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UNIT I 

SIMPLE STRESSES AND STRAINS 
 

Stress 

Stress is the internal resistance offered by the body to the external load applied to it per unit cross 

sectional area. Stresses are normal to the plane to which they act and are tensile or compressive in 

nature. 

 

 

 

 

As we know that in mechanics of deformable solids, externally applied forces acts on a body and body 

suffers a deformation. From equilibrium point of view, this action should be opposed or reacted by 

internal forces which are set up within the particles of material due to cohesion. These internal forces 

give rise to a concept of stress. Consider a rectangular rod subjected to axial pull P. Let us imagine 

that the same rectangular bar is assumed to be cut into two halves at section XX. The each portion of 

this rectangular bar is in equilibrium under the action of load P and the internal forces acting at the 

section XX has been shown. 

Now stress is defined as the force intensity or force per unit area.  

Where A is the area of the X –X section 
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Here we are using an assumption that the total force or total load carried by the rectangular bar is 

uniformly distributed over its cross – section. But the stress distributions may be for from uniform, 

with local regions of high stress known as stress concentrations. If the force carried by a component is 

not uniformly distributed over its cross – sectional area, A, we must consider a small area, ‘δA’ which 

carries a small load ‘δP’, of the total force ‘P', Then definition of stress is 

 

 

As a particular stress generally holds true only at a point, therefore it is defined 

mathematically as 

 

 

Units : 

 

The basic units of stress in S.I units i.e. (International system) are N / m
2
 (or Pa) MPa = 10

6
 Pa 

GPa = 10
9
 Pa 

KPa = 10
3
 Pa 

Sometimes N / mm
2
 units are also used, because this is an equivalent to MPa. While US customary 

unit is pound per square inch psi. 

 

TYPES OF STRESSES : Only two basic stresses exists : (1) normal stress and (2) shear stress. Other 

stresses either are similar to these basic stresses or are a combination of this e.g. bending stress is a 

combination tensile, compressive and shear stresses. Torsional stress, as encountered in twisting of a 

shaft is a shearing stress. Let us define the normal stresses and shear stresses in the following sections. 

 

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to the areas 

concerned, then these are termed as normal stresses. The normal stresses are generally denoted by a 

Greek letter (σ) 
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This is also known as uniaxial state of stress, because the stresses acts only in one direction however, 

such a state rarely exists, therefore we have biaxial and triaxial state of stresses where either the two 

mutually perpendicular normal stresses acts or three mutually perpendicular normal stresses acts as 

shown in the figures below : 

 
 

Tensile or compressive Stresses: 

 

The normal stresses can be either tensile or compressive whether the stresses acts out of the area or 

into the area 
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Bearing Stress: When one object presses against another, it is referred to a bearing stress ( They are 

in fact the compressive stresses ). 

 

 

 

 

 

Sign convections for Normal stress 

Direct stresses or normal stresses 

- tensile +ve 

- compressive –ve 

 

Shear Stresses: 

 

Let us consider now the situation, where the cross – sectional area of a block of material is subject to a 

distribution of forces which are parallel, rather than normal, to the area concerned. Such forces are 

associated with a shearing of the material, and are referred to as shear forces. The resulting stress is 

known as shear stress. 
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The resulting force intensities are known as shear stresses, the mean shear stress being equal to 

Where P is the total force and A the area over which it acts. As we know that the particular stress 

generally holds good only at a point therefore we can define shear stress at a point as 

 
 

 

Complementary shear stresses: 

 

The existence of shear stresses on any two sides of the element induces complementary shear stresses 

on the other two sides of the element to maintain equilibrium. As shown in the figure the shear stress  

in sides AB and CD induces a 

complimentary shear stress   in sides AD and BC. 

 

 
 

Sign convections for shear stresses: 

 

- tending to turn the element C.W +ve. 

 

- tending to turn the element C.C.W – ve. 

 

Deformation of a Body due to Self Weight 

 

Consider a bar AB hanging freely under its own weight as shown in the figure. 
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Let 

 

L= length of the bar 

 

A= cross-sectional area of the bar 

 

E= Young’s modulus of the bar material w= 

specific weight of the bar material 

Then deformation due to the self-weight of the bar is 

 

 

Members in Uni – axial state of stress 

Introduction: [For members subjected to uniaxial state of stress] 

For a prismatic bar loaded in tension by an axial force P, the elongation of the bar can be 

determined as 

Suppose the bar is loaded at one or more intermediate positions, then equation 

(1) can be readily adapted to handle this situation, i.e. we can determine the axial force in each part of 

the bar i.e. parts AB, BC, CD, and calculate the elongation or shortening of each part separately, 

finally, these changes in lengths can be added algebraically to obtain the total charge in length of the 

entire bar. 

2E 
 L  

WL
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When either the axial force or the cross – sectional area varies continuosly along the axis of the 

bar, then equation (1) is no longer suitable. Instead, the elongation can be found by considering a 

deferential element of a bar and then the equation (1) becomes 

i.e. the axial force Pxand area of the cross – section Ax must be expressed as functions of x. If 

the expressions for Pxand Ax are not too complicated, the integral can be evaluated analytically, 

otherwise Numerical methods or techniques can be used to evaluate these integrals. 

 

Principle of Superposition 

 

The principle of superposition states that when there are numbers of loads are acting together on an 

elastic material, the resultant strain will be the sum of individual strains caused by each load acting 

separately. 
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Numerical Problems on stress, shear stress in axially loaded members. 

 

Example 1: Now let us for example take a case when the bar tapers uniformly from d at x = 0 

to D at x = l 

 
 

 

In order to compute the value of diameter of a bar at a chosen location let us determine the 

value of dimension k, from similar triangles 

 
 

therefore, the diameter 'y' at the X-section is or = d + 

2k 

Hence the cross –section area at section X- X will be 
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hence the total extension of the bar will be given by expression 

 

An interesting problem is to determine the shape of a bar which would have a uniform stress 

in it under the action of its own weight and a load P. 

Example 2: stresses in Non – Uniform bars 

Consider a bar of varying cross section subjected to a tensile force P as shown below. 

Let 

a = cross sectional area of the bar at a chosen section XX then 

Stress < = p / a 
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If E = Young's modulus of bar then the strain at the section XX can be calculated 

< = < / E 

Then the extension of the short element < x. =<< .original length = < / E. < 
x
 

 

let us consider such a bar as shown in the figure below: 

 

 

 

 

 

The weight of the bar being supported under section XX is 
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Example 1: Calculate the overall change in length of the tapered rod as shown in figure below. It 

carries a tensile load of 10kN at the free end and at the step change in section a compressive load of 2 

MN/m evenly distributed around a circle of 30 mm diameter take the value of E = 208 GN / m
2
. 

This problem may be solved using the procedure as discussed earlier in this section 

 

Example 2: A round bar, of length L, tapers uniformly from radius r1 at one end to radius r2at the 

other. Show that the extension produced by a tensile axial load P 

 

is 

If r2 = 2r1 , compare this extension with that of a uniform cylindrical bar having a 

radius equal to the mean radius of the tapered bar. 

Solution: 
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consider the above figure let r1 be the radius at the smaller end. Then at a X crosssection XX 

located at a distance x from the smaller end, the value of radius is equal to 
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Comparing of extensions 

For the case when r2 = 2.r1, the value of computed extension as above 

 

becomes equal to 

The mean radius of taper bar 

= 1 / 2( r1 + r2 ) 

= 1 / 2( r1 +2 r2 ) 

= 3 / 2 .r1 

Therefore, the extension of uniform bar 

= Orginal length . strain 
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Strain: 

When a single force or a system force acts on a body, it undergoes some deformation. This 

deformation per unit length is known as strain. Mathematically strain may be defined as deformation 

per unit length. 

So, 

Strain=Elongation/Original length 

 

Elasticity; 

 

The property of material by virtue of which it returns to its original shape and size upon removal of 

load is known as elasticity. 

Hooks Law 

It states that within elastic limit stress is proportional to strain. Mathematically  

E= 
Stress 

 
Strain 

 

Where E = Young’s Modulus 

 

Hooks law holds good equally for tension and compression. 

 

Poisson’s Ratio; 

 

The ratio lateral strain to longitudinal strain produced by a single stress is known as Poisson’s ratio. 

Symbol used for poisson’s ratio is nu or 1/ m . 

Modulus of Elasticity (or Young’s Modulus) 

 

Young’s modulus is defined as the ratio of stress to strain within elastic limit. 

 

Deformation of a body due to load acting on it 

 

We know that young’s modulus E= 
Stress 

, 

Strain 
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So, deformation 

Shear Strain 

 

The distortion produced by shear stress on an element or rectangular block is shown in the figure. The 

shear strain or ‘slide’ is expressed by angle ϕ and it can be defined as the change in the right angle. It 

is measured in radians and is dimensionless in nature. 

 

 

Modulus of Rigidity 

 

For elastic materials it is found that shear stress is proportional to the shear strain within elastic limit. 

The ratio is called modulus rigidity. It is denoted by the symbol ‘G’ or ‘C’. 

 

Bulk modulus (K): It is defined as the ratio of uniform stress intensity to the volumetric strain. 

It is denoted by the symbol K. 

 

Relation between elastic constants: 

 

Elastic constants: These are the relations which determine the deformations produced by a given 

stress system acting on a particular material. These factors are constant within elastic limit, and 

known as modulus of elasticity E, modulus of rigidity G, Bulk modulus K and Poisson’s ratio μ. 
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E  3K (1 2) 

E  2G(1 ) 

9KG 

G  3K 
E 

Relationship between modulus of elasticity (E) and bulk modulus (K): 

 

 

 

 

Relationship between modulus of elasticity (E) and modulus of rigidity (G): 

 

 

 

 

Relation among three elastic constants: 

 

 

 

 

Stress – Strain Relationship 

 

Stress – strain diagram for mild steel 

 

Standard specimen are used for the tension test. 

 

There are two types of standard specimen's which are generally used for this purpose, which 

have been shown below: 

 

Specimen I: 

 

This specimen utilizes a circular X-section. 
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Specimen II: 

 

This specimen utilizes a rectangular X-section. 

 

 

 

lg = gauge length i.e. length of the specimen on which we want to determine the mechanical 

properties.The uniaxial tension test is carried out on tensile testing machine and the following steps 

are performed to conduct this test. 

(i) The ends of the specimen are secured in the grips of the testing machine. 

 

(ii) There is a unit for applying a load to the specimen with a hydraulic or mechanical drive. 

 

(iii) There must be some recording device by which you should be able to measure the final output in 

the form of Load or stress. So the testing machines are often equipped with the pendulum type lever, 

pressure gauge and hydraulic capsule and the stress Vs strain diagram is plotted which has the 

following shape. 

 

A typical tensile test curve for the mild steel has been shown below 
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SALIENT POINTS OF THE GRAPH: 

(A) So it is evident form the graph that the strain is proportional to strain or elongation is proportional 

to the load giving a st.line relationship. This law of proportionality is valid upto a point A. 

or we can say that point A is some ultimate point when the linear nature of the graph ceases or there is 

a deviation from the linear nature. This point is known as the limit of proportionality or the 

proportionality limit. 

(B) For a short period beyond the point A, the material may still be elastic in the sense that the 

deformations are completely recovered when the load is removed. The limiting point B is termed as 

Elastic Limit . 

(C) and (D) - Beyond the elastic limit plastic deformation occurs and strains are not totally 

recoverable. There will be thus permanent deformation or permanent set when load is removed. These 

two points are termed as upper and lower yield points respectively. The stress at the yield point is 

called the yield strength. 

A study a stress – strain diagrams shows that the yield point is so near the proportional limit that for 

most purpose the two may be taken as one. However, it is much easier to locate the former. For 

material which do not posses a well define yield points, In order to find the yield point or yield 

strength, an offset method is applied. 

In this method a line is drawn parallel to the straight line portion of initial stress diagram by off setting 

this by an amount equal to 0.2% of the strain as shown as below and this happens especially for the 

low carbon steel. 
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(E) A further increase in the load will cause marked deformation in the whole volume of the metal. 

The maximum load which the specimen can with stand without failure is called the load at the 

ultimate strength. 

The highest point ‘E' of the diagram corresponds to the ultimate strength of a material. 

su = Stress which the specimen can with stand without failure & is known as Ultimate Strength or 

Tensile Strength. 

su is equal to load at E divided by the original cross-sectional area of the bar. 

(F) Beyond point E, the bar begins to forms neck. The load falling from the maximum until fracture 

occurs at F. Beyond point E, the cross-sectional area of the specimen begins to reduce rapidly over a 

relatively small length of bar and the bar is said to form a neck. This necking takes place whilst the 

load reduces, and fracture of the bar finally occurs at point F. 

 

Nominal stress – Strain OR Conventional Stress – Strain diagrams: 

Stresses are usually computed on the basis of the original area of the specimen; such stresses are 

often referred to as conventional or nominal stresses. 

True stress – Strain Diagram: 

Since when a material is subjected to a uniaxial load, some contraction or expansion always takes 

place. Thus, dividing the applied force by the corresponding actual  area of the specimen at the same 

instant gives the so called true stress. 

Percentage Elongation: 'd ': 

The ductility of a material in tension can be characterized by its elongation and by the reduction in 

area at the cross section where fracture occurs. 

It is the ratio of the extension in length of the specimen after fracture to its initial gauge length, 

expressed in percentage. 

lI = gauge length of specimen after fracture(or the distance between the gage marks at fracture) 

lg= gauge length before fracture(i.e. initial gauge length) 

For 50 mm gage length, steel may here a % elongation d of the order of 10% to  40%. 

Ductile and Brittle Materials: 

 

Based on this behaviour, the materials may be classified as ductile or brittle materials 

Ductile Materials: 

 

It we just examine the earlier tension curve one can notice that the extension of the materials over the 

plastic range is considerably in excess of that associated with elastic loading. The Capacity of 

materials to allow these large deformations or large extensions without failure is termed as ductility. 

The materials with high ductility are termed as ductile materials. 

Brittle Materials: 

A brittle material is one which exhibits a relatively small extensions or deformations to fracture, so 

that the partially plastic region of the tensile test graph is much reduced. 
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This type of graph is shown by the cast iron or steels with high carbon contents or concrete. 
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Mechanical Properties of material: 

 

Elasticity: Property of material by virtue of which it can regain its shape after removal of external load 

Plasticity: Property of material by virtue of which, it will be in a state of permanent deformation 

even after removal of external load. 

Ductility: Property of material by virtue of which, the material can be drawn into  wires. 

Hardness: Property of material by virtue of which the material will offer resistance to penetration or 

indentation. 

Ball indentation Tests: 

iThis method consists in pressing a hardened steel ball under a constant load P into a specially 

prepared flat surface on the test specimen as indicated in the figures below : 

 

After removing the load an indentation remains on the surface of the test specimen. If area of 

the spherical surface in the indentation is denoted as F sq. mm. Brinell Hardness number is defined as 

: 

BHN = P / F 

F is expressed in terms of D and d D = 

ball diameter 

d = diametric of indentation and Brinell Hardness number is given by 

 

BHN  

 

D  

2P 

D
2
 d 

2
 ) 
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Then is there is also Vicker's Hardness Number in which the ball is of conical shape. 

IMPACT STRENGTH 

Static tension tests of the unnotched specimen's do not always reveal the susceptibility of metal 

to brittle fracture. This important factor is determined in impact tests. In impact tests we use the 

notched specimen's 

this specimen is placed on its supports on anvil so that blow of the striker is opposite to the 

notch the impact strength is defined as the energy A, required to rupture the specimen, 

Impact Strength = A / f 

Where f = It is the cross – section area of the specimen in cm
2
 at fracture & obviously at notch. 

The impact strength is a complex characteristic which takes into account both toughness and 

strength of a material. The main purpose of notched – bar tests is to study the simultaneous effect of 

stress concentration and high velocity load application 

Impact test are of the severest type and facilitate brittle friction. Impact strength values can not 

be as yet be used for design calculations but these tests as rule provided for in specifications for 

carbon & alloy steels.Futher, it may be noted that in impact tests fracture may be either brittle or 

ductile. In the case of brittle fracture, fracture occurs by separation and is not accompanied by 

noticeable plastic deformation as occurs in the case of ductile fracture. 

 

Impact loads: 

 

Considering a weight falling from a height h, on to a collar attached at the end as shown in the 

figure. 

Let P= equivalent static or gradually applied load which will produce the same extension x as 

that of the impact load W 

Neglecting loss of energy due to impact, we can have: 

 

Loss of potential energy= gain of strain energy of the bar 

Important Case: for a particular case i.e. for h=0, for a suddenly applied load P=2W, 

i.e. the stress produced by a suddenly applied load is twice that of the static stress. 

 

 

 

Thermal stresses, Bars subjected to tension and Compression 

 

Compound bar: In certain application it is necessary to use a combination of elements or bars 

made from different materials, each material performing a different function. In over head electric 

cables or Transmission Lines for example it is often convenient to carry the current in a set of copper 

wires surrounding steel wires. The later being designed to support the weight of the cable over large 

spans. Such a combination of materials is generally termed compound bars. 
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Consider therefore, a compound bar consisting of n members, each having a different length 

and cross sectional area and each being of a different material. Let all member have a common 

extension ‘x' i.e. the load is positioned to produce the same extension in each member. 

 

 

 

Where Fn is the force in the nth member and An and Ln are its cross - sectional area and length. 

 

Let W be the total load, the total load carried will be the sum of all loads for all the members. 
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Therefore, each member carries a portion of the total load W proportional of EA 

/ L value. 

 

 

 

 

The above expression may be writen as 

 

 

if the length of each individual member in same then, we may write 

 

Thus, the stress in member '1' may be determined as < 1 = F1 / A1 

 

Determination of common extension of compound bars: In order to determine the common 

extension of a compound bar it is convenient to consider it as a single bar of an imaginary material 

with an equivalent or combined modulus Ec. 

 

Assumption: Here it is necessary to assume that both the extension and original lengths of the 

individual members of the compound bar are the same, the strains in all members will than be equal. 

 

Total load on compound bar = F1 + F2+ F3 +………+ Fn where F1 

, F 2 ,….,etc are the loads in members 1,2 etc But force = stress . 

area,therefore 

(A 1 + A 2 + ……+ A n ) = 1 A1 + 2 A2 + ........+ n An 

 

Where is the stress in the equivalent single bar 
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Dividing throughout by the common strain<< . 

 

 

 

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and 

contract when cooled, hence , an increase in temperature produce a positive thermal strain. Thermal 

strains usually are reversible in a sense that the member returns to its original shape when the 

temperature return to its original value. However, there here are some materials which do not behave 

in this manner. These metals differs from ordinary materials in a sence that the strains are related non 

linearly to temperature and some times are irreversible .when a material is subjected to a change in 

temp. is a length will change by an amount. 

 

 

 

 
 

= coefficient of linear expansion for the material L = 

original Length 

t = temp. change 

 

Thus an increase in temperature produces an increase in length and a decrease in temperature 

results in a decrease in length except in very special cases of materials with zero or negative 

coefficients of expansion which need not to be considered here. 

 

If however, the free expansion of the material is prevented by some external force, then a stress 

is set up in the material. They stress is equal in magnitude to that 
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which would be produced in the bar by initially allowing the bar to its free length and then applying 

sufficient force to return the bar to its original length. 

 

 

Consider now a compound bar constructed from two different materials rigidly joined 

together, for simplicity. 

 

Let us consider that the materials in this case are steel and brass. 

 

 

 

If we have both applied stresses and a temp. change, thermal strains may be added to those 

given by generalized hook's law equation –e.g. 

 

 

While the normal strains a body are affected by changes in temperatures, shear strains are not. 

Because if the temp. of any block or element changes, then its size changes not its shape therefore 

shear strains do not change. 

 

In general, the coefficients of expansion of the two materials forming the compound bar will be 

different so that as the temp. rises each material will attempt to expand by different amounts. Figure 

below shows the positions to which the 
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individual materials will expand if they are completely free to expand (i.e not joined rigidly together 

as a compound bar). The extension of any Length L is given by L t 

 

 

 

In general, changes in lengths due to thermal strains may be calculated form 

equation t = Lt, provided that the members are able to expand or contract freely, 

a situation that exists in statically determinates structures. As a consequence no stresses are generated 

in a statically determinate structure when one or more members undergo a uniform temperature 

change. If in a structure (or a compound bar), the free expansion or contraction is not allowed then the 

member becomes s statically indeterminate, which is just being discussed as an example of the 

compound bar and thermal stresses would be generated. 

 

If the two materials are now rigidly joined as a compound bar and subjected to the same temp. 

rise, each materials will attempt to expand to its free length position but each will be affected by the 

movement of the other. The higher coefficient of expansion material (brass) will therefore, seek to 

pull the steel up to its free length position and conversely, the lower coefficient of expansion martial 

(steel) will try to hold the brass back. In practice a compromised is reached, the compound bar 

extending to the position shown in fig (c), resulting in an effective compression of the brass from its 

free length position and an effective extension of steel from its free length position. 
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UNIT 2 

Shear Force and Bending Moment 

 

Concept of Shear Force and Bending moment in beams: 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are developed 

and the terms shear force and bending moments come into pictures which are helpful to analyze the 

beams further. Let us define these terms 

 

 

Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2,  P3 and  is  

simply  supported  at  two  points  creating  the  reactions  R1 and    R2 respectively. Now let us 

assume that the beam is to divided into or imagined to be cut into two portions at a section AA. Now 

let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically upwards, and 

since the entire beam is to remain in equilibrium, thus the resultant of forces to the right of AA must 

also be F, acting downwards. This forces ‘F' is as a shear force. The shearing force at any x- section of 

a beam represents the tendency for the portion of the beam to one side of the section to slide or shear 

laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force ‘F' to as follows: 

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components of the 

forces acting on either side of the x-section. 

Sign Convention for Shear Force: 
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The usual sign conventions to be followed for the shear forces have been illustrated in figures 2 and 3. 

 

Fig 2: Positive Shear Force 

 

 

Fig 3: Negative Shear Force 

Bending Moment: 
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Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, P2 and 

P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that the beam is cut 

into two potions at the x-section AA. In a similar manner, as done for the case of shear force, if we 

say that the resultant moment about the section AA of all the loads and reactions to the left of the x-

section at AA is M in C.W direction, then moment of forces to the right of x-section AA must be ‘M' 

in 

C.C.W. Then ‘M' is called as the Bending moment and is abbreviated as B.M. Now one can define the 

bending moment to be simply as the algebraic sum of the moments about an x-section of all the forces 

acting on either side of the section 

Sign Conventions for the Bending Moment: 

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 and Fig 6. 
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Fig 5: Positive Bending Moment 

 

Fig 6: Negative Bending Moment 

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative bending 

moments respectively. 

Bending Moment and Shear Force Diagrams: 

The diagrams which illustrate the variations in B.M and S.F values along the length of the beam for 

any fixed loading conditions would be helpful to analyze the beam further. 
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Thus, a shear force diagram is a graphical plot, which depicts how the internal shear force ‘F' varies 

along the length of beam. If x dentotes the length of the beam, then F is function x i.e. F(x). 

Similarly a bending moment diagram is a graphical plot which depicts how the internal bending 

moment ‘M' varies along the length of the beam. Again M is a function x i.e. M(x). 

Basic Relationship Between The Rate of Loading, Shear Force and Bending Moment: 

The construction of the shear force diagram and bending moment diagrams is greatly simplified if the 

relationship among load, shear force and bending moment is established. 

Let us consider a simply supported beam AB carrying a uniformly distributed load w/length. Let us 

imagine to cut a short slice of length dx cut out from this loaded beam at distance ‘x' from the origin 

‘0'. 

 

 

 

Let us detach this portion of the beam and draw its free body diagram. 

 

 

The forces acting on the free body diagram of the detached portion of this loaded beam are the 

following 

• The shearing force F and F+ δF at the section x and x + δx respectively. 

• The bending moment at the sections x and x + δx be M and M + dM respectively. 



39  

• Force due to external loading, if ‘w' is the mean rate of loading per unit length then the total loading 

on this slice of length δx is w. δx, which is approximately acting through the centre ‘c'. If the loading 

is assumed to be uniformly distributed then it would pass exactly through the centre ‘c'. 

This small element must be in equilibrium under the action of these forces and couples. 

Now let us take the moments at the point ‘c'. Such that 

 

Conclusions: From the above relations,the following important conclusions may be drawn 

• From Equation (1), the area of the shear force diagram between any two points, from the basic 

calculus is the bending moment diagram 

• The slope of bending moment diagram is the shear force, thus 

 

Thus, if F=0; the slope of the bending moment diagram is zero and the bending moment is 

therefore constant.' 
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• The maximum or minimum Bending moment occurs where 

The slope of the shear force diagram is equal to the magnitude of the intensity of the distributed 

loading at any position along the beam. The –ve sign is as a consequence of our particular choice of 

sign conventions 

 

 

 

 

Procedure for drawing shear force and bending moment diagram: Preamble: 

The advantage of plotting a variation of shear force F and bending moment M in a beam as a function 

of ‘x' measured from one end of the beam is that it becomes easier to determine the maximum 

absolute value of shear force and bending moment. 

Further, the determination of value of M as a function of ‘x' becomes of paramount importance so as 

to determine the value of deflection of beam subjected to a given loading. 

Construction of shear force and bending moment diagrams: 

A shear force diagram can be constructed from the loading diagram of the beam. In order to draw this, 

first the reactions must be determined always. Then the vertical components of forces and reactions 

are successively summed from the left end of the beam to preserve the mathematical sign conventions 

adopted. The shear at a section is simply equal to the sum of all the vertical forces to the left of the 

section. 

When the successive summation process is used, the shear force diagram should end up with the 

previously calculated shear (reaction at right end of the beam. No shear force acts through the beam 

just beyond the last vertical force or reaction. If the shear force diagram closes in this fashion, then it 

gives an important check on mathematical calculations. 

The bending moment diagram is obtained by proceeding continuously along the length of beam from 

the left hand end and summing up the areas of shear force diagrams giving due regard to sign. The 

process of obtaining the moment diagram from the shear force diagram by summation is exactly the 

same as that for drawing shear force diagram from load diagram. 
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It may also be observed that a constant shear force produces a uniform change in the bending moment, 

resulting in straight line in the moment diagram. If no shear force exists along a certain portion of a 

beam, then it indicates that there is no change in moment takes place. It may also further observe that 

dm/dx= F therefore, from the fundamental theorem of calculus the maximum or minimum moment 

occurs where the shear is zero. In order to check the validity of the bending moment diagram, the 

terminal conditions for the moment must be satisfied. If the end is free or pinned, the computed sum 

must be equal to zero. If the end is built in, the moment computed by the summation must be equal to 

the one calculated initially for the reaction. These conditions must always be satisfied. 

Illustrative problems: 

In the following sections some illustrative problems have been discussed so as to illustrate the 

procedure for drawing the shear force and bending moment diagrams 

1. A cantilever of length carries a concentrated load ‘W' at its free end. 

Draw shear force and bending moment. 

Solution: 

At a section a distance x from free end consider the forces to the left, then F = -W (for all values of x) 

-ve sign means the shear force to the left of the x-section are in downward direction and therefore 

negative 

Taking moments about the section gives (obviously to the left of the section) 

M = -Wx (-ve sign means that the moment on the left hand side of the portion is in the anticlockwise 

direction and is therefore taken as –ve according to the sign convention) 

so that the maximum bending moment occurs at the fixed end i.e. M = -W l 

From equilibrium consideration, the fixing moment applied at the fixed end is Wl and the reaction is 

W. the shear force and bending moment are shown as, 
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2. Simply supported beam subjected to a central load (i.e. load acting at the mid- way) 

 
 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any section X-X 

from the left end then, the beam is under the action of following forces. 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

If we consider another section Y-Y which is beyond l/2 then 

 

for all values greater = l/2 

Hence S.F diagram can be plotted as, 
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.For B.M diagram: 

If we just take the moments to the left of the cross-section, 

 

Which when plotted will give a straight relation i.e. 
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It may be observed that at the point of application of load there is an abrupt change in the shear 

force, at this point the B.M is maximum. 

3. A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given w / 

length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just take the 

resultant of all the forces on the left of the X-section, then 

S.Fxx = -Wx for all values of ‘x' -------------------- (1) 

S.Fxx = 0 

S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending Moment at X-

X is obtained by treating the load to the left of X-X as a concentrated load of the same value acting 

through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is 

 

The above equation is a quadratic in x, when B.M is plotted against x this will produces a 

parabolic variation. 

The extreme values of this would be at x = 0 and x = l 

 

Hence S.F and B.M diagram can be plotted as follows: 
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4. Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

 

 

The total load carried by the span would be 

= intensity of loading x length 

= w x l 

By symmetry the reactions at the end supports are each wl/2 

If x is the distance of the section considered from the left hand end of the beam. 

S.F at any X-section X-X is 

 

Giving a straight relation, having a slope equal to the rate of loading or intensity of the loading. 
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The bending moment at the section x is found by treating the distributed load as acting at its centre of 

gravity, which at a distance of x/2 from the section 

 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and the shear force and 

bending moment can be drawn in the following way will appear as follows: 
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UNIT 3 
 

Loading restrictions: 

As we are aware of the fact internal reactions developed on any cross-section of a beam may consists 

of a resultant normal force, a resultant shear force and a resultant couple. In order to ensure that the 

bending effects alone are investigated, we shall put a constraint on the loading such that the resultant 

normal and the resultant shear forces are zero on any cross-section perpendicular to the longitudinal 

axis of the member, 

That means F = 0 

 

since or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the bending is same at every 

cross-section of the beam. Such a situation may be visualized or envisaged when the beam or some 

portion of the beam, as been loaded only by pure couples at its ends. It must be recalled that the 

couples are assumed to be loaded in the plane of symmetry. 
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When a member is loaded in such a fashion it is said to be in pure bending. The examples of pure 

bending have been indicated in EX 1and EX 2 as shown below : 

 

 

When a beam is subjected to pure bending are loaded by the couples at the ends, certain cross-section 

gets deformed and we shall have to make out the conclusion that, 

1. Plane sections originally perpendicular to longitudinal axis of the beam remain plane and 

perpendicular to the longitudinal axis even after bending , i.e. the cross- section A'E', B'F' ( refer Fig 

1(a) ) do not get warped or curved. 

2. In the deformed section, the planes of this cross-section have a common intersection i.e. any time 

originally parallel to the longitudinal axis of the beam becomes an arc of circle. 
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We know that when a beam is under bending the fibres at the top will be lengthened while at the 

bottom will be shortened provided the bending moment M acts at the ends. In between these there are 

some fibres which remain unchanged in length that is they are not strained, that is they do not carry 

any stress. The plane containing such fibres is called neutral surface. 

The line of intersection between the neutral surface and the transverse exploratory section is called the 

neutral axisNeutral axis (N A) . 

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

In order to compute the value of bending stresses developed in a loaded beam, let us consider the two 

cross-sections of a beamHE and GF , originally parallel as shown in fig 1(a).when the beam is to 

bend it is assumed that these sections remain parallel i.e.H'E' and G'F' , the final position of the 

sections, are still straight lines,  they then subtend some angle < . 

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends this will 

stretch to A'B' 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis zero. 

Therefore, there won't be any strain on the neutral axis 
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Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a distance 

‘y' from the N.A, is given by the expression 

 
 

Now the term is the property of the material and is called as a second moment of area of the 

cross-section and is denoted by a symbol I. 

Therefore 

 

This equation is known as the Bending Theory Equation.The above proof has involved the 

assumption of pure bending without any shear force being present. 
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Therefore this termed as the pure bending equation. This equation gives distribution of stresses which 

are normal to cross-section i.e. in x-direction. 

Section Modulus: 

From simple bending theory equation, the maximum stress obtained in any cross- section is given as 

For any given allowable stress the maximum moment which can be accepted by a particular shape of 

cross-section is therefore 

 

For ready comparison of the strength of various beam cross-section this relationship is some times 

written in the form 

 

Is termed as section modulus 

The higher value of Z for a particular cross-section, the higher the bending moment which it can 

withstand for a given maximum stress. 

Theorems to determine second moment of area: There are two theorems which are helpful to 

determine the value of second moment of area, which is required to be used while solving the simple 

bending theory equation. 

Second Moment of Area : 

Taking an analogy from the mass moment of inertia, the second moment of area is defined as the 

summation of areas times the distance squared from a fixed axis. (This property arised while we were 

driving bending theory equation). This is also known as the moment of inertia. An alternative name 

given to this is second moment of area, because the first moment being the sum of areas times their 

distance from a 

given axis and the second moment being the square of the distance or . 
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Consider any cross-section having small element of area d A then by the definition 

Ix(Mass  Moment  of  Inertia  about x-axis) = and Iy(Mass Moment of Inertia about 

y-axis) =  

Now the moment of inertia about an axis through ‘O' and perpendicular to the plane of figure is called 

the polar moment of inertia. (The polar moment of inertia is also the area moment of inertia). 

i.e, 

J = polar moment of inertia 

 

The relation (1) is known as the perpendicular axis theorem and may be stated as follows: 

The sum of the Moment of Inertia about any two axes in the plane is equal to the moment of inertia 

about an axis perpendicular to the plane, the three axes being concurrent, i.e, the three axes exist 

together. 

CIRCULAR SECTION : 

For a circular x-section, the polar moment of inertia may be computed in the following manner 
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Consider any circular strip of thickness < r located at a radius 'r'. Than the area of 

the circular strip would be dA = 2< r. < r 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus 
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Parallel Axis Theorem: 

The moment of inertia about any axis is equal to the moment of inertia about a parallel axis through 

the centroid plus the area times the square of the distance between the axes. 

If ‘ZZ' is any axis in the plane of cross-section and ‘XX' is a parallel axis through the centroid G, of 

the cross-section, then 

 

Rectangular Section: 

For a rectangular x-section of the beam, the second moment of area may be computed as below : 
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Consider the rectangular beam cross-section as shown above and an element of area dA , thickness dy 

, breadth B located at a distance y from the neutral axis, which by symmetry passes through the centre 

of section. The second moment of area I as defined earlier would be 

Thus, for the rectangular section the second moment of area about the neutral axis i.e., an axis through 

the centre is given by 
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Similarly, the second moment of area of the rectangular section about an axis through the lower edge 

of the section would be found using the same procedure but with integral limits of 0 to D . 

 

Therefore 

These standards formulas prove very convenient in the determination of INA for build up sections 

which can be conveniently divided into rectangles. For instance if we just want to find out the 

Moment of Inertia of an I - section, then we can use the above relation. 

 
 

Use of Flexure Formula: 

Illustrative Problems: 

An I - section girder, 200mm wide by 300 mm depth flange and web of thickness is 20 mm is used as 

simply supported beam for a span of 7 m. The girder carries a distributed load of 5 KN /m and a 

concentrated load of 20 KN at mid-span. 

Determine the 

(i). The second moment of area of the cross-section of the girder 
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(ii). The maximum stress set up. 

Solution: 

The second moment of area of the cross-section can be determained as follows : 

For sections with symmetry about the neutral axis, use can be made of standard I value for a rectangle 

about an axis through centroid i.e. (bd 3 )/12. The section can thus be divided into convenient 

rectangles for each of which the neutral axis passes through the centroid. Example in the case 

enclosing the girder by a rectangle 

Computation of Bending Moment: 

In this case the loading of the beam is of two types 

(a) Uniformly distributed load 

(b) Concentrated Load 

In order to obtain the maximum bending moment the technique will be to consider each loading on 

the beam separately and get the bending moment due to it as if no other forces acting on the structure 

and then superimpose the two results. 
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Hence 

 

Shearing Stresses in Beams 

All the theory which has been discussed earlier, while we discussed the bending stresses in beams was for the 

case of pure bending i.e. constant bending moment acts 
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UNIT-4 
 

 

Two  Dimensional  State  of  Stress  and  Strain: Principal stresses. Numerical 

examples 

Stresses on oblique plane: Till now we have dealt with either pure normal direct stress or pure shear 

stress. In many instances, however both direct and shear stresses acts and the resultant stress across 

any section will be neither normal nor tangential to the plane. A plane stse of stress is a 2 dimensional 

stae of stress in a sense that the stress components in one direction are all zero i.e 

z = yz = zx = 0 

Examples of plane state of stress include plates and shells. Consider the general case of a 

bar under direct load F giving rise to a stress y vertically 

 

The stress acting at a point is represented by the stresses acting on the faces of the element enclosing 

the point. The stresses change with the inclination of the planes passing through that point i.e. the 

stress on the faces of the element vary as the angular position of the element changes. Let the block be 

of unit depth now considering the equilibrium of forces on the triangle portion ABC. Resolving forces 

perpendicular to BC. 
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Material subjected to pure shear: 

Consider the element shown to which shear stresses have been applied to the sides AB and DC 

 

 

Complementary shear stresses of equal value but of opposite effect are then set up on the sides 

AD and BC in order to prevent the rotation of the element. Since the applied and complementary 

shear stresses are of equal value on the x and y planes.  

Now consider the equilibrium of portion of PBC 
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minimum values of +< xy (tension) and << xy(compression) on plane at ± 45
0
 to the applied shear and 

on these planes the tangential component < < is zero. 

Hence the system of pure shear stresses produces and equivalent direct stress system, one set 

compressive and one tensile each located at 45
0
 to the original shear directions as depicted in the 

figure below: 

 

Material subjected to two mutually perpendicular direct stresses: 

Now consider a rectangular element of unit depth, subjected to a system of two direct stresses 

both tensile, < x and < yacting right angles to each other. 
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(3) 

Now resolving parallal to AC 

sq.AC.1= << xy..cos< .AB.1+<< xy.BC.sin< .1 

The – ve sign appears because this component is in the same direction as that of AC. 

Again converting the various quantities in terms of AC so that the AC cancels out from the 

two sides. 

 

 

 

 

 

 

 

(4) 

Conclusions : 

The following conclusions may be drawn from equation (3) and (4) 

(i) The maximum direct stress would be equal to < x or < y which ever is the greater, when < 

= 0
0
 or 90

0
 

(ii) The maximum shear stress in the plane of the applied stresses occurs when << = 45
0
 

 

Material subjected to combined direct and shear stresses: 

Now consider a complex stress system shown below, acting on an element of material. 

The stresses < x and < y may be compressive or tensile and may be the result of direct forces or 

as a result of bending.The shear stresses may be as shown or completely reversed and occur as a result 

of either shear force or torsion as shown in the figure below: 

As per the double subscript notation the shear stress on the face BC should be notified as < yx , 

however, we have already seen that for a pair of shear stresses there is a set of complementary shear 
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stresses generated such that < yx = < xy 

By looking at this state of stress, it may be observed that this state of stress is combination of 

two different cases: 

(i) Material subjected to two mutually perpendicular direct stresses. In this case the various 

formula's derived are as follows. 

To get the required equations for the case under consideration,let us add the respective 

equations for the above two cases such that 

 
 

These are the equilibrium equations for stresses at a point. They do not depend on material 

proportions and are equally valid for elastic and inelastic behaviour 

This eqn gives two values of 2< that differ by 180
0
 .Hence the planes on which maximum and 

minimum normal stresses occurate 90
0
apart. 

From the triangle it may be determined 
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Substituting the values of cos2<< and sin2<< in equation (5) we get 

 
 

This shows that the values oshear stress is zero on the principal planes. 



65  

Hence the maximum and minimum values of normal stresses occur on planes of zero shearing 

stress. The maximum and minimum normal stresses are called the principal stresses, and the planes on 

which they act are called principal plane the solution of equation  ill yield two values of 2< separated 

by 180
0
 i.e. two values of < separated by 90

0
 .Thus the two principal stresses occur on mutually 

perpendicular planes termed principal planes. 

Therefore the two – dimensional complex stress system can now be reduced to the equivalent 

system of principal stresses. 

Let us recall that for the case of a material subjected to direct stresses the value of maximum 

shear stresses 
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Therefore,it can be concluded that the equation (2) is a negative reciprocal of equation (1) 

hence the roots for the double angle of equation (2) are 90
0
 away from the corresponding angle of 

equation (1). 

This means that the angles that angles that locate the plane of maximum or minimum shearing 

stresses form angles of 45
0
 with the planes of principal stresses. 

Futher, by making the triangle we get 

 

 

Because of root the difference in sign convention arises from the point of view of locating the 

planes on which shear stress act. From physical point of view these sign have no meaning. 

The largest stress regard less of sign is always know as maximum shear stress. 

Principal plane inclination in terms of associated principal stress: 

 

 

We know that the equation 

yields two values of q i.e. the inclination of the two principal planes on which the principal 

stresses s1 and s2 act. It is uncertain,however, which stress acts on which plane unless equation. 
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is used and observing which one of the 

two principal stresses is obtained. 

Alternatively we can also find the answer to this problem in the following manner 

 

Consider once again the equilibrium of a triangular block of material of unit depth, Assuming 

AC to be a principal plane on which principal stresses < p acts, and the shear stress is zero. 

Resolving the forces horizontally we get: 

< x .BC . 1 + < xy .AB . 1 = < p . cos< . AC dividing the above equation through by BC we get 
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GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 

The transformation equations for plane stress can be represented in a graphical form known as 

Mohr's circle. This grapical representation is very useful in depending the relationships between 

normal and shear stresses acting on any inclined plane at a point in a stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

The above system represents a complete stress system for any condition of applied load in two 

dimensions 

The Mohr's stress circle is used to find out graphically the direct stress < and sheer stress<< on 

any plane inclined at < to the plane on which < x acts.The direction of < here is taken in anticlockwise 

direction from the BC. 

STEPS: 

In order to do achieve the desired objective we proceed in the following manner 

(i) Label the Block ABCD. 

(ii) Set up axes for the direct stress (as abscissa) and shear stress (as ordinate) 

(iii) Plot the stresses on two adjacent faces e.g. AB and BC, using the following sign 

convention. 

Direct stresses<< tensile positive; compressive, negative Shear 

stresses – tending to turn block clockwise, positive 

– tending to turn block counter clockwise, negative 

[ i.e shearing stresses are +ve when its movement about the centre of the element is 

clockwise ] 
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This gives two points on the graph which may than be labeled as respectively to denote 

stresses on these planes. 

(iv) Join . 

(v) The point P where this line cuts the s axis is than the centre of Mohr's 

stress circle and the line joining is diameter. Therefore the circle can now be 

drawn. 

Now every point on the circle then represents a state of stress on some plane through C. 

 

Proof: 

 

Consider any point Q on the circumference of the circle, such that PQ makes an angle 2<< with 

BC, and drop a perpendicular from Q to meet the s axis at N.Then OQ represents the resultant stress 

on the plane an angle < to BC. Here we have assumed that < x <<< y 

Now let us find out the coordinates of point Q. These are ON and QN. From the 

figure drawn earlier 

ON = OP + PN 

OP = OK + KP 

If we examine the equation (1) and (2), we see that this is the same equation which we have 

already derived analytically 

Thus the co-ordinates of Q are the normal and shear stresses on the plane inclined at < to BC 

in the original stress system. 

N.B: Since angle  PQ is 2<  on Mohr's circle and not <  it becomes obvious  that angles are 

doubled on Mohr's circle. This is the only difference, however, as They are measured in the same 

direction and from the same plane in both figures. 

Further points to be noted are : 
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(1) The direct stress is maximum when Q is at M and at this point obviously the sheer stress is 

zero, hence by definition OM is the length representing the maximum principal stresses < 1 and 2< 1 

gives the angle of the plane < 1 from BC. Similar OL is the other principal stress and is represented by 

< 2 

(2) The maximum shear stress is given by the highest point on the circle and is represented by 

the radius of the circle. 

This follows that since shear stresses and complimentary sheer stresses have the same value; 

therefore the centre of the circle will always lie on the s axis midway between < x and < y . [ since +< 

xy & << xy are shear stress & complimentary shear stress so they are same in magnitude but different in 

sign. ] 

(3) From the above point the maximum sheer stress i.e. the Radius of the Mohr's stress circle 

would be 

While the direct stress on the plane of maximum shear must be mid – may between < x and < y 

i.e 

 

 

(4) As already defined the principal planes are the planes on which the shear components are 

zero. 

Therefore are conclude that on principal plane the sheer stress is zero. 

(5) Since the resultant of two stress at 90
0
 can be found from the parallogram of vectors as 

shown in the diagram.Thus, the resultant stress on the plane at q to BC is given by OQ on Mohr's 

Circle. 



71  

 
 

(6) The graphical method of solution for a complex stress problems using Mohr's circle is a 

very powerful technique, since all the information relating to any plane within the stressed element is 

contained in the single construction. It thus, provides a convenient and rapid means of solution. Which 

is less prone to arithmetical errors and is highly recommended. 

 

 

Numericals: 

Let us discuss few representative problems dealing with complex state of stress to be solved either 

analytically or graphically. 

Q2: 

For a given loading conditions the state of stress in the wall of a cylinder is expressed as follows: 

(a) 85 MN/m
2
 tensile 

(b) 25 MN/m
2
 tensile at right angles to (a) 

(c) Shear stresses of 60 MN/m
2
 on the planes on which the stresses (a) and 

(b) act; the sheer couple acting on planes carrying the 25 MN/m
2
 stress is clockwise in effect. 

Calculate the principal stresses and the planes on which they act. What would be the effect on 

these results if owing to a change of loading (a) becomes compressive while stresses (b) and (c) 

remain unchanged 

Solution: 

The problem may be attempted both analytically as well as graphically. Let us first obtain the 

analytical solution 

The principle stresses are given by the formula 

 



72  

 

 

 

 

 

 

 

For finding out the planes on which the  principle  stresses  act  us  the  equation 

 

The solution of this equation will yeild two values < i.e 

they < 1 and < 2 giving < 1= 31
0
71' & < 2= 121

0
71' 

(b) In this case only the loading (a) is changed i.e. its direction had been changed. While the 

other stresses remains unchanged hence now the block diagram becomes. 

Again the principal stresses would be given by the equation. 

 

Thus, the two principle stresses acting on the two mutually perpendicular planes i.e principle 

planes may be depicted on the element as shown below: 
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So this is the direction of one principle plane & the principle stresses acting on this would be < 

1 when is acting normal to this plane, now the direction of other principal plane would be 90
0
 + < 

because the principal planes are the two mutually perpendicular plane, hence rotate the another plane 

< + 90
0
 in the same direction to get the another plane, now complete the material element if < is 

negative that means we are measuring the angles in the opposite direction to the reference plane BC . 

Therefore the direction of other principal planes would be {<< + 90} since the angle << is 

always less in magnitude then 90 hence the quantity (<<< + 90 ) would be positive therefore the 

Inclination of other plane with reference plane would be positive therefore if just complete the Block. 

It would appear as 
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If we just want to measure the angles from the reference plane, than rotate this block through 

180
0
 so as to have the following appearance. 

So whenever one of the angles comes negative to get the positive value, first Add 90
0
 

to the value and again add 90
0
 as in this case < = < 23

0
74' 

so < 1 = < 23
0
74' + 90

0
 = 66

0
26' .Again adding 90

0
 also gives the direction of other principle 

planes 

i.e < 2 = 66
0
26' + 90

0
 = 156

0
26' 

This is how we can show the angular position of these planes clearly. 

GRAPHICAL SOLUTION: 

Mohr's Circle solution: The same solution can be obtained using the graphical solution i.e the 

Mohr's stress circle,for the first part, the block diagram becomes 

 

Construct the graphical construction as per the steps given earlier. 
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Taking the measurements from the Mohr's stress circle, the various quantities computed are 

< 1 = 120 MN/m
2
 tensile 

< 2 = 10 MN/m
2
 compressive 

< 1 = 34
0
 counter clockwise from BC 

< 2 = 34
0
 + 90 = 124

0
 counter clockwise from BC 

Part Second : The required configuration i.e the block diagram for this case is shown along 

with the stress circle. By taking the measurements, the various quantites computed are given as 

< 1 = 56.5 MN/m
2
 tensile 

< 2 = 106 MN/m
2
 compressive 

< 1 = 66
0
15' counter clockwise from BC 

< 2 = 156
0
15' counter clockwise from BC 

Salient points of Mohr's stress circle: 

1. complementary shear stresses (on planes 90
0
 apart on the circle) are equal in magnitude 

2. The principal planes are orthogonal: points L and M are 180
0
 apart on the circle (90

0
 apart in 

material) 

3. There are no shear stresses on principal planes: point L and M lie on normal stress axis. 

4. The planes of maximum shear are 45
0
 from the principal points D and E are 90

0
 , measured round 

the circle from points L and M. 

5. The maximum shear stresses are equal in magnitude and given by points D and E 

6. The normal stresses on the planes of maximum shear stress are equal i.e. points D and E both have 

normal stress co-ordinate which   is equal to the two   principal stresses. 
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As we know that the circle represents all possible states of normal and shear stress on any plane 

through a stresses point in a material. Further we have seen that the co-ordinates of the point ‘Q' are 

seen to be the same as those derived from equilibrium of the element. i.e. the normal and shear stress 

components on any plane passing through the point can be found using Mohr's circle. Worthy of note: 

1. The sides AB and BC of the element ABCD, which are 90
0
 apart, are represented 

on the circle by and they are 180
0
 apart. 

2. It has been shown that Mohr's circle represents all possible states at a point. Thus, it can be seen 

at a point. Thus, it, can be seen that two planes LP and PM, 180
0
 apart on the diagram and 

therefore 90
0
 apart in the material, on which shear stress < < is zero. These planes are termed as 

principal planes and normal stresses acting on them are known as principal stresses. 

  Thus , < 1 = OL 

  < 2 = OM 

3. The maximum shear stress in an element is given by the top and bottom points of the circle i.e 

by points J1 and J2 ,Thus the maximum shear stress would be equal to the radius of i.e. < max= 

1/2(<< 1<<< 2 ),the corresponding normal stress is obviously the distance OP = 1/2 (<< x+ < y ) 

, Further it can also be seen that the planes on which the shear stress is maximum are situated 

90
0
 from the principal planes ( on circle ), and 45

0
 in the material. 

4. The minimum normal stress is just as important as the maximum. The algebraic minimum stress 

could have a magnitude greater than that of the maximum principal stress if the state of stress 

were such that the centre of the circle is to the left of orgin. 

   i.e. if < 1 = 20 MN/m
2
 (say) 

    < 2 = < 80 MN/m
2
 (say) 

    Then < max
m
 = ( < 1 <<<  2 / 2 ) = 50 MN/m

2
 

If should be noted that the principal stresses are considered a maximum or minimum mathematically 

e.g. a compressive or negative stress is less than a  positive stress, irrespective or numerical 

value. 

5. Since the stresses on perpendular faces of any element are given by the co- ordinates of two 
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diametrically opposite points on the circle, thus, the sum of the two normal stresses for any and 

all orientations of the element is constant, i.e. Thus sum is an invariant for any particular state of 

stress. 

Sum of the two normal stress components acting on mutually perpendicular planes at a point in 

a state of plane stress is not affected by the orientation of these planes. 

This can be also understand from the circle Since AB and BC are diametrically opposite thus, 

what ever may be their orientation, they will always lie on the diametre or we can say that their sum 

won't change, it can also be seen from analytical relations 

 

We know 

on plane BC; < = 0 

< n1 = < x 

on plane AB; < = 270
0
 

< n2 = < y 

Thus < n1 + < n2= < x+ < y 

6. If < 1 = < 2, the Mohr's stress circle degenerates into a point and no shearing stresses are 

developed on xy plane. 

7. If < x+ < y= 0, then the  center  of  Mohr's  circle  coincides  with  the  origin of < < < < <  

co-ordinates. 
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UNIT 5 
 

 

Cylindrical Vessel with Hemispherical Ends: 

 

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical and 

hemispherical portion is different. While the internal diameter of both the portions is assumed to be 

equal 

 

Let the cylindrical vassal is subjected to an internal pressure p. 

 

 

For the Cylindrical Portion 

 

 

For The Hemispherical Ends: 
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Because of the symmetry of the sphere the stresses set up owing to internal pressure will be two 

mutually perpendicular hoops or circumferential stresses of equal values. Again the radial stresses are 

neglected in comparison to the hoop stresses as with this cylinder having thickness to diametre less 

than1:20. 

 

Consider the equilibrium of the half – sphere 

 

Force on half-sphere owing to internal pressure = pressure x projected Area 

 

= p. < d
2
/4 

 

 

 

 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the spherical 

ends to expand by a different amount under the action of internal pressure. So owing to difference in 

stress, the two portions (i.e. cylindrical and spherical ends) expand by a different amount. This 

incompatibly of deformations causes a local bending and sheering stresses in the neighborhood of the 

joint. Since there must be physical continuity between the ends and the cylindrical portion, for this 

reason, properly curved ends must be used for pressure vessels. 

 

Thus equating the two strains in order that there shall be no distortion of the junction 

 

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

 

t2 / t1 = 0.7/1.7  

 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid 

ends for no distortion of the junction to occur. 
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SUMMARY OF THE RESULTS : Let us summarise the derived results 

 

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

 

(i) Circumferential or loop stress 

 

 H = pd/2t 

(ii) Longitudinal or axial stress 

 

 L = pd/4t 

Where d is the internal diametre and t is the wall thickness of the cylinder. then 

Longitudinal strain L = 1 / E [ L− H] 

Hoop stain H = 1 / E [ H − ν L ] 

(B) Change of internal volume of cylinder under pressure 

 

 

(C) Fro thin spheres circumferential or loop stress 

 

 

Thin rotating ring or cylinder 

 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p caused 

by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit length of the 

circumference is 

 

p = m ω
2
 r 

 

 

 

Fig 19.1: Thin ring rotating with constant angular velocity < 
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Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its own 

mass when rotating. 

 

Thus considering the equilibrium of half the ring shown in the figure, 2F = p x 2r 

(assuming unit length), as 2r is the projected area 

F = pr 

 

Where F is the hoop tension set up owing to rotation. 

 

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant across 

the wall thickness. 

 

F = mass x acceleration = m ω
2
 r x r 

 

This tension is transmitted through the complete circumference and therefore is resisted by the 

complete cross – sectional area. 

 

hoop stress = F/A = m ω
2
 r

2
 / A 

 

Where A is the cross – sectional area of the ring. 

 

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the density < . 

 

hoop stress H = ω
2
 r

2
 

 

Torsion of circular shafts 

 

Definition of Torsion: Consider a shaft rigidly clamped at one end and twisted at the other end by a torque T = 

F.d applied in a plane perpendicular to the axis of the bar such a shaft is said to be in torsion. 

 

 

Effects of Torsion: The effects of a torsional load applied to a bar are 

(i) To impart an angular displacement of one end cross – section with respect to the other end. 

(ii) To setup shear stresses on any cross section of the bar perpendicular to its axis. 

 

Assumption: 
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(i) The materiel is homogenous i.e of uniform elastic properties exists throughout the material. 

(ii) The material is elastic, follows Hook's law, with shear stress proportional to shear strain. 

(iii) The stress does not exceed the elastic limit. 

(iv) The circular section remains circular 

(v) Cross section remain plane. 

(vi) Cross section rotate as if rigid i.e. every diameter rotates through the same angle. 

Consider now the solid circular shaft of radius R subjected to a torque T at one end, the other end 

being fixed Under the action of this torque a radial line at the free end of the shaft twists through an 

of distortion of the shaft i.e the shear strain. 

Since angle in radius = arc / 

Radius arc AB = R 

From the definition of Modulus of rigidity or Modulus of elasticity in shear 

 
 

Stresses: Let us consider a small strip of radius r and thickness dr which is subjected to shear stress◻  

 

 

The force set up on each element 

= stress x area 

 

 

The total torque T on the section, will be the sum of all the contributions. 

r, because it varies with radius so writing down◻  
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Where 

T = applied external Torque, which is constant over Length L; 

J = Polar moment of Inertia 

 

 

 

 

 

[ D = Outside diameter ; d = inside 

diameter ] G = Modules of rigidity (or Modulus of elasticity in shear) 

 

Tensional Stiffness: The tensional stiffness k is defined as the torque per 

 

Power Transmitted by a shaft : 

shaft, then the power transmitted by the shaft is 

TORSION OF HOLLOW SHAFTS: 

From the torsion of solid shafts of circular x – section , it is seen that only the material at the outer 

surface of the shaft can be stressed to the limit assigned as an 



84  

allowable working stresses. All of the material within the shaft will work at a lower stress and is not 

being used to full capacity. Thus, in these cases where the weight reduction is important, it is 

advantageous to use hollow shafts. In discussing the torsion of hollow shafts the same assumptions 

will be made as in the case of a solid shaft. The general torsion equation as we have applied in the 

case of torsion of solid shaft will hold good 

Hence by examining the equation (1) and (2) it may be seen that the max
m
 in the case of hollow shaft 

is 6.6% larger than in the case of a solid shaft having the same outside diameter. 

Reduction in weight: 

Considering a solid and hollow shafts of the same length 'l' and density ' ' with di = 1/2 Do 

 
 

Hence the reduction in weight would be just 25%. 
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Illustrative Examples : 

Problem 1 

A stepped solid circular shaft is built in at its ends and subjected to an externally applied torque. T0 

at the shoulder as shown in the figure. Determine the angle of along the entire length of the beam. 

rotation 0 of the shoulder section where T0 is applied ? 
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EXTRA NOTES 

 

Deflection of Beams 

 

Deflection of Beams 

Introduction: 

In all practical engineering applications, when we use the different components, normally we have to 

operate them within the certain limits i.e. the constraints are placed on the performance and behavior 

of the components. For instance we say that the particular component is supposed to operate within 

this value of stress and the deflection of the component should not exceed beyond a particular value. 

In some problems the maximum stress however, may not be a strict or severe condition but there may 

be the deflection which is the more rigid condition under operation. It is obvious therefore to study the 

methods by which we can predict the deflection of members under lateral loads or transverse loads, 

since it is this form of loading which will generally produce the greatest deflection of beams. 

Assumption: The following assumptions are undertaken in order to derive a differential equation of 

elastic curve for the loaded beam 

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for beams 

that are not stressed beyond the elastic limit. 

2. The curvature is always small. 

3. Any deflection resulting from the shear deformation of the material or shear stresses is neglected. 

It can be shown that the deflections due to shear deformations are usually small and hence can be 

ignored. 
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Consider a beam AB which is initially straight and horizontal when unloaded. If under the action of 

loads the beam deflect to a position A'B' under load or infact we say  that the axis of the beam bends 

to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the elastic line or deflection 

curve. 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending moment M 

varies along the length of the beam and we represent the variation of bending moment in B.M 

diagram. Futher, it is assumed that the simple bending theory equation holds good. 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every point is 

different; hence the slope is different at different points. 

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x and y, x-

axis coincide with the original straight axis of the beam and the y 

– axis shows the deflection. 

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us construct 

the normal which intersect at point O denoting the angle between these two normal be di 

But for the deflected shape of the beam the slope i at any point C is defined, 
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This is the differential equation of the elastic line for a beam subjected to bending in the plane of 

symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as it is 

frequently called. 

Relationship between shear force, bending moment and deflection: The relationship among shear 

force,bending moment and deflection of the beam may be obtained as 

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of loading can 

also be found out by differentiating the expression for shear force 

 

Methods for finding the deflection: The deflection of the loaded beam can be obtained various 

methods.The one of the method for finding the deflection of the beam is the direct integration method, 

i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as 
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Where A and B are constants of integration to be evaluated from the known conditions of slope and 

deflections for the particular value of x. 

Illustrative examples : let us consider few illustrative examples to have a familiarty with the direct 

integration method 

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected to a 

concentrated load W at the free end, it is required to determine the deflection of the beam 

 
 

In order to solve this problem, consider any X-section X-X located at a distance x from the left end or 

the reference, and write down the expressions for the shear force abd the bending moment 
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The constants A and B are required to be found out by utilizing the boundary conditions as 

defined below 

i.e at x= L ; y= 0 ------------------------------------ (1) 

at x = L ; dy/dx = 0 -------------------------------- (2) 

Utilizing the second condition, the value of constant A is obtained as 
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Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is subjected 

to U.d.l with rate of intensity varying w / length.The same procedure can also be adopted in this case 
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Boundary conditions relevant to the problem are as follows: 

1. At x = L; y = 0 

2. At x= L; dy/dx = 0 

The second boundary conditions yields 

 

Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply supported 

beam is subjected to a uniformly distributed load whose rate of intensity varies as w / length. 
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In order to write down the expression for bending moment consider any cross- section at 

distance of x metre from left end support. 

 

Boundary conditions which are relevant in this case are that the deflection at each support must be 

zero. 

i.e. at x = 0; y = 0 : at x = l; y = 0 

let us apply these two boundary conditions on equation (1) because the boundary conditions are on 

y, This yields B = 0. 
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Futher 

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at the 

position where the load is being applied ].So if we substitute the value of x = L/2 

Conclusions 

(i) The value of the slope at the position where the deflection is maximum would be zero. 

(ii) Thevalue of maximum deflection would be at the centre i.e. at x = L/2. 

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear force and 

rate of loading. 

 

 

Deflection (y) 

 

 

 

 

Slope (dy/dx) 

 

 

Bending Moment So the bending moment diagram would 
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be 

 

 

Shear Force 

Shear force is obtained by 

taking 

third derivative. 

 

Rate of intensity of 

loading 

 
 

Case 4: The direct integration method may become more involved if the expression for entire beam is 

not valid for the entire beam.Let us consider a deflection of a simply supported beam which is 

subjected to a concentrated load W acting at a distance 'a' from the left end. 

 

Let R1 & R2 be the reactions then, 
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These two equations can be integrated in the usual way to find ‘y' but this will result in four constants 

of integration two for each equation. To evaluate the four constants of integration, four independent 

boundary conditions will be needed since the deflection of each support must be zero, hence the 

boundary conditions (a) and (b) can be realized. 

Further, since the deflection curve is smooth, the deflection equations for the same slope and 

deflection at the point of application of load i.e. at x = a. Therefore four conditions required to 

evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 

(c) at x = a; dy/dx, the slope is same for both portion 

(d) at x = a; y, the deflection is same for both portion By 

symmetry, the reaction R1 is obtained as 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 

letting 

K1 = K2 = K 
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Hence 

 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition (d) is 

that, 

At x = a; y; the deflection is the same for both portion 
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ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more 

simpler way. Let us considering the origin at the point of application of the load, 
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Boundary conditions relevant for this case are as follows 

(i) at x = 0; dy/dx= 0 

hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have taken the 

origin at the centre) 

Hence the integration method may be bit cumbersome in some of the case. Another limitation of the 

method would be that if the beam is of non uniform cross section, 

 
 

i.e. it is having different cross-section then this method also fails. So there are 

other methods by which we find the deflection like 

1. Macaulay's method in which we can write the different equation for bending moment for different 

sections. 
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2. Area moment methods 

 

 

MOMENT-AREA METHODS: 

The area moment method is a semi graphical method of dealing with problems of deflection of beams 

subjected to bending. The method is based on a geometrical interpretation of definite integrals. This is 

applied to cases where the equation for bending moment to be written is cumbersome and the loading 

is relatively simple. 

Let us recall the figure, which we referred while deriving the differential equation governing the 

beams. 

 

 

It may be noted that d< is an angle subtended by an arc element ds and M is the bending moment to 

which this element is subjected. 

We can assume, 

ds = dx [since the curvature is small] hence, 

R d< = ds 
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The relationship as described in equation (1) can be given a very simple graphical interpretation with 

reference to the elastic plane of the beam and its bending moment diagram 

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded beam 

and A1B1is its corresponding bending moment diagram. 

Let AO = Tangent drawn at A BO 

= Tangent drawn at B 

Tangents at A and B intersects at the point O. 

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B is the 

deflection of point B away from the tangent at A. All these quantities are futher understood to be very 

small. 

Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle between 

at its tangents be d< . Then, as derived earlier 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded 

bending moment diagram divided by EI. 

From the above relationship the total angle < between the tangents A and B may be determined as 
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Since this integral represents the total area of the bending moment diagram, hence we may conclude 

this result in the following theorem 

Theorem I: 

 

Now let us consider the deflection of point B relative to tangent at A, this is nothing but 

the vertical distance BB'. It may be note from the bending diagram that bending of the element ds 

contributes to this deflection by an amount equal to  x  d<< [each of this intercept may be considered 

as the arc of a circle of radius x subtended by the angle < ] 

 

Hence the total distance B'B becomes 

The limits from A to B have been taken because A and B are the two points on the elastic curve, under 

consideration]. Let us substitute the value of d< = M dx / EI as derived earlier 

 

 

 

diagram] 

[  This  is  infact  the  moment  of  area  of  the  bending  moment 

 

 

Since M dx is the area of the shaded strip of the bending moment diagram 

and x is its distance from B, we therefore conclude that right hand side of the above equation 

represents first moment area with respect to B of the total bending moment area between A and B 

divided by EI. 

Therefore,we are in a position to state the above conclusion in the form of theorem as follows: 

Theorem II: 

Deflection of point ‘B' relative to point A  Futher, the 

first moment of area, according to the definition of centroid may be 

written as  , where   is equal to distance of centroid and a is the total area of   bending moment 

 

Thus, 
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Therefore,the first moment of area may be obtained simply as a product of the total area of the B.M 

diagram betweenthe points A and B multiplied by the distance  to   its centroid C. 

If there exists an inflection point or point of contreflexure for the elastic line of the 

loaded beam between the points A and B, as shown below, 

 

 

 

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M diagram 

gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to find an angle < 

between the tangentsat the points A and B 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these theorems 

Example 1: 

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 

deflection at the free end. 

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below 
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Let us workout this problem from the zero slope condition and apply the first area - moment theorem 

The deflection at A (relative to B) may be obtained by applying the second area - moment theorem 

NOTE: In this case the point B is at zero slope. 

 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span determine 

the value of deflection. 

A simply supported beam is subjected to a concentrated load W at point C. The bending moment 

diagram is drawn below the loaded beam. 
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Again working relative to the zero slope at the centre C. 

 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a intensity 

of loading W / length. It is required to determine the deflection. 

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M is 

equal to Wl
2
 / 8 
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So by area moment method, 

 

 

 

Macaulay's Methods 

If the loading conditions change along the span of beam, there is corresponding change in 

moment equation. This requires that a separate moment equation be written between each change of 

load point and that two integration be made for each such moment equation. Evaluation of the 

constants introduced by each integration can become very involved. Fortunately, these complications 

can be avoided by writing single moment equation in such a way that it becomes continuous for entire 

length of the beam in spite of the discontinuity of loading. 
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Note : In Macaulay's method some author's take the help of unit function approximation (i.e. Laplace 

transform) in order to illustrate this method, however  both are essentially the same. 

For example consider the beam shown in fig below: 

Let us write the general moment equation using the definition M = ( ∑ M )L, Which means that we 

consider the effects of loads lying on the left of an exploratory section. The moment equations for the 

portions AB,BC and CD are written as follows 

It may be observed that the equation for MCD will also be valid for both MAB and     MBC provided that 

the terms ( x - 2 ) and ( x - 3 )
2
are neglected for values of x less than 2 m and 3 m, respectively. In 

other words, the terms ( x - 2 ) and ( x - 3 )
2
 are nonexistent for values of x for which the terms in 

parentheses are negative. 

 

 

 

 

 

 

As an clear indication of these restrictions,one may use a nomenclature in which the usual form of 

parentheses is replaced by pointed brackets, namely, ‹ ›. With this change in nomenclature, we obtain 

a single moment equation 
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Which is valid for the entire beam if we postulate that the terms between the pointed brackets do not 

exists for negative values; otherwise the term is to be treated like any ordinary expression. 

As an another example, consider the beam as shown in the fig below. Here the distributed load 

extends only over the segment BC. We can create continuity, however, by assuming that the 

distributed load extends beyond C and adding an equal upward-distributed load to cancel its effect 

beyond C, as shown in the adjacent fig below. The general moment equation, written for the last 

segment DE in the    new nomenclature may be written as: 

 

 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last end of 

the beam so if we assume the exploratary just at section at just the point of application of 600 N than x 

= 0 or else we will here take the X - section beyond 600 N which is invalid. 

Procedure to solve the problems 

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. containing pointed 

brackets, integrate the moment equation like an ordinary equation. 

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the pointed 

brackets. 

llustrative Examples : 
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1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig.Determine 

the equations of the elastic curve between each change of load point and the maximum deflection in 

the beam. 

 

Solution : writing the general moment equation for the last portion BC of the loaded beam, 

To evaluate the two constants of integration. Let us apply the following boundary 

conditions: 

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in Eq. 

(3) we find C2 = 0.keep in mind that< x -2 >
3
 is to be neglected for negative values. 

2. At the other support where x = 3m, the value of deflection y is also zero. substituting 

these values in the deflection Eq. (3), we obtain 

Having determined the constants of integration, let us make use of Eqs. (2) and (3) to rewrite 

the slope and deflection equations in the conventional form for the two portions. 
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Continuing the solution, we assume that the maximum deflection will occur in the segment AB. Its 

location may be found by differentiating Eq. (5) with respect to x and setting the derivative to be equal 

to zero, or, what amounts to the same thing, setting the slope equation (4) equal to zero and solving 

for the point of zero slope. 

We obtain 

50 x
2
– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does not yield 

a value < 2 m then we have to try the other equations which are valid for segment BC) 

Since this value of x is valid for segment AB, our assumption that the maximum deflection occurs in 

this region is correct. Hence, to determine the maximum deflection, we substitute x = 1.63 m in Eq 

(5), which yields 

The negative value obtained indicates that the deflection y is downward from the x axis.quite usually 

only the magnitude of the deflection, without regard to sign, is desired; this is denoted by < , the use 

of y may be reserved to indicate a directed value of deflection. 

if E = 30 Gpa and I = 1.9 x 10
6
 mm

4
 = 1.9 x 10 

-6
 m

4
 , Eq. (h) becomes 

 

 

Then 

Example 2: 

It is required to determine the value of EIy at the position midway between the supports and at 

the overhanging end for the beam shown in figure below. 
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Solution: 

Writing down the moment equation which is valid for the entire span of the beam  and applying the 

differential equation of the elastic curve, and integrating it twice, we obtain 

To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 0.Note 

that the negative terms in the pointed brackets are to be ignored Next,let us use the condition that EIy 

= 0 at the right support where x = 6m.This  gives 

 

Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 

deflection equation for the segment BC obtained by ignoring negative values  of the bracketed terms < 

x - 4 < 
4
 and < x - 6 < 

3
. We obtain 

Example 3: 

A simply supported beam carries the triangularly distributed load as shown in figure. Determine the 

deflection equation and the value of the maximum deflection. 
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Solution: 

Due to symmetry, the reactionsis one half the total load of 1/2w0L, or R1 = R2 = 1/4w0L.Due to the 

advantage of symmetry to the deflection curve from A to B is the mirror image of that from C to B. 

The condition of zero deflection at A and of zero slope at B do not require the use of a general 

moment equation. Only the moment equation for segment AB is needed, and this may be easily 

written with the aid of figure(b). 

Taking into account the differential equation of the elastic curve for the segment AB and integrating 

twice, one can obtain 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support A, y = 

0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, the slope dy/dx = 0 at 

midspan where x = L/2.Substituting these conditions in equation (2) we get 

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) becomes 
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Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at adistance 'a' from the left end. 

It is required to determine using the Macauley's method. 

To deal with couples, only thing to remember is that within the pointed brackets we have to 

take some quantity and this should be raised to the power zero.i.e. M<< x - a < 
0
 . We have taken the 

power 0 (zero) ' because ultimately the term M<< x - a < 
0
Should have the moment units.Thus with 

integration the quantity<< x - a < becomes either < x - a < 
1
or<< x - a < 

2
 

Or 

 

 

 

 

Therefore, writing the general moment equation we get 
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Example 5: 

A simply supported beam is subjected to U.d.l in combination with couple M. It is required to 

determine the deflection. 

 

 

 

This problem may be attemped in the some way. The general moment equation my be written as 

Integrate twice to get the deflection of the loaded beam. 
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Closed Coiled helical Spring 
 

Closed Coiled helical springs subjected to axial loads: 

Definition: A spring may be defined as an elastic member whose primary function is to deflect or 

distort under the action of applied load; it recovers its original shape when load is released. 

or 

Springs are energy absorbing units whose function is to store energy and to restore  it slowly or 

rapidly depending on the particular application. 

Important types of springs are: 

There are various types of springs such as 

(i) helical spring: They are made of wire coiled into a helical form, the load being applied along the 

axis of the helix. In these type of springs the major stresses is torsional shear stress due to twisting. 

They are both used in tension and compression. 

(ii) Spiral springs: They are made of flat strip of metal wound in the form of spiral and loaded in 

torsion. 

In this the major stresses are tensile and compression due to bending. 
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(iv) Leaf springs: They are composed of flat bars of varying lengths clamped together so as to obtain 

greater efficiency . Leaf springs may be full elliptic, semi elliptic or cantilever types, In these type of 

springs the major stresses which come into picture are tensile & compressive. 

These type of springs are used in the automobile suspension system. 

Uses of springs : 

(a) To apply forces and to control motions as in brakes and clutches. 

(b) To measure forces as in spring balance. 

(c) To store energy as in clock springs. 

(d) To reduce the effect of shock or impact loading as in carriage springs. 

(e) To change the vibrating characteristics of a member as inflexible mounting of motors. 

Derivation of the Formula : 

In order to derive a necessary formula which governs the behaviour of springs, consider a closed 

coiled spring subjected to an axial load W. 
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Let 

W = axial load 

D = mean coil diameter 

d = diameter of spring wire n = 

number of active coils 

C = spring index = D / d For circular wires l = 

length of spring wire 

G = modulus of rigidity x 

= deflection of spring q = 

Angle of twist 

when the spring is being subjected to an axial load to the wire of the spring gets be twisted like a 

shaft. 

If q is the total angle of twist along the wire and x is the deflection of spring under the action of load 

W along the axis of the coil, so that 

x = D / 2 . < 

again l = < D n [ consider ,one half turn of a close coiled helical spring ] 

 

Assumptions: (1) The Bending & shear effects may be neglected 

(2) For the purpose of derivation of formula, the helix angle is considered to be so small that 

it may be neglected. 



118  

Any one coil of a such a spring will be assumed to lie in a plane which is nearly < 
r
 to the axis of the 

spring. This requires that adjoining coils be close together. With this limitation, a section taken 

perpendicular to the axis the spring rod becomes nearly vertical. Hence to maintain equilibrium of a 

segment of the spring, only a shearing force V = F and Torque T = F. r are required at any X – section. 

In the analysis of springs it is customary to assume that the shearing stresses caused by the direct 

shear force is uniformly distributed and is negligible 

so applying the torsion formula. 

Using the torsion formula i.e 

SPRING DEFLECTION 

 

Spring striffness: The stiffness is defined as the load per unit deflection therefore 

 

Shear stress 

 

WAHL'S FACTOR : 

In order to take into account the effect of direct shear and change in coil curvature a stress factor is 

defined, which is known as Wahl's factor 
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K = Wahl' s factor and is defined as 

Where C = spring index 

= D/d 

if we take into account the Wahl's factor than the formula for the shear stress 

 

becomes 

Strain Energy : The strain energy is defined as the energy which is stored within a material when 

the work has been done on the material. 

In the case of a spring the strain energy would be due to bending and the strain energy due to 

bending is given by the expansion 

Example: A close coiled helical spring is to carry a load of 5000N with a deflection of 50 mm and a 

maximum shearing stress of 400 N/mm
2
 .if the number of active turns or active coils is 8.Estimate the 

following: 

(i) wire diameter 

(ii) mean coil diameter 

(iii) weight of the spring. 

Assume G = 83,000 N/mm
2
 ; < = 7700 kg/m

3
 

solution : 

(i) for wire diametre if W is the axial load, then 

 

Futher, deflection is given as 
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Therefore, 

D = .0314 x (13.317)
3
mm 

=74.15mm D 

= 74.15 mm 

Weight 

 

Close – coiled helical spring subjected to axial torque T or axial couple. 

 

In this case the material of the spring is subjected to pure bending which tends to reduce Radius R of 

the coils. In this case the bending moment is constant through out the spring and is equal to the 

applied axial Torque T. The stresses i.e. maximum 

 

 

 

 

 

bending stress may thus be determined from the bending theory. 

Deflection or wind – up angle: 

Under the action of an axial torque the deflection of the spring becomes the “wind – up” angle of the 

spring which is the angle through which one end turns relative to the 
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other. This will be equal to the total change of slope along the wire, according to area 

– moment theorem 

 

Springs in Series: If two springs of different stiffness are joined endon and carry a common load W, 

they are said to be connected in series and the combined stiffness and deflection are given by the 

following equation. 

  

Springs in parallel: If the two spring are joined in such a way that they have a common deflection ‘x' 

; then they are said to be connected in parallel.In this care the load carried is shared between the two 

springs and total load W = W1 + W2 
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Buckling of Columns  

Introduction: 

Structural members which carry compressive loads may be divided into two broad categories 

depending on their relative lengths and cross-sectional dimensions. 

Columns: 

Short, thick members are generally termed columns and these usually fail by crushing when the yield 

stress of the material in compression is exceeded. 

Struts: 

Long, slender columns are generally termed as struts, they fail by buckling some time before the yield 

stress in compression is reached. The buckling occurs owing to one the following reasons. 

(a). the strut may not be perfectly straight initially. 

(b). the load may not be applied exactly along the axis of the Strut. 

(c). one part of the material may yield in compression more readily than others owing to some lack of 

uniformity in the material properties through out the strut. 

In all the problems considered so far we have assumed that the deformation to be both progressive 

with increasing load and simple in form i.e. we assumed that a member in simple tension or 

compression becomes progressively longer or shorter but remains straight. Under some circumstances 

however, our assumptions of progressive and simple deformation may no longer hold good and the 

member become unstable. The term strut and column are widely used, often interchangeably in the 

context of buckling of slender members.] 

At values of load below the buckling load a strut will be in stable equilibrium where the displacement 

caused by any lateral disturbance will be totally recovered when the disturbance is removed. At the 

buckling load the strut is said to be in a state of neutral equilibrium, and theoretically it should than be 

possible to gently deflect the strut into a simple sine wave provided that the amplitude of wave is kept 

small. 

Theoretically, it is possible for struts to achieve a condition of unstable equilibrium with loads 

exceeding the buckling load, any slight lateral disturbance then causing failure by buckling, this 

condition is never achieved in practice under static load conditions. Buckling occurs immediately at 

the point where the buckling load is reached, owing to the reasons stated earlier. 
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The resistance of any member to bending is determined by its flexural rigidity EI and is The quantity I 

may be written as I = Ak
2
, 

Where I = area of moment of inertia A = 

area of the cross-section 

k = radius of gyration. 

The load per unit area which the member can withstand is therefore related to k. There will be two 

principal moments of inertia, if the least of these is taken then the ratio 

Is called the slenderness ratio. It's numerical value indicates whether the member falls into the class 

of columns or struts. 

Euler's Theory : The struts which fail by buckling can be analyzed by Euler's theory. In the 

following sections, different cases of the struts have been analyzed. 

Case A: Strut with pinned ends: 

Consider an axially loaded strut, shown below, and is subjected to an axial load ‘P' this load ‘P' 

produces a deflection ‘y' at a distance ‘x' from one end. 

Assume that the ends are either pin jointed or rounded so that there is no moment at either end. 

Assumption: 

The strut is assumed to be initially straight, the end load being applied  axially through centroid. 

 



124  

 
 

In this equation ‘M' is not a function ‘x'. Therefore this equation can not be integrated directly as has 

been done in the case of deflection of beams by integration method. 

Though this equation is in ‘y' but we can't say at this stage where the deflection would be 

maximum or minimum. 

So the above differential equation can be arranged in the following 

 

form 

Let us define a operator D = 

d/dx 

(D
2
 + n

2
) y =0 where n

2
 = P/EI 

This is a second order differential equation which has a solution of the form consisting of 

complimentary function and particular integral but for the time being we are interested in the 

complementary solution only[in this P.I = 0; since the R.H.S of Diff. equation = 0] 

Thus y = A cos (nx) + B sin (nx) Where A 

and B are some constants. 

 

Therefore 

In order to evaluate the constants A and B let us apply the boundary conditions, 

(i) at x = 0; y = 0 

(ii) at x = L ; y = 0 

Applying the first boundary condition yields A = 0. 

Applying the second boundary condition gives 
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From the above relationship the least value of P which will cause the strut to buckle, and it is called 

the “ Euler Crippling Load ” Pefrom which w obtain. 

The interpretation of the above analysis is that for all the values of the load P, other than those which 

make sin nL = 0; the strut will remain perfectly straight since 

y = B sin nL = 0 

For the particular value of 

 

Then we say that the strut is in a state of neutral equilibrium, and theoretically any deflection which it 

suffers will be maintained. This is subjected to the limitation that ‘L' remains sensibly constant and in 

practice slight increase in load at the critical value will cause the deflection to increase appreciably 

until the material fails by yielding. 

Further it should be noted that the deflection is not proportional to load, and this applies to all strut 

problems; like wise it will be found that the maximum stress is not proportional to load. 

The solution chosen of nL = < is just one particular solution; the solutions nL= 2< ,  3< , 5< etc are 

equally valid mathematically and they do, infact, produce values of 
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‘Pe' which are equally valid for modes of buckling of strut different from that of a simple bow. 

Theoretically therefore, there are an infinite number of values of Pe , each corresponding with a 

different mode of buckling. 

The value selected above is so called the fundamental mode value and is the lowest critical load 

producing the single bow buckling condition. 

The solution nL = 2< produces buckling in two half – waves, 3< in three half-waves etc. 

 

 

If load is applied sufficiently quickly to the strut, then it is possible to pass through the fundamental 

mode and to achieve at least one of the other modes which are theoretically possible. In practical 

loading situations, however, this is rarely achieved since the high stress associated with the first 

critical condition generally ensures immediate collapse. 

struts and columns with other end conditions: Let us consider the struts and columns having 

different end conditions 

Case b: One end fixed and the other free: 
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writing down the value of bending moment at the point C 

 

Hence in operator form, the differential equation reduces to ( D
2
 + n

2
 ) y = n

2
a 

The solution of the above equation would consist of complementary solution and particular solution, 

therefore 

ygen = A cos(nx) + sin(nx) + P. I 

where 

P.I = the P.I is a particular value of y which satisfies the differential equation Hence yP.I = a 

Therefore the complete solution becomes Y = A 

cos(nx) + B sin(nx) + a 

Now imposing the boundary conditions to evaluate the constants A and B 

(i) at x = 0; y = 0 

This yields A = -a 

(ii) at x = 0; dy/dx = 0 

This yields B = 0 Hence 

y = < a cos(nx) + a 

Futher, at x = L; y = a 

Therefore a = - a cos(nx) + a or 0 = cos(nL) 

Now the fundamental mode of buckling in this case would be 
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Case 3 

Strut with fixed ends: 

 

Due to the fixed end supports bending moment would also appears at the supports, since this is the 

property of the support. 

Bending Moment at point C = M – P.y 
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Thus, 

Case 4 

One end fixed, the other pinned 
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In order to maintain the pin-joint on the horizontal axis of the unloaded strut, it is necessary in this 

case to introduce a vertical load F at the pin. The moment of F about the built in end then balances the 

fixing moment. 

With the origin at the built in end, the B,M at C is given as 

 

Also when x = L ; y = 0 

Therefore 

nL Cos nL = Sin nL or tan nL = nL 

The lowest value of nL ( neglecting zero) which satisfies this condition and which therefore 

produces the fundamental buckling condition is nL = 4.49radian 
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Equivalent Strut Length: 

Having derived the results for the buckling load of a strut with pinned ends the Euler loads for other 

end conditions may all be written in the same form. 

Where L is the equivalent length of the strut and can be related to the actual length of the strut 

depending on the end conditions. 

The equivalent length is found to be the length of a simple bow(half sine wave) in each of the strut 

deflection curves shown. The buckling load for each end condition shown is then readily obtained. 

The use of equivalent length is not restricted to the Euler's theory and it will be used in other 

derivations later. 

The critical load for columns with other end conditions can be expressed in terms of the critical load 

for a hinged column, which is taken as a fundamental case. 

For case(c) see the figure, the column or strut has inflection points at quarter points of its unsupported 

length. Since the bending moment is zero at a point of inflection, the freebody diagram would 

indicates that the middle half of the fixed ended is equivalent to a hinged column having an effective 

length Le = L / 2. 

The four different cases which we have considered so far are: 

(a) Both ends pinned (c) One end fixed, other free 

(b) Both ends fixed (d) One end fixed and other pinned 
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Limitations of Euler's Theory : 

In practice the ideal conditions are never [ i.e. the strut is initially straight and the end load 

being applied axially through centroid] reached. There is always some eccentricity and initial 

curvature present. These factors needs to be accommodated in the required formula's. 

It is realized that, due to the above mentioned imperfections the strut will suffer a deflection 

which increases with load and consequently a bending moment is introduced which causes failure 

before the Euler's load is reached. Infact failure is by stress rather than by buckling and the deviation 

from the Euler value is more marked as the slenderness-ratio l/k is reduced. For values of l/k < 120 

approx, the error in applying the Euler theory is too great to allow of its use. The stress to cause 

buckling from the Euler formula for the pin ended strut is 



134  

 

A plot of < e versus l / k ratio is shown by the curve ABC. 

 

 

 

Allowing for the imperfections of loading and strut, actual values at failure must lie within and below 

line CBD. 

Other formulae have therefore been derived to attempt to obtain closer agreement between the actual 

failing load and the predicted value in this particular range of slenderness ratio i.e.l/k=40 to l/k=100. 

(a) Straight – line formulae : 

The permissible load is given by the formulae 

 

 

Where the value of index ‘n' depends on the material used and the 

end conditions. 

(b) Johnson parabolic formulae : The Johnson parabolic formulae is defined as 

   where the value of index ‘b' depends on the end conditions. 

(c) Rankine Gordon Formulae : 

 

Where Pe = Euler crippling load 
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Pc = Crushing load or Yield point load in Compression PR = 

Actual load to cause failure or Rankine load 

Since the Rankine formulae is a combination of the Euler and crushing load for a strut. 

For a very short strut Pe is very large hence 1/ P ewould be large so that 1/ P ecan be neglected. 

Thus PR = Pc , for very large struts, P e is very small so 1/ P e would be large and 1/  P ccan be 

neglected ,hence PR = Pe 

The Rankine formulae is therefore valid for extreme values of 1/k.It is also found to be fairly accurate 

for the intermediate values in the range under consideration. Thus rewriting the formula in terms of 

stresses, we have 

 

Where and the value of ‘a' is found by conducting experiments on various materials. 

Theoretically, but having a value normally found by experiment for various materials. This will take 

into account other types of end conditions. 


