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UNIT I
SIMPLE STRESSES AND STRAINS

Stress

Stress is the internal resistance offered by the body to the external load applied to it per unit cross
sectional area. Stresses are normal to the plane to which they act and are tensile or compressive in
nature.
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As we know that in mechanics of deformable solids, externally applied forces acts on a body and body
suffers a deformation. From equilibrium point of view, this action should be opposed or reacted by
internal forces which are set up within the particles of material due to cohesion. These internal forces
give rise to a concept of stress. Consider a rectangular rod subjected to axial pull P. Let us imagine
that the same rectangular bar is assumed to be cut into two halves at section XX. The each portion of
this rectangular bar is in equilibrium under the action of load P and the internal forces acting at the
section XX has been shown.

Now stress is defined as the force intensity or force per unit area.

Where A is the area of the X —X section



Here we are using an assumption that the total force or total load carried by the rectangular bar is
uniformly distributed over its cross — section. But the stress distributions may be for from uniform,
with local regions of high stress known as stress concentrations. If the force carried by a component is
not uniformly distributed over its cross — sectional area, A, we must consider a small area, ‘6A” which
carries a small load ‘6P’, of the total force ‘P', Then definition of stress is
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As a particular stress generally holds true only at a point, therefore it is defined
mathematically as

Units :

The basic units of stress in S.1 units i.e. (International system) are N / m? (or Pa) MPa = 10° Pa

GPa =10"Pa

KPa = 10° Pa

Sometimes N / mm? units are also used, because this is an equivalent to MPa. While US customary
unit is pound per square inch psi.

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) shear stress. Other
stresses either are similar to these basic stresses or are a combination of this e.g. bending stress is a
combination tensile, compressive and shear stresses. Torsional stress, as encountered in twisting of a
shaft is a shearing stress. Let us define the normal stresses and shear stresses in the following sections.

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the areas
concerned, then these are termed as normal stresses. The normal stresses are generally denoted by a
Greek letter (o)
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This is also known as uniaxial state of stress, because the stresses acts only in one direction however,
such a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two
mutually perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as
shown in the figures below :
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(Biaxial state of stress) o /
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(Triaxial state of stress)

Tensile or compressive Stresses:

The normal stresses can be either tensile or compressive whether the stresses acts out of the area or
into the area

{Tensile stress)

{Compressive stress)



Bearing Stress: When one object presses against another, it is referred to a bearing stress ( They are
in fact the compressive stresses ).

Forces
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Bearing stresses at
the contact surface

ian convections for Normal str
Direct stresses or normal stresses
- tensile +ve

- compressive —ve
Shear Stresses:

Let us consider now the situation, where the cross — sectional area of a block of material is subject to a
distribution of forces which are parallel, rather than normal, to the area concerned. Such forces are
associated with a shearing of the material, and are referred to as shear forces. The resulting stress is
known as shear stress.

Forces acting parallel
to the area concermned

o —




The resulting force intensities are known as shear stresses, the mean shear stress being equal to

Where P is the total force and A the area over which it acts. As we know that the particular stress
FI

T = —

A
generally holds good only at a point therefore we can define shear stress at a point as

The existence of shear stresses on any two sides of the element induces complementary shear stresses

on the other two sides of the element to maintain equilibrium. As shown in the figure the shear stress
in sides AB and CD induces a

complimentary shear stress in sides AD and BC.
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- tending to turn the element C.W +ve.
- tending to turn the element C.C.W —ve.

Deformation of a Body due to Self Weight

Consider a bar AB hanging freely under its own weight as shown in the figure.
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Let

L= length of the bar

A= cross-sectional area of the bar

E= Young’s modulus of the bar material w=

specific weight of the bar material
Then deformation due to the self-weight of the bar is

sL=Nt
2E

Members in Uni — axial state of stress
Introduction: [For members subjected to uniaxial state of stress]

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be
determined as

P : —p

PL

=— (1)
AE

Suppose the bar is loaded at one or more intermediate positions, then equation

(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in each part of
the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part separately,
finally, these changes in lengths can be added algebraically to obtain the total charge in length of the
entire bar.
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When either the axial force or the cross — sectional area varies continuosly along the axis of the
bar, then equation (1) is no longer suitable. Instead, the elongation can be found by considering a
deferential element of a bar and then the equation (1) becomes

i.e. the axial force P,and area of the cross — section A, must be expressed as functions of x. If
the expressions for P,and A, are not too complicated, the integral can be evaluated analytically,

di = R dx
EA,

5 = [Pedx
sEA,

otherwise Numerical methods or techniques can be used to evaluate these integrals.

Principle of Superposition
The principle of superposition states that when there are numbers of loads are acting together on an

elastic material, the resultant strain will be the sum of individual strains caused by each load acting
separately.
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Numerical Problems on stress, shear stress in axially loaded members.

Example 1: Now let us for example take a case when the bar tapers uniformly fromd at x =0
toDatx =1
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In order to compute the value of diameter of a bar at a chosen location let us determine the
value of dimension k, from similar triangles

(D-d)i2  k

o w

Thusk=

(D - dix
21

therefore, the diameter 'y' at the X-sectionisor=d +
2k

(D - djx

= + —

Hence the cross —section area at section X- X will be
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hence the total extension of the bar will be given by expression

A, ora = =y

substitutingthevalue of 'a'togetthe
totalextentionof thebar
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aftercarryingouttheint ergrationwe get
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hencethe totalstrainint he bar = FDd

An interesting problem is to determine the shape of a bar which would have a uniform stress
in it under the action of its own weight and a load P.
Example 2: stresses in Non — Uniform bars

Consider a bar of varying cross section subjected to a tensile force P as shown below.
Let

=

| %
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a = cross sectional area of the bar at a chosen section XX then
Stress<=p/a
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If E = Young's modulus of bar then the strain at the section XX can be calculated
<=</E

Then the extension of the short element < x. =<< .original length=</E. <*

_Pix
E a
Thusthe extensionfor the entire baris

|
ar totalextension = E_[a_}{
E;a

let us consider such a bar as shown in the figure below:

' P

The weight of the bar being supported under section XX is

15



= Tpgad}e:
0

where p isdensityof the bar.
thusthe stressat ¥ is

x
F +ngadx
g=—2L
a
x
arca =P+ Ip.g.adx
o

Differentiating the above equation with respect to x we get

Ud—a=pga
5P
da_pg
a g

int ergratingthe above equationwe get
_[d_a = Iﬂd}{
a a

0¥
a
Inordertodet ermine theconstantof int egration

letusapplytheboundaryconditions
at x=0a=7

=

log,® = +constant

thus,constant = log, ™
ar

log,? = + log, 2

a
log, [a_ =

j
Dr = —
4

a

alsoat x =

o=
dg

Thus,
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Example 1: Calculate the overall change in length of the tapered rod as shown in figure below. It
carries a tensile load of 10kN at the free end and at the step change in section a compressive load of 2
MN/m evenly distributed around a circle of 30 mm diameter take the value of E = 208 GN / m?.

This problem may be solved using the procedure as discussed earlier in this section

- 70 mm -

Example 2: A round bar, of length L, tapers uniformly from radius r, at one end to radius rat the
other. Show that the extension produced by a tensile axial load P
Pt
|S 2 ﬂEnz
If r, = 2r; , compare this extension with that of a uniform cylindrical bar having a
radius equal to the mean radius of the tapered bar.

Solution:

FEEL L
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consider the above figure let r; be the radius at the smaller end. Then at a X crosssection XX
located at a distance x from the smaller end, the value of radius is equal to

_ e
=Rt L':rz ")

=1+ kx)

wherek = [r2 i ]1—
L )y

load
stressatsectiony = ——
ares

FI
a1+ k)
stress

hence strainatthissection =

_ P
CEm {1+ k)

Pdx
Emm 1+ ki)
Total extension of the bar can be found by integrating the above expression within
the limits fram x=0 to »=L
F'd}{

1 ko)

Thusforasmall length dx of the bar at this section the extention is

L
Extension I
n Em

P
E m,

P [i+ker I

L
2_[1+k}{ %
1]

E ﬂ'ﬁ

(1+ ki)™

Eﬂn _k _k

= F. "I_ 1
Em®k] 1+kL

3 PL
E.m (1 + kL)
(fz - 1)

since k =

rL
Thus, 1+kL:'V
;

Therefore the extension = PL

L
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Comparing of extensions
For the case when r, = 2.r, the value of computed extension as above

_PL
becomes equal to 27Er

The mean radius of taper bar
=1/2(ri+rp)

=1/2(r +2ry)

=3/2.n

Therefore, the extension of uniform bar

= Orginal length . strain

hencethe

4PL
Exten sionof uniform _ | gnEm?
Extensionof tapered ) FL
2nEr?

wz | OB
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Strain;

When a single force or a system force acts on a body, it undergoes some deformation. This
deformation per unit length is known as strain. Mathematically strain may be defined as deformation
per unit length.

So,

Strain=Elongation/Original length

lasticity:

The property of material by virtue of which it returns to its original shape and size upon removal of
load is known as elasticity.

Hooks Law
It states that within elastic limit stress is proportional to strain. Mathematically

E= Stress

Strain
Where E = Young’s Modulus
Hooks law holds good equally for tension and compression.
Poisson’s Ratio:

The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson’s ratio.
Symbol used for poisson’s ratio is nuor 1/ m .

Modul f Elastici r Young’s Modul
Young’s modulus is defined as the ratio of stress to strain within elastic limit.
Deformation of I ingoni

Stress
We know that young’s modulus E= ;

Strain

20



So, deformation
Shear Strain

The distortion produced by shear stress on an element or rectangular block is shown in the figure. The
shear strain or ‘slide’ is expressed by angle ¢ and it can be defined as the change in the right angle. It
is measured in radians and is dimensionless in nature.

Vi : /-

ulus of Rididi

For elastic materials it is found that shear stress is proportional to the shear strain within elastic limit.
The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ or ‘C’.

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric strain.
It is denoted by the symbol K.

Relation between elastic constan
Elastic constants: These are the relations which determine the deformations produced by a given

stress system acting on a particular material. These factors are constant within elastic limit, and
known as modulus of elasticity E, modulus of rigidity G, Bulk modulus K and Poisson’s ratio .
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Relationship between modulus of elasticity (E) and bulk modulus (K):

E = 3K(1-24)

Relationship between modulus of elasticity (E) and modulus of rigidity (G):

E = 2G(1+ 1)

Relation among three elastic constants:

9KG
G +3K

_ . lati .
_ in di : il |
Standard specimen are used for the tension test.

There are two types of standard specimen's which are generally used for this purpose, which
have been shown below:

Specimen |:

This specimen utilizes a circular X-section.
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[specimen with circular X-section]

Specimen 11¢

This specimen utilizes a rectangular X-section.

\H"""—h._
P

[specimen with rectangular X-section]

l; = gauge length i.e. length of the specimen on which we want to determine the mechanical
properties.The uniaxial tension test is carried out on tensile testing machine and the following steps
are performed to conduct this test.

(i) The ends of the specimen are secured in the grips of the testing machine.

(i) There is a unit for applying a load to the specimen with a hydraulic or mechanical drive.

(iif) There must be some recording device by which you should be able to measure the final output in
the form of Load or stress. So the testing machines are often equipped with the pendulum type lever,
pressure gauge and hydraulic capsule and the stress Vs strain diagram is plotted which has the

following shape.

A typical tensile test curve for the mild steel has been shown below
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SALIENT POINTS OF THE GRAPH:

(A) So it is evident form the graph that the strain is proportional to strain or elongation is proportional
to the load giving a st.line relationship. This law of proportionality is valid upto a point A.

or we can say that point A is some ultimate point when the linear nature of the graph ceases or there is
a deviation from the linear nature. This point is known as the limit of proportionality or the
proportionality limit.

(B) For a short period beyond the point A, the material may still be elastic in the sense that the
deformations are completely recovered when the load is removed. The limiting point B is termed as
Elastic Limit .

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally
recoverable. There will be thus permanent deformation or permanent set when load is removed. These
two points are termed as upper and lower yield points respectively. The stress at the yield point is
called the yield strength.

A study a stress — strain diagrams shows that the yield point is so near the proportional limit that for
most purpose the two may be taken as one. However, it is much easier to locate the former. For
material which do not posses a well define yield points, In order to find the yield point or yield
strength, an offset method is applied.

In this method a line is drawn parallel to the straight line portion of initial stress diagram by off setting
this by an amount equal to 0.2% of the strain as shown as below and this happens especially for the
low carbon steel.

yield strength (or Proof stress)




(E) A further increase in the load will cause marked deformation in the whole volume of the metal.
The maximum load which the specimen can with stand without failure is called the load at the
ultimate strength.

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material.

s, = Stress which the specimen can with stand without failure & is known as Ultimate Strength or
Tensile Strength.

s, is equal to load at E divided by the original cross-sectional area of the bar.

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until fracture
occurs at F. Beyond point E, the cross-sectional area of the specimen begins to reduce rapidly over a
relatively small length of bar and the bar is said to form a neck. This necking takes place whilst the
load reduces, and fracture of the bar finally occurs at point F.

Nominal stress — Strain OR Conventional Stress — Straindiagrams:

Stresses are usually computed on the basis of the original area of the specimen; such stresses are
often referred to as conventional or nominal stresses.

True stress — Strain Diagram:
Since when a material is subjected to a uniaxial load, some contraction or expansion always takes
place. Thus, dividing the applied force by the corresponding actual area of the specimen at the same

instant gives the so called true stress.
Percen Elongation: 'd ':

The ductility of a material in tension can be characterized by its elongation and by the reduction in
area at the cross section where fracture occurs.

It is the ratio of the extension in length of the specimen after fracture to its initial gauge length,
expressed in percentage.

y l_lgll 100
1

5:(

I, = gauge length of specimen after fracture(or the distance between the gage marks at fracture)
I;= gauge length before fracture(i.e. initial gauge length)

For 50 mm gage length, steel may here a % elongation d of the order of 10% to 40%.

Ductile and Brittle Materials:

Based on this behaviour, the materials may be classified as ductile or brittle materials

Ductile Materials:

It we just examine the earlier tension curve one can notice that the extension of the materials over the
plastic range is considerably in excess of that associated with elastic loading. The Capacity of
materials to allow these large deformations or large extensions without failure is termed as ductility.
The materials with high ductility are termed as ductile materials.

Brittle Materials:
A brittle material is one which exhibits a relatively small extensions or deformations to fracture, so
that the partially plastic region of the tensile test graph is much reduced.

25



This type of graph is shown by the cast iron or steels with high carbon contents or concrete.

Y
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Elasticity: Property of material by virtue of which it can regain its shape after removal of external load

Plasticity: Property of material by virtue of which, it will be in a state of permanent deformation
even after removal of external load.

Ductility: Property of material by virtue of which, the material can be drawn into wires.

Hardness: Property of material by virtue of which the material will offer resistance to penetration or
indentation.

Ball indentation Tests:

iThis method consists in pressing a hardened steel ball under a constant load P into a specially
prepared flat surface on the test specimen as indicated in the figures below :

L
=~
fﬁxx é\\ . d .
|

d

After removing the load an indentation remains on the surface of the test specimen. If area of
the spherical surface in the indentation is denoted as F sq. mm. Brinell Hardness number is defined as

BHN=P/F

F is expressed interms of Dand d D =
ball diameter

d = diametric of indentation and Brinell Hardness number is given by

BHN [

2P
DD D*1d?)
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Then is there is also Vicker's Hardness Number in which the ball is of conical shape.

IMPACT STRENGTH

Static tension tests of the unnotched specimen's do not always reveal the susceptibility of metal
to brittle fracture. This important factor is determined in impact tests. In impact tests we use the
notched specimen's

A

this specimen is placed on its supports on anvil so that blow of the striker is opposite to the
notch the impact strength is defined as the energy A, required to rupture the specimen,
Impact Strength = A/ f

Where f = It is the cross — section area of the specimen in cm? at fracture & obviously at notch.

The impact strength is a complex characteristic which takes into account both toughness and
strength of a material. The main purpose of notched — bar tests is to study the simultaneous effect of
stress concentration and high velocity load application

Impact test are of the severest type and facilitate brittle friction. Impact strength values can not
be as yet be used for design calculations but these tests as rule provided for in specifications for
carbon & alloy steels.Futher, it may be noted that in impact tests fracture may be either brittle or
ductile. In the case of brittle fracture, fracture occurs by separation and is not accompanied by
noticeable plastic deformation as occurs in the case of ductile fracture.

Impact loads:

Considering a weight falling from a height h, on to a collar attached at the end as shown in the
figure.

Let P=equivalent static or gradually applied load which will produce the same extension x as
that of the impact load W

Neglecting loss of energy due to impact, we can have:

Loss of potential energy= gain of strain energy of the bar
Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W,

i.e. the stress produced by a suddenly applied load is twice that of the static stress.

Thermal stresses, Bars subjected to tension and Compression

Compound bar: In certain application it is necessary to use a combination of elements or bars
made from different materials, each material performing a different function. In over head electric
cables or Transmission Lines for example it is often convenient to carry the current in a set of copper
wires surrounding steel wires. The later being designed to support the weight of the cable over large
spans. Such a combination of materials is generally termed compound bars.
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Consider therefore, a compound bar consisting of n members, each having a different length
and cross sectional area and each being of a different material. Let all member have a common
extension ‘X' i.e. the load is positioned to produce the same extension in each member.

A A T
f ol P
2
n" member
Length  Ln
First member x/ Area An
Modulus En
LE:ch :1 Load Fn
rea Al
Modulus E1 | | |
logdFy - _ -] ----------° I Comman
extension
W

Forthe 'n' the members

I:I'I
stress _ E - A
strain n }{n/g

_RL
A,
ar F o= En Ay s _ By By M
L, L,

Where F,, is the force in the nth member and A, and L, are its cross - sectional area and length.

Let W be the total load, the total load carried will be the sum of all loads for all the members.
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Wy = EEHAH.}{

L,
= }{.Z% ....... (2]
L,
Fromeguation (1) forceinmemberlisgiven as
F, = E, A x
Ly
framequation(2)
Wy
}{ =
EEI'I"‘E\n
|_I'I
ThusF, = Eify W
|‘1 E En'ﬂ\n
L,

Therefore, each member carries a portion of the total load W proportional of EA
/ L value.

E, A,
L
F=—t_w
1 5
The above expression may be writen as L,
f Bty
if the length of each individual member in same then, we may write ZEA

Thus, the stress in member '1' may be determined as <, =F; / A;

Determination of common extension of compound bars: In order to determine the common

extension of a compound bar it is convenient to consider it as a single bar of an imaginary material
with an equivalent or combined modulus E..

Assumption: Here it is necessary to assume that both the extension and original lengths of the
individual members of the compound bar are the same, the strains in all members will than be equal.

Total load on compound bar = F; + Fo+ Fg +

......... + F, where F;
, F o ,....,etc are the loads in members 1,2 etc But force = stress .
area,therefore

(AL+AL+ +A,)=

1A1+ 2A2+ ........ + nAn

Where [ is the stress in the equivalent single bar
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Dividing throughout by the common strain<< .
o) ir T ir
—(Ap Ay A LA e LA D
E( 1 z nj = 1 = 2 Eﬁh
e B (A + A+ v ATEEA B+ LE LA,
or E, = Evi + By + B Ay

Ayt By A
ZEA
E =<=—"
or E, SA
with an external load W applied stressin the equivalent bar may be computed as
stress=ﬂ
o
o . ¥ LY
t th lent bar=—=
strain inthe equivalent bar [ SAE,
hence commen extension x = U
E.ZA

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and
contract when cooled, hence , an increase in temperature produce a positive thermal strain. Thermal
strains usually are reversible in a sense that the member returns to its original shape when the
temperature return to its original value. However, there here are some materials which do not behave
in this manner. These metals differs from ordinary materials in a sence that the strains are related non
linearly to temperature and some times are irreversible .when a material is subjected to a change in
temp. is a length will change by an amount.

[/fﬁ’.z"/
—

ot

= coefficient of linear expansion for the material L =
original Length
t = temp. change

Thus an increase in temperature produces an increase in length and a decrease in temperature
results in a decrease in length except in very special cases of materials with zero or negative
coefficients of expansion which need not to be considered here.

If however, the free expansion of the material is prevented by some external force, then a stress
is set up in the material. They stress is equal in magnitude to that
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which would be produced in the bar by initially allowing the bar to its free length and then applying
sufficient force to return the bar to its original length.

Consider now a compound bar constructed from two different materials rigidly joined
together, for simplicity.

Let us consider that the materials in this case are steel and brass.

Steel

Brass

If we have both applied stresses and a temp. change, thermal strains may be added to those
given by generalized hook's law equation —e.g.

ex=%[ax—ﬁay+azj]+aﬂt
EM=é[c:n},—}(c:rj,E +crz]|]+cx.-'_"-.t
e,c:%[crz -, + ﬂyj]+ﬂﬂt

While the normal strains a body are affected by changes in temperatures, shear strains are not.
Because if the temp. of any block or element changes, then its size changes not its shape therefore
shear strains do not change.

In general, the coefficients of expansion of the two materials forming the compound bar will be

different so that as the temp. rises each material will attempt to expand by different amounts. Figure
below shows the positions to which the
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individual materials will expand if they are completely free to expand (i.e not joined rigidly together
as a compound bar). The extension of any Length L is given by [ Lt

Asume Oy > O,

o)
(&) Original bar Steel
Brass
3 Steel
A o Lot .
- L
o, Lt
-
by
{b} Expanded position members Steel | B ¥
free to expand nrepenthy u Brass
Steel |
i i —3
Eﬂb"s'z‘[::zl Compression
of brass
3
() Expanded position of the Stee
Compound har Brassa
3 Sien

In general, changes in lengths due to thermal strains may be calculated form
equation [y =[] Lt, provided that the members are able to expand or contract freely,

a situation that exists in statically determinates structures. As a consequence no stresses are generated
in a statically determinate structure when one or more members undergo a uniform temperature
change. If in a structure (or a compound bar), the free expansion or contraction is not allowed then the
member becomes s statically indeterminate, which is just being discussed as an example of the
compound bar and thermal stresses would be generated.

If the two materials are now rigidly joined as a compound bar and subjected to the same temp.
rise, each materials will attempt to expand to its free length position but each will be affected by the
movement of the other. The higher coefficient of expansion material (brass) will therefore, seek to
pull the steel up to its free length position and conversely, the lower coefficient of expansion martial
(steel) will try to hold the brass back. In practice a compromised is reached, the compound bar
extending to the position shown in fig (c), resulting in an effective compression of the brass from its
free length position and an effective extension of steel from its free length position.
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UNIT 2

Shear Force and Bending Moment

Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed
and the terms shear force and bending moments come into pictures which are helpful to analyze the
beams further. Let us define these terms

Coror

e FrArs

=
-»T
[
7
-—--®
R
T

e

Rz

=
Pomm—— =

Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads Py, P,, P; and is
simply supported at two points creating the reactions R; and R, respectively. Now let us
assume that the beam is to divided into or imagined to be cut into two portions at a section AA. Now
let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically upwards, and
since the entire beam is to remain in equilibrium, thus the resultant of forces to the right of AA must
also be F, acting downwards. This forces ‘F' is as a shear force. The shearing force at any x- section of
a beam represents the tendency for the portion of the beam to one side of the section to slide or shear
laterally relative to the other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components of the
forces acting on either side of the x-section.
Sign Convention for Shear Force:
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The usual sign conventions to be followed for the shear forces have been illustrated in figures 2 and 3.
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The regultant force which is in the downward
direction and is towards the R.H.5 of the
¥-gection is +ve Shear Force.
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Fig 2: Positive Shear Force

F

The resultant force which are in the downward
direction and is on the L.H.5 of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
I
I
I
I
I
I
I
|
|
|
|
|
|
i
I
I
I
I
I
I
I
: X-seclion s -ve Shear Force,
A

Fig 3: Negative Shear Force

Bending Moment:
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Let us again consider the beam which is simply supported at the two prints, carrying loads P, P, and
P; and having the reactions R; and R, at the supports Fig 4. Now, let us imagine that the beam is cut
into two potions at the x-section AA. In a similar manner, as done for the case of shear force, if we
say that the resultant moment about the section AA of all the loads and reactions to the left of the x-
section at AA is M in C.W direction, then moment of forces to the right of X-section AA must be ‘M'
in

C.C.W. Then ‘M'is called as the Bending moment and is abbreviated as B.M. Now one can define the
bending moment to be simply as the algebraic sum of the moments about an x-section of all the forces
acting on either side of the section

Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 and Fig 6.
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Fig 5: Positive Bending Moment

Resultant moment on the R.H.S of
the X-section is C.W, then itis a
negative B.M

Resultant moment on the L.H.S of
the X-section is C.C.W, then itis a
negative B.M
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Fig 6: Negative Bending Moment

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative bending
moments respectively.
Bending Moment and Shear Force Diagrams:

The diagrams which illustrate the variations in B.M and S.F values along the length of the beam for
any fixed loading conditions would be helpful to analyze the beam further.
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ‘F' varies
along the length of beam. If x dentotes the length of the beam, then F is function x i.e. F(x).

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending
moment ‘M' varies along the length of the beam. Again M is a function x i.e. M(x).

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment:

The construction of the shear force diagram and bending moment diagrams is greatly simplified if the
relationship among load, shear force and bending moment is established.

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. Let us
imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x' from the origin

~ I

- ‘R ,,;.L’\a.

x
XK __\—) Conziderad to

he detached

o
Ry
L

Let us detach this portion of the beam and draw its free body diagram.

The forces acting on the free body diagram of the detached portion of this loaded beam are the
following

* The shearing force F and F+ JF at the section x and x + dx respectively.

* The bending moment at the sections x and x + 6x be M and M + dM respectively.
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* Force due to external loading, if ‘w' is the mean rate of loading per unit length then the total loading
on this slice of length 6x is w. 6x, which is approximately acting through the centre ‘c'. If the loading
is assumed to be uniformly distributed then it would pass exactly through the centre “c'.

This small element must be in equilibrium under the action of these forces and couples.

Now let us take the moments at the point ‘c'. Such that

M+F.%}{+(F +6F]|.52—H= Pl + it

= F D ar) 2= o
2 2

=>F.E'2_}{+F.z_}{+SF.5;= &M [Meglecting the product of

&F and dxbeing smallquantities |
= F .5x = &M
&

=F=—
G

Under the limits dx— 0

:% e ()

Fesaolvingthe farcesverticallywe get
w B +IF +8F)=F

F

= W= —E
&
Lnder the limits §x—0
;\.w:—ﬁ —i(ﬂj
dx dx "du
dF d*M

Conclusions: From the above relations,the following important conclusions may be drawn
* From Equation (1), the area of the shear force diagram between any two points, from the basic
calculus is the bending moment diagram

= IF.dx
* The slope of bending moment diagram is the shear force, thus
=M

dx

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is
therefore constant.'
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dM _

—=0.
* The maximum or minimum Bending moment occurs where dx

The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed
loading at any position along the beam. The —ve sign is as a consequence of our particular choice of
sign conventions

Procedure for drawing shear force and bending moment diagram: Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam as a function
of ‘x' measured from one end of the beam is that it becomes easier to determine the maximum
absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ‘x' becomes of paramount importance so as
to determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw this,
first the reactions must be determined always. Then the vertical components of forces and reactions
are successively summed from the left end of the beam to preserve the mathematical sign conventions
adopted. The shear at a section is simply equal to the sum of all the vertical forces to the left of the
section.

When the successive summation process is used, the shear force diagram should end up with the
previously calculated shear (reaction at right end of the beam. No shear force acts through the beam
just beyond the last vertical force or reaction. If the shear force diagram closes in this fashion, then it
gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of beam from
the left hand end and summing up the areas of shear force diagrams giving due regard to sign. The
process of obtaining the moment diagram from the shear force diagram by summation is exactly the
same as that for drawing shear force diagram from load diagram.
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It may also be observed that a constant shear force produces a uniform change in the bending moment,
resulting in straight line in the moment diagram. If no shear force exists along a certain portion of a
beam, then it indicates that there is no change in moment takes place. It may also further observe that
dm/dx= F therefore, from the fundamental theorem of calculus the maximum or minimum moment
occurs where the shear is zero. In order to check the validity of the bending moment diagram, the
terminal conditions for the moment must be satisfied. If the end is free or pinned, the computed sum
must be equal to zero. If the end is built in, the moment computed by the summation must be equal to
the one calculated initially for the reaction. These conditions must always be satisfied.

Illustrative problems:

In the following sections some illustrative problems have been discussed so as to illustrate the
procedure for drawing the shear force and bending moment diagrams
1. A cantilever of length carries a concentrated load ‘W' at its free end.

Draw shear force and bending moment.
Solution:

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x)
-ve sign means the shear force to the left of the x-section are in downward direction and therefore
negative

Taking moments about the section gives (obviously to the left of the section)

M = -Wx (-ve sigh means that the moment on the left hand side of the portion is in the anticlockwise
direction and is therefore taken as —ve according to the sign convention)
so that the maximum bending moment occurs at the fixed end i.e. M =-W |

From equilibrium consideration, the fixing moment applied at the fixed end is WI and the reaction is
W. the shear force and bending moment are shown as,
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w ¥ 1 X

T / 5.F.Diagram

% Wi —=8 M. Diagram

2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way)
W

L

- £ - £
%%
[

.S

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any section X-X
from the left end then, the beam is under the action of following forces.

.So the shear force at any X-section would be = W/2 [Which is constant upto x < 1/2]

S.Fyy =

WY =y
oy = W
2

'l|,'|‘:-)_

If we consider another section Y-Y which is beyond 1/2 then

for all values greater = 1/2
Hence S.F diagram can be plotted as,
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.1,1.'/? 5.F.Diagram
.For B.M diagram:
If we just take the moments to the left of the cross-section,
_ -
B.h = — uforxliesbetweend and 112
M- 2
BM = LieBMatx=0
311:5 2 2
_ Wi
4
BM,, = o }{—W[x—_l]
2
Again
= ﬂ W=+ ﬂ
2
W W
= - W+
2
W WY
BMa,. o = '? +?
=0
Which when plotted will give a straight relation i.e.
I‘-‘
| ]
LN LN
= F
B.M 1_""'|f’11

43



It may be observed that at the point of application of load there is an abrupt change in the shear
force, at this point the B.M is maximum.
3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

X
= wi | lendgth

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given w /
length.

Consider any cross-section XX which is at a distance of x from the free end. If we just take the
resultant of all the forces on the left of the X-section, then

S.Fux = -WHx for all values of ‘x'-------------------- (1)

SF«=0
S.Fxx at x=1 =-WI

So if we just plot the equation No. (1), then it will give a straight line relation. Bending Moment at X-
X is obtained by treating the load to the left of X-X as a concentrated load of the same value acting
through the centre of gravity.

Therefore, the bending moment at any cross-section X-Xis

Bl = - W g

The above equation is a quadratic in x, when B.M is plotted against x this will produces a
parabolic variation.
The extreme values of this would be at x =0 and x = |

Wil
B.Mgyy ==~ =

Hence S.F and B.M diagram can be plotted as follows:
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4. Simply supported beam subjected to a uniformly distributed load [U.D.L].
X
" angth
P 2N PLAN
Wi y
- L = 2

The total load carried by the span would be

= intensity of loading x length

=wxl

By symmetry the reactions at the end supports are each wl/2

If x is the distance of the section considered from the left hand end of the beam.

S.F at any X-section X-X is

=E—W}{

;]

Giving a straight relation, having a slope equal to the rate of loading or intensity of the loading.
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S'Fa‘t:-:=l:|=? = Wy
soat
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;
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The bending moment at the section x is found by treating the distributed load as acting at its centre of
gravity, which at a distance of x/2 from the section

W
%
-—
|
Y
W ¥ I
®
X
Wy %
B.h = —uw - W —
HX 5 H H 5
sothe
¥
:W.i(l —2) e (2]
B.M,,, - =0
BM,, -, =0
W
B a1 Ty

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force and
bending moment can be drawn in the following way will appear as follows:

"A length

Wi L5 Wl 5

N % '-‘-'I,E % F.Diagram
e ————

W I?

]

B.M Dingr.;m'l
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UNIT 3

Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may consists
of a resultant normal force, a resultant shear force and a resultant couple. In order to ensure that the
bending effects alone are investigated, we shall put a constraint on the loading such that the resultant
normal and the resultant shear forces are zero on any cross-section perpendicular to the longitudinal
axis of the member,
That means F =0

. dM _ - _
since 7 -~ or M = constant.
Thus, the zero shear force means that the bending moment is constant or the bending is same at every
cross-section of the beam. Such a situation may be visualized or envisaged when the beam or some
portion of the beam, as been loaded only by pure couples at its ends. It must be recalled that the
couples are assumed to be loaded in the plane of symmetry.

= ——Heam

Plane of Symmetry

Fig {1)

Fig (2)
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When a member is loaded in such a fashion it is said to be in pure bending. The examples of pure

bending have been indicated in EX land EX 2 as shown below :
Ex .2 P P

zero 5.F

sFD

Constant B.M

BM.D

SFD

BMD

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-section
gets deformed and we shall have to make out the conclusion that,

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and
perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F' ( refer Fig
1(a) ) do not get warped or curved.

2. In the deformed section, the planes of this cross-section have a common intersection i.e. any time
originally parallel to the longitudinal axis of the beam becomes an arc of circle.
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Saction
A

1 -

| /

! E

jl_ ______

/‘f 1 M_A = Neutral axis
& £ I
Meutral - - -
Surface ] A
£ N,.-"";

We know that when a beam is under bending the fibres at the top will be lengthened while at the
bottom will be shortened provided the bending moment M acts at the ends. In between these there are
some fibres which remain unchanged in length that is they are not strained, that is they do not carry
any stress. The plane containing such fibres is called neutral surface.

The line of intersection between the neutral surface and the transverse exploratory section is called the
neutral axisNeutral axis (N A) .

\vation of Elastic Elexural f la

In order to compute the value of bending stresses developed in a loaded beam, let us consider the two
cross-sections of a beamHE and GF , originally parallel as shown in fig 1(a).when the beam is to
bend it is assumed that these sections remain parallel i.e.H'E"' and G'F' , the final position of the
sections, are still straight lines, they then subtend some angle <.

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends this will
stretch to A'B'

Therefore,

changeinlength
orginal length

strain in fibre AB =

—AB -AB ButAB = CDandCD = C'D"
AH
refertofigifal andfigi(h)
AR -CD
—5—
Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis zero.
Therefore, there won't be any strain on the neutral axis

Cogtrain =
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(R+y)A-RB _RB+yB-RB _y
FA KA [
stress

strain
Therefore eguating the twostrains as

obtained fromthe tworelationsi.e,

However =E whereE = Y¥oung'sModulusof elasticity

g E
%Dr_=_ .............. (1)

y R

m| =

P

AN

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a distance
‘y' from the N.A, is given by the expression
E

=gy

if the shaded stripisof area'dA’
then the force onthe strip is

F=o8A=Cyaa
R

Moment aboutthe neutral axiswould be=F vy :% LA

The toatl moment for the whaole
cross-section is therefore equal to

_=E 5 +p_ E= s
M =% — A= — G,
ERF RE}*

Now the term  Z ¥ 84 s the property of the material and is called as a second moment of area of the
cross-section and is denoted by a symbol |.

Therefore
E
b ==l
- 2
combining equation 1 and 2 we get
o _M_E
v T R

This equation is known as the Bending Theory Equation.The above proof has involved the
assumption of pure bending without any shear force being present.
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Therefore this termed as the pure bending equation. This equation gives distribution of stresses which
are normal to cross-section i.e. in x-direction.
tion Modulus:

From simple bending theory equation, the maximum stress obtained in any cross- section is given as

For any given allowable stress the maximum moment which can be accepted by a particular shape of
_ M

m_Tl.'l" m
max

o
max

cross-section is therefore

For ready comparison of the strength of various beam cross-section this relationship is some times
written in the form

| -
M=Zo . where Z= _ Is termed as section modulus

The higher value of Z for a particular cFE?é—section, the higher the bending moment which it can
withstand for a given maximum stress.

Theorems to determine second moment of area: There are two theorems which are helpful to
determine the value of second moment of area, which is required to be used while solving the simple
bending theory equation.

Second Moment of Area :

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the
summation of areas times the distance squared from a fixed axis. (This property arised while we were
driving bending theory equation). This is also known as the moment of inertia. An alternative name
given to this is second moment of area, because the first moment being the sum of areas times their
distance from a

. . . . 2
given axis and the second moment being the square of thedistance or I yo dA
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Consider any cross-section having small element of area d A then by the definition

I,(Mass Moment of Inertia about x-axis) = and ly(Mass Moment of Inertia about
. I }{2 dA '_lll'z dA,

y-axis) =

Now the moment of inertia about an axis through ‘O' and perpendicular to the plane of figure is called
the polar moment of inertia. (The polar moment of inertia is also the area moment of inertia).
ie,

J = polar moment of inertia

= [tda
= ]+ y?)om
= [itda+]ytda
=ly +1y
ord=1le +1y m

The relation (1) is known as the_perpendicular axis theorem and may be stated as follows:
The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of inertia

about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three axes exist
together.
CIRCULAR SECTION :

For a circular x-section, the polar moment of inertia may be computed in the following manner
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I

X \

"

Consider any circular strip of thickness < r located at a radius 'r'. Than the area of
the circular strip would be dA = 2<r. <r

J=[rtdn
Taking the limits of intergration from 0 to df2
d

z
J= Jrzzmﬁr
]

r

d

417 4

e omd
J=2 _ =

Hld L 32

however by perpendicular axistheorem
J=lx+1ly
But for the circular crogs-section the lxand lyare both

equal being maoment of inertia about a diameter

1l
o]
nimln.
-
L)
()

1
lga = ?—'

?Td4
lgia = =y

forahollow circular sectionof diameter D and d,
thevaluesof Jandlare definedas

H(D4 - d%)
32
:'?(D“ - d“)
B4

Thus
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Parallel Axis Theorem:

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis through
the centroid plus the area times the square of the distance between the axes.

If *ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the centroid G, of

the cross-section, then
l, = _[(g,r +hj2 dA by definition (moment of inertia about an axis £7)

= _[(+23,rh +h?)da
= [y2da +n? [aa +2n ] yda

Since ] ydA= 0
= [yt +n?faa
= [ytda +na
.= |, +AnT |, =15 (since cross-section axes also pass through G)

Wehere & =Total area of the section

Rectangular Section:
For a rectangular x-section of the beam, the second moment of area may be computed as below :
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[

dy

Consider the rectangular beam cross-section as shown above and an element of area dA , thickness dy
, breadth B located at a distance y from the neutral axis, which by symmetry passes through the centre
of section. The second moment of area | as defined earlier would be

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis through

the centre is given by

=
I
[I—
=
]
[
T=
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1l
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Similarly, the second moment of area of the rectangular section about an axis through the lower edge
of the section would be found using the same procedure but with integral limitsof 0to D .

Therefore

31" 3
ED . o . .
These standdrﬁﬁ{ayflulﬁs—gfove very convenient in the determination of Iy for build up sections
which can be cohvemiently divided into rectangles. For instance if we just want to find out the
Moment of Inertia of an | - section, then we can use the above relation.

- E .
| | [
| |
| |
| |
| 1
| |
| 1
I _ _ L [d o
| 1
N.A I I
| |
| |
| |
| |
| |
| |
)
r
- b - “ 5 >
N.Az of dotted rectangle - l-:-fshaded portion
| = BD3 - 2 @
NA 2 12
.- BD® b
HA T2 =

Use of Flexure Formula:
IHlustrative Problems:

An | - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 mm is used as
simply supported beam for a span of 7 m. The girder carries a distributed load of 5 KN /m and a
concentrated load of 20 KN at mid-span.

Determine the

(1). The second moment of area of the cross-section of the girder
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(if). The maximum stress set up.
Solution:
The second moment of area of the cross-section can be determained as follows :

For sections with symmetry about the neutral axis, use can be made of standard | value for a rectangle
about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into convenient
rectangles for each of which the neutral axis passes through the centroid. Example in the case
enclosing the girder by a rectangle

Computation of Bending Moment:
I I - |

girder: rectangle <haded portion
_ |200 =300° a2 5 [902260° ) 2
12 12
= (45-264 10°*
=186=10"% m - |
The maximum stressmaybefound fram 300 mm 7

-
the simple bendingtheorybyeguation M 1/// //u
L P P
o_M_E 4 7 ! A
—_ === r/// //// 260 mim
y | R -~ il

M m 200 mim

B Yy
In this case the loading of the beam is of two types
(a) Uniformly distributed load

(b) Concentrated Load

In order to obtain the maximum bending moment the technique will be to consider each loading on
the beam separately and get the bending moment due to it as if no other forces acting on the structure
and then superimpose the two results.
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2
r""I1man-c"" = WTL + %
_20=10% %7 5x10°=7*
1 E
= (35.0 +30.63)10°
=B5 B3 kNm

—  max™
| l-l'llmax’“

:5553x103x150x103
1.06=10%
0 =518MN/m?

m

max™

Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in beams was for the
case of pure bending i.e. constant bending moment acts
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UNIT-4

Two Dimensional State of Stress and Strain: Principal stresses. Numerical
examples

Stresses on obligue plane: Till now we have dealt with either pure normal direct stress or pure shear
stress. In many instances, however both direct and shear stresses acts and the resultant stress across
any section will be neither normal nor tangential to the plane. A plane stse of stress is a 2 dimensional
stae of stress in a sense that the stress components in one direction are all zero i.e

7z=7yz=sz:0

Examples of plane state of stress include plates and shells. Consider the general case of a
bar under direct load F giving rise to a stress [/ , vertically
Thickness of the

elament in z-dir is thin
hY and is taken unity.

Ty v C

The stress acting at a point is represented by the stresses acting on the faces of the element enclosing
the point. The stresses change with the inclination of the planes passing through that point i.e. the
stress on the faces of the element vary as the angular position of the element changes. Let the block be
of unit depth now considering the equilibrium of forces on the triangle portion ABC. Resolving forces
perpendicular to BC.

c,.BC.1=coysing. AB.1
but AB/BC =sin@ or AB =BC siné
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o, .BC.1= aysin .BCsing . 1or a,=a,sin’ 26 (1
Now resolving the forces parallel to BC

r, .BC.1=oycos 6. AB sin. 1
again AB = BC cos &

c,.BC.1=coycos ¢.BCsin 8.10r g,=cysiné cosd
1 .
7 =50 sl 20 (2)

If & = 90° the BC will be parallel to AB and r,= 0, i.e. there will be only direct stress

or normal stress.

Material subjected to pure shear:
Consider the element shown to which shear stresses have been applied to the sides AB and DC
— Ty
A B
o \P
Ty ol o
T

Complementary shear stresses of equal value but of opposite effect are then set up on the sides
AD and BC in order to prevent the rotation of the element. Since the applied and complementary
shear stresses are of equal value on the x and y planes.

Now consider the equilibrium of portion of PBC

Assuming unit depth and resolving normal to PC or in the direction of o,
os.PC.1=7, PB.cosé.1+r, BCsing.1
=7, .PB.cos@ + r,, BC.sing

Now writing PB and BC in terms of PC so that it cancels out from the two sides
PB/PC =sing BC/PC = coséd
o,.PC.1=1,.c080sin0PC+r, .cosd sing.PC

o,=2r, singcose

Or1. o, =2r,,sin28 (1)

Now resolving forces parallel to PC or in the direction of &, .then 7, PC.1

= 7,.PBsing-r,BC cosd

-ve sign has been put because this component is in the same direction as that of r; .

again converting the various quantities in terms of PC we have
r,PC.1=r .PBsin® ¢z -r PCcos’®

=-z_[cos’8- sin’#]

=-7,00820 (2)
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minimum values of +< ,, (tension) and << ,y(compression) on plane at + 45° to the applied shear and
on these planes the tangential component < . is zero.

Hence the system of pure shear stresses produces and equivalent direct stress system, one set
compressive and one tensile each located at 45° to the original shear directions as depicted in the
figure below:

Tuy

Material i W0 m 1l rpendicular dir I

Now consider a rectangular element of unit depth, subjected to a system of two direct stresses
both tensile, <, and <acting right angles to each other.

Ty \1
\. “ﬁ..
A __?nlt depth 'C@\ g 1~
B ] @
o
-:'_.‘-': A L4373
[s] il Tn

[a]}] C

-—
]

Ty
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+ -
Ty = T Oy | [ 2 |eose
2 2

Now resolving parallal to AC

©)

Sq-AC.1= << ..c0s< .AB.1+<< ,.BC.sin< .1

The — ve sign appears because this component is in the same direction as that of AC.
Again converting the various guantities in terms of AC so that the AC cancels out from the

two sides.

Ta-ALT = [T cosfsing - o sindoosf JAC

Ty = (0, -0, )sinfcosd

(- Uy:' .
= " zin2A
2 =]
a. =0
or |7y = Msin?ﬁ'
2 (4)
Conclusions :

The following conclusions may be drawn from equation (3) and (4)

O  The maximum direct stress would be equal to < or <, which ever is the greater, when <
=0°or90°
@® The maximum shear stress in the plane of the applied stresses occurs when << =45°

(o, - 0y)
Tma:-c:—xz !

Material i mbin ir nd shear str

Now consider a complex stress system shown below, acting on an element of material.

The stresses <, and <, may be compressive or tensile and may be the result of direct forces or
as a result of bending.The shear stresses may be as shown or completely reversed and occur as a result
of either shear force or torsion as shown in the figure below:

As per the double subscript notation the shear stress on the face BC should be notified as <  ,
however, we have already seen that for a pair of shear stresses there is a set of complementary shear

‘L ﬂ.’u
Ty
A1 ™ B
- F Tuy
f Ox
an
Tue
D —1  C
Tiy
¥y Oy




stresses generated such that <y, = <y,
By looking at this state of stress, it may be observed that this state of stress is combination of

two different cases:
() Material subjected to two mutually perpendicular direct stresses. In this case the various

formula's derived are as follows.

(o, + ':r'!,r:I . (o, - gy:l o528
2

|:':rx - U\,r:l
2

To get the required equations for the case under consideration,let us add the respective

equations for the above two cases such that
5, = ; %), 19 9]

Oy = 0
Tq = Msin 28 - 100828

Ty =

Tq = sin28

cosf+ 1, sin2d

These are the equilibrium equations for stresses at a point. They do not depend on material

proportions and are equally valid for elastic and inelastic behaviour
This eqn gives two values of 2< that differ by 180° .Hence the planes on which maximum and

minimum normal stresses occurate 90%apart.

, . a
Foro,to be a maximum ar minimum d—; =0

I o
o, + a. -0
gB:( 12 1’r:|+|: 12 yjcnsEE+TwSiﬂ23
% = - Lo, -0,)6in202 4 7 o0s282

=0
L.~ o, - o )sin2f+ 1 cos2d =0
T 005284 = (o, - 7, )sin2é
2T,
(Ux - U\,r:l

Thus, tan2d =

From the triangle it may be determined

a.-a
cos2é = o, - v/
Jlo - ot a4t
2
sin2f = Ty

\Irlz':rx - g\,rjz + 41211,-'
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Substituting the values of cos2<< and sin2<< in equation (5) we get

o+ d a. -ad
:[ " 1J‘:|+|: : ”r:l cos2f + 1, sin2f8

® 2 2 ¥
g 2 lOx Oyl (0 m0y) (0~ 0y)
i 2 2 Jlog -0 varty,
. T2 Ty
J(ax o) rar,
_loeroy] 1 (o, - 0,)°
2 EJU -, +f112
1 412
,Jcr -, +4,2
or

Lo re) 1 (o, -0 ) eAr,

x
2 2 J('jx - ':rm,r:'2 +412x1,r
1 1 ,Jcr -7, +f111w. I:UI—UYII2+J'-1TZW
2 J(ax o, + 41,
1 1
50 0y) 2 5 flo, -0, 47,
Hence we get the two values of o, which are designated o, as o, and respectively therefore

1 1
7y = EI:UI + ':'v:“ E.JI:UI - -:ryjl2 +411:q,r

Ty =

_1 1 ~
Ty —E(Ux+cryj 5 1'{'[cr g j +f112
The oy and o, are termed asthe principle stresses of the system.
substituting the values of cos28 and sin28 in equation (B) we see that

Ty = %[ax -, )sin2f -1, cos2d

1 ET TW.I:GI —LTY:I

|:|jl':.: _U'!.l')‘(lz _ijl +4‘]2 ‘(EU;.: —U-!I,-:F +4‘]2:q,r

This shows that the values oshear stress is zero on the principal planes.
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2T
tan2, = v
[UI - Uy:l

Hence the maximum and minimum values of normal stresses occur on planes of zero shearing
stress. The maximum and minimum normal stresses are called the principal stresses, and the planes on
which they act are called principal plane the solution of equation ill yield two values of 2< separated
by 180° i.e. two values of < separated by 90° .Thus the two principal stresses occur on mutually
perpendicular planes termed principal planes.

Therefore the two — dimensional complex stress system can now be reduced to the equivalent
system of principal stresses.

Frinciple planes Ref
A Ve
Gy
—_— Ty
T:'r +1'n|r'E

01 2

L)

Let us recall that for the case of a material subjected to direct stresses the value of maximum
shear stresses

Toam - S0, oAt 8= 48" Thus, for a 2-dimensional state of stress,subjected to principle stresses

{oy - o;), on substituting the values if o, and o, we get

_ 1 7
T o 5\i[c:rj,c - cryj + :11211;

Alternatively this expression can also be obtained by differentiating the expression for 1, with respect to 8§ ie.

g, -a
T =¥sin2&—irwc0525
1% - i, - 262+ 1, 5in26.2
T §ng g oo sl + 1, sindd
=0

ar (g, - o, Joos2f + 21 sin2d =1

o, — o, -
g, = Cr =00 __(@x=9))

ETW ETW

a, - a
tanZES = —M

ETW

Re calling that

a7
tan2f, = —*

I:':r:-: - ':r'!,r:I

Thus,

tan28p tan28_ = 1|
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Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation (1)
hence the roots for the double angle of equation (2) are 90° away from the corresponding angle of

equation (1).
This means that the angles that angles that locate the plane of maximum or minimum shearing

stresses form angles of 45° with the planes of principal stresses.
Futher, by making the triangle we get

2T
cosZf = I;r
,J[cry—r:rle sar,
sinzg = ___0x " %)

Jlo, —o a4

Therefore by substtutingthevaluesof cos28and sin28we have
Ty = %[ax - o, )sin2d - 1 cosd

1 (o —oy Lo, —ay) ) T2 Ty

2 Jioy-a e ary, Jlog - o0t 4y,

1 (o, - c:rM]l2 +ﬂf:|2mr

—_

2 Jo, -0 Feas,

- (ox- o)

Because of root the difference in sign convention arises from the point of view of locating the
planes on which shear stress act. From physical point of view these sign have no meaning.

The largest stress regard less of sign is always know as maximum shear stress.

Principal plane inclination in terms of associated principal stress:

2T,

tanEEp =
(ay - gy:l

We know that the equation
yields two values of g i.e. the inclination of the two principal planes on which the principal

stresses s; and s, act. It is uncertain,however, which stress acts on which plane unless equation.
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og.+a SN
BTN

cos2f+ T 8in28 . .
is used and observing which one of the

two principal stresses is obtained.

Alternatively we can also find the answer to this problem in the following manner

Consider once again the equilibrium of a triangular block of material of unit depth, Assuming

|_—Lnit depth

opoos(l

Oy or Op
{U1 ,52} c
AC to be a principal plane on which principal stresses < j acts, and the shear stress is zero.
Resolving the forces horizontally we get:

<x«.BC.1+<,, . AB.1=<,.cos<.AC dividing the above equation through by BC we get

:up.cnsﬁ.—c

T, .+ T B

Y BC
ar
Ty + T tanfi =g

Thus

p

a-a
tanf = 2 *
Ty

67



GRAPHICAL SOLUTION — MOHR'S STRESS CIRCI E

The transformation equations for plane stress can be represented in a graphical form known as
Mohr's circle. This grapical representation is very useful in depending the relationships between
normal and shear stresses acting on any inclined plane at a point in a stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in the figure

h
[ oy
Tay
_
A B
ro F Tuy
Q [
a7
D =—1—— C
¥y Oy

The above system represents a complete stress system for any condition of applied load in two
dimensions

The Mohr's stress circle is used to find out graphically the direct stress < and sheer stress<< on
any plane inclined at < to the plane on which <, acts. The direction of < here is taken in anticlockwise
direction from the BC.

STEPS:

In order to do achieve the desired objective we proceed in the following manner
(i) Label the Block ABCD.

(i)  Set up axes for the direct stress (as abscissa) and shear stress (as ordinate)

(i) Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign
convention.

Direct stresses<< tensile positive; compressive, negative Shear

stresses — tending to turn block clockwise, positive

— tending to turn block counter clockwise, negative

[ i.e shearing stresses are +ve when its movement about the centre of the element is
clockwise ]
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This gives two points on the graph which may than be labeled as respectively to dendt@ and BC
stresses on these planes.

(iv) Join AB and BC
(v) The point P where this line cuts the s axis is than the centre of Mohr's

stress circle and the line joining AB and BC s diameter. Therefore the circle can now be
drawn.
Now every point on the circle then represents a state of stress on some plane through C.

Proof:

Consider any point Q on the circumference of the circle, such that PQ makes an angle 2<< with
BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant stress
on the plane an angle < to BC. Here we have assumed that <, <<<,
Now let us find out the coordinates of point Q. These are ON and QN. From the
figure drawn earlier
ON=0P +PN
OP =OK +KP

If we examine the equation (1) and (2), we see that this is the same equation which we have
already derived analytically

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at < to BC
in the original stress system.

N.B: Since angle PQ3_‘;é 2< on Mohr's circle and not < it becomes obvious that angles are
doubled on Mohr's circle. This is the only difference, however, as They are measured in the same
direction and from the same plane in both figures.

Further points to be noted are :
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(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is
zero, hence by definition OM is the length representing the maximum principal stresses < ; and 2< ;
gives the angle of the plane < ; from BC. Similar OL is the other principal stress and is represented by
<2

(2) The maximum shear stress is given by the highest point on the circle and is represented by
the radius of the circle.

This follows that since shear stresses and complimentary sheer stresses have the same value;
therefore the centre of the circle will always lie on the s axis midway between < , and < . [ since +<
xy & <<y are shear stress & complimentary shear stress so they are same in magnitude but different in
sign. ]

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress circle
would be

(o, -0,
2
While the direct stress on the plane of maximum shear must be mid — may between <, and <,
i.e
(o, + )
2
L
.
- 1
AB H“\
I'.II Gy ,|'|r ay © g
\ N/
(o + U”‘H_q______,_,p-' BC
- 2 -
(4) As already defined the principal planes are the planes on which the shear components are
zero.

Therefore are conclude that on principal plane the sheer stress is zero.

(5) Since the resultant of two stress at 90° can be found from the parallogram of vectors as
shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mobhr's
Circle.
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(6) The graphical method of solution for a complex stress problems using Mohr's circle is a
very powerful technique, since all the information relating to any plane within the stressed element is
contained in the single construction. It thus, provides a convenient and rapid means of solution. Which
is less prone to arithmetical errors and is highly recommended.

Numericals:

Let us discuss few representative problems dealing with complex state of stress to be solved either
analytically or graphically.

Q2:

For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows:
(@) 85 MN/m’ tensile
(b) 25 MN/m? tensile at right angles to (a)
(c) Shear stresses of 60 MN/m?on the planes on which the stresses (a) and

(b) act; the sheer couple acting on planes carrying the 25 MN/m? stress is clockwise in effect.
Calculate the principal stresses and the planes on which they act. What would be the effect on
these results if owing to a change of loading (a) becomes compressive while stresses (b) and (c)
remain unchanged
Solution:

The problem may be attempted both analytically as well as graphically. Let us first obtain the
analytical solution

A
25 MN
m?
—_— &0 MM
I-n2
85 MN
m?

The principle stresses are given by the formula
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dyandad,

1

(00 + 0, :EJ(UI —a ) A,

T
| — M| —

[ B

1

£ +— R0+G =55 +G7

R

g, =122 MN/m?

(B5 +25) * %J{BE + 280 + (43607

==
For fin_din out the planes on which the principle stresses act us the equation

= 13 MN/m[compressive)

:
tan28 = il
a, -0

¥

The solution of this

equation will yeild two values < i.e
they <, and <, giving <;= 31°71' & <,= 121°71'

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the
other stresses remains unchanged hence now the block diagram becomes.

Again the principal stresses would be given by the equation.

1 1
0y b0y = 510, +'5’y3'1§\":”x IR LA BPFIVN
m?
_ %(—85 . 25) + %J{‘BE _ 25)2 + (4 }{EDETJ_ - B0 MM
m.Z
. %.;_ED;. : %J{-BE 25T + (B0
= -30 il 12100 + 14400 bl
2 ¥ m
= -30+31.4

gy =514 MM/ oy = -111.4 MN/m? =——F——
Again for finding out the angles use the fnlln\ring eguatian.

27
tan28=[ il ]
g, =0,

__2xB0_ 120
85-26  -110
_.12
11
12
28 = tan| - —
[ 11]
= f=-2374"

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle
planes may be depicted on the element as shown below:
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A Ref.plane |
B.C ~w

|

’

Oz ]
i

|

1

|

,
-
]

Y

So this is the direction of one principle plane & the principle stresses acting on this would be <
. when is acting normal to this plane, now the direction of other principal plane would be 90° + <
because the principal planes are the two mutually perpendicular plane, hence rotate the another plane
< + 90° in the same direction to get the another plane, now complete the material element if < is
negative that means we are measuring the angles in the opposite direction to the reference plane BC .

Therefore the direction of other principal planes would be {<< + 90} since the angle << is
always less in magnitude then 90 hence the quantity (<<< + 90 ) would be positive therefore the
Inclination of other plane with reference plane would be positive therefore if just complete the Block.

It would appear as

Ref.plane

&
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If we just want to measure the angles from the reference plane, than rotate this block through
180° so as to have the following appearance.

So whenever one of the angles comes negative to get the positive value, first Add 90°

to the value and again add 90° as in this case < = < 23°74'

so < ; = < 23%74' + 90° = 66°26' .Again adding 90° also gives the direction of other principle
planes

i.e <,=66°26"+ 90°= 156°26'

This is how we can show the angular position of these planes clearly.
RAPHICAL SOLUTION:

Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e the
Mohr's stress circle,for the first part, the block diagram becomes

» 25 MN
m B0 MM
m?
A B
R 60 MN
\\. me
\\
D =——— C

Construct the graphical construction as per the steps given earlier.
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Taking the measurements from the Mohr's stress circle, the various quantities computed are
< 1 =120 MN/m? tensile

<, =10 MN/m? compressive
<, = 34°counter clockwise from BC
< , = 34% 90 = 124° counter clockwise from BC

Part Second : The required configuration i.e the block diagram for this case is shown along
with the stress circle. By taking the measurements, the various quantites computed are given as

<, =56.5 MN/m? tensile
<, =106 MN/m? compressive
<, = 66°15' counter clockwise from BC

<, = 156°15' counter clockwise from BC

Salient points of Mohr's stress circle:

1 complementary shear stresses (on planes 90° apart on the circle) are equal in magnitude

2. The principal planes are orthogonal: points L and M are 180° apart on the circle (90° apart in
material)

3. There are no shear stresses on principal planes: point L and M lie on normal stress axis.

4. The planes of maximum shear are 45° from the principal points D and E are 90° , measured round
the circle from points L and M.

5. The maximum shear stresses are equal in magnitude and given by points D and E

6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E both have
normal stress co-ordinate which is equal to the two principal stresses.
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As we know that the circle represents all possible states of normal and shear stress on any plane
through a stresses point in a material. Further we have seen that the co-ordinates of the point ‘Q' are
seen to be the same as those derived from equilibrium of the element. i.e. the normal and shear stress
components on any plane passing through the point can be found using Mohr's circle. Worthy of note:

1. The sides AB and BC of the element ABCD, which are 90° apart, are represented

on the circle by AE P and BC P and they are 180° apart.

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can be seen
at a point. Thus, it, can be seen that two planes LP and PM, 180° apart on the diagram and
therefore 90° apart in the material, on which shear stress < . is zero. These planes are termed as
principal planes and normal stresses acting on them are known as principal stresses.

Thus, <,=0L

<2=OM

3. The maximum shear stress in an element is given by the top and bottom points of the circle i.e
by points J; and J, ,Thus the maximum shear stress would be equal to the radius of i.e. < =
1/2(<< ;<<< ;,),the corresponding normal stress is obviously the distance OP = 1/2 (<< ,+ <)
, Further it can also be seen that the planes on which the shear stress is maximum are situated
90° from the principal planes ( on circle ), and 45° in the material.

4. The minimum normal stress is just as important as the maximum. The algebraic minimum stress
could have a magnitude greater than that of the maximum principal stress if the state of stress
were such that the centre of the circle is to the left of orgin.

i.e. if<; = 20 MN/m?(say)

<, =< 80 MN/m? (say)
Then <max™ = (<1 <<<,/2) =50 MN/m?

If should be noted that the principal stresses are considered a maximum or minimum mathematically
e.g. a compressive or negative stress is less than a positive stress, irrespective or numerical
value.

5. Since the stresses on perpendular faces of any element are given by the co- ordinates of two
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diametrically opposite points on the circle, thus, the sum of the two normal stresses for any and
all orientations of the element is constant, i.e. Thus sum is an invariant for any particular state of
stress.

Sum of the two normal stress components acting on mutually perpendicular planes at a point in
a state of plane stress is not affected by the orientation of these planes.

This can be also understand from the circle Since AB and BC are diametrically opposite thus,

/ N\
SR

-~ BC 0

e d___d_.-"’[ s, ) L

/
_.,| —
T -
B

e Ty
— e

o ——

what ever may be their orientation, they will always lie on the diametre or we can say that their sum
won't change, it can also be seen from analytical relations
_lo,+0) (o, -0,)

We k a, 5 5 Cos2é + 7, sin2f
€ Know

onplane BC; <=0

< =<x

on plane AB; < = 270°
<p2=<y

Thus < g + < =<, + <y

6. If <, = < ,, the Mohr's stress circle degenerates into a point and no shearing stresses are
developed on xy plane.

7. If <+ <=0, then the center of Mohr's circle coincides with the origin of <<<<<
co-ordinates.
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UNIT 5

Cylindrical Vessel with Hemispherical Ends:

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and
hemispherical portion is different. While the internal diameter of both the portions is assumed to be

equal

Let the cylindrical vassal is subjected to an internal pressure p.

L,

AR
bbb

For the Cylindrical Portion

hoop ar circumferential stress= oy

longitudnal stress= g, -

= pd

, , , a
haop ar circumferential strain €, =

ar

41

't'here synifies the cylindrical portion.

_pd

1

=

__pd
4LE

[2-2]

For The Hemispherical Ends:

2t,

78



Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two
mutually perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are
neglected in comparison to the hoop stresses as with this cylinder having thickness to diametre less
thanl:20.

Consider the equilibrium of the half — sphere
Force on half-sphere owing to internal pressure = pressure x projected Area
=p. < d¥4

Fesisting farce= o, . mdt,
.

=g, . mdt

P 1 H 1

= oy (for sphere)=%
z

o 1 _ —
similatly the hoop stram—E[crH —y.cr,,]——[1 —y]——[1 - y] ar |e; ——[1 - u]

Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and the spherical
ends to expand by a different amount under the action of internal pressure. So owing to difference in
stress, the two portions (i.e. cylindrical and spherical ends) expand by a different amount. This
incompatibly of deformations causes a local bending and sheering stresses in the neighborhood of the
joint. Since there must be physical continuity between the ends and the cylindrical portion, for this
reason, properly curved ends must be used for pressure vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

LN L R R S il
rry= G = L B

But for general steel works v = 0.3, therefore, the thickness ratios becomes

t, / t = 0.7/1.7

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid
ends for no distortion of the junction to occur.
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SUMMARY OF THE RESULTS : Let us summarise the derived results
(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :

(i) Circumferential or loop stress

o H=pd/2t

(ii) Longitudinal or axial stress

o L =pd/4t

Where d is the internal diametre and t is the wall thickness of the cylinder. then
Longitudinal strain =/ | =1/E [ L—- " 1 H]

Hoop stain [ y=1/E[ 1 H—-v L]

(B) Change of internal volume of cylinder under pressure

_ ﬂ[ﬁ - vV
AtE

(C) Fro thin spheres circumferential or loop stress

D'=E

H 4t

Thinr ina ring or cvlinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p caused
by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit length of the
circumference is

p=mo’r

Fig 19.1: Thin ring rotating with constant angular velocity <
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Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its own
mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure, 2F = p x 2r
(assuming unit length), as 2r is the projected area
F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant across
the wall thickness.

F = mass x acceleration =m o’ r X r

This tension is transmitted through the complete circumference and therefore is resisted by the
complete cross — sectional area.

hoop stress = F/A =m o’ r’/ A
Where A is the cross — sectional area of the ring.
Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density <.

hoop stress (1 |y = o” 1?

Torsion of circular shafts

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T =
F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion.

el
v,

F

¥
E T=Fd
d
s

Effects of Torsion: The effects of a torsional load applied to a bar are
() To impart an angular displacement of one end cross — section with respect to the other end.

(i) To setup shear stresses on any cross section of the bar perpendicular to its axis.

Assumption:
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() The materiel is homogenous i.e of uniform elastic properties exists throughout the material.
(i) The material is elastic, follows Hook's law, with shear stress proportional to shear strain.
(i) The stress does not exceed the elastic limit.

(iv) The circular section remains circular

(v) Cross section remain plane.

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle.

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end
being fixed Under the action of this torque a radial line at the free end of the shaft twists through an
angle [ , point A moves to B, and AB subtends an angle ° [ ' at the fixed end. This is then the angle
of distortion of the shaft i.e the shear strain.

Since angle in radius = arc /

Radius arc AB =R

From the definition of Modulus of rigidity or Modulus of elasticity in shear
_ shearstress(n)

shear strainiy)
where ¥ isthe shear stress set up at radius R.

T
Then — =
e ¥

Eguating the equations (1) and (2) we get R—f = é

=8 ' . .
%= T = l]where T'isthe shear stress at any radius r.
r

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stressC 1",

The force set up on each element

= stress X area

The total torque T on the section, will be the sum of all the contributions.

Since [1'is a function of r, because it varies with radius so writing downO (" in terms of r from the equation (1).
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. ,_ Gay
e T'=

R
wegetT = JEHE.Fdr
2 L
R
= ﬂfrgdr

T
L

i}
_2nGH IR*I“
L 4|
_G8 2Rt
L4
Go aR*
L2
G
L
_ 58
T

??d4
1= now substituting B = d/2

o

-
SinEES— = J thepolarmomentofinertia

Drj:T ...... |:2:|

if we combine the equation no. (1) and 21 we get

Where
T = applied external Torque, which is constant over Length L;

J = Polar moment of Inertia

4
=™ 01 solid shaft
32

_ ﬂl:D4 - d4:|

=5 far a hollow shaft.

[ D = Outside diameter ; d = inside
diameter ] G = Modules of rigidity (or Modulus of elasticity in shear)
= It is the angle of twist in radians on a length L.

Tensional Stiffness: The tensional stiffness k is defined as the torque per
radius twisti.e, k=T /[I=GJ /L
Power Transmitted by a shaft : If T is the applied Torque and [ is the angular velocity of the
shaft, then the power transmitted by the shaft is
_2aNT  2ANT
T B0 Boaoe
whera [=rpm

TORSION OF HOLLOW SHAFTS:

P=T.w

From the torsion of solid shafts of circular x — section , it is seen that only the material at the outer
surface of the shaft can be stressed to the limit assigned as an

83



allowable working stresses. All of the material within the shaft will work at a lower stress and is not
being used to full capacity. Thus, in these cases where the weight reduction is important, it is
advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same assumptions

will be made as in the case of a solid shaft. The general torsion equation as we have applied in the
case of torsion of solid shaft will hold good

Hence by examining the equation (1) and (2) it may be seen that the | " in the case of hollow shaft
is 6.6% larger than in the case of a solid shaft having the same outside diameter.

Reduction in weight:

T_71_0G#

T v T

Forthe hollow shaft

|- 0% - d)

= where D

Let di

r | _ 16T

ma lsolid ) 3
| o Ty f2

Tmax™ hollow m

70’ -4 =

1]

__ 16TDg
D, [1 - (d, /D, )“]

- LI T PLI)
D, l1—|;1 12) I g

Considering a solid and hollow shafts of the same length 'I' and density ' [1 ' with d; = 1/2 D,
Wieight of hollow shaft

i [HDEF -”fo'”?'Txp

4 4
2 z
= HD_D—& |}{'£|
4 16
z
- ™ [1-174]1xp
z
=750 | p
il 2
YWeight of salid shaft = 4” l.p
o D
Reduction inweight ={1-0.75) [0
2
:D.EEHD” [ 3o

Hence the reduction in weight would be just 25%.
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Ilustrative Examples :
Problem 1

A stepped solid circular shaft is built in at its ends and subjected to an externally applied torque. Tq
at the shoulder as shown in the figure. Determine the angle of along the entire length of the beam.
rotation [l of the shoulder section where T is applied ?

Y

ra

s

&

Ta
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EXTRANOTES

Deflection of Beams

Deflection of Beams

Introduction:

In all practical engineering applications, when we use the different components, normally we have to
operate them within the certain limits i.e. the constraints are placed on the performance and behavior
of the components. For instance we say that the particular component is supposed to operate within
this value of stress and the deflection of the component should not exceed beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but there may
be the deflection which is the more rigid condition under operation. It is obvious therefore to study the
methods by which we can predict the deflection of members under lateral loads or transverse loads,
since it is this form of loading which will generally produce the greatest deflection of beams.
Assumption: The following assumptions are undertaken in order to derive a differential equation of
elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for beams
that are not stressed beyond the elastic limit.

2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear stresses is neglected.
It can be shown that the deflections due to shear deformations are usually small and hence can be

ignored.
B' /
J__,_f"

=y
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the action of
loads the beam deflect to a position A'B' under load or infact we say that the axis of the beam bends
to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the elastic line or deflection
curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending moment M
varies along the length of the beam and we represent the variation of bending moment in B.M
diagram. Futher, it is assumed that the simple bending theory equation holds good.

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point is
different; hence the slope is different at different points.

a_ M _E

v I R
To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y, x-
axis coincide with the original straight axis of the beam and the y

— axis shows the deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us construct
the normal which intersect at point O denoting the angle between these two normal be di
But for the deflected shape of the beam the slope i at any point C is defined,

tani=d—Elr w1 or i=ﬂ Assurming tani =i
dx dx

Futher

ds = Rdi

howewer,

d= = dx [usually for smallcury ature]
Hence

ds = dx =Rdi

di _1

dx R

substitutingthev alueofi, one get

d [dy]z*l_ rdzg,r 1

or

o) R A R
Fromthe simplebendingtheory
M _E El
— =_qgrhl==
TR R
sothe basic differentiale quation governingthe deflectionof beamsis
2y
W=El
I
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This is the differential equation of the elastic line for a beam subjected to bending in the plane of
symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is
frequently called.

Relationship between shear force, bending moment and deflection: The relationship among shear
force,bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived

did_, d¥y M
—__=El Recalling —=F
% A gd}{
Thus,

dgj,r
F=EI

d

Therefore, the above expression represents the shear force whereas rate of intensity of loading can
also be found out by differentiating the expression for shear force

ie W= —dF

' dx
d4'_-,r

w= -El
dxt

Therefare if 'y'isthe deflection of theloadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
| =_7
slope r
dzj,r
B =El
At
3
Shearforce = Eld_g
%
d43,r

loaddistribution = El
dx®

Methods for finding the deflection: The deflection of the loaded beam can be obtained various
methods. The one of the method for finding the deflection of the beam is the direct integration method,
i.e. the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as
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iy Mo_ diy
b = El — =
o | H 3
onintegrating one get,

ﬂ: Jﬂd}{ +A.--- - thisequation gives the slope
dx " El
of theloadedbeam.

Integrate once again to get the deflectian.

Y?”%dx + &% +B

Where A and B are constants of integration to be evaluated from the known conditions of slope and
deflections for the particular value of x.

Ilustrative examples : let us consider few illustrative examples to have a familiarty with the direct
integration method

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected to a
concentrated load W at the free end, it is required to determine the deflection of the beam

W X

L )

In order to solve this problem, consider any X-section X-X located at a distance x from the left end or
the reference, and write down the expressions for the shear force abd the bending moment
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SF|_, = -w

BM| _, = -WW.x
Therefore M|_, = -W.x
v
the gaverning equatiun% = :?Y
substituting the value of M interms of x then integrating the equation one get
M _ d'y
El i
Ay _ W
df  H
dy Wiy
=] - d
Jd}{i / St
dy _ Wil
L =- + A
dx 2El

Integrating ancemare,
dy Wy
A= - dx+] Ad
'[d}{ J = Jmon

3
y =—W_H+AK+EE
BEI

The constants A and B are required to be found out by utilizing the boundary conditions as
defined below
ieatx=L;y=0 1)

atx=1L;dy/dx=0 2

Utilizing the second condition, the value of constant A is obtained as
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A_WF

2E]
YWhile employing the first condition yields
L ?
y = _E-I-AL +B
B:Eﬂi—ﬁL
GE]
_wil ol
BEl ZEI
Ol -awl 2wl
T BBl BE
_ W
3E

Substituting the values of A andBwe get
:1l_wﬁ+mﬁx_wﬁl
El| GEI Z2El 3EI
The slope aswell asthe deflection would be
maximum at the free end hence putting x=0 we get,

¥

__wi®

Yoo ™ 3T
2
(Sorelnom =+ G

Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is subjected
to U.d.l with rate of intensity varying w / length.The same procedure can also be adopted in this case
X

91



=
2
EIM|II:—W}{—:W[?]
M o_ dly
El o
dzy:_wxz
e 2El
Idzj,f: _W}{zd
ErRI=
dj,f:_wf
dx  BEI
dy Wi
L= dy+] Ad
'[dx ] BET Jmdn
4
WK
=-_—__+Ax+B
TR

Boundary conditions relevant to the problem are as follows:
1. Atx=L;y=0

2. Atx=L;dy/dx=0

The second boundary conditions yields

3
W
A=t
BEI
whereasthe first boundary conditions yields

_ wlt  wl?

" 4Bl BEI

T

~BEI

4 3 4
Thus, Y:l _wn il }{_WLI

Ell 24 a] g

S0 Ymgem willbe at % =0

:_wﬁ
¥rmaxm ﬁ

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply supported
beam is subjected to a uniformly distributed load whose rate of intensity varies as w / length.
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= w/length

]%
i

¥
N

=

M
.

In order to write down the expression for bending moment consider any cross- section at
distance of x metre from left end support.

I
S Pl =w[§]-w.}{

(i

el i
I
The differential equation which gives the elastic curve for the deflected beam is
dy _M_ 1 |:W|.}{_ﬂi|

&2 El B[ 2 2
dy _ [ wlx W
L= dy- = de+ A
dx I2E| " IZEI g
2 3
_owhe wnd
4El  BEI
Integrating,once more one gets
wlhe  we?
Y rE aam TR ()

Boundary conditions which are relevant in this case are that the deflection at each support must be
zero.
ieatx=0;y=0:atx=1y=0

let us apply these two boundary conditions on equation (1) because the boundary conditions are on
y, This yields B = 0.
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_ witwl?
12El 24El
vl
24El
=othe equationwhich gives the deflection curve is
1 IWL}{3 i WL3}{I

=1 T

Futher

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at the
position where the load is being applied ].So if we substitute the value of x = L/2

Conclusions
LICY wil*) wlfL
Th —=1-Z=|:z
B Yam EII [ ]2[ ] 24[2]]
__ Gwl?
Y™ = " 384E

(i) The value of the slope at the position where the deflection is maximum would be zero.
(i) Thevalue of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

_ 1 wla®  wat wlx
Elf 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear force and
rate of loading.

P

Deflection (y)
JEl= wls®  wx® wlx -SWLY
12 24 24 -~ 384E

Slope (dy/dx) /—| WL
24
dy _ |3wle?  dwi®  wl -wi
ElL.-L= - -
dx 12 24 24 24

3" degree Polyromial

Bending Moment So the bending moment diagram would
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B.Max™

B — "
? 2
Zingle degres shear force
equation in '

Shear Force

Shear force is obtained by
taking
third derivative.

Rate  of intensity of
loading

d43.r=_

dx?

El W

Case 4: The direct integration method may become more involved if the expression for entire beam is
not valid for the entire beam.Let us consider a deflection of a simply supported beam which is
subjected to a concentrated load W acting at a distance 'a' from the left end.

W
A iB C
o a b o
- - :
Let R; & R, be the reactions then,
W
A lE C
.
- Rz
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B.M for the portion AB
Mg =Fix D<xca
B.M for the partion BC
My =Rpx-Wix-a)a<xgl

so the differential equation for the two caseswould be,

2
E|§;§.: R, x

di
EIE;%==R1H-WH(H-33

These two equations can be integrated in the usual way to find ‘y' but this will result in four constants
of integration two for each equation. To evaluate the four constants of integration, four independent
boundary conditions will be needed since the deflection of each support must be zero, hence the
boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required to
evaluate these constants may be defined as follows:

(a) at x =0; y = 0 in the portion ABi.e. 0<x<a

(b) at x =1; y = 0 in the portion BCi.e. a<x <|
(c) at x = a; dy/dx, the slope is same for both portion

(d) at x = a; y, the deflection is same for both portion By
symmetry, the reaction R; is obtained as

R1=W|:I
a+h
Hence,
dy _ Wh
= < {0 mmmm e e -
Elﬁf —57 " O¢xia (1)
dy _ Wh
— = - A R P
2 (a+h:|}{ W[ - a) atuil ()
integrating (1) and () we get,
dy _ Wb 4
[L=—"" _u +k Ofwdg--------
I 2(a+p) xea )
2
dy _ Wb o W(x-a)
El-L= - +k A S EEEEREEE 4
« 2(a+b) 2 ro AR )

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence
letting
Kl = Kz =K
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EI-L = Ttk Oixca------ 3
dx 2(a+b) ke )
;

dy _ Wh o, W(x-a)
El—= - +k LAETIE ) [ 4
dx 2(a+b) 7 R @
Integrating agian egquation (3)and (41 we get
Wb 4
= A A T
Ely E(a+hj}{ +kx +ks Dix<a (3]
3
Ely = Wb }{3_W(K ) +hox +hy atxdl------ (B)
B(a+h) B
Lilizing condition (a)in equation (5] yields
ky, =0

Ltilizing condition (bl in equation (B) yields
Wb o W(-a)

0= [* - +kl+k
Bla +b] B *
Whooo  W[-a)’
k,=- I* + -kl
*  Bla+h) B
Buta+b=lI,
Thus,

Wh(a +h) L

5 = - k{a +b)

k4:_

Now lastly ks is found out using condition (d) in equation (5) and equation (6), the condition (d) is
that,
At x = a; y; the deflection is the same for both portion
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Therefore y|, squations o equation

or
3
Wb g _ Wb g W[x-a)
+hx +ky = - +hx +k
Ea+b) % T Bla+n) 3 *
3
Wb 4 Wb 5 W(la-a)
— 3 +ka+k; = - +hka +k
Ba+n). T Bla+n) 3 AT
Thus, k,=0;
OR
2 3
k4:_Wh(Z+hj +vl"éh -k(a+b)=0
Wb (a +b)F wk®
kia+b)=- +
(a+h) 5 5
oo Whiath) —w’
5] B(a +h)
so the deflection equations for each portion of the beam are
Wi g
Ely= ¥k +k
IR s
Whi  Whia+b)x Wb
= - + ---for0gx<€a----- 7
513 +b) B 5z +b) orfsxsa-----(7)
and for other portion
3
YWi'h ] W[}{-EI:'J
Ely= - o +k
R 3 * e
Substituting the walue of 'k'in the above equation
oW(x-al  Wh(a+h 3
- Wit Wcal  Whiath)x | b Forforag<x€l----- ()

B(a+h) b B Bla +h)
so either of the equation (7) ar (8) may be usedto find the deflectionat x=a
hence substituting x = a in either of the equation we get

v =- Wath?
*=2 3El{a+h)
ORfa=h=12
_ Wil
ma™  4GE

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more
simpler way. Let us considering the origin at the point of application of the load,

| X
[/-xl W
ez o *
L
[ = -
W L)
% %
1
X



Wyl
B'Mln = T[i— }{]

substituting the value of Min the governing equation for the deflectian

od L
d'y _ 212
i El
dy _ 1 |l _ e |
de EI| 4 4
2 2

p= L[WLE W] e

Ell &

12

Boundary conditions relevant for this case are as follows

() at x = 0; dy/dx=0

hence, A=0

(i) at x =1/2; y = 0 (because now | / 2 is on the left end or right end support since we have taken the
origin at the centre)

Thus,
Wik oy
0= I Y
2 56 I
_
48

Hence he equation which governsthe deflection would be
_ 1wl we? o wle
=

Hence

R
\llrmax"‘ |atx=n - '@

dy iww?
dx ax™

L
=1 =]
Hence the integration method may be bit cumbersome in some of the case. Another limitation of the
method would be that if the beam is of non uniform cross section,

At the centre

Attheends

.
1

i.e. it is having different cross-section then this method also fails. So there are

other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending moment for different
sections.
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2. Area moment methods

MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection of beams
subjected to bending. The method is based on a geometrical interpretation of definite integrals. This is
applied to cases where the equation for bending moment to be written is cumbersome and the loading
is relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing the
beams.

i
v I

o _|E __

| elastic curve
o
|'.'I il B
1
e
Al :
o )
) — x — B

It may be noted that d< is an angle subtended by an arc element ds and M is the bending moment to
which this element is subjected.

We can assume,

ds = dx [since the curvature is small] hence,

Rd< =ds
d _ 1 _ M
ds R El
df _ M
ds El

But far small curvature[but Bisthe angle slope is tanB :$ for small
X

7
anglestanB = 8 hence § = d—ysu we et &y - ghy putting ds = dx]

dx di
Hernce,
v il d s
E—Eﬂr.dﬁl——El |:1:|

100



The relationship as described in equation (1) can be given a very simple graphical interpretation with
reference to the elastic plane of the beam and its bending moment diagram

A B ik
Defpcia '_ur.'\-l-T tangents drawn at the
- | o end of small element ds.
Delection curve of et | —r el
—- )
the: hesm “*-:;{ . Arc = Angle x radius
.-~ 0 . we can lake the radius
-1 T i he mqual o x
/f 8! This Isalso within
Al # reasonabbe accuracy.

e —— oy ———-

Bending Moment dlagram \-‘___/_._

af the beam subjected to —s| WM< *G
arbitrary type of loading

Ay

_-— T —— B
centroid

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded beam
and A;B;is its corresponding bending moment diagram.
Let AO = Tangent drawn at A BO
= Tangent drawn at B
Tangents at A and B intersects at the point O.

Futher, AA " is the deflection of A away from the tangent at B while the vertical distance B'B is the
deflection of point B away from the tangent at A. All these quantities are futher understood to be very
small.

Let ds = dx be any element of the elastic line at a distance x from B and an angle between
at its tangents be d< . Then, as derived earlier

.o
de= "
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded
bending moment diagram divided by EI.
From the above relationship the total angle < between the tangents A and B may be determined as

Bhdx 18
f=[—"=_ [Mdx
;LEI E|£
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Since this integral represents the total area of the bending moment diagram, hence we may conclude
this result in the following theorem
Theorem I:

{ glope orf } _ %xarea of B.M diagrambetween

between any two points corresponding portionof B.Mdiagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing but
the vertical distance BB'. It may be note from the bending diagram that bending of the element ds
contributes to this deflection by an amount equal to x d<< [each of this intercept may be considered
as the arc of a circle of radius x subtended by the gngle <]

6:_[ xdf
Hence the total distance B'B becomes A
The limits from A to B have been taken because A and B are the two points on the elastic curve, under
consideration]. Let us substitute the value of d< =M dx / El as derived earlier

EZTKde:Ede \
» EIa El [ This is infact the moment of area of the bending moment

diagram]

Since M dx is the area of the shaded strip of the bending moment diagram

and x is its distance from B, we therefore conclude that right hand side of the above equation
represents first moment area with respect to B of the total bending moment area between A and B
divided by EI.

Therefore,we are in a position to state the above conclusion in the form of theorem as follows:

Theorem II:
1 x{ﬁrst moment of area with respect

Deflection of point ‘B' relative to point A El | topointB, of the total B.M diagram} Futher, the

first moment of area, according to the definition of centroid may be

written as , whare is equal*to distance of centroid and a is the total area of bending moment

Thus,
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Therefore,the first moment of area may be obtained simply as a product of the total area of the B.M
diagram betweenthe points A and B multiplied by the distance to its centroid C. _
If there exists an inflection point or point of contreflexure for the elastic line of the

loaded beam between the points A and B, as shown below,

— +vE Gy

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M diagram
gets divide into two portions +ve and —ve portions with centroids C;and C,. Then to find an angle <
between the tangentsat the points A and B

D B
g = Ide de
2 D
AndsmﬂmﬂymrﬂmdeﬂedMnnfBawayﬂnmthemngematﬁhecnmes

q= Ide dex

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these theorems
Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the
deflection at the free end.
Fpr a cantilever beam, the bending moment diagram may be drawn as shown below
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-
il

N"NL B f-.-'l.l:ll.agram

Let us workout this problem from the zero slope condition and apply the first area - moment theorem

The deflection at A (relative to B) may be obtained by applying the second area - moment theorem

slope at .ﬂ.=%[ﬂnrea of BM diagram between the points A and B]

TN
=—|=L.WL
El [2 ]
_ WL
2E ] ]
NOTE: In this case the point B is at zero slope.
Thus,
&= % [first moment of area of B. M diagram between A and B about A]
1ras
= _[A
=471
TIf 1 2
=_ || LWL |ZL
El {2 ]3 ]
_ L
3El

Example 2: Simply supported beam is subjected to a concentrated load at the mid span determine
the value of deflection.

A simply supported beam is subjected to a concentrated load W at point C. The bending moment
diagram is drawn below the loaded beam.
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B.M digram.

Again working relative to the zero slope at the centre C.

[Area of B M diagram between A and C]

VT LY vl _
=g [[i][f][T]] we are takinghalf area of the B.Mbecause we

slope at A=

m| —

havetowork out thisrelative to a zero slope

_ Wl
=
Deflection of A relative to C = central deflection of C
or
1

EC:E[MDment of B.Mdiagram between points A and C about Al

SR

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a intensity

of loading W / length. It is required to determine the deflection.
The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M is

equal to WI*/ 8
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/ 4 length
mm'

A 1=
Wi
W /2 \
A B ’
C 5.F.Diagram
il
"

Wil
a

B.M. Diagram
L2

-

. SAA{LIE) -
So by area moment method,

Slope at point Cwert point A = %[Area of B.Mdiagram between point A and C]
_ 2y wlt i
EIfz) & \z

Ceflection at point © =_[AT]

relative to A

Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding change in
moment equation. This requires that a separate moment equation be written between each change of
load point and that two integration be made for each such moment equation. Evaluation of the
constants introduced by each integration can become very involved. Fortunately, these complications
can be avoided by writing single moment equation in such a way that it becomes continuous for entire
length of the beam in spite of the discontinuity of loading.
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Note : In Macaulay's method some author's take the help of unit function approximation (i.e. Laplace
transform) in order to illustrate this method, however both are essentially the same.
For example consider the beam shown in fig below:

Let us write the general moment equation using the definition M = ( 3, M )., Which means that we
consider the effects of loads lying on the left of an exploratory section. The moment equations for the
portions AB,BC and CD are written asfollows

It may be observed that the equation for Mcp will also be valid for both Mag and ~ Mgc provided that
| x

500 N 450 Mim
A E‘l “Y vlyy y "
.. ! o Mpg = 480 xMm
B 2m J dm | 2m N
Ry =480N O Fe 920N Mo = [480 x-500(x-2)]M.m
. | x Mg = [480x—5uu(x—zj—@[x—3f]mm

the terms ( x - 2 ) and ( x - 3 )%are neglected for values of x less than 2 m and 3 m, respectively. In
other words, the terms ( x - 2 ) and ( x - 3 )* are nonexistent for values of x for which the terms in
parentheses are negative.

¥
: 50{] N 450 Nfm
A B Gl Yy i ¥y yD
'y -—x
B 2m P L Zm
Fqi=480MN R:=920N

As an clear indication of these restrictions,one may use a nomenclature in which the usual form of
parentheses is replaced by pointed brackets, namely, < >. With this change in nomenclature, we obtain
a single moment equation

= [ABD}{—EDD(}{—EJ - @(x —3)2]N.m
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Which is valid for the entire beam if we postulate that the terms between the pointed brackets do not
exists for negative values; otherwise the term is to be treated like any ordinary expression.

As an another example, consider the beam as shown in the fig below. Here the distributed load
extends only over the segment BC. We can create continuity, however, by assuming that the
distributed load extends beyond C and adding an equal upward-distributed load to cancel its effect
beyond C, as shown in the adjacent fig below. The general moment equation, written for the last
segment DE inthe new nomenclature may be written as:

00 MY GO0 N
) Bllllrilﬂ [x] E

Ry =500 N Rz =1300M
{a) B0 N
AL Mivm
T LI T
[ (] T |
) Eltll —l SARRAREE
EEEEREE
e P N R Y Y B
m Im 2m T 2m
Ry =500 N

Rz=1200N

M=[5DDK—$[}{—1)2 . 400

(x-4Y +1300(x—5)]m.m

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last end of
the beam so if we assume the exploratary just at section at just the point of application of 600 N than x
= 0 or else we will here take the X - section beyond 600 N which is invalid.

Procedure to solve the problems

(). After writing down the moment equation which is valid for all values of ‘x'i.e. containing pointed
brackets, integrate the moment equation like an ordinary equation.

@i). While applying the B.C's keep in mind the necessary changes to be made regarding the pointed
brackets.

llustrative Examples :
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1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig.Determine
the equations of the elastic curve between each change of load point and the maximum deflection in
the beam.

v
00N
A 2m B im C

Bl = =M = (W30 =2} ...
X ®

Integrating twice the ablove eguation to obtain slope and the deflection
Ri=100M Rz =200 N

dy _ 2
El— = (50 180 {20 + ¢ Jum? 2)

Ely = [%}{3 50 {x -2V +C1}{+C2]Nm3 e [3)
Solution : writing the general moment equation for the last portion BC of the loaded beam,
To evaluate the two constants of integration. Let us apply the following boundary
conditions:
1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq.
(3) we find C, = 0.keep in mind that< x -2 >* is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero. substituting
these values in the deflection Eq. (3), we obtain

0= [53_%3 -80(3-2)° +3.C1]ur C,=-133M.m’

Having determined the constants of integration, let us make use of Egs. (2) and (3) to rewrite
the slope and deflection equations in the conventional form for the two portions.
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segment AB (0 £ x £2m)

'j}’_ 2
Bl = (Enx -133]Nm )

Ely = [53D v 133x]m ....... 5
segment BC [2m = % £ 3m)

E|':'3'r L =[50 160 (x -2 133N’ ... (B)

Ely = [@}{3—50 (1-2)° —133}{]N.m3.......|{?j|

Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its
location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal
to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving
for the point of zero slope.

We obtain

50 x>~ 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield
a value < 2 m then we have to try the other equations which are valid for segment BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in
this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq
(5), which yields

Ely [pgem = -145Hm*  __(8)

The negative value obtained indicates that the deflection y is downward from the x axis.quite usually
only the magnitude of the deflection, without regard to sign, is desired; this is denoted by <, the use
of y may be reserved to indicate a directed value of deflection.
if E=30Gpaand I =1.9x10° mm*=1.9x 10 ®m*, Eq. (h) becomes
¥ | = [30:10%][1.93107°)

Example 2:

It is required to determine the value of Ely at the position midway between the supports and at
the overhanging end for the beam shown in figure below.
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400 Wim
A EIII I I I 11 1 1!3 ] E
F _ =R == X
Rq= 6008 Rz=1300MN

Solution:

Writing down the moment equation which is valid for the entire span of the beam and applying the
differential equation of the elastic curve, and integrating it twice, we obtain

To determine the value of C,, It may be noted that Ely = 0 at x = 0,which gives C, = 0.Note
that the negative terms in the pointed brackets are to be ignored Next,let us use the condition that Ely

2

1Y = = (s00x - 222 -1+ 229 - 4y 413005 - B) |um

dx? 2 2
a8 - f2m0 - o 28y wBs(x-B) 4 Jum

dx i i
Ely 22_D}{3 —%[x —1)4 +53—D(x —4}4 . Ba0 % —Ef + G+ Gy ]N.m3

= 0 at the right support where x = 6m.This gives
0= Egﬂ (B - 53EI|: o+ 53—Di2]4 +BC, or ) = -1308M.m?

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the
deflection equation for the segment BC obtained by ignoring negative values of the bracketed terms <
x-4<*and < x -6 <3 We obtain

—@(3) - (2) -1308(3) = -1941 N.m*
Far the nverhangmg endwhere ¥=0 mwe have
25003 50 o4 50 .4 BEO o3
Elﬁ"[T(EJ =754 =12 1308(8)]
= -15 140 m
Example 3:

A simply supported beam carries the triangularly distributed load as shown in figure. Determine the
deflection equation and the value of the maximum deflection.
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Solution:

Due to symmetry, the reactionsis one half the total load of 1/2w,L, or R; = R, = 1/4wL.Due to the
advantage of symmetry to the deflection curve from A to B is the mirror image of that from C to B.
The condition of zero deflection at A and of zero slope at B do not require the use of a general
moment equation. Only the moment equation for segment AB is needed, and this may be easily
written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and integrating
twice, one can obtain

oy wol  owipxt oy
El—Y =pg,, = 10—y -0 * A
P R T 0
dy woli®  wgu?
El—= == - By 2
dx g L 2
wo e wd
Ely = ';_4 - EEL + G+ Gy (3

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support A, y =
0 at x = 0.Hence from equation (3), we get C, = 0. Also,because of symmetry, the slope dy/dx = 0 at
midspan where x = L/2.Substituting these conditions in equation (2) we get

wLf LY w (LY TR
S A R

g L2 121402 192

Hence the deflection equation from A to B (and also from C to B because of symmetry) becomes
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Ely = w L _ g _ Bl
24 BOL 192

YWhichreducesto
Ely = - L0 [261* - 4013 + 16*)
oL

The maximum deflection at midspanwhere x= L2 isthen found to be

Wi |_4

Ely =
A T

Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at adistance ‘a' from the left end.
It is required to determine using the Macauley's method.

To deal with couples, only thing to remember is that within the pointed brackets we have to
take some quantity and this should be raised to the power zero.i.e. M<< x - a < ° . We have taken the
power 0 (zero) ' because ultimately the term M<< x - a < °Should have the moment units.Thus with
integration the quantity<< x - a < becomes either < x - a < 'or<< x - a < 2

Or

A I | B

&M
v

fv

o
v
I

-

L

Therefore, writing the general moment equation we get

dz'_-,-'
M=Ryx-M{x -a) or El— =M
dx
Integrating twice we gat
dy i i
ElIZL=R, —-M{x-a% +C
R R { G
. il
2

Ely =R, -Zix-a¥ +Cx+C
15 1 2z
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Example 5:

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to
determine the deflection.

200M m
W=1800 M-m
d—, Y YYYY Y YYYYY
I + ]
e - i
R Rz

e 2m J. 2m J, 2m . 2m

This problem may be attemped in the some way. The general moment equation my be written as

Integrate twice to get the deflection of the loaded beam.
200 {x - 4%{x - 4}

M(x) =Ryx-1800¢x-2Y - ) +R, (% -BY
2
:F{1}{—1BDD{}{—2}D—M+HE{H—E}
Thus,
2y o 200{x-4Y
B = Rx 18006 -2} - —o L+, {x-B)
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Closed Coiled helical Spring

losed Cailed helical spri iected ial loads:

Definition: A spring may be defined as an elastic member whose primary function is to deflect or
distort under the action of applied load; it recovers its original shape when load is released.
or

Springs are energy absorbing units whose function is to store energy and to restore it slowly or
rapidly depending on the particular application.
Important types of springs are:

There are various types of springs such as

() helical spring: They are made of wire coiled into a helical form, the load being applied along the
axis of the helix. In these type of springs the major stresses is torsional shear stress due to twisting.
They are both used in tension and compression.

(i) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded in
torsion.

In this the major stresses are tensile and compression due to bending.
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(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to obtain
greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types, In these type of
springs the major stresses which come into picture are tensile & compressive.

These type of springs are used in the automobile suspension system.

W

Uses of springs :

(@) To apply forces and to control motions as in brakes and clutches.

(b) To measure forces as in spring balance.

(c) To store energy as in clock springs.

(d) To reduce the effect of shock or impact loading as in carriage springs.

(e) To change the vibrating characteristics of a member as inflexible mounting of motors.
Derivation of the Formula :

In order to derive a necessary formula which governs the behaviour of springs, consider a closed
coiled spring subjected to an axial load W.
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Let
W = axial load
D = mean coil diameter

d = diameter of spring wire n =

number of active coils

C = spring index = D / d For circular wires | =

length of spring wire

G = modulus of rigidity x

= deflection of spring q =

Angle of twist

when the spring is being subjected to an axial load to the wire of the spring gets be twisted like a
shaft.

If q is the total angle of twist along the wire and x is the deflection of spring under the action of load
W along the axis of the coil, so that

x=D/2.<

again | = < D n [ consider ,one half turn of a close coiled helical spring ]

Assumptions: (1) The Bending & shear effects may be neglected

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that
it may be neglected.
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Any one coil of a such a spring will be assumed to lie in a plane which is nearly < ' to the axis of the
spring. This requires that adjoining coils be close together. With this limitation, a section taken
perpendicular to the axis the spring rod becomes nearly vertical. Hence to maintain equilibrium of a
segment of the spring, only a shearing force V = F and Torque T = F. r are required at any X — section.
In the analysis of springs it is customary to assume that the shearing stresses caused by the direct
shear force is uniformly distributed and is negligible

so applying the torsion formula.

Using the torsion formula i.e

T.71.G¢#
Jor
el
andsubstitituting J = H;T = W.E
32 2
2.
#=—:l==nrD.
K nlx
SPRING DEFLECTION
wed f2 - 52x%/D
il nln
32
Thus,
Sw D% n
}{ =
G.d*

Spring striffness: The stiffness is defined as the load per unit deflection therefore

W W

e BwD® n
G.d*

Therefare

Gd

80%n

k=

k =

WAHL'S FACTOR :

In order to take into account the effect of direct shear and change in coil curvature a stress factor is
defined, which is known as Wahl's factor
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- de-1, 0615
K = Wahl' s factor and is defined as dc-4 o«
Where C = spring index
=D/d

if we take into account the Wabhl's factor than the formula for the shear stress

_1B8Tk
==

max™

becomes

Strain Energy : The strain energy is defined as the energy which is stored within a material when
the work has been done on the material.

In the case of a spring the strain energy would be due to bending and the strain energy due to
bending is given by the expansion

so after substitutionwe get
z
U= 32T En
Ed

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a
maximum shearing stress of 400 N/mm? .if the number of active turns or active coils is 8.Estimate the
following:

(i) wire diameter

(if) mean coil diameter

(iii) weight of the spring.

Assume G = 83,000 N/mm? ; < = 7700 kg/m®
solution :

(i) for wire diametre if W is the axial load, then

w2 _ Trgem
ad? 42
32

400 md* 2
/232w
_A00.md* 2
~ E000.16

D=00314d°

Futher, deflection is given as
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_BwD® n
G.d*
on substituting the relevant parameters we get
_B.5000.0.0314d4%)° B
83,000 .d*
d=13.22mm

a0

Therefore,
D =.0314 x (13.317)°mm

=74.15mm D
=74.15mm

Weight

massorweight = volume. density

= area.lengthof the spring.density of spring material
z

d
- o,
g e

On substituting the relevant parameters we get
Weight = 1.956 kg
=20ky

In this case the material of the spring is subjected to pure bending which tends to reduce Radius R of
the coils. In this case the bending moment is constant through out the spring and is equal to the
applied axial Torque T. The stresses i.e. maximum

bending stress may thus be determined from the bending theory.

Deflection or wind — up angle:

Under the action of an axial torque the deflection of the spring becomes the “wind — up” angle of the
spring which is the angle through which one end turns relative to the
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other. This will be equal to the total change of slope along the wire, according to area

— moment theorem

L
§ = % buttd=T
o El
L L
_ T.dL:l 4L
n El El;
Thus, as'T 'remainsconstant
g=1L
El
Futher
L =nln
??d4
[= —
G4
Therefore, on substitution the value of & obtained is
_BAT DN
gzt
Ed?

Springs in Series: If two springs of different stiffness are joined endon and carry a common load W,
they are said to be connected in series and the combined stiffness and deflection are given by the
following equation.

ke
W M
__}{1+}{2 =+
k ki ks
ar k=
1 1 1
—_ T e —
k l-:1 kz W

Springs in parallel: If the two spring are joined in such a way that they have a common deflection ‘x'
; then they are said to be connected in parallel.In this care the load carried is shared between the two
springs and total load W = W; + W,

gz WM W
kK kK

Thus WM :%

_ Wy
k k1 ks

Wiy

Futher
WM
thus
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Buckling of Columns

Introduction:

Structural members which carry compressive loads may be divided into two broad categories
depending on their relative lengths and cross-sectional dimensions.

Columns:

Short, thick members are generally termed columns and these usually fail by crushing when the yield
stress of the material in compression is exceeded.
Struts:

Long, slender columns are generally termed as struts, they fail by buckling some time before the yield
stress in compression is reached. The buckling occurs owing to one the following reasons.
(a). the strut may not be perfectly straight initially.

(b). the load may not be applied exactly along the axis of the Strut.

(C). one part of the material may yield in compression more readily than others owing to some lack of
uniformity in the material properties through out the strut.

In all the problems considered so far we have assumed that the deformation to be both progressive
with increasing load and simple in form i.e. we assumed that a member in simple tension or
compression becomes progressively longer or shorter but remains straight. Under some circumstances
however, our assumptions of progressive and simple deformation may no longer hold good and the
member become unstable. The term strut and column are widely used, often interchangeably in the
context of buckling of slender members.]

At values of load below the buckling load a strut will be in stable equilibrium where the displacement
caused by any lateral disturbance will be totally recovered when the disturbance is removed. At the
buckling load the strut is said to be in a state of neutral equilibrium, and theoretically it should than be
possible to gently deflect the strut into a simple sine wave provided that the amplitude of wave is kept
small.

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads
exceeding the buckling load, any slight lateral disturbance then causing failure by buckling, this
condition is never achieved in practice under static load conditions. Buckling occurs immediately at
the point where the buckling load is reached, owing to the reasons stated earlier.
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The resistance of any member to bending is determined by its flexural rigidity El and is The quantity |
may be written as | = AK?,

Where | = area of moment of inertia A =

area of the cross-section

k = radius of gyration.

The load per unit area which the member can withstand is therefore related to k. There will be two
principal moments of inertia, if the least of these is taken then the ratio

Is called the slenderness ratio. It's numerical value indicates whether the member falls into the class

(- length of member

k7 least radius of gyration
of columns or struts.

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the
following sections, different cases of the struts have been analyzed.
Case A: Strut with pinned ends:

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this load ‘P’
produces a deflection ‘y' at a distance ‘x' from one end.
Assume that the ends are either pin jointed or rounded so that there is no moment at either end.

Assumption:

L

N >

+B.M

x ‘
: -B.M ::

According o sign
convention
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B M|, = -Py

Futherwe know that

In this equation ‘M’ is not a function ‘x'. Therefore this equation can not be integrated directly as has
been done in the case of deflection of beams by integration method.

Though this equation is in ‘y' but we can't say at this stage where the deflection would be
maximum or minimum.
So the above differential  equation can be arranged in the following

dy | Py
form d¥*  El

=0

Let us define a operator D =
d/dx
(D? + n®) y =0 where n? = P/EI

This is a second order differential equation which has a solution of the form consisting of
complimentary function and particular integral but for the time being we are interested in the
complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0]

Thus y = A cos (nx) + B sin (nx) Where A

and B are some constants.

Therefore
= Acos —}{ + B =in —}{
In order to evaluate the onstants Aan Eé let us apply the boundary conditions,
()atx=0;y=0
(iatx=L;y=0

Applying the first boundary condition yields A = 0.
Applying the second boundary condition gives

124



Esin LJE =0
El
. . |'F'
Thu59|therEi=El,|:|r5|n[L E]=III

if B=0 that vO far all values of x hence the strut has not buckled yet. Therefare the solution required is

) Pl ||F' _ _

sm[L E]_D nr[L E]—ﬂnrnL =m
[P _ = _ #°El

or,)— = = o P=2_"—+—

El L L2

From the above relationship the least value of P which will cause the strut to buckle, and it is called
the *“ Euler Crippling Load ” P.from which w obtain.

TEl
P,
E

It may be noted that the value of | used in this expression is the least moment of inertia
It should be noted that the other solutions exists for the equation

sin IJE =0 Le. sin nL=0
El

The interpretation of the above analysis is that for all the values of the load P, other than those which
make sin nL = 0; the strut will remain perfectly straight since
y=BsinnL=0

For the particular value of

Pe=ﬂzfl
L
sinnL =0 ornL=m

Therefore n = 7
L

Hence y=B sinnx=B sin %

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection which it
suffers will be maintained. This is subjected to the limitation that ‘L' remains sensibly constant and in
practice slight increase in load at the critical value will cause the deflection to increase appreciably
until the material fails by yielding.

Further it should be noted that the deflection is not proportional to load, and this applies to all strut
problems; like wise it will be found that the maximum stress is not proportional to load.

The solution chosen of nL = < is just one particular solution; the solutions nL= 2<, 3<, 5< etc are
equally valid mathematically and they do, infact, produce values of
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‘P¢' which are equally valid for modes of buckling of strut different from that of a simple bow.
Theoretically therefore, there are an infinite number of values of P, , each corresponding with a
different mode of buckling.

The value selected above is so called the fundamental mode value and is the lowest critical load
producing the single bow buckling condition.

The solution nL = 2< produces buckling in two half — waves, 3< in three half-waves etc.

Pu= ey, Pimap

; .>
Pt P2 A py

nk=x nL =2z nL = 3s
Fundamental Mode Second harmonic Third harmonic
(First harmonic) {mid point Bracing) {Third point bracing)

fP TEl
|_ E = & ar F'1 = LT
If L E = Z2mar F'2=jj';|?2E|=le'1
"J'EI L*
= 97 El
|f L E = 3??0[’ P3 = |_2 =9P1

If load is applied sufficiently quickly to the strut, then it is possible to pass through the fundamental
mode and to achieve at least one of the other modes which are theoretically possible. In practical
loading situations, however, this is rarely achieved since the high stress associated with the first
critical condition generally ensures immediate collapse.

r n lumns with other en nditions: Let us consider the struts and columns having
different end conditions
Case b: One end fixed and the other free:
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writing down the value of bending moment at the point C

B.M| = Pla-y)
Hence, the differential equation becomes,
dz'_-,-'
El — = Fla -
Tl ( ¥)

Cn rearranging we get
dy , Py _ Pa

dxf  El El
F_ .z
Let —=
g E| n

Hence in operator form, the differential equation reduces to ( D* + n*) y = n“a

The solution of the above equation would consist of complementary solution and particular solution,
therefore

Ygen = A cos(nx) + sin(nx) + P. |

where

P.I = the P.I is a particular value of y which satisfies the differential equation Hence yp, = a
Therefore the complete solution becomes Y = A

cos(nx) + B sin(nx) + a

Now imposing the boundary conditions to evaluate the constants A and B

()atx=0;y=0

This yields A =-a

(i) at x = 0; dy/dx =0

This yields B = 0 Hence

y =<acos(nx) +a

Futher,atx=L;y=a

Therefore a = - a cos(nx) +a or 0 = cos(nL)

Now the fundamental mode of buckling in this case would be
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nL =

R S

,Jg L= E,Therefnre,the Euler's crippling load is given as

2

_ El

taE
Case 3

Strut with fixed ends:

M

%p

9

s
=

vl
4R
i
s ]
_
1
0

e

Due to the fixed end supports bending moment would also appears at the supports, since this is the
property of the support.
Bending Moment at point C =M —P.y
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Hencethe least solutionwouldbe
nL =2x

\(g L =2n Thusthe buckling load or crippling load is

B _ 47 El
Thus, LT
Case 4
One end fixed. the other pinned
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In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this
case to introduce a vertical load F at the pin. The moment of F about the built in end then balances the
fixing moment.

With the origin at the built in end, the B,M at C is given as

dz'_-,-'
El—L=-Py + FiL-x
2 ¥+ F{L-3
dz'_-,-'
El— +Py = F{L-x
oz Y (L-x)
Hence
dy P _F

by o= (L-%
wrE gttty

In the operator form the equation reducesto

(0 )y = g[L— )

L- ®jor y=—[L-x

Tl

'-'"'partil:!.llar = ﬁ(
Thefull solution is therefore
y= ACosmx+BSin n}{+£[L— %)

The boundry conditions relevants to the problem are at »=0;y=0
FL

Hence A = - —
ENCE B

Alsoat x =El;d—3'f= 1]
dx

Hence B = i
nP

ary = —ECDS nx + iSin M +E(L— )
P nP P

¥ = %[Sin hy - hLCosny + n[L— }{j]

Alsowhenx=L;y=0
Therefore
nL Cos nL = Sin nL ortannL =nL

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore
produces the fundamental buckling condition is nL = 4.49radian
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— L = 449
ar El
Pe 2
.
El
P - 2.05;-;2 El
L

Equivalent Strut Length:

Having derived the results for the buckling load of a strut with pinned ends the Euler loads for other
end conditions may all be written in the same form.

e B, = %

Where L is the equivalent length of the strut and can be related to the actual length of the strut
depending on the end conditions.

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the strut
deflection curves shown. The buckling load for each end condition shown is then readily obtained.
The use of equivalent length is not restricted to the Euler's theory and it will be used in other
derivations later.

The critical load for columns with other end conditions can be expressed in terms of the critical load
for a hinged column, which is taken as a fundamental case.

For case(c) see the figure, the column or strut has inflection points at quarter points of its unsupported
length. Since the bending moment is zero at a point of inflection, the freebody diagram would
indicates that the middle half of the fixed ended is equivalent to a hinged column having an effective
lengthL.=L/2.

The four different cases which we have considered so far are:

(a) Both ends pinned (c) One end fixed, other free
(b) Both ends fixed (d) One end fixed and other pinned
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Limitations of Euler's Theory :

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load
being applied axially through centroid] reached. There is always some eccentricity and initial
curvature present. These factors needs to be accommodated in the required formula's.

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection
which increases with load and consequently a bending moment is introduced which causes failure
before the Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation
from the Euler value is more marked as the slenderness-ratio I/k is reduced. For values of I/k < 120
approx, the error in applying the Euler theory is too great to allow of its use. The stress to cause
buckling from the Euler formula for the pin ended strut is
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A plot of < versus | / k ratio is shown by the curve ABC.
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Allowing for the imperfections of loading and strut, actual values at failure must lie within and below
line CBD.

Other formulae have therefore been derived to attempt to obtain closer agreement between the actual
failing load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 to 1/k=100.
(a) Straight — line formulae :

The permissible load is given by the formulae

F= f.ryﬂn[1 - n[l—]]
k] Where the value of index ‘n’ depends on the material used and the

end conditions.

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as

{4

(c) Rankine Gordon Formulae :

F=ah

where the value of index ‘b' depends on the end conditions.

1 T 1

—_ —_ —
PR Pe pc
Where P, = Euler crippling load
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P. = Crushing load or Yield point load in Compression Pg =
Actual load to cause failure or Rankine load

Since the Rankine formulae is a combination of the Euler and crushing load for a strut.

For a very short strut P, is very large hence 1/ P (would be large so that 1/ P .can be neglected.
T 1 1

- = 4 —
PR Pe Pc

Thus Pg = P, for very large struts, P . is very small so 1/ P . would be large and 1/ P can be
neglected ,hence Pr = P,

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly accurate

for the intermediate values in the range under consideration. Thus rewriting the formula in terms of
stresses, we have

a
3% = o1
7El BRI
oho A g A
1 1 1
_ —
o 0, 0,
1 0g.+0,
T 7.0,
7,.0 7
a = ey = ¥
et Oy, Ty
I:rE
For strutswithbothendspinned
, = TE
2 | A
g
a
a= —3‘2
Ty [
1+ |-
:'FE{R]
a
- ¥
0= e
1 i
(&)
Where and the value of ‘a' is found by conducting experiments on various materials.

Theoretically, but having a value normally found by experiment for various materials. This will take
into account other types of end conditions.
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