LECTURE NOTES

ON

PROBABILITY THEORY AND
STOCHASTIC PROCESS

B.Tech I11-Sem ECE
IARE-R16

Dr. M V Krishna Rao
(Professor)

Mr. G.Anil kumar reddy
(Assistant professor)

Mrs G.Ajitha
(Assistant professor)

Mr. N Nagaraju

(Assistant professor)

ELECRTONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500043




UNIT -1
PROBABILITY AND RANDOM VARIABLE

Introduction

It is remarkable that a science which began with the consideration of games of chance
should have become the most important object of human knowledge.

A brief history

Probability has an amazing history. A practical gambling problem faced by the French nobleman
Chevalier de Méré sparked the idea of probability in the mind of Blaise Pascal (1623-1662), the
famous French mathematician. Pascal's correspondence with Pierre de Fermat (1601-1665),
another French Mathematician in the form of seven letters in 1654 is regarded as the genesis of
probability. Early mathematicians like Jacob Bernoulli (1654-1705), Abraham de Moivre (1667-
1754), Thomas Bayes (1702-1761) and Pierre Simon De Laplace (1749-1827) contributed to the
development of probability. Laplace's Theory Analytique des Probabilities gave comprehensive
tools to calculate probabilities based on the principles of permutations and combinations.
Laplace also said, "Probability theory is nothing but common sense reduced to calculation.”

Later mathematicians like Chebyshev (1821-1894), Markov (1856-1922), von Mises (1883-
1953), Norbert Wiener (1894-1964) and Kolmogorov (1903-1987) contributed to new
developments. Over the last four centuries and a half, probability has grown to be one of the
most essential mathematical tools applied in diverse fields like economics, commerce, physical
sciences, biological sciences and engineering. It is particularly important for solving practical
electrical-engineering problems in communication, signal processing and computers.

Notwithstanding the above developments, a precise definition of probability eluded the
mathematicians for centuries. Kolmogorov in 1933 gave the axiomatic definition of probability
and resolved the problem.

Randomness arises because of

o random nature of the generation mechanism
Limited understanding of the signal dynamics inherent imprecision in measurement,
observation, etc.

For example, thermal noise appearing in an electronic device is generated due to random motion
of electrons. We have deterministic model for weather prediction; it takes into account of the
factors affecting weather. We can locally predict the temperature or the rainfall of a place on the
basis of previous data. Probabilistic models are established from observation of a random
phenomenon. While probability is concerned with analysis of a random phenomenon, statistics
help in building such models from data.




Deterministic versus probabilistic models

A deterministic model can be used for a physical quantity and the process generating it provided
sufficient information is available about the initial state and the dynamics of the process
generating the physical quantity. For example,

e We can determine the position of a particle moving under a constant force if we know the
initial position of the particle and the magnitude and the direction of the force.

e« We can determine the current in a circuit consisting of resistance, inductance and
capacitance for a known voltage source applying Kirchoff's laws.

Many of the physical quantities are random in the sense that these quantities cannot be predicted
with certainty and can be described in terms of probabilistic models only. For example,

e The outcome of the tossing of a coin cannot be predicted with certainty. Thus the
outcome of tossing a coin IS random.

e The number of ones and zeros in a packet of binary data arriving through a
communication  channel  cannot be  precisely  predicted is  random.

e The ubiquitous noise corrupting the signal during acquisition, storage and transmission
can be modelled only through statistical analysis.

Probability in Electrical Engineering

A signal is a physical quantity that varyies with time. The physical quantity is
converted into the electrical form by means of some transducers . For example, the time-
varying electrical voltage that is generated when one speaks through a telephone is a
signal. More generally, a signal is a stream of information representing anything from
stock prices to the weather data from a remote-sensing satellite.

A sample of a speech signal
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An analog signal (x().£€ I} §5 defined for a continuum of values of domain parameter {=1°
and it can take a continuous range of values.

A digital signal (alxl.n €1} s defined at discrete points and also takes a discrete set of
values.

As an example, consider the case of an analog-to-digital (AD) converter. The input to the AD
converter is an analog signal while the output is a digital signal obtained by taking the samples of
the analog signal at periodic intervals of time and approximating the sampled values by a
discrete set of values.
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x, (I) Converter x[n] = x, (T

Figure 3 Analog-to-digital (AD) converters
Random Signal

Many of the signals encountered in practice behave randomly in part or as a whole in the
sense that they cannot be explicitly described by deterministic mathematical functions such as a
sinusoid or an exponential function. Randomness arises because of the random nature of the
generation mechanism. Sometimes, limited understanding of the signal dynamics also
necessitates the randomness assumption. In electrical engineering we encounter many signals
that are random in nature. Some examples of random signals are:




I.  Radar signal: Signals are sent out and get reflected by targets. The reflected signals are
received and used to locate the target and target distance from the receiver. The received
signals are highly noisy and demand statistical techniques for processing.

ii.  Sonar signal: Sound signals are sent out and then the echoes generated by some targets
are received back. The goal of processing the signal is to estimate the location of the
target.

iii.  Speech signal: A time-varying voltage waveform is produced by the speaker speaking
over a microphone of a telephone. This signal can be modeled as a random signal.
A sample of the speech signal is shown in Figure 1.

iv.  Biomedical signals: Signals produced by biomedical measuring devices like ECG,
EEG, etc., can display specific behavior of vital organs like heart and brain. Statistical
signal processing can predict changes in the waveform patterns of these signals to detect
abnormality. A sample of ECG signal is shown in Figure 2.

v.  Communication signals: The signal received by a communication receiver is generally
corrupted by noise. The signal transmitted may the digital data like video or speech and
the channel may be electric conductors, optical fiber or the space itself. The signal is
modified by the channel and corrupted by unwanted disturbances in different stages,
collectively referred to as noise.

These signals can be described with the help of probability and other concepts in statistics.
Particularly the signal under observation is considered as a realization of a random process or a
stochastic process. The terms random processes, stochastic processes and random signals are
used synonymously.

A deterministic signal is analyzed in the frequency-domain through Fourier series and
Fourier transforms. We have to know how random signals can be analyzed in the frequency
domain.

Random Signal Processing
Processing refers to performing any operations on the signal. The signal can be amplified,
integrated, differentiated and rectified. Any noise that corrupts the signal can also be reduced by
performing some operations. Signal processing thus involves
o Amplification

Filtering

O

Integration and differentiation

o O

O

Nonlinear operations like rectification, squaring, modulation, demodulation etc.




These operations are performed by passing the input signal to a system that performs the
processing. For example, filtering involves selectively emphasising certain frequency

components and attenuating others. In low-pass filtering illustrated in Fig.4, high-frequency
components are attenuated

Input signal Low-pass Output (filtered) s.-'gm;.;__
x(f) L'“L"J' }(! (r)
Figure 4 Low-pass filtering
= [ ]
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Signal estimation and detection

A problem frequently come across in signal processing is the estimation of the true value
of the signal from the received noisy data. Consider the received noisy signal » given by

¥ty = Acos(@yi) + niL)
where Acos(@yt) is the desired transmitted signal buried in the noise nd,

Simple frequency selective filters cannot be applied here, because random noise cannot be
localized to any spectral band and does not have a specific spectral pattern. We have to do this

by dissociating the noise from the signal in the probabilistic sense. Optimal filters like the
Wiener filter, adaptive filters and Kalman filter deals with this problem.
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In estimation, we try to find a value that is close enough to the transmitted signal. The
process is explained in Figure 6. Detection is a related process that decides the best choice out of
a finite number of possible values of the transmitted signal with minimum error probability. In
binary communication, for example, the receiver has to decide about 'zero' and 'one’ on the basis
of the received waveform. Signal detection theory, also known as decision theory, is based on
hypothesis testing and other related techniques and widely applied in pattern classification, target
detection etc.

Signal
_— e

Estimate

Noisy {l’-!:'sca"rm"fqﬁ_ Optimal I

Channel filteving

Figure 6 Signal estimation problem

Source and Channel Coding
One of the major areas of application of probability theory is Information theory and
coding. In 1948 Claude Shannon published the paper "A mathematical theory of communication”
which lays the foundation of modern digital communication. Following are two remarkable

results stated in simple languages :

o Digital data is efficiently represented with number of bits for a symbol decided by its
probability of occurrence.

e The data at a rate smaller than the channel capacity can be transmitted over a noisy

channel with arbitrarily small probability of error. The channel capacity again is
determined from the probabilistic descriptions of the signal and the noise.

Basic Concepts of Set Theory

The modern approach to probability based on axiomatically defining probability as
function of a set. A background on the set theory is essential for understanding probability.

Some of the basic concepts of set theory are:

Set

A set is a well defined collection of objects. These objects are called elements or
members of the set. Usually uppercase letters are used to denote sets.

Probability Concepts




Before we give a definition of probability, let us examine the following concepts:

1. Random Experiment: An experiment is a random experiment if its outcome cannot be
predicted precisely. One out of a number of outcomes is possible in a random
experiment. A single performance of the random experiment is called a trial.

2. Sample Space: The sample space «is the collection of all possible outcomes of a
random experiment. The elements of * are called sample points.

o A sample space may be finite, countably infinite or uncountable.
« Afinite or countably infinite sample space is called a discrete sample space.

e Anuncountable sample space is called a continuous sample space

3. Event: Anevent A is a subset of the sample space such that probability can be assigned
to it. Thus

A X

o For adiscrete sample space, all subsets are events.

o Jjs the certain event (sure to occur) and ?is the impossible event.

mample
space 5

Figure 1

Consider the following examples.

Example 1: tossing a fair coin

The possible outcomes are H (head) and T (tail). The associated sample space is S={H. T}
is a finite sample space. The events associated with the sample space = are: SAHY (Thang @

Example 2: Throwing a fair die:




The possible 6 outcomes are:
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The associated finite sample space is §={T, 2,3, 49.'5. %% 5ome events are

A=The event of getting an odd face={"1, "3 9"
B =The event of getting a six={"6"}
And so on.

Example 3: Tossing a fair coin until a head is obtained

We may have to toss the coin any number of times before a head is obtained. Thus the possible
outcomes are:

H, TH, TTH, TTTH,
How many outcomes are there? The outcomes are countable but infinite in number. The

countably infinite sample space is S={#, THITH, .. 1,
Example 4 : Picking a real number at random between -1 and +1

The associated sample space is = ~ (5|s€ R, ~1£s <1 =[~1, 1]

Clearly %'is a continuous sample space.

Definition of probability

Consider a random experiment with a finite number of outcomes #' If all the outcomes of the
experiment are equally likely , the probability of an event Ais defined by

_¥,
A==t

where
N, = Mumber of cutcomes favourable to 4

Example 6 A fair die is rolled once. What is the probability of getting a ‘6’ ?

Here S = {Ill, |2|, |3|, |4|, |5|, |6|} and A ={: I6 l}

LN=6 and N, =1
, 1
P =%




Example 7 A fair coin is tossed twice. What is the probability of getting two ‘heads'?

Here S ={HH. TH, 6 HT, TT} g A={HH}
Total number of outcomes is 4 and all four outcomes are equally likely.

Only outcome favourable to Ais {HH}

o

CPA) =

Discussion

e The classical definition is limited to a random experiment which has only a finite number
of outcomes. In many experiments like that in the above examples, the sample space is
finite and each outcome may be assumed ‘equally likely.' In such cases, the counting
method can be used to compute probabilities of events.

o Consider the experiment of tossing a fair coin until a ‘head' appears.As we have
discussed earlier, there are countably infinite outcomes. Can you believe that all these
outcomes are equally likely?

« The notion of equally likely is important here. Equally likely means equally probable.
Thus this definition presupposes that all events occur with equal probability . Thus the
definition includes a concept to be defined

Relative-frequency based definition of probability

If an experiment is repeated * times under similar conditions and the event 4 occurs in "4 times,
P = Lim 4
then re R

Example 8 Suppose a die is rolled 500 times. The following table shows the frequency each
face.

Face I 2 3 4 h] &
Freguency 82 &1 | 88 81 | 20 | 78
Relative frequency  |(0.164|0.762(0.176|0.162| 0.18 |0.156

1

We see that the relative frequencies are close to . How do we ascertain that these relative
1

frequencies will approach to © as we repeat the experiments infinite no of times?

Discussion This definition is also inadequate from the theoretical point of view.
10




= We cannot repeat an experiment infinite number of times.
= How do we ascertain that the above ratio will converge for all possible sequences
of outcomes of the experiment?

Axiomatic definition of probability

We have earlier defined an event as a subset of the sample space. Does each subset of the sample
space forms an event?

The answer is yes for a finite sample space. However, we may not be able to assign probability
meaningfully to all the subsets of a continuous sample space. We have to eliminate those subsets.
The concept of the sigma algebra is meaningful now.

Definition Let < be a sample space and Fa sigma field defined over it. Let &' F —Rpe a
mapping from the sigma-algebra F'into the real line such that for each A€ F | there exists a

unique PA)ER Clearly £is a set function and is called probability, if it satisfies the
following three axioms.

. P{A) 20 foral Al
PS5y =1
Countable additivity If 4.4, are pair-wise disjoint events,i.e. 4 md, =¢ fori=j, then

P(gf%) - gﬂﬂa

JI:4
j/f_.;-'—'_"'\-\.\_\_\\\' T- |"
/ AY
""\-\._\___'_.4-’-'/ 1 E]
Y
Figure 2
Discussion

e Thetriplet (5. F. 7} s called the probability space.

« Any assignment of probability assignment must satisfy the above three axioms

11




f ¥ AnB=0 P(AUE) = F(4)+ P(B)

This is a special case of axiom 3 and for a discrete sample space , this simpler version
may be considered as the axiom 3. We shall give a proof of this result below.

e The events A and B are called mutually exclusive f AnE =0

Basic results of probability

From the above axioms we established the following basic results:

1. Hlgr=0
Suppose, A= fA =8 . A=4

Then Amd =gtori=j

P(8) = P 4)
=3 P(4)

i=1

=3P

Therefore i1

P($) = S.P(9) _
Thus E which is possible only if (@) =0
o 1f ABeFand AnB =0, P(4d5)=P(4+FP(E)

We have ,
AoF=AlF8 g g

L P(AUB) = PAY+ P(BY + P(d).. + P() + . (using aziom 3)
L P(AUB) = PLAY+ P(B)
3. P70 = 1- P (4 yhere where AT
Auds =5
= PlAAT = PO
= A+ PA =1 cAmA =g
We have, SOPA) =1 PlAT
4 1f ABEF, P(AnE") = F(A) - P(AnE)

12




We have,

(ARBYU(AnBE) - A /_,_((\’ TN @
CCE(ANBT YL (A BY] = PLA) (4 \ B )
= P(AmB )+ P(ANE) = PLA) K &
= P(ArB) = P(d) - P(ArB) ) *Pd\g
A B A B
We can similarly show that , A=(An BV (AN B)
PlA mBY=P(BI-PlArB)

i ABEF, P(AUB) = P(4)+P(B) - P(ANB)
We have,
AVB={A B Arm B (A E)
SRAUE = Al m Bl An BN Am BN
= P(A° N B)+ P(ANE) + P(Ar B
=P(B) - P(ANB) + PF(AnE)+ P(A) - P(An B)
=P(B) + P(4) - P(Ar B)

. We can apply the properties of sets to establish the following result for
A B CelF

FlAUB T =P+ FIBY+ F{C - F{ANB) - FIBENC - PANCY + F{ANB N
The following generalization is known as the principle inclusion-exclusion.

Probability assignment in a discrete sample space

Consider a finite sample space . Then the sigma algebra is defined by the power set
of S. For any elementary event , we can assign a probability P( si ) such that,

2y
> A((s)) =1
For any event A€ ]F, we can define the probability
PlAy=> P(4)
Ayed

In a special case, when the outcomes are equi-probable, we can assign equal probability p

to each elementary event.

13




2.p =1

= r = 1n
- -
()
.

Example 9 Consider the experiment of rolling a fair die considered in example 2.

Suppose A4.1=1..6 represent the elementary events. Thus 4 is the event of getting “1',
Ais the event of getting '2' and so on.

Since all six disjoint events are equiprobable and * ~ & W o g

H®=H%FM=H%F%

Suppose Ais the event of getting an odd face. Then
A=A A A
1 1
SR = PUAY+ PLAY+ PLA = 3>=:E =3

Example 10 Consider the experiment of tossing a fair coin until a head is obtained discussed in

Example 3. Here © = U7, TH.TTH. ...} | et ys call

5 =H
g =TH
s =1TH
1
) P({Sx}:l=_x ZP({SM}:I=1' ﬂ={.5' s .‘5-'}-
and so on. If we assign, 2" then =S Let 1-%2:%31 s the event

of obtaining the head before the 4 th toss. Then

PLA) = Fl{s} )+ P{s, 1) + P{s))
1,117

227 PR

14




Probability assignment in a continuous space

Suppose the sample space S is continuous and un-countable. Such a sample space arises
when the outcomes of an experiment are numbers. For example, such sample space occurs when
the experiment consists in measuring the voltage, the current or the resistance. In such a case, the
sigma algebra consists of the Borel sets on the real line.

SR FE—=R

Suppose and is a non-negative integrable function such that,

lf{x} dr =1

A

P4 = [F(2) dx
A

defines the probability on the Borel sigma-a®* ®*B .

We can similarly define probability on the continuous space of etc.

Example 11  Suppose

for xela, &]
Fylxl =<k - a
0 otherwize
Then for [@- fl<le, ]
Plla, b)) = 2" %
b —a

Probability Using Counting Method

In many applications we have to deal with a finite sample space < and the elementary
events formed by single elements of the set may be assumed equiprobable. In this case, we can
define the probability of the event A according to the classical definition discussed earlier:

Py =4

M

where 4= number of elements favorable to A and n is the total number of elements in the
sample space <.

Thus calculation of probability involves finding the number of elements in the sample

15




space “and the event A. Combinatorial rules give us quick algebraic formulae to find the
elements in < . We briefly outline some of these rules:

1. Product rule Suppose we have a set A with m distinct elements and the set B with n

distinct elements and AxE [(a’ ’bj) | €455 € B] . Then A% & contains mn ordered
pair of elements. This is illustrated in Fig for m=5 and n=4 n other words if we can
choose element a in m possible ways and the element b in n possible ways then the
ordered pair (a, b) can be chosen in mn possible ways.

&

E ﬂ'.l,f:'l‘_ ﬂz,bq_ ﬂ3,b4 Iﬂ-q_,bq, a’j:b.g
ay, b 2y 8y s, 8 4.8 s, By
. By @y, 8y s, 8 Ay, @., 8

@y, by @y, 8 a3,y @y, s, 8

e

Figure 1 lllustration of the product rule

The above result can be generalized as follows:

The number of distinct k -tupples in
A% ={|[.:1:1,c;t2 ,,,,, akjl|ale_fﬂl,.:12 g4, Ly € ﬂs;} TRECTOR Ay where %

represents the number of distinct elements in 4
Example 1 A fair die is thrown twice. What is the probability that a 3 will appear at least once.

Solution: The sample space corresponding to two throws of the die is illustrated in the following

table. Clearly, the sample space has 6 %6 = 36glements by the product rule. The event
corresponding to getting at least one 3 is highlighted and contains 11 elements. Therefore, the

16




11
required probability is 3¢ .

(1,60 | (2,6) |36 |6 |(5,6) |(6E)
(1,5 [@&25) [35) [ @5y [(55) |(65)
(14 |24y [E4) (@40 |54 |64)
(1,2 2,3 |33 |3 |53 |63
(1.2) | (2,2 |52 | @2 |(52) |(62)
(L | &1 [ G0 [ @1 15,10 |61

Throw !

bo g 0¥ B ey

Example 2 Birthday problem - Given a class of students, what is the probability of two
students in the class having the same birthday? Plot this probability vs. number of students and
be surprised!.

Let k 5365 be the number of students in the class.

Then the number of possible birth days=365.365....365 ( k-times) = 365"
The number of cases with each of the & students having a different birth

day is =*%F =365 364, .(365-k+1)

33
Therefore, the probability of common birthday =1- 36;:%
Number of persons Probability
2 0.0027
0 .1169
15 0.4114
25 0.5687
41 08012
50 3.9704
o1l (9947
a4 {19999
00

The plot of probability vs number of students is shown in above table. Observe the
steep rise in the probability in the beginning. In fact this probability for a group of 25 students is

17




greater than 0.5 and that for 60 students onward is closed to 1. This probability for 366 or more
number of students is exactly one.

06

=
(s

probability

o=
Ew-

Dz-‘z

1 I 1 I 1
a0 100 1580 200 280 300 350
Mumber of people

Example 3 An urn contains 6 red balls, 5 green balls and 4 blue balls. 9 balls were picked at

random from the urn without replacement. What is the probability that out of the balls 4 are red,
3 are green and 2 are blue?

Solution :
L =E
9 balls can be picked from a population of 15 balls in * ool
O O o
i K Rt 1
Therefore the required probability is G

Example 4 What is the probability that in a throw of 12 dice each face occurs twice.

Solution: The total number of elements in the sample space of the outcomes of a single
throw of 12 dice is = 6"

The number of favourable outcomes is the number of ways in which 12 dice can be

arranged in six groups of size 2 each — group 1 consisting of two dice each showing 1, group 2
consisting of two dice each showing 2 and so on.
Therefore, the total number distinct groups

_ 12
21212121212

18




121
Hence the required probability is (2° 6"

Conditional probability

Consider the probability space (5.F. ) Let A and B two events in F . We ask the
following question —
Given that A has occurred, what is the probability of B?

The answer is the conditional probability of B given A denoted by FIBIA) e shall
develop the concept of the conditional probability and explain under what condition this

conditional probability is same as £8)

Notation
P {B/4) = Conditional probability of B
given A

Let us consider the case of equiprobable events discussed earlier. Let N

be favourable for the joint event A &

sample points

ANs

Figure 1

19




Mumber of outcomes favourable to A and B

P(Bid) =

Mumber of outcomes in A
n AR
=}2(HE] _ x =P(ﬂr“|5’)
nidy  ald FiA

b

Clearly,

This concept suggests us to define conditional probability. The probability of an event B under
the condition that another event A has occurred is called the conditional probability of B given A
and defined by

PlArB)

P(B|A) = , Ay =0

We can similarly define the conditional probability of A given B, denoted by PAais)

From the definition of conditional probability, we have the joint probability FANE) of

two events A and B as follows

P(ANB) = PLAP(B ] A) = P(BYP(AI B)

Example 1 Consider the example tossing the fair die. Suppose

A =-event of getting an even number ={2, 4,6}

B =event of getting a number less than 4 ={1,2, 5}
SANE={2)

PlAnE) U6 1

PB4 P4 36 3

Example 2 A family has two children. It is known that at least one of the children is a girl. What
is the

20




probability that both the children are girls?
A = event of at least one girl

B = event of two girls

& = {gg, gh, bg, bb}, A={gg, gb, bg} and 5 ={gg}
Am B ={gg}
PANE 1714 1

PA 3/4 3

CLP(BIA) =
Clearly,

Conditional probability and the axioms of probability

In the following we show that the conditional probability satisfies the axioms of
probability.

P(ARB)

PEIA= LAY =0
By definition
Axiom 1:
PlAmB) 20, P04 » 0
SRR A =M20
Pl
Axiom 2 :
We have , s A=A
RS A) - PEnA) _PA) 1
PLA) PlA)
Axiom 3 :
BB, B, .

Consider a sequence of disjoint events

()= na
iml

iml

We have ,
21




B B2

%y
%

Figure 2

Bomd i=12

Note that the sequence *is also sequence of disjoint events.

P(Lmj (B, ) = iP(Bi A
iml

iml

P B na SPE N4

P )B4y - = & =N"P(B, 1 4
(,-L_J 44 F{A) £(4) ; I

Properties of Conditional Probabilities

if BCA then F(B/A)=1and P(A]B) > P(A)

We have, AmE =258

PANE) _ P4 -1
Fla) FlA)

PR A) =

22




and

PLARE)
P(E)

_ P(AVP(BIA)

T PB)

_ P4
P(BY

2 Pl

P(A|B) =

Chain Rule of Probability

PO Ay ) = PP T4 )PUA T4 A PUAT AL N4 )

We have

(A B ={AmE) T
PANEBNC) = PAANBIPCITANE)
=FAFP(BI AFPCTANE

S P(AREBAC) = PAYPB T AP(CTANE)

We can generalize the above to get the chain rule of probability

P4 My ) = PP, 1A )P(A T A NA). P4 T AN N4

Joint Probability

Joint probability is defined as the probability of both A and B taking place, and is
denoted by P(AB).

Joint probability is not the same as conditional probability, though the two concepts are
often confused. Conditional probability assumes that one event has taken place or will take place,
and then asks for the probability of the other (A, given B). Joint probability does not have such
conditions; it simply asks for the chances of both happening (A and B). In a problem, to help
distinguish between the two, look for qualifiers that one event is conditional on the other
(conditional) or whether they will happen concurrently (joint).

23




Probability definitions can find their way into CFA exam questions. Naturally, there may
also be questions that test the ability to calculate joint probabilities. Such computations require
use of the multiplication rule, which states that the joint probability of A and B is the product of
the conditional probability of A given B, times the probability of B. In probability notation:

P(AB) =P(A | B) * P(B)

Given a conditional probability P(A | B) = 40%, and a probability of B = 60%, the joint
probability P(AB) = 0.6*0.4 or 24%, found by applying the multiplication rule.

P(AUB)=P(A)+P(B)-P(AnB)
For independent events: P(AB) = P(A) * P(B)
Moreover, the rule generalizes for more than two events provided they are all independent of one

another, so the joint probability of three events P(ABC) = P(A) * (P(B) * P(C), again assuming
independence.

Total Probability

Let A4 ""q"be n events such that
S=dA0 A A aﬂd.rﬂ,-r".ﬂj=';?5 fori=

7 Then for any event B,

P(B)=> P(4)P(BIA)
il

Jema -5 B

Proof : We have i-1 and the sequence is disjoint.

LPBY =P B4
iml

=D P(Bn4)
ial

=iP{4)P(Bﬁ4)
ial
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Figure 3

Remark

(1) A decomposition of a set S into 2 or more disjoint nonempty subsets is called a partition

of S.The subsets “2* <2 - - - form a partition of S if

S=Au 4 YA and_,qimﬂi;-;zﬁ fori#j.
(2) The theorem of total probability can be used to determine the probability of a complex
event in terms of related simpler events. This result will be used in Bays' theorem to be
discussed to the end of the lecture.

Example 3 Suppose a box contains 2 white and 3 black balls. Two balls are picked at random
without replacement.

Let 4 event that the first ball is white and
Let 42 event that the first ball is black.

Clearly ‘qland ‘qfform a partition of the sample space corresponding to picking two
balls from the box.

Let B = the event that the second ball is white. Then .

P(B) = P(4)P(BI 4)+ P(&)P(BI 4)
21,32 2




Bayes' Theorem

Suppose 4. 4. ... A are partitions on S such that § = A A4, and 4 M A =¢ fori® ]
suppose the event B occurs 1f one of the events 4, 4, ... 4, occurs. Thus we have the information of the
probabilities P(4) and P(B/ 4),i =1,2.,» We ask the following question:

(iven that B has occured what 15 the probalilily that a particular event A, has cccured? In other words

what is PlA B

We have F{5) = ZP(_%) P[B | A)) { Using the theorem of total probability)

F(4,) P(BI4)
FiB)

_ P{4)P[BI4,)
> P4 )P(BI4)

iml

| P4 B)=

This result is known as the Baye's theorem. The probability P4 is called the a priori
probability and P4 T 8)is called the a posteriori probability. Thus the Bays' theorem enables us

to determine the a posteriori probability P57 5) from the observation that B has occurred. This
result is of practical importance and is the heart of Baysean classification, Baysean estimation
etc.

Example 6

In a binary communication system a zero and a one is transmitted with probability 0.6 and
0.4 respectively. Due to error in the communication system a zero becomes a one with a
probability 0.1 and a one becomes a zero with a probability 0.08. Determine the probability (i) of
receiving a one and (ii) that a one was transmitted when the received message is one.

Let S be the sample space corresponding to binary communication. Suppose T be event
of transmitting 0 and 7 be the event of transmitting 1 and £ and & be corresponding events of
receiving 0 and 1 respectively.

P(T) =06 P(T)=04, P(RJ/T) =01 . P(RIT) =008

Given and
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(1) P(R) = Frobabilty of recetving 'one'
- P(TYP(R I T) + PT)P(R,ITy)
=04x05%2+06x01
=448

{11) Using the Baye's rule

PRPRIT)

PR
_ PRI
F(T)YER, I T)+ ) B(R 1 T,)
_ 0.4=092

0.4=x0.92+06x0.1
=0.8214

PRy =

Example 7: In an electronics laboratory, there are identically looking capacitors of three makes

A. 4 and A vhe ratio 2:3:4. It is known that 1% of “1, 1.5% of <% @d 2% of 4 o
defective. What percentages of capacitors in the laboratory are defective? If a capacitor picked at

defective is found to be defective, what is the probability it is of make 49

Let D be the event that the item is defective. Here we have to find L) and P41 D) )

2 1 4
P(AY =2, P(A) == and P(4) ==
Here () =5 ) =< and Pl4) =

The conditional probabilities are © =~/ 4) = 0.0L F(D/.4) =0.015 and P(D/ 4) = 0.02
SPD) = PA) (DAY + PLAYVR(DEA) + PLA&) PLDTA)

=E><[]_[]1+l><0_[]15+i><0.02
9 3 9

=0.0167

and

P4 1) = FAIEDI )

£(D)

i><IZI.[ZII2
8

0.0167
=0.533
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Independent events

Two events are called independent if the probability of occurrence of one event does not
affect the probability of occurrence of the other. Thus the events A and B are independent if

P(BIA)=P(B) gy PAIB)=P(4)

where 04 and £08) are assumed to be non-zero.
Equivalently if A and B are independent, we have

P(ANB) _

F(A) F(5)

Jaint probability is ihe
product of individial
probabilities.

or P(ArB) = P(A)P(B)

Two events A and B are called statistically dependent if they are not independent. Similarly, we

can define the independence of n events. The events A Ay

and only if

are called independent if

P4 N A;) = P(4) P(A)
P(A M4 A = PLAYPAIPLA)
P4 MA NA, . A) = PIA)P(A)IP(A). P(4,)

Example 4 Consider the example of tossing a fair coin twice. The resulting sample space is
given by & ={HH, HT.TH.TT} anq all the outcomes are equiprobable.

Let 4= TH. 7T} ¢ the event of getting ‘tail' in the first toss and 5={TH, 83} pe the

event of getting ‘head' in the second toss. Then

(A B) =(TH)

Again, so that

28




P(ANE)- % _ P(A)P(B)

Hence the events A and B are independent.

Example 5 Consider the experiment of picking two balls at random discussed in above example
Py = 2 P{RIA)= !
In this case, 5 and 4,

P(B) = P(B] 4)

Therefore, and “tand B are dependent.

RANDOM VARIABLE

In application of probabilities, we are often concerned with numerical values which are
random in nature. For example, we may consider the number of customers arriving at a service
station at a particular interval of time or the transmission time of a message in a communication
system. These random quantities may be considered as real-valued function on the sample space.
Such a real-valued function is called real random variable and plays an important role in
describing random data. We shall introduce the concept of random variables in the following
sections.

A random variable associates the points in the sample space with real numbers.

Consider the probability space (5.F.#) and function & & — IE mapping the sample space
5

into the real line. Let us define the probability of a subset &< E py
P ({BY) = PLXN(BY) = P({s| X(s)€ BY)

-1
Such a definition will be valid if X Z)is a valid event. If Sis a discrete sample space,

-1
SRR always a valid event, but the same may not be true if <'is infinite. The concept of
sigma algebra is again necessary to overcome this difficulty. We also need the Borel sigma
algebra B -the sigma algebra defined on the real line.

The function & : 5 — Ejs called a random variable if the inverse image of all Borel sets
under & is an event. Thus, if < is a random variable, then
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XUB)={s|X(s)eB}eF

Figure: Random Variable

Observations:

e Aisthe domain of & .

« The range of £ denoted by Ry is given by

Ry ={d(s)|s €5}

Clearly #x SR

« The above definition of the random variable requires that the mapping - is such that

-1
(708D is avalid eventin 5. If is a discrete sample space, this requirement is met

by any mapping 4 : & — E Thus any mapping defined on the discrete sample space is a
random variable.

Example 2 Consider the example of tossing a fair coin twice. The sample space is S={

HH,HT,TH,TT} and all four outcomes are equally likely. Then we can define a random variable
A as follows
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Sample Point | Value of the
random
Variable
HH 0
HT l
TH 2
I 1

Here %x = (0,123}

Example 3 Consider the sample space associated with the single toss of a fair die. The

sample space is given by F=112,5,4,3.6}

If we define the random variable - that associates a real number equal to the number on
the face of the die, then ¥ = %3436}

Discrete, Continuous and Mixed-type Random Variables

« A random variable - is called a discrete random variable if Fy () IS piece-wise
constant. Thus £ ®s flat except at the points of jump discontinuity. If the sample space = is
discrete the random variable ¥ defined on it is always discrete.

 Xis called a continuous random variable if Fy (x) is an absolutely continuous function
of x. Thus Fy (x) is continuous everywhere on E and Fy (x) exists everywhere except at finite

or countably infinite points .

+ Xis called a mixed random variable if Fy () has jump discontinuity at countable
number of points and increases continuously at least in one interval of X. For a such type RV X,

Fp(x) = pFp(x) + (1 - plF(x)

Fo(x)

where Fplx) is the distribution function of a discrete RV, is the distribution function of

a continuous RV and o< p <1.
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Typical plots of Fx (X gor discrete, continuous and mixed-random variables are shown in
Figure 1, Figure 2 and Figure 3 respectively.

The interpretation of <2 % and £ *) will be given later.

&~

Hy(x)

1 T

L
»

[n]

Figure1 Plotof “x'%)

Fyi=d

X

vs. ¥ for a discrete random variable
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UNIT — 11
DISTRIBUTION AND DENSITY FUNCTIONS

We have seen that the event Band 1XEIE5) a6 equivalent and

£ (B} = P({s] X(s) € B1) The underlying sample space is omitted in notation and we simply
write X €8 and FULE BN instead of 18|LEIE B} gng  FUs[L(sIE B} regpectively.

Consider the Borel set <™= x], where X represents any real number. The equivalent

event XH((-=, x]) = {s| X(s) < x, s €5} is denoted as % % The event X <% can be taken

as a representative event in studying the probability description of a random variable X . Any
other event can be represented in terms of this event. For example,

(X0 ={X<xf (n< X <x)={X<x)\(X <x),
x=n=-Alrenraa-y
Hml H

and so on.

The probability £ £ &k = P{s] X(s) £ x. 5 €515 called the probability distribution
function ( also called the cumulative distribution function , abbreviated as CDF ) of < and

denoted by “x'*) Thus

Fylx) = P{& £ x3)

Value of the random variable

F{_(xj'

N

Random variable

Figure 4
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Example 4: Consider the random variable ¥ in the above example. We have

Value of the
random PiiX=x}l
Variable X' =x
0 1/4
| 1/4
2 1/4
3 /4
Forx <0,
Fe()=FP{X ixp=10
For £x<1,
1
Felm=FP{X Lx)=FP{A=01= 7

Forlsx< 2,
Fp(x) = PULX 2x})
=P =00 {5 =1
=PUA =0+ PUHA =11
Ll
4 4 2
For2z £x <73,
Fp(x) = P& £x3)

= P{X =0} {X =X =2}
=P =0+ FPA =T+ P{4 =2}

1 1 1 &
=_+_+_==
4 4 4 4
Forx 23,
Hp(x) = PU{A £ x})
= P
=1

Figure 5 shows the plot of Fx(x)
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#y(x)

L

Figure 5

Forlsx<2,
Fyl(x) = P{A Lx})
=F{A =015 =1
=PHA=0N+PUH{A =1}
1.1 1

+ o=

4 4 2

For2ix<3,
Fylx) = FP({X L)
=PH{X =0 X =11{X=2"
=P{A =0+ FPH{A =T+ P{X =2}
1 3
4 4

+ -+

In| —
O

Properties of the Distribution Function

0< Fy(x) <1

This follows from the fact that Fy (%) is a probability and its value should lie between 0
and 1.
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F2(isa non-decreasing function of & . Thus, if

x L

= (X(s) < m) S (X < x)
= PlA (s Sx S P (=) L x)
S By () < Fy(xg)

Fy(x) I right continuous.

Fe(x*) =lim Fy (x +h) = y (x)

B0
Eecause, kin% Folx+h) = lkiﬂ% PXsyAx+ k)
k-0 k-0
=FPXi=) £ x}
=Fy(x)
F(—wm)=0

Becauge, F(—w)=Flg|A(s) 2 -} = Plg) = D_

Fy(m) =1
Becauge, F(wm)=Fls| A(s) Lm} =Pl =1 _

Fi{r, < T < x, )= F,(x) - F, (%)
We have ,

(T ix)={T<ntn <X <x)
CRX x = PUT S+ Flin < T <))
= P <X LD s A in)-FUX Sq)=Fix)- Fin)

Fy(x7)=Fy () = PX = %)

Fe(x7) = lim Fy(x- 1)
ErQ
= lim P(X(s) <x-h)
R0
= P{X(5) < x} - P(X(5) = %)
=F,(x) - P(X = 1)
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We can further establish the following results on probability of events on the real line:
PimeX Snl=Fyln)-Fyin)+ (X =x)

FPlig 2X cxl)=F(n) - F(x)+ P X =x)- P& =x)
PUX >x)=Pl{x <X coo})=1-F(2)

Fo(x), wmax<eo
Thus we have seen that given X \ 7 (x) ¥z e X)ine the probability of any

event involving values (X" he random variable  .Thus is a complete description
of the random variable

Example 5 Consider the random variable < defined by

P (x) =0, x< -2

=lx+l, —22x<0
3 4

Find a) £ =00

py P& <0}
0 P{X >2}_
g Plo1<x <y
Solution:
a) PIX =0) = Fp (0" - Fp(07)
1 3
=]1-_==
4 4

b) P{ X <0} = F, (0)
=1

) P{X > 2} =1-F,(2)
=1-1=0
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dP-1< X <)
= Fy (- (-1)
= 1 — l = E
8 0B
Figure 6 shows the plot of Fx(x).

A
By (x)

1

Y

Figure 6

Discrete Random Variables and Probability DENSITY functions

A random variable is said to be discrete if the number of elements in the range Ry is finite
or countably infinite.

¢ 10 be countably finite. Let =% %% be the elements of “% . Here the

SlX(S:I=Xi},i=1,2 ...... N

First assume

mapping < ) partitions Sinto &V subsets {

The discrete random variable in this case is completely specified by the probability mass
functlon (pmf) pl’(x!) = P({Sl Xl:.‘:'.':l = xi)?i =1?2 """" M}) .

Clearly,

. Px(x)20 ¥x ek, and

_ pyixn)=1
2

o l=ky

o Sxlx) = Fp(x) — Fy(x™) forall xR,

Pi{xel})= Z.ﬂx(?ﬂ-)
.Then Hel
38
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Figure 6 illustrates a discrete random variable.

A (5y)
A (8,)

A (53)

A (84)

Figure 6 Discrete Random Variable

Example 1

Consider the random variable - with the distribution function

r

0 x<0

! 0<Lxd1
Fx(x)=44

! 14x<2

2

1 xz22

The plot of the Fy () is shown in Figure 7 on next page.
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Fy(x)

| —

Ia | —

The probability mass function of the random variable is given by

Value of the random

variable X =x Px(X)
0 1
4
1
1 4
5 1
2

Continous Random Variables and Probability Density Functions

For a continuous random variable &, #x(x)is continuous everywhere. Therefore,

F(x)=F,(x7) vxeRR

This implies that for < B

Px(x)=P({X =zx})
= Fy(x)—Fu(x7)
=10
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Therefore, the probability mass function of a continuous RV X is zero for all *.A
continuous random variable cannot be characterized by the probability mass function. A
continuous random variable has a very important chacterisation in terms of a function called the
probability density function.

i x()js differentiable, the probability density function ( pdf) of X denoted by #x ™ i
defined as

o
fx'ix:' = EFX(}:)

Interpretation of (%)

Fol@) =L Py )
dx
By (x+ A2) - Fy(3)

=lim
A0 Ak
4
g PUR <X St by
ax—+0 B

so that

P{x < X $x+i)) = fy(0)dx

Thus the probability of X lying in some interval % ** 2% determined by Fx(®)

that sense, Sz () represents the concentration of probability just as the density represents the
concentration of mass.

Properties of the Probability Density Function

Fe(®) 20

This follows from the fact that Fy (%) IS a non-decreasing function
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Fy(x) = [ fy()du

w

[ f(ax=1

Fln<Xix)= ;]ifx(x)dx

° |

Figure 8 below illustrates the probability of an elementary interval in terms of the pdf.

Fylz)

¥

0 x
X Xy +ig

Figure 8 Mlustration of  P{{x, < & < x +Ax)) = A% )y

Example 2 Consider the random variable - with the distribution function

F 0 0 %<0
o) =
# 1-e® g>0 x20

The pdf of the RV is given by

P 0 x40
o) =
* s g0, z20

Remark: Using the Dirac delta function we can define the density function for a discrete
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random variables.
Consider the random variable - defined by the probability mass function (pmf)

Prix)=Ple|X=) =x0:i=12,., n

The distribution function Fy(x) can be written as

Fy(x) =D py(x)u(x—x)

iml

ulx—x)

where is the shifted unit-step function given by

1 for xzz
u(x-x)= !

0 otherwisze

Then the density function Fx(%) can be written in terms of the Dirac delta function as

S (3= py(%)8(x — %)

iml
Example 3
Consider the random variable defined with the distribution function Fy 'ix:'given by,

. (x)= %u(x} +%u(x—1) +%u(x—2}
Then
1 1 1
Jxlx) = Z-ﬁ{x} +35(x—1} +§5(x—2}
Probability Density Function of Mixed Random Variable

Suppose -t is a mixed random variable with Fy (%) having jump discontinuity at

& =x.8=L2, .1 aqalready stated, the CDF of a mixed random variable X is given by

Fy(x) = pPy (x)+(1-p) Fo(x)

where Fp '[x:' is a discrete distribution function of & and e '[x:' is a continuous distribution
function of .
The corresponding pdf is given by
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Je(x) = pfpx) +(1-plfalx)

where

Fo(x) =2 px(x)3(x %)
=l
and Je (%) is a continuous pdf. We can establish the above relations as follows.

R

By ={xm.x.. % sych that the random

o2 Ty} denotes the countable subset of points on
[x) LxE R

Suppose

variable is characterized by the probability mass function Fx
Ra=R;\R R,

o Similarly, let

I'be a continuous subset of points on
|[le xR,

such that RV is characterized by the
probability density function Je
Clearly the subsets &p and Ko partition the set Ky If P[‘D‘D):p, then P(Re) =1_p.

{Xﬁx}

Thus the probability of the event can be expressed as

PlX <xy=P(ROPX S} | Ry )+ P(ROP({X <2} | Ry
(

Taking the derivative with respect to x , we get
Fx (@) = pfp(2)+(1-p) fo(7)

Example 4 Consider the random variable - with the distribution function

0 <0

B (x) - 0.1 =0
01+06x  0<x<1
1 xz2l

The plot of Fy () is shown in Figure 9 on next page
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FaX}

1
{].9———%

0.1
0 1 X —>
where
] X< 0
Folx)y =405 0« x <]
1 x =1
o RN
Figure 10

The pdf is given by

Jylx)=027(x) + 085 (x)

where
Folx)=054(x)+ 0.545(x - 1)
and
o) = 1, D<xs1
chF 0 elsewhere
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Jxlx)

v

Example 5

X is the random variable representing the life time of a device with the PDF Sz (%) for x=0
Define the following random variable

¥yr=x if X ia
=g if Xra

Find Fy(y).
Solution: Ry ={a}
R.= [U, a::l
p= P{yE L
=P{X >a}
= I_Fx[“)

OTHER DISTRIBUTION AND DENSITY RVS

In the following, we shall discuss a few commonly-used discrete random variabes. The
importance of these random variables will be highlighted.

Bernoulli random variable
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Suppose X is a random variable that takes two values 0 and 1, with probability mass

functions
prll=FP{X=1=p
And
ry(=1-p, DLpsl

Such a random variable X is called a Bernoulli random variable, because it describes the
outcomes of a Bernoulli trial.

The typical CDF of the Bernoulli RV X is as shown in Figure 2

Fy(x)

Figure 2

Remark
We can define the pdf of X with the help of Dirac delta function. Thus

Jx(x) =(1-p)d(x)+ pd(x)

Example 2 Consider the experiment of tossing a biased coin. Suppose P[{H}) ~ ¥ and
P({T})=1-p

If we define the random variable < “%) =land (70 =0then X is a Bernoulli random
variable.

Mean and variance of the Bernoulli random variable
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1
py =EX =D hpy (k) =1xp+0x(l-p)=p
k=il

1
BX'=>Fp (ky=1xp+0x(l-p)=p
K=l

S0y = X -y = p(1-p)

Remark

o The Bernoulli RV is the simplest discrete RV. It can be used as the building block for
many discrete RVs.
« For the Bernoulli RV,

EX"=p m=1273..

Thus all the moments of the Bernoulli RV have the same value of #"

Binomial random variable

{D,l ..... .?E}

Suppose X is a discrete random variable taking values from the set . Aiscalled a

binomial random variable with parameters n and 0L p Sljf
Pl =2 - k=01, .»
where

" n!

©ktn-k)

As we have seen, the probability of k successes in n independent repetitions of the Bernoulli
trial is given by the binomial law. If X is a discrete random variable representing the number of
successes in this case, then X is a binomial random variable. For example, the number of heads in
‘n " independent tossing of a fair coin is a binomial random variable.

The notation € ~ £ 2) js used to represent a binomial RV with the parameters #* and
P,

Dyl =D - =[p+1-p) = 1.
Kml] Jmll

The sum of n independent identically distributed Bernoulli random variables is a
binomial random variable.

e The binomial distribution is useful when there are two types of objects - good, bad;
correct, erroneous; healthy, diseased etc.
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Example 3 In a binary communication system, the probability of bit error is 0.01. If a block of 8
bits are transmitted, find the probability that

(@) Exactly 2 bit errors will occur
(b) At least 2 bit errors will occur
(c) More than 2 bit errors will occur

(d) All the bits will be erroneous

Suppose 4 is the random variable representing the number of bit errors in a block of 8 bits.
Then & ~ B(8,0.01).

Therefore,

(a) Probability that exactly 2 bit errors will occur
=pxl2)
= %, %« 0.01% %0 99°
=0.0026
{b) Probabality that at least 2 bat errors will occur
=py(0)+ py(l)+ py(2)
=0.99% + 70, x0.01' 20,997 + 3, = 0.01F x0.55°
=0.95%%

() Probability that more than 2 bit errors will ocour
2
=1-2 pylk)
k=0

=1-0.99%%
=0.0001

(&) Probability that all & bits wall be erroneous

= px(8)
=0.01° =107"

The probability mass function for a binomial random variable with n =6 and p =0.8 is
shown in the Figure 3 below.
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Bionomial Distribution with p =08 ,n=8

—
=
H
i
o
al

Figure 3
Mean and Variance of the Binomial Random Variable

We have

EX =Sl (1)
=Skt p
Kl

=0xg" + >k "Cp (- p)
K]

® |
B xR kel = pyk
; PR

. 2l & 1k
= ___ " af1-
2 Di-m1” O
- n—1l k-1 -1~y
3
xl .’2_1! .5:1 -1 . .
=up > — = pM1-py N (Substituting b, =k -1
p&-uﬁq!(?z-l-kl)!p (1-p) ( g4 )

=up(p+1-p)*"
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Similarly
BX =Dk p, k)
kil
=t -py
[T

=|:|2 xg?d +Zkﬁckpk(l_p)?d—k
K1

_ 2 #l Ko
;Ek!(m—ﬁ'{jlp 1=7)

b

_ n| [P v
_Zk(k—ljl(;z—kjlp 2

k=1

X 2 =1l
= E—1+1 Kl - ikl
Hp;( ) i AP
x n—1l L n =1l
= k-1 k-1 1- m-l-(k-1} k-1 1- .
P e D e O P D1k ” P
=npX{n-Dp+tup
=nin-11p* +up
Where
- (2=1)1 k-1 a1 k-1
k-1 1-
2 E D P ¢

1s the mean of 5(z -1 p)
-:‘.J‘jf = vartance of A
=nin-Np*+up-u'p?
=#ap(l-p)

Poisson Random Variable

A discrete random variable X is called a Poisson random variable with the parameter 4 if 4 =10
and

The plot of the pmf of the Poisson RV is shown in Figure 2

1-ik-1]
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Mean and Variance of the Poisson RV

The mean of the Poisson RV X is given by

Hy = > dpy (k)
k=0l
© E—A k
=0+ >k
Z‘ k|

o lk—l

=MAZ;:—1!

k=l

=4

EX*=>ipy(k)
k=]

-1 9k

_ . a8 A
—D+Ek‘ o
o !
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e kAt
k-1

=k -1+1Ak
2. k-1l
k=l :

w ﬂk

[ k- zl] P2
g a
Z pepT Z;c 1l

K=l

=27 et + o7 A2
=A*+a
Sy =EX -y =12
Example 3 The number of calls received in a telephone exchange follows a Poisson

distribution with an average of 10 calls per minute. What is the probability that in one-minute
duration?

i no call is received
ii. exactly 5 calls are received
iii. More than 3 calls are received.

Solution: Let X be the random variable representing the number of calls received. Given

£l Where 4 =10.Therefore,

— _ =10 _
i, probability that no call is received ~ £ =27 =0 000095

E—ll:l 3 1 Uj
) y O R
ii.  probability that exactly 5 calls are received 51 0.0378

iii. probability that more the 3 calls are received
- Z (B =1-2 ‘1”(1+ 0,10% 10°, _
Px T
0.9897

Poisson Approximation of the Binomial Random Variable

The Poisson distribution is also used to approximate the binomial distribution B(n.7) when n is
very large and p is small.
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Consider binomial RV with 4 ~#0% 2) with
#—2wm, p—0 sothat B =»p =4 renains constant.

Then
P, k) ="Cp(1- "
_ 2l ke am-k
_k!(?z—k]!p( ?)
:m&z—1)(;1—2)...(H—k+1)pkﬂ_p}x_k
&l
nm—l)(l—g;l...(l—ﬂj
= x_ % 2 pt-pyt

il

a-ba-3.a-h
i ”kl 2 (ap)t(l- )t

a-Ya-2y a- a2y
_ # # # #

k11 -2y

R

Mote that lim{l—ij" =g
”

a-ba-3a-Ehmra- Ay
M H M

_a 9k
2 =e?,?i

Spylk) =lim
= kl(.l_i)k. .E.':l
2

Thus the Poisson approximation can be used to compute binomial probabilities for large n. It also
makes the analysis of such probabilities easier. Typical examples are:

e number of bit errors in a received binary data file
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« number of typographical errors in a printed page

Example 4 Suppose there is an error probability of 0.01 per word in typing. What is the
probability that there will be more than 1 error in a page of 120 words?

Solution: Suppose X is the RV representing the number of errors per page of 120 words.
A ~B(120.2) where 2 =001 Therefore,

SoA=120x001=012
Pimore than one errors)
=1-px (0~ px (D
=1-g™ - ™
= 0.0066

In the following we shall discuss some important continuous random variables.

Uniform Random Variable

A continuous random variable X is called uniformly distributed over the interval [a, b],
- =a <k <@ jfjts probability density function is given by

1

Jy(x)=qb-a’
0.

a=x=h

otherwise

1)

ha----

Figure 1

We use the notation < ~ (@ #)tg denote a random variable X uniformly distributed over the
interval

[a,b]. Also note that
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w 3
J o= e

Distribution function %%

Forx<a
F,(x)=0
Foraixih

[ xed

et

;[E:n-:;t

X~

P

i

Forx >h,
Foixy=1

F1_ﬂ1'j

Figure 2 illustrates the CDF of a uniform random variable.

b

Figure 2

Mean and Variance of a Uniform Random Variable
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&

iy = EX = [ fy(x)dx = édx

=cz+E:-

2

3 2

Xt = ixﬂ Fp (3 = !;?dx

b +ab+d?
T3
02 - EXP - 2 P ragb+at  (a+h)°
3 4
(b-a)’
12

The characteristic function of the random variable < ~ & &) jg given by

. B W
iy (W) = Bao¥ = J'E_dx
af:'_ﬂ-
Jwd Jwa

[ -

jw[b —a:l

Example 1

Suppose a random noise voltage X across an electronic circuit is uniformly distributed
between -4 V and 5 V. What is the probability that the noise voltage will lie between 2 V and 3
V? What is the variance of the voltage?

_pax 1
P{2< X <)) =55
-ﬂi={5+4}2=£v3_

12 4

Normal or Gaussian Random Variable
The normal distribution is the most important distribution used to model natural and man

made phenomena. Particularly, when the random variable is the result of the addition of large
number of independent random variables, it can be modelled as a normal random variable.
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A continuous random variable X is called a normal or a Gaussian random variable with
]

parameters “*and “ if its probability density function is given by,

e

& “x

fx':x:' = .
NEngy — < X <

>0

Where “zand “x are real numbers.

. N I
We write that X is (’MX’JX )dlstrlbuted.
2

-1

if #x =Yand “x
1
1 E—g?f

fX(x:I = \."'5?'

and the random variable X is called the standard normal variable.

Figure 3 illustrates two normal variables with the same mean but different variances.

:
L)
=
[L1%
o
n

Figure 3

Jx(%) |5 a bell-shaped function, symmetrical about * = #x |

2 )
o “x Determines the spread of the random variable X . If “x s small X is more

concentrated around the mean *.
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o Distribution function of a Gaussian random variable
Fyix)= P[Xi x)

¥ _lftom ’
1 _i[ - ]
= 2 ¥t
«..fz;rrcrz_-!;
= L=ty
Substituting “x | we get
1 £ -
Foixl=— g4 du
* ~ 2T _i
= X .'E'{.X
Oy

where () is the distribution function of the standard normal variable.

Thus Fy (%) can be computed from tabulated values of D) The table T was very useful
in the pre-computer days.

In communication engineering, it is customary to work with the Q function defined by,

0(x) =1-®(x)
—@Jé 2 ey
00 -2 O-x) - 00
Note that 2 and
00x) = 1- ¢(-2)

These results follow from the symmetry of the Gaussian pdf. The function &%) is tabulated and
the tabulated results are used to compute probability involving the Gaussian random variable.

Using the Error Function to compute Probabilities for Gaussian Random Variables

The function s closely related to the error function erf (%) and the complementary error
function #E(x)

2
arf(x)=—= [ ™ du
Note that, ﬁ ‘I;

And the complementary error function #75(%) is given by
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erfe(x) = %}e_fdu
b ¥
=1-erfix)

1 = =

Q(x:' = @J‘E * du

1 x
=—gric| —
{7
1 x
= |1-erf| ==
Mean and Variance of a Gaussian Random Variable

2
X s (#2- )distributed, then
X =iy

var(X) = ng

Proof:

© l{x—w

2
EX = }xfx(x)dpég Ix@ e ] dx
- X w

— x-
2 Substituting Ll )
Oy

sothatx =way, + 41,
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Var(X) = B(X - y)

N 2T
= H ‘I‘.::I'quzé' ¥ g,du (substituting o = ﬂ}
2Ty, o Ux
2w 1“2
=2xZE_ fute ¥ gdu
25T
2 w1 uﬂ
2 [e2e™ dt (substituting.ﬁ=3]
= 2x iff_ r[ 3]
JX:‘ 1 [ ]
_ o \f_
Jr

Exponential Random Variable

A continuous random variable - is called exponentially distributed with the parameter

Jx(x)= {
A = U if the probability density function is of the form
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The corresponding probability distnbution function 13

Fy(x) = [ )

fo x<0
1-¢™ x:0

We have g, = BX = Tl‘x}i!g"”cfx

w

- % ue du ( substituting u = Ax)

1

ma ]

Similarly B¢

= J‘xzﬂe_’wdx
= %Juge""cﬁx

1

2

Lt LI
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Figure 1 shows the typical pdf of an exponential RV.
c-:u:!-

0085

Figure 1
Example 1
Suppose the waiting time of packets in < in a computer network is an exponential RV with

Fylx) =057 x2 0
Then,

ns

P01< X <050 = Io.i:.-“”dx
ol

:E—Elj:-clil.j _E—Uj:-cl:l.l

=0.0241

Rayleigh Random Variable

A Rayleigh random variable X is characterized by the PDF

xr 1
e Pl x:—"D

Sy =qa T
0, x =0

where cTis the parameter of the random variable.
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The probability density functions for the Rayleigh RVs are illustrated in Figure 6.

0.7

Figure 6

Mean and Variance of the Rayleigh Distribution

EX = T xfx(xdx

X

7

—_ 1
& x i dx

1
= 1]

x

— 1
& v ide g

ety ol
M|I:L_) D e, 5

[nS]

5

0
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Similarly,
EY* = T x f(xdx

x
zj—ge'“lﬂ";dx

1 ey
]

o
ue 'du  (Substimtingz = ?}
a

=24

[T m——}

=2a { Noting that J-ue'”cﬁ; is the mean of the exponential RV with =1}
0

2
f:J?;f = 25’2—[ Ef:r]

- (2- )¢

Relation between the Rayleigh Distribution and the Gaussian Distribution

A Rayleigh RV is related to Gaussian RVs as follow: If X~ N0, a%) and %2~ (0, a)

= [z 2
are independent, then the envelope A=A has the Rayleigh distribution with the
parameter &,
We shall prove this result in a later lecture. This important result also suggests the cases
where the Rayleigh RV can be used.
Application of the Rayleigh RV
v Modeling the root mean square error-

v" Modeling the envelope of a signal with two orthogonal components as in the case of a
signal of the following form:

Conditional Distribution and Density functions

We discussed conditional probability in an earlier lecture. For two events A and B with

P(E)=0 , the conditional probability PlAlB) was defined as
P{ANE)
P(AIB)= W

Clearly, the conditional probability can be defined on events involving a random variable
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Conditional distribution function

: < : : .
Consider the event X <7} and any event B involving the random variable X . The
conditional distribution function of X given B is defined as

Fy(xt B)= P[{X <x}/B]
<
_P[{x<apna] P(5) 0
P(B
: Fy (5l BY g . N .
We can verify that satisfies all the properties of the distribution function.
Particularly.

. Fr(-=iB)=0,  Fy(=iB)=1

. UEFy(x (xfB)< 1

. (x/ B) Is a non-decreasing function of * .

P{n <X <x}/B)=PUX <x)/B)-P{X <{x)/B)
= Fy(x  B)— Fy(n/l5)

Conditional Probability Density Function

[xfBj

In a similar manner, we can define the conditional density function I of the

random variable X given the event B as
Fo (i BY= LB, (x1 B)
efx

All the properties of the pdf applies to the conditional pdf and we can easily show that

fr(x1B)20

[ fx(x/ B = Fy (1 5) 1

° -

By (x/ 8) = [ £ (u/ B
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P({x < X< x)}iB) = Fy(x, i BY = Fy(x/B)

= jfx[xfﬂﬁx

Example 1 Suppose X is a random variable with the distribution function Py (%) . Define

B={X<k)
_P({X<x)pnB)
Fy(xiB)= =6
P X <xpn{X <))
) P{X <b)
CP{X <xpn{X LB
) Py (2)
Case1: * <&
Then
F (21 B)- P[{Xﬁ;}}f;g};’ib})
=P[{Xix)=ﬁz[x:'
Fy(b)  Fx(2)
And
_ % (%) _ Fx (7]
LB GG BO)
Case2: 24
F (21 B)- Pl{X s;j ;gng}})
RiCSLINAOM
Fy(b)  Fyl?)
and
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Fy (xi B)

Fel(xfBY =2 R (x1B)=0

and Tz 'ix’fB)

&

ax

/

are plotted in the following figures.

F_(x/ B)

L

e

Jy /By ]

Figure 1

Jx ()
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Example 2 Suppose -t is a random variable with the distribution function

b= {X >E:n}
P({X<x}nB)

P(B)
P({X <xy (X > b))

PlX b
P{X <xpn{X >B})

1-#y [E’:'

Py (x1B)=

Then
For X <D (£ ajn(X o8 =4 Therefore,

Fy(x1B)=0 x<h

For X }51 (X ixtm{X 28y ={b< X <2} Therefore,

P({p< X <x})

F.lxiB)=
_F(x)- (8
1-Fy [*‘-E:':'
Thus,
o, xih
FX [x,n"B)= FX [x)_FX [b) athervwise
1- 7 [’5)
the corresponding pdf is given by
0 xih
Jx [‘ﬂ B) "y Sz [x) othetrwise
1- 7 (b)
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Example 3 Suppose X is a random variable with the probability density function

]

1 -E
Jelx)= e 4
* Ve gng BoITICESY pan
(X <x)mB)
Fo(xt 8=
_ P{X <xn{-1Lx L))
P{{-1£X <)
Pllx <xpm{-1< X <1})
= 1
jfz(x)a’x
-1
0, xi-1
Fy(x/B) = <w, ~1<x<1
1 =
d
;[TE?TE X
1, 21
ff(? , 1< x<1
FelxlB) = erﬂﬁ}
0, otherwise
fuR = erﬂx}=i:[e'“"du
where \% and ‘E
Remark
FylX) = —2 2
* \% is the standard Gaussian distribution.

Jx(x/B) is called the truncated Gaussian and plotted in Figure 3 on next page.
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0.7r

Truncated Gaussian
0.6}
st
1\ 04r / — .
2 /N
bl L \ 5
/ )
aol / A Standard
/ \‘Y/_/ﬁaussian
01t /
/o N
0 —_l —t el ] ] ] i 1 \H‘ T —_ ]
-5 -4 -3 o -1 ] 1 2 3 4 5]

OPERATION ON RANDOM VARIABLE-EXPECTATIONS

Expected Value of a Random Variable

e The expectation operation extracts a few parameters of a random variable and provides a
summary description of the random variable in terms of these parameters.

o ltis far easier to estimate these parameters from data than to estimate the distribution or
density function of the random variable.

e Moments are some important parameters obtained through the expection operation.

Expected value or mean of a random variable

The expected value of a random variable X is defined by

EX = [ xfy, (X)dx

T #fy (Redx

Provided - exists.
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£X |s also called the mean or statistical average of the random variable X and is denoted
by #x

Note that, for a discrete RV X with the probability mass function (pmf) #x (®)i=l2... W,

the pdf = js given by

ay
S (3= py(%)8(x— x,)

iml

g = EX]= | x5 by ()6 (x- x)dx

— =l

=§1 2y () T 262 )

L=

=Apx(x) v ] é(x-x)dx

-

......

Thus for a discrete random variable X with P (&)1 =L

I
My = Z EPyix)
il

Jx(x)

Figurel Mean of a random variable
Example 1

Suppose ¥ is a random variable defined by the pdf
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—

aixih

= b — , )
Jx(®) 0 “ otherwize
Then
My = I EFX (x)edx
) 1 o
B :|;Xb_ &
_ @+ b
2
Example 2

Consider the random variable < with the pmf as tabulated below

Value of the random

. 0O 1 2 3
variable x
1 11 1 |1
X — — p— p—
Px(x) 28 4 2

Then

Jig
Hy =%I:'Pz':xi:'
=Dxl+1xl+2xl+3x—
2 2 4 2
7
2

Example 3 Let X be a continuous random variable with

Je(x)= ad —w{ xw,adl

2 2
;?T(x + )

Then

HEX = ]‘xjx (x)dx

w
fr 2%
— |
gdxt+ o
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o

o 2
:;1n(1+x ) .;.

Hence EX does not exist. This density function is known as the Cauchy density function.

Expected value of a function of a random variable

Suppose ¥ =2(4) s a real-valued function of a random variable X as discussed in the last

class.
Then,

EY = Bg(X) = [ g(x)fy(2)dx

We shall illustrate the above result in the special case %C)when ¥ = £(%)js one-to-one
and monotonically increasing function of x In this case,

A
2(x)

Fa

.—-—-—'—'—'_'_F'—‘/ b

Figure 2

74




fx(x}]
(3=
’ ': :' =g (M)
EY = nyy(y}cfy
J' S D
g'lg ‘llfy}
where y, = g{—=) andy, = g(=).

Substituting x = g () so that ¥ = g(x) and dv = g'{ X1dx, we get

EY=[ g(x) fx (x)dx

The following important properties of the expectation operation can be immediately derived:

(a) If € isaconstant, & =¢

Bo= [efy(Rdx=c | fy(Xdr=c
Clearly = o

(b) If B1(L) and g:(X) ape o functions of the random variable X and % #9¢2 are
constants,

Ele) g (A + e g (X )= oy B0 A + 0, By (X))
Blog (X +eog, (X)) = T alglx) + gy (23] f5 (xhdx

-

= uj. o181 () f (X + T 2,8, (X 5 (X)dx

= o, [ g () f(2dx+ 6y | gy(x) fy (X)dx
=gkg (X + oy B (A7)

The above property means that £ is a linear operator.

MOMENTS ABOUT THE ORIGIN:

Mean-square value

w2 = 2 fy (2
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MOMENTS ABOUT THE MEAN

Variance
Second central moment is called as variance

For a random variable & with the pdf 7x'* and mean #z-the variance of X is denoted by

2
“%and

_ oh = BX ~ ) = T (5= g2y i (Rl
defined as -

......

Thus for a discrete random variable X with Zx(%):3=1.

AT
o =2 (%~ ) pa (%)
_ | _ 2
The standard deviation of X is defined as % = E(X - py)

Example 4
Find the variance of the random variable in the above example

oy = B(X - py )
a+bf |

3
=£U‘ d h—ua

F 3 23
E}_la[ixz.:ix— 2xa;b£ﬂx+ [“'j’] Jdx

(b-a)
Y

Example 5
Find the variance of the random variable discussed in above example. As already computed

17
HX=E‘
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oL - B(X - )
17 1 17 1 17 1 17 1
() P T iy S O i PR E S N o B ¥ el
{8}8(8}8( 8}4(8}2
A
&

X, and X

For example, consider two random variables 2with pmf as shown below. Note that

R S

¢ 4 andX

Fy =— Fy =—
each 0 2has zero mean.The variances are given by A 2and 3 implying that

X has more spread about the mean.

Properties of variance
(l) ':'-J%{ =EX2 —,Ui-

o = B(X - iy
= B(X* - 2u, X + u3)
= BX* - 20, X + By,
= X - 244 + ik
= X - 4

Oyt = By

@) If ' =cX +b, where e and b are constants, yan -:rf; =cgcr§

r:r}:f =ReX+b-cp, -

= Bt (X - py )P
= ':rjr::-'_jgf
(3) If ©is a constant,
var(c) =10

nth moment of a random variable

We can define the nth moment and the nth central- moment of a random variable X by the
following relations
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nth-order moment EX™ = ? 2 fpinds m=12,.

nth-order central moment B(X — g, )" = ? (x—py P fHxdrn=12 ..

Note that
« Themean #x= £X js the first moment and the mean-square value ZX* is the second
moment
2 ]
« The first central moment is 0 and the variance “x = £ ~ £2)" s the second central
moment
SKEWNESS
e The third central moment measures lack of symmetry of the pdf of a random variable
E(X - ,Uj::'z
3
Tx is called the coefficient of skewness and if the pdf is symmetric this

coefficient will be zero.
e The fourth central moment measures flatness or peakedness of the pdf of a random

BX - #1}4

variable. % Is called kurtosis. If the peak of the pdf is sharper, then the
random variable has a higher kurtosis.

Inequalities based on expectations

The mean and variance also give some quantitative information about the bounds of RVs.
Following inequalities are extremely useful in many practical problems.

Chebychev Inequality

; 2
Suppose X a parameter of a manufactured item with known mean #x 3t varnancesy. e

quality control department rejects the item if the absolute deviation of & from #«-is greater than
2oy,

The standard deviation gives us an intuitive idea how the random variable is distributed

about the mean. This idea is more precisely expressed in the remarkable Chebysev Inequality

: ]
stated below. For a random variable X with mean #x ¢ vatiancesy.

%

P{|X—#X|zs}i?
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Proof: -
oy = [ (x-py V' fy(x)dx

2] (x-py)? (R

- pr e

Z .r E'Efqz(x:'dx
= |22

= &P X - x|z &)

2
P{lx -yl 2} =3

Characteristic function

Consider a random variable £ with probability density function Fx (%) The characteristic

function of ¥ denoted by % (@), is defined as

dy (@) = B

- j &l £ (x)dx
where j = =1

Note the following:

o %(@hsq complex gquantity, representing the Fourier transform of Jx(%) and
traditionally using #** instead of " This implies that the properties of the Fourier
transform applies to the characteristic function.

e The interpretation that Pz (@), is the expectation of Ch helps in calculating moments
with the help of the characteristics function. In a simple case ,
if ¥=aX+h

';éy (m:l — ngg'ux#ju

=™ (a @)

Sy (x) dr=1
e AsS fX (x) a|Ways non_negative and = , @z(ml a|WayS exists. We can get

Fx () from #x(@): by the inverse transform
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Example 1

Consider the random variable X with pdf % *) given by

Jyl(x)= ! asixih
b-a = 0 otherwise. The characteristics function is given by
1 . .
an = é‘jué _Ejrﬁﬂ
(@) = — )
Solution:

Example 2
The characteristic function of the random variable & with
Felm =22 A>0x>01is
() = [ 17
= J.E g AT g

A
A - jw

Characteristic function of a discrete random variable

Suppose X is a random variable taking values from the discrete set By = {® Ty

corresponding probability mass function #% (%) for the value

Then,
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Iy (@) = Ea™%
= Z Pxix)e ol

=Ry

dy (@)= Ee’*®
If Ry is the set of integers, we can write Aieke

In this case Py (@), can be interpreted as the discrete-time Fourier transform with g%
substituting 27 in the original discrete-time Fourier transform. The inverse relation is

_i I —Jfak
Pk = zﬁ_[‘“’ ¢, (@da

Pyl =pl-p)*, k=01 isgiven by
dy(@) =3 " p1-p)*
K=l
=p S (1=t
K=l
_ £
1-(1-p)e™

Moments and the characteristic function

Given the characteristics function Py (@), the nth moment is given by

.1 a
B =— 2 g (@)

j d @ o =01

To prove this consider the power series expansion of #

SR F ) Pl TR
el = 1+ij+M+......+M+..

721

2 ]
Taking expectation of both sides and assuming EX BT, 2 o exist, we get

.3 2 Y- ®
éxim)=1+jmﬂ+%+ ______ +M+ _____
! Ml

81




Taking the first derivative of (@, \ith respectto at &= 0 we get

daﬁx(m)L e
dm |,

Similarly, taking the #% derivative of (@), \ith respectto @at @ =0 we get

" gy ()
& af

L = J.HEXH
{1
Thus,

gx = L38r(@)
j da
and generally

BEY" = ind ';ﬁXEm}
Joda

w=

=
TRANSFORMATION OF A RANDOM VARIABLE

Description:

Suppose we are given a random variable X with density fX(x). We apply a function g
to produce a random variable Y = g(X). We can think of X as the input to a black
box,and Y the output.
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UNIT-IHI
MULTIPLE RANDOM VARIABLES AND OPERATIONS

Multiple Random Variables

In many applications we have to deal with more than two random variables. For example,
in the navigation problem, the position of a space craft is represented by three random variables
denoting the x, y and z coordinates. The noise affecting the R, G, B channels of colour video
may be represented by three random variables. In such situations, it is convenient to define the
vector-valued random variables where each component of the vector is a random variable.

In this lecture, we extend the concepts of joint random variables to the case of multiple
random variables. A generalized analysis will be presented for # random variables defined on
the same sample space.

Jointly Distributed Random Variables

We may define two or more random variables on the same sample space. Let -+ and ¥ be
two real random variables defined on the same probability space (5 F.F). The mapping
2
§— TR guch that for €%+ (A8 TSN ER s called a joint random variable.

r
Yis) Xis),Y(s)
mﬂ

¥

S X(s)

Figure 1

Joint Probability Distribution Function

Recall the definition of the distribution of a single random variable. The event 5710 yyas

Fy(x)

used to define the probability distribution function Fy(x), Given , we can find the
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probability of any event involving the random variable. Similarly, for two random variables &
and ¥, the event (X £ %7 )i ={& £x3n{l" £ 3} s considered as the representative event.

2
The probability 14 £ %Y <31 ¥ix.y) € R s called the joint distribution function or the
joint cumulative distribution function (CDF) of the random variables £ and { and denoted by

Fy iz ) .

{x.¥)

L4

Figure 2

Properties of JPDF

Ty y (%, ) satisfies the following properties:

1) Fyylap ) S Py ()it x = andy, =y,

Ix<xand v <y,

W im Pl inp ol Sx, 0 S
SPA Lx VP Awy S PN {x, Y L)
Sy () L Fyy(m0)

3)  Fyy(=w,5) = Fyy(x,-=)=0

2)

Note that < & =1 Sy} C{X £ ==
4) Fy yl0,m)=1
5) %Y is right continuous in both the variables.
6) Ix<xand v, <y

Piin<X ix, 7114 ipb)= F_x,}r':zhs}"g:' _Fx,f':xp}"g:' _F;{,}r':xpyl:' +F_x,}r':x1=y1:'
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Given fxrlmyl - xlem oyl

of the random variables % and ¥ .

,we have a complete description

7) Fy(x) = Fay(x,+00)

To prove this
(X ixp={X{xnmi{¥ L +o}

L F () = PUX $B) = P{X $xY <)) = Fyy(x, +e)
Similarly W)=z 0.7,

Given Fyylxy), ~ed{xdo oy

marginal

each of =) and F (¥l caled a

Distribution function or marginal cumulative distribution function (CDF).

Jointly Distributed Discrete Random Variables

If £ and { are two discrete random variables defined on the same probability space

R

(5,7, F) such that - takes values from the countable subset “* and I takes values from the

R

countable subset =¥ .Then the joint random variable (4.T) can take values from the countable

subsetin £x & The joint random variable L1 s completely specified by their joint
probability mass function

pry(xy)=FPle|Xis) = xYim) =y}, Vixy)e Ryx &y

Given Pxx(%¥) \ye can determine other probabilities involving the random variables X and
I

Remark

. Pyylxy)=01for (x, 018 Ky ¥ By

> PX‘F(X,_}’:' =1
o [ 3E By Ry
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Y pyyxyi=PC U {xh)

[ap )Ry %Ry L% P e Rm B
=P(RX X R},)
=P(s | (X(5).Y (s)) € (Ry XRy)}

This is because =P8 =1

- Marginal Probability Mass Functions: The probability mass functions #x ‘% and #r()
are obtained from the joint probability mass function as follows

pxlx) = PUX = x3URy)
=2 Pz,y(xs}’:'
Pa By

and similarly

pyly) = > P'x,y':xs}":'

xRy

These probability mass functions £ and ¥ obtained from the joint probability mass
functions are called marginal probability mass functions .

Example 4 Consider the random variables £ and { with the joint probability mass function as

tabulated in Table 1. The marginal probabilities 7= and #r" are as shown in the last
column and the last row respectively.

D A B PO
¥

0 0.25 0.1 0.15 0.5
| 0.14 0.35 0.01 0.5
px(x) 0.39 D.45 016

Table 1
Joint Probability Density Function

If £ and £ are two continuous random variables and their joint distribution function is

continuous in both * and #', then we can define joint probability density function Txy(x.7) by
2

&
fX,}’(x:y} = —F;m’ (x.¥)
cxdy provided it exists.
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¥
FX,}’(xsy} = _r _r fi}r(u,v}dvdu
Clearly A

Properties of Joint Probability Density Function

. Txx(xY) is always a non-negative quantity. That is,

Sep(x )20 ¥ixy)eR

T T Sy (x Yidady =1

* The probability of any Borel set can be obtained by

PE) = |l Fay (& yidedy

(%) B
Marginal density functions
The marginal density functions T2 and S0 of two joint RVs <£and I are given by
the derivatives of the corresponding marginal distribution functions. Thus

Fx(x) =& Fx (%)

= %FX {x,c0)

=L T (] Fror (e y)dy)d

—

= [ fex(xyidy

Sy lx) = T f;{,}f (x, yidy

g

Thus @ =T fuy(ny)dy

and similarly £ (¥)= | fyp(xy)dx

Example 5 The joint density function Tz y(x.7) of the random variables in Example 3 is
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2

Frx(xy) =%Fx,}f{x=}’)
82
= [(1-27"1-2)] z20py20
dxchy
=27 x20,20

Example 6 The joint pdf of two random variables % and " are given by

Syplmyy=cmy 04x22,04y22
=0  otherwise
* Find .
« Find fxx (%00
- Find Sz ang H 0
« What is the probability PO<TiL0<TY i),

[ [ fea rdardz = [

= ch xedx Jj iy
=4g
Sode =1

_x
2
X
'-fx(x}=§ D<y<2
sirnilarly
fyfy)=§ 0<y<2
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F0<T£1,0<F <
= Fx.r ':Llj + Fx.rﬂﬂ,ﬂj - Fx.rms 1) - Fx.rﬂrnj

1
=_+0-0-0
16
1
16

Conditional Distributions

We discussed the conditional CDF and conditional PDF of a random variable conditioned on
some events defined in terms of the same random variable. We observed that

P({X < x} nB)
P(B)

Fy(xfB)= P(B) =0

and
Fo(xtBY= LB, (x1 B)
efx

We can define these quantities for two random variables. We start with the conditional
probability mass functions for two random variables.

Conditional Probability Density Functions

Suppose X and ¥ are two discrete jointly random variable with the joint PMF %2 %) The
conditional PMF of ¥ given X = % is denoted by 7%/ %) and defined as

Prxix)= PUY =y H{X = xj)
_ P =0l =)

FlE=x
= —pr(x,y) provided p.{x)=0
Px(x:'
Thus,
Prixyix)= M provided p(x) =0
Px(x)

Similarly we can define the conditional probability mass function

Pz (x.»)

provided py() =0
Py(y)

Pzw':x’r}":' =
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Conditional Probability Distribution Function

Consider two continuous jointly random variables <% and ¥ with the joint probability

distribution function Fry(xy) We are interested to find the conditional distribution function of
one of the random variables on the condition of a particular value of the other random variable.

We cannot define the conditional distribution function of the random variable I on the

condition of the event < = %} by the relation

Foiyln=PFEy/X=x
Yix

_P¥EypX=x)
FX=x

as & =1=0 i, the above expression. The conditional distribution function is defined in the
limiting sense as  follows:

PFeylrc X Sx+ Ax)

=0

Foolyix=iim
YiX

Y=y, x<X Sx+ Ax)
Piz<X Zx+hx)

=lim x—0

T e ()
=133?2 ax—0 =
Tl

T b bl (7, 1 )k
AT

sz,}' (% u)ddu
- wa (yplx)= W

Conditional Probability Density Function

Ferx 01 &= %)= Fux %5 called the conditional probability density function of ¥
given &

Let us define the conditional distribution function .

The conditional density is defined in the limiting sense as follows
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FrxWiI X =xy=lim, ((Fpp(yr Lyl X =x) - B (I & =01y
S S A = x) = hm g o (P S x X Sl - Fyy (p x CA L)) MLy

Because, & — %) Tt o (x A S x4 Aw)

The right hand side of the highlighted equation is

UMy g e Py P+ D9 X <X <X+ AX) - Py (W < X <+ X)) By
=iy g o (PLY < ¥ Sy+ Ayfx <X Sx+ Ax)) Ay
=Hmy, g o (P <V Sy+ fyp x <X Sx+ Ax)IP(x < X S x+ Ax) iy
= limﬂ,}'—}ﬂ,ﬂx—}ﬂ Ty (x y)axdy! fp (x)Axhy
= Fxr(x ¥ fx(x)

L Fux IR = Loy (5 9 fa(2)

Similarly we have

Ll Y= Gy )

2
Two random variables are statistically independent if for all (ryleR7,

ez X = 5 ()

ot equivalently

Jrr(xyl=Jz (25 )

Example 2 X and Y are two jointly random variables with the joint pdf given by

Jyplmyy=k for0<x21

= ) otherwise
find,

(@) %
(b) Fplx) and fy ()

(©) Ty (xly)
Solution:
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. [ [Frao s =1

We get
1
Fr—xlxl=1
2
=k=2

oSy ylx ) =2 forOixSlasyix

=) otherwise

fx(x:' = J‘fxy (x, 3 )dy = zrl‘ffy =2x

w 1
Fr0) = [ Fxar )z = 2dx = 201-)
- ¥

Independent Random Variables (or) Statistical Independence

Let £ and ¥ be two random variables characterized by the joint distribution function
Foyzy)=P{X {xY <)

and the corresponding joint density function Tay(%3) = ??TZE'JTFH (x5}

4
Then Xand ¥ are independent if " &>} € R (XL £xtang (¥ <57 gre independent events.
Thus,
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Feylxy)=FP{ALxF Ly}
—P(X < X)P(Y <)
= (D& W)

X v=
f_x,}r': b Ay

_ dFy(x) dFy ()
oax v
= S (@S )
S Tx ()= (R O)

and equivalently rix ) =S (%)

Sum of Two Random Variables

We are often interested in finding out the probability density function of a function of two or
more RVs. Following are a few examples.

 The received signal by a communication receiver is given by

Z=X+Y
where £ is received signal which is the superposition of the message signal - and the noise

r.

AN
X—4+|' Z‘

T

* The frequently applied operations on communication signals like modulation, demodulation,
correlation etc. involve multiplication of two signals in the form Z = XY.

We have to know about the probability distribution of £ in any analysis of £ . More formally,

given two random variables X and Y with joint probability density function Sz p(x.7) and a

function 2 ~€(E-Y) e have to find 72 (2]

In this lecture, we shall address this problem.
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Probability Density of the Function of Two Random Variables

) ]
We consider the transformation & & — R

. < . . . 2
Consider the event (2 <2 corresponding to each z. We can find a variable subset DR

such that Dy ={'[x=-}’j| glx.y)s z}_

L

Figure 1
S (2 =Pz <2
= P{(x)|(xy)e D}
" L e )

[z

dF;(z)

and 77 [z) =
Probability density functionof Z=X+Y .

Consider Figure 2
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Figure 2

We have

g iz
= X+FV=z

D

Therefore, —Zis the colored region in the Figure 2.

LBy (z 5[ Fxx (%.0)drdy

(e

]
é"—a“ B, B o, B

xffx,}f I:x,y)dy] dx

Ifx,f (xu - x)du|dx substitutingy =u-x

Ifxr x = xj dx | interchanging the order of integration

I[Ifﬂ xu-x a?x]ciu

= Ifz,r [x,u— x)dx

z)= sz,}f (zu—x)dx
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If Xand Y are independent
Fxz (%2 =x) = fx(x)fe(2-7)
J2(@) = [ Sela (=) ds
= fx(2)*  (2)
Where * is the convolution operation.
Example 1

Suppose X and Y are independent random variables and each uniformly distributed over (a, b).

Jx (%) And Fr (¥) are as shown in the figure below.

Fix)
-L.-'b_a .......
' a b X
fely)
1/b-a
& b ¥
fz(z)
2h-a
a h 2b-a zZ

The PDF of £ = A+ is a triangular probability density function as shown in the figure.

Central Limit Theorem
Consider # independent random variables X, 43, X2 The mean and variance of
each of the random variables are assumed to be known. Suppose Bl =y and

var (X;) = o, . Form a random variable

Y= X+ X, v+ X,

The mean and variance of b are given by
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BY, = My = Hy THy T Ty

var(f) = 02 =B (X - py) P

i=l

= DA ¢ S B a) ()
i=l im]l fel jwd
GGy e,

and X, and XJ. areindependent for i = ;.

Thus we can determine the mean and the variance of Y )

Can we guess about the probability distribution of o
The central limit theorem (CLT) provides an answer to this question.

S0}
The CLT states that under very general conditions { -l converges in distribution to

Yo N( py, 07 ) as # =+ The conditions are:

X, Xy, X

1. The random variables =are independent and identically distributed.

& Xy X e independent with same mean and variance, but

2. The random variables
not identically distributed.

3. The random variables %142z are independent with different means and same

variance and not identically distributed.

4. The random variables %1242~ %a are independent with different means and each

variance being neither too small nor too large.

We shall consider the first condition only. In this case, the central-limit theorem can be stated as
follows:

Proof of the Central Limit Theorem:

We give a less rigorous proof of the theorem with the help of the characteristic function.

Further we consider each of A Ly Xy to have zero mean. Thus, L=l ra . +Xﬂ:”f“"’£'
Hy, =0,
aj};x = ai”
E(F?) = E(X%)in and so on.

Clearly,

The characteristic function of e is given by
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- 1w,
by (@) = B[eH) = & é.[" :‘FEF]

o

We will show that as # —=<2the characteristic function ***is of the form of the characteristic

function of a Gaussian random variable.
. ' al .
Expanding CTH power series

+ ..

" 21" 30"

Assume all the moments of F to be finite. Then

, s . 2
(@ = B[] =1 Josuy, + L Bwh « L E)

=0 d BFH =g =gt ;
Substituting Hr and  E(Y) = ay =y, wege

gy (@ =1-(a" /2oy + R(@x)

. : : 3 .
where FL@:2) s the average of terms involving ¥ and higher powers of & .

Note also that each term in (@) involves a ratio of a higher moment and a power of # and
therefore,
lim Riax) =0

o _ ot}
Clim (m)tl—gajxﬂe 2

which is the characteristic function of a Gaussian random variable with 0 mean and variance

2
Oy

¥, — M0, a2)

OPERATIONS ON MULTIPLE RANDOM VARIABLES

Expected Values of Functions of Random Variables
if ¥ =200 js a function of a continuous random variable - then

If £ =&(X) s a function of a discrete random variable < then
EY =Fg(X)= 2 glx)ip,(x)

e R}(
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Suppose Z =g(4.Y) js a function of continuous random variables & and ¥ then the
expected value of £ is given by

EZ = Bg(X.y) = | 2y (2)dz

-

= [ ] 8®.3)fxy(x.5)duay

Thus £Z can be computed without explicitly determining Jz(2)

We can establish the above result as follows.

Suppose £ =8 hag Hroots Xk 15h202 00 7 =2 Then

bl

{(z<Z Lz 22} =| J{(m.0n) € AD)

i=l

Where

AD,

n=73

Is the differential region containing (%, 7). The mapping is illustrated in Figure 1 for

[z «Z 2 z4+ M)

Figure 1
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Note that

Pz<Ziz+te)) = fylzibe= D fyylx.n)bndy,
[ E AT P

Szt (z)de = Z 2y y (%0 ) A by,

(%0 J=ad)

= > glm.y) Sy By Ay,

(%0 k]

As Z is varied over the entire £ axis, the corresponding (non-overlapping) differential regions
in < — ¥ plane cover the entire plane.

7@z = | [ g Sy (xy)dndy

-

Thus,

Bg(X.3) = [ | 2x,y) fay (x,y)dxdy

—n —0

if £ =&0L.F) s a function of discrete random variables & and ¥ , we can similarly show that

BEZ=EglX. )= 2 Zgxyipz(x.))

=R yem By

Example 1 The joint pdf of two random variables X oand ¥ jg given by

fz1}r(x,y}=ixy Dixi2, 0Lpi2

=0 otherwise
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— 4
Find the joint expectation of gld.n) =47
Eg(X,¥)= BX°Y

= 1 T 2052 fyp (. )y

22 1
= [ Xy — xydxdy
o 4
12 2
= _ [ dx[y dy
4o 0
1 2t 2
=_x_w
4 4 3
_8
3
Example 2 If Z =aX +b5Y, where @ and & are constants, then
EZ = aFEX + bEY
Proof:

EZ = | [ (ax+ by) fyy(x.3)drdy

T T axfyy(x.p)dudy + [ [ bfyy (x,y)dudy

—0 =0

[ ax [ Fyy(x yidvdx+ [ 8y [ fyy (%, y)dxdy

=czT xfx(x:lcfx*‘f?TJ’f}rf}’:df
= qRYX +LEY

Thus, expectation is a linear operator.

Example 3

Consider the discrete random variables £ and ¥ discussed in Example 4 in lecture 18.The
joint probability mass function of the random variables are tabulated in Table . Find the joint

expectation of gl ¥)=X¥

101



http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_02_random_variables/lect_18/slides/slide10.htm

\f\ 0 I 2 | oy
%

0 [o025 01 [ 015 | 05
1 [o14 035 | 001 | 05
py(x) | 039 045 | 016

Clearly, EXY = % Eg(x,}’)ﬁjﬁy(xa}’)

.x,}'ﬂxxR,—
=1x1=0354+1=x2x0.01
=037

Remark

(1) We have earlier shown that expectation is a linear operator. We can generally write

Blayg (X, 7)) tayg, (4. )] =a By (A7)t a,Bg, (X, F)

Thus E(XY +5log, XT) = EXY +5Elog, XY

(2) If ¥ and ¥ are independent random variables and 847 = &0L18,(X0 hep
Eg(X,¥)= Bg (X)g, (1)

[ T &g iy (x yidx

—ca —a

1T 8 Ng, (1) Fr(x) f (dady

—ca —a

T ) (2 ] &) 0y
= Eg (X)Eg, (V)

Joint Moments of Random Variables

Just like the moments of a random variable provide a summary description of the random
variable, so also the joint moments provide summary description of two random variables. For

two continuous random variables & and ¥ | the joint moment of order #* #is defined as
BATY )= [ [ 2V fyy(x y)dedy

And the joint central moment of order #2* 2 is defined as
102




B = g - ) = ] T (= gy (= sy F (. ¥y

where #xz=2Xang Hr=EV

Remark

(1) If & and ¥ are discrete random variables, the joint expectation of order # and /7 is
defined as

EX®)= 5 ExX Y Py xy)
(rphe Ry
E(X—#ij ':F_;“}r:'?d = = nix- a“x:'m (J}_#E)xﬁx,f':x ¥

K ¥laRy

(2) If 7 =1and #=1 we have the second-order moment of the random variables & and ¥
given by
T T Xy (X Yy if X and ¥ are continuous

E(T) ===

I OEnpy sy if X and ¥ are discrete
(e ky y :

(3) If & and ¥ are independent, £¥)= EXEY

Covariance of two random variables

The covariance of two random variables X aud ¥ is defined as

COWX ¥y = BQT - sy XY~ pty)

Cov(X, Y) is also denoted as Txx
Expanding the right-hand side, we get

Covi L, 1) = BA - gy WY - i)
= E(AY - piyp & = iyl + iy piy)
= EXY -y BX - py BY + piy ity
= EXY - py iy

- p(X,I’j=COW:X’FJ | | B
The ratio “x%r s called the correlation coefficient.
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If ©xr 7 then X and ¥ are called positively correlated.
if Pxr <O then X and ¥ are called negatively correlated
if xr =9 then X and ¥ are uncorrelated.

We will also show that e, )| <1, To establish the relation, we prove the following result:

H 2 2
For two random variables X and ¥ & (¥} = Z¥"EY
Proof:

Consider the random variable £ =aX +¥

ElaX +¥) 20
= @*BX* + BV +2aBXY 20

Non-negativity of the left-hand side implies that its minimum also must be nonnegative.

For the minimum value,
dEZ* EXY
=0=a=-—2
Pt} X

so the corresponding minimum is

By By
—+ ¥t 2 ;
X EX
=mﬂ_fxy
Ex?

Since the minimum is nonnegative,
E'XY
J:h g
= E'X¥ < BX Ry
= |Exr|< VEX BT

Now

BT - x0
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Cov( T, T
Oxoy
o B - pg i - sy
BT - g P B - i)’
| BT - ) (¥ - )|
VE(E - i) BT - )’
AECE - ) BT - )
VBT - BT - )
=1

o(XT) =

et =

hes DI

Uncorrelated random variables

Two random variables % and ¥ are called uncorrelated if

Cov( X, ¥) =0

which also means

BAY ) =piy fly

Recall that if % 2nd ¥ are independent random variables, then 7+ (¥} = fx(xlfr 07}

XY = ? ? 0y v (% yidxdy assuming & and ¥ are continuous
= [ ] oify(x) fp (yldndy

- [ (e Ty (y)dy
then = EXEY

Thus two independent random variables are always uncorrelated.

Note that independence implies uncorrelated. But uncorrelated generally does not imply
independence (except for jointly Gaussian random variables).

Joint Characteristic Functions of Two Random Variables

The joint characteristic function of two random variables X and Y is defined by
&y y (@, ay) = Be™™7w

If “and £ are jointly continuous random variables, then
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';E’("X,}" (@, &32} = I I fX,}" (x,y}é'jm?ﬁjﬂg}'dydx

Note that Prr (@, @) is same as the two-dimensional Fourier transform with the basis function
PRLLAS L
instead of
gl e )
Fx2% ¥} is related to the joint characteristic function by the Fourier inversion formula

1 W P
Srr®D= 7 [ [fer(@, @)W dada,

If " and I are discrete random variables, we can define the joint characteristic function in
terms of the joint probability mass function as follows:

@X,}’ ':mls m;;:' = Z Z Pry (x,_}’jlé“?m“‘?}-’g}'

[r.p )= Byn Ry

Properties of the Joint Characteristic Function

The joint characteristic function has properties similar to the properties of the chacteristic
function of a single random variable. We can easily establish the following properties:

1. Py (@) =y (@, 0)
2. dyla@) = gy y (0, ar)

3. If and ¥ are independent random variables, then

By y( @y, @,) = Beloriod
= E(QJ.“'XQJ"’?F)
= Folo® ggied
= Py gy (ay)

4. We have,
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Jo X+ Jot

byylay, @) = Be

2 . 1
- B+ jak +jay + BTG )
2
P ] 3., 2 2
1+ jaEx ¢ joEy + L A +ij25}’ + @@, EXT 4.
Hence,
Py y(0,00=1

1 43
BX =———dy y (@, ay)
Jday

i =D

1 4
EY = ——— ¢y y (@, @)
Joay

Ly =]

EX}; - i BEQ}X}'(@’%)
2

J dada,

P P

(p2 + a2tk

In general, the order joint moment is given by

1 &gy (@, @)

SH+R

J day'd &

EXTYY =

ey =, cagmll

Example 2 The joint characteristic function of the jointly Gaussian random variables £ and
¥ with the joint pdf

s
e 2':1—Px.r:'[[ "x] ool = o e

fz,y(xs.J’:' =

Let us recall the characteristic function of a Gaussian random variable

X~ Ny, o)
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Pr (@) = Be™t

2

R
= .
— e ISl v 4
Rroy 4,
w1 X2y - ie) xH iy~ e ) (-0 b i
_ 1 IE 2 ax dx
Rroy 4,
é(—cr}m2+2,;gfﬂr§».rb} @ _l[x—w—w}.?'v]i
3 x
=g -4 ‘[ =2 ¥ ax
‘«."Em:rx =
Ar\enm-c’erwn G sinm

: 2
— E,.:ﬁ-_;:.:—a’}m i w1

=g iy ja-aiiwd i

If £and {is jointly Gaussian,

s
e 2':1—Px.r:'[[ "x] ool = o e

fz,y(xs.J’:' =

we can similarly show that

Py y (@, @) = EoltXa+teny

. o
_ ki, =l T D oy g 4 O )

We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated
on next page:
Jointly Gaussian Random Variables
Many practically occurring random variables are modeled as jointly Gaussian random variables.

For example, noise samples at different instants in the communication system are modeled as
jointly Gaussian random variables.

Two random variables & and ¥ are called jointly Gaussian if their joint probability density

RO S LU g

1 iy e gl b oy

1 Ayl | 0% S oy
. \

= Wex < 0y <
fz,y(?ﬁ.}’] m ; X <0, J




The joint pdf is determined by 5 parameters

e mMmeans ¥ WAy

- 0‘2 and 0‘2
e Vvariances " ¥

« correlation coefficient “%.¥

We denote the jointly Gaussian random variables < and ¥ with these parameters as
(X.7) = N(gty, ty, O3, Oy, Ogy)

The joint pdf has a bell shape centered at (Hz. 4¢) a5 shown in the Figure 1 below. The

2 2
variances ¥ ™% ¥ determine the spread of the pdf surface and “%:¥ determines the orientation
of the surface in the £~ plane.

Figure 1 Jointly Gaussian PDF surface

Properties of jointly Gaussian random variables

(1) If and { are jointly Gaussian, then X and { are both Gaussian.
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We have

£ 3= [ oy 2)d

[ (e K a1 (g, B
-1 L o e My
= el e s e }
- J 1 o X X ¥ d}’
—o zmxﬂ'}r ﬁ‘;x'}r
1f ¥y _ 1 p?ir‘}.-l: x_'MXF_ ':?"—.“'_X :':J"_.-“}r:l ':J"_.M}r:'z
- - ’ 2.-‘:‘:2}" [y + T
T 2(1-,.,:{,},3 w4 Xy w3
Sy I 1 & - fi_}’
_‘ﬁfrx o mﬂ'}r“ﬂ— Ty
1 ?{—#X]: - _ 1 (.}'_ _ijr“g.-':x_ﬁx :|:|z
A= Ehm&J YT

Similarly
_1[-1* 'ﬁ‘ff
23y

S = @

(2) The converse of the above result is not true. If each of < and ¥ is Gaussian, <% and I are
not necessarily jointly Gaussian. Suppose

1 ]{1+sinxsiny}

Jyrlny)= p——

Jzr (%) in this example is non-Gaussian and qualifies to be a joint pdf. Because,

fz,}f(xd”} 2 DAnd
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r-'t-J-I,,-ZI'2 n-—J-I;-ZI'z
R = P
I Imé {1+ sin xsin ydvdx
— —
- I [ N o
- 1 e Fr dvedn + 1
B Ijimx“re e Ijimxfre

—n —0 —n —0

v v
o _ynomdt o ol
=1+_-L Ie ain xedx Ie T osiny dy

daw

I -1 rema ry-u,.]*]
Ty Fr

sin xsin ey

r
-0 -0

M—f—f
Ftegration of e odd fimctio
=1+0
=1

The marginal density Fx(®) s given by

N [r a1 . ry—u,.]i]
L'y fr

Fylm = J‘ﬁe {1+ sin xs1in 3 dy

a1t e o L rJ\--J-IYZIJ2 IH'-J-I,-]?
-+ + P S—
X r

_ 1 i o ] 1 =g} gl . .
J‘zmmg dy + J‘me sin xsm_}f:fy
- - irtezration of anodd frction

=1 =
similarly, 7~

Thus <& and ¢ are both Gaussian, but not jointly Gaussian.

(3) If £and T are jointly Gaussian, then for any constants @ and # the random variable £
given by Z = aX +2Y s Gaussian with mean ~z ~ % 24y and variance
ayt =ata, o)t + 2abayoy oy,
(4) Two jointly Gaussian RVs <€ and { are independent if and only if < and ¥ are

uncorrelated Ozy =0) .Observe that if < and I are uncorrelated, then
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=1
)
= 1
fz,}'(;’f:}"]‘ - EWXJ},. £

[F=pinr F_'_E}'-#g F]
[ I'F2
X H

{ iy [P 2
_ 1 ETX 1 e_ﬂ_ﬁ,
«.fifm'f 1{'§}‘TJF
= xSy ()

Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances

of 1 and 4 respectively and a covariance of 1. Find the joint PDF 7z ()

tiy= iy =0, 0% =1, a3 = damd cov( X, V) =1
Cov(X,7) 1 1

Sy

ayo, | 1x2 2
arnd
5 2E]
fz,y(st’} = 1 g F
20217
_ 1 ¢ [xi_éf”r]
We have e

Example 2 Linear transformation of two random variables
Suppose £ =aX + &Y. then

#p (@) = Be?*? = Fpll+?le = Py yla@,ba)

If and I are jointly Gaussian, then

$r(@) = &y yla@, ba)

. 1
_j'{;ﬁ+gju—§(aiﬂ'i+2,ﬂxlra&rxn‘r +io ]yt

Which is the characteristic function of a Gaussian random variable with

2 2 2
mean # -#x+# and  variance 77 T Tx *2oxyoxfy 40y

thus the linear transformation of two Gaussian random variables is a Gaussian random
variable.
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Example 3 If Z=X+Y and X and Y are independent, then
go @) = gy p (@, @)

=y (@) dy (@)

Using the property of the Fourier transform, we get

Jzl2) = fy(2) ™ fpiz)

Hence proved.

Univariate transformations

When working on the probability density function (pdf) of a random variable X, one
is often led to create a new variable Y defined as a function f(X) of the original variable X. For
example, if X~N(u, =?), then the new variable:

Y=fX)=(X- W)/
IsN (0, 1).
It is also often the case that the quantity of interest is a function of another (random)

quantity whose distribution is known. Here are a few examples:
*Scaling: from degrees to radians, miles to kilometers, light-years to parsecs, degrees

Celsius to degrees Fahrenheit, linear to logarithmic scale, ﬁ-’fto the distribution of the variance
* Laws of physics: what is the distribution of the kinetic energy of the molecules of a gas if
the distribution of the speed of the molecules is known ?
So the general question is:
*If Y = h(X),
* And if f(x) is the pdf of X,
Then what is the pdf g(y) of Y?
TRANSFORMATION OF A MULTIPLE RANDOM VARIABLES
Multivariate transformations
The problem extends naturally to the case when several variables Yjare defined from

several variables X; through a transformation y = h(x).
Here are some examples:
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Rotation of the reference frame

Let f(x, y) be the probability density function of the pair of r.v. {X, Y}. Let's rotate
the reference frame {x, y} by an angle 9. The new axes {x', y'} define two new r. v. {X',
Y'}. What is the joint probability density function of {X', Y'}?

Polar coordinates

Let f(x, y) be the joint probability density function of the pair of r. v. {X, Y},
expressed in the Cartesian reference frame {x, y}. Any point (x, y) in the plane can also be
identified by its polar coordinates (r, /). So any realization of the pair {X, Y} produces a
pair of values of r and 4, therefore defining two new r. v. R and £.

What is the joint probability density function of R and? What are the (marginal)
distributions of R and of &#7?

Sampling distributions

Let f(x) is the pdf of the r. v. X. Let also Z; = z1(x1, X2... Xn) be a statistic, e.g. the
sample mean. What is the pdf of Z,?
Z; is a function of the n r. v. X; (with n the sample size), that are lid with pdf f(x). If it
is possible to identify n - 1 other independent statistics Zi, i = 2... n, then a transformation
Z = h(X) is defined, and g(z), the joint distribution of Z = {Z;, Z5, ..., Z,} can be calculated.
The pdf of Z; is then calculated as one of the marginal distributions of Z by integrating g(z)
over zj,i=2,..,n.

Integration limits

Calculations on joint distributions often involve multiple integrals whose
integration limits are themselves variables. An appropriate change of variables sometimes
allows changing all these variables but one into fixed integration limits, thus making the
calculation of the integrals much simpler.

Linear Transformations of Random Variables

A linear transformation is a change to a variable characterized by one or more of the
following operations: adding a constant to the variable, subtracting a constant from the variable,
multiplying the variable by a constant, and/or dividing the variable by a constant.

When a linear transformation is applied to a random variable, a new random variable is
created. To illustrate, let X be a random variable, and let m and b be constants. Each of the
following examples show how a linear transformation of X defines a new random variable Y.

= Addingaconstant: Y =X +b
= Subtracting a constant: Y =X - b
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= Multiplying by a constant: Y = mX

= Dividing by a constant: Y = X/m

= Multiplying by a constant and adding a constant: Y =mX + b
= Dividing by a constant and subtracting a constant: Y = X/m - b

: — T o
Suppose the vector of random variables X = (X1.--XN)" has the joint distribution
fx) = Ax1.---.xn) set ¥ =AX+ Bgor some square matrix 4 and vector 8. If detd # Opep

1 gy
¥ has the joint distribution s &~ 5))-

Indeed, suppose Yog(v) (this is the notation for "the 2(¥) is the distribution density of T ") and
X-Ax) For any domain Dot the ¥— space we can write

ng@m=wreu)=w+seu)=

—Prob(X € A1(D-B))) = I Foc)dx =
475 We make the change of variables

y =Ax+Bin the Jast integral.

— Ly D) | - _ PR (Linear transformation of
.Ilpf@ v B))‘D(y) ‘d}' IpﬁA Ay B)Ddﬂd@' random variables)

2
The linear transformation @& * His distributed as NC""“ ) The & was defined in the section (
Definition of normal variable).

For two independent standard normal variables (s.n.v.) &1and 2 the combination

N[0, b+l
o1&1 + 0282 s distributed as ( 1 01).

A product of normal variables is not a normal variable. See the section on the chi-squared
distribution.
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UNIT -1V
STOCHASTIC PROCESSES-TEMPORAL CHARACTERISTICS

Random Processes

In practical problems, we deal with time varying waveforms whose value at a time is
random in nature. For example, the speech waveform recorded by a microphone, the signal
received by communication receiver or the daily record of stock-market data represents random
variables that change with time. How do we characterize such data? Such data are characterized
as random or stochastic processes. This lecture covers the fundamentals of random processes.

Recall that a random variable maps each sample point in the sample space to a point in the
real line. A random process maps each sample point to a waveform.

Consider a probability space 5.F. &} A random process can be defined on (5., £} o

an indexed family of random variables (X5} s €52 \yhere T'is an index set, which may
be discrete or continuous, usually denoting time. Thus a random process is a function of the

sample point ¥and index variable tand may be written as Xie.s)

X §,53)

\ X(t,51) s
\ Sf// { )l_,_ % N

2 L A e | — - A 'l i
[ i€ X X «£ 4 o N0 &€ B oI

=

Figure : Random Process

.

| AE)=Acosat

Example 1 Consider a sinusoidal signa where 4 is a binary random

variable with probability mass functions 4l =7 gng Zal-D =1-2.

Clearly, 4@ €I js 3 random process with two possible realizations 1) = €05 & 4y

Ayt = fy A (Ey)

GO G,

TR0 At a particular time is a random variable with two values

and ~ 505,

Classification of a Random Process
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a) Continuous-time vs. Discrete-time process
If the index set ['is continuous, (X8, 22T} s called a continuous-time process.

If the index set ['is a countable set, (L1, €T} s called a discrete-time process. Such a

random process can be represented as (Xlr) ne 2}

(X, nz0}

and called a random sequence. Sometimes

the notation
integers.

is used to describe a random sequence indexed by the set of positive

We can define a discrete-time random process on discrete points of time. Particularly, we

can get a discrete-time random process (Xln] neZ) by sampling a continuous-time process \

(X 22T 3t a uniform interval T'such that 4171 = (=T,

The discrete-time random process is more important in practical implementations.
Advanced statistical signal processing techniques have been developed to process this type of
signals.

b) Continuous-state vs. Discrete-state process

The value of a random process X s at any time ¥ can be described from its probabilistic
model.

The state is the value taken by X at atime t , and the set of all such states is called the
state space. A random process is discrete-state if the state-space is finite or countable. It also
means that the corresponding sample space is also finite or countable. Otherwise , the random
process is called continuous state.

Firtst order and nth order Probability density function and Distribution functions

A(Z)

As we have observed above that at a specific time £ is a random variable and can be

described by its probability distribution function Fyy (1) = PLAE) £ 7). This distribution
function is called the first-order probability distribution function.
We can similarly define the first-order probability density function

='¢fo¢:3(@
fzm{x} —.::t’x .

To describe (X @), ¢€ I} , We have to use joint distribution function of the random variables at

all possible values of . For any positive integer #, ) X@H:'represents Fjointly

distributed random variables. Thus a random process (. 2€ T3 can thus be described by

i1—th order

specifying the joint distribution function .
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inrll.xim...ffir.i':xbxz ..... =Pl S n A) =, AL )=x,), ¥ezland Ve e

or th the # ~#227d2" joint probability density function

a?!
fxtrlj.zm 1...,2(:,3':x1= Kyroors By} = % B O FX(:rL:L.Xn::rz 3,...,2(;,3'31: Xy, %)

1%, 0K,

if L€ T §s 3 discrete-state random process, then it can be also specified by the collection

of 7 th order joint probability mass function

Moments of a random process

We defined the moments of a random variable and joint moments of random variables. We can

define all the possible moments and joint moments of a random process (Al eely
Particularly, following moments are important.

. 4x(®) = Mean of the random process at £ = £(L ()

. Rylt,ty) = autocorrelation function of the processattimest,, 1, = E(X{5).X (1))

Note that

Ry(t,ty) = Rylfy,h) and

Ry(t,f) = EX(t) = second moment or mean square value attime ¢
X

£ andt,

 The autocovariance function Cxl.h) of the random process at time is defined by

Cylf.830= BLAQ) — ly (G0N0 E) — w4
= Ryl ) = by (8 ) iy (E4)
Clearly

Cylt,8) = BE(X(E) — tiy (t1)? =variance of the processat time ¢

These moments give partial information about the process.

Lt
Oyt ) = = z( i:;i,)
The ratio V'r PLUTLYEE AR is called the correlation coefficient.

The autocorrelation function and the autocovariance functions are widely used to characterize a
class of random process called the wide-sense stationary process.
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We can also define higher-order moments like

Rt fa.82) = BUX (80, X (), X(£,) = Triple correlation function at £, £, £, etc.

The above definitions are easily extended to a random sequence {£lnln e Z} :

Cross — covariancs funconof the processses at times £ 4,
Cly (f1.8) = BLA(G) — sty T E) — 16, (5))
= R};}r {ﬁlsﬁg} _.L'{X{ﬁl}#}r(ig}

Crosscorrelation ocosfH o et
e (.50
O E.0) Grls .50

On the basis of the above definitions, we can study the degree of dependence between two
random processes

Oyl B0 =

This also implies that for such two processes
By (8, 8y) = fy (8 iy (£5)

Orthogonal processes: Two random processes £ €} £€ T} gpg (iE).2€T]
are called orthogonal if

Ry l(t.5)=0%s,6 €l

Stationary Random Process

The concept of stationarity plays an important role in solving practical problems involving
random processes. Just like time-invariance is an important characteristics of many deterministic
systems, stationarity describes certain time-invariant property of a class of random processes.
Stationarity also leads to frequency-domain description of a random process.

Strict-sense Stationary Process

X))

A random process { is called strict-sense stationary (SSS) if its probability structure is

invariant with time. In terms of the joint distribution function, 40 is called SSS if
qu:, LEi%, :l,...,.Xl:;,:l(xl’ Hyveros Byd = FXI:!‘|+I|]:I,.XI:IQ+Q] 1..,x¢:"+¢u3(x1= Kyvooos Ry )
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wne N, ¥i, el andfor all chotces of sample points £,4,,. £, €1

H

Thus, the joint distribution functions of any set of random variables X)X ) Xly) does
not depend on the placement of the origin of the time axis. This requirement is a very strict. Less
strict form of stationarity may be defined.

Particularly,

If FX(:. LXMJ.....X(!..J':XI’XE ..... X, )= FX(:.H: LXirqﬂuJ....XiMm(xl’ Xy...x,) fera=1, 2,..,ﬂ:,then {X(ﬁ}} is
called %% order stationary.

S0 Is called *% order stationary does not depend on the placement of the origin of the time
axis. This requirement is a very strict. Less strict form of stationary may be defined.

if (X0 55 stationary up to order 1
E:’fiiﬁlli‘j"-ljI - FX(I,ﬂu](xl)s Wi, el

Let us assume ‘@~ ~% Then

Py 1(T) = Fypy (%) which 1s independent of time.

As a consequence

EX(4) = BEX () = g, (0) = constant
If T40); is stationary up to order 2

put fo=

Fx::r. :L,X(z:;j(xlr X)) = FX(:,—%J.X(D)(XIF X3)
This inplies that the second-order distnbution depends only on the imelag 4 -4,

As a consequence, for such a process
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Ryt i) = BLAG )X ))
= ]‘ }xlxg inDLXit. _:,ﬂ(xl,xg Jedxydx,
=_§x?31 —4)
Similarly,
U (8, 0= Ty lf —£)
Therefore, the autocorrelation function of a SSS process depends only on the time lag
A

We can also define the joint stationary of two random processes. Two processes

40y, And £40) are called jointly strict-sense stationary if their joint probability distributions
of any order is invariant under the translation of time. A complex random process

(Z@=X@+r@) is called SSS if (£@) and 40 are jointly SSS.
Example 1 A random process is SSS.

This is because 7%

-----

= Py 0By (g Fy(x,)
= FX[& 0 (}‘Tl)Fﬂri +,) (@)Fﬂ% ) QC?:)
= Bty o) 00 )0 1) 0 X X

Wide-sense stationary process

It is very difficult to test whether a process is SSS or not. A subclass of the SSS process called
the wide sense stationary process is extremely important from practical point of view.

A random process S0 is called wide sense stationary process (WSS) if
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EX(t)= py = constant
and
EX{t )Xt )=R,(—t,) 15 a function ofime lag 4, — ¢,

Remark

(1) For a WSS process (L0}

EX*(#) = Ry (D) = constant
var( X (O=EX () - (EX (1)) = constant
Cy (. 5y) = EX ()X (8 )— BEX (1)) EX (f)

= Rylty—t) - uy
o Cyilhtyyis a function of the lag 5 —4).

(2) An SSS process is always WSS, but the converse is not always true.

Example 3 Sinusoid with random phase

Consider the random process 40 given by

Ay =Acosiay: + &)
0 and 2x.

where A and w, are constants and ? are unifirmly distributed between

This is the model of the carrier wave (sinusoid of fixed frequency) used to analyse the
noise performance of many receivers.

Note that

L o<pion

Jol@) =42x

0 otherwi se

By applying the rule for the transformation of a random variable, we get

1

f_X(:rjl:x:I = J‘T-\,lﬂg - 2

0 otherwize

AixiAd

Which is independent of £ Hence (@) is first-order stationary.
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Note that

EX(£) = Edcos(ayt + &)
Ax

1
=14 t+ g —d
J cos{ @t + &) o &
= [ which iz a constant
and

Rz '(f'pfz:' = EX{Q}X{L}}
= Fdcos(ayg, + @i Acos{@i, + &)
2
= %E[c os(@yf) + @+ @ty @) toos(ayg - @l - @]
2

= %E[c os{@ylhy +4)+ 28) +oes(ay (g —4)]

2
= %c os{ay (4 —4 ) which 15 afunction of the lag £ -4,

Hence o) is wide-sense stationary
Properties of Autocorrelation Function of a Real WSS Random Process

Autocorrelation of a deterministic signal

Consider a deterministic signal x(#) such that
0 < Titn — sz(z]ai'z{ o
T ET—I‘

Such signals are called power signals. For a power signal %2 the autocorrelation function is
defined as

T
R.(r)= Il.i_ﬂ 21_T J;- x(E+ T x(E s

£, (7] Measures the similarity between a signal and its time-shifted version. Particularly,

r
R_(0) =lim €1 [ x*e)dt
Tow 2T is the mean-square value. If ¥ is a voltage waveform across a 1 ohm
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resistance, then £ s the average power delivered to the resistance. In this sense, £,(0)

represents the average power of the signal.

Example 1 Suppose *@) = Aces 2. The autocorrelation function of % at lag 7 is given by

T
R.(r)= 11‘1_}12 % _Eﬂﬂms et + 1A cos aidt

AT
=lim — [[cos(Z2ax + 1) + cos avr|dt
lim 7 [ [eos(2at + 1) ]
_ A cosair
2
We see that &%) of the above periodic signal is also periodic and its maximum occurs when
2
T=D,iz—ﬁ,i4—ﬁ, etc. Rx(0j=i.
@ @ The power of the signal is 2

The autocorrelation of the deterministic signal gives us insight into the properties of the
autocorrelation function of a WSS process. We shall discuss these properties next.

Properties of the autocorrelation function of a real WSS process

Consider a real WSS process @y Since the autocorrelation function “x-%J of such a

=i

process is a function of the lag * ~“ ~2- we can redefine a one-parameter autocorrelation

function as fx(F) = EAE+0) (D)

If T40); is a complex WSS process, then

R, (r) = X (£ + )X *(£)

Where € @ s the complex conjugate of 1) For a discrete random sequence, we can define
the autocorrelation sequence similarly.

The autocorrelation function is an important function charactering a WSS random process. It
possesses some general properties. We briefly describe them below.

_ 2
1. B(M=EX00 |5 the mean-square value of the process? Thus,

R, (0y= EX*(ty =0
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Remark If ¥®jsa voltage signal applied across a 1 ohm resistance, and then £z js the
ensemble average power delivered to the resistance.

A, Ry

2. For areal WSS process (=7 is an even function of the time & Thus,

Ry(-7)= Fx(7)
Because,

Ry(—r)=EX(t —1)5(5)
=EX () X(E-T1)
=HEY (5 +r)A(4) (Substituting £ =£-1)
= R,(?)

Remark For a complex process (7= &z(7)

3. Ry (7] Rz (0). This follows from the Schwartz inequality
<0y, X +7) = =l g+ off

We have

(0= {EX ()Xt + O
SEXHEX i+ 1)
= Ry (D:' Ry (D:'

Ry (0] <R (0)

4. F=(isa positive semi-definite function in the sense that for any positive integer # and

LI
it i Ry (G — 4, )20
real ﬂj:ﬂj,z@lgl it .X(z j}_

Proof

Define the random variable
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Y= % a A ()
J=1
Then we have

1< BV - _%1 _%laiajm*(:i W)
i1 j=

= E E ﬂ:‘ﬂjﬁz (.f: _‘tj)
i=] j=l

It can be shown that the sufficient condition for a function %% to be the autocorrelation
function of a real WSS process L@} is that F=() pe real, even and positive semidefinite.

If €@ s Ms periodic, then (71 s also periodic with the same period.

Proof: Note that a real WSS random process L s called mean-square periodic ( MS

periodic ) with a period Lrif for every i€l

B(X(e+T)- X)) =0
= BX(t+T,)+ BEX* () -2 (¢ + T) X(¢) =0
= Ry (0 + Ry (D) - 2R, (T,) =0
= Ry(T,) = Ry (0)

Again

(BE(X+T+T)-Xe+NX @) & BX+r+T,) - X+ D) B (@)
{Bv applnng Cauchy Schwartz inequality)
= (R (T+T,) — Ry () L 2(R5(0) - Ry(T, )R, (0)
= (R, (T+T,) — Ry (h)® <0 " Ry(0) =R, (T,
SRy (T TN = Ry (D)

Cross correlation function of jointly WSS processes

if X and T are two real jointly WSS random processes, their cross-correlation

functions are independent of ¢and depends on the time-lag. We can write the cross-correlation

function

Ry (1) = EX(t + DIV ()

The cross correlation function satisfies the following properties:
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Ry (T) = EX(t +1)F ()
= BY (Xt +1)
= Ry (—7)

(11) |Rx1f {T:'| it 4 Ry (DR, (0)
We Have

Ry (D =|EX ¢ + DY ()
LEX G +DEY:) using Cauchy-Schwartz Inequality
= Ry (D) Ry ()

R g (1] € R (DR, ()

Further,
R (R, (U & %[RX(EI] + RF(D)) v Geometric mean £ Anthmatic mean

Ry (7)) = BXQEAHD)EY () = iy pty
Rp(ty=EX(t+7)F (£)=0

iii.  If <% and Y (1) are uncorrelated,

iv. IfX(t)andY (t) are orthogonal processes,

Example 2

Consider a random process Z1£) which is sum of two real jointly WSS random processes.
Ay and It \we have

2 =X+ ¥

Rty =EZ(t+1)20¢)
=Bl +r)+ (2 +0)][A () + T (8]
= Ry(m)t By(T) + Ryp () + R ()

If £ and ¥ are orthogonal processes,then &z (71 = £ (¥) =0
SR (T) = Ry (r) + Ry (7)

Example 3
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Suppose

ZiE) = K (t)cos(ayt + ) and
2ty =X sinlans + )

Where X (t) is a WSS process and F~Ul027]

By (1) = B - 0] = 5= [ lomle - T

= B[ X(t) Xt - )| E[cos{ayt + P)sin{ayt - @yt + )]
- %inr]l[E[sim[Zmnz - @ + 2]~ E[Sin(mwr]l]]
= - 5 Ry()sin(aye)

Time averages and Ergodicity

Often we are interested in finding the various ensemble averages of a random process E40)
by means of the corresponding time averages determined from single realization of the random
process. For example we can compute the time-mean of a single realization of the random
process by the formula

<,.££x:)r = limn i x(£)dt
Fhw o Jor

which is constant for the selected realization. Note that L }r represents the dc value of * Oy

Another important average used in electrical engineering is the rms value given

. 1 7
(e >r = zl'l_ﬂ ‘,ﬁ I-r x° ()t

Time averages of a random process

by

The time-average of a function & (1D of a continuous random process ) is defined by

1
(X O, = o= [ & e

where the integral is defined in the mean-square sense.
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Similarly, the time-average of a function g(&%) of a continuous random process () IS
defined by

{g( :'4:'::' l— E g( z]'

The above definitions are in contrast to the corresponding ensemble average defined by

Ba( X = ‘[: gLy (x)dx for continuous case
= Z ECX) P a2 for discrete case
ik,

The following time averages are of particular interest

(@) Time-averaged mean

<,{£X >r = %J‘; RAEAT (continuous case)
: 5 X, di t
{#x}ﬁ 2N+1;.E_N ; [discrete case)

(b) Time-averaged autocorrelation function

{R (T) = —I XX+ Tt {continuous case)
N
{R}: [m]}N = 2N+15§MXE'X"+’“ (discrete case)

Note that, e {X(m}f and {g (X*)>N are functions of random variables and are governed by
respective probability distributions. However, determination of these distribution functions is
difficult and we shall discuss the behaviour of these averages in terms of their mean and

variances. We shall further assume that the random processes 40 and () are WSS.
Mean and Variance of the Time Averages
Let us consider the simplest case of the time averaged mean of a discrete-time WSS random

process (4} given by

1w

{’“X }N T AW+l zENXi

The mean of {*“X }N
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g
20+ li.gNXi
1 I
TN+l i.ENEL
=ity

E{-‘%:’};.,r:E

and the variance

B({tty )y ~tz) - E[

I ¥ 2
AT Ll T

_F 1 ¥ ¥ 4
B [2N+1;‘§N(" #X:']

1 N , v o
=w iENE(Xi_ﬁX) ta BB B A )

T ] e T

If the samples AT ST TN SR ORI, 47

Bty ) = E[

are uncorrelated,

1 W . 2
AT Ll

: 2
We also observe that ;}—ﬂE({ﬁX}N *‘”X) =0

From the above result, we conclude that {#z >N —  *Hy

Let us consider the time-averaged mean for the continuous case. We have
1 T
= — | K&
{.'MX }j" o I—T l: :I

E{-‘:"rﬁ.’}r = %frﬁ}f{ﬁ}dﬁ

1 .7
o7 I_r Myt = Ly
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and the variance

2
E({ﬁﬁ’}r _ﬂzjg = E[%fr*g(f)df _ﬁ*r:::]

. 2
= E[%Ey (£ _ﬁ{':::'df]

__ 1
474

1
= a7 fr fr 'y (8 — 8, )dhdt,

[r [ BCE () — 1) (X (1) — s e,

The above double integral is evaluated on the square area bounded by h=tT and 2~ iT. We
divide this square region into sum of trapezoidal strips parallel to h5=0. (See Figure

1)Putting 1 "2 = Tand noting that the differential area between 4 ™% = Tand & "8 =TT

(o7~ |T|:"£T, the above double integral is converted to a single integral as follows:

1

a7 fr fr Cy (8 — & )dqde,

E((*{JX ir _*'E{Y)z N

1
= ﬁfé}tzﬁ’ ~|ehCy (T

1|, [T
EI—H‘[I o7 Cy(TiT

Figure 1

Ergodicity Principle
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If the time averages converge to the corresponding ensemble averages in the probabilistic sense,
then a time-average computed from a large realization can be used as the value for the
corresponding ensemble average. Such a principle is the ergodicity principle to be discussed
below:

Mean ergodic process

A WSS process ) Is said to be ergodic in mean, if { };— ~ "Hxzag T =@ Thus fora

mean ergodic process (X @) :

lim Blse), = sty
and

litn var{,ﬂx} =0

T

We have earlier shown that
E{pty Jr = Hx

and

1 ar |T|
var { £y ) “or LCX(T) 1_§ dT

therefore, the condition for ergodicity in mean is

—ICXU{ iy,

Further,

=1 m[ "]cf e [eaopr

Therefore, a sufficient condition for mean ergodicity is
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Example 1 Consider the random binary waveform (£@)
32.The process has the auto-covariance function given by

ol

Cy(T) = T |T| 5

¥

discussed in Example 5 of lecture

0 otherwise

Here

ar ar
L|CX (OpT= EJ‘|C’X(T)|::¢‘T

T T
=2J 1-— |ar
L

3 4
fr BT
Foam T
¥ P
3
ar
L|CX (THT o
hence (£@) is mean ergodic.

Autocorrelation ergodicity

(Ry(D)), = EJ;X(;)X@ Tde

We consider £ = XEXE+T) g that, Hz = £x(D)
Then (£®) will be autocorrelation ergodic if {2} is mean ergodic.

Thus (£ ®) will be autocorrelation ergodic if

1 I
lim — -—— Tdr =10
rlsz_T[ o7 |7
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where

Cp(n) = EZ(©Z(t - 1) - BZ () EZ (¢ - T)
- EXOX(¢-DX¢- DI -T-1)-RE(D)

CelT, :'involves fourth order moment.

Simpler condition for autocorrelation ergodicity of a jointly Gaussian process can be found.
Example 2

Consider the random—phased sinusoid given by

A(g) = Acos(@t + &) \ynere 4 @ @ 410 constants and #~ P10 27 s 3 random variable. We
2

A
0 R, (1) =?cos i

have earlier proved that this process is WSS with Hx = ¥and

For any particular realization *(&) = Acos(vyt + &),
1
(4, = Efyﬂms(wuﬁ + )dt

1 .
= — Aziniw
- (v )

Wy
and

17
(Rx (T}}T = ﬁ_iﬂcos(wnﬁ +d A cos(w, £+ T) +eh)de

2 r

= El[l::os W, T+ Acosiw, (26 +T) + 2 )]s

_ Al coswyr . A sinfwy (2T + 1))
2 A, T

A coswT

RA(T)). —
We see that as T —» 2 )y =0 and < }T 2

For each realization, both the time-averaged mean and the time-averaged autocorrelation

function converge to the corresponding ensemble averages. Thus the random-phased sinusoid is
ergodic in both mean and autocorrelation.
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UNIT -V
STOCHASTIC PROCESSES—SPECTRAL CHARACTERISTICS

Definition of Power Spectral Density of a WSS Process

Let us define the truncated random process LD} a5 follows

Xef)=Xy -T<iLT

=10 otherwize

- X(ﬁ}recﬁ(;—T}

ract (—)
where 2T s the unity-amplitude rectangular pulse of width 27" centering the origin. As

£ e, LX) il represent the random process XY define the mean-square integral
r
FTX (@)= Lxr(ye-f“’dz

Applying the Pareseval's theorem we find the energy of the signal

r w©w
[ v - [Fxr(@)fde
Therefore, the power associated with r (2] is

17 1= ’
— [ Xiftht = — [|FTX @) da
2T_L 2T i And

The average power is given by

iElXE()dz—iEﬂFTX (a:r)|.:;t‘a:r EJ‘M

B\, ()]

Where ar the contribution to the average is power at frequency w and represents the
power spectral

density of Lr (2 .As T =@ the left-hand side in the above expression represents the
average power of X1

Therefore, the PSD %@ of the process X} is defined in the limiting sense by
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 E|FTx (e
sty

Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein
theorem

We have
E| FIX (@ _ EFTXT (&) FTX, (@)
2T 27T
1 rr
"o !: l ()X (2 e g g gy,
1 r r |: |
— [ [&, Felt =t gy
=7 l i (f —L)e L

; T » »#
,) /:ff\x /31_3;;:?
!f.-? [u[ﬁﬂ —
<5 s
2 f—i, = 2T
#
-T L
\J
Figure 1

Note that the above integral is to be performed on a square region bounded by h= iTand

2= X7 g5 illustrated in Figure 1.Substitute 4~ = Tso that & =% * Tis a family of straight

lines parallel to h-5=0. The differential area in terms of t is given by the shaded area and

equal to (2T~ |TPAT The double integral is now replaced by a single integral in ©

Therefore,
* r
L0510 T R @ T Thar
-ir

E

= T B, (@1 —g)cﬁ

-ir
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T Ry (De¥ ¥ dt

If Fx(tjs integral then the right hand integral converges to —= as ¥ —e
E\FTX, w -
1im|—f':“’3'|2= | By(e” ¥ de
I'm -

E|FTXy (@)

S = lim
* T 2T is the

As we have noted earlier, the power spectral density
contribution to the average

power at frequency & and is called the power spectral density of W Thus :
Sy (@)= _I.RX (De dr

and using the inverse Fourier transform
1 y Jiaz

Ry(t)=— J‘ Se(ae’da
2

Example 1 The autocorrelation function of a WSS process (X} s given by
Rym=ae M p50
Find the power spectral density of the process.

5, (@) - _T Rx(T}e_jdeT

=]

) a%e ™ |’|'-'|€—jmfd1_

0 . ES e
- jazebfe JdeTJrJ.aEE bT,mj@T .
— o 0
CIE CIE
= +
b—ja b+ ja
2%
PRt

The autocorrelation function and the PSD are shown in Figure 2

.......

137




Example 3 Find the PSD of the amplitude-modulated random-phase sinusoid

X(£) = M) cos{ @i+ ®), @ ~U[0, 2]

Where M(t) is a WSS process independent of &

Ry(f) =8 Mit+1) cos(@(i+0)+®) M) cos(aT+d)
=E ME+T) M(5) Ecos(@(t+1T) + D) cos(@T+ D)
{ Using the independence of A (%) and the sinuzoid)

2
= Ry (T) - cos @&t

- 5(0) = A (s(0+0) + 5y (0-2)

where &, (m) 15 the PED of M)

Figure 4 illustrates the above result.

e ()
&l
oy ()
/I\ /|\
—mﬂ—ﬁ & &+t — m{_E ar at +E @
2 2 2 o

Figure 4

Properties of the PSD

Sy (@) being the Fourier transform of Ry (D) it shares the properties of the Fourier transform.
Here we discuss

important properties of “x @)
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1) the average power of a random process S4UNN

EX* ()= Ry (0)

1 w
=— [ & e
EJT_{;. 'y (e )

2) 1f ¥@isreal, #x()is a real and even function of © .Therefore,

S (@) = }RX (D T4

w

= IRX(T)(EOS @T+ jsin @D)dT
= IRX(T)EOS ardT

= EJ‘RX (Thcos @TdT

Thus for a real WSS process, the PSD is always real.

3) Thus Sx (@) i 4 real and even function of @ .

2
L SX(W}=1imJ"—mM. . S (@20
4) From the definition 4 isalways non-negative. Thus *~***/ =™

5) If A has a periodic component, Reltlis periodic and so Sl will have impulses.

Cross Power Spectral Density

Consider a random process {21} which is sum of two real jointly WSS random processes
(L@} and (T} As we have seen earlier,

(1) = Ry (T + By (1) + Ry (1) + R (T)
If we take the Fourier transform of both sides,
wp (@) = Syla) + Sy (@) + FT Ry (D) + FI Ry (1))

Where FT() stands for the Fourier transform.
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Thus we see that Sz (@) includes contribution from the Fourier transform of the cross-

correlation functions

By (7) and By ':T:"These Fourier transforms represent cross power spectral densities.

Definition of Cross Power Spectral Density

Given two real jointly WSS random processes (A1} and {0} the cross power spectral
density (CPSD) “x'@}js defined as

S (@)= 57 EEO P

Where FT%r(@) and FTY, (@)

Xp() = Xtrect (;—T) and ¥ (2) = F{.ﬂmc.ﬁ(zij

are the Fourier transform of the truncated processes

respectively and "~ denotes the complex
conjugate operation.

We can similarly define S (@) by

S0 = £ OP T

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the
WSS process, it
can be shown that

S (@)= | R (D@7 dr

and
Sy (@)= | Ry (D)%% dx

The cross-correlation function and the cross-power spectral density form a Fourier transform
pair and we can
write
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R ()= [ Sy (@)
and
Ry ()= [ Sy (@)e® da
Properties of the CPSD
The CPSD is a complex function of the frequency w’. Some properties of the CPSD of two

jointly WSS processes
(A10)) and (Y1) are listed below:

(1) S (@) = 5 ()

Note that Fxr(T)= F(-T)

L Spla)= [ R0 dr

Ry (- D™t

[ R

Ry (fle™*dt

(2) B (@) s an even function of @ and ™Sz (@) js an odd function of @ .

We have

S () = ?Rﬂ(r)(cusm T4 Feina f)dt

—

= ?Rﬂ(f)cusmrdr+ j?ﬁﬂ(r)sinmrjafr

= Re(Sy (@))+ FIm{Syy (a))
where

Re( Sy (@) = uj' Fop(T)cosatdt 15 an even function of @ and

-

I Sane (i ) = u_j[ Foe(D1ainwtdt 12 an odd function of o and

(3) If ()} and (Y8} e uncorrelated and have constant means, then
Ay L) = o (1) = oy O 1)
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Where (@) is the Dirac delta function?
Observe that

Ronlt)= EXt+ D)F ()
= EX(t+ 0)EF ()
= Hyhy
= HrHz
= Ry (1)
LSy (@)= Sy @)= fy pydla)

4) If At} and (YU} gpg orthogonal, then

Syla)= Spla) =1

if (&t} and (FDh} gpe orthogonal, we have

Rl = BEX{t+ 0)F(})
=1
= Ry (1)
L la) =S () =1

(5) the cross power T between AW} and {0} s defined by

1T
Py =lim — B[ XOY s

Applying Parseval's theorem, we get
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1T
Pry = lim — B [ X()Y ()
1 e
= lim B [ X (O ()a

—hmigz_ [ PTX (@) FTY (@)d @
-

P 27T

=i°f1im BFTH; (@) FTY; (@)
DT T 2T

-1 T Splada
2 %

. “j Syl(@)d @

Similarly,
B = lSuleda
T t(@d @
=li'3';:}r

Example 1 Consider the random process given by £ = £+ I8 giscussed in the beginning
of the lecture. Here (£} s the sum of two jointly WSS orthogonal random processes

A1)} and {Fith
We have,
Fg(T) = Ry (D) + By (T) + Ry (1) + R (1)

Taking the Fourier transform of both sides,

Sz (@) = Sx(@) + Sp(@) + S (@) + T (@)

2w
Therefore,

.—J'S .:im——_[S .:f.:rr+—_[5’ .::Em+—_[5‘ .:ia:r+—J'S (@da@
27 27T 2T = 2

Fola@) = Pel@) + 5 (@) + 5 (@) + B (a0
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Wiener-Khinchin-Einstein theorem

The Wiener-Khinchin-Einstein theorem is also valid for discrete-time random processes. The

power spectral density Sx(@)
of autocorrelation sequence.

of the WSS process {171} is the discrete-time Fourier transform

Sy la)= 5 Rx[m]e'j"’“ -TEiwER

R Im] s related to Sx(@) by the inverse discrete-time Fourier transform and given by
R [m]) = L S (@™ d @
4 2?_{:[ X

Thus &[] and Sy (@) forms a discrete-time Fourier transform pair. A generalized PSD can be
defined in terms of Z - transform as follows

8, (z) = i R [m]z™

i

clearly,

S (@) = 55|,

Linear time-invariant systems

In many applications, physical systems are modeled as linear time-invariant (LTI) systems.
The dynamic behavior of an LTI system to deterministic inputs is described by linear differential
equations. We are familiar with time and transform domain (such as Laplace transform and
Fourier transform) techniques to solve these differential equations. In this lecture, we develop the
technique to analyze the response of an LTI system to WSS random process.

The purpose of this study is two-folds:

e Analysis of the response of a system

o Finding an LTI system that can optimally estimate an unobserved random process from
an observed process. The observed random process is statistically related to the
unobserved random process. For example, we may have to find LTI system (also called a
filter) to estimate the signal from the noisy observations.

Basics of Linear Time Invariant Systems
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A system is modeled by a transformation T that maps an input signal (& to an output signal
y(t) as shown in Figure 1. We can thus write,

yig) =T[x(£)]

*(E) ¥(e)

Figure 1
Linear system

The system is called linear if the principle of superposition applies: the weighted sum of
inputs results in the weighted sum of the corresponding outputs. Thus for a linear system

T [“1"‘1 (£)+ eyt :'] - ﬂlT[xl [5)] +a,T [xz & :']

Example 1 Consider the output of a differentiator, given by

_ dxif)
yit) n
Then %( ayx (£ + ax, (£) )

) d
= ﬂlaxl(ﬁ) + azaxz (£)

Hence the linear differentiator is a linear system.
Linear time-invariant system

Consider a linear system withy (t) =T x (t). The system is called time-invariant if
Txlt-4) =yit-4) ¥ 4

It is easy to check that that the differentiator in the above example is a linear time-invariant
system.
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Response of a linear time-invariant system to deterministic input

As shown in Figure 2, a linear system can be characterised by its impulse response hig) = Ta(L)

where 3t is the Dirac delta function.

AUBEE ht)
= SyStetl ————————

Figure 2

Recall that any function x(t) can be represented in terms of the Dirac delta function as follows

L)

x(f) = Ix(s) A(t-s) ds

-

If x(t) is input to the linear systemy (t) =T x (t), then

wiE T }x(s) é‘[z - .5') ds

I x(&) T.:?[.ﬁ - .5':] ds [ TTzing the linearity property ]

-t

w

Ix(s) hits) ds

-

Where #(£:8) = T8(25)j5 e response at time t due to the shifted impulse? 5(t-s)

If the system is time invariant,
Ezl{i,sjl = Ezl[f,—sjl

Therefore for a linear-time invariant system,
w

y@) = [ x(s) hft—s)ds = x(e) * k(o)

where * denotes the convolution operation.

x(E) =hi) = RE) = x(2).
146

We also note that




Thus for a LTI System,
yle) = =xz(E) * hig) = R(2) *x(i)
Taking the Fourier transform, we get
(@)= H(e)X(a)

where H[m) =FTh [f,) = J‘Ez[.ﬁ]l e® gt {5 the frequency response of the system

Figure 3 shows the input-output relationship of an LTI system in terms of the impulse response
and the frequency response.

xit) LTI System yit)
™ R '
Xian) LTI System Fiem

I Hian

Figure 3

Response of an LTI System to WSS input

Consider an LTI system with impulse response h (t). Suppose L) jsawss process
input to the system. The output T of the system is given by

rie)= Iﬂs(s) X(t-s)ds= J‘Ez[.t—s) X(s) ds
Where we have assumed that the integrals exist in the mean square sense.
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Mean and autocorrelation of the output process re)

wWhere (W s the frequency response at 0 frequency (2 =0 ) and given by
Hi)| = I;g(z)e‘-’“d.ct = [h(e)ae
— -] —

T The Cross correlation of the input {X(t)} and the out put {Y (t)} is given by

o

:l Ik[s) Xl[:—s) s

—

E(X(t+o)¥(1))=

[y
H
=
L |

kl{s) Iy Xl[.t+r) X[I—sj s

bl

(5] Ry(r+s)ds

le[—u:l Rf[r—u:lcﬁs [ Put 8 = —2 |

ﬁé-—.s bt ) t—

|
=
—
=
=
}..q
——
=
—

Rglr) = k(-1) * R r)
alse Ry (r) = Rgl-t)= k(r)* Ry(-r)
= A(z) * Ry (r)

Therefore, the mean of the output process (®)} s a constant

The Cross correlation of the input {X (t)} and the out put {Y (t)} is given by
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mw

E(X[I+fj}’|[z))= Iy Xl[.t+r) _[;2[5') Xl[z—s) 5

—

h[s) Iy X(r+r) Xli:—s) s

,_Elé-—.s g ) —

Bi(s) Rylr+s)ds

k[—uj Rr[r—u:lcﬁ; [ Put 5 = —1 ]

|
-1
R
=
oo
}.,1
_
-1
—_—

Rale) = B(-w) * Ry{7)
5o Ry(r) = Rg(-v)= n(z) * Ry (-7)
- h(s) * Ry (7)

Thus we see that = IIT)is a function of lag  only. Therefore, A gng (T are jointly
wide-sense stationary.

The autocorrelation function of the output process {Y(t)} is given by,

E(r(e+0)¥ (1)) = E }Ez[s) X(t+r-5)ds¥ ()

= }k[s) E}f[£+r—s) Fif) ds

—o

}.32[.5') R yplr-5)ds

BT) * R 4lv) = h(r) *k(-1) *R (1)

Thus the autocorrelation of the output process 4 depends on the time-lag ¥ | i.e.,
EY{()Yie+r)1=Ry(r)
Thus
Ry () = Ry (2) % () *h( )

The above analysis indicates that for an LTI system with WSS input
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o the output is WSS and
e The input and output are jointly WSS.

The average power of the output process e s given by
5 =F [D)
= Ry (0)*4(0)*4(0)
Power spectrum of the output process

Using the property of Fourier transform, we get the power spectral density of the output
process given by

Sy (@) = Sy (@) H (@) H' (@)
S (@) (@)

Also note that

Raplr) = A7) * Rylr)
and Ry (r) = h(r) * Ry(r)

Taking the Fourier transform of Ba IITjlwe get the cross power spectral density Sz (@)
given by

Swlw) = ()5 (@)

and

Sy (@) = (@) 5y (@)

150




Rt Fy(T)

L) W T ) >

5 e (1) Sy (e
—Sx-(ﬂj—b H‘I(r:lil:l i"’ H(ﬂ!}l ——:

Figure 4

Example 3

A random voltage modeled by a white noise process () with power spectral density
My

2 is input to an RC network shown in the Figure 7.
Find (a) output PSD ()
(b) output auto correlation function Ry (r)

2
(c) average output power ¥ (e)

i

— MY

Xt ¢ =1

Figure 7

The frequency response of the system is given by
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Therefore,

1
_chzmz_'_lgxr: )
1N
(a) Rt +1 2
(b) Taking the inverse Fourier transform
YA
R lr)=—L g %C
¢ (7) 4RC
(c) Average output power
M,
BV e) =Ry (0) =
()= Ry (0)= 2%

Rice's representation or quadrature representation of a WSS process

An arbitrary zero-mean WSS process @) can be represented in terms of the slowly
varying components Xf{‘f)and &, I(‘f:'as follows:

Ay =X (flcosayt — X, (£) sin ayd )

g 5
mu_gﬁ|m|ﬁmﬂ+§)}lxc(£)

where ®is a center frequency arbitrary chosen in the band and

2,0 ¢ X0

are respectively called the in-phase and the quadrature-phase components o
Let us choose a dual process )} such that
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X+ ¥ ) = (X, (0 + X, 0™

. ) [

= (Xﬁ(zj cosayt — A, (f) sinmn.ﬁ) +”.r'|:}fc(.ﬁ)sin api + X, (£ cos ﬂ_]:,.ﬁj

X ¥it)
then ,
A ()= A(g)cosapsi + (£ sin ayd )
and
A ()= A(gcosap: —F(£) sin ayt 3)

Note that

EX(f) = cosaniBX, (£) —sin ey fE8X | (£)

As L8 s zero mean, we require that
EX (£)=0

And
EX,(£)=0

Again

BX (t)=cogept BX (1) +sin eyt BV (L)
EX (t)=coseptBX (1) —sin aptB V(L)

Az each of BX (1), £X () and £X(¢) 1s zero-mean, we require that
E¥iti=10,

Alzn

+ Ry (T)sin ey (1 + T cos eyt
and

Ry (£+7.8) = Ry(r)cos aglf +r)cosapf + Ry (r)sin |[.E + r)sin ayt
~ Ryyirhcosay (£ +7)dnay — Ry (r)sinay ( +7)cosayt
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For such a representation, we require the processes e and SR to be WSS.

i}

Ry (t+r.t)= E[Xl[.Hr:lt:nsmn |[.t+ r:l+Y|[.t+ r)sin a:n[r+r:|][X(z)cusaJE;+}’(:]sin &yt
= Rylricosey(t+ r)cos .:11,:,:+R},(r)sinmn[:+f)sin eyt + R (T cos ey (f+ T) 810 et




and
Ry (E+T.8)=Ry(Ticosaylf + Thcos @y — Ry (Thein &y (£ + T) sin ayt
— R (Ticos@ (E+ Tsin @t + B (Thsin @ (£ + Thcos aif
Thus, Ry (¢ + 7.0, Ry (¢ +T.0) and By » (¢ +7,£) will be independent of t 1f and only1f

and

Ry x (T)=Ry(rt)cosan (i +7)cos apf — Ry () sin ay, (£ +7) sin ayt
—Fp(ricosayif +1)sn apé + R (r)sin ay (2 + 1) cos aé
= Ry(r)[cosan(f+T)cosani —an ay (£ + 1) 51 ayf ]

=R (rifcosay(f+r)sinant —sinay (£ +1)cosapt]
= Ry(ricosayT — R (r)sin(—ayr)
=R (ricosayT — R (r)sineyr

How to find ')} satisfying the above two conditions?

For this, consider e to be the Hilbert transform of {X(’ﬂ'}, i.e.

Y(§) = [ X(e)h(e—s)ds

1
hif) = —
Where 7t and the integral is defined in the mean-square sense. See the illustration in
Figure 2.
Xt Pz
T e L Q)
at
Figure 2

The frequency response (o) of the Hilbert transform is given by
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—j, if @=0
H(a@)=3 J, if @=0
0, if @=l)

S H{(@) = —jsgn(@)
and |H (@[ =1
Sy (@) =|H @) 5@ = 5 (@)

and

S @), for @ >0

SX}'(&:’:‘=H[mjgﬂ'(m)={_jgﬂ(mj, for @< 0

— S [m) for =0

Sﬂ(m:I:H Iim)gﬁ(m):{igﬁlim), fOI' m{:[:]

The Hilbert transform of Y(t) satisfies the following spectral relations

Sy(@)=5; (@)
and

From the above two relations, we get

Ry(T)= Fy(T)
and

Ry (T) = — By (T

The Hilbert transform of <@ js generally denoted as (). Therefore, from (2) and (3) we
establish

Kol = X (@ cos @yt + X sin @y,

X () = X () cos @t — X () sin gyt

and
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A=A (f)cosapi — A (f) sin oyt

The realization for the in phase and the quadrature phase components is shown in Figure 3
below.

G0 il

+ +
X ) )
Ko :strf,:'
+ -
Hifbert
transform
‘ sindayt

Figure 3

From the above analysis, we can summarize the following expressions for the autocorrelation
functions

Ry (T) = Ry (D)
=R (Tlcos @yT+ R (Thsin @, T
=R (Tlcos @T+a()* R, (Tan T VR (T = h(T)* R, (T)
=R (TicosayT + ﬁz (Thain T

Where
R, (T) = Hilbert transform of By (1)

=‘|‘i (T —5)ds
d s

See the illustration in Figure 4

J'{_({ hiT) = L_J;]:T:'
T

156




The variances a-j’fc and C'?’fs are given by

ax = ofﬁ = R, ().
Taking the Fourier transform of Ry (7) and By, IiTjI’we get
Syl(@-ay)+Sy(@+ @) | < B
Sy (@) =5, (a) =
7 (@)= 55,(0) {D otherwise

Similarly,

R&% (r) =R, (risinmr — R, (r)cosanr

=R, (rjsinar - ﬁz (r)cosaT
atid

iy + iy - LB
SXC..X; (&) = {é[ ylatay) — Sy (- ap)] |"-"‘3|

otherwize

Notice that the cross power spectral density Sgezy () is purely imaginary. Particularly, if Sz (@)

is locally symmetric about “0
S, (@) =0
Implying that

Ryx (1) =0

Consequently, the zero-mean processes L and 50 are also uncorrelated
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