

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

AEROSPACE ENGINEERING

TUTORIAL QUESTION BANK

Course Title	ADVAN	CE	D MATHEMA	FICS IN AER	OSPACE ENGINE	ERING
Course Code	BAEBO					
Programme	M.Tech					
Semester	Ι	AE				
Course Type	Core					
Regulation	IARE -	R18	3			
			Theory		Practic	al
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits
	3		-	3	-	-
Chief Coordinator	Ms. P St	ilatl	ha, Assistant Pro	fessor		
Course Faculty	Ms. P St	ilatl	ha, Assistant Pro	fessor		

COURSE OBJECTIVES:

The cou	urse should enable the students to:
Ι	Develop a basic understanding of a range of mathematics tools with emphasis on engineering applications.
Π	Solve problems with techniques from advanced linear algebra, ordinary differential equations and multivariable differentiation.
III	Develop skills to think quantitatively and analyze problems critically.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts of probability, discrete, continuous random variables and determine probability distribution, sampling distribution of statistics like t, F and chi-square.
CO 2	Understand the foundation for hypothesis testing to predict the significance difference in the sample
	means and the use of ANOVA technique.
CO 3	Determine Ordinary linear differential equations solvable by nonlinear ODE's.
CO 4	Explore First and second order partial differential equations.
CO 5	Analyze the methods for partial differential equations.

COURSE LEARNING OTCOMES (CLOs):

BAEB01.01	Describe the basic concepts of probability, discrete and continuous random variables
BAEB01.02	Determine the probability distribution to find mean and variance.
BAEB01.03	Discuss the concept of sampling distribution of statistics like t, F and chi-square.
BAEB01.04	Understand the foundation for hypothesis testing.
BAEB01.05	Apply testing of hypothesis to predict the significance difference in the sample means.
BAEB01.06	Understand the assumptions involved in the use of ANOVA technique.
BAEB01.07	Solve differential equation using single step method.
BAEB01.08	Solve differential equation using multi step methods.
BAEB01.09	Understand the concept of non- linear ordinary differential equations.
BAEB01.10	Understand partial differential equation for solving linear equations.
BAEB01.11	Solving the first order ordinary differential equations subject to boundary conditions.
BAEB01.12	Solving the higher order ordinary differential equations subject to boundary conditions.
BAEB01.13	Understand the concept of methods for elliptic partial differential equations.
BAEB01.14	Understand the concept of Neumann and mixed problems.
BAEB01.15	Analyze the concept of parabolic and hyperbolic partial differential equations.

TUTORIAL QUESTION BANK

	UNIT- I			
	PROBABILITY THEORY AND DISTRIBUTION	ONS		
	Part - A (Short Answer Questions)			
S No	QUESTIONS	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	Define random variable. Write a short note on discrete and continuous random variables with a suitable example.	Remember	CO 1	BAEB01.01
2	Out of 24 mangoes, 6 mangoes are rotten. If we draw two mangoes. Obtain probability distribution of number of rotten mangoes that can be drawn.	Understand	CO 1	BAEB01.01
3	20% of items produced from a goods factory are defective. If we choose 5 items randomly then find the probability of non defective item.	Understand	CO 1	BAEB01.02
4	The mean and variance of a binomial distribution are 4 and $4/3$ respectively. Then find P(x=1).	Understand	CO 1	BAEB01.02
5	In eight throws of a die 5 or 6 is considered a success. Find the mean number of success.	Understand	CO 1	BAEB01.02
6	The probability if no misprint in a book is e^{-4} . Find probability that a page of book contains exactly two misprints.	Understand	CO 1	BAEB01.02
7	Draft the recurrence relation for the poisson distribution.	Remember	CO 1	BAEB01.02
8	If a bank received on the average 6 bad cheques per day, find the probability that it will receive 4 bad cheques on any given day.	Understand	CO 1	BAEB01.02
9	Explain about Normal distribution.	Remember	CO 1	BAEB01.02
10	If X is normally distributed with mean 2 and variance 0.1, then find P ($ x-2 \ge 0.01$)?	Analyze	CO 1	BAEB01.02
11	If the probability of a defective bolt is 0.2, find (i) mean (ii) standard deviation for the bolts in a total of 400.	Understand	CO 1	BAEB01.02
12	If $\overline{x} = 47.5$, $\mu = 42.1$, $s = 8.4$, $n = 24$ then find t.	Understand	CO 1	BAEB01.03
13	What is the test statistic for t test for single mean and difference of means?	Remember	CO 1	BAEB01.03
14	Define degree of freedom. Find $t_{0.05}$ when 16 degrees of freedom.	Remember	CO 1	BAEB01.03
15	Distinguish between t test for difference of means and F test.	Remember	CO 1	BAEB01.03
16	What is the test statistic for F test? Find $F_{0.99}$ with (28, 12) degrees of freedom.	Remember	CO 1	BAEB01.03
17	Write the formulae for sample mean, sample variance and sample standard deviation.	Remember	CO 1	BAEB01.03
18	What is the degree of freedom for chi square test in case of contingency table of order 4x3?	Remember	CO 1	BAEB01.03
19	What is the test statistic for chi square test?	Remember	CO 1	BAEB01.03
20	Find $\chi^2_{0.05}$ at 9 degrees of freedom.	Understand	CO 1	BAEB01.03
	Part - B (Long Answer Questions)			
1	A random variable X has the following probability function. X 4568 $P(X)$ 0.10.30.40.2Determine (i) Expectation (ii) variance (iii) Standard deviation.	Understand	CO 1	BAEB01.01
2	A continuous random variable has the probability density function	Analyze	CO 1	BAEB01.01
	$f(x) = \begin{cases} kxe^{-\lambda x}, \text{ for } x \ge 0, \lambda > 0\\ 0, \text{ otherwise} \end{cases}$ Determine (i) k (ii) Mean (iii) Variance.			
3	Out of 20 tape recorders 5 are defective. Find the standard deviation of defective in the sample of 10 randomly chosen tape recorders. Find (i) $P(X=0)$ (ii) $P(X=1)$ (iii) $P(X=2)$ (iv) $P(1.$	Understand	CO 1	BAEB01.02
4	Out of 800 families with 5 children each, how many would you expect to have (i)3 boys (ii)5girls (iii)either 2 or 3 boys ? Assume equal probabilities for boys and girls.	Understand	CO 1	BAEB01.02

4 coins are tossed 160 times. Fit the Binomial distribution of getting number of	Understand	CO 1	BAEB01.02
heads.			DALD01.02
A car-hire firm has two cars which it hires out day by day. The number of demands for a car o n each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused.	Analyze	CO 1	BAEB01.02
The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.	Understand	CO 1	BAEB01.02
If a Poisson distribution is such that $P(X = 1) = \frac{3}{2}P(X = 3)$ then find (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$.	Understand	CO 1	BAEB01.02
If X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) P $(26 \le X \le 40)$ ii) P($X \ge 45$).	Understand	CO 1	BAEB01.02
In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution.	Analyze	CO 1	BAEB01.02
1000 students have written an examination with the mean of test is 35 and standard deviation is 5. Assuming the distribution to be normal find i) How many students marks like between 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 50.	Understand	CO 1	BAEB01.02
Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the average is 0.83 mg. can this claim be accepted if a random sample of 8 'gutkhas' of this type have the nicotine contents of 2.0,1.7,2.1, 1.9,2.2, 2.1, 2.0,1.6 mg.	Understand	CO 1	BAEB01.03
deviations from their respective means are 26.94,18.73.can the samples be consid	Understand	CO 1	BAEB01.03
Two independent samples of items are given respectively had the following values.Sample I1113111591214Sample II91110139810-	Understand	CO 1	BAEB01.03
In one sample of 8 observations the sum of squares of deviations of the sample values from the sample mean was 84.4 and another sample of 10 observations it was 102.6 .test whether there is any significant difference between two sample	Understand	CO 1	BAEB01.03
Time taken by workers in performing a job by method 1 and method 2 is given below.Method 1201627232226-Method 227334235323438Does the data show that variances of time distribution from population which	Understand	CO 1	BAEB01.03
The following random samples are measurements of the heat-producing capacity (in millions of calories per ton) of speciments of coal from two mines:Mine 18,2608,1308,3508,0708,340Mine 27,9501,8907,9008,1407,9207,840Use the 0.05 level of significance to test whether it is reasonable to assume that	Understand	CO 1	BAEB01.03
The no. of automobile accidents per week in a certain area as follows: 12,8,20,2,14,10,15,6,9,4. Are these frequencies in agreement with the belief that accidents were same in the during last 10 weeks.	Analyze	CO 1	BAEB01.03
	demands for a car o n each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused. The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls. If a Poisson distribution is such that $P(X = 1) = \frac{3}{2}P(X = 3)$ then find (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$. If X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) P $(26 \le X \le 40)$ ii) $P(X \ge 45)$. In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution. 1000 students have written an examination with the mean of test is 35 and standard deviation is 5. Assuming the distribution to be normal find i) How many students marks like between 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 50. Producer of 'gutkha' claims that the nicotine content in his 'gutkha' on the average is 0.83 mg. can this claim be accepted if a random sample of 8 'gutkhas' of this type have the nicotine contents of 2.0,1.7,2.1, 1.9,2.2, 2.1, 2.0,1.6 mg. The means of two random samples of sizes 9,7 are 196.42 and 198.82.the sum of deviations from their respective means are 26.94,18.73.can the samples be consid have been the same population? Two independent samples of items are given respectively had the following values. Sample I 11 11 13 11 15 9 12 14 Sample II 9 11 10 13 9 8 10	demands for a car o n cach day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused.UnderstandThe average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.UnderstandIf a Poisson distribution is such that $P(X = 1) = \frac{3}{2} P(X = 3)$ then find (i)Understand $P(X \ge 1)$ (ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$.UnderstandIf X is a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) $P(26 \le X \le 40)$ ii) $P(X \ge 45)$.UnderstandIn a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation to be normal find i) How many students marks like betwen 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 50.Understand varage is 0.83 mg, can this claim be accepted if a random sample of 8 'gutkha' of this type have the nicotine content in his 'gutkha' on the average is 0.83 mg, can this claim be accepted if a random sample of 8 'gutkha' from their respective means re 26.94.18.73.can the sample se consid have been the same population?Understand 'understand 'understand 'autes from the respective means re given respectively had the following 'understand deviations from their respective means re soft deviations of the sample variances at at 5% level of significant difference between their means?Understand 'understand 'understand 'understand 'understand' 'understand' 'understand' 'und	demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii)ColIn a verage number of phone calls per minute coming into a switch board between 2.P.M. and 4.P.M. is 2.5. Determine the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.UnderstandCO 1If a Poisson distribution is such that $P(X = 1) = \frac{3}{2} P(X = 3)$ then find (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (iii) $P(2 \le X \le 5)$.UnderstandCO 1If x a normal variate with mean 30 and standard deviation 5. Find the probabilities that i) $P(2 \le X \le 40)$ ii) $P(X \ge 45)$.UnderstandCO 1In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution.UnderstandCO 11000 students have written an examination with the mean of test is 35 and students get below 20? iv) How many students get more than 40? iii) How many students get below 20? iv) How many students get more than 50.UnderstandCO 1Producer of "gutkha' claims that the nicotine content in his "gutkha" on the average is 0.83 mg, can this claim be accepted if a random sample of 8 "gutkhas' of this type have the nicotine contents of 2.0, 1.7, 2.1, 1, 9.2.2, 2.1, 2.0, 1.6 mg.CO 1Two independent samples of items are given respectively had the following values.Understand eccpted existions of the same population?CO 1Two independent samples of items are given respectively had the following values.Understand existing a standard difference between two sample values.CO 1Sample 111111391214<

19	200 digit are	s were	e chos	sen at	t randor	n fror	n set of	tables	s the fr	equen	cy of th	e digits	Understand	CO 1	BAEB01.03
	digit	0	1	2	3	4	5	6	7	8	9]			
	frequ ency	18	19	23	21	16	25	22	20	21	15]			
	Use chi s distribute	ed in e	equal i	numb	er in th	e tabl	e	•							
20	The follo and nature gender of	e of v	work.	Test	whethe	the r	nature o	of wor	k is in	depend			Understand	CO 1	BAEB01.03
					Stable	1	Unstabl	e	Total						
		Male			40		20		60						
		Femal			10		30		40						
		Total			50		50		100						
	1				Part -	C (P)	roblem	Solvi	ng an	d Criti	ical Thi	inking Q	uestions)		1
1	If $f(x) = k$	$e^{- x }$	is pro	obabi	lity den	sity f	unction	in the	e interv	val, —	$\infty < x \cdot$	<∞,	Understand	CO 1	BAEB01.01
	then find	i) k i	ii) Me	an i	ii) Vari	ance	iv) P(0) <x<4< td=""><td>).</td><td></td><td></td><td></td><td></td><td></td><td></td></x<4<>).						
2	A discret	e ranc	dom v	ariab	le X ha	s the	followi	ng pro	babili	ty disti	ibution		Remember	CO 1	BAEB01.01
	Х	1	2		3 4		5 6		7	8					
	P(X=x)	21	4k 4k	C	6k 8	k 1	10k 1	2k	14k	4k					
	Find (i) k	c (ii) p	o(X<3) (i	ii) <i>p(X</i>	$C \ge 5$)								
3	The prob	abilit	y that	a ma	n hittin	g a ta	rget is 1	/3. If	he fire	es 5 tin	nes , det	ermine	Understand	CO 1	BAEB01.02
	the proba						0				<i>,</i>				
	(i) At mo														
4	The mark with mea	n 78%	6 and	stand	lard dev	viation	n 11%.	Deter	mine	norma	lly distr	ibuted	Analyze	CO 1	BAEB01.02
	(i)How n (ii)What (iii)With	was tl	he hig	hest	mark ol	otaine	d by th	e lowe	est 10%		e studei	nts			
5	Average Determin most one	numb ne the	er of a	accid	ents on	any c	lay on a	a natio	nal hi	ghway		e (ii) at	Understand	CO 1	BAEB01.02
6	The life of distribute	of elec ed wit	h mea	ın 15	5 hours	and s	tandard	l devia	ation 1				Analyze	CO 1	BAEB01.02
	the proba (i) betwee (ii) less t (iii) will	een 13 than 1	36 hou 17 ho	irs an ours	d 174 h	ours.		sen tu	lbe is						
7	A mecha sample o inch. Cor	nist n f 10 p mpute	naking parts sl e the s	g eng hows	ine part a mear	s with 1 dian	neter of	0.742	l inch	with a	S.D of (0.040	Analyze	CO 1	BAEB01.03
8	the speci Pumpkin samples as 0.8 an	s wer of 11	e grov and 9	pum	pkins. ti	he sai	mple sta	indarc	l devia	tion of	their w	veights	Remember	CO 1	BAEB01.0
	test hypo														
9	A survey distributi	on.					-	revea		e follo	wing		Understand	CO 1	BAEB01.03
	Male No of	Birth famil		4 10	3 55		2 105	1 58	0 12						
	Test whe	ther t	he ma	le an	d femal	e birt	hs are e	qually	y popu	lar.					

10	In an investigation o obtained.	n the machine performance,	the following results are	Understand	CO 1	BAEB01.0
		No.of units inspected	No.of defective			
	Machine1	375	17			
	Machine2	450	22			
		TESTING OF	UNIT-II	IC		
			STATISTICAL HYPOTHES (Short Answer Questions)	15		
1	Distinguish between la	arge and small samples with e		Remember	CO 2	BAEB01.0
2	In a manufacturing con proportion.	npany out of 100 goods 25 a	re top quality. find sample	Understand	CO 2	BAEB01.0
3	is 40, standard deviation	on is 10.	f mean of sample size of 400	Understand	CO 2	BAEB01.0
4	from a sample of 200 g	goods.	ion if 18 goods are defective	Understand	CO 2	BAEB01.0
5	Define sample proport	ion		Remember	CO 2	BAEB01.0
6	Define ANOVA.	1		Remember	CO 2	BAEB01.0
7	Explain ANOVA one	- way classification.		Remember	<u>CO 2</u>	BAEB01.0
3	Define large sample.			Remember	CO 2	BAEB01.0
9	Write the test statistic	for difference of means in lar	ge samples	Remember	CO 2	BAEB01.0
0		for difference of proportions		Remember	CO 2	BAEB01.0
1	standard deviation is 2		mple size of 144 is 150,	Understand	CO 2	BAEB01.0
2	What is the probabilit	y of type-I error.		Remember	CO 2	BAEB01.0
3	Explain ANOVA two			Understand	CO 2	BAEB01.0
4	pepsi. Test the null hyp	125 coca cola drinkers 75 sa pothesis P=0.5 against alterna		Understand	CO 2	BAEB01.0
5	Write the procedure o			Remember	CO 2	BAEB01.0
6	Define one tailed and t			Remember	CO 2	BAEB01.0
7	Test the null hypothesi	is P=0.5 against alternative h	id they prefer pepsi to fanta. ypothesis P>0.5	Analyze	CO 2	BAEB01.0
8	Define critical region of			Remember	CO 2	BAEB01.0
.9	Define critical value of			Remember	CO 2	BAEB01.0
0	How many types of er	rors in talking a decision abo		Remember	CO 2	BAEB01.0
1	The means of two larg		(Long Answer Questions) 2000 members are 67.5 inches	Understand	CO 2	BAEB01.0
L		tively. Can the samples be re		Onderstand	02	DALDOL
2	An ambulance service destination In emerger license to Ambulance		ty emergency calls getting a	Analyze	CO 2	BAEB01.0
3	Experience had shown	on of 400 articles only 50 are	product is of the top quality. e of top quality Test the	Understand	CO 2	BAEB01.0
4	According to norms e 18 years have an avera	stablished for a mechanical a ge weight of 73.2 with S.D. 76.7 test the hypothesis H_0 :	8.6 if 40 randomly selected	Analyze	CO 2	BAEB01.0
5	A sample of 100 electr life time of 1190 hrs ar manufacturer 'B' Show there difference betwee level of 0.05	ic bulbs produced by manufa nd s.d. of 90 hrs A sample of wed a mean life time of 1230 en the mean life times of the	of 75 bulbs produced by hrs with s.d. of 120 hrs. Is two brands at a significance	Understand	CO 2	BAEB01.0
5		60 workers, the average time standard deviation of 6.1 min	e taken by them to get to work nutes .Can we reject the null	Understand	CO 2	BAEB01.0

	hypothesis μ =	= 32.0 :	minutes i	n favour	of alterna	tive null h	ypothesi	is				
	$\mu > 32.6$ at											
7	On the basis of are divided into Consider the fit correct answer, the basis of the discriminating	their tot two gro rst quest Wherea se result	cal scores oups; the ion of the as among s, can one	, 200 car first grove e examin the seco e conclu	ndidates of up is 30% ation amo nd group, de that the	and the read ng the first 80 had the first quest	maining t group, - e correct	g 70%. 40 had answei	the r. On	Understand	CO 2	BAEB01.05
8	A cigarette mat brand B by 8% A and 18 out o difference is a	nufactur if it is f. f another	ing firm c found that r sample (claims th t 42 out	at brand A of a samp	A line of cig le of 200 si	mokers p	prefer b	orand	Analyze	CO 2	BAEB01.05
9	If 48 out of 400 500 in urban A rural area and U) person: rea. Can	s in rural it be acc	epted that	at the prop	ortion of '	cell' pho	ones in		Remember	CO 2	BAEB01.05
0	In an investigat								ed	Understand	CO 2	BAEB01.05
	M/C Machine Machine	II	No. of units inspecte 375 450			lefectives 17 22						
1	Test whether the 2. The nicotine follows. Test the	in milli	grams of	two sam	ples of to	bacco were	e found t	to be as		Understand	CO 2	BAEB01.05
12	Sample-A Sample-B Samples of stud									Understand	CO 2	BAEB01.05
12	Sample-B Samples of stud kilograms mea test to the signi University-A	29 dents we n and S.I	30 ere drawn D are cald of differe <u>ME</u> A 55	30 from tw culated a nce betw	31 o universi nd shown veen mean S.D 10	24 ities and fro below mains.	om their ke a larg <u>APLE SI</u> 400	ge samp		Understand	CO 2	BAEB01.05
	Sample-B Samples of stud kilograms mea test to the signi University-A University-B In a big city 32 information su	29 dents we n and S.I ficance	30 are drawn D are cald of differe <u>ME</u> 55 57 out of 600	30 from tw culated a nce betw AN 5 7	31 o universi nd shown yeen mear S.D 10 15 ere found	24 ities and fre below mains. SAM	om their ke a larg <u>APLE SI 400</u> 100 cers. Doe	ge samp		Understand	CO 2	
12 13 14	Sample-B Samples of stud kilograms mea test to the signi University-A University-B In a big city 32 information sug smokers? In a random sat test the null hy	29 dents we afficance 25 men o pport the mple 12: pothesis	30 are drawn D are cald of differe <u>ME4</u> 55 57 out of 600 e conclusi 5 cool dri	30 from tw culated a nce betw AN 5 7 0 men we on that t nkers 68	31 o universi nd shown yeen mean S.D 10 15 ere found he majori	24 ities and fro below mal is. SAN to be smok ty of men i they prefer	om their ke a larg <u>APLE SI2</u> 400 100 ters. Doe in this cit	ZE es this ity are up to pe	ple			BAEB01.05
13	Sample-B Samples of stud kilograms mea test to the signi University-A University-B In a big city 32 information su smokers? In a random sat test the null hy 5% level of sign In a sample of wheat eaters. C	29 dents we n and S.I ficance 25 men of port the mple 122 pothesis nificane 1000 peo can we as	30 re drawn D are calc of differe <u>ME</u> / 55 57 57 57 57 57 57 57 57 57	30 from tw culated a nce betw AN 5 7 0 men we on that t nkers 68 ainist the arnataka at both ri	31 o universi nd shown yeen mear S.D 10 15 ere found he majori said that e alternati	24 ities and fre below mains. SAM to be smoke ty of men i they prefer ve hypothe ice eaters a	om their ke a larg <u>APLE SI</u> 400 100 cers. Doe in this cit r thumsu esis P>0.	IZE es this ity are up to pe .5 at est are	epsi	Understand	CO 2	BAEB01.05 BAEB01.05
13	Sample-B Samples of stuckilograms meatest to the signitest to the signite University-A University-B In a big city 32 information suppose Signature	29 dents we n and S.I afficance 25 men of port the 25 men of port the mple 12: pothesis nificane 1000 peo can we as el of sign om a fact from a s	30 are drawn D are calc of differe <u>ME4</u> 55 57 57 57 57 57 57 57 57 57	30 from tw culated a nce betw AN 5 7 0 men we on that t nkers 68 ainist the arnataka at both ri xamined ctory are	31 o universi nd shown yeen mean S.D 10 15 ere found he majori s said that e alternati 540 are ri ce and wh and 10 ar found to	24 ities and fro below mains. SAN to be smoke to be smoke ty of men i they preference they preferenc	om their ke a larg <u>APLE SI2</u> 400 100 ters. Doe in this cit r thumsu esis P>0. and the re- ually pop be defec	ZE es this ity are up to pe .5 at est are pular in ctive. 50	ple epsi 1 this	Understand Analyze	CO 2	BAEB01.05 BAEB01.05 BAEB01.05
13	Sample-B Samples of stud kilograms mea test to the signi University-A University-B In a big city 32 information sug smokers? In a random sat test the null hy 5% level of sign In a sample of wheat eaters. C state at 1% leve 100 articles fro similar articles	29 dents we n and S.I ficance of ficance of 25 men of port the 25 men of port the mple 122 pothesis nificane 1000 per Can we as el of sign of a fact from a s erence b e of 400 of near the the hypo	30 re drawn D are calc of differe <u>ME</u> / 55 57 57 57 57 57 57 57 57 57	30 from tw culated a nce betw AN 5 7 0 men we on that t nkers 68 ainist the arnataka at both ri kamined ctory are vo propo 600 wo nce .200	31 o universion o universion nd shown /een mear S.D 10 15 ere found he majori 5 said that e alternati 540 are rice and wh and 10 ar found to ortions at 5 men were men and 2	24 tities and fro below mains. SAM SAM to be smoke to be smoke to be smoke ty of men i they preference they prefere	om their ke a larg <u>4PLE SI2</u> 400 100 cers. Doe in this cit r thumsu esis P>0. and the re ually pop be defec ctive. Te her they n were in	ZE es this ity are up to pe .5 at est are pular in ctive. 50 est the would n favou	epsi n this 00 like nr of	Understand Analyze Remember	CO 2 CO 2 CO 2	BAEB01.05 BAEB01.05 BAEB01.05 BAEB01.05 BAEB01.05
13 14 15	Sample-B Samples of stuckilograms meatest to the signi University-A University-B In a big city 32 information supsmokers? In a random satest the null hyp 5% level of sign In a sample of wheat eaters. C state at 1% level 100 articles fro similar articles significant differ Random sample to hava flyover proposal. Test	29 dents we n and S.I. afficance 25 men of port the 25 men of port the mple 12: pothesis nificane 1000 peo can we as el of sign of a fact from a serence b e of 400 near the the hypo me at 59 ulations ly to be h	30 re drawn D are calo of differe <u>ME4</u> 55 57 57 57 57 57 57 57 57 57	30 from tw culated a nce betw AN 5 7 0 men we on that t nkers 68 ainist the arnataka at both ri kamined ctory are vo propo 600 wo nce .200 at the pro-	31 o universi nd shown yeen mean S.D 10 15 ere found he majori 5 said that e alternati 540 are ri ce and wh and 10 ar found to ortions at 5 men were men and 3 oportion o	24 ities and fro below mains. SAN to be smoke to be 15 defeed to be 15 defeed to be 15 defeed to be 15 defeed to be smoke to be 15 defeed to be smoke to be smoke to be 15 defeed to be smoke to be smoke to be 15 defeed to be smoke to be smoke to be smoke to be smoke to be 15 defeed to be smoke to be smoke to be smoke to be smoke to be smoke to be smoke to be smoke to be smoke to be smoke to be smoke to be 15 defeed to be smoke to be smo	om their ke a larg <u>APLE SI2</u> 400 100 ters. Doe in this cit r thumsu esis P>0. and the re ually pop be defec ctive. Te her they n were in women i ired peop	ZE es this ity are up to pe .5 at est are pular in ctive. 50 est the would n favou in favou	epsi this 00 like ur of ur of he	Understand Analyze Remember Understand	CO 2 CO 2 CO 2 CO 2	BAEB01.05 BAEB01.05 BAEB01.05 BAEB01.05

						used on three groups of m each group and the results are	Understand	CO 2	BAEB01.00
	shown below								
		Group A	Group	B Gro	oup C				
		7	3	4					
		6	6	7					
		7	5	7					
	-	7	4	4					
	_	8	7	8					
					whathar	there is difference in the			
	teaching met		or the		whether	there is unreference in the			
	teaching met	nous	P	art - C (Pro	blem S	olving and Critical Thinking Q	uestions)		
1	A sample of	900 memb				D of 2.61 is this sample has	Analyze	CO 2	BAEB01.0
						d S.D 2.61. Also calculate 95%	Anaryze	02	DALD01.0
	confidence ir		e popul	ation mean	5.25 and	19.D 2.01. 7130 calculate 75 %			
			lom sar	nnle of 10 t	vrec has	a mean life of 15200 kms this	Understand	CO 2	BAEB01.0
						s 15150 kms and S.D is 1200	Onderstand	02	DALDOI.0
	km test 0.05				mean is	15150 kms and 5.D is 1200			
					mean an	d S.D of production are 1.038	Analyze	CO 2	BAEB01.0
						able to reject the null	1 mary 20	002	
	hypothesis μ		-						
						verage life of certain tyres is at	Remember	CO 2	BAEB01.0
						f this tyres on its truck and gets	rememoer	002	Dillboillo
						miles can claim be true.			
						pated in sports is 68.2 inches	Understand	CO 2	BAEB01.0
						nts who have not participated in	Chiefstand	001	21220110
						ypothesis that the height of the			
						students who have not			
	participated i				iiuii tiic				
			affic at	two busy ir	tersecti	ons between 4pm and 6pm to	Understand	CO 2	BAEB01.0
						as found that on 40 week days	Chiefstand	002	Dillboillo
						the first intersection from the			
						is there were on the average			
						the south made left turns . the			
						at the significant difference of			
	two means at								
				least 95% c	f the ea	uipment which he supplied to a	Analyze	CO 2	BAEB01.0
						ion of sample of 200 pieces of	, , , , , , , , , , , , , , , , , , ,		
	•					at 0.05 level.			
						0, 15 were defective. In another	Understand	CO 2	BAEB01.0
						ant difference between two			
	proportioins				C				
	Marks obtain						Understand	CO 2	BAEB01.0
	Г	Group A	Group	B Gro	oup C				
		16	15	15	-				
		17	15	13					
		13	13	13					
		18	17	14					
			ut whet	her teaching	g metho	ds had any effect on the			
	students perf			-				<i>c</i>	D + PF of -
						hey led to greater productivity	Understand	CO 2	BAEB01.0
				y measures	tor indiv	viduals trained by different			
	methods are	as tollows							
	Method 1		36	26	31	20 34 25			
	Method 2		40	29	38	32 39 34			
	Method 3		32	18	100	21 33 27			
	41 0.051	1 6 '	: £:	an do the t		ning methods lead to difference			
	At the 0.05 I	evel of sig	gnifican	ice, do the t	nree trai	ning methods lead to difference			

	UNIT -III			
	ORDINARY DIFFERENTIAL EQUATION	IS		
	Part - A (Short Answer Questions)			
1	Explain merits and demerits of Taylor Series method.	Remember	CO 3	BAEB01.07
2	Write the third order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
3	Write the Modified Euler formula to find the numerical solutions of ordinary differential equation.	Remember	CO 3	BAEB01.08
4	Write the second order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
5	Define ordinary differential equation.	Remember	CO 3	BAEB01.09
6	Explain types of ordinary differential equations.	Remember	CO 3	BAEB01.09
7	Write short note on the methods of the numerical solution of ordinary differential equation.	Remember	CO 3	BAEB01.09
8	Explain single step methods.	Remember	CO 3	BAEB01.07
9	Write short note on step by step methods.	Understand	CO 3	BAEB01.08
10	Define initial value problems.	Remember	CO 3	BAEB01.09
10		Remember	005	DIEDOILO
11	Write short note on boundary value problems.	Understand	CO 3	BAEB01.09
12	Define mixed value problems.	Remember	CO 3	BAEB01.09
13	Explain Taylor series method.	Remember	CO 3	BAEB01.07
14	Distinguish between analytical solution and numerical solution.	Remember	CO 3	BAEB01.09
15	Explain merits and demerits of Runge-Kutta Method Series method.	Remember	CO 3	BAEB01.08
16	Write a short note on Euler's method.	Remember	CO 3	BAEB01.08
17	Write the first order Runge- Kutta method to find the numerical solutions of ordinary differential equation.	Understand	CO 3	BAEB01.08
18	Explain fourth order Runge- Kutta method.	Remember	CO 3	BAEB01.08
19	Explain the advantaged of Runge- Kutta method over Taylor's Series method.	Understand	CO 3	BAEB01.08
20	Define Adams-Bashforth- Moulton method.	Remember	CO 3	BAEB01.08
	Part – B (Long Answer Questions)			•
1	By using Taylor's series method find an approximate value of y at $x = 0.2$ for the	Understand	CO 3	BAEB01.07
	differential equation $y' - 2y = 3e^x$, $y(0) = 0$.			
2	Using Euler's method solve for $x = 2$ for $\frac{dy}{dx} = 3x^2 + 1$, $y(1) = 2$,taking step size (i) $h = 0.5$ and (ii) $h=0.25$.	Analyze	CO 3	BAEB01.08
3	Solve by Euler's method, $y^1 = x + y$, $y(0) = 1$ and find the value of $y(0.3)$ taking step size $h = 0.1$. compare the result obtained by this method with the result obtained by analytical methods	Remember	CO 3	BAEB01.08
4	Using Runge-Kutta method of fourth order, find y(0.2)where $y' = y - x$, y(0)=2, h = 0.2.	Understand	CO 3	BAEB01.08
5	Apply the 4 th order Runge-Kutta method to find an approximate value of y when x=1.2 in steps of 0.1, given that $y' = x^2 + y^2$, y(1)=1.5	Understand	CO 3	BAEB01.08
6	Solve $y^1 = x^2 - y$, $y(0) = 1$, using Taylor's series method and compute $y(0.1)$, $y(0.2)$, $y(0.3)$ and $y(0.4)$ (correct to 4 decimal places).	Understand	CO 3	BAEB01.07
7	By using Euler's method solve the differential equation from $y' + y = 0, y(0) = 1$, find $y(0.04)$, taking step size $h = 0.01$.	Analyze	CO 3	BAEB01.08
8	Using modified Euler's method find the approximate value of x when $x = 0.3$	Understand	CO 3	BAEB01.08
9	given differential equation $dy/dx = x + y$ and $y(0) = 1$. Find $y(2.5)$ from the differential equation $\frac{dy}{dx} = \frac{x + y}{x}$, $y(2)=2$, $h = 0.25$	Analyze	CO 3	BAEB01.08
10	using Runge-Kutta method of second order. Estimate y(0.2), given $y' = 3x + \frac{y}{2}$, $y(0) = 1$ by using Runge-Kutta method,	Remember	CO 3	BAEB01.08
	taking h=0.1.			

11	Using Taylor's series method find an approximate value of y at $x = 0.1$ given	Understand	CO 3	BAEB01.07
	y(0)=1 for the differential equation $y' = 3x + y^2$			
12	Using Euler's method solve for $y' = y^2 + x$, $y(0)=1$ find $y(0.1)$ and $y(0.2)$	Understand	CO 3	BAEB01.08
13	Solve $y' = x + y$, given $y(1) = 0$. Find $y(1.1)$ and $y(1.2)$ by Tayor's series method.	Analyze	CO 3	BAEB01.08
14	Given the differential equation $y^1=y-x$, $y(0)=2$ find $y(0.2)$ using R-K method take h=0.1.	Understand	CO 3	BAEB01.08
15	Find y(0.1) and y(0.2) using modified Euler's formula given differential equation $dy/dx = x^2-y$, y(0)=1	Understand	CO 3	BAEB01.08
16	Given $y' = x + \sin y$, $y(0) = 1$ compute $y(0.2)$ and $y(0.4)$ with h=0.2 using Euler's Modified method.	Understand	CO 3	BAEB01.08
17	Employ Taylor's method to obtain approximate value of $y(1.1)$ and $y(1.3)$, for the differential equation $y' = x.y^{\frac{1}{3}}$, $y(1) = 1$. Compare the num, erical solution	Analyze	CO 3	BAEB01.08
18	obtained with exact solution. Use Mile's predictor – corrector method to obtain the solution of the equation $y' = x - y^2$ at $x = 0.8$ given that y(0) = 0, y(0.2) = 0.02, y(0.4) = 0.0795, y(0.6) = 0.1762.	Understand	CO 3	BAEB01.08
19	Obtain the solution of $y' = x^2(1+y)$, $y(1) = 1$ at $x = 1(0.1)1.2$ by any numerical method and estimate $x = 1.3$ by Adam's method.	Remember	CO 3	BAEB01.08
20	If $\frac{dy}{dx} = 2e^x y$, $y(0) = 2$ find $y(0.4)$ using Adam's predictor corrector formula by calculating $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Euler's Modified	Understand	CO 3	BAEB01.08
	formula.			
1	Tormula.			
	Part – C (Problem Solving and Critical Think			
1	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for the	ing) Understand	CO 3	BAEB01.08
	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.		CO 3	BAEB01.08
1	Part - C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and		CO 3 CO 3	BAEB01.08 BAEB01.07
	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.	Understand		
2	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.	Understand Analyze	CO 3	BAEB01.07
2	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formulagiven that differential equation $\frac{dy}{dx} = x + x^2 y$, $y(0) = 1$.Solve first order differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$, $y(0) = 1$ and estimate $y(0.1)$	Understand Analyze	CO 3	BAEB01.07
2	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formulagiven that differential equation $\frac{dy}{dx} = x + x^2 y$, $y(0) = 1$.	Understand Analyze Understand	CO 3	BAEB01.07 BAEB01.08
2 3 4	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formulagiven that differential equation $\frac{dy}{dx} = x + x^2 y$, $y(0) = 1$.Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps).Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differentialGiven the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps	Understand Analyze Understand Analyze	CO 3 CO 3 CO 3	BAEB01.07 BAEB01.08 BAEB01.08
2 3 4 5	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formulagiven that differential equation $\frac{dy}{dx} = x + x^2 y$, $y(0) = 1$.Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps).Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differentialequation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps of 0.1, using modified Euler's method.Find the solution of differential equation $\frac{dy}{dx} = x - y^2$, $y(0) = 1$ at $x = 0.1$, 0.2 , 0.3 ,	Understand Analyze Understand Analyze Remember	CO 3 CO 3 CO 3 CO 3	BAEB01.07 BAEB01.08 BAEB01.08 BAEB01.08
2 3 4 5 6	Part – C (Problem Solving and Critical ThinkCompute $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order for thedifferential equation $y' = xy + y^2$, $y(0) = 1$.Find $y(0.1)$, $y(0.2)$, $z(0.1)$, $z(0.2)$ given $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x - y^2$ and $y(0) = 2$. $z(0) = 1$ by using Taylor's series method.Find $y(0.1)$ and $y(0.2)$ by Runge-Kutta method of fourth order formulagiven that differential equation $\frac{dy}{dx} = x + x^2 y$, $y(0) = 1$.Solve first order differential equation $\frac{dy}{dx} = \frac{y - x}{y + x}$, $y(0) = 1$ and estimate $y(0.1)$ using Euler's method(5 steps).Using modified Euler's method to find $y(0.2)$ and $y(0.4)$ given differentialgiven the differential equation $\frac{dy}{dx} = -xy^2$, $y(0) = 2$. Compute $y(0.2)$ in steps of 0.1, using modified Euler's method.	Understand Analyze Understand Analyze Remember Understand	CO 3 CO 3 CO 3 CO 3 CO 3	BAEB01.07 BAEB01.08 BAEB01.08 BAEB01.08 BAEB01.08

	Bashforth-Moulton method.			
9	dy a t	Understand	CO 3	BAEB01.08
	Find the solution of $\frac{dy}{dx} = x - y$ at $x = 0.4$ subject to the condition $y = 1$ at			
	x = 0 and $h = 0.1$ using Milne's method. Use Euler's modified method to			
	evaluate $y(0.1), y(0.2)$ and $y(0.3)$.			
10	Solve the initial value problem $y' + y^2 = e^x$, $y(0) = 1$ from $x = 0$ at $x = 0.5$	Remember	CO 3	BAEB01.08
	taking $h = 0.1$ using Adams-Bashforth-Moulton method. Starting values may be			
	taken from Runge-Kutta method.			
DA	UNIT -IV			
PA	RTIAL DIFFERENTIAL EQUATIONS AND CONCEPTS IN SOLUTION T Part – A (Short Answer Questions)	U BOUNDAR	(VALUE]	ROBLEMS
1	Define order with reference to partial differential equation	Remember	CO 4	BAEB01.10
2	Form the partial differential equation by eliminate the arbitrary constants from	Understand	CO 4	BAEB01.10
	$z = ax^3 + by^3$			
3	Form the partial differential equation by eliminating arbitrary function	Analyze	CO 4	BAEB01.10
-	$z=f(x^2+y^2)$	-		
4	Solve the partial differential equation $p\sqrt{x} + q\sqrt{y} = \sqrt{z}$	Understand	CO 4	BAEB01.10
5	Write short note on complete integral with reference to nonlinear partial	Remember	CO 4	BAEB01.10
-	differential equation	Dam1	CO 4	
6 7	Define general integral with reference to nonlinear partial differential equation Solve the partial differential equation $p^2 + q^2 = m^2$	Remember Understand	CO 4 CO 4	BAEB01.10 BAEB01.10
/ 8	Solve the partial differential equation $p + q = m$ Solve the partial differential equation $z=px+qy+p^2 q^2$	Understand	CO 4	BAEB01.10 BAEB01.10
<u> </u>	Define degree with reference to partial differential equation $2-px+qy+p^2q$	Remember	CO 4	BAEB01.10 BAEB01.10
10	Write the heat one dimension equation	Remember	CO 4	BAEB01.10 BAEB01.11
10	Eliminate the arbitrary constants from $z=(x^2+a)(y^2+b)$	Understand	CO 4	BAEB01.11 BAEB01.10
12	Form the partial differential equation by eliminating a and b from		CO 4	BAEB01.10
12	$\log(az-1) = x + ay + b$	Analyze	CO 4	DAED01.10
13	Form the partial differential equation by eliminating the constants from	Understand	CO 4	BAEB01.10
15	$(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$ where α is a parameter.	Onderstand	004	Dillboiiio
14	Define non-linear partial differential equation.	Domomhor	CO 4	DAED01.10
14		Remember	CO 4	BAEB01.10
	Define particular integral with reference to nonlinear partial differential equation. Define singular integral with reference to nonlinear partial differential equation.	Remember		BAEB01.10
16		Remember	<u>CO 4</u>	BAEB01.10
17 18	Solve p- $x^2=q+y^2$ Solve the partial differential equation $x(y-z)p+y(z-x)q=z(x-y)$.	Understand	CO 4	BAEB01.10
18		Understand Understand	<u>CO 4</u>	BAEB01.10
	Find a complete integral of $f=xpq+yq^2-1=0$.		<u>CO 4</u>	BAEB01.10
20	Find a complete integral of $f = (p^2+q^2)y-qz=0$ Part – B (Long Answer Questions)	Understand	CO 4	BAEB01.10
1	Form the partial differential equation by eliminating arbitrary function from	Understand	CO 4	BAEB01.10
2	$f(x^2+y^2+z^2, z^2-2xy)=0$	Undorstand	<u> </u>	
2	Solve the partial differential equation $p^2 z^2 \sin^2 x + q^2 z^2 \cos^2 y = 1$.	Understand	CO 4	BAEB01.10
3	Solve the partial differential equation $x^2p^2 + xpq = z^2$.	Understand	CO 4	BAEB01.10
4	Solve the partial differential equation $q^2 - p = y - x$.	Understand	CO 4	BAEB01.10
5	Find the temperature in a thin metal rod of length L , with both ends insulated	Analyze	CO 4	BAEB01.11
	and with initial temperature in the rod in $\sin\left(\frac{\pi x}{L}\right)$.			
6	Form a partial differential equation by eliminating a, b, c from	Understand	CO 4	BAEB01.10
	x^{2} , y^{2} , z^{2} ,			
	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$			
7	Evaluate the partial differential equation	Understand	CO 4	BAEB01.10
-	$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$			

8	Solve the partial differential equation	Analyze	CO 4	BAEB01.10
	$(z^{2}-2yz-y^{2})p + (xy+zx)q = xy-zx.$			
9	Solve the partial differential equation $(mz - ny)p + (nx - lz)q = (ly - mx)$.	Understand	CO 4	BAEB01.10
10	Evaluate the partial differential equation $y^2zp+x^2zq = xy^2$	Understand	CO 4	BAEB01.10
11	Solve the partial differential equation $z(p^2 - q^2) = x - y$	Understand	CO 4	BAEB01.10
12	Find $u_{xx} = u_y + 2u$ with $u(0, y) = 0$ and $\frac{\partial u(0, y)}{\partial r} = 1 + e^{-3y}$.	Analyze	CO 4	BAEB01.11
13	Solve the partial differential equation $p - x^2 = q + y^2$.	Understand	CO 4	BAEB01.10
14	Find the partial differential equation $q = px + p^2$.	Understand	CO 4	BAEB01.10
15	Evaluate the partial differential equation $z^2 = pqxy$.	U Remember	CO 4	BAEB01.10
16	Evaluate the partial differential equation $\mathbf{r} = \mathbf{r}^2 \mathbf{r} + \mathbf{z}^2 \mathbf{r}$	Understand	CO 4	BAEB01.10
17	Solve the partial differential equation $z = p^2 x + q^2 y$ Find the differential equation of all spheres whose centres lie on z-axis with a	Understand	CO 4	BAEB01.10
	given radius r.			
18	Solve $y^3 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial x} = 0$	Understand	CO 4	BAEB01.11
19	Solve $y^3 \frac{\partial z}{\partial x} + x^2 \frac{\partial z}{\partial x} = 0$ Solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$	Analyze	CO 4	BAEB01.11
20	An insulated rod OA of length l with insulated sides, has initial temperature	Understand	CO 4	BAEB01.11
	$u(x,0)$ for $0 \le x \le l$. The ends are insulated at $t = 0$. Find the subsequent			
	temperature distribution.			
	Part – C (Problem Solving and Critical Think			
1	Solve the partial differential equation	Analyze	CO 4	BAEB01.10
	$(x^{2} - y^{2} - yz)p + (x^{2} - y^{2} - zx)q = z(x - y).$			
2	Solve the partial differential equation $(x^2-y^2-z^2)p+2xyq = 2xz$	Remember	<u>CO 4</u>	BAEB01.10
3	Solve $\frac{\partial^2 u}{\partial x \partial t} = e^{-t} \cos x$ given that u=0 when t = 0 and $\frac{\partial u}{\partial t} = 0$ When x = 0 show also that as t tends to ∞ , u tends to sin x.	Understand	CO 4	BAEB01.11
4	Solve the partial differential equation $p\cos(x+y) + q\sin(x+y) = z$	Understand	CO 4	BAEB01.10
5	Solve the differential equation $(y+z)p + (z+x)q = x + y$	Understand	CO 4	BAEB01.10
6	Solve the one dimensional heat flow equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial r^2}$ given	Analyze	CO 4	BAEB01.11
	that $u(0,t) = 0, u(L,t) = 0, t > 0$ and			
	$u(x,0) = 3\sin((\pi x)/L), 0 < x < L.$			
7	Derive the complete solution for the one dimensional heat equation with zero boundary problem with initial temperature $u(x,0) = x(L-x)$ in the interval	Understand	CO 4	BAEB01.11
8	(0, L). If a string of length l is initially at rest in equilibrium position and each of its	Analyze	CO 4	BAEB01.11
	points are given the velocity $V_0 \sin^3 \frac{\pi x}{l}$, find the displacement $y(x,t)$.			
9	Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$	Understand	CO 4	BAEB01.10
10	A bar 100 cm long, with insulated sides, has its ends kept at $0^{\circ}C$ and $100^{\circ}C$ until steady state conditions prevail. The two ends are then suddenly insulated and kept so. Find the temperature distribution.	Remember	CO 4	BAEB01.11

UNIT -V NUMERIC'S FOR ORDINARY DIFFERENTIAL EQUATIONS AND PARTIAL DIFFERENTIAL EQUATIONS				
1	Part - A (Short Answer Questions)	D1	CO 5	
$\frac{1}{2}$	Define parabolic equation.	Remember	CO 5	BAEB01.13
2	Write short note on elliptic equation.	Remember	CO 5	BAEB01.13
3	Explain about hyperbolic equation.	Remember	CO 5	BAEB01.15
4	What is implicit method?	Remember	CO 5	BAEB01.13
5	Check whether the equation is parabolic equation are not.	Understand	CO 5	BAEB01.15
	$u_{xx} + 4u_{xy} + 4u_{yy} - u_x + 2u_y = 0.$			
6	Explain about wave equation.	Remember	CO 5	BAEB01.12
7	Classify the equation of $f_{xx} + 2f_{xy} + f_{yy} = 0$	Understand	CO 5	BAEB01.1
8	Explain diagonal five point formula.	Remember	CO 5	BAEB01.1
9	If $(1+x^2)f_{xx} + (5+2x^2)f_{xy} + (4+x^2)f_{yy} = 0$ is hyperbolic equation or	Understand	CO 5	BAEB01.1
0	Not. State the condition for elliptic equation $xu_{xx} + yu_{yy} = 0, x > 0, y > 0.$	Analyze	CO 5	BAEB01.1
11	Write second order finite difference central approximation.	Remember	CO 5	BAEB01.1
12	Define order of finite difference method.	Remember	CO 5	BAEB01.1
3	What is first order finite difference forward approximation?	Remember	CO 5	BAEB01.1
4	Define Explicit method.	Understand	CO 5	BAEB01.1
5	Write short note on Poisson's equation.	Remember	CO 5	BAEB01.1
.6	State standard five point formula.	Understand	CO 5	BAEB01.1
7	Explain Schmidt's explicit method.	Analyze	CO 5	BAEB01.1
8	Write a short note on heat equation.	Understand	CO 5	BAEB01.1
9	Write first order finite difference backward approximation.	Remember	CO 5	BAEB01.1
20	What is Laplace equation?	Remember	CO 5	BAEB01.1
	Part - B (Long Answer Questions)			
1	Write the diagonal five-point formula to solve the Laplace equation	Understand	CO 5	BAEB01.1
	$u_{xx} + u_{yy} = 0$ and explain the procedure to solve it.			
2	Find the solution of the parabolic equation $u_{xx} = 2u_t$ when	Analyze	CO 5	BAEB01.1
	u(0,t) = u(4,t) = 0 and $u(x,0) = x(4-x)$, taking $h = 1$. Find the values			
	upto $t = 5$.			
3	Solve $y_{tt} = y_{xx}$ upto t=0.5 with a spacing 0.1 subject to	Analyze	CO 5	BAEB01.1
	$y(0,t) = 0, y(1,t) = 0, y_t(x,0) = 0$ and $y(x,0) = 10 + x(1-x)$.			
4	Solve $\nabla^2 u = 0$ under the conditions	Analyze	CO 5	BAEB01.1
	(h = 1, k = 1), u(0, y) = 0, u(4, y) = 12 + y for			
	$0 \le y \le 4; u(x,0) = 3x, u(x,4) = x^2 \text{ for } 0 \le x \le 4.$			
5	Write an explicit formula to solve numerically the parabolic equation	Remember	CO 5	BAEB01.1
-		Remember	005	
5	$u_{xx} - au_t = 0$ and explain method to solve the equation.	Understand	CO 5	BAEB01.1
	Evaluate the pivotal values of the equation $u_{tt} = 16u_{xx}$, taking $h \equiv 1$ upto			
	$t = 1.25$. The boundary conditions are $u(0,t) = u(5,t) = 0$, $u_i(x,0) = 0$			
	and $u(x,0) = x^2(5-x)$.			
7	State and explain Liebmann's iteration method for the solving the partial differential equations.	Understand	CO 5	BAEB01.1
8		Analyze	CO 5	BAEB01.1
0	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ in $0 < x < 5, t \ge 0$ given that			
	u(x,0) = 20, u(0,t) = 0, u(5,t) = 100. Compute <i>u</i> for the time-step with			
		1		

9	Derive finite difference approximations to derivatives.	Remember	CO 5	BAEB01.13
10	State the condition for the equation $Au_{xx} + 2Bu_{xy} + Cu_{yy} = f(u_x, u_y, x, y)$	Understand	CO 5	BAEB01.13
	to be a) elliptic b) parabolic c) hyperbolic when A, B, C are functions of x and			
	y.			
11	Determine Bendre - Schmidt's recurrence relation.	Remember	CO 5	BAEB01.15
12		Remember	CO 5	BAEB01.14
	Compute <i>u</i> for one time step with $h = \frac{1}{4}$, $k = 1$ from $u_t = \frac{1}{16}u_{xx}$ with			
	u(x,0) = 0, u(0,t) = 0 and $u(1,t) = 100t$.			
13	Classify the following equations:	Understand	CO 5	BAEB01.15
	i) $x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1$			
	ii) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + (x^2 + 4y^2) \frac{\partial^2 u}{\partial y^2} = \sin(x + y)$ Compute <i>u</i> for four times steps with $h = \frac{1}{4}$ and $k = \frac{1}{32}$ from $u_t = u_{xx}$ with			
14	Compute <i>u</i> for four times steps with $h = \frac{1}{4}$ and $k = \frac{1}{32}$ from $u_t = u_{xx}$ with	Understand	CO 5	BAEB01.14
	$u(0,t) = u(1,t) = 0$ and $u(x,0) = 100(x - x^2)$.			
15	Classify the following partial differential equations:	Understand	CO 5	BAEB01.15
	i) $f_{xx} + 2f_{xy} + 4f_{yy} = 0$		200	
	ii) $f_{xx} - 2f_{xy} + f_{yy} = 0$			
16		A 1	00.5	DAED01.12
16	Using Crank – Nicholson Scheme, solve the heat equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial r^2}$	Analyze	CO 5	BAEB01.13
	Using Clank – Menoison Scheme, solve the heat equation $\frac{\partial t^2}{\partial t^2} = 4 \frac{\partial t^2}{\partial x^2}$			
	subject to the conditions $u(x,0) = 0, u(0,t) = 0$ and $u(1,t) = t$ compute u			
	1			
	for two steps in t direction taking $h = \frac{1}{4}$.			
17	Determine Schmidt explicit formula.	Remember	CO 5	BAEB01.13
18	Determine Crank – Nicholson Scheme (implicit second order method).	Understand	CO 5	BAEB01.13
19	Write the diagonal five-point formula to solve the Laplace equation	Understand	CO 5	BAEB01.13
	$u_{xx} + u_{yy} = 0$ and explain the procedure to solve it.			
20	Solve the Laplace's equation by Leibmann's iterative method.	Understand	CO 5	BAEB01.15
20	Part – C (Problem Solving and Critical Think		005	D/1.15
1	Derive the solution of Laplace's Equation.	Remember	CO 5	BAEB01.15
2	The traverse displacement u of a point at a distance x from one end and at any	Analyze	CO 5	BAEB01.13
	time t of a vibrating string satisfies the equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$, with boundary			
	conditions $u = 0$ at $x = 0$, $t > 0$ and initial conditions $u = x(4 - x)$ and			
	$\frac{\partial u}{\partial t} = 0$ at $t = 0, 0 \le x \le 4$. Solve this equation numerically for one half			
	period of vibration, taking $h = 1$ and $k = \frac{1}{2}$.			
3	Solve the boundary value problem $u_t = u_{xx}$, under the conditions	Understand	CO 5	BAEB01.13
	$u(0,t) = u(1,t) = 0$ and $u(x,0) = \sin \pi x, 0 \le x \le 1$, by the Bendre-Schmidt			
4	method. $2^2 c = 2^2 c$	Analyze	CO 5	BAEB01.15
T	Given the differential equation $\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}$ and the boundary conditions	7 mary 20	205	Dill001.15

	2 2			1
	$f(0,t) = f(5,t) = 0$ and $f(x,0) = x^2(25 - x^2)$, use the explicit method to			
	obtain the solution for $x = xi = ih(i = 0, 1, 2, \dots, 5; h = 1)$ and			
	$t = jk (j = 0, 1, 2, \dots 5, k = \frac{1}{2}).$			
5	Determine implicit scheme for the solution of the wave equation.	Understand	CO 5	BAEB01.13
6	Classify the following equations:	Understand	CO 5	BAEB01.14
	i) $x^2 \frac{\partial^2 u}{\partial x^2} + (1 - y^2) \frac{\partial^2 u}{\partial y^2} = 0, -\infty < x < \infty, -1 < y < 1$			
	ii) $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + (x^2 + 4y^2) \frac{\partial^2 u}{\partial y^2} = \sin(x + y)$			
7	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(x,0) = 0, u(0,t) = 0$ and	Analyze	CO 5	BAEB01.15
	$u(1,t) = t$ taking $h = \frac{1}{2}$ and $k = \frac{1}{8}$ using Crank – Nicholson method.			
8	Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the	Understand	CO 5	BAEB01.13
	square with sides $x = 0 = y$, $x = 3 = y$ with $u = 0$ on the boundary and mesh length=1.			
9	Find the values of $u(x,t)$ satisfying the parabolic equation and the boundary	Understand	CO 5	BAEB01.15
	conditions = $u(8,t)u(0,t) = 0$ and $u(x,0) = 4x - \frac{1}{2}x^2$ at the points			
	$x = i : i = 0, 1, 2,, 8$ and $t = \frac{1}{8}j : j = 0, 1, 2,, 5$.			
10	Compute <i>u</i> for two times steps with $h = \frac{1}{3}$ and $k = \frac{1}{36}$ from $u_t = u_{xx}$ with	Analyze	CO 5	BAEB01.15
	$u(0,t) = u(1,t) = 0$ and $u(x,0) = \sin \pi x$.			

Prepared by: Ms. P Srilatha, Assistant Professor

HOD, AE