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MECHANICAL VIBRATIONS 
 

 

Introduction: When an elastic body such as, a spring, a beam and a shaft are displaced from the 

equilibrium position by the application of external forces, and then released, they execute a vibratory 

motion, due to the elastic or strain energy present in the body. When the body reaches the equilibrium 

position, the whole of the elastic or stain energy is converted into kinetic energy due to which the body 

continues to move in the opposite direction. The entire KE is again converted into strain energy due to 

which the body again returns to the equilibrium position. Hence the vibratory motion is repeated 

indefinitely. 

 

Oscillatory motion is any pattern of motion where the system under observation moves back and forth 
across some equilibrium position, but does not necessarily have any particular repeating pattern. 
 

 

Periodic motion is a specific form of oscillatory motion where the motion pattern repeats itself with a  

uniform time interval. This uniform time interval is referred to as the period and has units of seconds per 

cycle. The reciprocal of the period is referred to as the frequency and has units of cycles per second. 

This unit of combination has been given a special unit symbol and is referred to as Hertz (Hz) 
 

 

Harmonic motion is a specific form of periodic motion where the motion pattern can be describe by 

either a sine or cosine. This motion is also sometimes referred to as simple harmonic motion. Because 

the sine or cosine technically used angles in radians, the frequency term expressed in the units radians 

per seconds (rad/sec). This is sometimes referred to as the circular frequency. The relationship between 

the frequency in Hz (cps) and the frequency in rad/sec is simply the relationship. 2π rad/sec. 
 

 

Natural frequency is the frequency at which an undamped system will tend to oscillate due to initial 
conditions in the absence of any external excitation. Because there is no damping, the system will 

oscillate indefinitely. 

 

Damped natural frequency is frequency that a damped system will tend to oscillate due to initial 
conditions in the absence of any external excitation. Because there is damping in the system, the system 

response will eventually decay to rest. 

 

Resonance is the condition of having an external excitation at the natural frequency of the system. In 
general, this is undesirable, potentially producing extremely large system response. 

 

Degrees of freedom: The numbers of degrees of freedom that 

a body possesses are those necessary to completely define its 

position and orientation in space. This is useful in several 

fields of study such as robotics and vibrations. Consider a 

spherical object that can only be positioned somewhere on 

the x axis. 
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This needs only one dimension, ‘x’ to define the position to the centre of gravity so it has one degree of 

freedom. If the object was a cylinder, we also need an angle ‘θ’ to define the orientation so it has two 

degrees of freedom. 

 

Now consider a sphere that can be positioned in 

Cartesian coordinates anywhere on the z plane. This 

needs two coordinates ‘x’ and ‘y’ to define the 

position of the centre of gravity so it has two degrees 

of freedom. A cylinder, however, needs the angle ‘θ’ 

also to define its orientation in that plane so it has 

three degrees of freedom. 

 

In order to completely specify the position and 

orientation of a cylinder in Cartesian space, we would 

need three coordinates x, y and z and three angles 

relative to each angle. This makes six degrees of 

freedom. A rigid body in space has 

(x,y,z,θx θy θz).  
In the study of free vibrations, we will be constrained 
to one degree of freedom. 

 

Types of Vibrations:  
Free or natural vibrations: A free vibration is one that occurs naturally with no energy being added to 

the vibrating system. The vibration is started by some input of energy but the vibrations die away with 

time as the energy is dissipated. In each case, when the body is moved away from the rest position, 

there is a natural force that tries to return it to its rest position. Free or natural vibrations occur in an 

elastic system when only the internal restoring forces of the system act upon a body. Since these forces 

are proportional to the displacement of the body from the equilibrium position, the acceleration of the 

body is also proportional to the displacement and is always directed towards the equilibrium position, so 

that the body moves with SHM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Examples of vibrations with single degree of freedom. 

 

Note that the mass on the spring could be made to swing like a pendulum as well as bouncing up and 

down and this would be a vibration with two degrees of freedom. The number of degrees of freedom of 
the system is the number of different modes of vibration which the system may posses. 
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The motion that all these examples perform is called SIMPLE HARMONIC MOTION (S.H.M.). This 

motion is characterized by the fact that when the displacement is plotted against time, the resulting 

graph is basically sinusoidal. Displacement can be linear (e.g. the distance moved by the mass on the 

spring) or angular (e.g. the angle moved by the simple pendulum). Although we are studying natural 

vibrations, it will help us understand S.H.M. if we study a forced vibration produced by a mechanism 

such as the Scotch Yoke. 

 

Simple Harmonic Motion   

The wheel  revolves  at ω radians/sec  and the pin forces  
the yoke to move up and down. The pin slides in the slot  

and Point P on the yoke oscillates up and down as it is  

constrained to move only in the vertical direction by the  

hole through  which  it slides.  The  motion  of point  P is  

simple harmonic motion. Point P moves up and down so  

at any moment it has a displacement x, velocity v and an 
Figure 2 

acceleration a. 
 

  

The  pin  is  located  at  radius  R  from  the  centre  of the  
wheel.  The  vertical  displacement  of  the  pin  from the   
horizontal centre line at any time is x. This is also the 

displacement of point P. The yoke reaches a maximum 

displacement equal to R when the pin is at the top and –R 

when the pin is at the bottom. 

 

This is the amplitude of the oscillation. If the wheel rotates at ω radian/sec then after time t seconds the 

angle rotated is θ = ωt radians. From the right angle triangle we find x = R Sin(ωt) and the graph of x - θ 

is shown on figure 3a. 

 

Velocity is the rate of change of distance with time. The plot is also shown on figure 3a. v 

= dx/dt = ωR Cos(ωt). 

 

The maximum velocity or amplitude is ωR and this occurs as the pin passes through the horizontal 

position and is plus on the way up and minus on the way down. This makes sense since the tangential 

velocity of a point moving in a circle is v = ωR and at the horizontal point they are the same thing. 
 

 

Acceleration is the rate of change of velocity with time. The plot is also shown on figure 3a. a 

= dv/dt = -ω
2
R Sin(-ω 

2
R) 

 

The amplitude is ω
2
R and this is positive at the bottom and minus at the top (when the yoke is about to 

change direction) 

Since R Sin(ωR) = x; then substituting x we find a = -ω 
2
 x 

 

This is the usual definition of S.H.M. The equation tells us that any body that performs sinusoidal 
motion must have an acceleration that is directly proportional to the displacement and is always directed 

to the point of zero displacement. The constant of proportionality is ω
2
 . Any vibrating body that has a 

motion that can be described in this way must vibrate with S.H.M. and have the same equations for 
displacement, velocity and acceleration. 
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FIGURE 3a FIGURE 3b 

 

Angular Frequency, Frequency and Periodic time  
ω is the angular velocity of the wheel but in any vibration such as the mass on the spring, it is called the 
angular frequency as no physical wheel exists. 

 

The frequency of the wheel in revolutions/second is equivalent to the frequency of the vibration. If the 
wheel rotates at 2 rev/s the time of one revolution is ½ seconds. If the wheel rotates at 5 rev/s the  

time of one revolution is 
1
/5 second. If it rotates at f rev/s the time of one revolution is 

1
/f. This formula 

is important and gives the periodic time. 

 

Periodic Time T = time needed to perform one cycle. 
f is the frequency or number of cycles per second. 

 

It follows that: T = 
1
/f and f = 

1
/T 

 

Each cycle of an oscillation is equivalent to one rotation of the wheel and 1 revolution is an angle of 

2π radians.  
When θ = 2π and t = T. 

 

It follows that since θ = ωt; then 2π = ωT 
 

Rearrange and θ = 
2π

/T.  Substituting T = 
1
/f,  then ω =2πf 
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Equations of S.H.M. 
Consider the three equations derived earlier. 

Displacement x = R Sin(ωt). 

Velocity v = dx/dt  = ωR Cos(ωt) and Acceleration a = dv/dt  = -ω 
2
R Sin(ωt) 

 

The plots of x, v and a against angle θ are shown on figure 3a. In the analysis so far made, we measured 

angle θ from the horizontal position and arbitrarily decided that the time was zero at this point. 
 

 

Suppose we start the timing after the angle has reached a value of φ from this point. In these cases, φ is 

called the phase angle. The resulting equations for displacement, velocity and acceleration are then  
as follows. 

D

i

s

placement 

Velocity 

Acceleration 

 

The plots of x, v and a are the same but the vertical axis is displaced by φ as shown on figure 3b. A  
point to note on figure 3a and 3b is that the velocity graph is shifted ¼ cycle (90

o
) to the left and the 

acceleration graph is shifted a further ¼ cycle making it ½ cycle out of phase with x. 
 
Forced vibrations: When the body vibrates under the influence of external force, then the body is said to 

be under forced vibrations. The external force, applied to the body is a periodic disturbing force created 

by unbalance. The vibrations have the same frequency as the applied force.  
(Note: When the frequency of external force is same as that of the natural vibrations, resonance takes 
place) 

 

Damped vibrations: When there is a reduction in amplitude over every cycle of vibration, the motion is 

said to be damped vibration. This is due to the fact that a certain amount of energy possessed by the 

vibrating system is always dissipated in overcoming frictional resistance to the motion. 

 

Types of free vibrations:  
Linear / Longitudinal vibrations: When the disc is displaced vertically downwards by an external force 

and released as shown in the figure 4, all the particles of the rod and disc move parallel to the axis of 

shaft. The rod is elongated and shortened alternately and thus the tensile and compressive stresses are 

induced alternately in the rod. The vibration occurs is know as Linear/Longitudinal vibrations. 
 

 

Transverse vibrations: When the rod is displaced in the transverse direction by an external force and 

released as shown in the figure 5, all the particles of rod and disc move approximately perpendicular to 

the axis of the rod. The shaft is straight and bends alternately inducing bending stresses in the rod. The 

vibration occurs is know as transverse vibrations. 

 

Torsional vibrations: When the rod is twisted about its axis by an external force and released as shown 

in the figure 6, all the particles of the rod and disc move in a circle about the axis of the rod. The rod is 

subjected to twist and torsional shear stress is induced. The vibration occurs is known as  
torsional vibrations. 

 
x = R 
Sin(ωt + 
φ). 
v = dx/dt = ωR Cos(ωt 
+ φ). a = dv/dt = -ω

2
R 

Sin((ωt + φ). 
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Oscillation of a floating body: 
 

You may have observed that some bodies floating in 

water bob up and down. This is another example of 

simple harmonic motion and the restoring force in 

this case is buoyancy.  
Consider a floating body of mass M kg. Initially it is 

at rest and all the forces acting on it add up to zero. 

Suppose a force F is applied to the top to push it 

down a distance x. The applied force F must 

overcome this buoyancy force and also overcome the 

inertia of the body. 

 

Buoyancy force: 

The pressure on the bottom increases by ∆p = ρ g x.  
The buoyancy force pushing it up on the bottom is Fb and this increases by ∆p A. 

Substitute for ∆p and Fb = ρ g x A 

 

Inertia force: 
The inertia force acting on the body is Fi = M a 

 

Balance of forces:  
The applied force must be F = Fi + Fb -this must be zero if the vibration is free. 0 = Ma 

+ ρ g x A 

a = − 
ρAg

 x 

M  
This shows that the acceleration is directly proportional to displacement and is always directed towards 
the rest position so the motion must be simple harmonic and the constant of proportionality must be the 
angular frequency squared. 
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ω 
2 

=  ρAg    
   M    
      

 

 

ω = 
  ρAg  
  

M 
   

       
      

f = 
ω 

= 1 ρAg 
 

n  2π 2π M   

 

Example: A cylindrical rod is 80 mm diameter and has a mass of 5 kg. It floats vertically in water of 
density 1036 kg/m3. Calculate the frequency at which it bobs up and down. (Ans. 0.508 Hz) 

 

Principal of super position:  
The principal of super position means that, when TWO or more 
waves meet, the wave can be added or subtracted.  
Two waveforms combine in a manner, which simply adds their 

respective Amplitudes linearly at every point in time. Thus, a 

complex SPECTRUM can be built by mixing together different 

Waves of various amplitudes.  
The principle of superposition may be applied to waves whenever 

two (or more) waves traveling through the same medium at the 

same time. The waves pass through each other without being 

disturbed. The net displacement of the medium at any point in 

space or time, is simply the sum of the individual wave  
dispacements.  
General equation of physical systems is:  

m&x&+ cx& + kx = F (t ) - This equation is for a 
 
linear system, the inertia, damping and spring force are linear 

function &x&, x& and x respectively. This is not true case of non-

linear systems.  
m&x&+ φ ( x&) + f ( x) = F (t ) - Damping and 

spring force are not linear functions of x& and x 

 

Mathematically for linear systems, if  x1 is a solution of; 
 

m&x& + cx& + kx = F1 (t )  

and x2 is a solution of;  
m&x&+ cx& + kx = F2 (t )  

then ( x1  + x2 ) is a solution of; 
 

m&x& + cx& + kx = F1 (t ) + F2 (t )  
Law of superposition does not hold good for non-linear systems. 

 

If more than one wave is traveling through the medium:  The resulting net wave is given by the  
Superposition Principle given by the sum of the individual waveforms” 
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Beats: When two harmonic motions occur with the same amplitude ‘A’ at different frequency is added 

together a phenomenon called "beating" occurs. 
 
 
 
 
 

 

y1  = A cos(2πf1t ) 
y2  = A cos(2πf 2t ) 

 

The resulting motion is: 
 

y = (y1 + y2 ) = A[cos(2πf1t ) + cos(2πf 2 t )] 
 

with trigonometric manipulation, the above equation 
can be written as: 

 

y = 2 A cos 2π 
f1 − f 2 t × cos 2π 

f1 + f 2 t 
2 2    

 

The resultant waveform can be thought of as a wave with frequency fave = (f1 + f2)/2 which is 

constrained by an envelope with a frequency of fb = |f1 - f2|. The envelope frequency is called the beat 
frequency. The reason for the name is apparent if you listen to the phenomenon using sound waves. 
 

(Beats are often used to tune instruments. The desired frequency is compared to the frequency of the 

instrument. If a beat frequency is heard the instrument is "out of tune". The higher the beat frequency the 

more "out of tune" the instrument is.) 
 
Fourier series: decomposes any periodic function or periodic signal into the sum of a (possibly 

infinite) set of simple oscillating functions, namely sines and cosines (or complex exponentials). 

 

Fourier series were introduced by Joseph Fourier (1768–1830) for the purpose of solving the 
heat equation in a metal plate. 

 

The Fourier series has many such applications in electrical engineering, vibration analysis, 
acoustics, optics, signal processing, image processing, quantum mechanics, thin-walled shell 
theory,etc. 
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Sin & Cos functions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

J. Fourier, developed a periodic function in terms of series of Sines and Cosines. 
The vibration results obtained experimentally can be analysed analytically.  
If x(t) is a periodic function with period T, the Fourier Series can be written as:  

x(t ) = 
ao

 2  
b1sin ωt + b2 sin + 

2ωt + b3sin 3ωt 

+ ............ 

 

+ a1 cos ωt + a2 cos 2ωt + a3 cos 3ωt + 
............ 
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Undamped Free Vibrations: 
 

NATURAL FREQUENCY OF FREE LONGITUDINAL VIBRATION  
Equilibrium Method: Consider a body of mass ‘m’ suspended from a spring of negligible 
mass as shown in the figure 4. 
Let m = Mass of the body  

W = Weight of the body = mg 
K = Stiffness of the spring 

δ = Static deflection of the spring due to ‘W’ spring k= Stiffness 
  

 

By applying an external force, assume the 
body is displaced vertically by a distance ‘x’, 
from the equilibrium position. On the release 
of external force, the unbalanced forces and 
acceleration imparted to the body are related 
by Newton Second Law of motion. 
 

∴ The restoring force = F = - k  x 
 
(-ve sign indicates, the restoring force ‘k.x’ is 

opposite to the direction of the displacement ‘x’) 
 

By Newton’s Law; F = m  a 

∴ F  −k x  m 

d
 
2

 

x
 dt 

2 

 
 

    Unstrained postion  

W=kδ 
 x  
   

δ
    

m 
  m O 

k(δ+x) 
 

x kx 

 

  

    
W m x m 

     

   

FIGURE 7 mg 

   

   

 

∴ The differential equation of motion, if a body of mass ‘m’ is acted upon by a 

restoring force ‘k’ per unit displacement from the equilibrium position is; 
 

 d 
2
 x  k x  0 − This equation represents SHM 

 dt 
2 
m                   

 d 
2
 x  ω 

2
  x  0  ω 

2
 k   − for SHM 

 dt 
2 

   m           
      

T 

 

π 
 

 2π 

       

               

The natural period of vibration is   2      m  Sec   

ω 
    

k 
 

                 
     

1 
      

The natural frequency of vibration isf    


  k  cycles / sec 
 n 

2π m            

              
From the figure 7; when the spring is strained by an amount of ‘δ’ due to the weight W = mg  

δ k = mg 
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Hence 

 k 



 g       
   

 

       

 m δ       
          

 
∴ f n 

1    g  
Hz  or cps  2π    δ          

 

Energy method: The equation of motion of a conservative system may be established from 
energy considerations. If a conservative system set in motion, the mechanical energy in the 
system is partially kinetic and partially potential. The KE is due to the velocity of mass and 
the PE is due to the stain energy of the spring by virtue of its deformation. 
 
Since the system is conservative; and no energy is transmitted to the system and from 
the system in the free vibrations, the sum of PE and KE is constant. Both velocity of the 
mass and deformation of spring are cyclic. Thus, therefore be constant interchange of 
energy between the mass and the spring.  
(KE is maximum, when PE is minimum and PE is maximum, when KE is minimum - so system goes 
through cyclic motion) 

KE + PE = Constant 

 d KE PE 0       − (1) 

 dt        

We have KE   1 m v 
2 

1 m dx 2 -(2) 
     

2  2  dt    
Potential energy due to the displacement is 
equal to the strain energy in the spring, minus 
the PE change in the elevation of the mass.  

x 

∴ PE  ∫Total spring forecedx − mg dx 
0  
x 

 
 ∫mg  kx − mg dx 

1 
kx 

2  
−(3)  2  

 0               

   Equation (1) becomes      

 ddx 2 1   
2 

    
      


  

kx  0 
  

 

dtdt 2 
   

         

   d 
2
 x           

 m 
 kx 

   

 0 
    

  2         

   dt dt    

dx 
 

   d 
2
 x2  kx   0   OR 

Either  m  
  

   dt         0 dt 
 

But velocity 
dx

 can be zero for all values of time. 
dt 

 
 
 

 
spring k= Stiffness 

 
 

 

FIGURE 8 

 

m Static Equilibrium 

postion 

 

x 

 

 0  kx 1 
kx 

2 
PE   

 x 
 

  

2 2  

∴ m d 
2
 x  kx  0 m &x& kx  0

  

  dt 
2 
     

⇒ d 
2
 x  k x  0 − Equation represents SHM 

dt 
2  

   m  
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∴ Time period  T  2π   
m

  sec  and     
k         

   

1 
     

Natural  frequency of  vibration  f     k cycles / sec 
n 

2π 
 

   

m     

 
(The natural frequency is inherent in the system. It is the function of the system parameters 'k' and 'm' 
and it is independent of the amplitude of oscillation or the manner in which the system is set into motion.) 

 

Rayleigh’s Method: The concept is an extension of energy method. We know, there is a constant 

interchange of energy between the PE of the spring and KE of the mass, when the system executes 

cyclic motion. At the static equilibrium position, the KE is maximum and PE is zero; similarly when the 

mass reached maximum displacement (amplitude of oscillation), the PE is maximum and KE is zero 

(velocity is zero). But due to conservation of energy total energy remains constant. 

 

Assuming the motion executed by the vibration to be simple harmonic, then;  
x = A Sinωt  

x = displacement of the body from the mean position after time 't' 
sec and A = Maximum displacement from the mean position 

x&  A Sinωt  
At mean position, t = 0; Velocity is maximum 

 

 dx                   
∴ v max  

   
 x max    ω A 

      

         

  dt  max                    

∴ Maximum K. E 
 1    

m ω
2
 A 

2       

2          
                      

Maximum 
 

P.E 
 1    

k x 2      x 
 

 A 
   

 

2 
   max max    

                 

                      

∴ Maximum P.E 
1   

kA 
2          

2            
                      

We know   KE max    PE max       

    m ω
2 

  k          

      k 1 /  2        
                   

Q δ k  m g           

1 

        

    
f n 

 


    k     
k 

 
g      

2π 
    

m 
 

⇒ 
                  

               

m δ                      
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1. Determine the natural frequency of the spring-mass system, taking mass of the 
spring into account. 

 

Let l = Length of the spring 
under equilibrium condition  

ρ = Mass/unit length of the spring  
= Mass of the spring = ρ  l 

 

ms 

 

Consider an elemental length of 'dy' of the 
 

spring at a distance 'y' from support. 

∴ Mass of the element = ρ dy 

At any instant, the mass 'm' is displaced by a 
 

∴ P E  

1  
x 
2

 2 

                                         

k                                          
K E of the system at this instant,          

is the sum of (KE) mass and (KE) spring   
l          

& 2 

                                   
  1         1             y & 2   

∴ K E 
2            



∫ 2  
  dy 

   l       
0                                                   

 
 1 

            
1 

& 
2 
  l          

       &  2        x    2       

0     2 m x        2  ρ  l 
2 
  ∫ 

y 
dy   

                             

& 2 

            

       
1 

            


1   
l 

3         
  

    
     &  2     

 ρ 
 x            

   m x           

l 2 

            

 2             2          3       
m s   & 

2 
 1& 2       1  & 2  m s    1   
       m x              x        m   x 

 2             2          3     2   3  

   1 
k x 

2
    1   m 

m  s x&  
2

    0 
            

                      

 2       2                  3                   

   Differenti ating with respect to 't ' ;   d  PE  KE   0 

dt                                                   

   
k x x& 

 
 m 

  m s  
x& &x&  0 

   
− Diffe renti  al equation  

  
          

3 
         

                                              

            k                                     
   

&x& 

          

 

x  0 
            

   
m 

     
m

 s             
                                               

           

3 
                               

                                              
          

1 
                                 

  

∴ f n  
               k  

cps 

    

[ ρ l  ms ]    2π       
m 

  ms      

3 
                                         

                                                  

  OR                                          
                                           

  
∴ f n  

         k     
radians  / sec 

  
     

m 

  


  

ms  
      

                                      
               

3 
                      

                                           

We know that PE + KE = Constant 

 
 
 

y
 

 
k= Spring 

stiffness 

y
 

d
 

 l 

 
 
 
 
 
 

m 
 
 
 
 

x 
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2. Determine the natural frequency of the system shown in figure by 
Energy and Newton's method. 

 
 

When mass 'm' moves down a distance 'x' 

from its equilibrium position, the center of 

the disc if mass m1 moves down by x and 

rotates though and angle θ. 
 

∴ x   r θ 

2  
& 

⇒ θ
&  



 x 

 2 r 
    

 
 
 
 

 

k 
 
 
 
 

 


x 


θ 

 
 
 
 
 

 
x/2 
 
 

 

Disc 

 
KE   ( KE ) Tr    ( KE ) rot                   

    
1 

          
1 
  & 

2 
  

1 
              

          & 
2              x          & 2        

    2   m  x 2   1      4  2    o   θ  

& 
2     

    
 1 

          
1 

                   
1 

              
          &2      &  2              2   x      

    2    m  x     8    m 1 x   4  m 1 r  4 r 2     
                 

 & 2 

                

     1       &2   3                       
    2    m  x    16    m 1 

x 
                      

PE  1     k 
 x  2                                         

2 
 

2 
                                         

                                                   

 d  KE 
    
 PE  0 

                                  
 

dt 
                                       

  

⇒ m x& &x& 3 m  x& &x& 1  k x& x  0        
           

           8 m  3 m 1 1                        
   &x&                     kx  0             

               8        4                        
 

1 

   

     

∴ 

  n 



                 2 k          

cps 

      

          2π     8 m  3 m 1          
                                                      

   
or 

  
f n 

 


          2 k        
rad/ sec 

     
         

8 m  3 m 1 
        

                                       

 Newton's Method: Use x, as co-ordinate    

  or mass m; m x
&&

  − F                − 1 
  

for disc m ; m 
 &&     

 F  F − 
   

kx 
    

− 2    x          

               1        2               1      2         

                         &&                       

− 3                      I o θ  Fr − F1 r           
 

&& 
&& 

  x 

   Substituti ng (1) in (2) and (3) and replace θ by  2r 
                         &&        

&& 
     kx    

                     m  x     

 F 
 

− 
   

                       

 − m x 
   

− 4                          1  2    1  2  
                         &&               

&& 
        

                     I    x                     

                        

 − m x r − F1 r 
 

− 5                          
o
  2r   

                         &&               
&& 

        
                                 x                     

                     
I
 o 2r 

2 
 − m x − F1  − 6  

 
 

Iom1 x/2 

m 
F1 

 

 
x 
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Adding equations  (4) and (6)          

&& &&    
&& kx  {I o 

1 
m1 r 

2 
  x        x       

1
 2 

  

 I o 2−2m x−2 
  

   } 2  

          2r              

&& m 


m1  4m   kx  0       
         

1 

2 
                 

                    
                      

f n 

     2k     

rad / sec 

      
                  

 
3m1 8m 

      
             

f n 
 1       2k   

cps or Hz 
    

 

2π3m1  8m 

      

            
 

3. Determine the natural frequency of the system shown in figure by Energy and 

Newton's method. Assume the cylinder rolls on the surface without slipping. 

a) Energy method: 

When mass  'm' rotates through an angle θ, the center of the roller move 
 

distance 'x' 
 

   KE(KE)Tr    ( KE  ) rot            

       1   & 
2 

 1    & 2            
     

  2   m  x    2    I o θ 

2 x & 
2 

   x  x       

      
1 

 2  
11 

     Roller/Disc   
              &        

m r 
          

k               m x         

r 
2 

     

       
2 

           
2 

       θ 
  

∴ KE 
   

3 
 

& 2 
          

Io 
  

                      r                       

              4                  m   
                                  

       1  2                   
 

 

PE 
  


 

k  x 
                   

   2                    

  d  
 KE  PE   0 

            
kx   dt             

                                

 

⇒ 

3 &&    

 0 

             
      

m  x  k  x 
       

   

Fr 

  

 2             
                       

f 
         

                       1   2 k   
  

Natural 

 

frequency 

 


n 



 

 

     

    2  π  3 m   

Newton’s method:                  

m a  ∑F                             

m x
& &   − kx  Fr     &&               

using torque equation 
                

Io θ  − Fr .r            

F  − 
&&                               

  mx                               

r 2                                 
&& 1    && 

 − k x − 2  m xmx
 

3  &&                
  

mx  k x  0 
           

 2            
                 

∴ f 
n 

 1    2k  cps    or f 
n 

 2k  rad / sec 
2π 

 

3m 3m           
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4. Determine the natural frequency of the system shown in figure by Energy and 
Newton's method.  
Energy Method: Use θ or x as coordinate   

 KE  (KE)Tr  (KE) rot        

   
1 

 m

&
x 

2
  1   I o θ 

&2        
              

   2 
2 

  2             
     

1 
   

1 
1 

  &     
   

    m

&
 x      m1 r 

2
 
x      

     

r 
2    

   2       2    2       

∴KE  

    1  
& 

2   1 
& 2       

      m x    m1 x        

       2        4         

 PE   k x 
2 

                
x  

d 

 2                     

                       

 KE  PE 0                
 dt                          

 ⇒   
&&

kxx  

 1  m1 
m 

  
& && 0    

      2 x x     

       2   4  1 
       

                     

   
k x   m 

      1 m 
x    &  0    

             2   1         

 
Natural frequency 

 
 f n   2k 

rad / sec 
1 2k 

      cps OR 

                       2m  m1  2π   2m  m1 
 
Newton’s Method: Consider motion of the disc with ‘θ’ as coordinate. 

For the mass ‘m’ : 
  && 

 − F r 

  . 
m  x 

&& 2 
− (1 ) 

For the disc 
   

: θ    Ioθ  −Fr.r − k r 

Substitute (1) in (2):         
&&  &&  2      

I o θ  − m r x   − k r  θ     
&&  2  &&   2 

θ 
   

I o θ  − m r θ − k r      

2&&  2       

I o  
m r

  θ   k r  θ  0    

∴ f n 

 k r 

2 

  

rad / sec 

   

I o  m r      
        

 

 
 

 Disc 

  
θ  

Io m1 

F krθ 

m 
x=rθ  

 k 

 
 
 
 
 
 
 
 
 
 
1 kr 2 

cps orHz 

2πIo  m r 
2 

 
 
 
 

 

− (2) 

 


1    k r 2 

cps or Hz 
   

           

 

2π 

   

I o  m r 
2   

m  r 
2         

  1    2k   
cps I 


1 

          

 

2π 
   

m   2m 
 

2 
 

     o 1 
   1        
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5. Determine the natural frequency of the system shown in figure 5 by Energy 
and Newton's method. Assume the cylinder rolls on the surface without slipping. 

 

Energy Method: 

KE   ( KE )Tr   ( KE ) rot 

1   & 
2 

 1   & 2 

   2 m x   2  I o θ 

  1  m r 
2

 θ 
&

 
2
   1 1  m r  2 θ     & 2 

   

2      

2 

 

& 2 

2 2 

∴ KE 3 m r θ    
          

      4  

k x 
2

   k r  a 
2

 θ 
2 

  
PE   2 

1 

d 

 

2                 

 KE  PE       
       

0 dt 2
 θ
&

θ
&&

 2 k r  a 
2

 θ θ
& 

⇒ 
3

 m r 
               

   0 2            

 
 

k  θ
k   

   

  c  

a 

   

 
o 

x  
Io 

r 
 

m 
  

   

FIGURE 5 

  
(x+aθ) 

  

  
 

c'
 2k(x+aθ

) 

a
(Appx) +x  

o' 
 
 

F x 
 

Figure 'a' 

2  && 2          

3 m r   θ  4 kr  a  θ  0      
4 k r  a 

2  
   

4 k r  a 2  
1 

 

Natural  frequency   
f
 n 

   

rad / sec 
3 m r 

2 
cps or Hz 

 
3 m r 2 

  
2π 

 
       

 

Newton’s Method: Considering combined translation and rotational motion as shown in Figure ‘a’. 

Hence it must satisfy:  

m x
&&  ∑ Force in x direction          

 m x
&&

   − F − 2k ( x  aθ )      

and  Io θ 
&&   ∑Torque  about  'θ '      

      F r − 2k  x  aθ a      
 && 

 a θ 
     

 m r θ  − F − 2k r −(1)   

  1   
2
  &&      

−(2) 

  

and  2 m r θ  F r − 2k r  a aθ   

Multiply equation (1) by 2r and (2) by 2. Then add   
    2 &&           
 3m r  θ  − 4kr (r  a)θ − 4k r  a aθ      
 

3m r 
2 &&           

  θ  4k[r (r  a)  r  a a]θ  0      
    2 && 2 

 0 
     

 3m r  θ  4k (r  a)       

         4 k r  a 
2 

1  4 k r  a 
2 

 

Natural  frequency   fn     3 m r 
2 

 rad / sec 2π  3 m r 
2 

cps or Hz 

 

Refer PPT – For more problems 
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Oscillation of a simple pendulum:  
Figure  shows  the  arrangement  of  simple  pendulum,  which  consists  of  a  light, 

inelastic (inextensible), flexible string of length 'l' with heavy bob of weight W 
(mg) suspended at the lower end and the upper end is fixed at 'O'. The bob 
oscillates freely in a vertical plane. 

 
The pendulum is in equilibrium, when the bob is at 'A'. If the bob is brought at B or C 

and released, it will start oscillating between B and C with 'A' as mean position. O 
Let θ be a very small angle (′ 4

o
), the bob will have SHM. 

Consider the bob at 'B', the forces acting on the bob are: 
 
i) weight of the bob = W = mg  ⇒ acting downwards vertically.  
ii) tension 'T' in the string 

 

The two components of the weight 'W' 
i) along the string = W cosθ 
ii) normal to the string = W sinθ 

The component W sinθ acting towards 'A' 

will be unbalanced and will give rise to an 

acceleration 'a' in the direction of 'A'.  

∴ Accelerati on  a  
Force

  
W

 
sin

 θ 

 Mass m 

  mg sin θ  g sin θ 

   m   

Since θ is very small;  sinθ θ   

 ∴ a  g θ    



 g Arc  length  AB  

  Radius 

 g 
Arc

L
AB

 
 
Acceleration of the body with SHM is given 
by; centre]  

Numerically, a = ω
2

   Arc AB 
 

From (1) and (2) 
 

ω   g       

L 
π 

    

     

Time period of oscillatio n  T  2π 

   

   

2  L  

ω 
 

g      
 

Beat  Beat is ha lf of the oscillatio n  

T
 2 

 
 

 

θ

 

l  

l  

T  

C B 
 

AWsinθ 


θ 

W 
Wcosθ 

 

Oscillation of a simple pendulum  
 
 
 
 
 
 
 
 
 

 

−1
 
 

[a =  -ω
2

 Distance form 
 

-(2) 

 
Second's pendulum: is defined as that pendulum which has one beat per second. 

Thus the time period for second's pendulum will be equal to two seconds. 
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Compound pendulum: 
 

When a rigid body is suspended 
vertically, and it oscillates with a 
small amplitude under the effect of 
force of gravity, the body is known 
as compound pendulum. 
 

Let W = weight of the pendulum 

= mass  g = m  g N 

kG  = radius of gyration 

l = distance from point of suspension 
to 'G' (CG) of the body. 

 

The components of the force W, when 
the pendulum is given a small angular 
displacement 'θ' are: 

1. W cosθ - along the axis of the body. 

2. W sinθ - along normal to the axis of the body. 
 

The component W sinθ acting towards 
equilibrium position (couple tending to 
restore) of the pendulum:  

C = W sinθ  l = m g l sinθ 

Since θ is very small sinθ = θ 

∴ C = m g l θ 
Mass moment of inertia about the axis of suspension 'O': 

I = IG + m l
2

  (parallel axis theorem) 

= m (kG
2

+ l
2

)  

∴  Angularacceleration of the pendulum α  
C

 I  

    θ 

α 

  mgl 
   

l 
2
 m kG

2
  

θ  kG 2  l 2  

α    g l 

 

 
Point of suspension 

 
 

 
O  

l 
 

θ

 
G  



W Sinθ θ 

 
W Cosθ 

 
 
 

W = m g 
 

A 

 
Equilibrium position 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ  Displacement 
 
α Acceleration 

 
       

We know that timeperiod  T  2π   
Displacement

   2π θ 

 2π 

kG
2
   l 

2 

sec  Acceleration α g l 
 

 

Frequency of oscillation 1  n  1  g l  
 

2 π 
 

k 
2

   l 
2 

      T  
          G 

Comparing the above equation w ith simple pendulum, the equivalent length 

of simple  pendulum          

L 

k 
2
  l 

2 



k 
2 

 l 
    

G  G      

l l 
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Damped Free Vibrations 
Single Degree of Freedom Systems 

 

Introduction: 
 

Damping – dissipation of energy. 
 
For a system to vibrate, it requires energy. During vibration of the system, there 
will be continuous transformation of energy. Energy will be transformed from 
potential/strain to kinetic and vice versa. 
 
In case of undamped vibrations, there will not be any dissipation of energy and 
the system vibrates at constant amplitude. Ie, once excited, the system vibrates 
at constant amplitude for infinite period of time. But this is a purely hypothetical 
case. But in an actual vibrating system, energy gets dissipated from the system 
in different forms and hence the amplitude of vibration gradually dies down. Fig.1 
shows typical response curves of undamped and damped free vibrations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Types o damping:  
(i) Viscous damping 
 
In this type of damping, the damping resistance is proportional to the relative velocity 
between the vibrating system and the surroundings. For this type of damping, the 
differential equation of the system becomes linear and hence the analysis becomes 
easier. A schematic representation of viscous damper is shown in Fig.2. 
 
 
 
 
 
 
 

Here, F α x & or F  cx& , where, F is damping resistance, x& is relative velocity and c is the damping 
coefficient. 
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(ii) Dry friction or Coulomb damping  
In this type of damping, the damping resistance is independent of rubbing 
velocity and is practically constant. 
 

(iii) Structural damping  
This type of damping is due to the internal friction within the structure of the 
material, when it is deformed. 
 

Spring-mass-damper system: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 shows the schematic of a simple spring -mass -damper system, where, m is the 
mass of the system, k is the stiffness of the system and c is the damping coefficient.  
If x is the displacement of the system, from Newton’s second law of motion, it 
can be written 

&& & 
   

&& 
mx  −cx − kx  

 Ie &  
 cx  kx  0 (1)  mx   

This is a linear differential equation of the second order and its solution can be written as  

   x  e 
st 

 (2) 
 dx & st   

Differentiating (2), 
 

 x  se 
  

dt   

 d 
2

 x && 2 st  

 dt 
2 

 x  s e  

Substituting in (1), ms 
2
 e 

st
   cse 

st
  ke 

st
  0 

 ms 
2
   cs  k e 

st
   0 

Or ms 
2 
 cs  k  0 (3) 

Equation (3) is called the characteristic equation of the system, which is 
quadratic in s. The two values of s are given by 
 

s 

 c 


 c 2 k 
− 

   
− 

 
(4) 1, 2 

2m 2m 
 

    m 



Page | 23  
 

The general solution for (1) may be written as 
x  C e s1t s t (5) 

1 
 C e 2 

 2   
Where, C1 and C2 are arbitrary constants, which can be determined from 
the initial conditions. 

       c
2 



k 
In equation (4), the values of s1 = s2, when 

    

2m m        

  c 


k    
Or,  

 

 
ωn (6)   

 2m  m    

Or c  2mωn , which is the property of the system and is called critical 

damping coefficient and is represented by cc. 

Ie, critical damping coefficient = cc 2mωn  
The ratio of actual damping coefficient c and critical damping coefficient cc is called 

damping factor or damping ratio and is represented by ζ.  

    Ie, ζ  c         (7)  
 

cc 

       

                

In equation (4), 
 c   c  


c 


 cc   ζ .ωn 

 
  can be written as            
             

  2m   2m   cc   2m  
     

−ζ

  

ωn 

 
  

ζ .ωn 
2 

− ω 

2
 n 

   

Therefore,  s1, 2  −ζ .ωn    ζ 
2
  − 1 (8) 

 

The system can be analyzed for three conditions. 
ii ζ > 1, ie, c > cc, which is called over damped system.  
iii ζ = 1. ie, c = cc, which is called critically damped system. 

iv ζ < 1, ie, c < cc, which is called under damped system. 

 

Depending upon the value of ζ, value of s in equation (8), will be real and unequal, real and equal and complex 
conjugate respectively.  

(i) Analysis of over-damped system (ζ > 1).         

In this case, values of s are real and are given by        

s1   − ζ   ζ 
2 

− 1ω n 

 

s2   − ζ − 

   

ωn and ζ 
2 

− 1
Then, the solution of the differential equation becomes      

−ζ  ζ 
2

 −1 ω  t 
 C 

−ζ − ζ 
2

 −1  ω  t 

x  C e   n e   n (9) 
1     2       

This is the final solution for an over damped system and the constants C1 and C2 are  
obtained by applying initial conditions. Typical response curve of an over damped system is 
shown in fig.4. The amplitude decreases exponentially with time and becomes zero at t 

= ∞. 
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(ii) Analysis of critically damped system (ζ = 1). 

In this case, based on equation (8), s1 = s2 = -ωn  

The solution of the differential equation becomes 

x  C e 

s
1

t 
 Cte 

s
2

t 
  

 1 2    

Ie, x  C e −ωnt 
 C te 

−ω 
t 

  n 

 1  2   

Or, x  C1  C2 t e −ωnt 
(10) 

This is the final solution for the critically damped system and the constants C1 

and C2 are obtained by applying initial conditions. Typical response curve of the 
critically damped system is shown in fig.5. In this case, the amplitude decreases 
at much faster rate compared to over damped system. 
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(iii) Analysis of under damped system (ζ < 1). 

 

In this case, the roots are complex conjugates and are 

given by s1  − ζ  j 1 − ζ 
2

 ω n  

s2   − ζ − j 1 − ζ 
2
 ω n 

 

The solution of the differential equation becomes 
 

−ζ  j 1−ζ 
2 

ω t 
 C 

 

−ζ − j 1−ζ 
2 

ω t  

x  C e  n e 
  n  

1   2      
 

This equation can be rewritten as 
 

x  e  −ζω n 
t
 C e 

j 1−ζ  
2 

ω t  
− j 

1−ζ  
2 

 ωnt 

1 
 n          C 2 e (11) 

       

 

Using the relationships 
 

e iθ  cosθ  i sin θ 
 

 cosθ − i sin θ 
 

Equation (11) can be written as 
 

x  e −ζωnt
 C1 cos 1 − ζ 

2
 ωn t  j sin 1 − ζ 

2
 ωn t C2 cos 1 − ζ 

2
 ωn t − j sin 

 

Or x  e −ζωnt
 C1   C2 cos 1 − ζ 

2
 ωn t jC1  − C2 sin 1 − ζ 

2
 ω n t

 

In equation (12), constants (C1+C2) and j(C1-C2) are real quantities 
equation can also be written as 
 

x  e −ζωnt
 Acos 

 

ω n t Bsin 
 

ω n t 1 − ζ 
2 

1 − ζ 
2 

 

x  A1e−ζωn
 
t
 sin

 

ωnt  φ1 
 

Or, 1 − ζ 
2 

(13) 

 

 

 

 

 

 

1 − ζ 
2
 ω n t

 

(12) 
 

and  hence, the 

The above equations represent oscillatory motion and the frequency of this 

motion is represented by ω d  1 − ζ 
2
 ω n (14) 

Where, ωd  is the damped natural frequency of the system. Constants A1  and Φ1  are 

determined by applying initial conditions. The typical response curve of an under 
damped system is shown in Fig.6. 

 

e −iθ 
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Applying initial conditions, 

x = Xo at t = 0; and x&  0 at t = 0, and finding constants A1 and 

Φ1, equation (13) becomes 
 
                   

   
X 

         
1 − ζ 2   

   o   −ζω t  2  −1    
      n       

x   1 − ζ 
2 

e sin  1 − ζ ω n t  tan    ζ   (15) 

The term  X o   e −ζωn
t 
represents the amplitude of vibration, which is observed to decay 

     

1 − ζ 
2 
              

exponentially with time. 
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LOGARITHMIC DECREMENT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Referring to Fig.7, points A & B represent two successive peak points on the response 

curve of an under damped system. XA and XB represent the amplitude corresponding to 

points A & B and tA & tB represents the corresponding time. 
 
                             

2 
ω n 

 

We know that the natural frequency of damped vibration = ωd   1 − ζ rad/sec. 

Therefore, f 
d 
   ω d      cycles/sec        

          

2π 
                          

                                      

Hence, time period of oscillation = t B  − t A      1   2π  2π  sec (16) 
            

                          f d    ωd 1 − ζ 2 ω n     

From equation (15), amplitude of vibration                       

 XA =       X o         
e 

−ζωnt A        
                 

  

               

      

1 − ζ 2 
                 

                                

 XB =        X o         e −ζωnt B        
                                  

           1 − ζ 
2 

               

Or, 
 X A  

 e −ζωn  
t
 A −

t
 B   eζωn  

t
 B −

t
 A 

       
 

X B 
       

                                      
            2πζ                            
  X

 A 
 

                                    

Using eqn. (16), 

 

 e 1−ζ 
2 

                          

 X B                           

Or,  log 

e 

 X A       2πζ              
                              

       X B           1 − ζ 
2 
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This is called logarithmic decrement. It is defined as the logarithmic value of the ratio of two 

successive amplitudes of an under damped oscillation. It is normally denoted by δ.  

Therefore, δ = log X A   2πζ (17) 

e X  
1 − ζ 

2  
 B   

This indicates that the ratio of any two successive amplitudes of an under 
damped system is constant and is a function of damping ratio of the system. 

For small values of ζ, δ  ≈ 2πζ  

If X0  represents the amplitude at a particular peak and Xn  represents the amplitude after 
         

X 
     

X 1 
  X 

‘n’ cycles, then, logarithmic decrement = δ = log  
e 

0  log 
e 

 ……  log 
e 

n−1 
       

        

X 1 
  

X 2 X n   

X 
       

  
X 1 

    X      

Adding all the terms, nδ = log 0   ......   n −1       

 e X 1 X 2       X n      

 Or,δ 1 log X 0       (18)   

   n e X n          

 

Solved problems  

1) The mass of a spring-mass-dashpot system is given an initial velocity 5ωn, where ωn is the undamped 

natural frequency of the system. Find the equation of motion for the system, when (i) ζ = 2.0, (ii) ζ = 1.0, (i) ζ 
= 0.2. 
 

Solution: 

Case (i) For ζ = 2.0 – Over damped system 
 

For over damped system, the response equation is given by 
 

 x  C e −ζ  ζ 
2

 −1 ωnt  C e −ζ − ζ 
2

 −1 ωnt 
 1     2     

Substituting ζ = 2.0, x  C e 

−

0.27 ωn

t    C 
2 

e 
−3.73ωnt (a) 

 1         

 &   −0.27ω n t    −3.73ω n t 

Differentiating, x  −0.27ωnC1e  − 3.73ωnC2e (b) 
Substituting the initial conditions       

     &      

 x = 0 at t = 0; and x  5ωn at t = 0 in (a) & (b), 

 0 = C1 + C2  (c)  

 5ωn = -0.27 ωn C1 – 3.73 ωn C2 (d) 

Solving (c) & (d), C1 = 1.44 and C2 = -1.44.  
Therefore, the response equation becomes      

 x  1.44 e


−
0.27ωnt−e−3.73

ωnt (e) 
Case (ii) For ζ = 1.0 – Critically damped system          
 

For critically damped system, the response equation is given by 
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 x  C1   C2 t e −ωnt 
(f) 

 & −ω n t −ω n t 

Differentiating, x  −C1  C2t ωne  C2e (g) 
Substituting the initial conditions 
 

& 

x = 0 at t = 0; and  x  5ωn at t = 0 in (f) & (g), 
C1 = 0 and C2 = 5ωn  

Substituting in (f), the response equation becomes 

x  5ωnt e −ω 
n
 
t
 (h) 

Case (iii) For ζ = 0.2 – under damped system 
 

For under damped system, the response equation is given by 

x  A1e −ζωn 
t
 sin 1 − ζ 2 ω n t  φ1 

Substituting ζ = 0.2,  x  A1e−0.2ω n 
t
 sin0.98ωnt  φ1  (p)  

Differentiating,      
& −0.2ω n t 

sin0.98ωnt  φ1   0.98ωn A1e 

−0.2ω n t 

cos0.98ωnt  φ1  (q) x  −0.2ωn A1e   
Substituting the initial conditions    

  &    

 x = 0 at t = 0; and  x  5ωn   at t = 0 in (p) & (q),  

 A1sinΦ1 = 0 and A1 cosΦ1 = 5.1    

Solving, A1 = 5.1 and Φ1 = 0    
Substituting in (p), the response equation becomes    

 x  5.1e−0.2ω n 
t
 sin0.98ωnt  (r)   

 
 

2) A mass of 20kg is supported on two isolators as shown in fig.Q.2. 
Determine the undamped and damped natural frequencies of the system, 
neglecting the mass of the isolators. 
 
 
 
 
 
 
 
 
 
 
 

 

Solution: 
 

Equivalent stiffness and equivalent damping coefficient are calculated as 
 

1  1 1 1  1  13 
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k 
 eq  k1  k 210000   3000  30000      
                                      

 1  1  1  1   1     4         
 

C 
                 

  C1 
 C2 300 

  
100 

     
300 

       
 eq                 
                                      

                            

  

        

                            

30000  

    

                                  

Undamped natural frequency =  ω     eq       13  10.74rad / sec 
                 

         n     m      20      
                           

             f n    10.74  1.71cps    
                    

                       2π            
     

 

        

 

2 
ω n 

   

Damped natural frequency = ωd  1 − ζ    

          C              300      
     ζ      eq           4    0.1745                     
                  

2 
     

       2    k eq  m      30000  20  
                            13    

     ∴ ω d   1 − 0.1745
2
  10.74  10.57rad / sec 

Or,    f d   
10.57

  1.68cps    

         2  π                         

 

3) A gun barrel of mass 500kg has a recoil spring of stiffness 3,00,000 
N/m. If the barrel recoils 1.2 meters on firing, determine, 
(a) initial velocity of the barrel  
(b) critical damping coefficient of the dashpot which is engaged at the 
end of the recoil stroke  
(c) time required for the barrel to return to a position 50mm from the 
initial position. 

 

Solution: 
 
(a) Strain energy stored in the spring at the end of recoil: 

P  
1

 kx 
2
  

1
  300000  1.2 

2
  216000N − 

m 2 2 
Kinetic energy lost by the gun barrel: 

T  
1

 mv 
2
   

1
  500  v 

2
   250v 

2
 , where v = initial velocity of the barrel  

22 
 
Equating kinetic energy lost to strain energy gained, ie 

T = P, 250v 
2

  216000 
v = 29.39m/s 

 
          

(b) Critical damping coefficient = Cc    2 km  2 300000  500  24495N − sec/ m 
(c) Time for recoiling of the gun (undamped motion):    

Undamped natural frequency = ωn 
 k 


300000 

 24.49r / s  m 500           

Time period = τ 2π  2π   0.259 sec   
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ω 
n

 24.29 

Time of recoil = 
τ

  
0.259

  0.065 sec 

4 4 
Time taken during return stroke:  

Response equation for critically damped system = x  C1  C2 t e 

−ωnt
 Differentiating, x&  C2 e −ωn

 
t
 − C1  C2 t ωn e −ωn

 
t 

 
Applying initial conditions, x = 1.2, at t = 0 and x&  0 at t = 

0, C1 = 1.2, & C2 = 29.39  

Therefore, the response equation = x  1.2  29.39t e 

−24.49t
 When x = 0.05m, by trial and error, t = 0.20 sec 

Therefore, total time taken = time for recoil + time for return = 0.065 + 0.20 = 
0.265 sec The displacement – time plot is shown in the following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

4) A 25 kg mass is resting on a spring of 4900 N/m and dashpot of 147 N-se/m in 

parallel. If a velocity of 0.10 m/sec is applied to the mass at the rest position, what 

will be its displacement from the equilibrium position at the end of first second? 
 

 

Solution: 
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The above figure shows the arrangement of the system.  

Critical damping coefficient = cc    2mωn  

Where ωn    k  
4900

  14r / s  
 

m 
 

  25   

Therefore, cc  2  25  14  700 N − sec/ m  

Since C< C , the system is under damped and ζ  c  
147

  0.21 

c    
cc 700     

 

Hence, the response equation is  x  A1e−ζωn 
t
 sin 1 − ζ 

2
 ωnt  φ1 

Substituting ζ and ωn, x  A1e −
0.2114t

 sin 1 − 0.21
2
 14t  φ1  

 x  A1e −
2.94t

 sin13.7t  φ1 
 

Differentiating,  x&  −2.94 A1e −
2.94t

 sin13.7t  φ1   13.7 A1e −
2.94t

  cos13.7t  φ1 
 

Applying the initial conditions, x = 0, at t = 0 and  x&  0.10m / s  at t = 0 
Φ1 = 0  

0.10  −2.94 A1 sinφ1   13.7 A1 

cosφ1  Since, Φ1 = 0, 0.10 = 13.7 A1; A1 = 0.0073 
 

Displacement at the end of 1 second =  x  0.0073e −
2.94

 sin13.7  3.5 10 −
4
 m 

 

 

5) A rail road bumper is designed as a spring in parallel with a viscous damper. 

What is the bumper’s damping coefficient such that the system has a damping 

ratio of 1.25, when the bumper is engaged by a rail car of 20000 kg mass. The 

stiffness of the spring is 2E5 N/m. If the rail car engages the bumper, while 

traveling at a speed of 20m/s, what is the maximum deflection of the bumper? 
 

 

k 
 

m 
 

c 
 
 

Solution: Data = m = 20000 kg; k = 200000 N/m; ζ  1.25 
 

Critical damping coefficient =  

c   2  m  k  2  20000  200000  1.24 10
5
 N − sec/ m 

c 

Damping coefficient C  ζ  C 1.251.2410
5
1.5810

5
N−sec/m 

C 
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Undamped natural frequency = ωn   k    
200000

  3.16r / s 
  

m           20000   

Since ζ  1.25 , the system is over damped.     

For over damped system, the response equation is given by  
            

ωn
t 

 

 x  C e  
−ζ  ζ 

  2  −
1

  ωn
t Ce−ζ−ζ  2

 −1  
 1 


  


      2     

Substituting ζ = 1.25, 
 0.5 t 

 C  e−2.0ωnt 
   

(a) x  C e −  ωn    
 1       2       

 &       −0.5ωnt   −2.0ωnt  

Differentiating, x  −0.5ωn C1e     − 2.0ωn C2e (b) 
Substituting the initial conditions            

            & 
 20m / s  at t = 0 in (a) & (b),    x = 0 at t = 0; and x 

 0 = C1 + C2       (c)     

 20 = -0.5 ωn C1 – 2.0 ωn C2  (d)  

Solving (c) & (d), C1 = 4.21and C2 = -4.21     
Therefore, the response equation becomes      

 x  4.21 e−1.58t  − e−6.32t   m    (e) 
               

The time at which, maximum deflection occurs is obtained by equating velocity 
equation to zero.  

&   −0.5ωnt   −2.0ωnt 

Ie, x  −0.5ωnC1e − 2.0ωnC2e  0 

Ie, − 6.65e −1.58t  26.61e −6.32t  0  
   

 
Solving the above equation, t = 0.292 secs. 

Therefore, maximum deflection at t = 0.292secs, 

Substituting in (e),  x  4.21e

−
1.580.292 − e


−
6.320.292 m , = 1.99m.  

6) A disc of a torsional pendulum has a moment of inertia of 6E-2 kg-m
2

 and is 
immersed in a viscous fluid. The shaft attached to it is 0.4m long and 0.1m in 
diameter. When the pendulum is oscillating, the observed amplitudes on the same  

side of the mean position for successive cycles are 9
0

, 6
0

 and 4
0

. Determine (i) 
logarithmic decrement (ii) damping torque per unit velocity and (iii) the periodic 

time of vibration. Assume G = 4.4E10 N/m
2

, for the shaft material. 
 

 

Shaft dia. = d = 0.1m 
 

Shaft length = l = 0.4m  

Moment of inertia of disc = J = 0.06 kg-m
2

. 
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Modulus of rigidity = G = 4.4E10 N/m
2 

 
 

 

Solution: 
The above figure shows the arrangement of the system. 

9 6 

δ e  6 


 
log

 e  4 


 
0.405

 
 
 
 
 

 

We know that logarithmic decrement = δ 

    πζ                 

   1 − ζ 2 , rearranging which, we get 

Damping factor ζ    δ          0.405       0.0645                                 

                                 

      4π 
2
 δ

2 
       4π 

2 
    0.405

2 
         

Also, ζ 

C  

                        

, where, critical damping coefficient = CC    2  k t 
J  

CC  
          

πd 
4      

4.4 10
10

    π  0.1
4      

    GI p   G             

Torsional stiffness = k t   

   


  


       


              


     

  1.08  10  N − m / rad l  l  32         0.4     32   
                                

                 

Critical damping coefficient = C C   2 

  

 2 

 

1.08  10
6 

 

 0.06  509N − m / rad k t J  

Damping coefficient of the system = C  CC   ζ   509  0.0645  32.8N − m / rad 

(iii) Periodic time of vibration = τ   1   2π       2π         
                        

ω 
            

           f d ω d n  1 − ζ 
2 
       

                                   

                                   
 

     
                                  

1.08  10
6      

                          k              

Where, undamped natural frequency = ωn 
 


     t     


          

 4242.6rad / sec       J     0.06  
       

2π 
                           

                                            

Therefore, τ 0.00148         

   sec4242.6 1 − 0.0645
2 
                    

 

7) A mass of 1 kg is to be supported on a spring having a stiffness of 9800 
N/m. The damping coefficient is 5.9 N-sec/m. Determine the natural 
frequency of the system. Find also the logarithmic decrement and the 
amplitude after three cycles if the initial displacement is 0.003m. 
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Solution:              

Undamped natural frequency = ωn  k 
9800

  99r / s 

m           1   

            

Damped natural frequency = ω  d  1 − ζ 2 ω n     

Critical damping coefficient = cc   2  m  ωn  2  1 99  198N − sec/ m 

Damping factor = ζ  c 5.9  0.03         

cc 

         

 198            

Hence damped natural frequency = ω d 

 

 

    

 1 − ζ 
2 

ω n    1 − 0.013
2 
 99  98.99rad / sec 
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Logarithmic decrement = δ  2πζ 2  π  0.03  0.188 
      

     1 − ζ 
2 

   1 − 0.03
2 
 

Also, δ   1 log  X 0 ; if x0 = 0.003,      

n 
e
  X n      

then, after 3 cycles, δ 1 log  
 

e  

n    

ie,  X 3   
0.003

   1.71 10 −
3
 m 

e 30.188 

 

X 0  

ie,0.188  
1

  log 

 0.003 

X n 

e 

X 3 3  

 
8) The damped vibration record of a spring-mass-dashpot system shows 
the following data. 
Amplitude on second cycle = 0.012m; Amplitude on third cycle = 0.0105m;  
Spring constant k = 7840 N/m; Mass m = 2kg. Determine the damping 
constant, assuming it to be viscous. 
 

Solution:                     

Here, δ  log 
e 

X 2  log 
e 

0.012 
 0.133 

          

X 3 0.0105 
          

                  

                    

Also, δ   2πζ , rearranging, ζ    δ     0.133   0.021 
              

  1 − ζ 
2 
      4π 

2 
δ

2 
   4π 

2
   0.133

2 
  

        

 250.4N − sec/ m Critical damping coefficient = cc  2   m  k   2   2  7840 

Damping coefficient C  ζ  CC  0.021 250.4  5.26N − sec/ m  
 

 

9) A mass of 2kg is supported on an isolator having a spring scale of 2940 N/m and 

viscous damping. If the amplitude of free vibration of the mass falls to one half its 

original value in 1.5 seconds, determine the damping coefficient of the isolator. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Solution:      

Undamped natural frequency = ωn 
k 


2940 

 38.34r / s 
m 2      
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Critical damping coefficient = cc 2mωn2238.34153.4N−sec/m  
  

x  A1e −ζωnt
 sin

 

ωn t  φ1 Response equation of under damped system = 1 − ζ 
2 

Here, amplitude of vibration = A1e 
−ζωnt        

        

If amplitude = X0 at t = 0, then, at t = 1.5 sec, amplitude = X 0  

2 
  

            

Ie, A1e  −ζωn 
0
  X 0 or A1  X 0          

Also,A e  
−ζω

n  

1.5 
 X 0 or X  e −ζ 38.341.5  X 0 or e −ζ 38.341.5  1 

1  2  0   2  2  
        

Ie, eζ 38.341.5  2 , taking log, ζ  38.34  1.5  0.69 ∴ ζ  0.012 

Damping coefficient C  ζ  CC 0.012153.41.84N−sec/m 
 

 

Forced Vibrations  
Introduction: 
 
In free un-damped vibrations a system once disturbed from its initial position executes 
vibrations because of its elastic properties. There is no damping in these systems and hence no 
dissipation of energy and hence it executes vibrations which do not die down. These systems 
give natural frequency of the system.  
In free damped vibrations a system once disturbed from its position will execute vibrations 
which will ultimately die down due to presence of damping. That is there is dissipation of 
energy through damping. Here one can find the damped natural frequency of the system.  
In forced vibration there is an external force acts on the system. This external force which acts on 
the system executes the vibration of the system. The external force may be harmonic and periodic, 
non-harmonic and periodic or non periodic. In this chapter only external harmonic forces acting on 
the system are considered. Analysis of non harmonic forcing functions is just an extension of 
harmonic forcing functions. 

 

Examples of forced vibrations are air compressors, I.C. engines, turbines, machine tools etc,. 

 

Analysis of forced vibrations can be divided into following categories as per the syllabus. 

 

1. Forced vibration with constant harmonic excitation  
2. Forced vibration with rotating and reciprocating unbalance 

 
3. Forced vibration due to excitation of the support A: Absolute 

amplitude B: Relative amplitude  
4. Force and motion transmissibility 

 

For the above first a differential equation of motion is written. Assume a suitable solution to the 
differential equation. On obtaining the suitable response to the differential equation the next step 
is to non-dimensional the response. Then the frequency response and phase angle plots are 
drawn. 
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1. Forced vibration with constant harmonic excitation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

From the figure it is evident that spring force and damping force oppose the motion of the mass. 
An external excitation force of constant magnitude acts on the mass with a frequency ω. Using 
Newton’s second law of motion an equation can be written in the following manner. 

 

mx&& + cx& + kx = FoSinω t − − − − − −1 
 
Equation 1 is a linear non homogeneous second order differential equation. The solution to eq. 1 
consists of complimentary function part and particular integral. The complimentary function part 
of eq, 1 is obtained by setting the equation to zero. This derivation for complementary function 
part was done in damped free vibration chapter. 
 

x = xc  + x p  − − − − − 2 
 

The complementary function solution is given by the following equation.  

xc  = A2 e 
−ζωnt

 Sin[ 1 − ξ 
2
 ωnt + φ2 ]− − − 3 

 

Equation 3 has two constants which will have to be determined from the initial conditions. But 
initial conditions cannot be applied to part of the solution of eq. 1 as given by eq. 3. The 
complete response must be determined before applying the initial conditions. For complete 
response the particular integral of eq. 1 must be determined. This particular solution will be 
determined by vector method as this will give more insight into the analysis. 

 

Assume the particular solution to be 

x p  = XSin(ωt − φ) − − − −4 

 

Differentiating the above assumed solution and substituting it in eq. 1 
 

π 
 

& 
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x p = ωXSin ωt − φ + 
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2 

 
& 

 
&2 

 

x 
 

p  = ω XSin(ωt − φ + π ) 
 

π 
 

FoSinω t − kXSin(ωt − φ) − cω x ωt − φ + 
 

2 

− mω
2
 XSin(ωt − φ + π) = 0 − − − − − 5 
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Fig. Vector representation of forces on system subjected to forced vibration 
 
 
 

 

Following points are observed from the vector diagram 

1. The displacement lags behind the impressed force by an angle Φ.  
2. Spring force is always opposite in direction to displacement. 

 
3. The damping force always lags the displacement by 90°. Damping force is always 

opposite in direction to velocity.  
4. Inertia force is in phase with the displacement. 

 
The relative positions of vectors and heir magnitudes do not change with time. 

 
From the vector diagram one can obtain the steady state amplitude and phase angle as 
follows 
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X = F0 [(k − mω
2
 )

2
  + (cω)

2
 ]− − − 6 

 

φ = tan
-1

 [cω (k − mω
2
 )]− − − 7 

 

The above equations are made non-dimensional by dividing the numerator and denominator 
by K. 
 

   
X

 st    

      

X =  [1 − (ω ωn )
2
 ]

2
  + [2ξ(ω ωn )]

2 
  − − − 8 

 
- 1 

2ξ(ω ω )    
     

   n    

φ = tan 
  

1 − (ω ω )
2 − − − 9  

     

   n    

where, X = F  k is zero frequency deflection  

st  o     
 

Therefore the complete solution is given by 

x = xc + x p 

 

x = A2 e 
−ζωnt

 Sin[ 1 − ξ
2
 ωnt + φ2 ] 

 

 X st Sin(ωt − φ) 

+ 

[1 − (ω ωn )
2 

]2 + [2ξ(ω ωn )]
2 

  − − − 10 
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The two constants A2 and φ2 have to be determined from the initial conditions. 

 

The first part of the complete solution that is the complementary function decays with time and 
vanishes completely. This part is called transient vibrations. The second part of the complete 
solution that is the particular integral is seen to be sinusoidal vibration with constant amplitude 
and is called as steady state vibrations. Transient vibrations take place at damped natural 
frequency of the system, where as the steady state vibrations take place at frequency of excitation. 
After transients die out the complete solution consists of only steady state vibrations. 

 

In case of forced vibrations without damping equation 10 changes to 
 
 

 

  X st Sin(ωt ) 

x = A2Sin[ωnt + φ2 ]+ 
 

1 − (ω ω )
2 

 

− − − 11   

   
  n  

 

Φ2 is either 0° or 180° depending on whether ω<ωn or ω>ωn 

 

Steady state Vibrations: The transients die out within a short period of time leaving only the 
steady state vibrations. Thus it is important to know the steady state behavior of the system,  
Thus Magnification Factor (M.F.) is defined as the ratio of steady state amplitude to the 
zero frequency deflection. 
 

 

 X      1    

M.F. = = 
       

− − − 12        

 
X

 st     2 2 2   

    [1 − (ω ωn ) ] + [2ξ(ω ωn )] 

  - 1    2ξ(ω ω )     

      n     

φ = tan    1 − (ω ω )
2 

  − − −13 

      n     
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Equations 12 and 13 give the magnification factor and phase angle. The steady state amplitude 
always lags behind the impressed force by an angle Φ. The above equations are used to draw 
frequency response and phase angle plots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. Frequency response and phase angle plots for system subjected forced vibrations. 
 
Frequency response plot: The curves start from unity at frequency ratio of zero and tend to zero 
as frequency ratio tends to infinity. The magnification factor increases with the increase in 
frequency ratio up to 1 and then decreases as frequency ratio is further increased. Near resonance 
the amplitudes are very high and decrease with the increase in the damping ratio. The peak of 
magnification factor lies slightly to the left of the resonance line. This tilt to the left increases 
with the increase in the damping ratio. Also the sharpness of the peak of the curve decreases with 
the increase in the damping. 
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Phase angle plot: At very low frequency the phase angle is zero. At resonance the phase angle is 
90°. At very high frequencies the phase angle tends to 180°. For low values of damping there is a 
steep change in the phase angle near resonance. This decreases with the increase in the damping. 
The sharper the change in the phase angle the sharper is the peak in the frequency response plot.   
The amplitude at resonance is given by equation 14 

 

cω X r  = Fo  

X r  = X st 2ξ − − − 14 
 
 

The frequency at which maximum amplitude occurs is obtained by differentiating the 
magnification factor equation with respect to frequency ratio and equating it to zero. 
 
 

ωp 2 
 

 

= 1 − 2ξ − − − 15  

ωn 
 

1 
 

ξ 〉0.707  

Also no maxima will occur for 
ξ
 〉 or 2 

 
 
 
 

 

2. Rotating and Reciprocating Unbalance 

 

Machines like electric motors, pumps, fans, clothes dryers, compressors have rotating elements 
with unbalanced mass. This generates centrifugal type harmonic excitation on the machine.  
The final unbalance is measured in terms of an equivalent mass mo rotating with its c.g. at a 
distance e from the axis of rotation. The centrifugal force is proportional to the square of 
frequency of rotation. It varies with the speed 
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of rotation and is different from the harmonic excitation in which the maximum force is 

independent of the frequency. 
 
 
 
 

Let mo = Unbalanced mass 
 

e = eccentricity of the unbalanced mass M= Total 
mass of machine including unbalanced mo  
mo makes an angle ωt with ref. axis. Moeω

2
 is 

the centrifugal force that acts radially outwards. 
 
 
 
 
 
 
 
 

Equation of motion is 
 
 

(M − mo ) 
d 2 x

 dt 
2 

 d 2  dx 

Mx&& + cx& + kx 
  

( x + esinωs) = −kx − c + m  

 o dt 2  dt 

= m eω
2
 sinω t − − − 1 o 

 

The solution of following equation 2 is given by  

mx&& + cx& + kx = Fo sinω t − − − 2 
 

x = A2 e 
−ζωnt

 Sin[ 1 − ξ 
2
 ωnt + φ2 ] 

 

X st Sin(ωt − φ) 

 

+  [1 − (ω ωn )
2
 ]

2
  + [2ξ(ω ωn )]

2 
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Compare eq. 1 with eq.2 the only change is Fo is replaced by mo eω
2 

 
The transient part of the solution remains the same. The only change is in the steady state part of 
the solution. 
Therefore the steady state solution of eq.1 can be written as 

 

x = Xsin(ωt − φ)        

    m   eω
2 

k 
    o     

         

where...X =        

   2 2  
   2      

    Mω cω 

1 

       

− +    
      

    k  k 
 

The above equation reduces to dimensionless form as   

        2     
          ω    

  X   ωn   
  

= 
           

             

  2      2     

        2    2  

  moeω         

       ω     ω    

 M     
1 − 

  
+  2ξ 

  
          

       
ω

n     
ω

n   
 
 

The phase angle equation and its plot remains the same as shown below 
 

 

   ω  

 2ξ 
−      

1   ω 

   n 

φ = tan 2 

   ω  

1 − 



Pa
ge 

| 
48  
 

 
ω
n 
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Frequency response and phase angle plots (Unbalance) 

 

At   low   speeds is small, hence all response curves start 
from zero.  

X  1 
 

At resonance ω / ωn 
  

   
 

= 1, therefore 
 

=
 2ξ  m e 

 

M 
 
And amplitude is limited due to damping present in the system. Under these conditions the 
motion of main mass (M-mo) lags that of the mass mo by 90°. When ω / ωn is very large the ratio 
X/(moe/M) tends to unity and the main mass (M-mo) has an amplitude of X= moe/M . This 
motion is 180° out of phase with the exciting force. That is when unbalanced mass moves up, the 
main mass moves down and vice versa. 

 

Problem 1 
 
A counter rotating eccentric weight exciter is used to produce the forced oscillation of a spring-
supported mass as shown in Fig. By varying the speed 
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of rotation, a resonant amplitude of 0.60 cm was recorded. When the speed of rotation was 
increase considerably beyond the resonant frequency, the amplitude appeared to approach a fixed 
value of 0.08 cm. Determine the  

damping factor of the system. 

 

m e  

X =  2ξ 
M 

= 0.6cm  

 

X = 
m

M
e
 = 0.08cm 

 
Dividing one by the other  

ξ = 0.0667  
(Answer) 

 

Problem 2 
 
A system of beam supports a mass of 1200 kg. The motor has an unbalanced mass of 1 kg 
located at 6 cm radius. It is known that the resonance occurs at 2210 rpm. What amplitude of 
vibration can be expected at the motors operating speed of 1440 rpm if the damping factor is 
assumed to be less than 0.1 
Solution:  
Given: M = 1200 kg, mo= 1 kg, eccentricity = e = 0.06m, Resonance at 2210 rpm, Operating 
speed = 1440 rpm, ξ = 0.1, X = ?.  

2π N 

        2π Nop 

ω =  60 = 231.43 rad / s   ω =   = 150.79rad/s 
       60  

ω        
  = r = 0.652       

ωn  
ω 

   
       

   X  ω   2    
          
 

 

=  
m eω       

  ω   ω  

M 1 − 
n +  2ξ 

o2 
 

ω ω   2  2  2 
 
 
 
 
 
 
 
 
 

 

n n 
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Substituting the appropriate values in the above eq.  
X = 0.036 mm (Answer)  

However, if ξ is made zero, the amplitude X = 0.037 mm (Answer) 
 
This means if the damping is less than 0.1, the amplitude of vibration will be between 0.036 mm 
and 0.037 mm. (Answer) 

 

Problem 3 
 
An eccentric mass exciter is used to determine the vibratory characteristics of a structure of mass 
200 kg. At a speed of 1000 rpm a stroboscope showed the eccentric mass to be at the bottom 
position at the instant the structure was moving downward through its static equilibrium position 
and the corresponding amplitude was 20 mm. If the unbalance of the eccentric is 0.05 kg-m, 
determine, (a) un damped natural frequency of the system (b) the damping factor of the structure  
(c) the angular position of the eccentric at 1300 rpm at the instant when the structure is moving 
downward through its equilibrium position.  
Solution: 
 
Given: M = 200 kg, Amplitude at 1000 rpm = 20 mm, moe = 0.05 kg-m At 1000 rpm the 
eccentric mass is at the bottom when the structure was moving downward – This means a 

there is phase lag of 90° (i.e., at resonance). At resonance ω = ωn.  
      2π N    

ω ω = ωn =    = 104.72rad/s  2ξ  
   60          

  X   1        
   =          

 m   e    2ξ φ= tan    
  o          

ω   

M 

      

1 − 

 

           
            

ξ = 0.00625 (Answer)   
ω            

         φ =176.189  nn  2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o (Answer) 
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Problem 4 
 
A 40 kg machine is supported by four springs each of stiffness 250 N/m. The rotor is 
unbalanced such that the unbalance effect is equivalent to a mass of 5 kg located at 50mm from 
the axis of rotation. Find the amplitude of vibration when the rotor rotates at 1000 rpm and 60 
rpm. Assume damping coefficient to be 0.15 
Solution: 

Given: M = 40 kg, mo= 5 kg, e = .05 m, ξ = 0.15, N = 1000 rpm and 60 rpm. When N = 1000 
rpm 
 

ω = 
2π

 
N

 = 

104.67rad/s 60 
 

        ω 

  k      

ωn  =    = 5rad/s = 20.934 
  M    ωn 
     ω 

     2  

X     ω 
          

 

 

=  
m eω           

  ω     ω   

M 1 −   +  2ξ      

o2 
 

ω 
 n 

ω  2 
 

 2  2   

   = 1.256   n n 
       X at 1000 rpm = 6.26 mm (Solution)  

       When N = 60 rpm  

         2π N  

        ω = = 6.28rad/s 
      60  

    ω      
           

    ωn      
 
Using the same eq. X at 60 rpm = 14.29 mm (Solution) 

 

Problem 5 
 
A vertical single stage air compressor having a mass of 500 kg is mounted on springs having a 

stiffness of 1.96×10
5
 N/m and a damping coefficient of 0.2. The rotating parts are completely 

balanced and the equivalent reciprocating parts have a mass of 20 kg. The stroke is 0.2 m. 
Determine the 
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dynamic amplitude of vertical motion and the phase difference between the motion and 
excitation force if the compressor is operated at 200 rpm. Solution 

Given: M = 500 kg, k = 1.96×10
5
 N/m, ξ = 0.2, mo = 20 kg, stroke = 0.2 m, N = 200 rpm, X = ?. 

Stroke = 0.2 m, i.e. eccentricity e = stroke/2 = 0.1 m 
Using the equations X = 10.2 mm and φ = 105.9° (Solution) 

 

(a) 
 

c = 500 4 = 125N − s/m 

 

  cc  = 2   kM = 2 6400 × 20 = 715.54N − s/m 

   c   125                          
  ξ =  =      = 0.175 (Solution)      

   cc   715.5                         

(b) 
                   2           
                               

                   ω             

  X =            ω            φ= tan 
− 

                                  
  

m eω 

                               

                                 

             ω               ω      

                                

  M       1  − ω +   2ξ  ω 2   

              n
m

o 
e 
       n 

X = 0.15 cm and φ = 169° (Solution)      

                                

                  k 6400       

(c)       ωn =          =      = 17.88rad/s 
                  M 20        

               60 × ωn      
          N =             = 170.74rpm 

           r     
2 × π 

     
                     

          X r =           = 0.357cm 
               2ξ M             

                      2 × π × 400      

        cω X = 125 ×          × 0.15 ×10 
−2 

(d)                    60        

        kX = 6400 × 0.15 ×10 
−2 

= 9.6N 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ω 
 

 

2ξ ω 
 
 
 
 

 

1 − ω 

 

1 
ω 

 
n 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

= 7.85N 
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F =   (cω X )
2
  + (kX )

2 
= 12.4N 

 

Conclusions on rotating and reciprocating unbalance 
 

• Unbalance in machines cannot be made zero. Even small unbalanced 
mass can produce high centrifugal force. This depends on the speed of 
operation.  

• Steady state amplitude is determined for a machine subjected unbalanced 
force excitation.  

• For reciprocating machines, the eccentricity can be taken as half the crank 
radius.  

• Frequency response plot starts from zero at frequency ratio zero and tends 
to end at unity at very high frequency ratios. 

 
 

 

2. Response of a damped system under the harmonic  
motion of the base 

 
In many cases the excitation of the system is through the support or the base instead of being 
applied through the mass. In such cases the support will be considered to be excited by a regular 
sinusoidal motion. 
 
Example of such base excitation is an automobile suspension system excited by a road surface, 
the suspension system can be modeled by a linear spring in parallel with a viscous damper. such 
model is depicted in Figure 1. 
There are two cases: (a) Absolute Amplitude of mass m  

(b) Relative amplitude of mass m 

 

(a) Absolute Amplitude of mass m 

 

X  
m 

 
 

 

K C 
 

Y=Ysinωt 
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It is assumed that the base moves harmonically, that is 
 
 
 

 

where Y denotes the amplitude of the base motion and ω represents the frequency of the 
base excitation 
Substituting Eq.2 in Eq. 1 
 
 

 

The above equation can be expressed as 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where Y[k
2
 + (c ω )

2
]
1/2

 is the amplitude of excitation force. Examination of 
equation 3 reveals that it is identical to an Equation developed during derivation for 
M.F. The solution is: 

 

mx&&+ cx& + kx = Fo  sin ωt x 
 
= Xsin (ωt − φ ) 
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 F k  

X = 1[ − (ω ω ) ]o2 + [2ξ (ω ω )] 
 
 
 
 
 
 
 
 
 

 

n 2 n 2 

 
 
 

 

x = Xsin (ωt + α - φ ) 
 
 

 

Therefore the steady state amplitude and phase angle to eq. 3 is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above equations can be written in dimensionless form as follows 

 

  ω     ω 

1 +  2ξ    2ξ  

X  ω    

φ = tan 
− 

ω 

=       
Y        

ω    ω  1 − ω 

1 − 
 

+ 2ξ 
  

1 
n 

   2 
ω 2 2 n 2 ω 2  ω  
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n  n   n  

       
 
 

 

ω 

 2ξ        

   ω      ω 

φ − α = tan 
− 

     − tan 
− 

2ξ 

1    n1  ω 

  ω        

1 − 

ω  
The motion of then mass2 m lags thatn of the support by an angle (φ – 
α) as shown by equation 6.  
Equation 5 which gives the ratio of (X/Y) is also known as motion transmissibility 

or displacement transmissibility. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. gives the frequency response curve for motion transmissibility. 
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1. For low frequency ratios the system moves as a rigid body and X/Y 1.  
2. At resonance the amplitudes are large 

 
3. For very high frequency ratios the body is almost stationary (X/Y 0) It will seen later that 

the same response curve is also used for Force Transmissibility. 

 
 

 
(b) Relative Amplitude of mass m 
 
 
Here amplitude of mass m relative to the base motion is considered. The equations are 
basically made use in the  
Seismic instruments. If z represents the relative motion of the mass 

w.r.t. support, 

z = x − y 

x = y + z 

Substituting the value of x in eq. 
 
 
 
 
 
 

 

mz&& + cz& + kz = mω 
2
Y sin ωt 

 

 

The above equation is similar to the equation developed for rotating and reciprocating 
unbalances. Thus the relative steady state amplitude can written as  

 ω      2ξ (ω ω  )  
        
  

2 
      

        
         

 

  -1 n 

Z ω φ = tan  

Y =  1− (ω ω )
2 

ω ω  n 

 

1 −   +  2ξ  

ω 2 n2 ω 2 
 
 
 
 
 
 
 
 
 
 
 
 

n n 
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Thus eq. 7 and eq.8 are similar to the one developed during the study of rotating an 
reciprocating unbalances. Frequency and phase response plots will also remain same. 

 

Problem 1 
 
The support of a spring mass system is vibrating with an amplitude of 5 mm and a frequency of 
1150 cpm. If the mass is 0.9 kg and the stiffness of springs is 1960 N/m, Determine the 
amplitude of vibration of mass. What amplitude will result if a damping factor of 0.2 is included 
in the system. Solution:  
Given: Y = 5 mm, f = 1150cpm, m =0.9 kg, k = 1960 N/m, X = ? ξ = 0.2, then X = 
? 

 

 

k 1960 

ωn  = = = 46.67rad/s  
m 0.9 

 
ω = 2 × π × f = 2 × π ×1150/60 = 120.43rad/ s  

ω = r = 2.58
 

ωn 
 

 
   ω   

1 +  2ξ    
X   ω   

Y =      

ω     ω 

1 −   + 2ξ   

  2 n 2 2 

ω 2    ω 
 

n n 

When ξ = 0, X = 0.886 mm (Solution) 

 

When ξ = 0.2, X = 1.25 mm (Solution) 
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Observe even when damping has increased the amplitude has not decreased but it has increased. 

 
 

 

Problem 2 
 
The springs of an automobile trailer are compressed 0.1 m under its own weight. Find the 
critical speed when the trailer is travelling over a road with a profile approximated by a sine 
wave of amplitude 0.08 m and a wavelength of 14 m. What will be the amplitude of vibration at 
60 km/hr. Solution: 

 
Given: Static deflection = dst = 0.1 m, Y = 0.08 m, γ = 14 m, Critical Speed = ?, X60 = ?. 
Critical speed can be found by finding natural frequency. 

 

 

       k g 9.81        

ωn  =    =     =       = 9.9rad/s    

f n = 
ωn 

  m 
d
 st .1          

= 1.576cps 2π           

V = wavelength × fn  = 14 ×1.576 = 22.06m/s    

Corresponding V = 22.06 m/s = 79.4 km/hr Amplitude    
X at 60 km/hr                

V60 = 16.67 m/s                
                        

ω          f = velocity wavelength = 
16.67

 = 1.19cps 14 

   = r = .756                

ωn                      
              ω = 2π f = 7.48rad/s    

                          

              ω           

                      

     1 +  2ξ           

 X                      

When damping is    ω           
                       

Y  = 

                     

                     

         ω        ω     
      1 −    + 2ξ    
              n 

2 
     

           2       

         ω 2 2      ω    

          n        n    
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Problem 3 
 
A heavy machine of 3000 N, is supported on a resilient foundation. The static deflection of the 
foundation due to the weight of the machine is found to be 7.5 cm. It is observed that the 
machine vibrates with an amplitude of 1 cm when the base of the machine is subjected to 
harmonic oscillations at the undamped natural frequency of the system with an amplitude of 0.25 
cm. Find (a) the damping constant of the foundation (b) the dynamic force amplitude on the base  
(c) the amplitude of the displacement of the machine relative to the 
base. Solution  
Given: mg = 3000 N, Static deflection = dst = 7.5 cm, X = 1 cm, Y = 0.25 cm, ω 
= ωn, ξ = ?, Fbase = ?, Z = ? 
(a) 

ω = ωn 

 

    X  0.010     1 + (2ξ )
2 

  =     = 4 =   

(2ξ )
2 

    Y0.0025      

Solving for ξ = 0.1291         

                 

c = ξcc  = ξ × 2   km = 903.05N − s/m 

(c)            

          2        

         ω         

Z =      ωn         
         

Y 2   2 2  
      ω      ω  

   1 −    +  2ξ 

      ωn     ωn 
 
 

Note: Z = 0.00968 m, X = 0.001m, Y = 0.0025 m, Z is not equal to X-Y due phase 
difference between x, y, z. 

 

Using the above eq. when ω = ωn, the 
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relative amplitude is Z = 0.00968 m (Solution) 

 

(b) 

 

Fd = (cω Z )
2
 + (kZ )

2
 ω = 

ωn = 3.65rad/s 
F

d 
= 388.5N

 (Solution) 
Problem 4 
 
The time of free vibration of a mass hung from the end of a helical spring is 0.8 s. When the 
mass is stationary, the upper end is made to move upwards with displacement y mm given by y 
= 18 sin 2πt, where t is time in seconds measured from the beginning of the motion. Neglecting 
the mass of spring and damping effect, determine the vertical distance through which the mass 
is moved in the first 0.3 seconds.  
Solution: 
 
Given: Time period of free vibration = 0.8 s., y = 18 sin 2πt, ξ = 0, x at the 

end of first 0.3 s. = ? 
 

&& 
mx + kx = ky 
&& 

mx + kx = kYsinω t where, Y = 18  mm, and ω = 2π rad/s. 
The complete solution consists of Complementary function and Particular integral part. 

 

x  = xc  + x p         

x c = Acosωnt + Bsinωnt         

x p = Xsin(ωt + α − φ)         

    Y         

where, X = 

         

ωn  = 
2π

 = 
2π 

  

  
2 

     
        
           

     ω     τ 0.8 
         

  

ω = 2π 
  

    1 −   
       ω 

= 0.8 
   

               
                

     

ωn 

   

ωn 

   

            

            and   φ − α = 0 

      ω          

(φ − α) = 0, if 〈1     

      ωn         

    o  ω     

(φ − α) = 180    ,  if   〉1     

          ωn     
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ωn  = 
2π

 = 
2π 

τ 0.8  
ω = 2π 
 
ω  

= 0.8 

ωn 
 

and φ − α = 0 
 

 

  Y 

Hence,x p = 

   

sinω t 
2    

   ω  

 

1 −  
ω

n 
 

The complete solution is given by 
 

 

 Y 

x = Acosωnt + Bsinωnt + 

   

sinω t 
2   

  ω  

 

1 − 

ωn 

 

Substituting the initial conditions in the above eq. constants A and B can be obtained 

 

 

at 
gives A = 0  

x = 0; t = 0   
ω 

 
      

&    Y  

x = 0, at t = 0   ωn  

and  B = − 2 
   

  ω  

 1 − 

 ωn 
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Thus the complete solution after substituting the values of A and B 

 

 Y    ω 

x =     

 ω    ω 
     n 

 1 −     

  ωn 

 
when t = 0.3 s, the value of x from the above eq. is x = 19.2 

mm (Solution) 
 
 

Conclusions on Response of a damped system under the harmonic motion of the 
base 

 
 

• Review of forced vibration ( constant excitation force and rotating and reciprocating 
unbalance ).  

• Steady state amplitude and phase angle is determined when the base is excited 
sinusoidally. Derivations were made for both absolute and relative amplitudes of the 
mass. 

 
 

 

4. Vibration Isolation and Force Transmissibility 
 

 
• Vibrations developed in machines should be isolated from the foundation so that 

adjoining structure is not set into vibrations. (Force isolation)  
• Delicate instruments must be isolated from their supports which may be subjected to 

vibrations. (Motion Isolation)  
• To achieve the above objectives it is necessary to choose proper isolation materials which 

may be cork, rubber, metallic springs or other suitable materials. 
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• Thus in this study, derivations are made for force isolation and motion isolation which give 

insight into response of the system and help in choosing proper isolation materials. 

 

Transmissibility is defined as the ratio of the force transmitted to the foundation to that 
impressed upon the system. 

 

m&x&+ cx& + kx = Fo sin ωt − − −1 

 

x p  = XSin(ωt − φ ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The force transmitted to the base is the sum of the spring force and damper force. Hence, the 
amplitude of the transmitted force is: 
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Substituting the value of X from Eq. 2 in Eq. 3  yields 
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Hence, the force transmission ratio or transmissibility, TR is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Eq.  6 gives phase angle relationship between Impressed force and  transmitted 
 
 

 

force. 
 
 
 
 
 
 
 
 

 

φ − α = tan 
− 

1 

 
 
 

 
 

ω   

2ξ   

ω  ω 

n 

− tan 
− 

2ξ 
1 ω 

 ω  

 

 1 − 
 

ω 
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n 
2
 n 
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• Curves start from unity value of transmissibility pass through unit value of 
transmissibility at (ω / ωn ) = and after that they Tend to zero as (ω / ωn ) → . 
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• Response plot can be divided into three regions depending on the control of 

spring, damper and mass.  
• When (ω / ωn ) is large, it is mass controlled region. Damping in this region 

deteriorates the performance of machine.  
• When (ω / ωn ) is very small, it is spring controlled region.  
• When (ω / ωn ) ranges from 0.6 to , it is damping controlled region.  
• For effective isolation (ω / ωn ) should be large. It means it will have spring with 

low stiffness (hence large static deflections). 

 

Motion Transmissibility 
 
Motion transmissibility is the ratio of steady state amplitude of mass m (X) to the steady 
amplitude (Y) of the supporting base. 
 
 
 
 
 

 

  ω ω   

 1 + 2ξ 2ξ   

  ω ω  ω 

X =  φ − α = tan 
− 

 − tan 
− 

2ξ 

  1 n 1 ω 
   ω   

Y ω ω 1 −    
          

1 − +  2ξ   

ω 

  

2   2 n 2     

ω ω 2 
    
    

The equationsn are same asn that of force transmissibility.n2 Thus the frequencyn response and 
phase angle plots are also the same. 

 

Problem 1  

A 75 kg machine is mounted on springs of stiffness k=11.76×10
6
 N/m with a damping factor of 

0.2. A 2 kg piston within the machine has a reciprocating motion with a stroke of 0.08 m and a 
speed of 3000 cpm. Assuming the motion of the piston to be harmonic, determine the amplitude 
of vibration of machine and the vibratory force transmitted to the foundation.  
Solution:  
Given: M = 75 kg, ξ = 0.2, mo = 2 kg, stroke = 0.08 m, N = 3000 cpm, X = ?, FT = ?. 
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ω  =k = 11.76 ×10 5   =125   rad/s 

   m 75        

ω = 2π × 3000 = 314.16 rad/s 

60          

 ω 0.08       

  n          

ω  = 2.51  e  =2  = 0.04 m 
         ω     

  
X 

    
ω 

2    
          

               
              

              

= 
         

 
ω 

      
          

ω             

           

  M  1  − 
2 

 +  2ξ 
   

o 
 

ω 
  

ω  2     n2  

        n    n 

 Using the above eq. X = 1.25 mm (Solution) 

F = m eω = 7900 N       
 
 
 
 
 
 
 
 
 

 

o o 2 

 
 

 

Using the above eq. FT  = 2078 N (Solution) 
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Solution by Complex Algebra  
Here steady state solution is obtained for a system subjected to constant excitation force 
using complex algebra 
 

m&x&+ cx& + kx = Fo sin ωt − − − 1 

 

Let the harmonic forcing function be represented by in complex form as  

F (t ) = F e 
ω 

 

Now the equation of motion becomes 

mx&& + cx& + kx = F e i
ω

t − − − 2 

Actual excitation is given by real part of F(t), he response will 

also be given by real part of x(t), where x(t) is a complex quantity 
 
 

satisfying the differential equationo1. i t 
 
Assuming a particular solution as 
 
 

 

x (t ) = Xe 
iωt

  − − − 3 o 
 
Substituting eq. 3  in eq. 2 

 

F 

 

X = (k − mω )+ icω − − − 4 
   

     

 
 
 
 
 
 

 
o 

2 

Multiplying the numerator and denominator of eq.4 by  
And separating real and imaginary parts 
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k − mω 2  
X = F − i cω − − − 5 

 
 

 

(k − mω )   + c ω 

o 2  
Multiplying and dividing the above 

 
 

 
 

(k − mω )   + c ω 

 2 

expression by  
 

 

    (k − mω )    + c ω         

    
F 2  2 2 

k − mω 2 2  2 2 cω      
                  

X =          − i    

  (k − mω o)  + c ω      (k − mω )  + c ω    (k − mω )  + c ω 

    F                
X =    e 

− 
− − − 6         

    2o 

F2 2  iφ 
         

2          

    (k − mω   ) + c   ω               

 

− cω 
 

where, 
= 

2−2− −72 2 2 22 2 φ2 2  tan22 
 

k − mω  
Thus the steady state solution becomes 

 
 

 

      1       

        

(ω)
 − − − 8 x = (k − mω) + c ω   e 

     o    i t -φ 

The real part of the above equation28    gives the steady state 

response            

      ( − )    
     F cos ωt φ     
 

x 
 

= 
        

− − − 9           

  p   o 2 2   2 2   

p    (k −2 mω2 )2 + c2 ω    
Dividing the numerator and denominator of this eq. by k 
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X 
=  

[ − (     )2 ]F2ko+ [ (     )]2 
 

 

Problem 1 
A torsional system1 consistsωωn of a disc2ξ ofω massωn moment of inertia J = 10 kg- m

2
, a torsional 

damper of damping coefficient c = 300 N-m-s/rad, and steel shaft of diameter 4 cm a d length 1 m (fixed 
at one end and attached to the disc at the other end). A steady angular oscillation of amplitude 2

o
 is 

observed when a harmonic torque of mag itude 1000 N-m is applied to the disc. (a) Find the frequency 
of the applied torque, (b) find the maximum torque transmitted to the support. Assume modulus of 
rigidity for the steel rod to be 0.83×1011 N/m

2. 

Solution: 
Given: J = 10 kg-m

2
, c = 300 N-m-s/rad, l = 1 m, d = 4 cm, 

Θ = 2
o
, To = 1000 N-m, G = 0.83×1011 N/m

2
, ω = ?, Tmax=? Stiffness of the 

shaft is given by 
 
 

                     = 20860 N 
−
 m rad   

   
T 

 
GI 0.83 ×10 

11 ×π ×0.04 
4 

          
    

1 × 32 

           
                             

k  = θ =  L =                  

       k  20860                  

ω =   J = 10  = 45.67 rad/s           
         

t p 

                   

                            
          ×π                 
                          

X 

                    

=   [ − ( 

 

)2 ]Tk2ot+ [  ( )]2 

 

                      

t =  [  − (   )2 ]2Fko+ [ (  )]2    θ   
                 

  1  ω ωn   2ξ ω ωn               
                      

    

= 

   

= 0.035rad 

          

θ inn  radians 180           

T          1000                    

k θ 
=
 20860  ×0.035 =1.369     

1 ω ωn 
  

2ξ ω ωn 
  

                         

 
 
 
 
 
 
 

 

o 

t 
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− r )2 + 4ξ 

  ω 2 
     

(1    r =1.876 where, r = 
     2  ω 

 ω  c 300  n 2 

     

ξ =  2Jω   
=
 2 ×10 × 45.67 

=
 
0.328 

  

 r  −1.569r − 0.876 = 0   

        

 ω =1.416 ω = 64.68 rad/s 
 
 
 
 
 
 

 

 ω 
 

 

  1 +  2ξ   

T     ω  

T  =       

  ω    ω 

tr 1 −   +  2ξ  

o   2 2 n 2 2 
  ω    ω 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T 1000N m 

 tr = − 

 
 
 
 
 
 
 
 
 
 
 
 
n n 
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Vibration Measuring Instruments 
 
 

Need for vibration measuring instruments 
 

1.To detect shifts in the natural frequencies – could indicate a possible failure or need for 
maintenance 

 
2.To select operational speeds to avoid resonance 3.Theoretically estimated values 
may be different from the actual values due to assumptions. 

 
4.To design active vibration isolation systems 5.To 
validate the approximate model 

 
6.To identify the system in terms of mass, stiffness and damper. When a transducer is 

used in conjunction with another device to measure vibrations it is called vibration pickup. 
Commonly used vibration pickups are seismic instruments.  
If the seismic instrument gives displacement of the vibrating body – It is known as 
VIBROMETER.  
If the seismic instrument gives velocity of the vibrating body – It is known as VELOMETER.  
If  the seismic  instrument  gives  acceleration  of  the  vibrating body  –  It  is  known as 
ACCELEROMETER. 

 

SEISMIC INSTRUMENT 
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Vibrating body is assumed to have a Harmonic Motion given by 
 
y =Ysinωt − − − 1 

 

Eq. of motion for the mass m can be written as 

mx&& + c (x& − y& ) + k (x − y ) = 0 − − − 2 

Defining relative displacement as 

z = x − y − −3 
 

or, x = y + z 
 

 

Substituting this value of x in equation 

2 mz&& + cz& + kz = −my&& 
 

mz&& + cz& + kz = mω Ysinωt - - - 4 
 

Steady state solution of eq. 4 is given by 
 
z = Zsin (ωt − φ ) 

 
 
 
 
 

 
2 

 

       ω                  

Z  
    

ωn 

            
r 

2   
ω                    

                        

=              =       where r = 

Y 2  2      2     
[1 − r 

22 2   ωn 

    

ω  

    

ω 
      ] + (2ξ  r )   

                    

  1 −       + 2ξ             

    ω     ω             

    n     n             

      ω                   

   2ξ                  

  −    
ωn 

    −  
2ξ r 

     
1       1       

φ = tan 

        

= tan 

          

      2  2         
1 − r  

ω  
1 − 

 

ωn 
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The frequency response plot is shown in the fig. The type of instrument is determined by the 
useful range of frequency 
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The phase angle plot shown below indicates the phase lag of the seismic mass with respect 
to vibrating base of machine 
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Vibrometers 
Used for measurement of displacement of vibrating body. 
 
It means when Z / Y ~ 1, the observed reading on the scale directly gives the displacement of the 
vibrating body. For this to happen r = ω / ωn ≥ 3. 

   r 2 Z 
      

z = Zsin (ωt − φ )  [1 − r ]  + (2ξ r ) = 1 = 

 2 2 2  Y 
 

y =Ysinωt 
 
Thus when r = ω / ωn ≥ 3, Z / Y ~ 1, but there is a phase lag. Z lags behind Y by an angle φ or by 
time lag of t = φ / ω. This time lag is not important if the input consists of single harmonic 
component. 
 
Thus for vibrometers the range of frequency lies on the right hand side of frequency response 
plot. It can also be seen from the plot a better approximation can be obtained if ξ is less than 
0.707. 
 
Also for fixed value of ω, and for  the value of ωn must be small. It means mass 
must be very large and stiffness must be small. This results in bulky instrument which may not 
be desirable in many applications. 

 

Accelerometer 
Accelerometer measures the acceleration of a vibrating body. 
 
They are widely used for measuring acceleration of vibrating bodies and earthquakes. 
Integration of acceleration record provides displacement and velocity. 

 

 Z   r    

        
       

Y =  1[ − r ] + (2ξ r ) 

   1      
       

=12 

  

  1[ − r ]2 +2(2ξ22 r )2   
     

then  Z = r Y, Z = ω Y 

   2 2  ω2 
 
 
 
 
 
 
 
 
 
 
 

n 2 
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The expression ω Y is equal to the acceleration amplitude of the 
 
Vibrating body. The amplitude recorded by the instrument is proportional to the acceleration of 
vibrating body since ωn is constant for the instrument. 
 
For an accelerometer the ratio << 1 and the range of operation lies 

on the extreme left hand side of the frequency  

response curve.   

Since << 1, the natural frequency must be high. That is mass 
 
must be as low as possible. Thus the instrument is small in size and is preferred in 
vibration measurement. 
 
Frequency ratio, r should be between 0 and 0.6 Damping 
ratio, ξ , should be less than 0.707 

 

Problem 1 The static deflection of the vibrometer mass is 20 mm. The instrument when attached 
to a machine vibrating with a frequency of 125 cpm records a relative amplitude of 0.03 cm. 
Determine (a) the amplitude of vibration (b) the maximum velocity of vibration (c) the 
maximum acceleration. 
Solution: 
 
Given: dst = 20 mm, f = 125 cpm, Z = 0.03 cm, Y = ?, Vmax = ?, a = 
?, ξ = 0.0 
 
 
 
 
 

    g            

ω   = = 9.81  = 22.15   rad/s ω = 2π N =13.09 rad/s 

    d 0.02       60  

 ω              

r n=  =st0.59           

 ω              

Z =    r =   r as ξ = 0  
            

Y 1[ − r ]   + (2ξ r )  

 

1 − r  

  

   

Z  0.59 

          

          

=      = 0.534          
Y 1 − 0.59 

 
0.03  

Y  
=
 0.534n = 0.56cm 

 
Max Velocity =Yω = 0.733 cm/s 

 

Max Acceleration =Yω = 95.95 cm/s 



Page | 82  
 

 

Critical speed of shaft 
 

 

• There are many engineering applications in which shafts carry disks ( turbines, 
compressors, electric motors, pumps etc.,)  

• These shafts vibrate violently in transverse directions at certain speed of operation 
known as critical speed of shaft.  

• Among the various causes that create critical speeds, the mass unbalance is the 
most important.  

• The unbalance cannot be made zero. There is always some unbalance left in rotors or 
disks. 

 
 
• Whirling is defined as the rotation of the plane containing the bent shaft about the 

bearing axis. 
 
• The whirling of the shaft can take place in the same or opposite direction as that of 

the rotation of the shaft.  
• The whirling speed may or may not be equal to the rotation speed. 

 

Critical speed of a light shaft having a single disc – without damping 
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Consider a light shaft carrying a single disc at the centre in deflected position. ‘S’ is the geometric 
centre through which centre line of shaft passes. ‘G’ is centre of gravity of disc. ‘O’ intersection 
of bearing centre line with the disc ‘e’ is distance between c.g. ‘G’ and the geometric centre ‘S’. 
‘d’ is displacement of the geometric centre ‘S’ from the un deflected position ‘O’. ‘k’ is the 
stiffness of the shaft in the lateral direction. 

 

The forces acting on the disc are 

- Centrifugal force ‘mω
2
(d+e)’ acts radially outwards at ‘G’ 

- Restoring force ‘kd’ acts radially inwards at ‘S’  
- For equilibrium the two forces must be equal and act along the same line 

 
 
 
 
 

 

mω
2
 (d + e ) = kr − − − 1 

 
    2      

    ω      

       e   

2   
ωn 

2    

 mωe   r e 
        

 

 

 

       

 (1 − r 
2 

d =  k − mω
2
   = ω 

2 
=  )  − − − 2 

ω n 
 

 

• Deflection ‘d’ tends to infinity when ω = ωn  
• ‘d’ is positive below the critical speed, the disc rotates with heavy side 

outside when ω < ωn  
• ‘d’ is negative above the critical speed, the disc rotates with light side 

outside when ω > ωn  
• When ω >> ωn, ‘d → - e’ , which means point ‘G’ approaches point ‘O’ and 

the disc rotates about its centre of gravity.
1
 
−
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Problem 1 
 

A rotor having a mass of 5 kg is mounted midway on a 1 cm shaft supported at the ends by two 
bearings. The bearing span is 40 cm. Because of certain manufacturing inaccuracies, the centre of 
gravity of the disc is 0.02 mm away from the geometric centre of the rotor. If the system rotates 
at 3000 rpm find the amplitude of steady state vibrations and the dynamic force transmitted to the  
bearings. Assume the rotor to be simply supported. Take E = 1.96×10

11
 

N/m
2
. Solution: 

Given: m = 5 kg, d = 1 cm, l = 40 cm, e = 0.02 mm, 

N = 3000 rpm, E = 1.96×10
11

  N/m
2
 , d = ?, Simply supported 

 
2 

 

    ω       

 d  ωn      

ω n
1− 

e = ω 2      
            

In the above eq. e and ω are known, ωn has to be found out in order to find d. To find ωn,  
 stiffness has to be determined.   

 For a simply supported shaft the deflection at the mid point is given by the following equation. 

  mgl 
3 

    mg 48EI 48 ×1.96 ×10   
11

 × π × 0.01
4 

 
 δ = ,  k = = =  = 72000 N/m 

  48EI     δ l 
3 

64 × 0.4 
3 
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   2 × π × N      k = 120 rad/s, 
ω = 2.168 

   

              

ωn ω =       = 314.16 rad/s,  ω =  
         

           n    
  60       m 

d = −1.1558 × 0.02 = −0.023mm   2       

    ω           

    
ω

n 

2      

d   2.168      
          

= −1.1558, 

   

e =    
ω 

2 = (1 − 2.168 
2
 )    

              

  1 −          
 

ωn 

 

- Sign implies displacement is out of phase with centrifugal force 

 

Dynamic on bearing = kd = 1.656 N load 

on each bearing = 0.828 N 

 
 
 

 

Critical speed of light shaft having a single disc – with damping 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

O’ is intersection of bearing centre line with the disc ’S’ is 
geometric centre of the disk 
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‘G’ is centre of gravity of disc 

 

The forces acting on the disc are 
 

1.  Centrifugal force     at G along OG produced  
2. Restoring force kd at S along SO  
3. Damping force cωd at S in a direction opposite to velocity at S 
4. The points O,S and G no longer lie on straight line  
Let,  

OG = a,SG = e,OS = d,∟GOS = α ∟GSA = φ 
From the geometry 

 

asinα = esinφ − − − 1 acosα = 

d + ecosφ − − − 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

∑ X = 0, 
 

− kd + mω
2
 a = 0 − − − 

3 ∑Y = 0, 
 

− cω d + mω
2
 asinα = 0 − − − 4 

 

Eliminating a and α from equations 3 and 4 with the help of equations 1 and 2 
 

− kd + mω
2
 (d + ecosφ) = 0 − − − 5  

− cω d + mω
2
 (esinφ) = 0 − − − 6 
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              kd − mω
2
 d              

From  eq.5 cosφ =    

mω
2
e 

  − − − 7       

                            

              cω d              

From  eq.6 sinφ =         − − − 8          

             mω
2
 e              

Squaring and adding the equations 7 and 8          

 d       mω
2 
                          

 

e 
=                               

 2    2                    
    2                           

    (k − mω )  + (cω)              

            2                
               ω               

               
ωn 

       2   
     d                 r  
                                 
                              

     e =  ω 2         ω  2 =   (1 − r 
2
 )

2
  + (2ξ r )

2 
− − − 9 

        

1 − 

      

+  2ξ 

             

                           

          ω           ω          

           n            n          

                   ω               

             2ξ              

         −     
ωn 

    −       
         1          1 2ξ r  
      φ = tan    

2 

 = tan       − − − 10  

                  1 − r 
2 

 
ω  

1 −  

ωn 
 
 

 

From the curves or the equation it can be seen that (Discussions of speeds above and below 
critical speed) 
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(a) Φ ~ 0 when ω << ωn (Heavy side out)  
(b) 0 < φ < 90° when ω < ωn (Heavy side out) 
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(c) Φ = 90° when ω = ωn 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 90° < Φ < 180° when ω > ωn (Light side out) 
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(e) Φ ~ 180° when ω >> ωn, (Light side out, disc rotates about its centre of gravity) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Critical speed of shaft may be placed above or below the operating speed. 1. If the unit is to 
operate at high speeds, that do not vary widely, the critical speed may be below the operating 
speed, and the shaft is then said to be flexible. 
 
2 In bringing the shaft up to the operating speed, the critical speed must be passed through. If 
this is done rapidly, resonance conditions do not have chance to build up. 
 
3. If the operating speed is low or if speeds must vary through wide ranges, the critical speed is 
placed over the operating speed and the shaft is said to be rigid or stiff.  
4. Generally the running speed must at least 20% away from the critical speed. 

 

Problem 1  
A disk of mass 4 kg is mounted midway between the bearings 
 
Which may be assumed to be simply supported. The bearing span is 48 cm. The steel shaft is 9 
mm in diameter. The c.g. of the disc is displaced 3 mm from the geometric centre. The 
equivalent viscous damping at the centre of 
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the disc- shaft may be taken as 49 N-s/m. If the shaft rotates at 760 rpm, find the maximum stress 
in the shaft and compare it with the dead load stress in the shaft when the shaft is horizontal. 
Also find the power required to drive the shaft at this speed. Take E = 1.96 × 10

11
 N/m

2
. 

Solution: 
Given: m = 4kg, l = 48 cm, e = 3 mm, c = 49 N-s/m, N = 760rpm  

E = 1.96 × 10
11

 N/m
2
, smax = ?. Dia = 9 mm, E = 1.96 × 10

11
 N/m

2
. 

 

 48EI              

k = = 27400N/m           

3               
  l          

2 
   

                   

               

ω 

    

                   

     k              
              

ωn 
    

ωn  = = 82.8rad/s d     
          

= 
         

                   

    m              

          e 2 2  

             ω  ω 

  

2ππ  

           

      1 − + 2ξ 

ω = = 79.5rad/s    
ωn 

 
ωn 

60 
        

              

  c              

                
              

ξ = = 0.074           

2  km 
 
 

d = 0.017 m (solution) 
 
The dynamic load on the bearings is equal to centrifugal force of the disc which is equal to 
the vector sum of spring force and damping force. 
 

Fdy  = (kd )
2
  + (cω d )

2
  = d  k 

2
  + (cω)

2
  = 470N 

 
 

The total maximum load on the shaft under dynamic conditions is the sum of above load and the 
dead load. 
 

Fmax  = 470 + (4 × 9.81) = 509.2N 

 

The load under static conditions is 
 

Fs  = 4 × 9.81 = 39.2N 
 

The maximum stress, due to load acting at the centre of a simply supported shaft is 
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 M × dia Fl × dia × 64 

s = =   = 168 ×10 
4
 F 

 I × 2 4 × 2 × π × dia 
4 

 
The total maximum stress under dynamic conditions 

 

 

s ma = 168 ×10 
4
 × F= 8.55 ×10 

8
 

N/m 
2
 x max 

 
 

Maximum stress under dead load 

 

s ma = 168 × 10 
4
 × 39.2 = 6.59 × 10 

7
 N/m 

2
 

x 

 
Damping torque = T = (cω d )d = 1.125N − m 
Power = 

2π
 
NT

 = 90W 
60 

 
-------------------------------------------------------------------------------------------- 

 

 

MULTI DEGREE OF FREEDOM SYSTEMS 
 

 

Approximate methods  
4. Dunkerley’s method 

 
5. Rayleigh’s  method  
Influence co-efficients 

 
Numerical methods 
 

5. Matrix iteration method 
 

6. Stodola’s method 
 

7. Holzar’s method 
 
1. Influence co-efficents 
 
It is the influence of unit displacement at one point on the forces at various points of 
a multi-DOF system. 
 
OR 
 
It is the influence of unit Force at one point on the displacements at various points of 
a multi-DOF system. 
 

The equations of motion of a multi-degree freedom system can be written in terms 

of influence co-efficients. A set of influence co-efficents can be associated with each 

of matrices involved in the equations of motion.  

M&x&  Kx  0
 

For a simple linear spring the force necessary to cause unit elongation is referred as 

stiffness of spring. For a multi-DOF system one can express the relationship 
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between displacement at a point and forces acting at various other points of the 

system by using influence co-efficents referred as stiffness influence coefficents 
 
 

The equations of motion of a multi-degree freedom system can be written in terms 
of inverse of stiffness matrix referred as flexibility influence co-efficients.  

Matrix of flexibility influence co-efficients = K
−1 

 

The elements corresponds to inverse mass matrix are referred as flexibility 
mass/inertia co-efficients. 
 

Matrix of flexibility mass/inertia co-efficients = M
−1 

 

The flexibility influence co-efficients are popular as these coefficents give elements 

of inverse of stiffness matrix. The flexibility mass/inertia co-efficients give elements 

of inverse of mass matrix 
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Stiffness influence co-efficents. 
 

For a multi-DOF system one can express the relationship between displacement at a 

point and forces acting at various other points of the system by using influence co-

efficents referred as stiffness influence coefficents.  

F = Kx
 

k11 12 13 

K = k 21 22 32 

 k  
31 32 33 

 

wher, k11, ……..k33 are referred as stiffness influence coefficients k11-stiffness 

influence coefficient at point 1 due to a unit deflection at point 1 k21- 
 
stiffness influence coefficient at point 2 due to a 

stiffness influence coefficient at point 3 due to a 

 
unit deflection at point 1 

k31-unit deflection at point 1 

 

Example-1. 
 
Obtain the stiffness coefficients of the system shown in Fig.1. 
 
 

 

  K1  K1 K1 

k11 m1 K12 m1 k13 m1 
  

  x1=1 Unit  x1=0 x1=0 

  K2  K2 K2 

k21 m2 k22 m2 k23 m2 

  x2=0  x2=1 Unit x2=0 

  K3  K3 K3 

k31 m3 k32 m3 
k

 33 m3  

 
(a) 

x3=0  x3=0 x3=1 Unit 
  (b)  (c)     

 

Fig.1 Stiffness influence coefficients of the system 
 

I-step: 
 
Apply 1 unit deflection at point 1 as shown in Fig.1(a) and write the 
force equilibrium equations. We get,  

k11 = K1 + K 2 

5. 21 = −K2 

6. 31 = 0 
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II-step: 
 
Apply 1 unit deflection at point 2 as shown in Fig.1(b) and write the 
force equilibrium equations. We get,  

k12 = -K2  

ii 22 = K 2 + K 3 

iii 31 = -K 3  
III-step: 
 
Apply 1 unit deflection at point 3 as shown in Fig.1(c) and write the force 
equilibrium equations. We get, 
 

k13 = 0    

• 23 = -K 3    

• 33 = K3    

 k11 12 13  

K = k  21 22 32  

 k    
 31 32 33  

K = 

K 1  + K 2  - K 2 0 

- K 2 K 2  + K 3  3 

 0  - K3 3 

From stiffness coefficients K matrix can be obtained without writing Eqns. of motion. 

 

Flexibility influence co-efficents. 

 

F = Kx
 

x  K
−1

 F 

x = αF 

where, α - Matrix of Flexibility influence co-efficents given by 
 

α11 12 13 

α = α21 α22 32 

 α  
31 32 33 

 

wher, α11, ……..α33 are referred as stiffness influence coefficients  

α11-flexibility influence coefficient at point 1 due to a unit force at point 1 

α21- flexibility influence coefficient at point 2 due to a unit force at point 1 

α31- flexibility influence coefficient at point 3 due to a unit force at point 1 

 

Example-2.  
Obtain the flexibility coefficients of the system shown in Fig.2. 
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I-step: 
 
Apply 1 unit Force at point 1 as shown in Fig.2(a) and write the force 
equilibrium equations. We get, 

1 
α11 α21α31 

K 1 
 
II-step: 
 

Apply 1 unit Force at point 2 as shown in Fig.2(b) and write the 
force equilibrium equations. We get, 
 

α22   α32  
1 


1 

 

K 2  K 1 

III-step: 
 
Apply 1 unit Force at point 3 as shown in Fig.2(c) and write the 
force equilibrium equations. We get, 
 

 α   1  1                     

23   K 1 K 2                    

 α 


1 
  


1 
  


1 
               

33 
 

 

                

  

K 2 K 3 

             

Therefore, 
    K1                
                              

 α         α      α   1        

 11
  α21   12  α31   13  K1      

 α  α  α 


1  


1            
22 

  

32 
 

23 
             

    

K1 K 2 

          

 
α 

                         
 


1   


1   


1                

33 
 

 

               

  

K 2 K 3 

             

      K1                
                            

    

K1 

               

K1 

   

K1                       

F1=0m1 
             F =0 m     F =0 

m1   

x1=α11 
     1    1   1  

                  x1=α12     x1=α13 
                              

    K2                K2   K2 

F2=1m2              F =1 m 
2 

  F =1 m 
2 

 
      

x2=α21 
     2     

x2=α22 

2   

x2=α23 

                      

                              

    K3              K3 K3    

F3=0m3 
            

F3=0m3 F =0 
m 

             3  
                           3     

      x3=α31            x3=α32    x3=α33 
 (a)                   (b)       (c) 
 

Fig.2 Flexibility influence coefficients of the system 
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For simplification, let us consider : K1   K 2 
 K 3    K

α        α         
1                 

1 
  

11  α21  α12   
31

  α13 K1   

α 
  

 α32  α23 
1 
 


1 
 


2 
    K  

22  

      

K K K 
    

α 
                

1  1 1  3             

33 
 

 


 


 


            

K K K  K          

 α11 12 13               

α = α21 α22 32 

   α  
31 32 33 

1 1 1 

α = 1 1 2 2 
 

 K   

α  K
−1

 
2 

3 

In Vibration analysis if there is need of K
−1

 one can use flexibility co-efficent matrix. 
 
 

Example-3 
 
Obtain of the Flexibility influence co-efficents of the pendulum system shown 
in the Fig.3. 

 

 θ T 
  

l  l 

α11  F=1 

m  m  

l 
l 

 

m 
m 

 

l 
l 

 

m 
m 

 

Fig.3 Pendulum system Fig.4 Flexibility influence 

co-efficents  

I-step: 
 
Apply 1 unit Force at point 1 as shown in Fig.4 and write the force 
equilibrium equations. We get, 
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T sin θ  l 
 

T cos θ = g(m + m + m) = 3mg 
 

tan θ = 
1 

 

3mg  
 

θ is small,  tan θ  sin θ 
 

sin θ = 
α11

 l 

 

α11   l sin θ 
 

α   
l 

 
11

 3mg 
Similarly apply 1 unit force at point 2 and next at point 3 to obtain, 
 

α   
l 

 
22

 5mg 

 

the influence coefficients are:  

α 
         l 

= α = α =  α = α == 
 

5mg 11 21  12 31   13  

α 
    11l      

= α = α = 
      
      

22 32  23  6mg      

α 11l 
33

 6mg 
 
 

 

Approximate methods 
 

In many engineering problems it is required to quickly estimate the first 

(fundamental) natural frequency. Approximate methods like Dunkerley’s method, 

Rayleigh’s method are used in such cases. 

 

(i) Dunkerley’s method 
 
Dunkerley’s formula can be determined by frequency equation, 
 

(c) ω
2
 M + K  = 0

 

(d) K + ω
2
 M = 0 (e) 

1
 I + K 

−1
M = 0

1 2 

(f) 

1
 I + αM = 0 

1 
2 

For n DOF systems, 
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1 0 
 

. 0 
 

α α 
      

. 
 

α m 
  

0.0 
 

 

                        
    

1  0  1  .  0 
         11 12       1n 1   

.0 
  

  
− 

     
+ 
    21  22    .  α2n    0m2  

= 0
  

                      

  

                  

    

ω 
2 

                                 

                                              

            
0 0 

 
. 1 

                  
0 0. mn 

  

                    n1  n2        nn      
  

− 

      

1 
+ α11m1 

        

12   2 

        

. 

     

1n   n 

    

                                 
                                     

         2                          

        ω                
1 

                     
               

0 
       

− 
    

+ α 
  

m 
  

. 
      

α 
 

m 
 

= 0
                           

  

  

 

    

  

 

                                  

                           ω2 22  2  
         2nn  

               .               .         .    
1 

.     
            

α m 
             

α m 
        

.− 
  

+ α m 
    

           
 

                         

n 
   

                                  

ω 
    

                 n11             n22               nn  

                                           

Solve the determinant                               

1     n                             1n −1       
           

  − α m 
     + α   m + ... + α   m  


          

 

ω
2               

ω
2   

(1)             111     22   2    nn  n     
  α  α  m m  + α  α  m m            

+ ... = 0
    

    11   22   1  2     11 33 1 
3
  + ... + αnnmn     

It is the polynomial equation of nth degree in (1/ω
2

). Let the roots of above Eqn. are: 

    1   
, 

 1   , ...... 
 1                               

  ω  ω ω                               

                                      

    1     2      n                             

    1         1     1     1      1      1            
          −   

ω
2

 ω2 

 −               −  

ω2 

        

     ω
2 
             ω

2 
   ω

2 
             

            n 1           2             n        (2) 
                                     

1 n −1 

      

= 

       1        1  
+ 

  1    
+ ...... + 

 1      
− ... = 0    

 ω 
2      −  2    2          2 

ω 
2     

             1      ω2     ωn                

Comparing Eqn.(1) and Eqn. (2), we get,                 

    1   
+ 

  1  
+ ...... + 

 1  
= α11m1 

 
+ α22m2 + ... + αnnmn     2     2   2   

    ω1        ω2          ωn                       
 
In mechanical systems higher natural frequencies are much larger than the fundamental 

(first) natural frequencies. Approximately, the first natural frequency is: 
 

1 
2 ≅ α11m1  + α22m2 + ... + αnnmn  

ω1  
The above formula is referred as Dunkerley’s formula, which can be used to 
estimate first natural frequency of a system approximately. 

The natural frequency of the system considering only mass m1 is: 
 

ω     1   K1    
 1n = α m =    

     11 1  m1    

The Dunkerley’s formula can be written as:  

1  
≅ 

 1  
+ 

 1 
+ ...... + 

1  
(3) 

         

 ω   ω   ω ω  
1    1n   2n nn   
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where, ω1n , ω2n , ..... are natural frequency of single degree of freedom 

system considering each mass separately. 
 
The above formula given by Eqn. (3) can be used for any mechanical/structural 
system to obtain first natural frequency 

 

Examples: 1 
 
Obtain the approximate fundamental natural frequency of the system shown in 
Fig.5 using Dunkerley’s method. 
 
 

 

K 

 

m  
x1 

 

K 
 

m 

x2 
 

K 

 

m 

x3 
 

Fig.5 Linear vibratory system  
Dunkerley’s formula is: 
 

  1  
≅ α11m1   α22m2 ...  αnnmn  OR   2  

  1          

 1 
≅ 

1 


1 
 ...... 

 1  
ω  ω ω ω   
  1   1n  2n   nn 

 
Any one of the above formula can be used to find fundamental natural 
frequency approximately.  
Find influence flexibility coefficients. 

α11   α21   α12 α31α13

1 

 

α22 α32α23

 

2 
K 

 

α33 

3 
K 

K  
Substitute all influence coefficients in the Dunkerley’s formula. 
 

1 ≅ α11m1   α22m2  ...  αnnmn 2 

ω  
1 

 

 

1 m 2m 3m 6m 
≅    
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ω2 

1
 K K K K  

ω1 0.40 K/m rad/s 
 
 

 

Examples: 2 
 
Find the lowest natural frequency of the system shown in Figure by Dunkerley’s 

method. Take m1=100 kg, m2=50 kg  
VTU Exam July/Aug 2006 for 20 Marks 
 

 

m1 m2 

1 2 

180 120 

 

Fig.6 A cantilever rotor system. 
 

 

Obtain the influence co-efficents: 

α  1.944x10 
-3 

11 EI
 

 

α 9x10
-3

 
22

  EI  
1

 2  ≅ α11m1   α22m2 
 

ωn 

ωn 1.245 rad/s 

 

(ii) Rayleigh’s method 
 
It is an approximate method of finding fundamental natural frequency of a system 
using energy principle. This principle is largely used for structural applications. 
 
 

Principle of Rayleigh’s method 

Consider a rotor system as shown in Fig.7. Let, m1, m2 and m3 are masses of rotors 

on shaft supported by two bearings at A and B and y1, y2 and y3 are static 
deflection of shaft at points 1, 2 and 3. 
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m1 m2 
m 

3 

1 2 3 
A  B 

y1 
y2 

y3 
  

 

Fig.7 A rotor system. 
 

 

For the given system maximum potential energy and kinetic energies are: 

Vmax  
1

 ∑
n
  migyi 

2  
   i 1 

T max 
1

 ∑
n
  m i  y&i

2 

 

2 
 

   
   i 1 

where, mi- masses of the system, yi –displacements at 
mass points. Considering the system vibrates with SHM,  

y&i ω
2
yi  

From above equations 

Tmax 
ω

2
∑n

miyi
2 

2 

i 1 
 

According to Rayleigh’s method, 

V T  
max max  

substitute Eqn. (4) and (5) in (6) 
n
 m gy 

∑ i i 

ω2  i 1 n 

∑mi yi
2 i 

1  
The deflections at point 1, 2 and 3 can be found by. 

 

y1   α11m1g  α12m2g  α13m3g 
 

ω 2  α21m1g  α22m2g  α23m3g 

ω 3  α31m1g  α32m2g  α33m3g 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(4) 
 
 
 
 
 
 
 
 
 
 
 

 

(5) 
 
 
 

(6) 
 
 
 

 

(7) 
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Eqn.(7) is the Rayleigh’s formula, which is used to estimate frequency of 
transverse vibrations of a vibratory systems. 
 

Examples: 1 
 
Estimate the approximate fundamental natural frequency of the system shown in 

Fig.8 using Rayleigh’s method. Take: m=1kg and K=1000 N/m. 
 
 
 

 

2K 

 

2m 

x1 

 

K 

 
2m  

x
2 

 
K 

 

m 

x3 

 

Fig.8 Linear vibratory system 
 

Obtain influence coefficients, 

α    1 

11  α21  α12  α31   α13  
 

2K 

α 
 α32   α23 

3   

22 
 

 

2K 

α 5      

33 
 

 

    

2K      
Deflection at point 1 is:  

y1   α11m1g  α12m2g  α13m3g 

y1  
mg

 2  2  1  
5mg

   5g 

2000 2K 2K 
Deflection at point 2 is: 

y2 α21m1gα22m2gα23m3g 

y2  
mg

 2  6  3 
11mg

   
11g 

2K 2K 2000 

Deflection at point 3 is:  

y3 α31m1gα32m2gα33m3g 
y 

3 
mg

 2  6  5  
13mg

   
13g 

2K 2K 2000 
Rayleigh’s formula is: 
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n 

∑ ii 
ω

2 
=  i 1                 

n                 

   ∑mi yi 2             
   i 1                 

   
2x 

5  
 2x 

11  
 2x 

13 
g 

2 
              

ω
2 


 

2000 2000 2000 
 

        

       5
2 

  11  2 13 2 2 
 

2 
     

 2 
    

 2 
     

g   

2000 
 

2000 2000 
  

           
 

ω  12.41 rad/s 

 

Examples: 2 
 
Find the lowest natural frequency of transverse vibrations of the system shown in  
Fig.9 by Rayleigh’s method. 
 
E=196 GPa, I=10-6 m4,  m1=40 kg, m2=20 kg 
 
VTU Exam July/Aug 2005 for 20 Marks 

 m1 m2 

 1 2 

A  B 
  

160 80 180 

 Fig.9 A rotor system. 
 
 

Step-1:  
Find deflections at point of loading from strength of materials principle. 

 

W 
 

 

x 
 

 

b 
 

   
 

l 
 

Fig.10 A simply supported beam 

 

For a simply supported beam shown in Fig.10, the deflection of beam at 
distance x from left is given by: 

y = 
Wbx

 l
2
 − x

2
 − b

2
  for x ≤ (l − b) 

6EIl 
 
For the given problem deflection at loads can be obtained by superposition 
of deflections due to each load acting separately. 
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Deflections due to 20 kg mass  

y1
' 

= 
9.81x20 x0.18x0.16  0.42

2 
− 0.16

2 
− 0.18

2
  = 

0.265 

6EI0.42 EI      

y2
' 

= 9.81x20 x0.18x0.24 0.42
2 

− 0.24
2 

− 0.18
2
  =0.29 

6EIx0.42      EI  
Deflections due to 40 kg mass 

''  9.81x40x0.16x0.26  
y1 = 

   

 6EIx0.42  
    

''   9.81x40 x0.16x0.18  

y2 = 
   

 6EIx0.42  
     

The deflection at point 1 is:  

y =  y
' 

+ y
''
  =0.803 

1 1 1 
EI     

The deflection at point 2 is:  

y =  y
' 
+ y

''
  =0.82 

2 2 2 
EI    

 

0.42
2
  − 0.26

2
  − 0.16

2
  =0.538  

EI 

0.42
2

 − 0.18
2
  − 0.16

2
  =0.53 

EI 

n
 m gy 

∑ i i 

ω2  i 1 n 

∑mi yi
2 

i 1 

x 2 9.8140x0.80320x0.82

40x0.803 
2
   20x0.82

2
  

ωn 1541.9 rad/s 
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Numerical methods 

 

(i) Matrix iteration method 
 
Using this method one can obtain natural frequencies and modal vectors of 
a vibratory system having multi-degree freedom. 

It is required to have ω1< ω2<……….< ωn 
 
Eqns. of motion of a vibratory system (having n DOF) in matrix form can be written 
as:  

M&x& + Kx = 0
 
where,  

x = Asinωt + φ (8) 

substitute Eqn.(8) in (9)  

− ω
2
 MA + KA = 0 (9) 

For principal modes of oscillations, for r
th

 mode,  

− ωr
2
 MAr  + K Ar   = 0  

K
−1

 MA = 
1 
A

r ω2 r 
r  

DA = 1  A
r ω

2 r 

r  

where, D is referred as Dynamic matrix. 
 
Eqn.(10) converges to first natural frequency and first modal vector. 

The Equation, 

M
−1

 KA = ω
2
 A

r r r 

D1Ar  = ωr
2
 Ar  

where, D1  is referred as inverse dynamic matrix. 
 
Eqn.(11) converges to last natural frequency and last modal vector. 

 
(10) 
 
 
 
 
 
 
 
 

 

(11) 

 
In above Eqns (10) and (11) by assuming trial modal vector and iterating till the 
Eqn is satisfied, one can estimate natural frequency of a system. 

 

Examples: 1 
 
Find first natural frequency and modal vector of the system shown in the 
Fig.10 using matrix iteration method. Use flexibility influence co-efficients. 

 

Find influence coefficients. 
α

  = α 

     1 

= α = α = α = 
 
 

11 21 12 31 13 2K 

α = α = α 
23   = 

 3    

22  32 2K    
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α    5                     
                     

33  2K                    
                     

 α11 12    13          

α  α21   α22    32          

       α              
 31  32     33        
                   

           1   1 1       

α  K
−

 
1
  

1    
1  3  3 

      

2K 
      

                   

              1  3 5       

First natural frequency and modal vector    

K
−1

 MA  
1

   A       
       r ω    r        

            r           

DA  
1

  A          
  r   ω   r           

       r              

Obtain Dynamic matrix  D  K 
−1

 M    

D 
   1  1  1  2 0 0   2 2 1 
m    1  3  3  0  2  0  m  2  6  3 

  2K               2K    
     1  3  5  0 0 1   2 6 5 
Use basic Eqn to obtain first frequency    

DA  
1

  A           
 1    ω  1            
       r              

Assume trial vector and substitute in the above Eqn.   

              


  1       
               



       

Assumed vector is:  
u 

1 1       
                 1       

First Iteration                    

     2     2  1 1 1     

Du1   m 2    
6 

 
3 1 

5m
 2.2    

        

     2K        2K    

              6    2.6    
As the new vector is not matching with the assumed one, iterate again using 
the new vector as assumed vector in next iteration. 
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Second Iteration            

     2 2  11      1 

Du2 m 2 6 3 2.2   4.5m   2.55 

  2K        K   

Third Iteration 
 6 5 2.6       3.13 
           

     2 2 1 1       1 

Du3 
m 2 6 3 2.555  5.12m 2.61 

   

  2K        K   

Fourth Iteration 
 6 5 3.133       3.22 
           

     2 2 1 1       1 

Du4 
m 2 6 3 2.61 5.22m  2.61 

   

  2K        K   

      6 5 3.22       3.23 
As the vectors are matching stop iterating. The new vector is the modal 
vector. To obtain the natural frequency, 
 

1 1 D 2.61 


5.22m

K 2.61 
 

3.22 3.23 
Compare above Eqn with with basic Eqn. 

DA 
1

 A
1 ω  1 

  1  

1  5.22m  
ω K 

1       

ω
2
   1  K  

1 5.22 m  

      

ω  0.437    
K

  Rad/s 
1    m      

Modal vector is:  
1  



 2.61 A 1 
 3.23 
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Method of obtaining natural frequencies in between first and last one 

(Sweeping Technique) 
 
 

For understanding it is required to to clearly understand Orthogonality principle of 
modal vectors. 
 
Orthogonality principle of modal vectors 
 

x2 

b  
b
 

1 

b  
2 

 

a 

a  a 
1 

 
2 

 

x1 
 

Fig.11 Vector representation graphically 
 

 

Consider two vectors shown in Fig.11. Vectors a and bare orthogonal to each 

other if and only if 
 

a
T

 b = 0 

a1 

a 


b 
1  0 

 
2   

   2    

a 1 

 1  0  b  

a 2   1 0  
     2  

  a
T

 Ib = 0 (12) 

where, I is Identity matrix.  

From Eqn.(12), Vectors  a and b are orthogonal to each other with respect to 
 

identity matrix. 

 

Application of orthogonality principle in vibration analysis 
 
Eqns. of motion of a vibratory system (having n DOF) in matrix form can be written 
as:  

M&x&  Kx  0 

x  Asinωt  φ
 

− ω
2
 MA1  + K A1  = 0

 
 
 

 

ω
2
 MA1   K A1 
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If system has two frequencies ω1 and ω2  

ω1
2
 MA1  K A1 

ω2
2
 MA2  K A2 

Multiply Eqn.(13) by A
T 

and Eqn.(14) by A
T 

  2  1 

2 A
T

 MA= A
T 
KA

ω     

1 2 1 2 1 

ω
2
 A

T
 MA = A

T
 KA

1 1 2 1 2 

Eqn.(15)-(16)    

A
T
 MA = 0   

 1 2    
Above equation is a condition for mass orthogonality. 

 

 

(13) 
 

(14) 
 

 

(15) 
 

(16) 

 

A1
T
 KA2  = 0 

 
Above equation is a condition for stiffness orthogonality. 
 

 

By knowing the first modal vector one can easily obtain the second modal vector 

based on either mass or stiffness orthogonality. This principle is used in the matrix 

iteration method to obtain the second modal vector and second natural frequency. 
 
This technique is referred as Sweeping technique 

 

Sweeping technique  

After obtaining A1 and ω1 to obtain A2 and ω2 choose a trial 

vector V1 orthogonal to A1 ,which gives constraint Eqn.: 

V
T
 MA = 0 

1 1   

 m   0 0 A 

V1    V2 

1 

0 
1 

V
3 


  0m2 2 = 0 
 

0 0 m3 3 

V1m1A1  + V2m2 A 2  + V3m3 A 3  = 0 

m1A1 V1  m2 A 2 V2  m3 A 3 V3   0 
 

V1  = αV2  + βV3 
 
where α and β are constants 

 m A 
2 

α =  − 
2 

    

     

 m1A1  

 m A 
3 

β =  − 
3 

    
    

 m1A1  
Therefore the trial vector is: 
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V1 αV2  + βV3 

2 = V2 

  V 
3  3 

0 α β V 

=  0 1 2 

 0 3 

= SV1   

where = S is referred as Sweeping matrix and V1 is the 

trial vector. New dynamics matrix is:  

Ds   DS

D  V 
1
A

s 1ω 2 
  2 

 

The above Eqn. Converges to second natural frequency and second modal 

vector. This method of obtaining frequency and modal vectors between first and 

the last one is referred as sweeping technique. 

 

Examples: 2 
 

For the Example problem 1, Find second natural frequency and modal vector of the 

system shown in the Fig.10 using matrix iteration method and Sweeping technique. 

Use flexibility influence co-efficients. 
 
 

For this example already the first frequency and modal vectors are obtained 

by matrix iteration method in Example 1. In this stage only how to obtain 

second frequency is demonstrated. 
 

First Modal vector obtained in Example 1 is: 

   A1  1   

A1  = A  2 = 2.61  

 
2 

A 3  3.23  

M = 

0   0   

0 2   0 is the mass matrix 

 0 0 1    
Find sweeping matrix      

S = 

0 α   β  

0 1   0   

   0   1   

α = − m 2 

A
 2 

= − 2(2.61) = −2.61 
 

m A 
 

 

2(1) 
     
   1 1   
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m  3 A 3  1(3.23)              
β = − 

    

= − 
   

= −1.615 
           

m1A1 

 

2(1) 

           

                  
Sweeping matrix is:                   

0 - 2.61 - 1.615              

S = 0 1    0               

   0    1               
New Dynamics matrix is:                  

Ds  + DS                  

Ds  = 

  2  2 1 0 - 2.61 - 1.615  0    − 1.61 − 1.11 
m  2  6 3 0 1 0 = 

m
 0 0.39  − 0.11 

   

  2K             K         

First Iteration 
   3 5 0 0 1    0.39  1.89 
                     

D V  
1

  A                
s 1  ω  2                 

   2                   

0  − 1.61 − 1.11 1 - 2.27    - 9.71 

m 0 0.39  − 0.11 1 = 
m

 0.28 = 0.28m   1  
K          K    K         

0  0.39  1.89    2.28    8.14   
Second Iteration                      

0  − 1.61 − 1.11 - 9.71 - 10.64  - 21.28 
m

 0 0.39   − 0.11 1 = 
m 

- 0.50 = 0.5m - 1 
K           K       K  

  0.39  1.89  8.14  15.77         31.54 
Third Iteration                      

0  − 1.61 − 1.11  - 21.28 - 33.39         - 8.67 

m 0 0.39   − 0.11 - 1 =   
m

 - 3.85 =    3.85m - 1 
         

K           K       K  

  0.39  1.89  31.54  59.52  15.38 
Fourth Iteration                      

0  − 1.61 − 1.11 - 8.67 - 18.68  - 8.98 
m

 0 0.39   − 0.11 - 1 = m - 2.08 =   2.08m - 1 
         

K           K       K  

  0.39  1.89  15.38  28.67  13.78 
Fifth Iteration                      

0  − 1.61 − 1.11 - 8.98  - 13.68 - 7.2 
m

 0 0.39   − 0.11 1 = m - 1.90 = 1.90m  1 
   

K           K       K  

  0.39  1.89  13.78  25.65  13.5 
Sixth Iteration                      
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 0 − 1.61 − 1.11  - 7.2  - 13.24  - 7.08 

m 0 0.39 − 0.11- 1 =m - 1.87 =1.87m - 1 
K    K  K  

  0.39 1.8913.5  25.12  13.43 
1  1087m  
ω K 

2 

ω2  
1

 
K 

1 1.87 m  

 
K 

ω1 = 0.73 m  
Modal vector  

- 1  
  

A 2 = - 0.14 
1.89 

 

Similar manner the next frequency and modal vectors can be obtained. 
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(ii) Stodola’s method 
 
It is a numerical method, which is used to find the fundamental natural frequency 

and modal vector of a vibratory system having multi-degree freedom. The method is 

based on finding inertia forces and deflections at various points of interest using 

flexibility influence coefficents. 

 
Principle / steps  
1. Assume a modal vector of system. For example for 3 dof systems: 

x x   
1 

  
1 2    

=   1   

x3   1   
     

•  Find  out  inertia  forces  of  system  at  each mass 

point, F 
1 
 m ω

2
 x 

1 

for Mass 1 
  1  

F2  m2ω
2
 x2 for Mass 2  

F3  m3ω
2
 x3 for Mass 3 

 
• Find new deflection vector using flexibility influence coefficients, using 
the formula, 

x

′ x′1 

= 

2 1 21 2 22 3 23 

x′ 3 F1α31 + F2α32 + F3α33 

 
4. If assumed modal vector is equal to modal vector obtained in step 3, then solution  
is converged. Natural frequency can be obtained from above equation, i.e 

x  x′      
1  1      

If  x2 ≅ x′2  Stop iterating. 

x3 
 x′ 3     
       

Find natural frequency by first equation, 

x′ = 1 = F α  + F α+ F α 
1  1 11 2 12 3 13  

5. If assumed modal vector is not equal to modal vector obtained in step 3, then 
consider obtained deflection vector as new vector and iterate till convergence. 

 
Example-1 
 
Find the fundamental natural frequency and modal vector of a vibratory 
system shown in Fig.10 using Stodola’s method. 
 
 
 
 
 

 

F1α11 + F2α12 + F3α13 

 

F α  + F α  + F α 
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First iteration 
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x1 1 

1. Assume a modal vector of system u1 = x2 =  1 

x3 1 
• Find out inertia forces of system at each mass point  

F1 = m1ω
2
 x1 = 2mω

2 

 

F2 = m2ω
2
 x2 = 2mω

2 

 

F3 = m3ω
2
 x3 = mω

2 

 
• Find new deflection vector using flexibility influence 
coefficients Obtain flexibility influence coefficients of the system:  

α α  = α 1 
11

  = α21 = α12  = 31 13   = 2K  

α 3    
22

 = α32  = α23  = 2K
 

 

α 5  
33

 = 2K
 

 
x′ = F α  + F α+ F α       

1 1 11   2 12  3 13    

Substitute for F’s and α,s       

x′ 
 mω

2 
  mω

2 
 mω

2 
5mω

2 

=    +    +    =   

1  K    K  2K 2K       

x′  = F α   + F α   + F α     
2 1 21   2 22  3 23    

Substitute for F’s and α,s       

x′ = mω
2 

+ 6mω
2 

+ 3mω
2 

= 11mω
2 

2   K    2K   2K 2K         

x′  = F α   + F α   + F α     
3 1 31   2 32  3 33    

Substitute for F’s and α,s       

x′ = mω
2 

+ 6mω
2 

+ 5mω
2 

= 13mω
2 

3   K    2K   2K 2K         

4. New deflection vector is:       

x′    
mω

2   5       
1             

2 = 
  

11 
        

 2K         

x′       13         
3                

x′    
5mω 2

 1   

u2 

  
1          

2 = 
     

2.2  = 
   

 

2K 
    

x′      2.6       
               

3 

The new deflection vector u2 ≠ u1 . Iterate again using new deflection vector u2 
 
 

Second iteration 
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x1′  

1. Initial vector of system u2 = x′2 = 1 

x′ 2.2 

3 2.6  
2. Find out inertia forces of system at each mass point 

F′ = m ω
2
 x′  = 2mω

2 

1  1 1          

F′   = m ω
2
 x′  = 4.4mω

2 
   

2  2 2         

F′ = mω
2
 x′  = 2.6m ω

2 
   

3  3 3         

3. New deflection vector,        

x′′ = F′α  + F′α + F′α        
1  1 11 2 12 3 13     

Substitute for F’s and α,s        

x′′ = mω
2 

+ 
4.4mω

2 

+ 
2.6mω

2 

= 
9mω

2 

       

1  K   2K   2K  2K        

x′′ = F′α + F′α + F′α    
2  1 21 2 22 3 23     

Substitute for F’s and α,s        

x′′ = mω
2 

+ 13.2mω
2
 + 7.8mω

2 
 =23mω

2 

2  K   2K   2K  2K        

x′′ = F′α + F′α + F′α    
3  1 31 2 32 3 33      

Substitute for F’s  and α,s 

x′′ = 
mω

2 
13.2mω

2 

 +  

K 2K 3  
   

4. New deflection vector is: 

 

13mω
2

 28.2mω
2 

+ = 

2K 2K 

 

x′′  
mω

2   9 
1     

x′2′ = 
 

23 
 

2K  
x′′      28.2 

3       

x′′  
9mω 

2 
1 

 
1 

= 
  

2.55 = u3 x′2′ 
    

2K 
  

x′′    
3.13      

3       

The new deflection vector u3 ≠ u2 . Iterate again using new deflection vector u3 

Third iteration   

 x′′ 1 

1. Initial vector of system u3 =  x′′2 =  2.55 

 x′′ 3.13 
 

3 

2. Find out inertia forces of system at each mass point 

F′′ = m ω
2
 x′′ = 2mω

2 

1 1 1 

F′′ = m ω
2
 x′′ = 5.1mω

2 
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2 2 2 
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F′′ = m ω
2
 x′′ = 3.13mω

2 
   

3  3   3             

3. new deflection vector,            

x′′′ = F′′α + F′′α  + F′′α       
1  1 11 2 12   3 13     

Substitute for F’s and α,s           

x′′′ = 
mω

2 
 5.1mω

2 
 3.13mω

2 
10.23m ω

2 

   +      +   =   

1  K   2K    2K  2K         

x′′′ = F′′α + F′′α + F′′α    
2  1 21 2 22   3 23     

Substitute for F’s and α,s           

x′′′ = mω
2 

+ 15.3m ω
2 

+ 9.39m ω
2 

= 26.69m ω
2 

2  K   2K    2K  2K         

x′′′ = F′′α + F′′α  + F′′α    
3  1 31 2 32   3 33     

Substitute for F’s and α,s           

x′′′ = mω
2
 + 15.3mω

2
  + 16.5mω

2 
= 28.2mω

2 

3  K   2K    2K  2K         

4. New deflection vector is:         

x′′′     10.23         
 1   mω            

x′2′′ = 
  

26.69  
        

 2K         

x′′′       33.8         

x′′′ 
3         

1 
     

  
10.23mω

2      
 1    

= u4 

   

x′2′′ = 
      

2.60 
   

  

2K 
     

x′′′        3.30      
3 

The new deflection vector u4 ≅ u3  
Fundamental natural frequency can be obtained by. 

10.23m ω
2
  = 1 

2K 
 

K 
ω = 0.44 rad/s m 

 

 

stop 
Iterat
ing 
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Modal vector is:  
1  

  

A 1 = 2.60 
3.30 
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Example-2 
 
For the system shown in Fig.12 find the lowest natural frequency by 
Stodola’s method (carryout two iterations) 
 
July/Aug 2005 VTU for 10 marks 
 
 
 
 

3K 

 

4m 

x1 
 

K 
 

2m 

x2 

 

K 

 

m 

x3 
 

Fig.12 Linear vibratory system 
 

Obtain flexibility influence coefficients, 
 

α 

 

α 

 

α 

 
 

       1 

11 

= α = α = α = α = 
 
 

21 12 31 13 3K 

     4    

22 

= α = α = 
     

3K 
  

32 23    

7  
= 

33 3K 
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First iteration 
 

x
1

 1 

1. Assume a modal vector of system u1 
=
  2 

 

x 1  
3 

 

• Find out inertia forces of system at each 

mass point 
 

F1 = m1ω
2
 x1 = 4mω

2 

 

F2 = m2ω
2
 x 2 = 2mω

2 

F3 = m3ω
2
 x3 = mω

2 

 
• New deflection vector using flexibility 

influence coefficients, x′ = F α + 

F α+ F α 
1 1 11 2 12 3 13 

x′ = 4mω
2

 + 2mω
2  + mω

2   = 
7mω

2 

1 3K 3K 3K 3K  

x′ = F α + F α + F α 
2 1 21 2  22 3 23    

x′ 
 4mω

2 
8mω

2 
 4mω

2 
 16mω

2 

=   +   +  =   

3K 
 

3K 3K 3K 2      
      

x′ = F α + F α + F α    
3 1 31 2 32 

x′ = 
4mω

2 

+ 
8mω

2 

   

 

3K 3K 3    
     

4. New deflection vector is: 

 

3 33    

+ 
7mω

2 

= 
19mω

2 

   

3K 3K   

 
x′  

mω
2 
 

7   

1 

= 

   

2 3K    

x′    19   
3       

x′  
7mω

2 1   
1  

2.28  = u

  

x′ =     

3K 
  

2    2 
x′    2.71   

3       

The new deflection vector u2 ≠ u1 . Iterate again using new deflection vector u2 

Second iteration    

1. Initial vector of system u2 = 

x1′ 1 

x′2 =  2.28 

x′ 
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3 2.71 

2. Find out inertia forces of system at each mass point 

F′ = m ω
2
 x′ =  4mω

2 

1 1  1    

F′ = m  ω
2
 x′ = 4.56mω

2 

2 2  2    

F′ = m  ω
2
 x′ = 2.71m ω

2 

3 3  3    

3. New deflection vector   
x′′ = F′α + F′α  + F′α  

1 1 11 2 12 3 13 

x′′ = 
4mω

2 

+ 
 4.56mω

2 
 

+         

 

3K 
   

3K 
 

1            
            

x′′ = F′α + F′α + F′α    
2 1 21 2 22 3 23  

x′′ = 
 4mω

2 
 

+ 
  18.24m ω

2 

           

 

3K 
    

3K 
   

2            
              

x′′ = F′α + F′α + F′α    
3 1 31 2 32 3 33  

x′′ = 
 4mω

2 
  

+ 
  18.24m ω

2 

           

 

3K 
    

3K 
   

3            
             

4. New deflection vector is: 

 

2.71mω
2 

11.27m ω
2 

 
  =       

 3K  3K  

+ 
10.84m ω

2 

= 
33.08m ω

2 
 

       

3K 3K 
 

   

+ 
18.97m ω

2 

= 
41.21m ω

2 
 

       

3K 3K 
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x′′ 
mω 

11.27  
1 

33.08 x′2′ 
  

3K x′′ 41.21   

3      

x′′ 
3.75mω

2 1 
1 

= u3 x′2′ 
   

2.93 

K 
 

x′′   3.65 
 

3  
Stop Iterating as it is asked to carry only two iterations. The Fundamental natural 
frequency can be calculated by, 
 

3.75mω
2

 = 1  
2K 

 

K ω = 0.52  
m 

 
Modal vector,  

1  
  
A 1 = 2.93 

3.65 
 

Disadvantage of Stodola’s method 
 

Main drawback of Stodola’s method is that the method can be used to find only  
fundamental natural frequency and modal vector of vibratory systems. This method 

is not popular because of this reason. 
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(iii) Holzar’s method 
 
It is an iterative method, used to find the natural frequencies and modal vector of 
a vibratory system having multi-degree freedom. 
 
 

Principle 
 
Consider a multi dof semi-definite torsional semi-definite system as shown in Fig.13. 
 

J1 J2 J3 
J4 

   

θ1  K1 θ2   K2 θ3   K3 θ4 
 
 
 

 

Fig.13 A torsional semi-definite system 

 

The Eqns. of motions of the system are: 

& & 
J1 θ 1 + K1(θ1  − θ2 ) = 0 
&& 

J2θ2 + K1(θ2  − θ1) + K 2 (θ2  − θ3 ) = 0 
&& 

J3θ3 + K 2 (θ3  − θ2 ) + K 3 (θ3  − θ4 ) = 0 
&&  

J4θ4 + K 3 (θ4  − θ3 ) = 0 
The Motion is harmonic, 

θi  = φisinωt
 

where i=1,2,3,4 
 

Substitute above Eqn.(17) in Eqns. of motion, we get, 

ω
2
J φ = K (φ − φ ) 
1 1 1 1 2  

• 
2
J2φ2 = K1(φ2  − φ1 ) + K 2 (φ2  − φ3 ) 

 

• 
2
J3φ3 = K 2 (φ3  − φ2 ) + K 3 (φ3  − φ4 ) 

ω
2
J φ + K  (φ − φ ) (19) 

4 4 3 4 3  
Add above Eqns. (18) to (19), we get 
 

4 

∑ω
2

Jiφi   = 0 
i 1  

For n dof system the above Eqn changes to, 
 

n 

∑ω
2

Jiφi   = 0 (20) 
i 1 

 
The above equation indicates that sum of inertia torques (torsional systems) or 
inertia forces (linear systems) is equal to zero for semi-definite systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(17) 
 
 

 

(18) 
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In Eqn. (20) ω and φi both are unknowns. Using this Eqn. one can obtain natural  

frequencies and modal vectors by assuming a trial frequency ω and amplitude φ1 so 

that the above Eqn is satisfied. 

 

Steps involved 
 
• Assume magnitude of a trial frequency ω  

• Assume amplitude of first disc/mass (for simplicity assume φ1=1  

• Calculate the amplitude of second disc/mass φ2 from first Eqn. of motion  
2
J1φ1  = K1(φ1  − φ2 ) = 0 

 

φ2 = φ1  − ω2J φ  
1 1 

 

  K1  

4. Similarly calculate the amplitude of third disc/mass φ3 from second Eqn. of motion. 

ω
2
J2φ2 = K1(φ2  − φ1 ) + K 2 (φ2  − φ3 ) = 0 

2 J φ 
 

= K (φ − 
 ω

2
J φ 

− φ ) + K (φ 
 

− φ) = 0 ω    11   

 2 2  1 1  
K1 

1 2 2 3 
             

ω
2
J φ  = −ω

2
J φ  + K  (φ  − φ  ) = 0   

 2 2  1 1  2  2  3   

K  (φ  − φ ) = ω
2
J φ  + ω

2
J φ    

2 2   3  1 1  2 2   

     ω
2
J φ + ω

2
J φ      

φ3 = φ2 - 
1 1   2  2    

(21)    
K 2 

      
              

The Eqn (21) can be written as: 
 

2 

φ3 = φ2  -

∑
i 1

Ji 
φiω2 

K  
2  

5. Similarly calculate the amplitude of nth disc/mass φn from (n-1)th Eqn. of 
motion is:  

n 

∑ Ji φiω
2 

φn = φn -1  -  
i
 
1 

Kn  
6. Substitute all computed φi values in basic constraint Eqn. 
 

n 

∑ ω2
Jiφi = 0 

i 1 

 

• If the above Eqn. is satisfied, then assumed ω is the natural frequency, if the Eqn is 

not satisfied, then assume another magnitude of ω and follow the same steps. 

 

For ease of computations, Prepare the following table, this facilitates the calculations. 
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Table-1. Holzar’s Table 
 
 
 
 
 

1 2 3 4 5 6 7   8 
          

ω 
S No J φ Jω

2
φ ∑ Jω

2
φ K  

1 
∑ Jω

2
φ  K 

         

          

 
 

Example-1 
 

For the system shown in the Fig.16, obtain natural frequencies using Holzar’s method. 

 

J1 J2 J3 

θ1 K1 θ2  K2 θ3 

 
 
 

 

Fig.14 A torsional semi-definite system 

 

Make a table as given by Table-1, for iterations, follow the steps discussed earlier. 

Assume ω from lower value to a higher value in proper steps. 

 

Table-2. Holzar’s Table for Example-1 
 

1 2 3 4 5 6 7  8 
          

ω 

S No J φ Jω
2

φ ∑Jω
2

φ K  

1 
∑ Jω

2
φ  K 

          

I-iteration         
         

 1 1 1 0.0625 0.0625 1  0.0625 

0.25 
        

2 1 0.9375 0.0585 0.121 1  0.121 
          

 3 1 0.816 0.051 0.172     
          

II-iteration         
         

 1 1 1 0.25 0.25 1  0.25 

0.50 
        

2 1 0.75 0.19 0.44 1  0.44 
          

 3 1 0.31 0.07 0.51     
          

III-iteration         
         

 1 1 1 0.56 0.56 1  0.56 

0.75 
        

2 1 0.44 0.24 0.80 1  0.80 
          

 3 1 -0.36 -0.20 0.60     
          

IV-iteration         
         

1.00 
1 1 1 1 1 1  1 

         

2 1 0 0 1 1 
 

1   
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 3 1 -1 -1 0   
        

V-iteration       
        

 1 1 1 1.56 1.56 1 1.56 

1.25 
       

2 1 -0.56 -0.87 0.69 1 0.69 
        

 3 1 -1.25 -1.95 -1.26   
        

VI-iteration       
        

 1 1 1 2.25 2.25 1 2.25 
        

1.50 2 1 -1.25 -2.82 -0.57 1 -0.57 
        

 3 1 -0.68 -1.53 -2.10   
        

VII-iteration       
        

 1 1 1 3.06 3.06 1 3.06 

1.75 
       

2 1 -2.06 -6.30 -3.24 1 -3.24 
        

 3 1 1.18 3.60 0.36   
        

 

Table.3 Iteration summary table 
 

ω ∑ Jω
2

φ 
 

0 0 
 

0.25 0.17 
 

0.5 0.51 
 

0.75 0.6 
 

1 0 
 

1.25 -1.26 
 

1.5 -2.1 
 

1.75 0.36 
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The values in above table are plotted in Fig.15. 
 
 

1.5 

 
1.0 

 
0.5 

 

- Jω2φ -0.5 

 
-1.0 

 
-1.5 

 
-2.0 

 
-2.5 

• 0.250.500.751.001.251.501.752.00  

Frequency, ω 
 

Fig.15. Holzar’s plot of Table-3 
 

 

From the above Graph, the values of natural frequencies are:  

ω1  0 rad/s ω2 

 1 rad/s ω3 
 

1.71 rad/s 

 

Definite systems 
 
The procedure discussed earlier is valid for semi-definite systems. If a system is 

definite the basic equation Eqn. (20) is not valid. It is well-known that for definite 

systems, deflection at fixed point is always ZERO. This principle is used to obtain 

the natural frequencies of the system by iterative process. The Example-2 

demonstrates the method. 
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Example-2 
 

For the system shown in the figure estimate natural frequencies using 
Holzar’s method. 

 
July/Aug 2005 VTU for 20 marks 

 

3K 
2K K  

 

 

J 2J 
3J  

  

 

Fig.16 A torsional system 
 

 

Make a table as given by Table-1, for iterations, follow the steps discussed earlier. 
Assume ω from lower value to a higher value in proper steps. 

 

Table-4. Holzar’s Table for Example-2  

1 2 3 4 5 6 7  8 
          

ω 

S No J φ Jω
2

φ ∑Jω
2

φ K  

1 
∑ Jω

2
φ  K 

          

I-iteration         
         

 1 3 1 0.1875 0.1875 1  0.1875 
         

0.25 
2 2 0.8125 0.1015 0.289 2  0.1445 

         

3 1 0.6679 0.0417 0.330 3 
 

0.110   
          

 4  0. 557       
          

II-iteration         
         

 1 3 1 0.75 0.75 1  0.75 
         

0.50 
2 2 0.25 0.125 0.875 2  0.437 

         

3 1 -0.187 -0.046 0.828 3 
 

0.27   
          

 4  -0.463       
          

III-iteration         
         

 1 3 1 1.687 1.687 1  1.687 
         

0.75 
2 2 -0.687 -0.772 0.914 2  0.457 

         

3 1 -1.144 -0.643 0.270 3 
 

0.090   
          

 4  -1.234       
          

IV- iteration         
         

1.00 
1 3 1 3 3 1  3 

         

2 2 -2 -4 -1 2 
 

-0.5   
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 3 1 -1.5 -1.5 -2.5 3 -0.833 
          

 4  -0.667       
          

V-iteration         
          

 1 3 1 4.687 4.687 1 4.687 
          

1.25 
2 2 -3.687 -11.521 -6.825 2 -3.412 

         

3 1 -0.274 -0.154 -6.979 3 -2.326  
          

 4  2.172       
          

VI-iteration         
          

 1 3 1 6.75 6.75 1 6.75 
          

1.50 
2 2 -5.75 -25.875 -19.125 2 -9.562 

         

3 1 3.31 8.572 -10.552 3 -3.517  
          

 4  7.327       
          

1 2 3 4 5 6 7 8 
          

ω 

S No J φ Jω
2

φ ∑ Jω
2

φ K 

 1 
∑ Jω

2
φ   K 

          

VII-iteration         
        

 1 3 1 9.18 9.18 1 9.18 
        

1.75 
2 2 -8.18 -50.06 -40.88 2 -20.44 

         

3 1 12.260 37.515 -3.364 3 -1.121  
          

 4  13.38       
          

VIII-iteration         
        

 1 3 1 12 12 1 12 
        

2.0 
2 2 -11 -88 -76 2 -38 

         

3 1 -27 108 32 3 10.66  
          

 4  16.33       
          

IX-iteration         
        

 1 3 1 18.75 18.75 1 18.75 
        

2.5 
2 2 -17.75 -221.87 -203.12 2 -101.56 

         

3 1 83.81 523.82 320.70 3 106.90  
          

 4  -23.09       
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Table.5 Iteration summary table 
 

ω φ4 
 

0 0 
 

0.25 0.557 
 

0.5 -0.463 
 

0.75 -1.234 
 

1 -0.667 
 

1.25 2.172 
 

1.5 7.372 
 

1.75 13.38 
 

2 16.33 
 

2.5 -23.09 
 
 

The values in above table are plotted in Fig.17. 
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Fig.17. Holzar’s plot of Table-5 

 

From the above Graph, the values of natural frequencies are:  

ω1 = 0.35 rad/s 

ω2 = 1.15 rad/s 

ω3 = 2.30 rad/s 



Page | 133  
 

 


