal find i) How many students marks like between 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 50.	Understand	CO 1	BCCB02.02
12	Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the average is 0.83 mg. can this claim be accepted if a random sample of 8 'gutkhas' of this type have the nicotine contents of 2.0,1.7,2.1, 1.9,2.2, 2.1, 2.0,1.6 mg.	Understand	CO 1	BCCB02.03
13	The means of two random samples of sizes 9,7 are 196.42 and 198.82.the sum of deviations from their respective means are 26.94,18.73.can the samples be considerable have been the same population?	Understand	CO 1	BCCB02.03
14	Two independent samples of items are given respectively had the following values. Sample I 11 11 13 11 15 9 12 14 Sample II 9 11 10 13 9 8 10 - Test whether there is any significant difference between their means?	Understand	CO 1	BCCB02.03
15	In one sample of 8 observations the sum of squares of deviations of the sample values from the sample mean was 84.4 and another sample of 10 observations it was 102.6 .test whether there is any significant difference between two sample variances at at 5% level of significance.	Understand	CO 1	BCCB02.03
16	Time taken by workers in performing a job by method 1 and method 2 is given below. Method 1 20 16 27 23 22 26 - Method 2 27 33 42 35 32 34 38 Does the data show that variances of time distribution from population which these samples are drawn do not differ significantly?	Understand	CO 1	BCCB02.03
17	The following random samples are measurements of the heat-producing capacity (in millions of calories per ton) of speciments of coal from two mines: Mine 1	Understand	CO 1	BCCB02.03
18	The no. of automobile accidents per week in a certain area as follows: 12,8,20,2,14,10,15,6,9,4. Are these frequencies in agreement with the belief that accidents were same in the during last 10 weeks.	Understand	CO 1	BCCB02.03

19	200 digit	s were	e choo	sen a	it rando	m fro	om set o	of table	es the	freque	ncy of th	ne digits	Understand	CO 1	BCCB02.03
	digit	0	1	2	3	4	5	6	7	8	9				
	frequ ency	18	19	23	21	16	25	22	20	21	15				
	Use chi s	ed in e	qual 1	numb	er in th	e tabl	e								
20	The folloand nature	re of v	vork.	Test v									Understand	CO 1	BCCB02.03
					Stable	Ţ	Jnstabl	le	Total						
		Male			40		20		60						
		Female Total			10 50		30 50		100						
		Total				C (P		Solvi		d Criti	cal Thi	nking Qı	uestions)		
1	70.0() 1	- x											Understand	CO 1	BCCB02.01
	If $f(x) = k$ then find									⁄al, −	$\infty < \chi <$	$<\infty$,			
2	A discret	e ranc	lom v	an n ariabi	le X ha	s the i	followi	ng pro). babili	tv distr	ibution		Understand	CO 1	BCCB02.01
	X	1	2	3						8					
	P(X=x)	2k	4k	: (5k 8	k 1	0k 1	12k 1	14k	4k					
	Find (i) k	c (ii) p	(X<3) (ii	i) <i>p(X</i>	Z ≥ 5)								
3	The prob					g a tai	rget is	1/3. If	he fire	s 5 tin	nes , dete	ermine	Understand	CO 1	BCCB02.02
	the proba														
4	(i) At mo							studon	to oro	normo	Ilv. diatri	ibuted	Understand	CO 1	BCCB02.02
4	with mea									понна	ny uisui	ibutea	Understand	COT	BCCB02.02
	(i)How n														
	(ii)What										e studen	its			
5	(iii)With										ic 1 0		Understand	CO 1	BCCB02.02
3	Determin											(ii) at	Understand	COT	BCCB02.02
	most one		proou	.01110					1100 10	(1) 40 1		(11) 410			
6	The life of												Understand	CO 1	BCCB02.02
	distribute									9 hour	s. Deter	mine			
	the proba							osen tu	be is						
	(ii) less				Q 17-11	ours.									
	(iii) will														
7	A mecha												Understand	CO 1	BCCB02.03
	sample o														
	the speci			ausu	c you v	vould	use to	test wi	ictici	the we	71 K 13 111	cering			
8	Pumpkin	s were	e grov										Understand	CO 1	BCCB02.03
	samples														
	as 0.8 an test hypo								ht dist	ributio	ns are n	ormal,			
9	A survey								led th	e follo	wing	+	Understand	CO 1	BCCB02.03
	distributi	on.									0				
		Birth		4	3		2	1	0						
	No of	famili	ies	10	55	,	105	58	12						
	Test whe	ther tl	ne ma	le and	d femal	e birtl	hs are e	equally	popu	lar.					

10	_	on the machine performance, t	he following results are	Understand	CO 1	BCCB02.03
	obtained.	No. C. with immediate	N C 1. C			
	Manhina 1	No.of units inspected 375	No.of defective			
	Machine1 Machine2	450	17 22			
	Macililez	430	22			
			UNIT-II			
			STATISTICAL HYPOTHES (Short Answer Questions)	SIS		
1	Distinguish between 1	arge and small samples with e		Remember	CO 2	BCCB02.0
		ompany out of 100 goods 25 ar		Understand	CO 2	BCCB02.0
	proportion.		The same property of the same			
3	Construct the confider	nce interval for single mean if	mean of sample size of 400	Understand	CO 2	BCCB02.0
	is 40, standard deviati	on is 10.				
		nce interval for single proporti	ion if 18 goods are defective	Understand	CO 2	BCCB02.0
	from a sample of 200					
	Define sample propor	tion		Remember	CO 2	BCCB02.0
	Define ANOVA.			Remember	CO 2	BCCB02.0
	Explain ANOVA one	- way classification.		Remember	CO 2	BCCB02.0
8	Define large sample.			Remember	CO 2	BCCB02.0
	Write the test statistic	for difference of means in lar	ge samples	Remember	CO 2	BCCB02.0
10	Write the test statistic	for difference of proportions	in large samples	Remember	CO 2	BCCB02.0
	find the confidence in standard deviation is	terval for mean if mean of sar	mple size of 144 is 150,	Understand	CO 2	BCCB02.0
12	What is the probabili			Remember	CO 2	BCCB02.0
	Explain ANOVA two			Understand	CO 2	BCCB02.0
4	In a random sample of	f 125 coca cola drinkers 75 sar pothesis P=0.5 against alterna		Understand	CO 2	BCCB02.0
15	Write the procedure of		tirve hypothesis 1 >0.5.	Remember	CO 2	BCCB02.0
	Define one tailed and			Remember	CO 2	BCCB02.0
		f 225 coca cola drinkers 80 sai	id they prefer pepsi to fanta.	Understand	CO 2	BCCB02.0
		sis P=0.5 against alternative hy				
		or region of rejection.		Remember	CO 2	BCCB02.0
	Define critical value of			Remember	CO 2	BCCB02.0
20	How many types of ea	rrors in talking a decision abou	ut null hypothesis.	Remember	CO 2	BCCB02.0
	• • •		(Long Answer Questions)			_
		ge samples of sizes 1000 and 2 ctively. Can the samples be rest. D 2.5 inches		Understand	CO 2	BCCB02.0
2	An ambulance service destination In emerge license to Ambulance mean of 9.2 minutes v significance?	e claims that it takes on the average calls. To check on this class service has then timed on fifty with 1.6 minutes. What can the	aim the agency which issues y emergency calls getting a ey conclude at 5% level of	Understand	CO 2	BCCB02.0
3	Experience had show	n that 20% of a manufactured on of 400 articles only 50 are yel.		Understand	CO 2	BCCB02.0
4	According to norms 6	established for a mechanical arage weight of 73.2 with S.D 8 e 76.7 test the hypothesis H_0 :	3.6 if 40 randomly selected	Understand	CO 2	BCCB02.0
5	A sample of 100 elect life time of 1190 hrs a manufacturer 'B' Sho	tric bulbs produced by manufa and s.d. of 90 hrs A sample of wed a mean life time of 1230 een the mean life times of the t	of 75 bulbs produced by hrs with s.d. of 120 hrs. Is	Understand	CO 2	BCCB02.0
6	In a random sample or	f 60 workers, the average time a standard deviation of 6.1 min		Understand	CO 2	BCCB02.0

	T									,		1
	hypothesis μ	= 32.6	minutes	in favour	of alterna	ative n	ull h	ypothesis				
	$\mu > 32.6$ at	$\alpha = 0.0$)5 leve	l of signif	ricance							
7	On the basis of			_		f a civ	il se	rvice exar	nination	Understand	CO 2	BCCB02.05
	are divided int			*								
	Consider the f	irst quest	ion of th	ie examin	ation amo	ng the	e firs	t group, 4	0 had the			
	correct answer											
	the basis of the						ques	tion is not	t good at			
	discriminating								- 11	** 1	GO 2	D G G D 0 2 0 5
8	A cigarette ma									Understand	CO 2	BCCB02.05
	brand B by 8% A and 18 out of											
	difference is a		-	: 01 100 SI	nokers pr	CICI DI	ianu	D. Test w	filetifet 670			
9	If 48 out of 40			l area nos	sessed 'ce	ell' nh	ones	while 120	0 out of	Understand	CO 2	BCCB02.05
	500 in urban A									Chacistana	CO 2	BCCB02.03
	rural area and											
0	In an investiga									Understand	CO 2	BCCB02.05
				•			•					
	M/C		No. of		No. of	defect	ives					
			units									
			inspec									
	Machine		37:			17						
	Machine		450		<u> </u>	22		1:	0.05			
1	Test whether t									TT. 1 1	CO 2	DCCD02.05
1	2. The nicotine follows. Test t									Understand	CO 2	BCCB02.05
	ionows. Test t	пе пурог	116818 101	the unite	rence bety	ween i	near	is at 0.05 i	ievei			
	Sample-A	24	27	26	23	25			7			
	Sample-B	29	30	30	31	24		36	†			
	test to the sign	incance										
				EAN	S.D		SAN	MPLE SIZ	Œ.			
	University-A			55	10			400				
2	University-B			57	15	. 1		100	.1.1	TT 1 . 1	GO 2	P.CCP 02 05
3	In a big city 3									Understand	CO 2	BCCB02.05
	information su smokers?	ipport the	conclu	sion that t	ne majori	ty of f	nen	in this city	y are			
4	In a random sa	mple 12	5 cool d	rinkers 68	Said that	they r	refe	r thumsur	to nensi	Understand	CO 2	BCCB02.05
_	test the null hy									Onderstand	CO 2	BCCB02.03
	5% level of sig		2 0.0 0	guillist til			Pour	2010 17 010				
5	In a sample of		ople in I	Karnataka	540 are r	ice eat	ters a	and the res	st are	Understand	CO 2	BCCB02.05
	wheat eaters.											
	state at 1% lev											
6	100 articles fro									Understand	CO 2	BCCB02.05
	similar articles							ective. Tes	st the			
_	significant diff								1 1 111	** 1		D.G.GD.02.05
7	Random samp									Understand	CO 2	BCCB02.05
	to hava flyove											
	proposal. Test proposal are sa			iai ine pro	portion o	ımen	апа	women in	i iavour oi			
8	Two large pop			and 25%	respectiv	ely fo	ir-ha	ired neon	le Is the	Understand	CO 2	BCCB02.05
O	difference like									Onderstand	CO 2	DCCD02.03
	two population		iiddeli II	. sumpics	JI 1200 t	70	. 5 10	Pectivery	mom the			
19	A machine put		16 impe	rfect artic	les in a sa	mple	of 50	00 articles	after the	Understand	CO 2	BCCB02.05
	machine is over									-	-	
	Has the machi							-				
		-										

20	Tl 1:66	4 41	f 4	-1-:	4:			£		TT. dameter d	CO 2	DCCD02.06
20						used on three			140 040	Understand	CO 2	BCCB02.06
	shown below					m each group	and u	ie resu	ns are			
	snown belo	Group A	Grou		up C							
		•		•	oup C							
		7	3	4								
		6	6	7								
		7	5	7								
		7	4	4								
		8	7	8								
	Determine of	on the basis	of the	above data	whether	there is diffe	erence	in the				
	teaching me	ethods										
						olving and (uestions)		
1						.D of 2.61 is				Understand	CO 2	BCCB02.05
		_	e popul	ation mean	3.25 and	d S.D 2.61. A	Also cal	lculate	95%			
	confidence											
2						s a mean life				Understand	CO 2	BCCB02.05
					mean is	s 15150 kms	and S.I	O is 12	200			
	km test 0.05								0.00			7.777.07.07
3						d S.D of pro			.038	Understand	CO 2	BCCB02.05
			_			able to rejec	t the nu	111				
4	hypothesis /						. , .			TT 1 . 1	GO 2	DCCD02.05
4						verage life of				Understand	CO 2	BCCB02.05
						of this tyres o			a gets			
5						miles can cla pated in sport			205	Understand	CO 2	BCCB02.05
)						nts who have				Understand	CO 2	БССБ02.03
						ypothesis tha						
						students who			i tiic			
	participated		.cu iii s	Jores more t	nan me	students with	nave	пос				
6			affic at	two busy ir	tersecti	ons between	4nm aı	nd 6pr	n to	Understand	CO 2	BCCB02.05
						as found that				Onderstand	CO 2	BCCB02.03
						the first inte						
						s there were						
						the south ma						
						st the signific						
	two means a					C						
7	A manufact	urer claims	that at	least 95% c	f the eq	uipment whi	ch he s	upplie	d to a	Understand	CO 2	BCCB02.05
						ion of sampl						
	equipments	received 18	3 were	faulty test tl	ne claim	at 0.05 leve	l.					
8						0, 15 were de				Understand	CO 2	BCCB02.05
				ive test the	significa	ant difference	e betwe	en tw	О			
	proportioins											
9	Marks obtai									Understand	CO 2	BCCB02.06
		Group A	Grou	`	up C							
		16	15	15								
		17	15	14								
		13	13	13								
		18	17	14								
	Using ANC			her teaching	metho	ds had any e	ffect o	n the				
	students per				, 							
10			were o	compared to	see if t	hey led to gre	eater p	roduct	ivity	Understand	CO 2	BCCB02.06
						viduals traine						
	methods are						,					
	Method 1		36	26	31	20	34	25				
	Method 2		40	29	38	32	39	34	1			
	Method 3		32	18	100	21	33	27	1			
		level of sig				ining method			J erence			
	levels of pro		,ıcaı	ice, ao me t	ince trai	5 11100	o reau	.o uni				
	10,015 01 pro	sactivity:										ı

	UNIT-III	IC.		
	ORDINARY DIFFERENTIAL EQUATION Part - A (Short Answer Questions)	18		
1	Explain merits and demerits of Taylor Series method.	Remember	CO 3	BAEB01.07
2	Write the third order Runge- Kutta method to find the numerical solutions of	Understand	CO 3	BAEB01.07
_	ordinary differential equation.	Chacistana	003	B/1EB01.00
3	Write the Modified Euler formula to find the numerical solutions of ordinary	Remember	CO 3	BAEB01.08
	differential equation.			
4	Write the second order Runge- Kutta method to find the numerical solutions of	Understand	CO 3	BAEB01.08
	ordinary differential equation.			
5	Define ordinary differential equation.	Remember	CO 3	BAEB01.09
6	Explain types of ordinary differential equations.	Remember	CO 3	BAEB01.09
7	Write short note on the methods of the numerical solution of ordinary differential	Remember	CO 3	BAEB01.09
	equation.	D 1	GO 2	D + ED 01 07
8	Explain single step methods.	Remember	CO 3	BAEB01.07
9	Write short note on step by step methods.	Understand	CO 3	BAEB01.08
10	Define initial value problems.	Remember	CO 3	BAEB01.09
11	Write short note on boundary value problems.	Understand	CO 3	BAEB01.09
12	Define mixed value problems.	Remember	CO 3	BAEB01.09
13	Explain Taylor series method.	Remember	CO 3	BAEB01.07
14	Distinguish between analytical solution and numerical solution.	Remember	CO 3	BAEB01.09
15	Explain merits and demerits of Runge-Kutta Method Series method.	Remember	CO 3	BAEB01.08
16	Write a short note on Euler's method.	Remember	CO 3	BAEB01.08
17	Write the first order Runge- Kutta method to find the numerical solutions of	Understand	CO 3	BAEB01.08
	ordinary differential equation.			
18	Explain fourth order Runge- Kutta method.	Remember	CO 3	BAEB01.08
19	Explain the advantaged of Runge- Kutta method over Taylor's Series method.	Understand	CO 3	BAEB01.08
20	Define Adams-Bashforth- Moulton method.	Remember	CO 3	BAEB01.08
	Part – B (Long Answer Questions)	** 1	GO 2	D + ED 04 05
1	By using Taylor's series method find an approximate value of y at $x = 0.2$ for the	Understand	CO 3	BAEB01.07
	differential equation $y' - 2y = 3e^x$, $y(0) = 0$.			
2	Using Euler's method solve for $x = 2$ for $\frac{dy}{dx} = 3x^2 + 1$, $y(1) = 2$, taking step size	Analyze	CO 3	BAEB01.08
	(i) $h = 0.5$ and (ii) $h = 0.25$.			
3	Solve by Euler's method, $y^1 = x + y$, $y(0) = 1$ and find the value of $y(0.3)$ taking	Remember	CO 3	BAEB01.08
3	step size $h = 0.1$. compare the result obtained by this method with the result	Kemember	CO 3	DALBOT.00
	obtained by analytical methods			
4	Using Runge-Kutta method of fourth order, find y(0.2)where $y' = y - x$,	Understand	CO 3	BAEB01.08
	y(0)=2, $h=0.2$.			
5	Apply the 4 th order Runge-Kutta method to find an approximate value of y when	Understand	CO 3	BAEB01.08
	x=1.2 in steps of 0.1, given that $y' = x^2 + y^2$, y(1)=1.5	Charle	003	B1EB01.00
		** 1	GO 2	D + ED 04 05
6	Solve $y^1 = x^2 - y$, $y(0) = 1$, using Taylor's series method and compute $y(0.1)$, $y(0.2)$, $y(0.3)$ and $y(0.4)$ (correct to 4 decimal places).	Understand	CO 3	BAEB01.07
7	By using Euler's method solve the differential equation from	Analyze	CO 3	BAEB01.08
_ ′	y' + y = 0, $y(0) = 1$, find $y(0.04)$, taking step size $h = 0.01$.	Allaryzc	CO 3	DALBOT.00
		** 1	GO 2	D + ED 01 00
8	Using modified Euler's method find the approximate value of x when $x = 0.3$	Understand	CO 3	BAEB01.08
	given differential equation $dy/dx = x + y$ and $y(0) = 1$.			
9	Find $y(2.5)$ from the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$, $y(2)=2$, $h=0.25$	Analyze	CO 3	BAEB01.08
	using Runge-Kutta method of second order.			
10	Estimate y(0.2), given $y' = 3x + \frac{y}{2}$, $y(0) = 1$ by using Runge-Kutta method,	Remember	CO 3	BAEB01.08
	_			
<u> </u>	taking h=0.1.			

11	Using Taylor's series method find an approximate value of y at $x = 0.1$ given	Understand	CO 3	BAEB01.07
12	$y(0)=1$ for the differential equation $y'=3x+y^2$	Understand	CO 3	BAEB01.08
	Using Euler's method solve for $y' = y^2 + x$, $y(0)=1$ find $y(0.1)$ and $y(0.2)$			
13	Solve $y' = x + y$, given $y(1) = 0$. Find $y(1.1)$ and $y(1.2)$ by Tayor's series method.	Analyze	CO 3	BAEB01.08
14	Given the differential equation $y^1=y-x$, $y(0)=2$ find $y(0.2)$ using R- K method take h=0.1.	Understand	CO 3	BAEB01.08
15	Find y(0.1) and y(0.2) using modified Euler's formula given differential equation $dy/dx = x^2-y$, y(0)=1	Understand	CO 3	BAEB01.08
16	Given $y' = x + \sin y$, $y(0) = 1$ compute $y(0.2)$ and $y(0.4)$ with h=0.2 using Euler's Modified method.	Understand	CO 3	BAEB01.08
17	Employ Taylor's method to obtain approximate value of $y(1.1)$ and $y(1.3)$, for	Analyze	CO 3	BAEB01.08
	the differential equation $y' = x \cdot y^{\frac{1}{3}}$, $y(1) = 1$. Compare the num, erical solution obtained with exact solution.			
18	Use Mile's predictor – corrector method to obtain the solution of the equation	Understand	CO 3	BAEB01.08
	$y' = x - y^2$ at $x = 0.8$ given that			
19	y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762.	Remember	CO 3	BAEB01.08
19	Obtain the solution of $y' = x^2(1+y)$, $y(1) = 1$ at $x = 1(0.1)1.2$ by any	Kemember	CO 3	DALBOT.08
20	numerical method and estimate $x = 1.3$ by Adam's method.	Understand	CO 3	BAEB01.08
20	If $\frac{dy}{dx} = 2e^x y$, $y(0) = 2$ find $y(0.4)$ using Adam's predictor corrector	Onderstand	CO 3	DAEDUI.08
	formula by calculating $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Euler's Modified			
1	Tormula.			
	formula. Part – C (Problem Solving and Critical Think	ing)		
1	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the	ing) Understand	CO 3	BAEB01.08
	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$.		CO 3	BAEB01.08
1 2	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and		CO 3	BAEB01.08 BAEB01.07
2	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.	Understand Analyze	CO 3	BAEB01.07
	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula	Understand		
2	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.	Understand Analyze Understand	CO 3	BAEB01.07
2	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$	Understand Analyze	CO 3	BAEB01.07
3	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$.	Understand Analyze Understand	CO 3	BAEB01.07 BAEB01.08
3	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential	Understand Analyze Understand Analyze	CO 3	BAEB01.08 BAEB01.08
3	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential equation $y' = y + e^x$, $y(0) = 0$. Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps	Understand Analyze Understand Analyze	CO 3	BAEB01.08 BAEB01.08
3 4	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential equation $y' = y + e^x$, $y(0) = 0$. Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps of 0.1 , using modified Euler's method.	Understand Analyze Understand Analyze Remember	CO 3 CO 3	BAEB01.08 BAEB01.08 BAEB01.08
3 4 5	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential equation $y' = y + e^x$, $y(0) = 0$. Given the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps	Understand Analyze Understand Analyze Remember Understand	CO 3 CO 3 CO 3	BAEB01.08 BAEB01.08 BAEB01.08
3 4 5	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential equation $y' = y + e^x$, $y(0) = 0$. Given the differential equation $y' = x + y + y(0) = 0$. Given the differential equation $y' = x + y + y(0) = 0$. Find the solution of differential equation $y' = x + y + y(0) = 0$. Find the solution of differential equation $y' = x + y + y(0) = 0$.	Understand Analyze Understand Analyze Remember Understand	CO 3 CO 3 CO 3	BAEB01.08 BAEB01.08 BAEB01.08
3 4 5 6	Part – C (Problem Solving and Critical Think Compute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the differential equation $y' = xy + y^2$, $y(0) = 1$. Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method. Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formula given that differential equation $\frac{dy}{dx} = x + x^2y$, $y(0) = 1$. Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps). Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differential equation $y' = y + y' = y' = y' = y' = y' = y' = y$	Understand Analyze Understand Analyze Remember Understand Understand	CO 3 CO 3 CO 3 CO 3	BAEB01.08 BAEB01.08 BAEB01.08 BAEB01.08

	Bashforth-Moulton method.			
9	dv	Understand	CO 3	BAEB01.08
	Find the solution of $\frac{dy}{dx} = x - y$ at $x = 0.4$ subject to the condition $y = 1$ at			
	ast as			
	x = 0 and $h = 0.1$ using Milne's method. Use Euler's modified method to			
	evaluate $y(0.1), y(0.2)$ and $y(0.3)$.			
10	Solve the initial value problem $y' + y^2 = e^x$, $y(0) = 1$ from $x = 0$ at $x = 0.5$	Remember	CO 3	BAEB01.08
	taking $h = 0.1$ using Adams-Bashforth-Moulton method. Starting values may be			
	taken from Runge-Kutta method. UNIT -IV			
PA	ARTIAL DIFFERENTIAL EQUATIONS AND CONCEPTS IN SOLUTION T	O ROUNDARY	V VAI IIF I	PROBLEMS
1 2	Part – A (Short Answer Questions)	O BOUNDAK	IVALUEI	ROBLEMS
1	Define order with reference to partial differential equation	Remember	CO 4	BAEB01.10
2	Form the partial differential equation by eliminate the arbitrary constants from	Understand	CO 4	BAEB01.10
	$z = ax^3 + by^3$	0		
	•		GO 4	D / ED 04 40
3	Form the partial differential equation by eliminating arbitrary function	Analyze	CO 4	BAEB01.10
4	$z=f(x^2+y^2)$	TT 1	00.4	DAEDO1 10
4	Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$	Understand	CO 4	BAEB01.10
5	Write short note on complete integral with reference to nonlinear partial	Remember	CO 4	BAEB01.10
	differential equation	1.C.IIICIIIICI	20 4	2.2201.10
6	Define general integral with reference to nonlinear partial differential equation	Remember	CO 4	BAEB01.10
7	Solve the partial differential equation $p^2 + q^2 = m^2$	Understand	CO 4	BAEB01.10
8	Solve the partial differential equation $z=px+qy+p^2q^2$	Understand	CO 4	BAEB01.10
9	Define degree with reference to partial differential equation	Remember	CO 4	BAEB01.10
10	Write the heat one dimension equation	Remember	CO 4	BAEB01.11
11	Eliminate the arbitrary constants from $z=(x^2+a)(y^2+b)$	Understand	CO 4	BAEB01.10
12	Form the partial differential equation by eliminating a and b from	Analyze	CO 4	BAEB01.10
	$\log(az - 1) = x + ay + b$			
13	Form the partial differential equation by eliminating the constants from	Understand	CO 4	BAEB01.10
	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha \text{ where } \alpha \text{ is a parameter.}$			
1.4		D	CO 4	DAED01 10
14 15	Define non-linear partial differential equation.	Remember Remember	CO 4	BAEB01.10
16	Define particular integral with reference to nonlinear partial differential equation.	Remember	CO 4	BAEB01.10 BAEB01.10
17	Define singular integral with reference to nonlinear partial differential equation. Solve p- x^2 =q+ y^2	Understand	CO 4	BAEB01.10
18	Solve the partial differential equation $x(y-z)p+y(z-x)q=z(x-y)$.	Understand	CO 4	BAEB01.10
19	Find a complete integral of $f=xpq+yq^2-1=0$.	Understand	CO 4	BAEB01.10
20	Find a complete integral of $f = xpq+yq -1=0$.	Understand	CO 4	BAEB01.10
20	Part – B (Long Answer Questions)	Onderstand	CO 4	D111001.10
1	Form the partial differential equation by eliminating arbitrary function from	Understand	CO 4	BAEB01.10
1	f(x^2 + y^2 + z^2 , z^2 -2xy)=0	Silasibulia	20 1	2.12201.10
2	Solve the partial differential equation $p^2z^2\sin^2 x + q^2z^2\cos^2 y = 1$.	Understand	CO 4	BAEB01.10
3	Solve the partial differential equation $x^2p^2 + xpq = z^2$.	Understand	CO 4	BAEB01.10
4	Solve the partial differential equation $q^2 - p = y - x$.	Understand	CO 4	BAEB01.10
5	Find the temperature in a thin metal rod of length L , with both ends insulated	Analyze	CO 4	BAEB01.11
	and with initial temperature in the rod in $\sin\left(\frac{\pi x}{L}\right)$.			
6	Form a partial differential equation by eliminating a, b, c from	Understand	CO 4	BAEB01.10
	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \right = 1.$			
	$\begin{vmatrix} a^2 & b^2 & c^2 \end{vmatrix}$			
7	Evaluate the partial differential equation	Understand	CO 4	BAEB01.10
	$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$			

8	Solve the partial differential equation	Analyze	CO 4	BAEB01.10
	$(z^2 - 2yz - y^2)p + (xy + zx)q = xy - zx.$			
9	Solve the partial differential equation $(mz - ny) p + (nx - lz) q = (ly - mx)$.	Understand	CO 4	BAEB01.10
10	Evaluate the partial differential equation $y^2zp+x^2zq=xy^2$	Understand	CO 4	BAEB01.10
11	Solve the partial differential equation $z(p^2 - q^2) = x - y$	Understand	CO 4	BAEB01.10
12	Find $u_{xx} = u_y + 2u$ with $u(0, y) = 0$ and $\frac{\partial u(0, y)}{\partial x} = 1 + e^{-3y}$.	Analyze	CO 4	BAEB01.11
13	Solve the partial differential equation $p - x^2 = q + y^2$. Find the partial differential equation $q = px + p^2$.	Understand	CO 4	BAEB01.10
14	Find the partial differential equation $q = px + p^2$.	Understand	CO 4	BAEB01.10
15	Evaluate the partial differential equation $z^2 = pqxy$.	U Remember	CO 4	BAEB01.10
16	Solve the partial differential equation $z = p^2x + q^2y$	Understand	CO 4	BAEB01.10
17	Find the differential equation of all spheres whose centres lie on z-axis with a given radius r.	Understand	CO 4	BAEB01.10
18	· ·	Understand	CO 4	BAEB01.11
19	Solve $y^3 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial x} = 0$ Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$	Analyze	CO 4	BAEB01.11
20	An insulated rod OA of length l with insulated sides, has initial temperature	Understand	CO 4	BAEB01.11
	$u(x,0)$ for $0 \le x \le l$. The ends are insulated at $t=0$. Find the subsequent			
	temperature distribution.			
1	Part – C (Problem Solving and Critical Think			DAED01 10
1	Solve the partial differential equation $(x^2 + y^2 + y^2) = (x^2 + y^2 + y^2) = (x^2 + y^2)$	Analyze	CO 4	BAEB01.10
	$(x^2 - y^2 - yz)p + (x^2 - y^2 - zx)q = z(x - y).$	Damanhan	CO 4	DAED01 10
3	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Remember Understand	CO 4	BAEB01.10 BAEB01.11
	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that $u=0$ when $t=0$ and $\frac{\partial u}{\partial t} = 0$ When $x=0$ show also that as t tends to ∞ , u tends to $\sin x$.			21.22¢1111
4	Solve the partial differential equation $p\cos(x+y) + q\sin(x+y) = z$	Understand	CO 4	BAEB01.10
5	Solve the differential equation $(y+z)p+(z+x)q=x+y$	Understand	CO 4	BAEB01.10
6	Solve the one dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ given	Analyze	CO 4	BAEB01.11
	that $u(0,t) = 0, u(L,t) = 0, t > 0$ and			
	$u(x,0) = 3\sin((\pi x)/L), 0 < x < L.$			
7	Derive the complete solution for the one dimensional heat equation with zero boundary problem with initial temperature $u(x,0) = x(L-x)$ in the interval $(0, L)$.	Understand	CO 4	BAEB01.11
8	If a string of length l is initially at rest in equilibrium position and each of its	Analyze	CO 4	BAEB01.11
	points are given the velocity $V_0 \sin^3 \frac{\pi x}{l}$, find the displacement $y(x,t)$.			
9	points are given the velocity $V_0 \sin^3 \frac{\pi x}{l}$, find the displacement $y(x,t)$. Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$	Understand	CO 4	BAEB01.10
10	A bar 100 cm long, with insulated sides, has its ends kept at 0^{0} C and 100^{0} C until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.	Remember	CO 4	BAEB01.11

	UNIT -V			
	MAJOR EQUATION TYPES ENCOUNTERED IN ENGINEERING AND PHYSICAL SCIENCES			
1	Part - A (Short Answer Questions) Write a short note on one dimensional wave equation.	Remember	CO 5	BCCB02.12
2	Explain method of separation of variables.	Remember	CO 5	BCCB02.12
3	Use D'Alembert principle of virtual work to verify that it gives the same	Remember	CO 5	BCCB02.14
	equations of motion found by Newton.			200202.11.
4	Explain about maximum principle.	Remember	CO 5	BCCB02.14
5	If the initial displacement is given to be zero then what is the initial velocity.	Remember	CO 5	BCCB02.12
6	If the string is released from rest and the initial non-zero displacement is given then what is the velocity.	Remember	CO 5	BCCB02.12
7	Examine the complex variable function $f(z) = \frac{x-iy}{x^2+y^2}$ for analyticity in Cartesian form.	Understand	CO 5	BCCB02.13
8	Calculate all the values of k such that $f(z) = e^x(cosky + isinky)$ is an analytic function.	Understand	CO 5	BCCB02.13
9	Obtain an analytic function f (z) whose imaginary part of the analytic function is $v = e^x(xsiny + ycosy)$.	Understand	CO 5	BCCB02.13
10	Show that the function $f(z) = z ^2$ is continuous at all points of z but not differentiable at any $z \neq 0$.	Understand	CO 5	BCCB02.13
11	Define the term Analyticity of a complex variable function f (z).	Remember	CO 5	BCCB02.13
12	Define the term Continuity of a complex variable function f (z).	Remember	CO 5	BCCB02.13
13	Define the term Differentiability of a complex variable function f (z).	Remember	CO 5	BCCB02.13
14	If $w = f(z) = z^2 + z$. Find its real and imaginary parts.	Understand	CO 5	BCCB02.13
15	Examine the complex variable function $f(z) = z^3$ to analyticity for all values of z in Cartesian form.	Remember	CO 5	BCCB02.13
16	Verify whether the function $v = x^3y - xy^3 + xy + x + y$ can be imaginary part of an analytic function f (z) where $z = x + iy$.	Understand	CO 5	BCCB02.13
17	Calculate the value of k such that $f(x, y) = x^3 + 3kxy^2$ may be harmonic function.	Remember	CO 5	BCCB02.14
18	Show that the real part of an analytic function $f(z)$ where $u = 2\log(x^2 + y^2)$ is harmonic.	Understand	CO 5	BCCB02.14
19	Determine the conjugate harmonic function if the real part of an analytic function $f(z)$ is $u = y^2 - 3x^2y$ is harmonic function.	Understand	CO 5	BCCB02.14
20	Verify whether $u = x^2 - y^2 - y$ of an analytic function can be harmonic function of an analytic function f (z) in the whole complex plane.	Understand	CO 5	BCCB02.14
	Part - B (Long Answer Questions)			1
1	A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest its	Understand	CO 5	BCCB02.12
	equilibrium position. If it is set to vibrate by giving each of its points a velocity			
	$\lambda x(1-x)$, find the displacement of the string at any distance x from one end at			
	any time t.			
2	Solve by the method of separation of variables $2xz_x - 3yz_y = 0$.	Understand	CO 5	BCCB02.15
3	Solve by the method of separation of variables $4u_x + u_y = 3u$ and $u(0, y) = e^{-5y}$	Understand	CO 5	BCCB02.15
	·	** 1	96.7	D G G T S T T S
4	A string is stretched and fastened to two points at $x=0$ and $x=L$. Motion is started by displacing the string into the form $y=k(lx-x^2)$ from which it is released at time $t=0$. Find the displacement of any point on the string at a distance of x from one end at time $t=0$.	Understand	CO 5	BCCB02.12
5	A tightly stretched string with fixed end points $x=0$ and $x=1$ is initially in a	Understand	CO 5	BCCB02.12
	position given by $y = y_0 \sin^3((\pi x)/l)$. If it is released from rest from this			
	position, find the displacement(x,t).	TT., J 1	CO 7	DCCD02.12
6	Obtain the general solution of the one dimensional wave equation	Understand	CO 5	BCCB02.12

		<u> </u>		
	$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$			
7	A tightly streched string with fixed end points $x = 0, x = l$ is initially in the	Understand	CO 5	BCCB02.12
	position $y(x,0) = f(x)$. it is set vibrating by giving to each of its points a			
	velocity $\frac{\partial y}{\partial t} = g(x)$ at $t = 0$. Find the displacement $y(x,t)$ in the form of			
	Fourier series.			
8	Find the solution of the initial boundary value problem $\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2}$,	Understand	CO 5	BCCB02.12
	$0 \le x \le 1, t \ge 0$, subject to $y(x,0) = \sin \pi x, 0 \le x \le 1, y_t(x,0) = 0.$			
9	Solve the boundary value problem $u_{tt} = a^2 u_{xx}$; $0 < x < l$; $t > 0$ with	Understand	CO 5	BCCB02.12
	$u(0,t) = 0$; $u(l,t) = 0$ and $u(x,0) = 0$, $u_t(x,0) = \sin^3 \left(\frac{\pi x}{l}\right)$			
10	The points of trisection of a tightly stretched string of length l with fixed ends	Understand	CO 5	BCCB02.12
	are pulled aside through a distance d on opposite sides of the position of equilibrium and the string is released from rest. Obtain an expression for the displacement of the string at any subsequent time and show that the midpoint of			
11	the string is always at rest. Show that the real part of an analytic function f (z) where $u = e^{-2xy} \sin(x^2 - y^2)$ is a harmonic function. Hence find its harmonic	Understand	CO 5	BCCB02.14
12	conjugate. Prove that the real part of analytic function $f(z)$ where $u = \log z ^2$ is harmonic	Understand	CO 5	BCCB02.14
12	function. If so find the analytic function by Milne Thompson method.	II. 1	CO.5	DCCD02.14
13	Show that real part $u = x^3 - 3xy^2$ of an analytic function $f(z)$ is harmonic. Hence find the conjugate harmonic function and the analytic function.	Understand	CO 5	BCCB02.14
14	Show that the real part of an analytic function f (z) where $u = e^{-x}(xsiny - ycosy)$ is a harmonic function.	Understand	CO 5	BCCB02.14
15	If u and v are conjugate harmonic functions then show that uv is also a harmonic function.	Understand	CO 5	BCCB02.14
16	If $f(z) = u + iv$ is an analytic function of z , then calculate $f(z)$ if $2u + v = e^{2x} [(2x+y)\cos 2y + (x-2y)\sin 2y]$.	Understand	CO 5	BCCB02.13
17	Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) Realf(z) ^2 = 2 f'(z) ^2$ where $w = f(z)$ is an analytic function.	Understand	CO 5	BCCB02.13
18	Determine the imaginary part of an analytic function $f(z)$ whose real part of an analytic function is $e^x(x\cos y - y\sin y)$.	Understand	CO 5	BCCB02.13
19	If $w = \emptyset + i\varphi$ represents the complex potential for an electric field where $\varphi = x^2 - y^2 + \frac{x}{x^2 + y^2}$ then determine the function φ .	Understand	CO 5	BCCB02.13
20	Prove that the real and imaginary parts of an analytic function $f(z)$ are	Understand	CO 5	BCCB02.12
	harmonic.			
	Part – C (Problem Solving and Critical Think	ting) Understand	CO 5	BCCB02.15
1	Solve $4u_x + u_y = 3u$ with $u(0, y) = 3e^{-y} - e^{-5y}$ by separation of variables.	Onderstand	CO 3	BCCB02.13
2	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$, given that $u = 0$ when $t = 0$ and $\frac{\partial u}{\partial t} = 0$ when	Understand	CO 5	BCCB02.12
3	$x = 0$. Show also that as t tends to ∞ , u tends to $\sin x$	Undocata	CO 5	DCCD02.12
3	Find the solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ corresponding to the	Understand	CO 5	BCCB02.12

	triangular initial deflection $f(x) = \begin{cases} \frac{2k}{l}x, & where \ 0 < x < \frac{l}{2} \\ \frac{2k}{l}(l-x), & where \ \frac{l}{2} < x < l \end{cases}$ and			
4	initial velocity equal to 0.	Understand	CO 5	BCCB02.12
	Solve the boundary value problem $u_{tt} = a^2 u_{xx}$; $0 < x < l$; $t > 0$ with	Chacistana	000	BCCB02.12
	$u(0,t) = 0$; $u(l,t) = 0$ and $u(x,0) = 0$, $u_t(x,0) = u_0x(l-x)$.			
5	A tightly stretched string of length l has its ends fastened at $x = 0, x = l$. The	Understand	CO 5	BCCB02.12
	midpoint of the string is then taken to height h and then released from rest in			
	that position. Find the lateral displacement of a point of the string at time <i>t</i> from the instant of release.			
6	If u is a harmonic, show that $w = u^2$ is not a harmonic function unless	Understand	CO 5	BCCB02.14
	u is a constant.			
7	If f(z) is an analytic function and $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x}$ then determine the	Understand	CO 5	BCCB02.13
	analytic function f(z) subjected to the condition f($\frac{\pi}{2}$) = 0.			
8	Find an analytic function f(z) whose real part of it is	Understand	CO 5	BCCB02.13
	$\mathbf{u} = e^{x}[(x^2 - y^2)\cos y - 2xy\sin y)].$		~~ -	7.007.02.12
9	Find an analytic function f (z) such that $Re[f'(z)] = 3x^2 - 4y - 3y^2$ and	Understand	CO 5	BCCB02.13
	f(1+i)=0.			
10	Find an analytic function whose real part is $\frac{\sin 2x}{\cosh 2y - \cos 2x}$.	Understand	CO 5	BCCB02.13

Prepared by:

Dr. J Suresh Goud, Associate Professor

HOD, ME