
1 
 

MECHANICS OF SOLIDS 

II B. Tech I semester (JNTUH-R13) 

Associate Professor 

 
 

LECTURE NOTES 
 

ON 

 

OPERATIONS RESEARCH 
 

 

 

 

IV B.TECH I - SEM (JNTUH-R15) 
 

 

 

 

 
 

Mrs. T. VANAJA 

ASSISTANT PROFESSOR 

 

Mr. A. SOMAIAH 

ASSISTANT PROFESSOR 
 

 

 

 

 

 

 

 

 

 

 
 

DEPARTMENT OF MECHANICAL ENGINEERING 

INSTITUTE OF AERONAUTICAL ENGINEERING 
(AUTONOMOUS) 

DUNDIGAL, HYDERABAD - 500 043 



2 
 

UNIT-1: BASICS OF OR AND LINEAR PROGRAMMING 
 

1. INTRODUCTION TO OR 

 

TERMINOLOGY 

The British/Europeans refer to "operational research", the Americans to "operations 

research" - but both are often shortened to just "OR" (which is the term we will use). 

Another term which is used for this field is "management science" ("MS"). The Americans 

sometimes combine the terms OR and MS together and say "OR/MS" or "ORMS". 

Yet other terms sometimes used are "industrial engineering" ("IE"), "decision science" 

("DS"), and “problem solving”. 

In recent years there has been a move towards a standardization upon a single term for the 

field, namely the term "OR". 

“Operations Research (Management Science) is a scientific approach to decision making that 

seeks to best design and operate a system, usually under conditions requiring the allocation of 

scarce resources.” 

A system is an organization of interdependent components that work together to accomplish 

the goal of the system. 

 
THE METHODOLOGY OF OR 

When OR is used to solve a problem of an organization, the following seven step procedure 

should be followed: 

Step 1. Formulate the Problem 

OR analyst first defines the organization's problem. Defining the problem includes specifying 

the organization's objectives and the parts of the organization (or system) that must be studied 

before the problem can be solved. 

Step 2. Observe the System 

Next, the analyst collects data to estimate the values of parameters that affect the 

organization's problem. These estimates are used to develop (in Step 3) and evaluate (in Step 

4) a mathematical model of the organization's problem. 
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Step 3. Formulate a Mathematical Model of the Problem 

The analyst, then, develops a mathematical model (in other words an idealized representation) 

of the problem. In this class, we describe many mathematical techniques that can be used to 

model systems. 

Step 4. Verify the Model and Use the Model for Prediction 

The analyst now tries to determine if the mathematical model developed in Step 3 is an 

accurate representation of reality. To determine how well the model fits reality,  one 

determines how valid the model is for the current situation. 

Step 5. Select a Suitable Alternative 

Given a model and a set of alternatives, the analyst chooses the alternative (if there is one) 

that best meets the organization's objectives. 

Sometimes the set of alternatives is subject to certain restrictions and constraints. In many 

situations, the best alternative may be impossible or too costly to determine. 

Step 6. Present the Results and Conclusions of the Study 

In this step, the analyst presents the model and the recommendations from Step 5 to the 

decision making individual or group. In some situations, one might present several 

alternatives and let the organization choose the decision maker(s) choose the one that best 

meets her/his/their needs. 

After presenting the results of the OR study to the decision maker(s), the analyst may find that 

s/he does not (or they do not) approve of the recommendations. This may result from 

incorrect definition of the problem on hand or from failure to involve decision maker(s) from 

the start of the project. In this case, the analyst should return to Step 1, 2, or 3. 

Step 7. Implement and Evaluate Recommendation 

If the decision maker(s) has accepted the study, the analyst aids in implementing the 

recommendations. The system must be constantly monitored (and updated dynamically as the 

environment changes) to ensure that the recommendations are enabling decision maker(s) to 

meet her/his/their objectives. 

 
HISTORY OF OR 

(Prof. Beasley‟s lecture notes) 

OR is a relatively new discipline. Whereas 70 years ago it would have been possible to study 

mathematics, physics or engineering (for example) at university it would not have been 

possible to study OR, indeed the term OR did not exist then. It was only 
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really in the late 1930's that operational research began in a systematic fashion, and it started 

in the UK. 

Early in 1936 the British Air Ministry established Bawdsey Research Station, on the east 

coast, near Felixstowe, Suffolk, as the centre where all pre-war radar experiments for both the 

Air Force and the Army would be carried out. Experimental radar equipment was brought up 

to a high state of reliability and ranges of over 100 miles on aircraft were obtained. 

It was also in 1936 that Royal Air Force (RAF) Fighter Command, charged specifically with 

the air defense of Britain, was first created. It lacked however any effective fighter aircraft - 

no Hurricanes or Spitfires had come into service - and no radar data was yet fed into its very 

elementary warning and control system. 

It had become clear that radar would create a whole new series of problems in fighter 

direction and control so in late 1936 some experiments started at Biggin Hill in Kent into the 

effective use of such data. This early work, attempting to integrate radar data with ground 

based observer data for fighter interception, was the start of OR. 

The first of three major pre-war air-defense exercises was carried out in the summer of 1937. 

The experimental radar station at Bawdsey Research Station was brought into operation and 

the information derived from it was fed into the general air-defense warning and control 

system. From the early warning point of view this exercise was encouraging, but the tracking 

information obtained from radar, after filtering and transmission through the control and 

display network, was not very satisfactory. 

In July 1938 a second major air-defense exercise was carried out. Four additional radar 

stations had been installed along the coast and it was hoped that Britain now had an aircraft 

location and control system greatly improved both in coverage and effectiveness. Not so! The 

exercise revealed, rather, that a new and serious problem had arisen. This was the need to 

coordinate and correlate the additional, and often conflicting, information received from the 

additional radar stations. With the out-break of war apparently imminent, it was obvious that 

something new - drastic if necessary had to be attempted. Some new approach was needed. 

Accordingly, on the termination of the exercise, the Superintendent of Bawdsey Research 

Station, A.P. Rowe, announced that although the exercise had again demonstrated the 

technical feasibility of the radar system for detecting aircraft, its operational achievements 

still fell far short of requirements. He therefore proposed that a crash program of research into 

the operational - as opposed to the technical - 
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aspects of the system should begin immediately. The term "operational research" 

[RESEARCH into (military) OPERATIONS] was coined as a suitable description of this new 

branch of applied science. The first team was selected from amongst the scientists of the radar 

research group the same day. 

In the summer of 1939 Britain held what was to be its last pre-war air defense exercise. It 

involved some 33,000 men, 1,300 aircraft, 110 antiaircraft guns, 700 searchlights, and 100 

barrage balloons. This exercise showed a great improvement in the operation of the air 

defense warning and control system. The contribution made by the OR teams was so apparent 

that the Air Officer Commander-in-Chief RAF Fighter Command (Air Chief Marshal Sir 

Hugh Dowding) requested that, on the outbreak of war, they should be attached to his 

headquarters at Stanmore. 

On May 15th 1940, with German forces advancing rapidly in France, Stanmore Research 

Section was asked to analyze a French request for ten additional fighter squadrons (12 aircraft 

a squadron) when losses were running at some three squadrons every two days. They 

prepared graphs for Winston Churchill (the British Prime Minister of the time), based upon a 

study of current daily losses and replacement rates, indicating how rapidly such a move would 

deplete fighter strength. No aircraft were sent and most of those currently in France were 

recalled. 

This is held by some to be the most strategic contribution to the course of the war made by 

OR (as the aircraft and pilots saved were consequently available for the successful air defense 

of Britain, the Battle of Britain). 

In 1941 an Operational Research Section (ORS) was established in Coastal Command which 

was to carry out some of the most well-known OR work in World War II. 

Although scientists had (plainly) been involved in the hardware side of warfare (designing 

better planes, bombs, tanks, etc) scientific analysis of the operational use of military resources 

had never taken place in a systematic fashion before the Second World War. Military 

personnel, often by no means stupid, were simply not trained to undertake such analysis. 

These early OR workers came from many different disciplines, one group consisted of a 

physicist, two physiologists, two mathematical physicists and a surveyor. What such people 

brought to their work were "scientifically trained" minds, used to querying assumptions, logic, 

exploring hypotheses, devising experiments, collecting data, analyzing numbers, etc. Many 

too were of high intellectual caliber (at least four 
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wartime OR personnel were later to win Nobel prizes when they returned to their peacetime 

disciplines). By the end of the war OR was well established in the armed services both in the 

UK and in the USA. OR started just before World War II in Britain with the establishment of 

teams of scientists to study the strategic and tactical problems involved in military operations. 

The objective was to find the most effective utilization of limited military resources by the 

use of quantitative techniques. Following the end of the war OR spread, although it spread in 

different ways in the UK and USA. You should be clear that the growth of OR since it began 

(and especially in the last 30 years) is, to a large extent, the result of the increasing power and 

widespread availability of computers. Most (though not all) OR involves carrying out a large 

number of numeric calculations. Without computers this would simply not be possible. 

2. BASIC OR CONCEPTS 

 

"OR is the representation of real-world systems by mathematical models together with the use 

of quantitative methods (algorithms) for solving such models, with a view to optimizing." 

We can also define a mathematical model as consisting of: 

 Decision variables, which are the unknowns to be determined by the solution to the 

model. 

 Constraints to represent the physical limitations of the system 

 An objective function 

 An optimal solution to the model is the identification of a set of variable values which are 

feasible (satisfy all the constraints) and which lead to the optimal value of the objective 

function. 

An optimization model seeks to find values of the decision variables that optimize (maximize 

or minimize) an objective function among the set of all values for the decision variables that 

satisfy the given constraints. 

 
Two Mines Example 

The Two Mines Company own two different mines that produce an ore which, after being 

crushed, is graded into three classes: high, medium and low-grade. The company has 

contracted to provide a smelting plant with 12 tons of high-grade, 8 tons of medium-grade 

and 24 tons of low-grade ore per week. The two mines have different operating characteristics 

as detailed below. 

Consider that mines cannot be operated in the weekend. How many days per week should 

each mine be operated to fulfill the smelting plant contract? 
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Guessing 

To explore the Two Mines problem further we might simply guess (i.e. use our judgment) 

how many days per week to work and see how they turn out. 

 work one day a week on X, one day a week on Y 

This does not seem like a good guess as it results in only 7 tones a day of high- grade, 

insufficient to meet the contract requirement for 12 tones of high-grade a day. We say that 

such a solution is infeasible. 

 work 4 days a week on X, 3 days a week on Y 

This seems like a better guess as it results in sufficient ore to meet the contract. We say that 

such a solution is feasible. However it is quite expensive (costly). 

We would like a solution which supplies what is necessary under the contract at minimum 

cost. Logically such a minimum cost solution to this decision problem must exist. However 

even if we keep guessing we can never be sure whether we have found this minimum cost 

solution or not. Fortunately our structured approach will enable us to find the minimum cost 

solution. 

 
Solution 

What we have is a verbal description of the Two Mines problem. What we need to do is to 

translate that verbal description into an equivalent mathematical description. 

In dealing with problems of this kind we often do best to consider them in the order: 

 Variables 

 Constraints 

 Objective 

This process is often called formulating the problem (or more strictly formulating a 

mathematical representation of the problem). 

 
Variables 

These represent the "decisions that have to be made" or the "unknowns". We have 

two decision variables in this problem: 

x = number of days per week mine X is operated 

y = number of days per week mine Y is operated Note 

here that x ≥ 0 and y ≥ 0. 

Constraint 
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It is best to first put each constraint into words and then express it in a mathematical form. 

ore production constraints - balance the amount produced with the 

quantity required under the smelting plant contract 

Ore 

High 6x + 1y ≥ 12 

Medium 3x + 1y ≥ 8 

Low 4x + 6y ≥ 24 

days per week constraint - we cannot work more than a certain maximum 

number of days a week e.g. for a 5 day week we have 

x ≤ 5 

y ≤ 5 

 
 

Inequality constraints 

Note we have an inequality here rather than an equality. This implies that we may produce 

more of some grade of ore than we need. In fact we have the general rule: given a choice 

between an equality and an inequality choose the inequality 

For example - if we choose an equality for the ore production constraints we have the three 

equations 6x+y=12, 3x+y=8 and 4x+6y=24 and there are no values of x and y which satisfy all 

three equations (the problem is therefore said to be "over- constrained"). For example the 

values of x and y which satisfy 6x+y=12 and 3x+y=8 are x=4/3 and y=4, but these values do 

not satisfy 4x+6y=24. 

The reason for this general rule is that choosing an inequality rather than an equality gives us 

more flexibility in optimizing (maximizing or minimizing) the objective (deciding values for 

the decision variables that optimize the objective). 

 
Implicit constraints 

Constraints such as days per week constraint are often called implicit constraints because they 

are implicit in the definition of the variables. 

Objective 

Again in words our objective is (presumably) to minimize cost which is given by 180x + 

160y 

Since we have the complete mathematical representation of the problem: 

minimize 

180x + 160y 

subject to 
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6x + y ≥ 12 

3x + y ≥ 8 4x 

+ 6y ≥ 24 x ≤ 

5 

y ≤ 5 

x, y ≥ 0 

 
Some notes 

The mathematical problem given above has the form 

 all variables continuous (i.e. can take fractional values) 

 a single objective (maximize or minimize) 

 the objective and constraints are linear i.e. any term is either a constant or a constant 

multiplied by an unknown (e.g. 24, 4x, 6y are linear terms but xy or x2
 is a non-linear 

term) 

Any formulation which satisfies these three conditions is called a linear program (LP). We 

have (implicitly) assumed that it is permissible to work in fractions of days - problems where 

this is not permissible and variables must take integer values will be dealt with under Integer 

Programming (IP). 

 
Discussion 

This problem was a decision problem. 

We have taken a real-world situation and constructed an equivalent mathematical 

representation - such a representation is often called a mathematical model of the real-world 

situation (and the process by which the model is obtained is called formulating the model). 

Just to confuse things the mathematical model of the problem is sometimes called the 

formulation of the problem. 

Having obtained our mathematical model we (hopefully) have some quantitative method 

which will enable us to numerically solve the model (i.e. obtain a numerical solution) - such a 

quantitative method is often called an algorithm for solving the model. 

Essentially an algorithm (for a particular model) is a set of instructions which, when followed 

in a step-by-step fashion, will produce a numerical solution to that model. 
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Our model has an objective, that is something which we are trying to optimize. 

Having obtained the numerical solution of our model we have to translate that 

solution back into the real-world situation. 

 

 
 

"OR is the representation of real-world systems by mathematical models together with the 

use of quantitative methods (algorithms) for solving such models, with a view to 

optimizing." 
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3. LINEAR PROGRAMMING 

 

It can be recalled from the Two Mines example that the conditions for a mathematical model 

to be a linear program (LP) were: 

 all variables continuous (i.e. can take fractional values) 

 a single objective (minimize or maximize) 

 the objective and constraints are linear i.e. any term is either a constant or a 

constant multiplied by an unknown. 

LP's are important - this is because: 

 many practical problems can be formulated as LP's 

 there exists an algorithm (called the simplex algorithm) which enables us to solve 

LP's numerically relatively easily 

We will return later to the simplex algorithm for solving LP's but for the moment we will 

concentrate upon formulating LP's. 

Some of the major application areas to which LP can be applied are: 

 Work scheduling 

 Production planning & Production process 

 Capital budgeting 

 Financial planning 

 Blending (e.g. Oil refinery management) 

 Farm planning 

 Distribution 

 Multi-period decision problems 

o Inventory model 

o Financial models 

o Work scheduling 

Note that the key to formulating LP's is practice. However a useful hint is that common 

objectives for LP's are maximize profit/minimize cost. 
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There are four basic assumptions in LP: 

 Proportionality 

o The contribution to the objective function from each decision variable is 

proportional to the value of the decision variable (The contribution to  the 

objective function from making four soldiers (4$3=$12) is exactly four times 

the contribution to the objective function from making one soldier ($3)) 

o The contribution of each decision variable to the LHS of each constraint is 

proportional to the value of the decision variable (It takes exactly three times 

as many finishing hours (2hrs3=6hrs) to manufacture three soldiers as it 

takes to manufacture one soldier (2 hrs)) 

 Additivity 

o The contribution to the objective function for any decision variable is 

independent of the values of the other decision variables (No matter what the 

value of train (x2), the manufacture of soldier (x1) will always contribute 3x1 

dollars to the objective function) 

o The contribution of a decision variable to LHS of each constraint is 

independent of the values of other decision variables (No matter what the value 

of x1, the manufacture of x2 uses x2 finishing hours and x2 carpentry hours) 

 1st implication: The value of objective function is the sum of the 

contributions from each decision variables. 

 2nd implication: LHS of each constraint is the sum of the 

contributions from each decision variables. 

 Divisibility 

o Each decision variable is allowed to assume fractional values. If we actually 

can not produce a fractional number of decision variables, we use IP (It is 

acceptable to produce 1.69 trains) 

 Certainty 

o Each parameter is known with certainty 
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FORMULATING LP 
 

Giapetto Example 

(Winston 3.1, p. 49) 

Giapetto's wooden soldiers and trains. Each soldier sells for $27, uses $10 of raw materials 

and takes $14 of labor & overhead costs. Each train sells for $21, uses $9 of raw materials, 

and takes $10 of overhead costs. Each soldier needs 2 hours finishing and 1 hour carpentry; 

each train needs 1 hour finishing and 1 hour carpentry. Raw materials are unlimited, but only 

100 hours of finishing and 80 hours of carpentry are available each week. Demand for trains 

is unlimited; but at most 40 soldiers can be sold each week. How many of each toy should be 

made each week to maximize profits? 

Answer 

Decision variables completely describe the decisions to be made (in this case, by Giapetto). 

Giapetto must decide how many soldiers and trains should be manufactured each week. With 

this in mind, we define: 

x1 = the number of soldiers produced per week 

x2 = the number of trains produced per week 

Objective function is the function of the decision variables that the decision maker wants to 

maximize (revenue or profit) or minimize (costs). Giapetto can concentrate on maximizing 

the total weekly profit (z). 

Here profit equals to (weekly revenues) – (raw material purchase cost) – (other variable 

costs). Hence Giapetto‟s objective function is: 

Maximize z = 3x1 + 2x2 

Constraints show the restrictions on the values of the decision variables. Without constraints 

Giapetto could make a large profit by choosing decision variables to be very large. Here there 

are three constraints: 

Finishing time per week 

Carpentry time per week 

Weekly demand for soldiers 

Sign restrictions are added if the decision variables can only assume nonnegative values 

(Giapetto can not manufacture negative number of soldiers or trains!) 
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All these characteristics explored above give the following Linear Programming 

(LP) model 

max z = 3x1 + 2x2 (The Objective function) 

s.t. 2x1 + x2  100 (Finishing constraint) 

x1 +  x2  80 (Carpentry constraint) 

x1  40 (Constraint on demand for soldiers) 

x1, x2 > 0 (Sign restrictions) 

A value of (x1, x2) is in the feasible region if it satisfies all the constraints and sign 

restrictions. 

Graphically and computationally we see the solution is (x1, x2) = (20, 60) at which z = 

180. (Optimal solution) 

Report 

The maximum profit is $180 by making 20 soldiers and 60 trains each week. Profit is limited 

by the carpentry and finishing labor available. Profit could be increased by buying more 

labor. 

 
Advertisement Example 

(Winston 3.2, p.61) 

Dorian makes luxury cars and jeeps for high-income men and women. It wishes to advertise 

with 1 minute spots in comedy shows and football games. Each comedy spot costs $50K and 

is seen by 7M high-income women and 2M high-income men. Each football spot costs $100K 

and is seen by 2M high-income women and 12M high-income men. How can Dorian reach 

28M high-income women and 24M high- income men at the least cost? 

Answer 

The decision variables are 

x1 = the number of comedy spots 

x2 = the number of football spots The 

model of the problem: 

min z = 50x1 + 100x2 

st 7x1   + 2x2 = 28 

2x1 + 12x2 =24 

                                               x1, x2>0 
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The graphical solution is z = 320 when (x1, x2) = (3.6, 1.4). From the graph, in this problem 

rounding up to (x1, x2) = (4, 2) gives the best integer solution. 

Report 

The minimum cost of reaching the target audience is $400K, with 4 comedy spots and 2 

football slots. The model is dubious as it does not allow for saturation after repeated viewings. 

 
Diet Example 

(Winston 3.4., p. 70) 

Ms. Fidan‟s diet requires that all the food she eats come from one of the four “basic food 

groups“. At present, the following four foods are available for consumption: brownies, 

chocolate ice cream, cola, and pineapple cheesecake. Each brownie costs 0.5$, each scoop of 

chocolate ice cream costs 0.2$, each bottle of cola costs 0.3$, and each pineapple cheesecake 

costs 0.8$. Each day, she must ingest at least 500 calories, 6 oz of chocolate, 10 oz of sugar, 

and 8 oz of fat. The nutritional content per unit of each food is shown in Table. Formulate an 

LP model that can be used to satisfy her daily nutritional requirements at minimum cost. 

 

 Calories Chocolate 

(ounces) 

Sugar 

(ounces) 

Fat 

(ounces) 

Brownie 400 3 2 2 
Choc. ice cream (1 scoop) 200 2 2 4 

Cola (1 bottle) 150 0 4 1 

Pineapple cheesecake (1 piece) 500 0 4 5 
 

Answer 

The decision variables: 

x1: number of brownies eaten daily 

x2: number of scoops of chocolate ice cream eaten daily 

x3: bottles of cola drunk daily 

x4: pieces of pineapple cheesecake eaten daily The 

objective function (the total cost of the diet in cents): 

min w = 50x1 + 20x2 + 30x3 + 80x4 

Constraints: 

400x1  + 200x2 + 150x3  + 500x4 > 500 (daily calorie intake) 
 

3x1 + 2x2  > 6 (daily chocolate intake) 

2x1 + 2x2 + 4x3 + 4x4 >  10 (daily sugar intake) 
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The minimum cost diet incurs a daily cost of 90 cents by eating 3 scoops of chocolate and drinking 1 

bottle of cola (w = 90, x2 = 3, x3 = 1) 

 
Post Office Example 

(Winston 3.5, p.74) 

A PO requires different numbers of employees on different days of the week. Union rules 

state each employee must work 5 consecutive days and then receive two days off. Find the 

minimum number of employees needed. 

 
 

Answer 

The decision variables are xi (# of employees starting on day i) 

Mathematically we must 
 

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7  

s.t. x1   + x4 + x5 + x6 + x7 ≥ 17 
 x1 + x2   + x5 + x6 + x7 ≥ 13 
 x1 + x2 + x3   + x6 + x7 ≥ 15 
 x1 + x2 + x3 + x4   + x7 ≥ 19 
 x1 + x2 + x3 + x4 + x5   ≥ 14 
  + x2 + x3 + x4 + x5 + x6  ≥ 16 
   + x3 + x4 + x5 + x6 + x7 ≥ 11 

xt ≥ 0, t 

The solution is (xi) = (4/3, 10/3, 2, 22/3, 0, 10/3, 5) giving z = 67/3. 

We could round this up to (xi) = (2, 4, 2, 8, 0, 4, 5) giving z = 25 (may be wrong!). 

However restricting the decision var.s to be integers and using Lindo again gives (xi) = 

(4, 4, 2, 6, 0, 4, 3) giving z = 23. 

 
Sailco Example 

(Winston 3.10, p. 99) 

Sailco must determine how many sailboats to produce in the next 4 quarters. The demand is 

known to be 40, 60, 75, and 25 boats. Sailco must meet its demands. At the beginning of the 

1st quarter Sailco starts with 10 boats in inventory. Sailco can produce up to 40 boats with 

regular time labor at $400 per boat, or additional boats at $450 with overtime labor. Boats 

made in a quarter can be used to meet that quarter's demand or held in inventory for the next 

quarter at an extra cost of $20.00 per boat.  

Mon Tue Wed Thur Fri 

Staff Needed 17 13 15 19 

Sat Sun 

14 16 11 



17 
 

Answer 

The decision variables are for t = 1,2,3,4 

xt = # of boats in quarter t built in regular time 

yt = # of boats in quarter t built in overtime For 

convenience, introduce variables: 

it = # of boats in inventory at the end quarter t 

dt = demand in quarter t 

We are given that d1 = 40, d2 = 60, d3 = 75, d4 = 25, i0 =10 

               xt  ≤ 40, t 

By logic it = it-1+ xt + yt - dt, t. 

Demand is met iff it ≥ 0, t 

(Sign restrictions xt, yt ≥ 0, t) 

We need to minimize total cost z subject to these three sets of conditions where 

z = 400 (x1 + x2 + x3 + x4) + 450 (y1 + y2 + y3 + y4) + 20 (i1 + i2 + i3 + i4) 

Report: 

Lindo reveals the solution to be (x1, x2, x3, x4) = (40, 40, 40, 25) and (y1, y2, y3, y4) = (0, 10, 

35, 0) and the minimum cost of $78450.00 is achieved by the schedule 

 Q1 Q2 Q3 Q4 

Regular time (xt)  40 40 40 25 

Overtime (yt)  0 10 35 0 

Inventory (it) 10 10 0 0 0 

Demand (dt)  40 60 75 25 

 

Customer Service Level Example 

(Winston 3.12, p. 108) 

CSL services computers. Its demand (hours) for the time of skilled technicians in the next 5 

months is 

t Jan Feb Mar Apr May 

dt 6000 7000 8000 9500 11000 

It starts with 50 skilled technicians at the beginning of January. Each technician can work 160 

hrs/month. To train a new technician they must be supervised for 50 hrs by an experienced 

technician for a period of one month time. Each experienced 
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technician is paid $2K/mth and a trainee is paid $1K/mth. Each month 5% of the skilled 

technicians leave. CSL needs to meet demand and minimize costs. 

Answer 

The decision variable is 

xt = # to be trained in month t 

We must minimize the total cost. For convenience let 

yt = # experienced tech. at start of tth month 

dt = demand during month t 

Then we must 

min z = 2000 (y1+...+ y5) + 1000 (x1 +...+ x5) 

subject to 

160yt - 50xt ≥ dt for t = 1,..., 5 

y1 = 50, d1 = 6000, d2 = 7000, d3 = 8000, d4 = 9500, d5 = 11000 

yt = .95yt-1 + xt-1 for t = 2,3,4,5 

xt, yt ≥0 

SOLVING LP 

 
 

LP Solutions: Four Cases 

When an LP is solved, one of the following four cases will occur: 

1. The LP has a unique optimal solution. 

2. The LP has alternative (multiple) optimal solutions. It has more than one 

(actually an infinite number of) optimal solutions 

3. The LP is infeasible. It has no feasible solutions (The feasible region contains no 

points). 

4. The LP is unbounded. In the feasible region there are points with arbitrarily large 

(in a max problem) objective function values. 

 
The Graphical Solution 

Any LP with only two variables can be solved graphically 

 
 

Example 1. Giapetto 

(Winston 3.1, p. 49) 

Since the Giapetto LP has two variables, it may be solved graphically. 

Answer 
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The feasible region is the set of all points satisfying the constraints. max z 

= 3x1 + 2x2 

         s.t. 2x1  + x2 ≤ 100 (Finishing constraint) 

x1  + x2 ≤ 80 (Carpentry constraint) 

x1 ≤ 40 (Demand constraint) 

x1, x2    ≥ 0 (Sign restrictions) 

The set of points satisfying the LP is bounded by the five sided polygon DGFEH. Any point 

on or in the interior of this polygon (the shade area) is in the feasible region. Having identified 

the feasible region for the LP, a search can begin for the optimal solution which will be the 

point in the feasible region with the largest z-value (maximization problem). 

To find the optimal solution, a line on which the points have the same z-value is graphed. In a 

max problem, such a line is called an isoprofit line while in a min problem, this is called the 

isocost line. (The figure shows the isoprofit lines for z = 60, z = 100, and z = 180). 
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In the unique optimal solution case, isoprofit line last hits a point (vertex - corner) before 

leaving the feasible region. 

The optimal solution of this LP is point G where (x1, x2) = (20, 60) giving z = 180. 

 
 

A constraint is binding (active, tight) if the left-hand and right-hand side of the constraint are 

equal when the optimal values of the decision variables are substituted into the constraint. 

A constraint is nonbinding (inactive) if the left-hand side and the right-hand side of the 

constraint are unequal when the optimal values of the decision variables are substituted into 

the constraint. 

In Giapetto LP, the finishing and carpentry constraints are binding. On the other hand the 

demand constraint for wooden soldiers is nonbinding since at the optimal solution x1 < 40 (x1 

= 20). 

 
Example 2. Advertisement 

(Winston 3.2, p. 61) 

Since the Advertisement LP has two variables, it may be solved graphically. 
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Answer 

The feasible region is the set of all points satisfying the constraints. min z 

= 50x1 + 100x2 

s.t.  7x1 + 2x2 ≥ 28 (high income women) 

2x1  +   12x2 ≥ 24 (high income men) x1, 

x2 ≥ 0 

 

Since Dorian wants to minimize total advertising costs, the optimal solution to the problem 

is the point in the feasible region with the smallest z value. 

An isocost line with the smallest z value passes through point E and is the optimal solution 

at x1 = 3.6 and x2 = 1.4 giving z = 320. 

Both the high-income women and high-income men constraints are satisfied, both 

constraints are binding. 
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Example 3. Two Mines 

min 180x + 160y 

st 6x + y ≥ 12 

3x + y ≥ 8 4x 

+ 6y ≥ 24 x ≤ 

5 

y ≤ 5 

x, y ≥ 0 

Answer 
 

 

 

 

Optimal sol‟n is 765.71. 1.71 days mine X and 2.86 days mine Y are operated. 

 
 

Example 4. Modified Giapetto 

max z = 4x1 + 2x2 

s.t. 2x1  + x2 ≤ 100 (Finishing constraint) 

x1  + x2 ≤ 80 (Carpentry constraint) 

x1 ≤ 40 (Demand constraint) 

x1, x2 ≥ 0 (Sign restrictions) 



23 
 

0 B 

80 D 

G 

F 

E A C 

Answer 

Points on the line between points G (20, 60) and F (40, 20) are the alternative optimal 

solutions (see figure below). 

Thus, for 0 ≤ c ≤ 1, 

c [20 60] + (1 - c) [40 20] = [40 - 20c, 20 + 40c] 

will be optimal 

For all optimal solutions, the optimal objective function value is 200. 
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Example 5. Modified Giapetto (v. 2) 

Add constraint x2 ≥ 90 (Constraint on demand for trains). 

Answer 

No feasible region: Infeasible LP 
 

 

Example 6. Modified Giapetto (v. 3) 

Only use constraint x2 ≥ 90 

Answer 

Isoprofit line never lose contact with the feasible region: Unbounded LP 
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The Simplex Algorithm 

Note that in the examples considered at the graphical solution, the unique optimal solution to 

the LP occurred at a vertex (corner) of the feasible region. In fact it is true that for any LP the 

optimal solution occurs at a vertex of the feasible region. This fact is the key to the simplex 

algorithm for solving LP's. 

Essentially the simplex algorithm starts at one vertex of the feasible region and moves (at 

each iteration) to another (adjacent) vertex, improving (or leaving unchanged) the objective 

function as it does so, until it reaches the vertex corresponding to the optimal LP solution. 

The simplex algorithm for solving linear programs (LP's) was developed by Dantzig in the 

late 1940's and since then a number of different versions of the algorithm have been 

developed. One of these later versions, called the revised simplex algorithm (sometimes 

known as the "product form of the inverse" simplex algorithm) forms the basis of most 

modern computer packages for solving LP's. 

 
Steps 

1. Convert the LP to standard form 

2. Obtain a basic feasible solution (bfs) from the standard form 

3. Determine whether the current bfs is optimal. If it is optimal, stop. 

4. If the current bfs is not optimal, determine which nonbasic variable should become a 

basic variable and which basic variable should become a nonbasic variable to find a 

new bfs with a better objective function value 

5. Go back to Step 3. 

 
 

Related concepts: 

 Standard form: all constraints are equations and all variables are nonnegative 

 bfs: any basic solution where all variables are nonnegative 

 Nonbasic variable: a chosen set of variables where variables equal to 0 

 Basic variable: the remaining variables that satisfy the system of equations at the 

standard form 
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Example 1. Dakota Furniture 

(Winston 4.3, p. 134) 

Dakota Furniture makes desks, tables, and chairs. Each product needs the limited resources of 

lumber, carpentry and finishing; as described in the table. At most 5 tables can be sold per 

week. Maximize weekly revenue. 

 

Resource Desk Table Chair Max Avail. 

Lumber (board ft.) 8 6 1 48 

Finishing hours 4 2 1.5 20 

Carpentry hours 2 1.5 .5 8 

Max Demand unlimited 5 unlimited  

Price ($) 60 30 20  

 

 
LP Model: 

Let x1, x2, x3 be the number of desks, tables and chairs produced. 

Let the weekly profit be $z. Then, we must 

max z = 60x1 + 30x2 + 20x3 

s.t. 8x1 + 6x2  + x3 ≤ 48 

4x1 + 2x2 + 1.5 x3 ≤ 20 

2x1 + 1.5x2 +   .5 x3 ≤  8 

x2 ≤ 5 

                                                         x1, x2, x3 ≥ 0 

 

Solution with Simplex Algorithm 

First introduce slack variables and convert the LP to the standard form and write a canonical 

form 

 

R0 z -60x1 -30x2 -20x3       = 0 

R1 
 8x1 + 6x2 + x3 + s1 

   = 48 

R2 
 4x1 + 2x2 +1.5x3 

 + s2 
  = 20 

R3 
 2x1 + 1.5x2 + .5x3 

  + s3 
 = 8 

R4   x2     + s4 = 5 

x1, x2, x3, s1, s2, s3, s4 ≥ 0 
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3 

Obtain a starting bfs. 

As (x1, x2, x3) = 0 is feasible for the original problem, the below given point where three of the 

variables equal 0 (the non-basic variables) and the four other variables (the basic variables) 

are determined by the four equalities is an obvious bfs: 

x1 = x2 = x3 = 0, s1 = 48, s2 = 20, s3 = 8, s4 = 5. 

. 

Determine whether the current bfs is optimal. 

Determine whether there is any way that z can be increased by increasing some nonbasic 

variable. 

If each nonbasic variable has a nonnegative coefficient in the objective function row (row 

0), current bfs is optimal. 

However, here all nonbasic variables have negative coefficients: It is not optimal. 

 
 

Find a new bfs 

 z increases most rapidly when x1 is made non-zero; i.e. x1 is the entering variable. 

 Examining R1, x1 can be increased only to 6. More than 6 makes s1 < 0. Similarly R2, 

R3, and R4, give limits of 5, 4, and no limit for x1 (ratio test). The smallest ratio is the 

largest value of the entering variable that will keep all the current basic variables 

nonnegative. Thus by R3, x1 can only increase to x1 = 4 when s3 becomes 0. We say s3 is 

the leaving variable and R3 is the pivot equation. 

 Now we must rewrite the system so the values of the basic variables can be read off. 

The new pivot equation (R3/2) is 

R ‟: x1+.75x2+.25x3+ .5s3 = 4 

Then use R3
‟ to eliminate x1 in all the other rows. 

R0‟=R0+60R3‟, R1‟=R1-8R3‟, R2‟=R2-4R3‟, R4‟=R4 

‟         z          + 15x2       - 5x3   + 30s3 = 240      z = 240 ‟

   - x3 + s1  - 4s3 = 16       s1  = 16 ‟

  - x2         + .5x3  + s2       - 2s3 =  4          s2 =   4 ‟

 x1   + .75x2  + .25x3     + .5s3 =  4          x1  =  4 

‟ x2 + s4   =  5          s4  =  5 
4 

R 

R 

R 

R 

R 

0 

1 

2 

3 
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2 

The new bfs is x2 = x3 = s3 = 0, x1 = 4, s1 = 16, s2 = 4, s4 = 5 making z = 240. 

 
 

Check optimality of current bfs. Repeat steps until an optimal solution is reached 

 We increase z fastest by making x3 non-zero (i.e. x3 enters). 

 x3 can be increased to at most x3 = 8, when s2 = 0 ( i.e. s2 leaves.) 

 
Rearranging the pivot equation gives 

‟‟ - 2x2 + x3 + 2s2 - 4s3 = 8 (R ‟× 2). 

Row operations with R2
‟‟ eliminate x3 to give the new system 

R0‟‟= R0‟ + 5R2‟‟, R1‟‟ = R1‟ + R2‟‟, R3‟‟ = R3‟ - .5R2‟‟, R4‟‟ = R4‟ 

The bfs is now x2 = s2 = s3 = 0, x1 = 2, x3 = 8, s1 = 24, s4 = 5 making z = 280. Each 

nonbasic variable has a nonnegative coefficient in row 0 (5x2, 10s2, 10s3). THE 

CURRENT SOLUTION IS OPTIMAL 

 
Report: Dakota furniture‟s optimum weekly profit would be 280$ if they produce 2 desks 

and 8 chairs. 

 
This was once written as a tableau. 

(Use table  format for each operation in all HW and exams!!!) 
 
 

max z = 60x1 + 30x2 + 20x3 

s.t. 8x1 + 6x2 + x3 ≤ 48 

4x1 + 2x2 + 1.5x3 ≤ 20 

2x1 + 1.5x2 +   .5x3 ≤  8 

x2 ≤ 5 

x1, x2, x3 > 0 

 
 

Initial tableau: 
 

Z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 -60 -30 -20 0 0 0 0 0 z = 0  

0 8 6 1 1 0 0 0 48 s1 = 48 6 

0 4 2 1.5 0 1 0 0 20 s2 = 20 5 

0 2 1.5 0.5 0 0 1 0 8 s3 = 8 4 

0 0 1 0 0 0 0 1 5 s4 = 5 - 

R 2 
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First tableau: 

Z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 0 15 -5 0 0 30 0 240 z = 240  

0 0 0 -1 1 0 -4 0 16 s1 = 16 - 

0 0 -1 0.5 0 1 -2 0 4 s2 = 4 8 

0 1 0.75 0.25 0 0 0.5 0 4 x1 = 4 16 

0 0 1 0 0 0 0 1 5 s4 = 5 - 

 

Second and optimal tableau: 

Z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio 

1 0 5 0 0 10 10 0 280 z = 280  

0 0 -2 0 1 2 -8 0 24 s1 = 24  

0 0 -2 1 0 2 -4 0 8 x3 = 8  

0 1 1.25 0 0 -0.5 1.5 0 2 x1 = 2  

0 0 1 0 0 0 0 1 5 s4 = 5  

 

Example 2. Modified Dakota Furniture 

Dakota example is modified: $35/table new 

z = 60 x1 + 35 x2 + 20 x3 

Second and optimal tableau for the modified problem: 

 

z x1 x2 x3 s1 s2 s3 s4 RHS BV Ratio  

1 0 0 0 0 10 10 0 280 z=280   

0 0 -2 0 1 2 -8 0 24 s1=24 -  

0 0 -2 1 0 2 -4 0 8 x3=8 -  

0 1 1.25 0 0 -0.5 1.5 0 2 x1=2 2/1.25  

0 0 1 0 0 0 0 1 5 s4=5 5/1  

Another optimal tableau for the modified problem: 
 

z x1 x2 x3 s1 s2 s3 s4 RHS BV 

1 0 0 0 0 10 10 0 280 z=280 

0 1.6 0 0 1 1.2 -5.6 0 27.2 s1=27.2 

0 1.6 0 1 0 1.2 -1.6 0 11.2 x3=11.2 

0 0.8 1 0 0 -0.4 1.2 0 1.6 x2=1.6 

0 -0.8 0 0 0 0.4 -1.2 1 3.4 s4=3.4 
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Therefore the optimal solution is as follows: 
 

z = 280 and for 0 ≤ c ≤ 1 
 

x1  2   0  2c 

x2 = c 0 + (1 – c) 1.6 = 1.6 – 1.6c 

x3 
 8   11.2  11.2 – 3.2c 

 

 
Example 3. Unbounded LPs 

 

z x1 x2 x3 s1 s2 z RHS BV Ratio 

1 0 2 -9 0 12 4 100 z=100  

0 0 1 -6 1 6 -1 20 x4=20 None 

0 1 1 -1 0 1 0 5 x1=5 None 

 
Since ratio test fails, the LP under consideration is an unbounded LP. 

The Big M Method 

If an LP has any ≥ or = constraints, a starting bfs may not be readily apparent. When a bfs 

is not readily apparent, the Big M method or the two-phase simplex method may be used to 

solve the problem. 

The Big M method is a version of the Simplex Algorithm that first finds a bfs by adding 

"artificial" variables to the problem. The objective function of the original LP must, of course, 

be modified to ensure that the artificial variables are all equal to 0 at the conclusion of the 

simplex algorithm. 

 
Steps 

1. Modify the constraints so that the RHS of each constraint is nonnegative (This requires 

that each constraint with a negative RHS be multiplied by -1. Remember that if you 

multiply an inequality by any negative number, the direction of the inequality is 

reversed!). After modification, identify each constraint as a ≤, ≥ or = constraint. 

2. Convert each inequality constraint to standard form (If constraint i is a ≤ constraint, we 

add a slack variable si; and if constraint i is a ≥ constraint, we subtract an excess variable 

ei). 

3. Add an artificial variable ai to the constraints identified as ≥ or = constraints at the end of 

Step 1. Also add the sign restriction ai ≥ 0. 
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4. Let M denote a very large positive number. If the LP is a min problem, add (for each 

artificial variable) Mai to the objective function. If the LP is a max problem, add (for each 

artificial variable) -Mai to the objective function. 

5. Since each artificial variable will be in the starting basis, all artificial variables must be 

eliminated from row 0 before beginning the simplex. Now solve the transformed problem 

by the simplex (In choosing the entering variable, remember that M is a very large 

positive number!). 

 
If all artificial variables are equal to zero in the optimal solution, we have found the 

optimal solution to the original problem. 

 
 

If any artificial variables are positive in the optimal solution, the original problem is 

infeasible!!! 
 

Example 1. Oranj Juice 

(Winston 4.10, p. 164) 

Bevco manufactures an orange flavored soft drink called Oranj by combining orange soda 

and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vitamin C. 

Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It costs Bevco 

2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of orange juice. 

Marketing department has decided that each 10 oz bottle of Oranj must contain at least 20 mg 

of vitamin C and at most 4 oz of sugar. Use LP to determine how Bevco can meet marketing 

dept.‟s requirements at minimum cost. LP Model: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a 

bottle of Oranj. 

min z = 2x1 + 3x2 

s.t. 0.5 x1 + 0.25 x2  ≤  4 (sugar const.) 

x1+ 3 x2 ≥ 20 (vit. C const.) 

x1+ x2 = 10 (10 oz in bottle) 

                 x1, x2 ≥ 0 

 
 

Solving Oranj Example with Big M Method 

1. Modify the constraints so that the RHS of each constraint is 

nonnegative The RHS of each constraint is nonnegative 
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2. Convert each inequality constraint to standard form 

z –  2x1 –  3x2   = 0 

0.5x1 + 0.25x2 + s1  = 4 

x1 + 3x2 - e2 = 20 

x1 + x2 = 10 

all variables nonnegative 

3. Add ai to the constraints identified as > or = const.s 

z –  2x1 – 3x2 =  0  Row 

0 0.5x1 + 0.25x2 + s1 =  4 Row 1 

x1 +     3x2 - e2 + a2  = 20 Row 2 

x1 +        x2  + a3      = 10 Row 3 

all variables nonnegative 

4. Add Mai to the objective function (min problem) 

min z = 2x1 + 3x2 + Ma2 + Ma3 

Row 0 will change to 

z – 2x1 – 3x2 – Ma2 – Ma3 = 0 

5. Since each artificial variable are in our starting bfs, they must be eliminated from row 0 

New Row 0 = Row 0 + M * Row 2 + M * Row 3  

z + (2M–2) x1 + (4M–3) x2 – M e2 = 30M New Row 0 
 

 

Initial tableau: 

 
z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 2M-2 4M-3 0 -M 0 0 30M z=30M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 20 a2=20 20/3* 

0 1 1 0 0 0 1 10 a3=10 10 
 

In a min problem, entering variable is the variable that has the “most positive” coefficient 

in row 0! 

First tableau: 

 

z x1 x2 s1 e2 a2 a3 RHS BV Ratio 

1 (2M-3)/3 0 0 (M-3)/3 (3-4M)/3 0 20+3.3M z  

0 5/12 0 1 1/12 -1/12 0 7/3 s1 28/5 
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0 1/3 1 0 -1/3 1/3 0 20/3 x2 20 

0 2/3 0 0 1/3 -1/3 1 10/3 a3 5* 

Optimal tableau: 
 

z x1 x2 s1 e2 a2 a3 RHS BV 

1 0 0 0 -1/2 (1-2M)/2 (3-2M)/2 25 z=25 

0 0 0 1 -1/8 1/8 -5/8 1/4 s1=1/4 

0 0 1 0 -1/2 1/2 -1/2 5 x2=5 

0 1 0 0 1/2 -1/2 3/2 5 x1=5 

 
Report: 

In a bottle of Oranj, there should be 5 oz orange soda and 5 oz orange juice. In this 

case the cost would be 25¢. 

Example 2. Modified Oranj Juice 

Consider Bevco‟s problem. It is modified so that 36 mg of vitamin C are required. Related 

LP model is given as follows: 

Let x1 and x2 be the quantity of ounces of orange soda and orange juice (respectively) in a 

bottle of Oranj. 

min z = 2x1 + 3x2 

s.t. 0.5 x1 + 0.25 x2  ≤  4 (sugar const.) 

x1+ 3 x2 ≥ 36 (vit. C const.) 

x1+ x2 = 10 (10 oz in bottle) 

                                                        x1, x2 ≥ 0 

Solving with Big M method: 

Initial tableau: 

 

Z 

 
x1 

 

x2 

 
s1 

 
e2 

 
a2 

 
a3 

 

RHS 

 

BV 

 

Ratio 

1 2M-2 4M-3 0 -M 0 0 46M z=46M  

0 0.5 0.25 1 0 0 0 4 s1=4 16 

0 1 3 0 -1 1 0 36 a2=36 36/3 

0 1 1 0 0 0 1 10 a3=10 10  

Optimal tableau: 

Z x1 x2 s1 e2 a2 a3 RHS BV  

1 1-2M 0 0 -M 0 3-4M 30+6M z=30+6M  

0 ¼ 0 1 0 0 -1/4 3/2 s1=3/2  

0 -2 0 0 -1 1 -3 6 a2=6  

0 1 1 0 0 0 1 10 x2=10  

An artificial variable (a2) is BV so the original LP has no feasible solution 
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DUALITY 

 
 

Primal – Dual 

Associated with any LP is another LP called the dual. Knowledge of the dual provides 

interesting economic and sensitivity analysis insights. When taking the dual of any LP, the 

given LP is referred to as the primal. If the primal is a max problem, the dual will be a min 

problem and vice versa 

 

Finding the Dual of an LP 

The dual of a normal max problem is a normal min problem. 

Normal max problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≤ constraints. 

Normal min problem is a problem in which all the variables are required to be 

nonnegative and all the constraints are ≥ constraints. 

Similarly, the dual of a normal min problem is a normal max problem. 

 
 

Finding the Dual of a Normal Max Problem 

PRIMAL 

max z = c1x1+ c2x2 +…+ cnxn 

s.t. a11x1 + a12x2 + … + a1nxn ≤ b1 

a21x1 + a22x2 + … + a2nxn ≤ b2 

… … … … 

am1x1 + am2x2 + … + amnxn ≤ bm xj        

≥ 0 (j = 1, 2, …, n) 

DUAL 

min w = b1y1 + b2y2 +…+ bmym 

2 + … + am1ym ≥ c1 a12y1 + a22y2 + … + am2ym ≥ 

c2 

… … … … 

a1ny1 + a2ny2 + …+ amnym ≥ cn yi 

≥ 0 (i = 1, 2, …, m) 

 

 

 



34 
 

Finding the Dual of a Normal Min Problem 

PRIMAL 

min w = b1y1+ b2y2 +…+ bmym 

s.t. a11y1 + a21y2 + … + am1ym ≥ c1 

a12y1 + a22y2 + … + am2ym ≥ c2 

… … … … 

a1ny1 + a2ny2 + …+ amnym ≥ cn yi 

≥ 0 (i = 1, 2, …, m) 

DUAL 

max z = c1x1+ c2x2 +…+ cnxn 

s.t. a11x1 + a12x2 + … + a1nxn ≤ b1 

a21x1 + a22x2 + … + a2nxn ≤ b2 

… … … … 

am1x1 + am2x2 + … + amnxn ≤ bm xj 

≥ 0 (j = 1, 2, …, n) 

 
Finding the Dual of a Nonnormal Max Problem 

 If the ith primal constraint is a ≥ constraint, the corresponding dual variable yi 

must satisfy yi ≤ 0 

 If the ith primal constraint is an equality constraint, the dual variable yi is now 

unrestricted in sign (urs). 

 If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 

 
Finding the Dual of a Nonnormal Min Problem 

 If the ith primal constraint is a ≤ constraint, the corresponding dual variable 

xi must satisfy xi ≤ 0 

 If the ith primal constraint is an equality constraint, the dual variable xi is now 

urs. 

 If the ith primal variable is urs, the ith dual constraint will be an equality 

constraint 
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The Dual Theorem 

The primal and dual have equal optimal objective function values (if the problems have 

optimal solutions). 

Weak duality implies that if for any feasible solution to the primal and an feasible solution to 

the dual, the w-value for the feasible dual solution will be at least as large as the z-value for 

the feasible primal solution  z ≤ w. 

Consequences 

 Any feasible solution to the dual can be used to develop a bound on the optimal value 

of the primal objective function. 

 If the primal is unbounded, then the dual problem is infeasible. 

 If the dual is unbounded, then the primal is infeasible. 

 How to read the optimal dual solution from Row 0 of the optimal tableau if the 

primal is a max problem: 

„optimal value of dual variable yi‟ 

= „coefficient of si in optimal row 0‟ (if const. i is a ≤ const.) 

= –„coefficient of ei in optimal row 0‟ (if const. i is a ≥ const.) 

= „coefficient of ai in optimal row 0‟ – M (if const. i is a = const.) 

 How to read the optimal dual solution from Row 0 of the optimal tableau if the 

primal is a min problem: 

„optimal value of dual variable xi‟ 

= „coefficient of si in optimal row 0‟ (if const. i is a ≤ const.) 

= –„ coefficient of ei in optimal row 0‟ (if const. i is a ≥ const.) 

= „coefficient of ai in optimal row 0‟ + M (if const. i is a = const.) 

 
 

Economic Interpretation 

When the primal is a normal max problem, the dual variables are related to the value of 

resources available to the decision maker. For this reason, dual variables are often referred to 

as resource shadow prices. 

Example 

PRIMAL 

Let x1, x2, x3 be the number of desks, tables and chairs produced. Let the weekly profit be $z. 

Then, we must 
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max z = 60x1 + 30x2 + 20x3 

8x1 +  6x2 + x3 ≤ 48 (Lumber constraint) 

4x1 + 2x2 + 1.5x3 ≤ 20 (Finishing hour constraint) 2x1 + 

1.5x2 + 0.5x3 ≤ 8 (Carpentry hour constraint) 

                                                           x1, x2, x3 ≥ 0 

DUAL 

Suppose an entrepreneur wants to purchase all of Dakota‟s resources. 

In the dual problem y1, y2, y3 are the resource prices (price paid for one board ft of lumber, 

one finishing hour, and one carpentry hour). 

$w is the cost of purchasing the resources. 

Resource prices must be set high enough to induce Dakota to sell. i.e. total purchasing cost 

equals total profit. 

min w = 48y1 + 20y2 + 8y3 

s.t. 8y1 +  4y2 +  2y3  ≥  60 (Desk constraint) 6y1 + 

2y2 + 1.5y3 ≥  30 (Table constraint) y1 + 1.5y2+ 

0.5y3 ≥ 20 (Chair constraint) 

                                                    y1, y2, y3 ≥ 0 

 

SENSITIVITY ANALYSIS 
 

Reduced Cost 

For any nonbasic variable, the reduced cost for the variable is the amount by which the 

nonbasic variable's objective function coefficient must be improved before that variable will 

become a basic variable in some optimal solution to the LP. 

If the objective function coefficient of a nonbasic variable xk is improved by its reduced cost, 

then the LP will have alternative optimal solutions at least one in which xk is a basic variable, 

and at least one in which xk is not a basic variable. 

If the objective function coefficient of a nonbasic variable xk is improved by more than its 

reduced cost, then any optimal solution to the LP will have xk as a basic variable and xk > 0. 

Reduced cost of a basic variable is zero (see definition)! 

 
 

 Shadow Price 

We define the shadow price for the ith constraint of an LP to be the amount by which the 

optimal z value is "improved" (increased in a max problem and decreased in a min problem) 
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if the RHS of the ith constraint is increased by 1. 

This definition applies only if the change in the RHS of the constraint leaves the current basis 

optimal! 

A ≥ constraint will always have a nonpositive shadow price; a ≤ constraint will always have a 

nonnegative shadow price. 

 
Conceptualization 

max z = 5 x1 + x2 + 10x3 

x1 + x3 ≤ 100 

x2 ≤ 1 

All variables ≥ 0 

 
This is a very easy LP model and can be solved manually without utilizing Simplex. 

x2 = 1 (This variable does not exist in the first constraint. In this case, as the problem is a 

maximization problem, the optimum value of the variable equals the RHS value of the second 

constraint). 

x1 = 0, x3 = 100 (These two variables do exist only in the first constraint and as the objective 

function coefficient of x3 is greater than that of x1, the optimum value of x3 equals the RHS 

value of the first constraint). 

Hence, the optimal solution is as follows: 

z = 1001, [x1, x2, x3] = [0, 1, 100] 

 
 

Similarly, sensitivity analysis can be executed manually. 

Reduced Cost 

As x2 and x3 are in the basis, their reduced costs are 0. 

In order to have x1 enter in the basis, we should make its objective function coefficient as 

great as that of x3. In other words, improve the coefficient as 5 (10-5). New objective function 

would be (max z = 10x1 + x2 + 10x3) and there would be at least two optimal solutions for [x1, 

x2, x3]: [0, 1, 100] and [100, 1, 0]. 

Therefore reduced cost of x1 equals 5. 

If we improve the objective function coefficient of x1 more than its reduced cost, there would 

be a unique optimal solution: [100, 1, 0]. 
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Shadow Price 

If the RHS of the first constraint is increased by 1, new optimal solution of x3 would be 101 

instead of 100. In this case, new z value would be 1011. 

If we use the definition: 1011 - 1001 = 10 is the shadow price of the first constraint. 

Similarly the shadow price of the second constraint can be calculated as 1 (please find it). 

  Some important equations 

If the change in the RHS of the constraint leaves the current basis optimal (within the 

allowable RHS range), the following equations can be used to calculate new objective 

function value: 

for maximization problems 

new obj. fn. value = old obj. fn. for minimization problems 

 new obj. fn. value = old obj. fn. value – (new RHS – old RHS) × shadow price For 

Lindo example, as the allowable increases in RHS ranges are infinity for each 

constraint, we can increase RHS of them as much as we want. But according to 

allowable decreases, RHS of the first constraint can be decreased by 100 and that of 

second constraint by 1. 

Lets assume that new RHS value of the first constraint is 60. 

As the change is within allowable range, we can use the first equation (max. problem): 

znew = 1001 + ( 60 - 100 ) 10 = 601. 

                   value + (new RHS – old RHS) × shadow price 
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Utilizing Simplex for Sensitivity 

In Dakota furniture example; x1, x2, and x3 were representing the number of desks, tables, 

and chairs produced. 

The LP formulated for profit maximization: 
 

max z = 60 x1 30 x2 20x3  

8 x1 + 6 x2 + x3 + s1 
   = 48 Lumber 

4 x1 + 2 x2 +1.5 x3 
 + s2 

  = 20 Finishing 

2 x1 +1.5 x2 + .5 x3 
  + s3 

 = 8 Carpentry 

 x2     + s4 = 5 Demand 

The optimal solution was: 
 

z +5 x2 +10 s2 +10 s3 = 280 
 

-2 x2  +s1 +2 s2 -8 s3  = 24 

-2 x2 + x3 
 +2 s2 -4 s3 

 = 8 

+ x1 + 1.25 x2 
  -.5 s2 +1.5 s3 

 = 2 

x2     + s4 = 5 

 
Analysis 1 

Suppose available finishing time changes from 20  20+, then we have the system: 

 
z' = 60 x1' + 30 x2' + 20 x3'  

8 x1' 

4 x1' 

+   6 x2' 

+   2 x2' 

+ x3' 

+1.5 x3' 

+ s1'  

+ s2' 

  = 48 

= 20+ 

2 x1' +1.5 x2' + .5 x3'   + s3'  = 8 

 + x2'     + s4' = 5 
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or equivalently: 
 

z' = 60 x1' + 30 x2' + 20 x3'      

8 x1' 

4 x1' 

+   6 x2' 

+   2 x2' 

+ x3' 

+1.5 x3' 

+ s1'  
+(s2'-) 

  = 48 

= 20 

2 x1' +1.5 x2' + .5 x3'   + s3'  = 8 

 + x2'     + s4' = 5 

That is z
‟
, x1

‟, x 
‟
, x 

‟
 ,x 

‟
 ,s 

‟
 ,s 

‟
 -,s 

‟
 ,s 

‟
 satisfy the original problem, and hence (1) 

2 3 4 1 2 3 4 
 

Substituting in: 
 

z' +5 x2' +10(s2'-) +10 s3' = 280 

-2 x2' + s1' +2(s2'-) -8 s3' =  24 

-2 x2' + x3' +2(s2'-) -4 s3' = 8 

+ x1' +1.25 x2' -.5(s2'-) +1.5 s3' = 2 

x2' + s4' = 5 

and thus 

z' +5 x2' +10 s2' +10 s3' = 280+10 

-2 x2' +s1' +2 s2' -8 s3' =  24+2 

-2 x2' + x3' +2 s2' -4 s3' = 8+2 

+ x1' +1.25 x2' -.5 s2' +1.5 s3' = 2-.5 

x2' + s4' = 5 

For -4    4, the new system maximizes z‟. In this range RHS values are non- negative. 

As  increases, revenue increases by 10. Therefore, the shadow price of finishing labor is 

$10 per hr. (This is valid for up to 4 extra hours or 4 fewer hours). 

 
Analysis 2 

What happens if revenue from desks changes to $60+? For small  revenue increases by 

2 (as we are making 2 desks currently). But how large an increase is possible? 

The new revenue is: 

z' = (60+)x1+30x2+20x3 = z+x1 

= (280 - 5x2 - 10s2 - 10s3) + (2 - 1.25x2 + .5s2 - 1.5s3) 

= 280 + 2 - (5 + 1.25)x2 - (10-.5)s2 - (10 + 1.5)s3 

So the top line in the final system would be: 
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z' + (5 + 1.25)x2 + (10 - .5)s2 + (10 + 1.5)s3 = 280 + 2 

Provided all terms in this row are   we are still optimal. 

For -4    20, the current production schedule is still optimal. 

 

Analysis 3 

If revenue from a non-basic variable changes, the revenue is 

z
‟
 = 60x1 + (30 + )x2 + 20x3 = z + x2 

= 280 - 5x2 - 10s2 - 10s3 + x2 

= 280 - (5 - )x2 - 10s2 - 10s3 

The current solution is optimal for   5. But when   5 or the revenue per table is 

increased past $35, it becomes better to produce tables. We say the reduced cost of tables is 

$5.00. 

 
Duality and Sensitivity Analysis 

Will be treated at the class. 

 
 

The 100% Rule 

Will be treated at the class. 
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  UNIT – II: TRANSPORTATION PROBLEM 
 

FORMULATING TRANSPORTATION PROBLEMS 

In general, a transportation problem is specified by the following information: 

 A set of m supply points from which a good/service is shipped. Supply point i 

can supply at most si units. 

 A set of n demand points to which the good/service is shipped. Demand point 

j must receive at least dj units. 

 Each unit produced at supply point i and shipped to demand point j incurs a 

variable cost of cij. 

The relevant data can be formulated in a transportation tableau: 

 

 
Supply 

point 1 

Supply 

point 2 

..... 

Supply 

point m 

Demand 

point 1 

Demand 

point 2 
..... 

Demand 

point n 
SUPPLY 

s1 

s2 

 
 

sm 

DEMAND d1 d2 dn 

 
If total supply equals total demand then the problem is said to be a balanced 

transportation problem. 

 
Let xij = number of units shipped from supply point i to demand point j 

 Decision variable xij: number of units shipped from supply point i to 

demand point j 

then the general LP representation of a transportation problem is 

min i j cij xij 

s.t. j xij < si (i=1,2, ..., m) Supply constraints 

 c11  c12    c1n 

    

 c21  c22    c2n 

    

        

    

 cm1  cm2    cmn 
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i xij > dj (j=1,2, ..., n) Demand constraints 

xij > 0 

If a problem has the constraints given above and is a maximization problem, it is still a 

transportation problem. 

 
Formulating Balanced Transportation Problem Example 1. 

Powerco 

Powerco has three electric power plants that supply the needs of four cities. Each power plant 

can supply the following numbers of kwh of electricity: plant 1, 35 million; plant 2, 50 

million; and plant 3, 40 million. The peak power demands in these cities as follows (in kwh): 

city 1, 45 million; city 2, 20 million; city 3, 30 million; city 4, 30 million. The costs of 

sending 1 million kwh of electricity from plant to city is given in the table below. To 

minimize the cost of meeting each city‟s peak power demand, formulate a balanced 

transportation problem in a transportation tableau and represent the problem as a LP model. 

 

From 

To 

City 1 City 2 City 3 City 4 

Plant 1 $8 $6 $10 $9 

Plant 2 $9 $12 $13 $7 

Plant 3 $14 $9 $16 $5 

 

 
Answer 

Representation of the problem as a LP model 

xij: number of (million) kwh produced at plant i and sent to city j. 

min z = 8 x11 + 6 x12 + 10 x13 + 9 x14 + 9 x21 + 12 x22 + 13 x23 + 7 x24 + 14 x31 + 9 

x32 + 16 x33 + 5 x34 

s.t.  x11 + x12 + x13 + x14 < 35 (supply constraints) 

x21 + x22 + x23 + x24 < 50 

x31 + x32 + x33 + x34 < 40 

x11 + x21 + x31 > 45 (demand constraints) 

x12 + x22 + x32 > 20 

x13 + x23 + x33 > 30 

x14 + x24 + x34 > 30 

xij > 0 (i = 1, 2, 3; j = 1, 2, 3, 4) 
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Formulation of the transportation problem 
 

 City 1 City 2 City 3 City 4 SUPPLY 
 8  6  10  9  

Plant 1     35 

  9  12  13  7  

Plant 2     50 

  14  9  16  5  

Plant 3     40 

DEMAND 45 20 30 30 125 

Total supply & total demand both equal 125: “balanced transport‟n problem”. 

 

 
Balancing an Unbalanced Transportation Problem 

Excess Supply 

If total supply exceeds total demand, we can balance a transportation problem by creating a 

dummy demand point that has a demand equal to the amount of excess supply. Since 

shipments to the dummy demand point are not real shipments, they are assigned a cost of 

zero. These shipments indicate unused supply capacity. 

Unmet Demand 

If total supply is less than total demand, actually the problem has no feasible solution. To 

solve the problem it is sometimes desirable to allow the possibility of leaving  some demand 

unmet. In such a situation, a penalty is often associated with unmet demand. This means that a 

dummy supply point should be introduced. 

 
Example 2. Modified Powerco for Excess Supply 

Suppose that demand for city 1 is 40 million kwh. Formulate a balanced transportation 

problem. 

Answer 

Total demand is 120, total supply is 125. 

To balance the problem, we would add a dummy demand point with a demand of 125 

– 120 = 5 million kwh. 

From each plant, the cost of shipping 1 million kwh to the dummy is 0. For 

details see Table 4. 
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Table 4. Transportation Tableau for Excess Supply 
 

 City 1 City 2 City 3 City 4 Dummy SUPPLY 
 8  6  10  9  0  

Plant 1      35 

  9  12  13  7  0  

Plant 2      50 

  14  9  16  5  0  

Plant 3      40 

DEMAND 40 20 30 30 5 125 

 
Example 3. Modified Powerco for Unmet Demand 

Suppose that demand for city 1 is 50 million kwh. For each million kwh of unmet demand, 

there is a penalty of 80$. Formulate a balanced transportation problem. Answer 

We would add a dummy supply point having a supply of 5 million kwh representing 

shortage. 

 
Plant 1 

 
Plant 2 

 
Plant 3 

Dummy 

(Shortage) 

City 1 City 2 City 3 City 4 SUPPLY 

35 

 
50 

 
40 

 

5 

DEMAND 50 20 30 30 130 

 
 

FINDING BFS FOR TRANSPORT’N PROBLEMS 

For a balanced transportation problem, general LP representation may be written as: min i 

j cij xij 

s.t. j xij = si (i=1,2, ..., m) Supply constraints 

i xij = dj (j=1,2, ..., n) Demand constraints 
 

xij > 0 

To find a bfs to a balanced transportation problem, we need to make the following important 

observation: 

 8  6  10  9 
    

 9  12  13  7 
    

 14  9  16  5 
    

        

80 80 80 80 
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If a set of values for the xij‟s satisfies all but one of the constraints of a balanced 

transportation problem, the values for the xij‟s will automatically satisfy the other constraint. 

This observation shows that when we solve a balanced transportation, we may omit from 

consideration any one of the problem‟s constraints and solve an LP having m+n- 1 constraints. 

We arbitrarily assume that the first supply constraint is omitted from consideration. In trying 

to find a bfs to the remaining m+n-1 constraints, you might think that any collection of m+n-1 

variables would yield a basic solution. But this is not the case: If the m+n-1 variables yield a 

basic solution, the cells corresponding to this set contain no loop. 

An ordered sequence of at least four different cells is called a loop if 

 Any two consecutives cells lie in either the same row or same column 

 No three consecutive cells lie in the same row or column 

 The last cell in the sequence has a row or column in common with the first cell in the 

sequence 

There are three methods that can be used to find a bfs for a balanced transportation problem: 

1. Northwest Corner method 

2. Minimum cost method 

3. Vogel‟s method 

 
 

Northwest Corner Method 

We begin in the upper left corner of the transportation tableau and set x11 as large as possible 

(clearly, x11 can be no larger than the smaller of s1 and d1). 

 If x11=s1, cross out the first row of the tableau. Also change d1 to d1-s1. 

 If x11=d1, cross out the first column of the tableau. Change s1 to s1-d1. 

 If x11=s1=d1, cross out either row 1 or column 1 (but not both!). 

o If you cross out row, change d1 to 0. 

o If you cross out column, change s1 to 0. 

Continue applying this procedure to the most northwest cell in the tableau that does not lie in 

a crossed out row or column. 
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Eventually, you will come to a point where there is only one cell that can be assigned a value. 

Assign this cell a value equal to its row or column demand, and cross out both the cell‟s row 

or column. 

 
Minimum Cost Method 

Northwest Corner method does not utilize shipping costs, so it can yield an initial bfs that has 

a very high shipping cost. Then determining an optimal solution may require several pivots. 

To begin the minimum cost method, find the variable with the smallest shipping cost (call it 

xij). Then assign xij its largest possible value, min {si, dj}. 

As in the NWC method, cross out row i or column j and reduce the supply or demand of the 

noncrossed-out of row or column by the value of xij. 

Continue like NWC method (instead of assigning upper left corner, the cell with the 

minimum cost is assigned). See Northwest Corner Method for the details! 

 
 

 

 
X

 

15 

10 X 4 6 

X 

X 

15 

5 X 4 6 

X 

X 

10 

5 X 4 6 

 

 2  3  5  6 
    

 2  1  3  5 

2 8   

 3  8  4  6 
    

 

 2  3  5  6 

5    

 2  1  3  5 

2 8   

 3  8  4  6 
    

 

 2  3  5  6 

5    

 2  1  3  5 

2 8   

 3  8  4  6 

5  4 6 
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Vogel’s Method 

Begin by computing for each row and column a penalty equal to the difference between the 

two smallest costs in the row and column. Next find the row or column with the largest 

penalty. Choose as the first basic variable the variable in this row or column that has the 

smallest cost. As described in the NWC method, make this variable as large as possible, cross 

out row or column, and change the supply or demand associated with the basic variable (See 

Northwest Corner Method for the details!). Now recomputed new penalties (using only cells 

that do not lie in a crossed out row or column), and repeat the procedure until only one 

uncrossed cell remains. Set this variable equal to the supply or demand associated with the 

variable, and cross out the variable‟s row and column. 
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Example 3. 
 

 

Supply 
Row 

penalty 

 

 

 
 

Demand 15 5 5 

Column 

penalty 
15-6=9 80-7=73 78-8=70 

10 7-6=1 

15 78-15=63 

Supply 
Row 

penalty 

 

 

 
 

Demand 15 X 5 

Column 

penalty 
15-6=9 -------------------- 78-8=70 

5 8-6=2 

15 78-15=63 

Supply 
Row 

penalty 

X - 

15 - 

 

Demand 15 X 0 

Column 

penalty 
15-6=9 - - 

 
X

 

15 

Demand 15 X 0 

 6  7  8 
   

 15  80  78 
   

 

 6  7  8 
 5  

 15  80  78 
   

 

 6  7  8 
 5 5 
 15  80  78 
   

 

 6  7  8 
 5 5 
 15  80  78 

15  0 
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THE TRANSPORTATION SIMPLEX METHOD 

 
 

Steps of the Method 

1. If the problem is unbalanced, balance it 

2. Use one of the methods to find a bfs for the problem 

3. Use the fact that u1 = 0 and ui + vj = cij for all basic variables to find the u‟s and v‟s for the 

current bfs. 

4. If ui + vj – cij ≤ 0 for all nonbasic variables, then the current bfs is optimal. If this is not the 

case, we enter the variable with the most positive ui + vj – cij into the basis using the 

pivoting procedure. This yields a new bfs. Return to Step 3. 

 
For a maximization problem, proceed as stated, but replace Step 4 by the following step: 

If ui + vj – cij ≥ 0 for all nonbasic variables, then the current bfs is optimal. Otherwise, enter 

the variable with the most negative ui + vj – cij into the basis using the pivoting procedure. 

This yields a new bfs. Return to Step 3. 

 
Pivoting procedure 

1. Find the loop (there is only one possible loop!) involving the entering variable 

(determined at step 4 of the transport‟n simplex method) and some or all of the basic 

variables. 

2. Counting only cells in the loop, label those that are an even number (0, 2, 4, and so on) of 

cells away from the entering variable as even cells. Also label those that are an odd 

number of cells away from the entering variable as odd cells. 

3. Find the odd cell whose variable assumes the smallest value. Call this value . The 

variable corresponding to this odd cell will leave the basis. To perform the pivot, decrease 

the value of each odd cell by  and increase the value of each even cell by . The values 

of variables not in the loop remain unchanged. The pivot is now complete. If  = 0, the 

entering variable will equal 0, and odd variable that has a current value of 0 will leave the 

basis. 
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Example 1. Powerco 

The problem is balanced (total supply equals total demand). 

When the NWC method is applied to the Powerco example, the bfs in the following table is 

obtained (check: there exist m+n–1=6 basic variables). 

City 1 City 2 City 3 City 4 SUPPLY 

Plant 1 
8 6 10 9 

35 
35 

Plant 2 
9 12 13 7 

50 
10 20 20 

Plant 3 
14 9 16 5 

40 

10 30 

DEMAND 45 20 30 30 125 
 

u1 = 0 

u1 + v1 = 8 yields v1 = 8 

u2 + v1 = 9 yields u2 = 1 

u2 + v2 = 12 yields v2 = 11 

u2 + v3 = 13 yields v3 = 12 

u3 + v3 = 16 yields u3 = 4 u3 

+ v4 = 5 yields v4 = 1 

For each nonbasic variable, we now compute ĉij = ui + vj – cij ĉ12 = 

0 + 11 – 6 = 5 

ĉ13 = 0 + 12 – 10 = 2 

ĉ14 = 0 + 1 – 9 = -8 

ĉ24 = 1 + 1 – 7 = -5 

ĉ31 = 4 + 8 – 14 = -2 

ĉ32 = 4 + 11 – 9 = 6 

Since ĉ32 is the most positive one, we would next enter x32 into the basis: Each unit of 

x32 that is entered into the basis will decrease Powerco‟s cost by $6. The loop 

involving x32 is (3,2)-(3,3)-(2,3)-(2,2).  = 10 (see table) 

Plant 1 35 

 City 1 City 2 City 3 City 4 SUPPLY 
 8  6  10  9  

35     

 9  12  13  7  

Plant 2 10 20– 20+  50 

  14  9  16  5  

Plant 3   10– 30 40 

DEMAND 45 20 30 30 125 
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30 

x33 would leave the basis. New bfs is shown at the following table: 

 
ui/vj 8 11 12 7 SUPPLY 

 
0 35 

 
1 50 

 
-2 

DEMAND 45 
10

 

1 

5 

20 30 
30

 

 
40 

 

125 
 

ĉ12 = 5, ĉ13 = 2, ĉ14 = -2, ĉ24 = 1, ĉ31 = -8, ĉ33 = -6 

Since ĉ12 is the most positive one, we would next enter x12 into the basis. The 

loop involving x12 is (1,2)-(2,2)-(2,1)-(1,1).  = 10 (see table) 

 

 

 
 

 

 

 
 

x22 would leave the basis. New bfs is shown at the following table: 

 
ui/vj 8 6 12 2 SUPPLY 

8 6 10 9 
0 

25 10 
35

 
9 12 13 

7 
50 

20 

3 
14 

30 

9 16 
40

 

DEMAND 45 20 30 
5 

30 125 

10 30 

ĉ13 = 2, ĉ14 = -7, ĉ22 = -5, ĉ24 = -4, ĉ31 = -3, ĉ33 = -1 

Since ĉ13 is the most positive one, we would next enter x13 into the basis. The 

loop involving x13 is (1,3)-(2,3)-(2,1)-(1,1).  = 25 (see table) 

1 

 8  6  10  9 

35    

 9  12  13  7 

10 10 30  

 1 4  9   6 
    

 

 City 1 City 2 City 3 City 4 SUPPLY 
 8  6  10  9  

Plant 1 35–    35 

  9  12  13  7  

Plant 2 10+ 10– 30  50 

  14  9  16  5  

Plant 3  10  30 40 

DEMAND 45 20 30 30 125 
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3 

9 10 6 8 

City 1 
8
 City 2 

6
 City 3 

10
 City 4

9
 SUPPLY 

 
 

 

 

 

 

 

 
 

x11 would leave the basis. New bfs is shown at the following table: 

 
ui/vj 6 6 10 2 SUPPLY 

 
0 

10 25 
35

 1 

3 

45 

14 

2 1 

7 
50 

5 

9 16 
40

 

DEMAND 45 20 30 
5 

30 125 

10 30 

ĉ11 = -2, ĉ14 = -7, ĉ22 = -3, ĉ24 = -2, ĉ31 = -5, ĉ33 = -3 

Since all ĉij‟s are negative, an optimal solution has been obtained. 

 
 

Report 

45 million kwh of electricity would be sent from plant 2 to city 1. 

10 million kwh of electricity would be sent from plant 1 to city 2. Similarly, 10 million kwh 

of electricity would be sent from plant 3 to city 2. 

25 million kwh of electricity would be sent from plant 1 to city 3. 5 million kwh of 

electricity would be sent from plant 2 to city 3. 

30 million kwh of electricity would be sent from plant 3 to city 4 and 

Total shipping cost is: 

z = .9 (45) + 6 (10) + 9 (10) + 10 (25) + 13 (5) + 5 (30) = $ 1020 

 

 
TRANSSHIPMENT PROBLEMS 

Sometimes a point in the shipment process can both receive goods from other points and send 

goods to other points. This point is called as transshipment point through which goods can 

be transshipped on their journey from a supply point to demand point. 

Shipping problem with this characteristic is a transshipment problem. 

9 

3 

       

25– 
9

 10 
12

 
 

13   

       7 

20+ 
14

  30– 
16

  

   9    
30 

5 

 10   

 

Plant 1      35 

Plant 2      50 

Plant 3      40 

DEMAND 45 20 30 
 

30 125 
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The optimal solution to a transshipment problem can be found by converting this 

transshipment problem to a transportation problem and then solving this transportation 

problem. 

 
Remark 

As stated in “Formulating Transportation Problems”, we define a supply point to be a point 

that can send goods to another point but cannot receive goods from any other point. 

Similarly, a demand point is a point that can receive goods from other points but cannot 

send goods to any other point. 

 
Steps 

1. If the problem is unbalanced, balance it 

Let s = total available supply (or demand) for balanced problem 

2. Construct a transportation tableau as follows 

A row in the tableau will be needed for each supply point and transshipment point A 

column will be needed for each demand point and transshipment point 

Each supply point will have a supply equal to its original supply Each 

demand point will have a demand equal to its original demand 

Each transshipment point will have a supply equal to “that point‟s original supply + 

s” 

Each transshipment point will have a demand equal to “that point‟s original demand + s” 

3. Solve the transportation problem 

 
 

Example 1. Bosphorus 

(Based on Winston 7.6.) 

Bosphorus manufactures LCD TVs at two factories, one in Istanbul and one in Bruges. The 

Istanbul factory can produce up to 150 TVs per day, and the Bruges factory can produce up to 

200 TVs per day. TVs are shipped by air to customers in London and Paris. The customers in 

each city require 130 TVs per day. Because of the deregulation of air fares, Bosphorus 

believes that it may be cheaper to first fly some TVs to Amsterdam or Munchen and then fly 

them to their final destinations. 
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The costs of flying a TV are shown at the table below. Bosphorus wants to minimize the total 

cost of shipping the required TVs to its customers. 
 

€   To  

From Istanbul Bruges Amsterdam Munchen London Paris 

Istanbul 0 - 8 13 25 28 

Bruges - 0 15 12 26 25 
Amsterdam - - 0 6 16 17 
Munchen - - 6 0 14 16 

London - - - - 0 - 

Paris - - - - - 0 

 
Answer: 

In this problem Amsterdam and Munchen are transshipment points. 

Step 1. Balancing the problem Total 

supply = 150 + 200 = 350 

Total demand = 130 + 130 = 260 

Dummy‟s demand = 350 – 260 = 90 

s = 350 (total available supply or demand for balanced problem) 

Step 2. Constructing a transportation tableau 

Transshipment point‟s demand = Its original demand + s = 0 + 350 = 350 Transshipment 

point‟s supply = Its original supply + s = 0 + 350 = 350 

Amsterdam Munchen London Paris Dummy Supply 
 

Istanbul 

Bruges 

Amsterdam 

Munchen 

Demand 350 350 130 130 90 

Step 3. Solving the transportation problem 

150 

 
200 

 
350 

 
350 

 

 
Istanbul 

Amsterdam Munchen London Paris Dummy Supply 

8  13  25  28  0 

Bruges 

Amsterdam 

Munchen 

130 20 

15 12 26 25 

0 

130 
 

70 

0 6 16 17 

150 

 
200 

 
350 

 
 
 
  

130 90 1050 

 8  13  25  28  0 
     

 15  12  26  25  0 
     

 0  6  16  17  0 
     

 6  0  14  16  0 
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Report: 

Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and transship them 

from Amsterdam to London. 

The 130 TVs produced at Bruges should be shipped directly to Paris. The total 

shipment is 6370 Euros. 

 
 

ASSIGNMENT PROBLEMS 

There is a special case of transportation problems where each supply point should be assigned 

to a demand point and each demand should be met. This certain class of problems is called as 

“assignment problems”. For example determining which employee or machine should be 

assigned to which job is an assignment problem. 

 
LP Representation 

An assignment problem is characterized by knowledge of the cost of assigning each supply 

point to each demand point: cij 

On the other hand, a 0-1 integer variable xij is defined as follows 

xij = 1 if supply point i is assigned to meet the demands of demand point j xij = 0 

if supply point i is not assigned to meet the demands of point j 

In this case, the general LP representation of an assignment problem is min i j 

cij xij 

s.t. j xij = 1 (i=1,2, ..., m) Supply constraints 

i xij = 1 (j=1,2, ..., n) Demand constraints 

xij = 0 or xij = 1 

 
 

Hungarian Method 

Since all the supplies and demands for any assignment problem are integers, all variables in 

optimal solution of the problem must be integers. Since the RHS of each constraint is equal to 

1, each xij must be a nonnegative integer that is no larger than 1, so each xij must equal 0 or 1. 

Ignoring the xij = 0 or xij = 1 restrictions at the LP representation of the assignment problem, 

we see that we confront with a balanced transportation problem in which each supply point 

has a supply of 1 and each demand point has a demand of 1. 
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However, the high degree of degeneracy in an assignment problem may cause the Transportation Simplex 

to be an inefficient way of solving assignment problems. 

For this reason and the fact that the algorithm is even simpler than the Transportation Simplex, 

the Hungarian method is usually used to solve assignment problems. 

 
Remarks 

1. To solve an assignment problem in which the goal is to maximize the objective function, 

multiply the profits matrix through by –1 and solve the problem as a minimization 

problem. 

2. If the number of rows and columns in the cost matrix are unequal, the assignment problem 

is unbalanced. Any assignment problem should be balanced by the addition of one or 

more dummy points before it is solved by the Hungarian method. 

 
Steps 

1. Find the minimum cost each row of the m*m cost matrix. 

2. Construct a new matrix by subtracting from each cost the minimum cost in its row 

3. For this new matrix, find the minimum cost in each column 

4. Construct a new matrix (reduced cost matrix) by subtracting from each cost the minimum 

cost in its column 

5. Draw the minimum number of lines (horizontal and/or vertical) that are needed to cover 

all the zeros in the reduced cost matrix. If m lines are required, an optimal solution is 

available among the covered zeros in the matrix. If fewer than m lines are needed, proceed 

to next step 

6. Find the smallest cost (k) in the reduced cost matrix that is uncovered by the lines drawn 

in Step 5 

7. Subtract k from each uncovered element of the reduced cost matrix and add k to each 

element that is covered by two lines. Return to Step 5 

 
Example 1. Flight Crew 

(Based on Winston 7.5.) 

Four captain pilots (CP1, CP2, CP3, CP4) has evaluated four flight officers (FO1, FO2, FO3, 

FO4) according to perfection, adaptation, morale motivation in a 1-20 scale (1: very good, 20: 

very bad). Evaluation grades are given in the table. Flight 

Company wants to assign each flight officer to a captain pilot according to these 
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0 
0 
5 

10 

1 
9 
5 
0 

3 
3 
0 
3 

5 
0 
4 
0 

0 
0 
4 
9 

2 
10 
5 
0 

4 
4 
0 
3 

6 
1 
4 
0 

evaluations. Determine possible flight crews. 

 FO1 FO2 FO3 FO4 

CP1 2 4 6 10 

CP2 2 12 6 5 

CP3 7 8 3 9 
CP4 14 5 8 7 

 
Answer: 

Step 1. For each row in the table we find the minimum cost: 2, 2, 3, and 5 respectively 

Step 2 & 3. We subtract the row minimum from each cost in the row. For this new matrix, 

we find the minimum cost in each column 

 0 2 4 8 

0 10 4 3 
4 5 0 6 
9 0 3 2 

Column minimum 0 0 0 2 

Step 4. We now subtract the column Minimum from each cost in the column 

obtaining reduced cost matrix.    

                                                  0 2 4 6 

                                                  0   10 4 1 
                                                  4 5 0 4 
                                                   9 0 3 0 

Step 5. As shown, lines through row 3, row 4, and column 1 cover all the zeros in the reduced 

cost matrix. The minimum number of lines for this operation is 3. Since fewer than four lines 

are required to cover all the zeros, solution is not optimal: we proceed to next step. 

 

 
 

 

 

Step 6 & 7. The smallest uncovered cost equals 1. We now subtract 1 from each uncovered 

cost, add 1 to each twice-covered cost, and obtain 

 

 

 
 

Four lines are now required to cover all the zeros: An optimal s9olution is available. Observe 

that the only covered 0 in column 3 is x33, and in column 2 is x42. As row 5 can not be used 

again, for column 4 the remaining zero is x24. Finally we choose x11. 
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Report: 

CP1 should fly with FO1; CP2 should fly with FO4; CP3 should fly with FO3; and CP4 

should fly with FO4. 

 
Example 2. Maximization problem 

 

 F G H I J 
A 6 3 5 8 10 

B 2 7 6 3 2 
C 5 8 3 4 6 

D 6 9 3 1 7 
E 2 2 2 2 8 

Report: 

Optimal profit = 36 

Assigments: A-I, B-H, C-G, D-F, E-J 

Alternative optimal sol‟n: A-I, B-H, C-F, D-G, E-J 
 

 

 
 

Traveling Salesperson Problems 
 

“Given a number of cities and the costs of traveling from any city to any other city, what is 

the cheapest round-trip route (tour) that visits each city once and then returns to the starting 

city?” 

This problem is called the traveling salesperson problem (TSP), not surprisingly. 

An itinerary that begins and ends at the same city and visits each city once is called a 

tour. 

Suppose there are N cities. 

Let cij = Distance from city i to city j (for ij) and 

Let cii = M (a very large number relative to actual distances) Also 

define xij as a 0-1 variable as follows: 

xij = 1 if s/he goes from city i to city j; 

xij = 0 otherwise 

The formulation of the TSP is: 

min ∑İ ∑j cij xij 

s.t. ∑İ  xij = 1 for all j 

∑j xij = 1 for all i 

ui – uj + N xij ≤ N – 1 for ij; i, j > 
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1 All xij = 0 or 1, All ui ≥ 0 

The first set of constraints ensures that s/he arrives once at each city. The 

second set of constraints ensures that s/he leaves each city once. The third set 

of constraints ensure the following: 

Any set of xij‟s containing a subtour will be infeasible Any 

set of xij‟s that forms a tour will be feasible 

ui  – uj  + N xij ≤ N – 1 for ij; i, j > 

1 Assume N=5 

Subtours: 1-5-2-1, 3-4-3 ??? 

Choose the subtour that does not contain city 1: 

u3 – u4 + 5 x34 ≤ 4 

u4 – u3 + 5 x43 ≤ 4 5 

(x34 + x43) ≤ 8 

This rules out the possibility that x34 = x43 = 1 
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The formulation of an IP whose solution will solve a TSP becomes unwieldy and inefficient for 

large TSPs. 

When using branch and bound methods to solve TSPs with many cities, large amounts of 

computer time may be required. For this reason, heuristics, which quickly lead to a good (but 

not necessarily optimal) solution to a TSP, are often used. 

 

 
SOLVING IP 

 

We have gone through a number of examples of IPs at the “Formulating IP Problems” 

section. 

“How can we get solutions to these models?” There are two common approaches: The 

technique based on dividing the problem into a number of smaller problems in a tree search 

method called branch and bound. 

The method based on cutting planes (adding constraints to force integrality). Solving IP 

Actually, all these approaches involve solving a series of LP. 

For solving LP‟s we have general purpose (independent of the LP being solved) and 

computationally effective (able to solve large LP's) algorithms (simplex or interior point). 

For solving IP's no similar general purpose and computationally effective algorithms exist 

 

Categorization Categorization (w.r.t. 

Purpose) 

 General purpose methods will solve any IP but potentially computationally 

ineffective (will only solve relatively small problems); or 

 Special purpose methods are designed for one particular type of IP problem but 

potentially computationally more effective. 

 
Categorization (w.r.t. Algorithm) 

 Optimal algorithms mathematically guarantee to find the optimal solution 
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 Heuristic algorithms are used to solve a problem by trial and error when an optimal 

algorithm approach is impractical. They hopefully find a good feasible solution that, 

in objective function terms, is close to the optimal solution. 

 
Why Heuristics? 

Because the size of problem that we want to solve is beyond the computational limit of 

known optimal algorithms within the computer time we have available. 

We could solve optimally but feel that this is not worth the effort (time, money, etc) we 

would expend in finding the optimal solution. 

In fact it is often the case that a well-designed heuristic algorithm can give good quality 

(near-optimal) results. 

 
Solution Algorithms Categories 

 General Purpose, Optimal 

Enumeration, branch and bound, cutting plane 

 General Purpose, Heuristic 

Running a general purpose optimal algorithm and terminating after a specified time 

 Special Purpose, Optimal 

Tree search approaches based upon generating bounds via dual ascent, lagrangean 

relaxation 

 Special Purpose, Heuristic 

Bound based heuristics, tabu search, simulated annealing, population heuristics (e.g. 

genetic algorithms), interchange 

 

 
LP Relaxation 

 

For any IP we can generate an LP by taking the same objective function and same constraints 

but with the requirement that variables are integer replaced by appropriate continuous 

constraints: 

“xi = 0 or 1”  xi ≥ 0 and xi ≤ 1 

“xi ≥ 0 and integer”  xi ≥ 0 

The LP obtained by omitting all integer and 0-1 constraints on variables is called the 

LP Relaxation of the IP (LR). We can then solve this LR of the original IP. 
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Naturally Integer LP 

If LR is optimized by integer variables then that solution is feasible and optimal for IP. In 

other words, if the solution is turned out to have all variables taking integer values at the 

optimal solution, it is also optimal solution for IP: 

 
LR – IP Relation 

Since LR is less constrained than IP: 

 If IP is a maximization problem, the optimal objective value for LR is greater than or 

equal to that of IP. 

 If IP is a minimization problem, the optimal objective value for LR is less than or 

equal to that of IP. 

 If LR is infeasible, then so is IP. 

So solving LR does give some information. It gives a bound on the optimal value, and, if we 

are lucky, may give the optimal solution to IP. 

 

 
Enumeration 

 

Unlike LP (where variables took continuous values) in IP's (where all variables are integers) 

each variable can only take a finite number of discrete (integer) values. Hence the obvious 

solution approach is simply to enumerate all these possibilities - calculating the value of the 

objective function at each one and choosing the (feasible) one with the optimal value. 

 
Example 1. Multi-period Capital Budgeting 

Maximize 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4 

Subject to 0.5 x1  + 1 x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

0.3 x1  + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

0.2 x1  + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

xj  = 0 or 1 j = 1, … 4 

 
 

 
Review 

Hence for our example, we merely have to examine 16 possibilities before we know precisely 

what the best possible solution is. This example illustrates a general truth about integer 

programming. 



64 
 

What makes solving the problem easy when it is small is precisely what makes it hard very 

quickly as the problem size increases. 

This is simply illustrated: suppose we have 100 integer variables each with two possible 

integer values then there are 2x2x2x ... x2 = 2100 (approximately 1030) possibilities which we 

have to enumerate (obviously many of these possibilities will be infeasible, but until we 

generate one we cannot check it against the constraints to see if it is feasible). 

For 100 integer variable - conceptually there is not a problem - simply enumerate all 

possibilities and choose the best one. But computationally (numerically) this is just 

impossible. 

 
        The Branch-and-Bound Method 
 

The most effective general purpose optimal algorithm is an LP-based tree search approach 

called as branch and bound (B&B). 

The method was first put forward in the early 1960's by Land and Doig. 

This is a way of systematically (implicitly) enumerating feasible solutions such that the 

optimal integer solution is found. 
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Where this method differs from the enumeration method is that not all the feasible solutions 

are enumerated but only a part (hopefully a small part) of them. However we can still 

guarantee that we will find the optimal integer solution. 

By solving a single sub-problem, many possible solutions may be eliminated from 

consideration. 

Sub-problems are generated by branching on an appropriately chosen fractional- valued 

variable. 

Suppose that in a given sub-problem (call it subp.1), assumes a fractional value between the 

integers i and i+1. Then the two newly generated sub-problems: 

Subp.2 = Subp.1 + Constraint “xi ≥ i+1” Subp.3 

= Subp.1 + Constraint “xi ≤ I” 

If all variables have integer values in the optimal solution to the sub-problem then the solution 

is a feasible solution for the original IP. 

If the current feasible solution for the IP has a better z-value than any previously obtained 

feasible solution, then it becomes a candidate solution, and its z-value becomes the current 

Lower Bound (LB) on the optimal z-value (for a max problem). If it is unnecessary to branch 

on a sub-problem, we say that it is fathomed (inactive): 

 The sub-problem is infeasible 

 The sub-problem yields an optimal solution in which all variables have 

integer values 

 The optimal z-value for the sub-problem does not exceed the current LB, so it cannot 

yield the optimal solution of the IP 

Two general approaches are used to determine which sub-problem should be solved next: 

 Backtracking (LIFO) 

Leads us down one side of the B&B tree and finds a candidate solution. Then we backtrack 

our way up to the top of the other side of the tree. 

 Jumptracking 

Solves all the problems created by branching. Then it branches again on the node with the 

best z-value. Often jumps from one side of the tree to the other. 

A display of the sub-problems that have been created is called a tree. Each sub-

problem is referred to as a node of the tree. 
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Each additional constraint is referred to as a line (arc) connecting two nodes (old sub-problem 

and one of the new sub-problems) of the tree. 

 
B&B for Solving Pure IP Problems Example 2. 

Pure IP 

(Winston 9.3., p. 513) 

max z = 8 x1 + 5 x2 

s.t.  x1 + x2 ≤ 6 

9 x1 + 5 x2 ≤ 45 

x1, x2 ≥ 0 and integer 

Answer 

Suppose that we were to solve the LR of the problem [replace “x1, x2 ≥ 0 and integer” by “x1, 

x2 ≥ 0”] 

Then using any LP package or utilizing simplex or graphical solution method we get 

z = 165/4, x1 = 15/4, x2=9/4 

As a result of this we now know something about the optimal integer solution, namely that it 

is ≤ 165/4, i.e. this value of 165/4 is an Upper Bound on the optimal integer solution 

This is because when we relax the integrality constraint we (as we are maximizing) end up 

with a solution value at least that of the optimal integer solution (and maybe better) 

We arbitrarily choose a variable that is fractional in the optimal solution to the LR (subp.1): 

say x1. 

We need x1 to be integer. We branch on x1 and create two new sub-problems: Subp.2: 

LR + “x1 ≥ 4” 

Subp.3: LR +  “x1 ≤ 3” 

Observe that neither subp.2 nor subp.3 includes any points with x1 = 15/4. This means that the 

optimal solution to LR can not recur when we solve these new sub- problems. 

We now arbitrarily choose to solve subp.2. 

We see that the optimal solution to subp.2 is 

z = 41, x1 = 4, x2 = 9/5 

We choose x2 that is fractional in the optimal solution to subp.2. 
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We need x2 to be integer. We branch on x2 and create two new sub-problems: 

Subp.4: LR + x1 ≥ 4 and x2 ≥ 2 = Subp.2 + x2 ≥ 2 

Subp.5: LR + x1 ≥ 4 and x2 ≤ 1 = Subp.2 + x2 ≤ 1 

The set of unsolved sub-problems are consists of subp.3, 4, and 5. 

We choose to solve the most recently created sub-problem (This is called LIFO): The LIFO 

rule implies that we should next solve subp.4 or 5. 

We now arbitrarily choose to solve subp.4. 

We see that subp.4 is infeasible. Thus subp.4 can not yield the optimal solution to the IP. 

Because any branches emanating from subp.4 will yield no useful information, it is fruitless 

to create them. 

LIFO rule implies that we should next solve subp.5. 

The optimal solution to subp.5 is 

z = 365/9, x1 = 40/9, x2 = 1 

We branch on fractional-valued x1: 

Subp.6: Subp.5 + x1 ≥ 5 

Subp.7: Subp.5 + x1 ≤ 4 

Subp.3, 6, and 7 are now unsolved. 

The LIFO rule implies that we next solve subp.6 or 7. We 

now arbitrarily choose to solve subp.7. 

The optimal solution to subp.7 is 

            z = 37, x1 = 4, x2 = 1 

As both variables assume integer values, this solution is feasible for the original IP 

 this solution is a candidate solution 

We must keep this candidate solution until a better feasible solution to the IP (if any exists) 

is found. 

We may conclude that the optimal z-value for the IP ≥ 37  Lower Bound (LB) LIFO 

rule implies that we should next solve subp.6. 

The optimal solution to subp.6 is 

z = 40, x1 = 5, x2 = 0 

Its z-value of 40 is larger than LB. 

Thus subp.7 cannot yield the optimal solution of the IP. We 

update our LB to 40. 

Subp.3 is the only remaining unsolved problem. The 

optimal solution to subp.3 is 
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z = 39, x1 = 3, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal solution 

to the IP. 

Final B&B Tree 
 

Optimal Sol’n 

Thus, the optimal solution to the IP 

z = 40, x1 = 5, x2 = 0 

 
 

B&B for Solving Mixed IP Problems 

In MIP, some variables are required to be integers and others are allowed to be either 

integer or nonintegers. 

To solve a MIP by B&B method, modify the method by branching only on variables that are 

required to be integers. 
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For a solution to a sub-problem to be a candidate solution, it need only assign integer values to 

those variables that are required to be integers 

 
Example 3. Mixed IP 

(Winston 9.4., p. 523) 

max z = 2 x1 + x2 

s.t. 5 x1 + 2 x2 ≤ 8 

                 x1 + x2  ≤ 3 

x1, x2 ≥ 0; x1 integer 

Answer 

We solve the LR (subp.1) of the problem [replace 

“x1≥ 0 and integer” by “x1 ≥ 0”] 

Then using any LP package or utilizing simplex or graphical solution method we get 

z = 11/3, x1 = 2/3, x2=7/3 

Because x2 is allowed to be fractional, we do not branch on x2. We 

branch on x1 and create two new sub-problems: 

Subp.2: LR + x1 ≥ 1 

Subp.3: LR + x1 ≤ 0 

We see that the optimal solution to subp.2 is 

z = 7/2, x1 = 1, x2 = 3/2 

As only x1 assume integer value, this solution is feasible for the original MIP  

Candidate solution; LB = 7/2 The 

optimal solution to subp.3 is 

z = 3, x1 = 0, x2 = 3 

Subp.3 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal solution 

to the MIP. 

Optimal Sol’n 

Thus, the optimal solution to the MIP 

z = 7/2, x1 = 1, x2 = 3/2 

 
 

B&B for Solving Binary IP Problems 

One aspect of the B&B method greatly simplify: 

Due to each variable equaling 0 or 1, branching on xi will yield in 

xi = 0 and xi = 1 
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Example 4. Binary IP 

max z = 0.2 x1 + 0.3 x2 + 0.5 x3 + 0.1 x4 

s.t. 0.5 x1 + 1 x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

0.3 x1  + 0.8 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

0.2 x1  + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

xj  = 0 or 1 j = 1, … 4 

Answer 

Replace “xj = 0 or 1 (j=1,...,4)” by “0 ≤ xj ≤ 1 (j=1,...,4)”  LR of the problem 

Optimal solution to the LR: 

z=0.65, x2=0.5, x3=1, x1=x4=0 

The variable x2 is fractional. To resolve this we can generate two new problems: P1: LR 

+ x2=0 

P2: LR + x2=1 

We now have two new sub-problem to solve (jumptracking). If 

we do this we get 

P1 solution: z=0.6, x1=0.5, x3=1, x2=x4=0 P2 

solution: z=0.63, x2=1, x3=0.67, x1=x4=0 

Choosing sub-problem P2 (the best z–value), we branch on x3 and get P3 (P2 

+ x3=0) sol‟n: z=0.5, x1=x2=1, x3=x4=0 

P4 (P2 + x3=1) sol‟n: infeasible 

P3 solution is feasible for the original binary IP  Candidate solution; LB = 0.5 

Choosing the only remaining sub-problem P1, we branch on x1 and get 

P5 (P1 + x1=0) sol‟n: z=0.6, x3=x4=1, x1=x2=0 

P6 (P1 + x1=1) sol‟n: z=0.53, x1=1, x3=0.67, x2=x4=0 

P5 solution is feasible for the original binary IP  New candidate solution; updated LB = 

0.6 

P6 cannot yield a z-value exceeding the current LB, so it cannot yield the optimal solution to 

the binary IP. 

Thus, the optimal solution to the binary IP 

z = 0.6, x1 = 0, x2 = 0, x3 = 1, x4 = 1 
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Review 

Note here that B&B, like complete enumeration, also involves powers of 2 as we progress 

down the (binary) tree. 

However also note that we did not enumerate all possible integer solutions (of which there are 

16). Instead here we solved 7 LP's. 

This is an important point, and indeed why tree search works at all. We do not need to 

examine as many LP's as there are possible solutions. 

While the computational efficiency of tree search differs for different problems, it is this basic 

fact that enables us to solve problems that would be completely beyond us where we to try 

complete enumeration 

 
B&B for Solving Knapsack Problems 

Please recall that a knapsack problem is an IP, in which each variable must be equal to 0 or 1, 

with a single constraint: 

max z = c1x1 + c2x2 + ∙∙∙ + cnxn 

s.t. a1x1 + a2x2 + ∙∙∙ + anxn ≤ 

b xi = 0 or 1 (i = 1, 2, …, n) 

Two aspects of the B&B method greatly simplify: 

 Due to each variable equaling 0 or 1, branching on xi will yield in xi =0 and xi =1 

 The LP relaxation may be solved by inspection instead of using any LP package or 

utilizing simplex or graphical solution method 
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Inspection 

Recall that 

ci is the benefit obtained if item i is chosen 

b is the total amount of an available resource 

ai is the amount of the available resource used by item i 

Observe that ratio ri (ci/ai) may be interpreted as the benefit item i earns for each unit of the 

resource used by item i. 

Thus, the best items have the largest value of r and the worst items have the 

smallest values of r. 

To solve any sub-problem resulting from a knapsack problem, compute all the ratios. Then put 

the best item in the knapsack. 

Then put the second best item in the knapsack. 

Continue in this fashion until the best remaining item will overfill the knapsack. Then 

fill the knapsack with as much of this item as possible. 

 
Example 5. Knapsack 

max z = 8 x1 + 11 x2 + 6 x3 + 4 x4 

s.t. 5 x1 + 7 x2 + 4 x3 + 3 x4 ≤ 14 

xj  = 0 or 1 j = 1, … 4 

Answer 

We compute the ratios: 

r1 = 8 / 5 = 1.6 

r2 = 11 / 7 = 1.57 

r3 = 6 / 4 = 1.5 

r4 = 4 / 3 = 1.33 

Using the ratios, LR solution is 

x1 = 1, x2 = 1, x3 = 0.5, x4 = 0, z = 22 

We branch on x3 and get 

P1 (LR + x3=0) sol‟n: x3=0, x1=x2=1, x4=2/3, z=21.67 P2 

(LR + x3=1) sol‟n: x3=x1=1, x2=5/7, x4=0, z=21.85 

Choosing sub-problem P2 (the best z–value), we branch on x2 and get P3 (P2 

+ x2=0) sol‟n: x3=1, x2=0, x1=1, x4=1, z=18 

P4 (P2 + x2=1) sol‟n: x3=x2=1, x1=3/5, x4=0, z=21.8 
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P3 solution is feasible for the original knapsack problem  Candidate solution; LB = 18 

Choosing sub-problem P4, we branch on x1 and get P5 (P4 

+ x1=0) sol‟n: x3=x2=1, x1=0, x4=1, z=21 

P6 (P4 + x1=1) sol‟n: Infeasible (x3=x2=x1=1: LHS=16) 

P5 solution is feasible for the original knapsack problem  New candidate solution; 

updated LB = 21 

The only remaining sub-problem is P1 with solution value 21.67 

There is no better solution for this sub-problem than 21. But we already have a solution with 

value 21. 

It is not useful to search for another such solution. We can fathom P1 based on this 

bounding argument and mark P1 as inactive. 

Optimal sol’n and Report 

Thus, the optimal solution is 

z=21, x1=0, x2=1, x3=1, x4=1 

Items 2, 3, and 4 should be put in the knapsack. In this 

case, the total value would be 21. 
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UNIT – III: SCHEDULING AND REPLACEMENT 

 

A combinatorial (discrete) optimization problem is any optimization problem that has a finite 

number of feasible solutions. 

A B&B approach is often an efficient way to solve them. 

 
 

Examples of combinatorial optimization problems: 

 Ten jobs must be processed on a single machine. It is known how long it takes to complete 

each job and the time at which each job must be completed (the job‟s due date). What 

ordering of the jobs minimizes the total delay of the 10 jobs? 

 A salesperson must visit each of the 10 cities before returning to her/his home. What 

ordering of the cities minimizes the total distance the salesperson must travel before 

returning home? (TSP). 

In each of these problems, many possible solutions must be considered. 

 
 

Example 6: Machine Scheduling 

Please refer to Winston 9.6. p. 528 

 
 

TSP 

Please recall that 

We define xij as a 0-1 variable: 

xij = 1 if TS goes from city i to city j; 

xij = 0 otherwise 

cij = distance form city i to city j (for ij) 

cii = M (a very large number relative to actual distances) 

An itinerary that begins and ends at the same city and visits each city once is called a 

tour. 

It seems reasonable that we might be able to find the answer to TSP by solving an 

assignment problem having a cost matrix whose ijth is cij. 

If the optimal solution to the assignment problem yields a tour, it is the optimal solution to 

the TSP. 

Unfortunately, the optimal solution to the assignment problem need not be a tour (may yield 

subtours). 
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If we could exclude all feasible solutions that contain subtours and then solve the 

assignment problem, we would obtain the optimal solution to TSP  Not easy to do... 

Several B&B approaches have been developed for solving TSPs. 

One approach start with solving the preceding assignment problem (sub-problem 1). Because 

this sub-problem contains no provisions to prevent subtours, it is a relaxation of the original 

TSP. 

Thus, if the optimal solution to the subp.1 is feasible for the TSP (no subtours), then it is also 

optimal for the TSP. 

If it is infeasible (contain subtours), we branch on the subp.1 in a way that will prevent one of 

subp.1‟s subtours from recurring in solutions to subsequent sub- problems. 

 
Example 7: TSP 

(Winston 9.6., p. 530) 

Joe State lives in Gary, Indiana and owns insurance agencies in Gary, Fort Wayne, 

Evansville, Terre Haute, and South Bend. 

Each December, he visits each of his insurance agencies. The 

distance between each agency: 

miles G FW E TH SB 

G 0 132 217 164 58 

FW 132 0 290 201 79 

E 217 290 0 113 303 

TH 164 201 113 0 196 

SB 58 79 303 196 0 

What order of visiting his agencies will minimize the total distance traveled? 

Answer 

We first solve the assignment problem (subp.1) applying the Hungarian method to the cost 

matrix shown: 

COSTS G FW E TH SB 

G 1000 132 217 164 58 

FW 132 1000 290 201 79 

E 217 290 1000 113 303 

TH 164 201 113 1000 196 

SB 58 79 303 196 1000 

The optimal solution will be: 

x15=x21=x34=x43=x52=1, z=495 

The optimal solution to subp.1 contains two subtours: 
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 recommends going from Gary (1) to South Bend (5), then to Fort Wayne (2), and then 

back to Gary (1–5–2–1). 

 also suggests that if Joe is in Evansville (3), he should go to Terre Haute (4) and then to 

Evansville (3–4–3). 

Thus, the optimal solution can not be the optimal solution to Joe‟s problem. We 

arbitrarily choose to exclude the subtour 3-4-3. 

Observe that the optimal solution to Joe‟s problem must have either x34=0 or x43=0. Thus, 

we can branch on subp.1 by creating two new sub-problems. 

Subp.2: Subp.1 + (x34=0, or c34=M) 

Subp.3: Subp.1 + (x43=0, or c43=M) 

Now arbitrarily choose subp.2 to solve. 
 

COSTS G FW E TH SB 

G 1000 132 217 164 58 

FW 132 1000 290 201 79 

E 217 290 1000 1000 303 

TH 164 201 113 1000 196 

SB 58 79 303 196 1000 

The optimal solution will be: 

x14=x25=x31=x43=x52=1, z=652 

This solution includes the subtours 1–4–3–1 and 2–5–2. Thus, 

it can not be the optimal solution to Joe‟s problem. 

Following the LIFO approach, now branch sub-problem 2 in an effort to exclude the subtour 

2-5-2. Thus we add two additional sub-problems. 

Subp.4: Subp.2 + (x25=0, or c25=M) 

Subp.5: Subp.2 + (x52=0, or c52=M) 

By using the Hungarian method on subp.4, we obtain the optimal solution 

x15=x24=x31=x43=x52=1, z=668 

This solution contains no subtours and yields the tour 1–5–2–4–3–1 

It is a candidate solution and any node that cannot yield a z-value < 668 may be 

eliminated from consideration. 

We next solve subp.5. 

x14=x43=x32=x25=x51=1, z=704 

This solution also yields a tour 1–4–3–2–5–1 

But z=704 is not as good as the subp.4 candidate‟s z=668 Thus this 

subp.5 may be eliminated from consideration. 
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Only subp.3 remains. 

The optimal solution 

x13=x25=x34=x41=x52=1, z =652. 

This solution includes the subtours 1–3–4–1 and 2–5–2. 

However, it is still possible for this sub-problem to yield a solution with no subtours that 

beats z=668. 

Next branch on sub-problem 3 creating new sub-problems. 

Subp.6: Subp.3 + (x25=0, or c25=M) 

Subp.7: Subp.3 + (x52=0, or c52=M) 

Both of these sub-problems have a z-value that is larger than 668. 

Optimal sol’n and Report 

Subp.4 thus yields the optimal solution: 

x15=x24=x31=x43=x52=1, z=668 

Joe should travel from Gary (1) to South Bend (5), from South Bend to Fort Wayne (2), from 

Fort Wayne to Terre Haute (4), from Terre Haute to Evansville (3), and then back to Gary. 

He will travel a total distance of 668 miles. 

 
 

Heuristics for TSPs 

An IP formulation can be used to solve a TSP but can become unwieldy and inefficient for 

large TSPs. 

When using B&B methods to solve TSPs with many cities, large amounts of computer time 

is needed. 

Heuristic methods, or heuristics, can be used to quickly lead to a good (but not necessarily 

optimal) solution. 

Two types of heuristic methods can be used to solve TSP: 

1. The Nearest-Neighbor 

2. The Cheapest-Insertion 

 
 

The Nearest-Neighbor Heuristic 

1. Begin at any city and then “visit” the nearest city. 

2. Then go to the unvisited city closest to the city we have most recently visited. 

3. Continue in this fashion until a tour is obtained. 

4. After applying this procedure beginning at each city, take the best tour found. 
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Example 8. Applying the NNH to TSP 

We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1  Generate the arc 1–5 

Of the cities 2, 3, and 4, city 2 is the closest city to city 5  1–5–2 Of 

the cities 3 and 4, city 4 is the closest city to city 2  1–5–2–4 

Joe must next visit city 3 and then return to city 1  1–5–2–4–3–1 (668 miles). In 

this case, the NNH yields the optimal tour. 

If we had begun at city 3, however, NNH yields the tour 3–4–1–5–2–3 (704 miles). Thus, 

the NNH need not yield an optimal tour. 

This procedure should be applied beginning at each city, and then the best tour found should 

be taken as solution. 

 
The Cheapest-Insertion Heuristic 

1. Begin at any city and find its closest neighbor. 

2. Then create a subtour joining those two cities. 

3. Next, replace an arc in the subtour (say, arc (i, j)) by the combinations of two arcs (i, k) 

and (k, j), where k is not in the current subtour that will increase the length of the subtour 

by the smallest (or cheapest) amount. 

4. Continue with this procedure until a tour is obtained. 

5. After applying this procedure beginning with each city, we take the best tour found. 

 
Example 9. Applying the CIH to TSP 

We arbitrarily choose to begin at city 1. 

Of the cities 2, 3, 4, and 5, city 5 is the closest city to city 1  Generate the arc 1–5 

We create a subtour (1, 5)–(5, 1) 

We could replace arc (1, 5) by (1, 2)–(2, 5), (1, 3)–(3, 5), or (1, 4)–(4, 5) 

We could also replace (5, 1) by (5, 2)–(2, 1), (5, 3)–(3, 1), or (5, 4)–(4, 1) 

The computations used to determine which arc of (1, 5)–(5, 1) should be replaced are given 

in the Table: 
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Arc replaced Arcs added Added length 

(1, 5)* (1, 2)–(2, 5) c 12+c 25–c 

(1, 5) (1, 3)–(3, 5) c 13+c3 5–c 

(1, 5) (1, 4)–(4, 5) c 14+c 45–c 

(5, 1)* (5, 2)–(2, 1) c 52+c 21–c 

(5, 1) (5, 3)–(3, 1) c 53+c3 1–c 

(5, 1) (5, 4)–(4, 1) c 54+c4 1–c 
 

* indicates the correct replacement: either (1, 5) or (5, 1) 

We arbitrarily choose to replace arc (1, 5) by arcs (1, 2) and (2, 5)  New subtour: 

(1, 2)–(2, 5)–(5, 1) 

We then determine which arc should be replaced 
 

Arc replaced  Arcs added (1, 

2) (1, 3)–(3, 2) 

Added length 

375 

 

(1, 2)* (1, 4)–(4, 2) 233 

(2, 5) (2, 3)–(3, 5) 514 

(2, 5) (2, 4)–(4, 5) 318 

(5, 1) (5, 3)–(3, 1) 462 

(5, 1) (5, 4)–(4, 1) 302 

We now replace arc (1, 2) by arcs (1, 4) and (4, 2)  New subtour: (1, 4)–(4, 2)–(2, 

5)–(5, 1)   

Which arc should be replaced?   

Arc replaced  Arcs added (1, 

4)* (1, 3)–(3, 4) 

Added length 

166 

 

(4, 2) (4, 3)–(3, 2) 202  

(2, 5) (2, 3)–(3, 5) 514  

(5, 1) (5, 3)–(3, 1) 462  

We now replace arc (1, 4) by arcs (1, 3) and (3, 4) 

This yields the tour (1, 3)–(3, 4)–(4, 2)–(2, 5)–(5, 1) In 

this case, the CIH yields the optimal tour. 

But, in general, the CIH does not necessarily do so. 

This procedure should be applied beginning at each city, and then the best tour found should 

be taken as solution. 

 
Evaluation of Heuristics 

 Performance guarantees 

Gives a worse-case bound on how far away from optimality a tour constructed by the 

heuristic can be 

 Probabilistic analysis 
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Idea: add 

constraints that 

eliminate fractional 

solutions to the LP 

without eliminating 

any integer 
solutions. 

These constraints 

were obtained by 

inspection. We will 

develop techniques 

later. 

Example: min. x + 10y 

s.t. x, y are in P 

x, y integer 

A heuristic is evaluated by assuming that the location of cities follows some known 

probability distribution 

 Empirical analysis 

Heuristics are compared to the optimal solution for a number of problems for which the 

optimal tour is known 

 

 
5.2.5 Cutting Planes 

 

A linear inequality is a valid inequality for a given IP problem if it holds for all integer 

feasible solutions to the model. Relaxations can often be strengthened dramatically by 

including valid inequalities that are not needed by a correct discrete model. To strengthen a 

relaxation, a valid inequality must cut off (render infeasible) some feasible solutions to 

current LR that are not feasible in the IP model. 
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If we add exactly 

the right 

inequalities, then 

every corner point 

of the LP will be 

integer, and the IP 

can be solved by 
solving the LP 
We call this minimal 

LP, the convex hull 

of the IP solutions. 
For large problems, 

these constraints are 

hard to find. 

The tightest possible 

constraints are very 

useful, and are 

called facets 

Example: min. x + 10y 
s.t. x, y are in P 

x, y integer 

x 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

x, y integer 

This need to cut off noninteger relaxation solutions is why valid inequalities are sometimes 

called cutting planes. 

 
Cut Classification 

 General purpose 

A fractional extreme point can always be separated (LP-based approach, that works for 

IP) 

o Disjunctive cuts 

o Gomory cutting planes 

 Problem specific 

Derived from problem structure, generally facets. (Capital Budgeting (Knapsack), Set 

Packing... ) 

 
Cutting Plane Algorithm (Gomory cut) 

Find the optimal tableau for the IP‟s LR. 

If all variables in the optimal solution assume integer values, we have found an optimal 

solution! Otherwise proceed to next step 

Pick a constraint in the optimal tableau whose RHS has the fractional part closest to 

½. 

For the constraint identified, put all of the integer parts on the left side (round down), and all 

the fractional parts on the right 

Generate the cut as: 

“RHS of the modified constraint” < 0 

 
 

y 

If we add exactly 

the right 

inequalities, then 

every corner point 

of the LP will be 

integer, and the IP 

can be solved by 

solving the LP 
 

Optimum 

(integer) 

solution 
P

 

We call this minimal 

LP, the convex hull 

of the IP solutions. 
For large problems, 

these constraints are 

hard to find. 

 

Example: min. x + 10y 
s.t. x, 
y are in P 

The tightest possible 

constraints are very 

useful, and are 

called facets 
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Use the dual simplex to find the optimal solution to the LR, with the cut as an additional 

constraint. 

 If all variables assume integer values in the optimal solution, we have found an 

optimal solution to the IP. 

 Otherwise, pick the constraint with the most fractional right-hand side and use it to 

generate another cut, which is added to the tableau. 

We continue this process until we obtain a solution in which all variables are integers. This 

will be an optimal solution to the IP. 

 
Dual Simplex Method 

Please recall that at dual simplex: 

o We choose the most negative RHS. 

o BV of this pivot row leaves the basis. 

o For the variables that have a negative coefficient in the pivot row, we 

calculate the ratios (coefficient in R0 / coefficient in pivot row). 

o Variable with the smallest ratio (absolute value) enters basis. 

 

Example 10. Telfa Co. 

(Winston 9.8., p. 546) 

max z = 8 x1 + 5 x2 

s.t. x1 + x2 ≤ 6 

9 x1 + 5 x2 ≤ 45 

x1, x2 > 0 and integer 

Answer 

If we ignore integrality, we get the following optimal tableau: 
 

z x 1 x 2 s 1 s 2 RHS 

1 0 0 1.25 0.75 41.25 

0 0 1 2.25 -0.25 2.25 

0 1 0 -1.25 0.25 3.75 

Let's choose the constraint whose RHS has the fractional part closest to ½ (Arbitrarily choose 

the second constraint): 

x1 – 1.25 s1 + 0.25 s2 =3.75 

We can manipulate this to put all of the integer parts on the left side (round down), and all 

the fractional parts on the right to get: 
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x1 – 2 s1 + 0 s2 – 3 = 0.75 – 0.75 s1 – 0.25 s2 

Now, note that the LHS consists only of integers, so the right hand side must add up to an 

integer. It consists of some positive fraction minus a series of positive values. Therefore, the 

right hand side cannot be a positive value. Therefore, we have derived the following 

constraint: 

0.75 – 0.75 s1 – 0.25 s2 ≤ 0 

This constraint is satisfied by every feasible integer solution to our original problem. But, in 

our current solution, s1 and s2 both equal 0, which is infeasible to the above constraint. This 

means the above constraint is a cut, called the Gomory cut after its discoverer. 

We can now add this constraint to the linear program and be guaranteed to find a different 

solution, one that might be integer. 

z x 1 x 2   s 1  s 2 s 3 RHS 

1 0 0 1.25 0.75 0 41.25 

0 0 1 2.25 -0.25 0 2.25 

0 1 0 -1.25 0.25 0 3.75 

0 0 0 -0.75 -0.25 1   -0.75  

The dual simplex ratio test indicates that s1 should enter the basis instead of s3. The 

optimal solution is an IP solution: 

z = 40, x1 = 5, x2 = 0 

 
 

Example 11. Supplementary Problem 

min z = 6 x1 + 8 x2 

s.t. 3 x1 + x2 ≥ 4 

x1  + 2 x2 ≥ 4 

x1, x2 > 0 and integer 

 
 

Answer 

Optimal tableau for LR 
 

z x 1 x 2 e 1 e 2 RHS 

1 0 0 -0.80 -3.60 17.60 

0 1 0 -0.40 0.20 0.80 

0 0 1 0.20 -0.60 1.60 

Choose the second constraint 

x2 + 0.2 e1 – 0.6 e2 = 1.6 
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Manipulate this: 

x2 – e2 – 1 = 0.6 – 0.2 e1 – 0.4 e2 

Cut: 

0.6 – 0.2 e1 – 0.4 e2 ≤ 0 

New LP tableau 
 

z x 1 x 2   e 1  e 2 s 3 RHS 

1 0 0 -0.8 -3.6 0 17.6 

0 1 0 -0.4 0.2 0 0.8 

0 0 1 0.2 -0.6 0 1.6 

0 0 0 -0.2 -0.4 1   -0.6  

The dual simplex ratio test indicates that e1 should enter the basis instead of s3. The 

optimal solution is an IP solution: 

z = 20, x1 = 2, x2 = 1 
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Unit-IV: Queuing 
 

 

 

Outline 
 

• The simulations are carried out by the following steps: 

 

– Determine the input characteristics. 

 

– Construct a simulation table. 

 

– For each repetition I, generate a value for each input, evaluate 

the function, and calculate the value of the response YI. 

 
 

• Simulation examples will be given in queuing, inventory, 

reliability and network analysis. 

 
 

Simulation of Queuing Systems 
 

 

• A queuing system is described by its calling population, 

nature of arrivals, service mechanism, system capacity and 

the queuing discipline. 

 

• In a single-channel queue: 

 

– The calling population is infinite. 

 

– Arrivals for service occur one at a time in a random fashion. 

Once they join the waiting line they are eventually served. 

 

• Arrivals and services are defined by the distribution of the time 

between arrivals and service times. 

 

• Key concepts: 

 

– The system state is the number of units in the system and the 

status of the server (busy or idle). 

 

– An event is a set of circumstances that causes an instantaneous 

change in the system state, E.G., arrival and departure events. 

 

– The simulation clock is used to track 

simulated time. Simulation of Queuing 
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Systems 

 

• Event list: to help determine what happens next: 

– Tracks the future times at which different types of events occur. 

– Events usually occur at random times. 

• The randomness needed to imitate real life is made possible 

through the use of random (pseudo-random) numbers (more on this 

later). 

 

Simulation of Queuing Systems 
 

• Single-channel queue illustration: 

 

– Assume that the times between arrivals were generated by 

rolling a die 5 times and recording the up face, then input 

generated is: 
 

 

Simulation of Queuing Systems 

 

• Assume the only possible service times are 1, 2, 3 and 4 time units 
and they are equally likely to occur, with input generated as: 

 

• Resulting simulation table emphasizing clock times: 
 

 
Simulation of Queuing Systems 

 

• Another presentation method, by chronological ordering of events: 
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Simulation of Queuing Systems 

 

 

• Grocery store example with only one checkout counter: 

 

– Customers arrive at random times from 1 to 8 minutes apart, with equal probability of 

occurrence: 
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UNIT-V: DYNAMIC PROGRAMMING 

 

When formulating LP‟s we often found that, strictly, certain variables should have been regarded as 

taking integer values but, for the sake of convenience, we let them take fractional values reasoning 

that the variables were likely to be so large that any fractional part could be neglected. While this is 

acceptable in some situations, in many cases it is not, and in such cases we must find a numeric 

solution in which the variables take integer values. 

Problems in which this is the case are called integer programs (IP's) and the subject of solving such 

programs is called integer programming (also referred to by the initials IP). 

IP's occur frequently because many decisions are essentially discrete (such as yes/no, do/do not) in 

that one or more options must be chosen from a finite set of alternatives. 

An IP in which all variables are required to be integers is called a pure IP problem. 

If some variables are restricted to be integer and some are not then the problem is a 

mixed IP problem. 

The case where the integer variables are restricted to be 0 or 1 comes up surprising often. Such 

problems are called pure (mixed) 0-1 programming problems or pure (mixed) binary IP problems. 

For any IP we can generate an LP by taking the same objective function and same constraints but with 

the requirement that variables are integer replaced by appropriate continuous constraints: 

“xi ≥ 0 and integer” can be replaced by xi ≥ 0 

“xi = 0 or 1” can be replaced by xi ≥ 0 and xi ≤ 1 

The LP obtained by omitting all integer or 0-1 constraints on variables is called LP Relaxation of the 

IP (LR). 

FORMULATING IP 

 

Practical problems can be formulated as IPs. For instance budgeting problems, knapsack problems, 

fixed charge production and location problems, set covering problems, etc. 

Budgeting Problems Example 

 

CapitalBudgeting 

(Winston 9.2, p. 478 – modified) 

Stock is considering four investments 

Each investment yields a determined NPV ($8,000, $11,000, $6,000, $4,000) Each investment 

requires at certain cash flow at the present time ($5,000, $7,000, 

$4,000, $3,000) 

Currently Stock has $14,000 available for investment. 
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Formulate an IP whose solution will tell Stock how to maximize the NPV obtained from the four 

investments. 

Answer 

Begin by defining a variable for each decision that Stockco must make. In this case, we will use a 0-1 

variable xj for each investment: 

If xj is 1 then Stock will make investment j. If it is 0, Stock will not make the investment. This leads 

to the 0-1 programming problem: 

max z = 8x1 + 11x2 + 6x3 + 4x4 

s.t.5x1 + 7x2 + 4x3 + 3x4 ≤ 14 

xj = 0 or 1 (j = 1,2,3,4) 

Comment 

Now, a straightforward “bang for buck” (taking ratios of objective coefficient over constraint 

coefficient) suggests that investment 1 is the best choice. 

Ignoring integrality constraints, the optimal linear programming solution is: 

x1 = x2 = 1, x3 = 0.5, and x4 = 0 for a value of $22K Unfortunately, this solution is not integral. 

Rounding x3 down to 0: 

x1 = x2 = 1, x3 = x4 = 0 for a value of $19K 

There is a better integer solution (optimal solution): 

x1 = 0, x2 = x3 = x4 = 1 for a value of $21K 

This example shows that rounding does not necessarily give an optimal value. 

Example 1.b. Multiperiod 

There are four possible projects, which each run for three years and have the following characteristics: 

Which projects would you choose in order to maximize the total return? 

Capital requirements 

 Answer 

We will use a 0-1 variable xj for each project: 

xj is 1 if we decide to do project j; 

xj is 0 otherwise (i.e. not do project j). This leads to the 0-1 programming problem: max 0.2 x1 + 0.3 

x2 + 0.5 x3 + 0.1 x4 

s.t.0.5 x1 + 1x2 + 1.5 x3 + 0.1 x4 ≤ 3.1 

0.3 x1  + 0.5 x2 + 1.5 x3 + 0.4 x4 ≤ 2.5 

0.2 x1  + 0.2 x2 + 0.3 x3 + 0.1 x4 ≤ 0.4 

xj  = 0 or 1 j = 1, … 4 
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Example 1.c. Capital Budgeting Extension 

There are a number of additional constraints Stock might want to add. Logical restrictions can be 

enforced using 0-1 variables: 

Stock can only make two investments 

x1 + x2 + x3 + x4 ≤ 2 

Any choice of three or four investments will have x1 + x2 + x3 + x4 ≥ 3 If investment 2 is made, 

investment 4 must also be made 

x2 < x4 or x2 – x4 ≤ 0 

If x2 is 1, then x4 is also 1 as Stock desires; if x2 is 0, then there is no restriction for x4 (x4 is 0 or 1) 

If investment 1 is made, investment 3 cannot be made 

x1 + x3 ≤ 1 

If x1 is 1, then x3 is 0 as Stock desires; if x1 is 0, then there is no restriction for 

x3 (x3 is 0 or 1) 

Either investment 1 or investment 2 must be done 

x1 + x2 = 1 

If x1 is 1, then x2 is 0 (only investment 1 is done); if x1 is 0, then x2 is 1 (only investment 2 is done) 

 

Knapsack Problems 

 

Any IP that has only one constraint is referred to as a knapsack problem. Furthermore, the coefficients 

of this constraint and the objective are all non-negative. The traditional story is that: There is a 

knapsack. There are a number of items, each with a size and a value. The objective is to maximize the 

total value of the items in the knapsack. 

Knapsack problems are nice because they are (usually) easy to solve. 

Example 2. Knapsack 

For instance, the following is a knapsack problem:  

Maximize8 x1 + 11 x2 + 6 x3 + 4 x4 

Subject to5 x1 + 7 x2 + 4 x3 + 3 x4 ≤ 14 

xj  = 0 or 1j = 1, … 4 

 

Fixed Charge Problems 

 

There is a cost associated with performing an activity at a nonzero level that does not depend on the 

level of the activity. 

An important trick can be used to formulate many production and location problems involving the 

idea of a fixed charge as IP. 
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Example 3.a. Gandhi 

(Winston 9.2, p. 480) 

Gandhi Co makes shirts, shorts, and pants using the limited labor and cloth described below. 

In addition, the machinery to make each product must be rented. 

Shirts Shorts Pants Total Avail.  

Answer 

Let xj be number of clothing produced. 

Let yj be 1 if any clothing j is manufactured and 0 otherwise. 

Profit = Sales revenue – Variable Cost – Costs of renting machinery For example the profit from 

shirts is 

z1 = ( 12 – 6 ) x1 – 200 y1 

Since supply of labor and cloth is limited, Gandhi faces two constraints. 

To ensure xj > 0 forces yj = 1, we include the additional constraints 

xj ≤ Mj yj 

From the cloth constraint at most 40 shirts can be produced (M1=40), so the additional constraint for 

shirts is not an additional limit on x1 (If M1 were not chosen large (say M1=10), then the additional 

constraint for shirts would unnecessarily restrict the value of x1). 

From the cloth constraint at most 53 shorts can be produced (M2=53) From the labor constraint at 

most 25 pants can be produced (M3=25) We thus get the mixed (binary) integer problem: 

Max 6 x1 + 4 x2 + 7 x3 – 200 y1 – 150 y2 – 100 y3 

s.t.3 x1 + 2 x2 + 6 x3  ≤ 150(Labor constraint) 

4 x1 + 3 x2 + 4 x3  ≤ 160(Cloth constraint) 

x1 ≤ 40 y1(Shirt production constraint) 

x2 ≤ 53 y2(Short production constraint) 

x3 ≤ 25 y3(Pant production constraint) 

x1, x2, x3 ≥ 0 and integer 

y1, y2, y3 = 0 or 1 

Example 3.b. Lockbox 

(Winston 9.2, p. 483) 

Consider a national firm that receives checks from all over the United States. 

There is a variable delay from when the check is postmarked (and hence the customer has met her 

obligation) and when the check clears (the firm can use the money). 

It is in the firm's interest to have the check clear as quickly as possible since then the firm can use the 

money. 

To speed up this clearing, firms open offices (lockboxes) in different cities to handle the checks. 

Suppose firm receives payments from four regions (West, Midwest, East, and South). The average 

daily value from each region is as follows: $70,000 from the West, 
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$50,000 from the Midwest, $60,000 from the East, and $40,000 from the South. Firm is considering 

opening lockboxes in L.A., Chicago, New York, and/or Atlanta. Operating a lockbox costs $50,000 

per year. 

Assume that each region must send all its money to a single city. Also assume that investment rate is 

20%. 

Which lockboxes should firm open? (Formulate an IP that firm can use to minimize the sum of costs 

due to lost interest and lockbox operations.) 

Answer 

First we must calculate the losses due to lost interest for each possible assignment. For instance, if the 

West sends to New York, then on average there will be $560,000 (=8×$70.000) in process on any 

given day. Assuming an investment rate of 20%, this corresponds to a yearly loss of $112,000. 

We can calculate the losses for the other possibilities in a similar fashion to get the following table: 

Let yj be a 0-1 variable that is 1 if lockbox j is opened and 0 if it is not. Let xij be 1 if region i sends to 

lockbox j; and 0 otherwise. 

Our objective is to minimize our total yearly costs. This is: 28 x11 + 84 x12 + … + 50 y1 + 50 y2 + 

50 y3 + 50 y4 

One set of constraint is that each region must be assigned to one lockbox: 

∑j  xij = 1 for all i 

(∑j should be read as "sum over all integer values of j from 1 to n inclusive") 

A region can only be assigned to an open lockbox: 

x1j + x2j + x3j + x4j ≤ M yj 

M is any number that should be at least 4 as there are four regions. 

(Suppose we do not open LA lockbox; then y1 is 0, so all of x11, x21, x31, and x41 must also be 0. If 

y1 is 1, then there is no restriction on the x values.) 

Min 28 x11 + 84 x12 + 112 x13 + 112 x14+ 60 x21 + 20 x22 + 50 x23 + 50 x24+ 96 x31 + 60 x32 + 

24 x33 + 60 x34+ 64 x41 + 40 x42 + 40 x43 + 16 x44+ 50 y1 + 50 y2 + 50 y3 + 50 y4 

s.t. x11 + x12 + x13 + x14 = 1  x21 + x22 + x23 + x24 = 1 x31 + x32 + x33 + x34 = 1 x41 + x42 + 

x43 + x44 = 1 

x11 + x21 + x31 + x41 ≤ 4y1 x12 + x22 + x32 + x42 ≤ 4y2 x13 + x23 + x33 + x43 ≤ 4y3 x14 + x24 + 

x34 + x44 ≤ 4y4 

All xij and yj = 0 or 1 
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Membership in Specified Subsets 

 

Using decision variables that equal 1 if an object is part of a solution and 0 otherwise, set covering, 

set packing, and set partitioning models formulate problems where the core issue is membership in 

specifed subsets. 

Many applications in areas such as location problems (fire/police station, warehouse, facility), 

scheduling (crew, airline, truck, bus), political districting 

•Set covering constraints 

Require that at least one member of subcollection J belongs to a solution: 

∑jJ xj ≥ 1 

•Set packing constraints 

Require that at most one member of subcollection J belongs to a solution: 

∑jJ xj ≤ 1 

•Set partitioning constraints 

Require that exactly one member of subcollection J belongs to a solution: 

∑jJ xj = 1 

Set Covering Problems 

Each member of a given set (call it set 1) must be “covered” by an acceptable member of some set 

(call it set 2). 

The objective of a set-covering problem is to minimize the number of elements in set 2 that are 

required to cover all the elements in set 1. 

Example 4. Fire Station 

A county is reviewing the location of its fire stations. The county is made up of a number of cities: 

 A fire station can be placed in any city. 

It is able to handle the fires for both its city and any adjacent city (any city with a non- zero border 

with its home city). 

How many fire stations should be built and where? 

Answer 

We can create one variable xj for each city j (1 if we place a station in the city, 0 otherwise): 

Each constraint should state that there must be a station either in city j or in some adjacent city. 

The jth column of the constraint matrix represents the set of cities that can be served by a fire station 

in city j. 

We are asked to find a set of such subsets j that covers the set of all cities in the sense that every city 

appears in the service subset associated with at least one fire station 

Min x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11  

s.t. x1 + x2 + x3 + x4 ≥ 1 (city 1) 

x1 + x2 + x3 +x5 ≥ 1 (city 2) 
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x1 + x2 + x3 + x4 + x5 + x6≥ 1 (city 3) 

x1+ x3 + x4+ x6 + x7≥ 1 (city 4) 

x2 + x3+ x5 + x6+ x8 + x9≥ 1 (city 5) 

x3 + x4 + x5 + x6 + x7 + x8≥ 1 (city 6) 

 x4+ x6 + x7 + x8≥ 1 (city 7) 

x5 + x6 + x7 + x8 + x9   + x10≥ 1 (city 8) 

x5+ x8 + x9 + x10 + x11≥ 1 (city 9) 

x8 + x9 + x10 + x11x9 + x10 + x11≥ 1 (city 10) 

≥ 1 (city 11) 

All xj = 0 or 1   

Either-Or Constraint 

Given two constraints 

f(x1, x2,…, xn) ≤ 0(1) 

g(x1, x2,…, xn) ≤ 0(2) 

ensure that at least one is satisfied (1 or 2) by adding either-or-constraints: 

f(x1, x2,…, xn) ≤ M y 

g(x1, x2,…, xn) ≤ M (1 – y) 

Here y is a 0-1 variable, and M is a number chosen large enough to ensure that both constraints are 

satisfied for all values of decision variables that satisfy the other constraints in the problem:If y = 0, 

then (1) and possibly (2) must be satisfied. 

If y = 1, then (2) and possibly (1) must be satisfied. 

 

Example 5. Fire Station 

Suppose 1.5 tons of steel and 30 hours of labor are required for production of one compact car. 

At present, 6,000 tons of steel and 60,000 hours of labor are available. 

For an economically feasible production, at least 1,000 cars of compact car must be produced. 

•Constraint:x ≤ 0 or x ≥ 1000 

Sign restriction: x ≥ 0 and Integer 

Answer 

For f(x) = x; g(x) = 1000 – x 

We can replace the constraint by the following pair of linear constraints: 

x ≤ M y 

1000 – x ≤ M (1 – y) 

y = 0 or 1 

M = min (6.000/1.5, 60.000/30) = 2000 
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If-Then Constraints 

Suppose we want to ensure that 

a constraint f(x1, x2,…, xn) > 0 implies the constraint g(x1, x2,…, xn) ≥ 0 

Then we include the following constraints in the formulation: 

–g(x1, x2,…, xn) ≤ M y(1) 

f(x1, x2,…, xn) ≤ M (1 – y) (2) 

Here y is a 0-1 variable, and M is a large positive number, chosen large enough so that f<M and –

g<M hold for all values of decision variables that satisfy the other constraints in the problem. 

If f > 0, then (2) can be satisfied only if y = 0. (1) implies –g ≤ 0 or g ≥ 0, which is the desired result 

Example 6. Modified Lockbox 

(Winston 9.2, p. 490) 

Suppose we add the following constraint 

If customers in region 1 send their payments to city 1, no other customers may send their payments to 

city 1: 

If x11 = 1, then x21 = x31 = x41 = 0  

If x11 > 0, then x21 + x31 + x41 ≤ 0 

Answer 

For f = x11 and g = – x21 – x31 – x41 

We can replace the implication by the following pair of linear constraints: 

x21 + x31 + x41 ≤ My x11 ≤ M (1 – y) 

y = 0 or 1 

–g and f can never exceed 3, we can choose M as 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


