INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Name	:	MODERN POWER SYSTEM ANALYSIS
Course Code	:	BPSB01
Class	:	M. Tech I Semester (Electrical Power Systems)
Branch	:	Electrical and Electronics Engineering
Year	:	2019 – 2020
Course Coordinator	:	Dr. M. Pala Prasad Reddy, Associate Professor, EEE
Course Instructors	:	Dr. M. Pala Prasad Reddy, Associate Professor, EEE

COURSE OBJECTIVES:

The course should enable the students to:

Ι	Explain the basic components and restructuring of power systems.
II	Understand power flow analysis using various methods.
III	Describe fault analysis for balanced and unbalanced faults.
IV	Describe power system security concepts and study the methods to rank the contingencies.
v	Explain the need of state estimation and study simple algorithms for state estimation.

COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

BPSB01.01	Describe the basic components of power system and its restructuring.
BPSB01.02	Understand the single line diagram, per unit and per phase calculations of power system network.
BPSB01.03	Understand the representation of power system components.
BPSB01.04	Determine the bus impedance and admittance matrices for power system.
BPSB01.05	Understand the importance of power flow analysis in planning and operation of power systems.
BPSB01.06	Describe the power flow models in complex variable and polar forms.
BPSB01.07	Use different numerical methods to determine unknown parameters at various buses and to draw relevant algorithms.
BPSB01.08	Describe the optimal power flow solution using FACTS devices.
BPSB01.09	Use Thevenin's theorem and Z-bus building algorithm for balance short circuit fault analysis using Z-bus computations.

BPSB01.10	Calculate the electrical parameters under symmetrical fault conditions and understand symmetrical component theory.
BPSB01.11	Use Thevenin's theorem and Z-bus matrix for fault analysis of sequence networks.
BPSB01.12	Discuss the operating states and security monitoring of power systems.
BPSB01.13	Describe the various techniques for contingency evaluation and analysis.
BPSB01.14	Calculation of new bus voltages using contingency analysis by adding/removal of lines.
BPSB01.15	Understand the requirements of state estimation methods for power systems.
BPSB01.16	Use various methods for state estimation of power system networks.
BPSB01.17	Explain network observability pseudo measurements.

S. No	QUESTION	Blooms Taxonomy Level	СО	Course Learning Outcomes
	UNIT - I			outcomes
	PLANNING AND OPERATIONAL STUDIES OF PO	WER SYSTEM	S	
	PART – A (SHORT ANSWER QUESTIO	NS)		
1	What are the functions of modern power system.	Understand	CO1	BPSB01.01
2	What is the need of power system planning.	Understand	CO1	BPSB01.01
3	List out the basic components of power system.	Understand	CO1	BPSB01.03
4	Define power system restructuring.	Understand	CO1	BPSB01.01
5	What is single line diagram.	Understand	CO1	BPSB01.02
6	What are the advantages of per unit system?	Understand	CO1	BPSB01.02
7	What are the two different methods of forming Ybus matrix	Understand	CO1	BPSB01.04
8	What are the advantages of Ybus matrix over ZBus Matrix?	Understand	CO1	BPSB01.04
9	What is the need of base values.	Remember	CO1	BPSB01.02
10	Define primitive network.	Remember	CO1	BPSB01.02
11	Define bus impedance matrix	Remember	CO1	BPSB01.04
12	Point out the approximations made in impedance diagram.	Remember	CO1	BPSB01.04
13	Write equation for per unit impedance if change in base occurs.	Remember	CO1	BPSB01.02
14	Write impedance matrix if adding branch to the reference bus	Understand	CO1	BPSB01.04
15	Write impedance matrix if adding link to the reference bus	Understand	CO1	BPSB01.04
16	How are the loads represented in the impedance diagram.	Understand	CO1	BPSB01.03
17	How are the transmission lines represented in the impedance diagram.	Understand	CO1	BPSB01.03
18	Define off nominal transformations ratio.	Understand	CO1	BPSB01.03
19	What are the two different methods of forming Ybus matrix	Understand	CO1	BPSB01.04
20	State the Bus Incidence Matrix.	Remember	CO1	BPSB01.04
	PART – B (LONG ANSWER QUEST	TONS)		
1	Briefly explain the basic need of power system planning and their operational studies.	Understand	CO1	BPSB01.01
2	Describe the various components of power system with a neat diagram.	Remember	CO1	BPSB01.03
3	Describe the single line diagram of a sample power systems network and also draw the impedance diagram for the same.	Understand	CO1	BPSB01.02
4	The single line diagram of a simple power system is shown in Fig. The rating of the generators and transformers are given below: Generator 1: 25MVA, 6.6KV, X=0.2p.u Generator 2: 5MVA, 6.6KV, X=0.15p.u Generator 3: 30MVA, 13.2KV, X=0.15p.u Transformer1: 30MVA, 6.9 Δ /115Y KV, X=10% Transformer2: 15MVA, 6.9 Δ /115Y KV, X=10% Transformer3: Single phase units each rated 10MVA, 6.9/69 KV, X=10%	Understand		BPSB01.02

	Examine the impedance diagram and mark all values in p.u choosing a base of 30MVA, 6.6KV in the generator 1 circuit. (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_2) Y: (G_3) Y: (G			
5	Discuss about formation of network matrices by singular transformation	Understand	CO1	BPSB01.04
6	Discuss Formation of Y bus by using direct inspection method	Understand	CO1	BPSB01.04
7	Show that the per unit equivalent impedance of a two winding transformer is same whether the calculation made from LV side or HV side.	Understand	CO1	BPSB01.04
8	Prepare a per phase schematic of the system in fig. and show all the impedance in per unit on a 100 MVA, 132 KV base in the transmission line circuit. The necessary data are Given as follows. G1 : 50MVA, 12.2KV, X=0.15 pu. G2 : 20MVA, 13.8KV, X=0.15 pu. T1 : 80MVA, 12.2/161KV, X=0.1 pu. T2 : 40MVA, 13.8/161KV, X=0.1 pu. LOAD: 50MVA, 0.8 power factor lag operating at 154KV. Evaluate the p.u impedance of the load 11 40+j160 12 32 32 32 32 32 32 32	Understand	C01	BPSB01.04
9	Find the YBUS by direct inspection method for the network shown below: 1 - j 10 3 - j 20 4 - j 10 2 $2 30^{\circ}$ $j 10 - j 4 - j 20$ $1.5 60^{\circ}$	Understand	CO1	BPSB01.04
10	Discuss the primitive network matrix and represent its forms. Also prove $Y_{hus} = A^T [Y] A$ using singular transformation method.	Understand	CO1	BPSB01.03
11	Discuss the modeling of transmission lines and transformers and also draw equivalent π models.	Understand	CO1	BPSB01.02
12	Describe about representation of loads.	Understand	CO1	BPSB01.02
13	Discuss about algorithm for the modification of Z bus matrix for addition of element from a new bus to reference bus.	Understand	CO1	BPSB01.04

14	Discuss about algorithm for the modification of Z bus matrix for addition of element between two old buses	Understand	CO1	BPSB01.04
15	For the system shown below obtain i) primitive admittance matrix ii) busincidence matrix Select ground as reference.Line numBus codeAdmittance in pu11-421-232-32.4	Understand	CO1	BPSB01.04
	4 3-4 2.0			
	5 2-4 1.8 PART – C (ANALYTICAL OUESTION	S)		
1	Estimate the per unit impedance diagram shown in fig below.	Understand	CO1	BPSB01.02
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	Generator1: 30MVA, 10.5KV, X'' =1.6 ohms Generator2: 15MVA, 6.6KV, X'' =1.2 ohms Generator3: 25MVA, 16.6KV, X''=0.56ohms Transformer T1(3 Φ):15MVA,33/11 KV,X=15.2 HT Side Transformer T2(3 Φ):15MVA,33/6.2 KV,X=16 HT Side Transmission line: 20.5 Ω /phase Load A: 15MW, 11KV, 0.9 LPF Load B: 40MW, 6.6KV, 0.85 LPF			
2	Give p.u impedance d i a gr am o f the power system of figure. Choose base quantities as 15 MVA and 33 KV. Generator: 30 MVA, 10.5 KV, X ' = 1.6 ohms. Transformers T1 & T2 : 15 MVA, 33/11 KV, X = 15 ohms referred to HV Transmission line: 20 ohms / phase. Load: 40 MW, 6.6 KV, 0.85 lagging p.f.	Understand	CO1	BPSB01.02
	$ \begin{array}{ c c c c c } \hline & & & & & & \\ \hline & & & & & \\ \hline & & & &$			
3	Prepare a per phase schematic of the system in fig. and show all the impedance in per unit on a 100 MVA, 132 KV base in the transmission line circuit. The necessary data are Given as follows. (13) G1 : 50MVA, 12.2KV, X=0.15 pu. G2 : 20MVA, 13.8KV, X=0.15 pu. T1 : 80MVA, 12.2/161KV, X=0.1 pu. T2 : 40MVA, 13.8/161KV, X=0.1 pu.	Understand	CO1	BPSB01.04

	LOAD, 50MVA, 0.8 nowar factor lag opprating at 154KV			
	LOAD: Solvi V A, 0.8 power factor fag operating at 154K V.			
	Evaluate the p.u impedance of the load.			
	T1 40+j160 12			
	$ G_1\rangle \longrightarrow \langle G_2\rangle$			
	\mapsto			
	Load			
		.		DDGD0101
4	Form Y bus for the given power system shown in figure with reactance	Understand	CO1	BPSB01.04
	value in p.u. Select arbitrary directions.			
	j0.02			
	j0,5 j0,5			
	G1 G2			
	10.03			
	j0.02			
	(3)			
		XX 1 . 1	001	DDGD01.02
5	Draw the p.u impedance diagram for the system shown in figure.	Understand	CO1	BPSB01.02
	Choose Base MVA as 100 MVA and Base KV as 20 KV			
	○ 글 은 ¹²⁰ ohms 글 은 ○ 90 MVA			
	♥ <u>+3</u> ₽ <u>+</u> +3₽ <u>+</u> ♥ 18KV			
	00 MVA 00 MVA			
	20 KV 20/200 KV 200KV,48MW+j64MVAR 200 KV/20 KV			
	X = 9% X = 16% X = 20%			
	UNIT – II		•	•
	POWER FLOW ANALYSIS			
	PART – A (SHORT ANSWER OUESTIO	(NS)		
1	What is the information that are obtained from load flow study	Understand	CO2	BPSB01.05
2	What is the need for slack bus in power flow analysis	Remember	CO2	BPSB01.05
2	When will the generator has is treated as load has	Understand	CO2	BISB01.05
1	Mantion the diseduanteres of Course Soldel Lood Flow Analysis	Understand		
4	Wention the disadvantages of Gauss Seidel Load Flow Analysis.	Understand	02	BPSB01.00
5	Give the acceleration factor in Gauss-siedel load flow method.	Remember	CO2	BPSB01.07
6	Write data required for power flow studies.	Remember	CO2	BPSB01.07
7	Write the assumption made in the Newton Raphson Method.	Understand	CO2	BPSB01.07
8	Give the assumptions made in the DLF method.	Remember	CO2	BPSB01.06
9	Write the assumptions made in the FDLF method.	Understand	CO2	BPSB01.06
10	Compare GS and NR method.	Understand	CO2	BPSB01.06
11	Define voltage controlled bus and load bus.	Understand	CO2	BPSB01.05
12	Write specifications at voltage controlled bus	Understand	CO2	BPSB01.05
12	Explain the Jacobean matrix	Understand	<u> </u>	BPSB01.03
13	Explain the various types of hypers in neuron system with an efficient	Understand		
14	wention the various types of buses in power system with specified	Understand	02	Drodul.0/
	quantities for each bus.			DDGDG1 07
15	What is meant by Q-limit on voltage controlled bus.	Remember	CO2	BPSB01.07
16	State power flow problem.	Remember	CO2	BPSB01.07
17	List the merits of FACTS devices while finding power flow solution.	Remember	CO2	BPSB01.07
18	A 12 bus Power System has three voltage-controlled buses. The dimensions	Understand	CO2	BPSB01.06
	of the Jacobean matrix will be.			
19	Write static load flow equations.	Understand	CO2	BPSB01.05
	What is optimal power flow solution	Understand	<u> </u>	BPSR01.05
20		Chacionalia	004	1 01 00 01 00

PART – B (LONG ANSWER QUESTIONS)						
1	Explain Gauss-Seidel iterative method for power flow analysis of any given	Understand	CO2	BPSB01.07		
	power system with a flow chart.					
2	Derive static load flow equations.	Understand	CO2	BPSB01.06		
3	Explain with a flow chart the computational procedure for load flow	Understand	CO2	BPSB01.07		
	solution using Gauss seidel method.					
4	Distinguish between D.C load flow and A.C load flow.	Understand	CO2	BPSB01.06		
5	Explain in detail how D.C load flow is performed in power system studies.	Understand	CO2	BPSB01.06		
6	Draw and explain the flow chart for Gauss seidel load flow method.	Understand	CO2	BPSB01.07		
7	Write Advantages and Disadvantages of GS and NR methods with	Understand	CO2	BPSB01.07		
	reference to load flow problem.					
8	Classify various types of buses in a power system for load flow studies.	Understand	CO2	BPSB01.07		
	Justify the classification.					
9	Explain with a flow chart the computational procedure for load flow	Understand	CO2	BPSB01.07		
	solution using Newton raphson method.					
10	Discuss about load flow solution with PV bus by using FDLF method.	Understand	CO2	BPSB01.08		
11	Discuss about load flow solution without PV bus by using FDLF method.	Understand	CO2	BPSB01.08		
12	Explain with a flow chart the computational procedure for load flow	Understand	CO2	BPSB01.08		
	solution using FDLF method.					
13	Explain with a flow chart the computational procedure for load flow	Remember	CO2	BPSB01.08		
	solution using DLF Method.					
14	Briefly discuss about advantages and disadvantages of FDLF and DLF	Understand	CO2	BPSB01.08		
	method.					
15	Figure shows the one line diagram of a simple three bus power	Understand	CO2	BPSB01.07		
	system with generation at buses at 1 and 2.the voltage at bus 1 is					
	V=1+j0.0 V per unit. Voltage magnitude at bus 2 is fixed at 1.05 p.u.					
	with a real power generation of 400 MW. A Load consisting of					
	500MW and 400 MVAR base. For the purpose of hand calculation,					
	line resistance and line charging susceptances are neglected					
	$y_{12} = -j40$ 2					
	$P_2 = 400 \text{ MW}$					
	\frown					
	$y_{13} = -j20$ $y_{23} = -j20$					
	Slack Bus $3 - V_2 = 1.05$					
	$V_1 = 1.020^\circ$ +					
	500 -100 MW Muar					
	Using Newton-Raphson method, start with the initial estimates of					
	$V_2^0 = 1.05 + j0.0$ and $V_3^0 = 1.05 + j0.0$, and keeping $ V2 = 1.05$ p.u.,					
	examine the phasor values V and V perform two iterations					
	examine the phasor values v_2 and v_3 perform two iterations					
	PART – C (ANALYTICAL QUESTION	<mark>S)</mark>	<u> </u>	DDGDG4 67		
1	I he system data for a load flow problem are given in table.	Kemember	CO2	BPSB01.07		
	i. Compute 1 bus.					
	1.5 Solve bus voltages at the end of hist iteration by G-5 method by taking $\alpha = 1.5$					
	no code in pu					
	1 1-2 2-j8					
	2 1-3 1-j4					
	3 2-3 0.6-j2.6					
2	Define acceleration factor. Discuss its role in GS method for power flow	Remember	CO2	BPSB01.07		
	studies.					

3	Line data:							Understand	CO2	BPSB01.07	
		Bus code Admittance(p.u.)									
		1-2			1-2 1+j6						
		1-3			1-3 2-j3						
		2-3			0.8	3-j2.2					
			2-4		1.2	2-j2.3					
			3-4		2.1	-j4.2					
	Load Data:					0					
		Bus	P (p.u.)	Q (p.u.)	V (p.u.)	Remarks					
		No.	ч <i>/</i>	~~ <i>`</i>	ч <i>ў</i>						
		1	-	-	1.03	Slack					
		2	0.52	0.23	1.0	PQ					
		3	0.42	0.32	1.0	PQ					
		4	0.4	0.12	1.0	PQ					
	Determine the vo	oltages	at all the bu	ses at the	end of first ite	ration using C	GS				
	method.	e				C					
4	Derive N-R meth	od of lo	oad flow alg	gorithm an	d explain the i	mplementation	n of	Understand	CO2	BPSB01.07	
	this algorithm with	h the flo	wchart.								
5	Using Gauss Se	eidal me	thod examir	ies bus vol	tages for the fig	g shown. Take		Understand	CO2	BPSB01.07	
	base MVA as10	00, α=1.	1.		\sim						
		(_)				MW					
		(\sim)				QZS100 WIVAR					
		Y			Υ.						
	V=1.05L 0		•		1.	02V					
			0 00304	1 5103							
			0.0039+j	7.5105	╶╅╾╾┛						
	00	V									
	90	HJ20									
	⊥ i0.0636 ⊥ i0.0636										
			T /								
			Ŧ								
			•		•						
		SHORT CIRCUIT ANALYSIS									
				PART -	- A (SHORT /	ANSWER OI	UES	FIONS)			
1	Define short circ	cuit car	bacity of po	ower syste	em.	<u> </u>		Understand	CO3	BPSB01.09	
2	What is meant b	v fault	calculation	1S				Understand	CO3	BPSB01.09	
3	What are the assu	umption	ns made in	fault analy	vsis.			Understand	CO3	BPSB01.10	
4	How do Short ci	ircuits	occur in po	wer syste	em and Summa	arize two		Remember	CO3	BPSB01.09	
-	objective of Sho	ort circi	uit analysis	?							
5	Discover the m	nain dif	ferences in	represen	tation of powe	er system for		Remember	CO3	BPSB01.09	
-	load flow and sh	nort cire	cuit studies	- r	- r - r	,					
6	Summarize the a	applica	tions of sh	ort circuit	analysis			Understand	CO3	BPSB01.09	
7	Show the oscilla	ation of	short circu	uit curren	t when an unlo	baded generat	tor	Understand	CO3	BPSB01.09	
	is subjected to a	symm	etrical faul	t clearly r	narking sub- t	ransient,					
	transient and ste	ady sta	te regions.	5	U	,					
8	Discuss the main	object	ive of findi	ng fault le	vel of a bus			Remember	CO3	BPSB01.10	
9	Classify the 3-ph	ase sho	ort circuit fa	ults.				Understand	CO3	BPSB01.09	
10	Define short circ	uit capa	acity of bus					Understand	CO3	BPSB01.10	
11	What is the differ	rence b	etween hal	anced and	unbalanced fa	ults.		Understand	CO3	BPSB01.09	
12	Discuss the impo	ortance	of operator	'a'.				Remember	CO3	BPSB01.11	
13	Name the fault v	which o	occurs most	frequent	v in a power s	vstem.		Understand	CO3	BPSB01.10	
14	Name the fault v	which i	s the most	severe fau	lt on nower sy	/stem		Remember	CO3	BPSB01 10	
15	Write short notes	s on svn	nmetrical o	omponent	transformation	n		Remember	CO3	BPSB01.10	
16	Sketch the zero s	equenc	e equivalen	t circuite	of a transforme	۰۰. ۲		Understand	CO3	BPSB01.11	
	Sketch the zero sequence equivalent circuits of a transformer.						Understallu	005	013001.11		

17	Sketch the positive sequence network of a synchronous machine.	Understand	CO3	BPSB01.11
18	Write short notes on LG faults.	Understand	CO3	BPSB01.10
19	Summarize the applications of short circuit analysis	Understand	CO3	BPSB01.11
20	What is the effect of fault impedance.		CO3	
	PART – B (LONG ANSWER QUESTIO)	NS)		
1	Explain the step by step procedure for systematic fault analysis for a three	Remember	CO3	BPSB01.09
	phase fault using busimpedance matrix.			
2	A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to	Understand	CO3	BPSB01.09
	a feeder series impedance $(0.12+j0.48)$ ohm/phase/km through a step up transformer. The transformer rated at 2 MVA (ChV/22-W and her restance)			
	of 5% Determine the fault current supplied by the generator operating under			
	no load with a voltage of 6.9 kV, when a 3 phases symmetrical fault occurs at			
	a point 15km along the feeder.			
3	Explain the step by step procedure to find the fault current of three phase	Understand	CO3	BPSB01.10
	symmetrical fault by using the ven in's theorem.			
4	A symmetrical fault occurs on bus 4 of system shown in figure; examine the	Understand	CO3	BPSB01.11
	fault current, post fault voltages, line flows.			
	Centerator G_1, G_2 :100101 V A,20K V,A1=15%. Transformer T. T.: X0% Transmission line I. L.: X1-10%			
	Transformer $\Gamma_1, \Gamma_2, \Lambda_{\text{leak}} = 7/0$, Transmission fine $L_1, L_2, \Lambda_1 = 10/0$			
	\sim \sim \sim			
	(1) T1 (2) (3) T2 (4) G2			
	<u>∖∠</u> 9¢ ' <u>¤</u> ' 9¢ ' {a			
	$[Q_1, \mathcal{K}_{\mathcal{L}}] = [Q_1, \mathcal{K}_{\mathcal{L}}] = [Q_1, \mathcal{K}_{\mathcal{L}}]$			
	$\operatorname{Figure 11(b)}$			
	Ĩ, Ĩ			
5	Examine the bus impedance matrix using bus building algorithm for the given	Understand	CO3	BPSB01.10
	network.			
	(6)			
	(2) (3)			
	g (1) g (4)			
	0 Reference			
6	Determine Bus Impedance matrix by Bus Building Algorithm	Understand	CO3	BPSB01.10
	i0.2 ≥ i0.2			
	$\langle 3 \rangle \langle 3 \rangle \langle 3 \rangle$			
	Reference bus			
7	Point out Bus impedance matrix. Describe the construction of Bus impedance	Understand	CO3	BPSB01.09
	matrix ZBus using Bus building algorithm for lines without mutual coupling.		222	
8	With help of detailed flow chart, explain how symmetrical fault can be analysed	Understand	CO3	BPSB01.09
	using Z _{bus.}			
9	Briefly explain the procedure for computation of short circuit capacity.	Understand	CO3	BPSB01.09
1				

10	For the radial network shown in figure 3 phase fault occurs at point F. Determine the fault current and the line voltage at 11.8 kV bus under fault condition	Understand	CO3	BPSB01.11
	La HVA Xa-Louis put			
	GI) SSRV BIDAV			
	11.8 3 (9.45 tu 12.6) 2 3 (0.54 + Jo.04) 2 '			
	KV SE Line-1 SE Line-2 V			
	$(2 \text{ NVA} (G_{12}))^{\text{DUS}}$			
	Xa II : 12 NVA, KT = JO'12 PU			
	"J2 = VO' 12 P.U T2 : 3 NVA, XT2 = VO'08 P.U.			
11	What are symmetrical components?. Explain the utility of symmetrical	Understand	CO3	BPSB01.10
12	components in short circuit analysis.	I Indoneto a d	<u> </u>	DDCD01 10
12	components	Understand	03	BPSB01.10
13	What are sequence impedances? Obtain expression for sequence impedance	Understand	CO3	BPSB01.09
	in a balanced static 3-phase circuit.			
14	Explain the sequence networks for an synchronous generator.	Understand	CO3	BPSB01.09
15	Derive the expression for fault current for a single line-to ground fault as	Understand	CO3	BPSB01.10
16	an unloaded generator.	Pemember	CO3	BPSB01 10
10	an unloaded generator.	Kemember	005	DI SD 01.10
17	Draw the sequence networks connections for single line-to ground fault	Understand	CO3	BPSB01.10
	line-to line fault and double line-to ground fault conditions,			
18	A 25 MVA,13.2KV alternator with solidly grounded neutral has a sub	Understand	CO3	BPSB01.10
	0.35 and 0.01 n u respectively if a double line to ground fault occurs at			
	the terminals of the alternator. Point out the fault current and line to line			
	voltage at the fault.			
19	Draw the zero sequence network for the system shown in figure:	Remember	CO3	BPSB01.10
	X_{G_1} T_1 L_1 T_2			
	$ \prod_{i=1}^{n} G_{i} \bigotimes + \Im_{i} \bigotimes_{i=1}^{n} X_{L_{i}} L_{2} + \Im_{i} \bigotimes_{i=1}^{n} \bigotimes_{i=1}^{n} M $			
	\mathbf{X}_{G_2} \mathbf{X}_{T_1} \mathbf{X}_{L_2} \mathbf{X}_{T_2} \mathbf{X}_{M}			
	$ G_2 \otimes \neg \Delta / Y_1 \qquad M / \Delta$			
20	Consider the system shown in Fig. Phase b is open due to conductor break.	Understand	CO3	BPSB01.09
	Calculate the sequence currents and the neutral current.			
	$I_a = 100 \underline{0^{\circ}} A$			
	$I_{b} = 100 (120^{\circ}) A$			
	og a			
	PART _ C (ANAL VTICAL OUESTION	S)		
1	A 3 phases 5 MVA, 6.6 kV alternator with a reactance of 8% is connected to	Understand	CO3	BPSB01.09
	a feeder series impedance (0.12+j0.48) ohm/phase/km through a step up			
	transformer. The transformer rated at 3 MVA, 6.6 kV/33kV and has reactance of 5% Determine the fault current supplied by the generator operating under			
	no load with a voltage of			
	6.9 kV, when a 3 phases symmetrical fault occurs at a point 15km along the			

2	Two synchronous motor are connected to the bus of large system through a short transmission line shown in fig. The rating of the various components is given. MOTOR (each): 1 MVA, 440V, 0.1 p.u. Transient reactance line: 0.05Ω (reactance) Large system: Short circuit MVA at its bus at 440V is 8 When the motor are operating at 400V, e x a m i n e the short circuit current (symmetrical) fed into a three phase fault at motor bus.	Understand	CO3	BPSB01.10
3	A 3 phase transmission line operating at 33kV and having resistance of 5 Ω and reactance of 20 Ω is connected to the generating station through 15,000 KVA step up transformers. Connected to the bus bar are two alternators one of 10,000KVA with 10% reactance and another of 5000 KVA with 7.5% reactance. Draw the single line diagram and calculate the short circuit KVA for symmetrical fault between phases at the load end of the transmission line.	Understand	CO3	BPSB01.10
4	A 25MVA,11kV generator with Xd"=20% is connected through a transformer, line and transformer to a bus that supplies three identical motors as shown in figure. Each motor has Xd"=20% and Xd"=30% on a base of 5 MVA,6.6kV.The three phase rating of the step-up transformer is 25MVA,11/66kV with a leakage reactance of 10% and that of the step-down transformer is 25MVA,66/6.6kV when a three phase fault occurs at the point F, For the specified fault, calculate (i) the sub transient current in the fault (ii) the sub transient current in the Breaker B.(iii) the momentary current in breaker.	Understand	CO3	BPSB01.10
5	Using the method of building algorithm, find the bus impedance matrix of the network shown in figure. $ \begin{array}{c} 3 \\ j0.15 \\ j0.50 \\ \hline 1 \\ 2 \\ \hline 1 \\ 2 \\ \hline 2 \\ \hline 1 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline \end{array} $	Understand	CO3	BPSB01.10

11	Calculate the subtransient fault current in each phase for a dead short	Understand	CO3	BPSB01.10
	circuit on one phase to ground at bus 'q' for the system shown in Fig.			
	$E = 1/0^{\circ}$ = 1.2 (1.2)			
	\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc $x_2 = 10.22$			
	$x_0^{"} = i0.16$ $x_0 = i0.33$ $x_0 = i0.15$			
	$x_{a} = 10.17$ Λ/Λ Λ/Λ Λ/Λ			
	$x_2 = j_{0.06}$ $x_{0.10} = x_{0.10}$ $x_{0.10} = x_{0.10}$			
	$x_1 = x_2 = 10.10$ $x_1 = x_2 = x_0 = 10.10$			
	All the reactioness are given in p.u.on the concreter base			
12	A dead earth fault occurs on one conductor of a 3-phase cable supplied by a	Understand	CO3	BPSB01.10
	5000 KVA, three-phase generator with earthed neutral. The sequence			
	impedences of the alternator are given by			
	$Z_1 = (0.4 + j4)$ ohm; $Z_2 = (0.3 + j0.6)$ ohm and $Z_0 = (0 + j 0.45)$ ohm per			
	phase The sequence impedance of the line up to the point of fault are $(0.2 \pm i0.2)$			
	ohm $(0.2 \pm i 0.3)$ W $(0.2 \pm i 0.3)$ ohm and $(3 \pm i 1)$ ohm Find the fault			
	current and the sequence components of the fault current. Aslo find the line-			
	to-earth voltages on the in faulted lines. The generator line voltage is 6.6			
	KV.			
13	A 20 MVA, 6.6 KV star connected generator has positive, negative and	Understand	CO3	BPSB01.11
	zero sequence reactances of 30%, 25% and 7% respectively. A reactor with 5% reactance based on the rating of the generator is placed in the poutral to			
	ground connection. A line-to-line fault occurs at the terminals of the			
	generator when it is operating at rated voltage. Find the initial symmetrical			
	line-to-ground r.m.s fault current. Find also the line-to-line voltage.			
14	A balanced three phase load with an impedence of (6-j8) ohm per phase,	Understand	CO3	BPSB01.11
	connected in star is having in parallel a delta connected capacitor bank			
	with each phase reactance of 27 ohm. The star point is connected to			
	ground through an impedence of $0 + j5$ ohm. Calculate the sequence			
	impedence of the load.			
	5A*			
	<u></u>			
	δ ^{6+j8}			
	6+j8 telefis			
	1			
	UNIT – IV			
	CONTINGENCY ANALYSIS	NIC)		
1	PART – A (SHORT ANSWER QUESTIO What is normal state of a power system?	Remember	CO4	BPSB01 12
2	Write short note on emergency state of a power system.	Understand	CO4	BPSB01.12
3	List the operating states of a power system.	Understand	CO4	BPSB01.12
4	What is power system security?	Remember	CO4	BPSB01.12
5	List the major components of security assessment.	Remember	CO4	BPSB01.12
6	Define contingency.	Understand	CO4	BPSB01.13
/	List out the techniques used for contingency evaluation.	Understand	C04	DrSBULLS
8	Uscuss the indirect method of contingency selection.	Understand	<u> </u>	BPSB01.13
10	Define generation shift factor	Remember	CO4	BPSR01 13
11	Define line outage distribution factor.	Remember	CO4	BPSB01.13
12	List the levels of power system security.	Remember	CO4	BPSB01.13

13	What is the importance of contingency analysis?	Understand	CO4	BPSB01.13
14	What is the effect of adding one line to the network?	Understand	CO4	BPSB01.14
15	What is the effect of removal of one line to the network?	Understand	CO4	BPSB01.14
16	How to construct bus impedance matrix from admittance matrix.	Understand	CO4	BPSB01.14
17	Write the expression for line outage distribution factor.	Remember	CO4	BPSB01.13
18	Discuss contingency ranking.	Remember	CO4	BPSB01.13
19	Define post contingency?	Remember	CO4	BPSB01.13
20	What are the distribution factors?	Understand	CO4	BPSB01.14
	PART – B (LONG ANSWER QUEST	TIONS)		
1	Describe the various operating states of a power system with a neat sketch.	Understand	CO4	BPSB01.12
2	Describe the power system static security levels.	Understand	CO4	BPSB01.12
3	Discuss modeling for contingency analysis and contingency selection.	Understand	CO4	BPSB01.13
4	Explain the steps involved in contingency analysis with an example.	Understand	CO4	BPSB01.13
5	Draw and explain the flow chart used for contingency analysis.	Understand	CO4	BPSB01.13
6	Construct the column of bus impedance matrix when one line is added to the network.	Understand	CO4	BPSB01.14
7	Construct the column of bus impedance matrix when one line is removed from the network.	Understand	CO4	BPSB01.14
8	Examine the new bus voltages when one line is added to the network.	Understand	CO4	BPSB01.14
9	Examine the new bus voltages when one line is removed from the network.	Understand	CO4	BPSB01.14
10	Examine the new bus voltages when two lines are added to the network,	Understand	CO4	BPSB01.14
11	Examine the new bus voltages when two lines are removed from the	Understand	CO4	BPSB01.14
10	network,	Analyza	<u> </u>	
12	A four ous system Zous is given in per unit by	Anaryze	04	DP3D01.14
	(1) (2) (3) (4)			
	(1) $\begin{bmatrix} i & 0.041 & i & 0.031 & i & 0.027 & i & 0.018 \end{bmatrix}$			
	2 10.031 10.256 10.035 10.038			
	(3) $j0.027$ $j0.035$ $j0.158$ $j0.045$			
	(4) <i>j</i> 0.018 <i>j</i> 0.038 <i>j</i> 0.045 <i>j</i> 0.063			
	has bus voltages			
	$V_1 = 1.0 \angle 0^0, V_2 = 0.98 \angle 0^0, V_2 = 0.96 \angle 0^0, V_4 = 1.04 \angle 0^0$. Using			
	the compensation current methods determine the change in			
	voltage at hus 2 due to the outage of line 1 2 with series impedance			
	in 2 par unit			
	PART - C (ANAL VTICAL OUESTION	S)	<u> </u>	1
1	Analyze the steps involved in single contingencies.	Analyze	CO4	BPSB01.13
2	Analyze the steps involved in multiple contingencies.	Understand	CO4	BPSB01.13

3	Using distribution factors predict the change in current of line 5-3, when line $5-2$ and $5-4$ are simultaneously outgred in the system shown in figure				hen Understand	d CO4	BPSB01.13		
	line 5-2 and 5-4 are simultaneously outaged in the system shown in figure. ine 5-2 and 5-4 are simultaneously outaged in the system shown in figure. $ine 5-2 and 5-4 are simultaneously outaged in the system shown in figure.$ $ine 5-2 and 5-4 are simultaneously outaged in the system shown in figure.$								
	Bus volta of the sy	ages from po stem of Fig.	wer-flow soluti	ons					
	Bus	Base case		Chan	ge cases				
	number	1.000000	1.000000	e 1.000000	1.000000	1.000000			
	0	+j0.000000 0.986301	+ j0.000000 0.968853	+ j0.000000 0.983733	+ j0.000000 0.966186	+ j0.000000 0.970492			
	(2)	- j0.083834 0.984789	-j0.108108 0.977822	-j0.106285 0.981780	- j0.124878 0.975005	- j0.09 5 000 0.979301			
	3	- j0.095108 0.993653	-j0.088536 0.994430	-j0.121225 0.992582	- j0.116235 0.993489	- j0.066882 0.990816			
	(4) (5)	-j0.045583 0.998498	- j0.033446 0.999734	- j 0.056858 0.996444	- j0.047561 0.998201	- j0.040000 0.999984			
	Change fro C C C C	om base clase: Case b: line (S)- Case c: 45-MW : Case d: line (S)- Case e: lines (S)	- ② out of service shift from bus ③ t - ② out of service - ② and ⑤ - ④	o bus (]) plus Case c cha out of service	nge				
4	Consider to the se	a portion of lected buses	f a large power (1) to (5) are	system, who	ose Z _{bus} elem unit by	ents correspon	ding Analyze	CO4	BPSB01.14
	The base $V_3 = 0.91$ pensating (2) - (3) j0.08 per	(1) (2) (3) (4) (5) 8 $\underline{/0^{\circ}}, V_4 = 1$ g current me of series impr r unit are bot	(1) (2) j0.038 j0.0 j0.034 j0.0 j0.036 j0.0 j0.018 j0.0 j0.014 j0.0 tages at those s $1.0 \angle 0^{\circ}$, and V thod, determine bedance $j0.05$ p th outaged.	(i)	(4) (3) j0.018 j0. j0.019 j0. j0.018 j0. j0.028 j0. j0.010 j0. s are $V_1 = 1.0$ all in per un z in voltage at ine (4) - (5) (5)	$\frac{0}{\sqrt{0^{\circ}}}, V_2 = 1.1$ $\frac{0}{\sqrt{0^{\circ}}}, V_2 = 1.1$ $\frac{0}{\sqrt{0^{\circ}}}, V_2 = 1.1$ $\frac{1}{\sqrt{0^{\circ}}}, V_2 = 1.1$	<u>/0°,</u> com- line ance		

5	Briefly explain the contingency analysis along with flow chart.	Understand	CO4	BPSB01.13				
	UNIT – V							
	STATE ESTIMATION							
	PART – A (SHORT ANSWER QUESTIONS)							
1	Define state estimation.	Remember	CO5	BPSB01.15				
2	List the various methods used for state estimation.	Understand	CO5	BPSB01.15				
3	Define probability density function.	Remember	CO5	BPSB01.17				
4	Define standard deviation.	Remember	CO5	BPSB01.17				
5	Describe the situations to apply weighted least square method.	Understand	CO5	BPSB01.16				
6	What is the objective of power system state estimator?	Understand	CO5	BPSB01.15				
7	List the module used in state estimation of real time systems.	Understand	CO5	BPSB01.15				
8	What is meant by equivalencing.	Understand	CO5	BPSB01.16				
9	Give the expression for error covariance matrix in weighted LSE.	Understand	CO5	BPSB01.16				
10	Define network observability.	Understand	CO5	BPSB01.16				
11	What is bad data with respect to state estimation.	Understand	CO5	BPSB01.16				
12	What are the methods used to detect bad data.	Understand	CO5	BPSB01.16				
13	What are the limitations of line flow state estimator.	Understand	CO5	BPSB01.15				
14	Discuss the factors need to be consider while estimating the states from	Remember	CO5	BPSB01.15				
	noise environments.							
15	What is the reason for not using voltage and current measurements online in	Understand	CO5	BPSB01.16				
	state estimator?							
16	Describe the methods used for identification of bad data.	Remember	CO5	BPSB01.17				
17	Describe the methods used for suppression of bad data.	Remember	CO5	BPSB01.17				
18	What are pseudo measurements?	Understand	CO5	BPSB01.17				
19	List the applications of power system state estimation.	Remember	CO5	BPSB01.15				
20	What is the importance of weighted least square method in state estimation.	Understand	CO5	BPSB01.16				
	PART – B (LONG ANSWER QUEST	TIONS)						
1	What is the importance of state estimation? Explain the method of least	Understand	CO5	BPSB01.15				
	squares.							
2	Describe the steps involved in state estimation of AC networks.	Understand	CO5	BPSB01.15				
3	Explain the injections only algorithm for static state estimation of power	Understand	CO5	BPSB01.16				
	systems.							
4	Explain the line only algorithm for static state estimation of power systems.	Understand	CO5	BPSB01.16				
5	Describe external system equivalencing.	Understand	CO5	BPSB01.16				
6	Describe the method of orthogonal decomposition for state estimation.	Understand	CO5	BPSB01.16				
7	Explain the methods used for detection and identification of bad	Understand	CO5	BPSB01.17				
	measurements.							
8	Explain the procedure for estimating of quantities not being measured.	Understand	CO5	BPSB01.17				
9	Explain pseudo measurements w.r.t power system state estimation.	Understand	CO5	BPSB01.17				
10	Explain network observability w.r.t power system state estimation.	Understand	CO5	BPSB01.17				
	PART – C (ANALYTICAL QUEST	IONS)						
1	Determine the weighted least squares estimates of three loop currents.	Understand	CO5	BPSB01.17				
	Using the estimated loop currents determine the source voltages V1 and V2.							
	1Ω (1) 1Ω (2) 1Ω							
	$\mathbf{y} + \mathbf{x}$							
	$V_1 - T$ $J \leq_1 \Omega (V_2 - T - V_2)$							

2.	Show that	Understand	CO5	BPSB01.17
	$E[(\mathbf{x} - \hat{\mathbf{x}})(\mathbf{x} - \hat{\mathbf{x}})^T] = \mathbf{G}^{-1}$, where G is gain matrix.			
3	A 2-bus power system is shown in Figure. Assume that the following measurement set is available for estimation :	Analyze	CO5	BPSB01.17
	$[z]^T = [P_2Q_2V_1] = [-0.30, -0.15, 1.0]$			
	Assume that the measurements are equally accurate.			
	■ 1 j 0.1 2 →			
	 Power Measurement Voltage Magnitude Measurement 			
	(a) Find the WLS estimator for V_2 and θ_2 .			
	(b) What is the value of the objective function $J(x)$ at the optimal solution?			
4	Suppose that the voltage at a certain substation has a normal distribution with mean 345,000 V and variance 225,000,000. If five independent measurements of the voltage are made, what is the probability that all five measurements will lie between 340 kV and 360 kV?	Analyze	CO5	BPSB01.18
5	Distinguish the various methods used for state estimation of power systems.	Understand	CO5	BPSB01.15

Prepared by: Dr. M. Pala Prasad Reddy, Associate Professor

HOD, EEE