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UNIT – I 

PROBABILITY AND RANDOM VARIABLE 

Introduction  

           It is remarkable that a science which began with the consideration of games of chance 

should have become the most important object of human knowledge.  

A brief history  

Probability has an amazing history. A practical gambling problem faced by the French nobleman 

Chevalier de Méré sparked the idea of probability in the mind of Blaise Pascal (1623-1662), the 

famous French mathematician. Pascal's correspondence with Pierre de Fermat (1601-1665), 

another French Mathematician in the form of seven letters in 1654 is regarded as the genesis of 

probability. Early mathematicians like Jacob Bernoulli (1654-1705), Abraham de Moivre (1667-

1754), Thomas Bayes (1702-1761) and Pierre Simon De Laplace (1749-1827) contributed to the 

development of probability. Laplace's Theory Analytique des Probabilities gave comprehensive 

tools to calculate probabilities based on the principles of permutations and combinations. 

Laplace also said, "Probability theory is nothing but common sense reduced to calculation." 

Later mathematicians like Chebyshev (1821-1894), Markov (1856-1922), von Mises (1883-

1953), Norbert Wiener (1894-1964) and Kolmogorov (1903-1987) contributed to new 

developments. Over the last four centuries and a half, probability has grown to be one of the 

most essential mathematical tools applied in diverse fields like economics, commerce, physical 

sciences, biological sciences and engineering. It is particularly important for solving practical 

electrical-engineering problems in communication, signal processing and computers. 

                                  

Notwithstanding the above developments, a precise definition of probability eluded the 

mathematicians for centuries. Kolmogorov in 1933 gave the axiomatic definition of probability 

and resolved the problem. 

 

Randomness arises because of  

o random nature of the generation mechanism  

o Limited understanding of the signal dynamics inherent imprecision in measurement, 

observation, etc. 

For example, thermal noise appearing in an electronic device is generated due to random motion 

of electrons. We have deterministic model for weather prediction; it takes into account of the 

factors affecting weather. We can locally predict the temperature or the rainfall of a place on the 

basis of previous data. Probabilistic models are established from observation of a random 

phenomenon. While probability is concerned with analysis of a random phenomenon, statistics 

help in building such models from data.  
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Deterministic versus probabilistic models  

A deterministic model can be used for a physical quantity and the process generating it provided 

sufficient information is available about the initial state and the dynamics of the process 

generating the physical quantity. For example,  

 We can determine the position of a particle moving under a constant force if we know the 

initial position of the particle and the magnitude and the direction of the force. 

                         

 We can determine the current in a circuit consisting of resistance, inductance and 

capacitance for a known voltage source applying Kirchoff's laws. 

Many of the physical quantities are random in the sense that these quantities cannot be predicted 

with certainty and can be described in terms of probabilistic models only. For example,  

 The outcome of the tossing of a coin cannot be predicted with certainty. Thus the 

outcome of tossing a coin is random. 

                         

 The number of ones and zeros in a packet of binary data arriving through a 

communication channel cannot be precisely predicted is random. 

                  

 The ubiquitous noise corrupting the signal during acquisition, storage and transmission 

can be modelled only through statistical analysis. 

Probability in Electrical Engineering  

  A signal is a physical quantity that varyies with time. The physical quantity is 

converted into the electrical form by means of some transducers . For example, the time-

varying electrical voltage that is generated when one speaks through a telephone is a 

signal. More generally, a signal is a stream of information representing anything from 

stock prices to the weather data from a remote-sensing satellite. 

 
A sample of a speech signal 
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An analog signal  is defined for a continuum of values of domain parameter 

and it can take a continuous range of values.  

A   digital signal    is defined at discrete points and also takes a discrete set of 

values.  

As an example, consider the case of an analog-to-digital (AD) converter. The input to the AD 

converter is an analog signal while the output is a digital signal obtained by taking the samples of 

the analog signal at periodic intervals of time and approximating the sampled values by a 

discrete set of values.  

 

Figure 3 Analog-to-digital (AD) converters  

Random Signal             

           Many of the signals encountered in practice behave randomly in part or as a whole in the 

sense that they cannot be explicitly described by deterministic mathematical functions such as a 

sinusoid or an exponential function. Randomness arises because of the random nature of the 

generation mechanism. Sometimes, limited understanding of the signal dynamics also 

necessitates the randomness assumption. In electrical engineering we encounter many signals 

that are random in nature. Some examples of random signals are:  
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i. Radar signal:   Signals are sent out and get reflected by targets. The reflected signals are 

received and used to locate the target and target distance from the receiver. The received 

signals are highly noisy and demand statistical techniques for processing. 

                        

ii. Sonar signal:   Sound signals are sent out and then the echoes generated by some targets 

are received back. The goal of processing the signal is to estimate the location of the 

target.  

                                   

iii. Speech signal:   A time-varying voltage waveform is produced by the speaker speaking 

over a microphone of a telephone. This signal can be modeled as a random signal.  

A sample of the speech signal is shown in Figure 1. 

                                 

iv. Biomedical signals:   Signals produced by biomedical measuring devices like ECG, 

EEG, etc., can display specific behavior of vital organs like heart and brain. Statistical 

signal processing can predict changes in the waveform patterns of these signals to detect 

abnormality. A sample of ECG signal is shown in Figure 2.  

v. Communication signals: The signal received by a communication receiver is generally 

corrupted by noise. The signal transmitted may the digital data like video or speech and 

the channel may be electric conductors, optical fiber or the space itself. The signal is 

modified by the channel and corrupted by unwanted disturbances in different stages, 

collectively referred to as noise.  

          These signals can be described with the help of probability and other concepts in statistics. 

Particularly the signal under observation is considered as a realization of a random process or a 

stochastic process. The terms random processes, stochastic processes and random signals are 

used synonymously.  

          A deterministic signal is analyzed in the frequency-domain through Fourier series and 

Fourier transforms. We have to know how random signals can be analyzed in the frequency 

domain. 
    

Random Signal Processing  

          Processing refers to performing any operations on the signal. The signal can be amplified, 

integrated, differentiated and rectified. Any noise that corrupts the signal can also be reduced by 

performing some operations. Signal processing thus involves  

o Amplification 

                     

o Filtering  

                  

o Integration and differentiation 

o                               

o Nonlinear operations like rectification, squaring, modulation, demodulation etc.  
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           These operations are performed by passing the input signal to a system that performs the 

processing. For example, filtering involves selectively emphasising certain frequency 

components and attenuating others. In low-pass filtering illustrated in Fig.4, high-frequency 

components are attenuated 

.  

Figure 4 Low-pass filtering  

 

 

 

Signal estimation and detection  

           A problem frequently come across in signal processing is the estimation of the true value 

of the signal from the received noisy data. Consider the received noisy signal given by  

                                         

           where is the desired transmitted signal buried in the noise . 

           Simple frequency selective filters cannot be applied here, because random noise cannot be 

localized to any spectral band and does not have a specific spectral pattern. We have to do this 

by dissociating the noise from the signal in the probabilistic sense. Optimal filters like the 

Wiener filter, adaptive filters and Kalman filter deals with this problem.           
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            In estimation, we try to find a value that is close enough to the transmitted signal. The 

process is explained in Figure 6. Detection is a related process that decides the best choice out of 

a finite number of possible values of the transmitted signal with minimum error probability. In 

binary communication, for example, the receiver has to decide about 'zero' and 'one' on the basis 

of the received waveform. Signal detection theory, also known as decision theory, is based on 

hypothesis testing and other related techniques and widely applied in pattern classification, target 

detection etc. 

 
Figure 6   Signal estimation problem 

 

Source and Channel Coding  

           One of the major areas of application of probability theory is Information theory and 

coding. In 1948 Claude Shannon published the paper "A mathematical theory of communication" 

  which lays the foundation of modern digital communication. Following are two remarkable 

results stated in simple languages :  

 Digital data is efficiently represented with number of bits for a symbol decided by its 

probability of occurrence. 

                                   

 The data at a rate smaller than the channel capacity can be transmitted over a noisy 

channel with arbitrarily small probability of error. The channel capacity again is 

determined from the probabilistic descriptions of the signal and the noise.  

 

 

Basic Concepts of Set Theory  

          The modern approach to probability based on axiomatically defining probability as 

function of a set. A background on the set theory is essential for understanding probability.  

Some of the basic concepts of set theory are: 

Set  

             A set is a well defined collection of objects. These objects are called elements or 

members of the set. Usually uppercase letters are used to denote sets.     

Probability Concepts  
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Before we give a definition of probability, let us examine the following concepts:  

1. Random Experiment: An experiment is a random experiment if its outcome cannot be 

predicted precisely. One out of a number of outcomes is possible in a random 

experiment.  A single performance of the random experiment is called a trial. 

                       

2. Sample Space: The sample space is the collection of all possible outcomes of a 

random experiment. The elements of are called sample points.  

 A sample space may be finite, countably infinite or uncountable.  

 A finite or countably infinite sample space is called a discrete sample space.  

 An uncountable sample space is called a continuous sample space  

3. Event:  An event A is a subset of the sample space such that probability can be assigned 

to it. Thus  

  

 For a discrete sample space, all subsets are events. 

 is the certain event (sure to occur) and is the impossible event. 

 

            

Figure 1  

  

Consider the following examples.  

 

Example 1: tossing a fair coin 

The possible outcomes are H (head) and T (tail). The associated sample space is It 

is a finite sample space. The events associated with the sample space are: and . 

Example 2: Throwing a fair die:  
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The possible 6 outcomes are:  

.           .           .            

           The associated finite sample space is .Some events are  

 

                                  

           And so on.  

Example 3: Tossing a fair coin until a head is obtained 

We may have to toss the coin any number of times before a head is obtained. Thus the possible 

outcomes are: 

                H, TH, TTH, TTTH,  
How many outcomes are there? The outcomes are countable but infinite in number. The 

countably infinite sample space is . 

Example 4 : Picking a real number at random between -1 and +1 

The associated sample space is  

Clearly is a continuous sample space.  
 

Definition of probability  

Consider a random experiment with a finite number of outcomes If all the outcomes of the 

experiment are equally likely , the probability of an event is defined by  

                  

where 

                  

Example 6 A fair die is rolled once. What is the probability of getting a ‘6’ ?  

 

           Here and  
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Example 7 A fair coin is tossed twice. What is the probability of getting two ‘heads'?  

 

           Here and . 

           Total number of outcomes is 4 and all four outcomes are equally likely.  

 

           Only outcome favourable to is {HH} 

 

                                             

Discussion  

 The classical definition is limited to a random experiment which has only a finite number 

of outcomes. In many experiments like that in the above examples, the sample space is 

finite and each outcome may be assumed ‘equally likely.'  In such cases, the counting 

method can be used to compute probabilities of events. 

                                

 Consider the experiment of tossing a fair coin until a ‘head' appears.As we have 

discussed earlier, there are countably infinite outcomes. Can you believe that all these 

outcomes are equally likely?  

                       

 The notion of equally likely is important here. Equally likely means equally probable. 

Thus this definition presupposes that all events occur with equal probability . Thus the 

definition includes a concept to be defined 

Relative-frequency based definition of probability 

If an experiment is repeated times under similar conditions and the event occurs in times, 

then                                                         

 

Example 8 Suppose a die is rolled 500 times. The following table shows the frequency each 

face.  

 

 

                                             

We see that the relative frequencies are close to . How do we ascertain that these relative 

frequencies will approach to as we repeat the experiments infinite no of times?  

Discussion This definition is also inadequate from the theoretical point of view.  
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 We cannot repeat an experiment infinite number of times.  

 How do we ascertain that the above ratio will converge for all possible sequences 

of outcomes of the experiment?  

Axiomatic definition of probability   

We have earlier defined an event as a subset of the sample space. Does each subset of the sample 

space forms an event?  

The answer is yes for a finite sample space. However, we may not be able to assign probability 

meaningfully to all the subsets of a continuous sample space. We have to eliminate those subsets. 

The concept of the sigma algebra is meaningful now.  

 

Definition Let be a sample space and a sigma field defined over it. Let be a 

mapping from the sigma-algebra into the real line such that for each , there exists a 

unique . Clearly is a set function and is called probability, if it satisfies the 

following three axioms. 

 

              

 

    

Figure 2  

Discussion 

 The triplet is called the probability space.  

 Any assignment of probability assignment must satisfy the above three axioms  
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 If ,  

 

This is a special case of axiom 3 and for a discrete sample space , this simpler version 

may be considered as the axiom 3. We shall give a proof of this result below.  

 The events A and B are called mutually exclusive .  

 

Basic results of probability  

 

   From the above axioms we established the following basic results:  

1.  

    Suppose,   

    Then              

Therefore                

Thus    which is possible only if   

2. If  

We have ,  

                 

3. where where   

We have,           

4. If  
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We have, 

          

We can similarly show that ,            

           

  

 

5. If  

We have , 

                         

6. We can apply the properties of sets to establish the following result for  

,

  
The following generalization is known as the principle inclusion-exclusion.  

Probability assignment in a discrete sample space 

 

        Consider a finite sample space . Then the sigma algebra is defined by the power set 

of S. For any elementary event , we can assign a probability P( si ) such that,  

 

                                             

    For any event , we can define the probability  

 

                                             

 

           In a special case, when the outcomes are equi-probable, we can assign equal probability p 

to each elementary event.  
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Example 9 Consider the experiment of rolling a fair die considered in example 2.  

 

           Suppose represent the elementary events. Thus is the event of getting ‘1', 

is the event of getting '2' and so on. 

 

           Since all six disjoint events are equiprobable and we get , 

 

                                             

 

           Suppose is the event of getting an odd face. Then  

 

                                             

Example 10 Consider the experiment of tossing a fair coin until a head is obtained discussed in 

Example 3. Here . Let us call  

 

                                                        

           and so on. If we assign,  then Let is the event 

of obtaining the head before the 4 th toss. Then  
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 Probability assignment in a continuous space  

 

           Suppose the sample space S is continuous and un-countable. Such a sample space arises 

when the outcomes of an experiment are numbers. For example, such sample space occurs when 

the experiment consists in measuring the voltage, the current or the resistance. In such a case, the 

sigma algebra consists of the Borel sets on the real line.  

 

           Suppose and is a non-negative integrable function such that,  

 

                                                        

 

           For any Borel set ,  

           defines the probability on the Borel sigma-algebra B . 

           We can similarly define probability on the continuous space of etc.  

   

Example 11     Suppose  

 

                                                        

           Then for  

 

                                                        

Probability Using Counting Method  

          In many applications we have to deal with a finite sample space and the elementary 

events formed by single elements of the set may be assumed equiprobable. In this case, we can 

define the probability of the event A according to the classical definition discussed earlier:  

                                                             

          where = number of elements favorable to A and n is the total number of elements in the 

sample space . 

 

          Thus calculation of probability involves finding the number of elements in the sample 
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space and the event A. Combinatorial rules give us quick algebraic formulae to find the 

elements in .We briefly outline some of these rules: 

1. Product rule Suppose we have a set A with m distinct elements and the set B with n 

distinct elements and . Then contains mn ordered 

pair of elements. This is illustrated in Fig for m=5 and n=4 n other words if we can 

choose element a in m possible ways and the element b in n possible ways then the 

ordered pair (a, b) can be chosen in mn possible ways.  

 
 

                                        Figure 1 Illustration of the product rule  

 

 

          The above result can be generalized as follows: 

The number of distinct k -tupples in 

is where 

represents the number of distinct elements in . 

 

Example 1   A fair die is thrown twice. What is the probability that a 3 will appear at least once. 

Solution: The sample space corresponding to two throws of the die is illustrated in the following 

table. Clearly, the sample space has elements by the product rule. The event 

corresponding to getting at least one 3 is highlighted and contains 11 elements. Therefore, the 
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required probability is . 

                            

           

Example 2    Birthday problem - Given a class of students, what is the probability of two 

students in the class having the same birthday?   Plot this probability vs. number of students and 

be surprised!. 

 

           Let     be the number of students in the class.  

 

            

 

 

                                             

 

 

           The plot of probability vs number of students is shown in above table. Observe the 

steep rise in the probability in the beginning. In fact this probability for a group of 25 students is 
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greater than 0.5 and that for 60 students onward is closed to 1. This probability for 366 or more 

number of students is exactly one. 

 

  Example 3 An urn contains 6 red balls, 5 green balls and 4 blue balls. 9 balls were picked at 

random from the urn without replacement. What is the probability that out of the balls 4 are red, 

3 are green and 2 are blue?  

 

           Solution :  

           9 balls can be picked from a population of 15 balls in . 

           Therefore the required probability is  

  Example 4    What is the probability that in a throw of 12 dice each face occurs twice.  

 

           Solution: The total number of elements in the sample space of the outcomes of a single 

throw of 12 dice is  

 

           The number of favourable outcomes is the number of ways in which 12 dice can be 

arranged in six groups of size 2 each – group 1 consisting of two dice each showing 1, group 2 

consisting of two dice each showing 2 and so on. 

Therefore, the total number distinct groups  
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           Hence the required probability is  

Conditional probability  

           Consider the probability space . Let A and B two events in . We ask the 

following question –  

Given that A has occurred, what is the probability of B?  

 

           The answer is the conditional probability of B given A denoted by . We shall 

develop the concept of the conditional probability and explain under what condition this 

conditional probability is same as . 

 

                                  

 

           Let us consider the case of equiprobable events discussed earlier. Let  sample points 

be favourable for the joint event . 

   

 

                                           

Figure 1  



 20 

 

 

           Clearly ,                       

This concept suggests us to define conditional probability. The probability of an event B under 

the condition that another event A has occurred is called the conditional probability of B given A 

and defined by  

 

 

                                  

 

 

           We can similarly define the conditional probability of A given B , denoted by .  

 

           From the definition of conditional probability, we have the joint probability of 

two events A and B as follows 

 

 

                                  

   

Example 1 Consider the example tossing the fair die. Suppose 

 

                               

 

 

 Example 2 A family has two children. It is known that at least one of the children is a girl. What 

is the      
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          probability that both the children are girls?  

 

                              A = event of at least one girl  

 

                              B = event of two girls  

 

 

           Clearly,             

 

  Conditional probability and the axioms of probability  

 

           In the following we show that the conditional probability satisfies the axioms of 

probability.  

 

          By definition  

 

          Axiom 1:  

 

                                         

        

         Axiom 2 : 

 

                           We have ,          

 

                            

 

 

           Axiom 3 :  

 

           Consider a sequence of disjoint events .  

                           We have ,           
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Figure 2  

 

 

           Note that the sequence is also sequence of disjoint events.  

 

 

                                             

       

 

 

  Properties of Conditional Probabilities 

If , then  

 

We have ,  
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  Chain Rule of Probability  
 

 
 

We have , 

 

                                                       

 

                                                        

 

          We can generalize the above to get the chain rule of probability  

 

                                  

 

 

Joint Probability  

Joint probability is defined as the probability of both A and B taking place, and is 

denoted by P(AB).  

 

            Joint probability is not the same as conditional probability, though the two concepts are 

often confused. Conditional probability assumes that one event has taken place or will take place, 

and then asks for the probability of the other (A, given B). Joint probability does not have such 

conditions; it simply asks for the chances of both happening (A and B). In a problem, to help 

distinguish between the two, look for qualifiers that one event is conditional on the other 

(conditional) or whether they will happen concurrently (joint). 
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          Probability definitions can find their way into CFA exam questions. Naturally, there may 

also be questions that test the ability to calculate joint probabilities. Such computations require 

use of the multiplication rule, which states that the joint probability of A and B is the product of 

the conditional probability of A given B, times the probability of B. In probability notation: 

                                P(AB) = P(A | B) * P(B) 

Given a conditional probability P(A | B) = 40%, and a probability of B = 60%, the joint 

probability P(AB) = 0.6*0.4 or 24%, found by applying the multiplication rule.  

                         

                              P(AUB)=P(A)+P(B)-P(AחB) 

           For independent events: P(AB) = P(A) * P(B) 

 

Moreover, the rule generalizes for more than two events provided they are all independent of one 

another, so the joint probability of three events P(ABC) = P(A) * (P(B) * P(C), again assuming 

independence. 

 Total Probability   

  Let be n events such that  

Then for any event B,  

                                             

 

           Proof : We have and the sequence is disjoint.  
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Figure 3  

 

Remark  

 

(1) A decomposition of a set S into 2 or more disjoint nonempty subsets is called a partition 

of S.The subsets form a partition of S if 

 
 

(2) The theorem of total probability can be used to determine the probability of a complex 

event in terms of related simpler events. This result will be used in Bays' theorem to be 

discussed to the end of the lecture.  

Example 3 Suppose a box contains 2 white and 3 black balls. Two balls are picked at random 

without replacement.  

 

           Let = event that the first ball is white and 

 

           Let = event that the first ball is black.  

 

           Clearly and form a partition of the sample space corresponding to picking two 

balls from the box.  

 

           Let B = the event that the second ball is white. Then . 
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 Bayes' Theorem 

 
 

 

This result is known as the Baye's theorem. The probability is called the a priori 

probability and is called the a posteriori probability. Thus the Bays' theorem enables us 

to determine the a posteriori probability from the observation that B has occurred. This 

result is of practical importance and is the heart of Baysean classification, Baysean estimation 

etc.  

 

 Example 6  

 

           In a binary communication system a zero and a one is transmitted with probability 0.6 and 

0.4 respectively. Due to error in the communication system a zero becomes a one with a 

probability 0.1 and a one becomes a zero with a probability 0.08. Determine the probability (i) of 

receiving a one and (ii) that a one was transmitted when the received message is one.  

 

           Let S be the sample space corresponding to binary communication. Suppose be event 

of transmitting 0 and be the event of transmitting 1 and and be corresponding events of 

receiving 0 and 1 respectively.  

 

           Given and  
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Example 7: In an electronics laboratory, there are identically looking capacitors of three makes 

in the ratio 2:3:4. It is known that 1% of , 1.5% of  are 

defective. What percentages of capacitors in the laboratory are defective? If a capacitor picked at 

defective is found to be defective, what is the probability it is of make ? 

 

          Let D be the event that the item is defective. Here we have to find . 

 

          Here  

 

          The conditional probabilities are  
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Independent events  
 

           Two events are called independent if the probability of occurrence of one event does not 

affect the probability of occurrence of the other. Thus the events A and B are independent if  

 

                                            and  

 

           where and are assumed to be non-zero.  

 

           Equivalently if A and B are independent, we have 

 

                                             

 

           or                               -------------------- 

        

 Two events A and B are called statistically dependent if they are not independent. Similarly, we 

can define the independence of n events. The events are called independent if 

and only if  

 

                                          

 

 Example 4 Consider the example of tossing a fair coin twice. The resulting sample space is 

given by and all the outcomes are equiprobable.  

 

          Let be the event of getting ‘tail' in the first toss and be the 

event of getting ‘head' in the second toss. Then  

 

                                         and  

   

  Again, so that  
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           Hence the events A and B are independent. 

 

 

  Example 5 Consider the experiment of picking two balls at random discussed in above example  

           In this case, and . 

           Therefore, and and B are dependent.  

     

        

RANDOM VARIABLE 

           In application of probabilities, we are often concerned with numerical values which are 

random in nature. For example, we may consider the number of customers arriving at a service 

station at a particular interval of time or the transmission time of a message in a communication 

system. These random quantities may be considered as real-valued function on the sample space. 

Such a real-valued function is called real random variable and plays an important role in 

describing random data. We shall introduce the concept of random variables in the following 

sections. 

 

 

    A random variable associates the points in the sample space with real numbers.  

 

     Consider the probability space and function mapping the sample space 

     

                 into the real line. Let us define the probability of a subset by  

 

                                             

 

           Such a definition will be valid if is a valid event. If is a discrete sample space, 

is always a valid event, but the same may not be true if is infinite. The concept of 

sigma algebra is again necessary to overcome this difficulty. We also need the Borel sigma 

algebra -the sigma algebra defined on the real line.  

 

           The function is called a random variable if the inverse image of all Borel sets 

under is an event. Thus, if is a random variable, then 
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Figure: Random Variable 

 

Observations: 

 is the domain of . 

 The range of denoted by ,is given by  

 

                       

Clearly . 

 

•  The above definition of the random variable requires that the mapping is such that 

is a valid event in .  If is a discrete sample space, this requirement is met 

by any mapping . Thus any mapping defined on the discrete sample space is a 

random variable.  

  Example 2 Consider the example of tossing a fair coin twice. The sample space is S={ 

HH,HT,TH,TT} and all four outcomes are equally likely. Then we can define a random variable 

as follows  
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           Here . 

 

          Example 3 Consider the sample space associated with the single toss of a fair die. The 

sample space is given by . 

 

           If we define the random variable that associates a real number equal to the number on 

the face of the die, then . 

 

. 

 Discrete, Continuous and Mixed-type Random Variables  

           •  A random variable is called a discrete random variable if is piece-wise 

constant. Thus is flat except at the points of jump discontinuity. If the sample space is 

discrete the random variable defined on it is always discrete.  

 

           •  X is called a continuous random variable if is an absolutely continuous function 

of x . Thus is continuous everywhere on and exists everywhere except at finite 

or countably infinite points .  

 

           •  X is called a mixed random variable if has jump discontinuity at countable 

number of points and increases continuously at least in one interval of X. For a such type RV X,  

 

                                             

 

where is the distribution function of a discrete RV, is the distribution function of 

a continuous RV and o< p <1.  
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      Typical plots of for discrete, continuous and mixed-random variables are shown in 

Figure 1, Figure 2 and Figure 3 respectively.  

The interpretation of and will be given later.  

            

                           Figure 1    Plot of vs. for a discrete random variable  
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UNIT – II 

DISTRIBUTION AND DENSITY FUNCTIONS 

           We have seen that the event and are equivalent and 

.The underlying sample space is omitted in notation and we simply 

write and instead of and respectively.  

 

           Consider the Borel set , where represents any real number. The equivalent 

event is denoted as .The event can be taken 

as a representative event in studying the probability description of a random variable . Any 

other event can be represented in terms of this event. For example, 

 

                                  

and so on. 

  

  The probability is called the probability distribution 

function ( also called the cumulative distribution function , abbreviated as CDF ) of and 

denoted by . Thus  

 

                                             

 

                                                       

Figure 4  
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Example 4:  Consider the random variable in the above example. We have  

                                             

 

                       

 

                       

 
 

                       

            

Figure 5 shows the plot of FX(x)  
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Figure 5  

 

                      

 

 

                       

 Properties of the Distribution Function  

  

This follows from the fact that is a probability and its value should lie between 0 

and 1.  
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 is a non-decreasing function of . Thus, if  

 

 

  Is right continuous. 

 

 

  
 

.  

 

  

. 

  
 

We have , 
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   We can further establish the following results on probability of events on the real line:  

 

                                  

 

                                  

 

                                  

 

          Thus we have seen that given , we can determine the probability of any 

event involving values of the random variable .Thus is a complete description 

of the random variable . 

  Example 5 Consider the random variable defined by  

 

                                         

  Find   a) . 

 

                    b) . 

 

                    c) . 

 

                    d) . 

 

 

          Solution:  
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Figure 6 shows the plot of FX(x). 

            

                                         

Figure 6  

Discrete Random Variables and Probability DENSITY functions  

 

           A random variable is said to be discrete if the number of elements in the range is finite 

or countably infinite.  

 

     First  assume to be countably finite. Let be the elements of . Here the 

mapping partitions into subsets . 

 

           The discrete random variable in this case is completely specified by the probability mass 

function (pmf) . 

 

           Clearly,  

 

                      •   

                      •   

                      •                        

                                                                                                                                                         

                      •  Suppose .Then      
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Figure 6 illustrates a discrete random variable.         

     

                                             Figure 6 Discrete Random Variable  

  Example 1 

 

           Consider the random variable with the distribution function  

 

                                             

           The plot of the is shown in Figure 7 on next page.  
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  The probability mass function of the random variable is given by  

 

                             

Value of the random 

variable X =x  
     pX(x) 

0 
 

  

1  

2 
 

 Continous Random Variables and Probability Density Functions  

 

           For a continuous random variable , is continuous everywhere. Therefore, 

 

                                             
 

           This implies that for  
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           Therefore, the probability mass function of a continuous RV is zero for all .A 

continuous random variable cannot be characterized by the probability mass function. A 

continuous random variable has a very important chacterisation in terms of a function called the 

probability density function.  

 

           If is differentiable, the probability density function ( pdf) of denoted by is 

defined as  

 

                                             

Interpretation of  

 

                                

 

          so that  

 

                               

 

          Thus the probability of lying in some interval is determined by . In 

that sense, represents the concentration of probability just as the density represents the 

concentration of mass. 

 Properties of the Probability Density Function  

 . 

          This follows from the fact that is a non-decreasing function  
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     •  

     •   

    •   

Figure 8 below illustrates the probability of an elementary interval in terms of the pdf. 

                   

         

 

      Example 2 Consider the random variable with the distribution function  

 

 

                               

   The pdf of the RV is given by  

 

                                  

       Remark: Using the Dirac delta function we can define the density function for a discrete 
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random variables.  

 

           Consider the random variable defined by the probability mass function (pmf) 

 

                                 . 

 

           The distribution function can be written as 

                                

           where is the shifted unit-step function given by 

                    

           Then the density function can be written in terms of the Dirac delta function as  

 

                                             

      Example 3 

         Consider the random variable defined with the distribution function given by,  

 

                                             

Probability Density Function of Mixed Random Variable  

 

           Suppose is a mixed random variable with having jump discontinuity at 

. As already stated, the CDF of a mixed random variable is given by  

 

                                  

where is a discrete distribution function of and is a continuous distribution 

function of .  

           The corresponding pdf is given by  
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           where  

                                 

           and is a continuous pdf. We can establish the above relations as follows. 

Suppose denotes the countable subset of points on such that the random 

variable is characterized by the probability mass function . Similarly, let 

be a continuous subset of points on such that RV is characterized by the 

probability density function .  

         Clearly the subsets and partition the set If , then .  

         Thus the probability of the event can be expressed as  

 

                            

 

     Taking the derivative with respect to x , we get  

               

  Example 4 Consider the random variable with the distribution function  

                         

The plot of is shown in Figure 9 on next page  
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where    

                              

 

Figure 10  

 The pdf is given by  

 

                                

            where  

                                

      and  

                              



 46 

 

Example 5 

 

    X is the random variable representing the life time of a device with the PDF for . 

Define the following random variable  

 

                                  

Find FY(y).  

Solution:                    

                                

                               

                            

   

OTHER DISTRIBUTION AND DENSITY RVS 

In the following, we shall discuss a few commonly-used discrete random variabes. The 

importance of these random variables will be highlighted.  

Bernoulli random variable  
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       Suppose X is a random variable that takes two values 0 and 1, with probability mass 

functions  

And 

                

Such a random variable X is called a Bernoulli random variable, because it describes the 

outcomes of a Bernoulli trial.  

       The typical CDF of the Bernoulli RV is as shown in Figure 2  

  

 

Figure 2  

 Remark  

We can define the pdf of  with the help of Dirac delta function. Thus 

 

Example 2 Consider the experiment of tossing a biased coin. Suppose and

. 

If we define the random variable and then  is a Bernoulli random 

variable.  

Mean and variance of the Bernoulli random variable  
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Remark  

 The Bernoulli RV is the simplest discrete RV. It can be used as the building block for 

many discrete RVs.  

 For the Bernoulli RV,  

 

Thus all the moments of the Bernoulli RV have the same value of    

Binomial random variable  

       Suppose X is a discrete random variable taking values from the set . is called a 

binomial random variable with parameters n and if  

 

       where  

 

        As we have seen, the probability of k successes in n independent repetitions of the Bernoulli 

trial is given by the binomial law. If X is a discrete random variable representing the number of 

successes in this case, then X is a binomial random variable. For example, the number of heads in 

‘n ' independent tossing of a fair coin is a binomial random variable.  

 The notation is used to represent a binomial RV with the parameters and 

. 

  
 The sum of n independent identically distributed Bernoulli random variables is a 

binomial random variable.  

 The binomial distribution is useful when there are two types of objects - good, bad; 

correct, erroneous; healthy, diseased etc.  
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Example 3 In a binary communication system, the probability of bit error is 0.01. If a block of 8 

bits are transmitted, find the probability that  

       (a)  Exactly 2 bit errors will occur  

       (b)  At least 2 bit errors will occur  

       (c)  More than 2 bit errors will occur  

       (d)  All the bits will be erroneous  

        Suppose is the random variable representing the number of bit errors in a block of 8 bits. 

Then  

  Therefore,  

        

        

 

       The probability mass function for a binomial random variable with n = 6 and p =0.8 is 

shown in the Figure 3 below.  
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Figure 3  

Mean and Variance of the Binomial Random Variable  
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Where  

        

      . 

   

Poisson Random Variable  

A discrete random variable X is called a Poisson random variable with the parameter if 

and 

 

The plot of the pmf of the Poisson RV is shown in Figure 2  
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Figure 2  

Mean and Variance of the Poisson RV  

The mean of the Poisson RV X is given by  
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   Example 3 The number of calls received in a telephone exchange follows a Poisson 

distribution with an average of 10 calls per minute. What is the probability that in one-minute 

duration?  

i.   no call is received  

ii.   exactly 5 calls are received  

iii.   More than 3 calls are received.  

 Solution: Let X be the random variable representing the number of calls received. Given  

   

        Where Therefore, 

i. probability that no call is received 0.000095  

ii. probability that exactly 5 calls are received 0.0378  

iii. probability that more the 3 calls are received 

0.9897 

Poisson Approximation of the Binomial Random Variable  

The Poisson distribution is also used to approximate the binomial distribution when n is 

very large and p is small.  
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Consider binomial RV with with 

 

Then                           

                         

                                    

                                  

     

                  

                   

                   

 

Thus the Poisson approximation can be used to compute binomial probabilities for large n. It also 

makes the analysis of such probabilities easier. Typical examples are:  

 number of bit errors in a received binary data file  
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 number of typographical errors in a printed page  

Example 4 Suppose there is an error probability of 0.01 per word in typing. What is the 

probability that there will be more than 1 error in a page of 120 words? 

Solution:  Suppose X is the RV representing the number of errors per page of 120 words.  

                  Where Therefore,  

                    

In the following we shall discuss some important continuous random variables.  

 Uniform Random Variable  

 

        A continuous random variable X is called uniformly distributed over the interval [a, b], 

, if its probability density function is given by  

 

          

 

 

                                                 

Figure 1  

We use the notation to denote a random variable X uniformly distributed over the 

interval  

[a,b]. Also note that 
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     Distribution function  

 

                               

                                 

 

Figure 2 illustrates the CDF of a uniform random variable. 

 

                                                  

Figure 2  

Mean and Variance of a Uniform Random Variable  
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The characteristic function of the random variable is given by  

 

                          

 

  

  Example 1  

       Suppose a random noise voltage X across an electronic circuit is uniformly distributed 

between -4 V and 5 V. What is the probability that the noise voltage will lie between 2 V and 3 

V? What is the variance of the voltage? 

 

                          

 Normal or Gaussian Random Variable  

 

    The normal distribution is the most important distribution used to model natural and man 

made phenomena. Particularly, when the random variable is the result of the addition of large 

number of independent random variables, it can be modelled as a normal random variable.  
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     A continuous random variable X is called a normal or a Gaussian random variable with 

parameters and if its probability density function is given by,  

                                    

   

Where and are real numbers.  

   We write that X is distributed.  

   If and ,  

                        

   and the random variable X is called the standard normal variable.  

Figure 3 illustrates two normal variables with the same mean but different variances. 

 

          

Figure 3  

 Is a bell-shaped function, symmetrical about .  

 Determines the spread of the random variable X . If is small X is more 

concentrated around the mean .  
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 Distribution function of a Gaussian random variable 

              

Substituting , we get  

               

                           

where is the distribution function of the standard normal variable.  

  Thus can be computed from tabulated values of . The table was very useful 

in the pre-computer days.  

 

       In communication engineering, it is customary to work with the Q function defined by,  

 

                             

     Note that and  

                    

These results follow from the symmetry of the Gaussian pdf. The function is tabulated and 

the tabulated results are used to compute probability involving the Gaussian random variable.  

     

  Using the Error Function to compute Probabilities for Gaussian Random Variables 

The function is closely related to the error function and the complementary error 

function . 

Note that,  

And the complementary error function is given by  
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Mean and Variance of a Gaussian Random Variable    

If X is distributed, then  

                          

                          

 

 

      Proof: 
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Exponential Random Variable 

 

         A continuous random variable is called exponentially distributed with the parameter 

if the probability density function is of the form          
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Figure 1 shows the typical pdf of an exponential RV.  

                                  

Figure 1  

Example 1 

 

Suppose the waiting time of packets in in a computer network is an exponential RV with  

 

                      

Rayleigh Random Variable 

 

    A Rayleigh random variable X is characterized by the PDF  

 

                                                  

 

        where is the parameter of the random variable.  
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 The probability density functions for the Rayleigh RVs are illustrated in Figure 6.  

 

                        

Figure 6  

Mean and Variance of the Rayleigh Distribution  
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Similarly, 

 

                           

Relation between the Rayleigh Distribution and the Gaussian Distribution  

 

        A Rayleigh RV is related to Gaussian RVs as follow: If and 

are independent, then the envelope has the Rayleigh distribution with the 

parameter . 

        We shall prove this result in a later lecture. This important result also suggests the cases 

where the Rayleigh RV can be used.  

 

    Application of the Rayleigh RV  

 Modeling the root mean square error-  

 Modeling the envelope of a signal with two orthogonal components as in the case of a 

signal of the following form: 

 

Conditional Distribution and Density functions  

           We discussed conditional probability in an earlier lecture. For two events A and B with 

, the conditional probability was defined as 

                                             

           Clearly, the conditional probability can be defined on events involving a random variable 

X .  
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 Conditional distribution function  

 

           Consider the event and any event B involving the random variable X . The 

conditional distribution function of X given B is defined as 

 

                                             

   We can verify that satisfies all the properties of the distribution function. 

Particularly.  

 And . 

 . 

 Is a non-decreasing function of . 

  

     

 Conditional Probability Density Function 

 

           In a similar manner, we can define the conditional density function of the 

random variable X given the event B as  

                                           

  All the properties of the pdf applies to the conditional pdf and we can easily show that  
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Example 1 Suppose X is a random variable with the distribution function . Define 

 
                                                       

 
           Case 1:  
 

           Then 

 

                                                           

And 

 

                                         

 

          Case 2:  
 

                                         

          and 
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and are plotted in the following figures.  

 

                                

Figure 1  
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   Example 2 Suppose is a random variable with the distribution function and 

.  

 

           Then             

 

           For ,  .Therefore,  

 

                                  

 For ,   .Therefore,      

  

                       

           Thus,  

 

                                          

 

           the corresponding pdf is given by  
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Example 3 Suppose X is a random variable with the probability density function 

and  . Then 

                                    

                                                   

                                              

                                         

          where          and        

Remark 

                         is the standard Gaussian distribution.  

                       is called the truncated Gaussian and plotted in Figure 3 on next page. 
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OPERATION ON RANDOM VARIABLE-EXPECTATIONS 
 

     Expected Value of a Random Variable  

 The expectation operation extracts a few parameters of a random variable and provides a 

summary description of the random variable in terms of these parameters.  

 It is far easier to estimate these parameters from data than to estimate the distribution or 

density function of the random variable.  

 Moments are some important parameters obtained through the expection operation.  

Expected value or mean of a random variable  

        The expected value of a random variable is defined by  

 

                         Provided exists.  
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        Is also called the mean or statistical average of the random variable and is denoted 

by  

Note that, for a discrete RV  with the probability mass function (pmf) 

the pdf is given by  

 

 

       Thus for a discrete random variable with  

 

  

Figure1 Mean of a random variable  

Example 1  

       Suppose is a random variable defined by the pdf 
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  Then  

 

Example 2  

       Consider the random variable with the pmf as tabulated below  

Value of the random 

variable x  
0 1 2 3 

pX(x) 
    

Then 

            

Example 3 Let X be a continuous random variable with  

                      

                Then  

                                      

                                            =   
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                                            =   

Hence EX does not exist. This density function is known as the Cauchy density function.  

Expected value of a function of a random variable  

       Suppose is a real-valued function of a random variable as discussed in the last 

class.  

Then,  

                            

       We shall illustrate the above result in the special case when is one-to-one 

and monotonically increasing function of x In this case,  

            

Figure 2  
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The following important properties of the expectation operation can be immediately derived:  

   (a) If   is a constant,  

       Clearly  

        (b) If are two functions of the random variable and   are 

constants,  

 

 

  The above property means that is a linear operator.  

MOMENTS ABOUT THE ORIGIN: 

Mean-square value   
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MOMENTS ABOUT THE MEAN 

Variance 

 Second central moment is called as variance  

  For a random variable with the pdf and mean the variance of is denoted by 

and      

    defined as  

       Thus for a discrete random variable with  

 

       The standard deviation of is defined as  

Example 4  

       Find the variance of the random variable in the above example  

 

 

Example 5  

       Find the variance of the random variable discussed in above example. As already computed  

 

  

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_02_random_variables/lect_11/slides/slide5.htm
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For example, consider two random variables with pmf as shown below. Note that 

each of has zero mean.The variances are given by and implying that 

has more spread about the mean.  

Properties of variance 

       (1)  

 

 

       (2) If then  

 

(3) If is a constant,  

 

nth moment of a random variable  

       We can define the nth moment and the nth central- moment of a random variable X by the 

following relations  
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       Note that  

 The mean is the first moment and the mean-square value is the second 

moment  

 The first central moment is 0 and the variance  is the second central 

moment  

SKEWNESS 

 The third central moment measures lack of symmetry of the pdf of a random variable 

is called the coefficient of skewness and if the pdf is   symmetric this 

coefficient will be zero.  

 The fourth central moment measures flatness or peakedness of the pdf of a random 

variable.  Is called kurtosis. If the peak of the pdf is sharper, then the 

random variable has a higher kurtosis.  

  

Inequalities based on expectations  

       The mean and variance also give some quantitative information about the bounds of RVs. 

Following inequalities are extremely useful in many practical problems.  

Chebychev Inequality  

       Suppose a parameter of a manufactured item with known mean The 

quality control department rejects the item if the absolute deviation of from is greater than 

 

 The standard deviation gives us an intuitive idea how the random variable is distributed 

about the mean. This idea is more precisely expressed in the remarkable Chebysev Inequality 

stated below. For a random variable with mean  
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Proof:  

  

 

 

      

 

 

 

 

Characteristic function  

Consider a random variable with probability density function The characteristic 

function of denoted by is defined as  

 

Note the following:  

 is a complex quantity, representing the Fourier transform of and 

traditionally using instead of This implies that the properties of the Fourier 

transform applies to the characteristic function.  

 The interpretation that is the expectation of helps in calculating moments 

with the help of the characteristics function. In a simple case ,  

 

 As always non-negative and , always exists. We can get 

from by the inverse transform  
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Example 1  

Consider the random variable X with pdf given by  

= 0 otherwise. The characteristics function is given by 

 

Solution:  

 

Example 2  

The characteristic function of the random variable with  

 

Characteristic function of a discrete random variable 

Suppose X is a random variable taking values from the discrete set with 

corresponding probability mass function for the value  

Then,  
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If Rx is the set of integers, we can write           

In this case can be interpreted as the discrete-time Fourier transform with 

substituting in the original discrete-time Fourier transform. The inverse relation is 

      

 

Moments and the characteristic function  

Given the characteristics function the nth moment is given by  

 

To prove this consider the power series expansion of  

 

Taking expectation of both sides and assuming  to exist, we get  
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Taking the first derivative of with respect to at we get  

 

Similarly, taking the derivative of with respect to at we get  

 

Thus ,  

 

TRANSFORMATION OF A RANDOM VARIABLE 

Description: 

Suppose we are given a random variable X with density fX(x). We apply a function g 

to produce a random variable Y = g(X). We can think of X as the input to a black 

box,and Y the output. 
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UNIT-III 

MULTIPLE RANDOM VARIABLES AND OPERATIONS 

 

  Multiple Random Variables 

           In many applications we have to deal with more than two random variables. For example, 

in the navigation problem, the position of a space craft is represented by three random variables 

denoting the x, y and z coordinates. The noise affecting the R, G, B channels of colour video 

may be represented by three random variables. In such situations, it is convenient to define the 

vector-valued random variables where each component of the vector is a random variable.  

 

           In this lecture, we extend the concepts of joint random variables to the case of multiple 

random variables. A generalized analysis will be presented for random variables defined on 

the same sample space.  

Jointly Distributed Random Variables  

          We may define two or more random variables on the same sample space. Let and be 

two real random variables defined on the same probability space The mapping 

such that for is called a joint random variable.  

                                

         

Figure 1  

  

Joint Probability Distribution Function  
 

      Recall the definition of the distribution of a single random variable. The event was 

used to define the probability distribution function . Given , we can find the 
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probability of any event involving the random variable. Similarly, for two random variables 

and , the event is considered as the representative event. 

      The probability is called the joint distribution function or the 

joint cumulative distribution function (CDF) of the random variables and and denoted by 

. 

 

                                                 

Figure 2  

 

Properties of JPDF 

      

 satisfies the following properties:  

 

          1)    

     

           2)                                          

 

           3)             

                  Note that  

 

          4)         

          5)  is right continuous in both the variables.  

 

          6)    
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                                   Given ,we have a complete description 

of the random variables and . 

 

         7)    

 

                    To prove this  

                                          

                    Similarly . 

 

                Given , each of is called a 

marginal    

              Distribution   function or marginal cumulative distribution function (CDF).  

 

 

Jointly Distributed Discrete Random Variables  

 

        If and are two discrete random variables defined on the same probability space 

such that takes values from the countable subset and takes values from the 

countable subset .Then the joint random variable can take values from the countable 

subset in . The joint random variable is completely specified by their joint 

probability mass function  

 

                 

   Given , we can determine other probabilities involving the random variables and 

 
 

  Remark  

 

        •   

 

        •   
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       This is because          

 

        •  Marginal Probability Mass Functions: The probability mass functions and 

are obtained from         the joint probability mass function as follows  

 

                                 
        and similarly  

                                 
 

        These probability mass functions and obtained from the joint probability mass 

functions are  called marginal probability mass functions . 

Example 4 Consider the random variables and with the joint probability mass function as 

tabulated in Table 1. The marginal probabilities and are as shown in the last 

column and the last row respectively.  

                                

Table 1 

Joint Probability Density Function 
 

            If and are two continuous random variables and their joint distribution function is 

continuous in both  and , then we can define joint probability density function by 

                             provided it exists. 
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            Clearly      

Properties of Joint Probability Density Function  

 

          •  is always a non-negative quantity. That is,  

 

                                

 

          •   

 

          •  The probability of any Borel set can be obtained by  

                         

   Marginal density functions  

          The marginal density functions and of two joint RVs and are given by 

the derivatives of the corresponding marginal distribution functions. Thus  

 

Example 5 The joint density function of the random variables in Example 3 is  

 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_02_random_variables/lect_18/slides/slide6.htm
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    Example 6 The joint pdf of two random variables and are given by  

 

                                 

        •  Find .  

        • Find .  

        • Find and .  

        • What is the probability ? 
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 Conditional Distributions  

   We discussed the conditional CDF and conditional PDF of a random variable conditioned on 

some events defined in terms of the same random variable. We observed that 

              

   and  

              

 

   We can define these quantities for two random variables. We start with the conditional 

probability mass functions for two random variables.  

  Conditional Probability Density Functions 

 

   Suppose and are two discrete jointly random variable with the joint PMF The 

conditional PMF of given is denoted by and defined as  

  

   

Similarly we can define the conditional probability mass function  
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      Conditional Probability Distribution Function  

 

   Consider two continuous jointly random variables and  with the joint probability 

distribution function  We are interested to find the conditional distribution function of 

one of the random variables on the condition of a particular  value of the other random variable.  

   We cannot define the conditional distribution function of the random variable on the 

condition of the event by the relation  

                 

   as  in the above expression. The conditional distribution function is defined in the 

limiting sense as    follows: 

  

        

Conditional Probability Density Function 
 

           is called the conditional probability density function of 

given  

 

  Let us define the conditional distribution function .  

 

  The conditional density is defined in the limiting sense as follows  
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  Because,  

  The right hand side of the highlighted equation is  

   

 

          

  Similarly we have  

          

    Two random variables are statistically independent if for all  

 

    •    

Example 2 X and Y are two jointly random variables with the joint pdf given by 

     

 find,  

(a)  

(b)   

(c)   

 Solution:  
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Since  

We get  

 

 

 

 

 

 

 Independent Random Variables (or) Statistical Independence 

Let and be two random variables characterized by the joint distribution function 

 

         

  and the corresponding joint density function  

  Then and are independent if and are independent events. 

Thus, 
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    and equivalently    

 Sum of Two Random Variables 

   We are often interested in finding out the probability density function of a function of two or 

more RVs. Following are a few examples.  

         •  The received signal by a communication receiver is given by  

                      

   where is received signal which is the superposition of the message signal and the noise 

. 

 

 

                                                         

 • The frequently applied operations on communication signals like modulation, demodulation, 

correlation etc. involve multiplication of two signals in the form Z = XY.  

 

    We have to know about the probability distribution of in any analysis of . More formally, 

given two random variables X and Y with joint probability density function and a 

function we have to find . 

 

    In this lecture, we shall address this problem.  
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  Probability Density of the Function of Two Random Variables  

  We consider the transformation  

  Consider the event corresponding to each z. We can find a variable subset 

such that .  

 

Figure 1  

  

 

 

          

Probability density function of Z = X + Y .  

   Consider Figure 2  
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Figure 2  
                                      

We have  

                                

 

Therefore, is the colored region in the Figure 2.  
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 If X and Y are independent  

 

        

                 

   Where * is the convolution operation.  

 Example 1  
 

   Suppose X and Y are independent random variables and each uniformly distributed over (a, b). 

And are as shown in the figure below. 

                          

    

The PDF of is a triangular probability density function as shown in the figure. 

Central Limit Theorem  

          Consider independent random variables   .The mean and variance of 

each of the random variables are assumed to be known. Suppose and 

. Form a random variable 

                      

The mean and variance of are given by  
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          and         

Thus we can determine the mean and the variance of .  

         Can we guess about the probability distribution of ? 

         The central limit theorem (CLT) provides an answer to this question. 

The CLT states that under very general conditions   converges in distribution to 

as . The conditions are: 

1. The random variables are independent and identically distributed. 

2. The random variables are independent with same mean and variance, but 

not identically distributed.  

3. The random variables are independent with different means and same 

variance and not identically distributed.  

4. The random variables are independent with different means and each 

variance being neither too small nor too large.  

We shall consider the first condition only. In this case, the central-limit theorem can be stated as 

follows:  

Proof of the Central Limit Theorem: 

           We give a less rigorous proof of the theorem with the help of the characteristic function. 

Further we consider each of to have zero mean. Thus,  

           Clearly,     

           The characteristic function of is given by  
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We will show that as the characteristic function is of the form of the characteristic 

function of a Gaussian random variable.  

           Expanding in power series  

                            

Assume all the moments of to be finite. Then  

                   

      Substituting  

                  

      where is the average of terms involving and higher powers of .  

Note also that each term in involves a ratio of a higher moment and a power of and 

therefore,  

                  

               

       which is the characteristic function of a Gaussian random variable with 0 mean and variance 

.  

                   

 

OPERATIONS ON MULTIPLE RANDOM VARIABLES 

 Expected Values of Functions of Random Variables  

     If is a function of a continuous random variable then  

     If is a function of a discrete random variable then 
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             Suppose  is a function of continuous random variables then the 

expected value of is given by  

                               

Thus can be computed without explicitly determining . 

    We can establish the above result as follows.  

    Suppose has roots at . Then  

                             

    Where  

    Is the differential region containing The mapping is illustrated in Figure 1 for

. 

 

                             

Figure 1  
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Note that  

 

 

   As is varied over the entire axis, the corresponding (non-overlapping) differential regions 

in plane cover the entire plane. 

 

                                        

 

   Thus, 

 

                                              

If is a function of discrete random variables , we can similarly show that  

                                  

   Example 1 The joint pdf of two random variables is given by  
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Find the joint expectation of  

 

                                     

    Example 2   If  

 

                                   
 

  Proof: 

                                  

 

  Thus, expectation is a linear operator. 

Example 3 

      Consider the discrete random variables discussed in Example 4 in lecture 18.The 

joint probability mass function of the random variables are tabulated in Table . Find the joint 

expectation of . 

 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_02_random_variables/lect_18/slides/slide10.htm
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Remark  
 

            (1) We have earlier shown that expectation is a linear operator. We can generally write  

                                  

 

                 Thus                      

            (2) If are independent random variables and ,then  

 

                                 

Joint Moments of Random Variables 

     
   Just like the moments of a random variable provide a summary description of the random 

variable, so also the joint moments provide summary description of two random variables. For 

two continuous random variables , the joint moment of order is defined as  

                       

 

    And the joint central moment of order is defined as  
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    where and  

Remark  

         (1)   If are discrete random variables, the joint expectation of order and is 

defined as  

                       

  (2)  If and , we have the second-order moment of the random variables 

given by  

                         

    (3) If are independent,  

   Covariance of two random variables  

   The covariance of two random variables is defined as  

                             

Cov(X, Y) is also denoted as . 

Expanding the right-hand side, we get  

                             

   The ratio is called the correlation coefficient.   



 104 

           If then are called positively correlated.  

           If then are called negatively correlated  

           If then are uncorrelated. 

 

We will also show that  To establish the relation, we prove the following result:  

 

   For two random variables  

   Proof:  

   Consider the random variable  

                     .  

   Non-negativity of the left-hand side implies that its minimum also must be nonnegative.  

   For the minimum value,  

                             

   so the corresponding minimum is 

                 

Since the minimum is nonnegative, 

    

  Now  
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     Thus   

Uncorrelated random variables  

                     Two random variables are called uncorrelated if  

                                  

   Recall that if are independent random variables, then  

 

      then              

Thus two independent random variables are always uncorrelated.  

 Note that independence implies uncorrelated. But uncorrelated generally does not imply 

independence (except for jointly Gaussian random variables). 

Joint Characteristic Functions of Two Random Variables  

 

   The joint characteristic function of two random variables X and Y is defined by  

                                   

 

   If and are jointly continuous random variables, then  
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   Note that is same as the two-dimensional Fourier transform with the basis function 

instead of 

 

   is related to the joint characteristic function by the Fourier inversion formula  

                             

 If and are discrete random variables, we can define the joint characteristic function in 

terms of the joint probability mass function as follows:  

 

                                

 

 

Properties of the Joint Characteristic Function 

   The joint characteristic function has properties similar to the properties of the chacteristic 

function of a single random variable. We can easily establish the following properties:  

 

            1.  

            2.   

            3. If and are independent random variables, then  

 

                                   

           4. We have,  
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                    Hence,  

                         

 In general, the order joint moment is given by  

 

                             

 

    Example 2  The joint characteristic function of the jointly Gaussian random variables and 

with the joint pdf  

 

                              

 

 

    Let us recall the characteristic function of a Gaussian random variable  
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 If and is jointly Gaussian,  

 

                                          

 

    we can similarly show that  

 

                               

 

    We can use the joint characteristic functions to simplify the probabilistic analysis as illustrated 

on next page: 

 

Jointly Gaussian Random Variables  

Many practically occurring random variables are modeled as jointly Gaussian random variables. 

For example, noise samples at different instants in the communication system are modeled as 

jointly Gaussian random variables.  

Two random variables are called jointly Gaussian if their joint probability density  
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  The joint pdf is determined by 5 parameters 

 means  

 variances  

 correlation coefficient  

We denote the jointly Gaussian random variables and with these parameters as         

                                       

 The joint pdf has a bell shape centered at as shown in the Figure 1 below. The 

variances determine the spread of the pdf surface and determines the orientation 

of the surface in the plane. 

                                

Figure 1 Jointly Gaussian PDF surface  

 

Properties of jointly Gaussian random variables  

   (1) If and are jointly Gaussian, then and are both Gaussian.  
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   We have  

 

                               

Similarly  

                          

 

    (2) The converse of the above result is not true. If each of and is Gaussian, and are 

not necessarily jointly Gaussian. Suppose  

 

                          

 

    in this example is non-Gaussian and qualifies to be a joint pdf. Because,  

    And  
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The marginal density is given by  

 

      

Similarly,  

 

   Thus and are both Gaussian, but not jointly Gaussian.  

      (3) If and are jointly Gaussian, then for any constants and ,the random variable 

given by is Gaussian with mean and variance 

 
         (4) Two jointly Gaussian RVs and are independent if and only if and are 

uncorrelated .Observe that if and are uncorrelated, then  
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Example 1 Suppose X and Y are two jointly-Gaussian 0-mean random variables with variances 

of 1 and 4 respectively and a covariance of 1. Find the joint PDF  

We have  

 

   Example 2 Linear transformation of two random variables  

   Suppose then  

 

                            

 If and are jointly Gaussian, then  

 

 

                            

   Which is the characteristic function of a Gaussian random variable with  

   mean    and       variance  

 

   thus the linear transformation of two Gaussian random variables is a Gaussian random 

variable.  
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   Example 3  If Z = X + Y and X and Y are independent, then  

                            
 

   Using the property of the Fourier transform, we get  

                               

Hence proved. 

   Univariate transformations 

When working on the probability density function (pdf) of a random variable X, one 

is often led to create a new variable Y defined as a function f(X) of the original variable X. For 

example, if X~N(µ, ²), then the new variable:  

Y = f(X) = (X - µ)/  

Is N (0, 1). 

 

It is also often the case that the quantity of interest is a function of another (random) 

quantity whose distribution is known. Here are a few examples: 

*Scaling: from degrees to radians, miles to kilometers, light-years to parsecs, degrees    

Celsius to degrees Fahrenheit, linear to logarithmic scale, to the distribution of the variance  

* Laws of physics: what is the distribution of the kinetic energy of the molecules of a gas if 

the distribution of the speed of the molecules is known ? 

  

So the general question is: 

    * If Y = h(X), 

    * And if f(x) is the pdf of X,  

  

Then what is the pdf g(y) of Y? 

 

TRANSFORMATION OF A MULTIPLE RANDOM VARIABLES 

 

Multivariate transformations 

 

The problem extends naturally to the case when several variables Yj are defined from 

several variables Xi through a transformation y = h(x).  

Here are some examples: 

http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_Pos_Q.htm#Probability density function
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Rotation of the reference frame 

            Let f(x, y) be the probability density function of the pair of r.v. {X, Y}. Let's rotate 

the reference frame {x, y} by an angle . The new axes {x', y'} define two new r. v. {X', 

Y'}. What is the joint probability density function of {X', Y'}? 

Polar coordinates 

            Let f(x, y) be the joint probability density function of the pair of r. v. {X, Y}, 

expressed in the Cartesian reference frame {x, y}. Any point (x, y) in the plane can also be 

identified by its polar coordinates (r, ). So any realization of the pair {X, Y} produces a 

pair of values of r and , therefore defining two new r. v. R and . 

What is the joint probability density function of R and? What are the (marginal) 

distributions of R and of ? 

Sampling distributions 

            Let f(x) is the pdf of the r. v. X. Let also Z1 = z1(x1, x2... xn) be a statistic, e.g. the 

sample mean. What is the pdf of Z1?  

Z1 is a function of the n r. v. Xi (with n the sample size), that are lid with pdf f(x). If it 

is possible to identify n - 1 other independent statistics Zi, i = 2... n, then a transformation 

Z = h(X) is defined, and g(z), the joint distribution of Z = {Z1, Z2, ..., Zn} can be calculated. 

The pdf of Z1 is then calculated as one of the marginal distributions of Z by integrating g(z) 

over  zi , i = 2, .., n. 

Integration limits 

            Calculations on joint distributions often involve multiple integrals whose 

integration limits are themselves variables. An appropriate change of variables sometimes 

allows changing all these variables but one into fixed integration limits, thus making the 

calculation of the integrals much simpler. 

Linear Transformations of Random Variables 

A linear transformation is a change to a variable characterized by one or more of the 

following operations: adding a constant to the variable, subtracting a constant from the variable, 

multiplying the variable by a constant, and/or dividing the variable by a constant. 

When a linear transformation is applied to a random variable, a new random variable is 

created. To illustrate, let X be a random variable, and let m and b be constants. Each of the 

following examples show how a linear transformation of X defines a new random variable Y. 

 Adding a constant: Y = X + b  

 Subtracting a constant: Y = X - b  
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 Multiplying by a constant: Y = mX  

 Dividing by a constant: Y = X/m  

 Multiplying by a constant and adding a constant: Y = mX + b  

 Dividing by a constant and subtracting a constant: Y = X/m - b  

 

 

Suppose the vector of random variables has the joint distribution

. Set for some square matrix and vector . If then 

has the joint distribution  

Indeed, suppose (this is the notation for "the is the distribution density of ") and 

. For any domain of the space we can write

 We make the change of variables 

in the last integral.  

 

 

(Linear transformation of 

random variables) 

The linear transformation is distributed as . The  was defined in the section ( 

Definition of normal variable).  

For two independent standard normal variables (s.n.v.) and the combination 

is distributed as .  

A product of normal variables is not a normal variable. See the section on the chi-squared 

distribution.  
 

 

 

 

http://www.opentradingsystem.com/quantNotes/Definition_of_normal_variable_.html#Normal_variable
http://www.opentradingsystem.com/quantNotes/Definition_of_normal_variable_.html#Normal_variable
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UNIT –IV 

STOCHASTIC PROCESSES-TEMPORAL CHARACTERISTICS 

Random Processes  

           In practical problems, we deal with time varying waveforms whose value at a time is 

random in nature. For example, the speech waveform recorded by a microphone, the signal 

received by communication receiver or the daily record of stock-market data represents random 

variables that change with time. How do we characterize such data? Such data are characterized 

as random or stochastic processes. This lecture covers the fundamentals of random processes. 

           Recall that a random variable maps each sample point in the sample space to a point in the 

real line. A random process maps each sample point to a waveform.  

           Consider a probability space . A random process can be defined on as 

an indexed family of random variables where is an index set, which may 

be discrete or continuous, usually denoting time. Thus a random process is a function of the 

sample point and index variable and may be written as . 

                    

 

Example 1 Consider a sinusoidal signal where is a binary random 

variable with probability mass functions and  

Clearly, is a random process with two possible realizations and 

At a particular time is a random variable with two values 

and . 

 Classification of a Random Process 
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a) Continuous-time vs. Discrete-time process  

          If the index set is continuous, is called a continuous-time process. 

If the index set is a countable set, is called a discrete-time process. Such a 

random process can be represented as and called a random sequence. Sometimes 

the notation is used to describe a random sequence indexed by the set of positive 

integers. 

            We can define a discrete-time random process on discrete points of time. Particularly, we 

can get a discrete-time random process by sampling a continuous-time process \

 at a uniform interval such that    

            The discrete-time random process is more important in practical implementations. 

Advanced statistical signal processing techniques have been developed to process this type of 

signals. 

 b) Continuous-state vs. Discrete-state process  

          The value of a random process is at any time can be described from its probabilistic 

model. 

          The state is the value taken by at a time , and the set of all such states is called the 

state space. A random process is discrete-state if the state-space is finite or countable. It also 

means that the corresponding sample space is also finite or countable. Otherwise , the random 

process is called continuous state. 

Firtst order and nth order Probability density function and Distribution functions 

           As we have observed above that at a specific time is a random variable and can be 

described by its probability distribution function This distribution 

function is called the first-order probability distribution function.  

           We can similarly define the first-order probability density function    

 

To describe ,  we have to use joint distribution function of the random variables at 

all possible values of .  For any positive integer , represents jointly 

distributed random variables. Thus a random process can thus be described by 

specifying the joint distribution function .  
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or th the joint probability density function  

 

If is a discrete-state random process, then it can be also specified by the collection 

of joint probability mass function 

Moments of a random process  

We defined the moments of a random variable and joint moments of random variables. We can 

define all the possible moments and joint moments of a random process . 

Particularly, following moments are important.  

•  Mean of the random process at  

•  . 

Note that  

 

•  The autocovariance function of the random process at time is defined by  

 

These moments give partial information about the process.  

The ratio is called the correlation coefficient.  

The autocorrelation function and the autocovariance functions are widely used to characterize a 

class of random process called the wide-sense stationary process.  



 119 

We can also define higher-order moments like  

 

The above definitions are easily extended to a random sequence . 

 

 

 

 

On the basis of the above definitions, we can study the degree of dependence between two 

random processes  

This also implies that for such two processes  

 

Orthogonal processes: Two random processes and  

are called orthogonal if  

 

Stationary Random Process 

The concept of stationarity plays an important role in solving practical problems involving 

random processes. Just like time-invariance is an important characteristics of many deterministic 

systems, stationarity describes certain time-invariant property of a class of random processes. 

Stationarity also leads to frequency-domain description of a random process.  

Strict-sense Stationary Process  

A random process is called strict-sense stationary (SSS) if its probability structure is 

invariant with time. In terms of the joint distribution function,  is called SSS if  
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Thus, the joint distribution functions of any set of random variables does 

not depend on the placement of the origin of the time axis. This requirement is a very strict. Less 

strict form of stationarity may be defined.  

Particularly,  

If then is 

called order stationary.  

Is called order stationary does not depend on the placement of the origin of the time 

axis. This requirement is a very strict. Less strict form of stationary may be defined.  

 If is stationary up to order 1  

           

           Let us assume Then 

     

           As a consequence  

        

 If is stationary up to order 2  

                  Put  

 

As a consequence, for such a process  
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Similarly,  

 

Therefore, the autocorrelation function of a SSS process depends only on the time lag  

 

We can also define the joint stationary of two random processes. Two processes  

And are called jointly strict-sense stationary if their joint probability distributions 

of any order is invariant under the translation of time. A complex random process 

is called SSS if and are jointly SSS.  

Example 1 A random process is SSS.  

This is because  

 

Wide-sense stationary process  

It is very difficult to test whether a process is SSS or not. A subclass of the SSS process called 

the wide sense stationary process is extremely important from practical point of view.  

   

A random process is called wide sense stationary process (WSS) if  
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Remark  

(1) For a WSS process  

         

(2) An SSS process is always WSS, but the converse is not always true.  

Example 3 Sinusoid with random phase  

Consider the random process given by  

where are constants and are unifirmly distributed between

  

  This is the model of the carrier wave (sinusoid of fixed frequency) used to analyse the 

noise performance of many receivers.  

Note that  

            

By applying the rule for the transformation of a random variable, we get  

          

Which is independent of Hence is first-order stationary.  
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Note that  

          

and 

            

Hence is wide-sense stationary 

Properties of Autocorrelation Function of a Real WSS Random Process  

Autocorrelation of a deterministic signal  

Consider a deterministic signal such that  

             

Such signals are called power signals. For a power signal the autocorrelation function is 

defined as  

             

Measures the similarity between a signal and its time-shifted version. Particularly,

is the mean-square value. If is a voltage waveform across a 1 ohm 
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resistance, then is the average power delivered to the resistance. In this sense, 

represents the average power of the signal.  

Example 1 Suppose The autocorrelation function of at lag is given by   

   

We see that of the above periodic signal is also periodic and its maximum occurs when 

The power of the signal is  

The autocorrelation of the deterministic signal gives us insight into the properties of the 

autocorrelation function of a WSS process. We shall discuss these properties next.  

Properties of the autocorrelation function of a real WSS process  

Consider a real WSS process  Since the autocorrelation function of such a 

process is a function of the lag we can redefine a one-parameter autocorrelation 

function as  

If is a complex WSS process, then  

                        

Where is the complex conjugate of For a discrete random sequence, we can define 

the autocorrelation sequence similarly.  

The autocorrelation function is an important function charactering a WSS random process. It 

possesses some general properties. We briefly describe them below.  

1. Is the mean-square value of the process? Thus,  
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Remark If is a voltage signal applied across a 1 ohm resistance, and then is the 

ensemble average power delivered to the resistance.  

2. For a real WSS process is an even function of the time Thus,  

             

Because,     

      

Remark   For a complex process  

3. This follows from the Schwartz inequality  

          

We have           

  

4. is a positive semi-definite function in the sense that for any positive integer and 

real ,   

Proof  

Define the random variable  
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It can be shown that the sufficient condition for a function to be the autocorrelation 

function of a real WSS process is that be real, even and positive semidefinite.  

If is MS periodic, then .  Is also periodic with the same period.  

Proof: Note that a real WSS random process is called mean-square periodic ( MS 

periodic ) with a period if for every  

          

Again  

          

Cross correlation function of jointly WSS processes  

If and are two real jointly WSS random processes, their cross-correlation 

functions are independent of and depends on the time-lag. We can write the cross-correlation 

function 

   

The cross correlation function satisfies the following properties:  
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We Have 

           

Further, 

           

iii. If and Y (t) are uncorrelated,  

iv. If X ( t ) and Y (t) are orthogonal processes,  

Example 2  

Consider a random process which is sum of two real jointly WSS random processes.  

We have  

         

If and are orthogonal processes,then  

         

Example 3  
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Suppose 

 

Where X (t) is a WSS process and  

 

 

 Time averages and Ergodicity  

  Often we are interested in finding the various ensemble averages of a random process  

by means of the   corresponding time averages determined from single realization of the random 

process. For example we can   compute the time-mean of a single realization of the random 

process by the formula 

        

  which is constant for the selected realization. Note that represents the dc value of . 

                            Another important average used in electrical engineering is the rms value given 

by  

       

  Time averages of a random process  

  The time-average of a function of a continuous random process  is defined by 

        

 

  where the integral is defined in the mean-square sense.  
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  Similarly, the time-average of a function of a continuous random process is 

defined by 

       

 

  The above definitions are in contrast to the corresponding ensemble average defined by 

 

       

The following time averages are of particular interest 

 

     (a) Time-averaged mean  

 

        

       

 

     (b) Time-averaged autocorrelation function 

 

        

       

  Note that, and are functions of random variables and are governed by 

respective probability   distributions. However, determination of these distribution functions is 

difficult and we shall discuss the behaviour of   these averages in terms of their mean and 

variances. We shall further assume that the random processes   and are WSS. 

 Mean and Variance of the Time Averages  

  Let us consider the simplest case of the time averaged mean of a discrete-time WSS random 

process  given   by 

 

          

 

  The mean of  
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and the variance  

 

If the samples are uncorrelated, 

 

We also observe that  

From the above result, we conclude that  

Let us consider the time-averaged mean for the continuous case. We have  
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and the variance 

 

The above double integral is evaluated on the square area bounded by and We 

divide this square region into sum of trapezoidal strips parallel to (See Figure 

1)Putting and noting that the differential area between and is 

, the above double integral is converted to a single integral as follows:  

 

 

 

 

Figure 1  

Ergodicity Principle  
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If the time averages converge to the corresponding ensemble averages in the probabilistic sense, 

then a time-average computed from a large realization can be used as the value for the 

corresponding ensemble average. Such a principle is the ergodicity principle to be discussed 

below: 

Mean ergodic process  

A WSS process  is said to be ergodic in mean, if as . Thus for a 

mean ergodic process ,  

 

 

 We have earlier shown that 

 

   

 

  and 

    

 

  therefore, the condition for ergodicity in mean is 

 

    

Further, 

 

 
 

Therefore, a sufficient condition for mean ergodicity is  
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Example 1 Consider the random binary waveform discussed in Example 5 of lecture 

32.The process has the auto-covariance function given by  

 

 

Here 

 

 

 
 

 hence is mean ergodic. 

Autocorrelation ergodicity  

     

  We consider so that,  

Then will be autocorrelation ergodic if is mean ergodic.  

Thus will be autocorrelation ergodic if 

 

 

http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-%20Guwahati/probability_rp/module_04_random_processes/lect_32/slides/slide9.htm
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where  

 

 
 

involves fourth order moment.  

Simpler condition for autocorrelation ergodicity of a jointly Gaussian process can be found.  

Example 2 

 

Consider the random–phased sinusoid given by 

where are constants and is a random variable. We 

have earlier proved that this process is WSS with and  

For any particular realization  

 

and 

 

We see that as  and   

For each realization, both the time-averaged mean and the time-averaged autocorrelation 

function converge to the corresponding ensemble averages. Thus the random-phased sinusoid is 

ergodic in both mean and autocorrelation. 
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UNIT -V 

STOCHASTIC PROCESSES—SPECTRAL CHARACTERISTICS 

 Definition of Power Spectral Density of a WSS Process  

   Let us define the truncated random process as follows  

 

              

   where is the unity-amplitude rectangular pulse of width centering the origin. As 

will     represent the random process  define the mean-square integral  

 
    Applying the Pareseval's theorem we find the energy of the signal  

            .  

   Therefore, the power associated with is  

            And  

   The average power is given by 

 

             

 Where the contribution to the average is power at frequency w and represents the 

power spectral  

   density of . As , the left-hand side in the above expression represents the 

average power of  

   Therefore, the PSD of the process is defined in the limiting sense by  
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   Relation between the autocorrelation function and PSD: Wiener-Khinchin-Einstein 

theorem  

  We have 

             

   

Figure 1  

 

   Note that the above integral is to be performed on a square region bounded by and 

as illustrated in Figure 1.Substitute  so that is a family of straight 

lines parallel to The differential area in terms of is given by the shaded area and 

equal to The double integral is now replaced by a single integral in  

Therefore,  
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  If is integral then the right hand integral converges to as  

             

     As we have noted earlier, the power spectral density is the 

contribution to the average  

  power at frequency and is called the power spectral density of . Thus , 

       

  and using the inverse Fourier transform  

 

 Example 1 The autocorrelation function of a WSS process is given by  

             

   Find the power spectral density of the process.  

             

 The autocorrelation function and the PSD are shown in Figure 2  
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Example 3 Find the PSD of the amplitude-modulated random-phase sinusoid  

         

  Where M(t) is a WSS process independent of  

         

         

Figure 4 illustrates the above result.  

 

Figure 4  

Properties of the PSD 

 

  being the Fourier transform of  it shares the properties of the Fourier transform. 

Here we discuss  

  important properties of  
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  1) the average power of a random process is 

 

          

  2)  If is real, is a real and even function of .Therefore,  

 

             

Thus for a real WSS process, the PSD is always real.  

  3) Thus is a real and even function of . 

  4) From the definition is always non-negative. Thus  

  5) If has a periodic component, is periodic and so will have impulses.  

 

  Cross Power Spectral Density  

  Consider a random process which is sum of two real jointly WSS random processes 

As we have seen earlier,  

         

  If we take the Fourier transform of both sides,  

         

  Where stands for the Fourier transform.  
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  Thus we see that includes contribution from the Fourier transform of the cross-

correlation functions  

  These Fourier transforms represent cross power spectral densities.  

Definition of Cross Power Spectral Density  

  Given two real jointly WSS random processes the cross power spectral 

density (CPSD) is   defined as 

 

          

  Where are the Fourier transform of the truncated processes  

  respectively and denotes the complex 

conjugate operation.  

  We can similarly define by  

          

Proceeding in the same way as the derivation of the Wiener-Khinchin-Einstein theorem for the 

WSS process, it  

   can be shown that  

          

 

    and 

          

   The cross-correlation function and the cross-power spectral density form a Fourier transform 

pair and we can  

   write  
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   and  

          

Properties of the CPSD  

  The CPSD is a complex function of the frequency ’w’. Some properties of the CPSD of two 

jointly WSS processes  

  are listed below:  

 

  (1)  

 

  Note that  

                

(2) is an even function of and is an odd function of . 

We have  

 

 

 (3) If are uncorrelated and have constant means, then  
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Where is the Dirac delta function? 

 

Observe that  

 

             

(4) If are orthogonal, then  

 

          

 

  If are orthogonal, we have  

 

 

          

(5) the cross power between is defined by  

 

              

 

   Applying Parseval's theorem, we get  



 143 

 

      

Similarly,  

          

  Example 1 Consider the random process given by discussed in the beginning 

of the lecture. Here is the sum of two jointly WSS orthogonal random processes 

 

  We have,  

         

  Taking the Fourier transform of both sides,  
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 Wiener-Khinchin-Einstein theorem  

   The Wiener-Khinchin-Einstein theorem is also valid for discrete-time random processes. The 

power spectral density of the WSS process is the discrete-time Fourier transform 

of autocorrelation sequence.  

              

   Is related to by the inverse discrete-time Fourier transform and given by  

             

Thus and forms a discrete-time Fourier transform pair. A generalized PSD can be 

defined in terms of as follows 

             

   clearly,  

 

             

Linear time-invariant systems           

       In many applications, physical systems are modeled as linear time-invariant (LTI) systems. 

The dynamic behavior of an LTI system to deterministic inputs is described by linear differential 

equations. We are familiar with time and transform domain (such as Laplace transform and 

Fourier transform) techniques to solve these differential equations. In this lecture, we develop the 

technique to analyze the response of an LTI system to WSS random process.  

       The purpose of this study is two-folds:  

 Analysis of the response of a system  

 Finding an LTI system that can optimally estimate an unobserved random process from 

an observed process. The observed random process is statistically related to the 

unobserved random process. For example, we may have to find LTI system (also called a 

filter) to estimate the signal from the noisy observations.  

Basics of Linear Time Invariant Systems 
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       A system is modeled by a transformation T that maps an input signal to an output signal 

y(t) as shown in Figure 1. We can thus write,  

                                              

 

Figure 1  

Linear system  

       The system is called linear if the principle of superposition applies: the weighted sum of 

inputs results in the weighted sum of the corresponding outputs. Thus for a linear system  

 

Example 1 Consider the output of a differentiator, given by 

 

  Then,  

          

 Hence the linear differentiator is a linear system.  

Linear time-invariant system  

       Consider a linear system with y ( t ) = T x ( t ). The system is called time-invariant if 

 

It is easy to check that that the differentiator in the above example is a linear time-invariant 

system.  
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Response of a linear time-invariant system to deterministic input  

 As shown in Figure 2, a linear system can be characterised by its impulse response 

where is the Dirac delta function.  

 

Figure 2  

Recall that any function x(t) can be represented in terms of the Dirac delta function as follows  

 

       If x(t) is input to the linear system y ( t ) = T x ( t ), then  

                                                   

Where is the response at time t due to the shifted impulse?  

  

  If the system is time invariant, 

                                                            

       Therefore for a linear-time invariant system,  

 

       where * denotes the convolution operation.  

       We also note that                       
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       Thus for a LTI System,  

 

Taking the Fourier transform, we get  

 

Figure 3 shows the input-output relationship of an LTI system in terms of the impulse response 

and the frequency response.  

 

 

Figure 3  

  

  

  

Response of an LTI System to WSS input  

       Consider an LTI system with impulse response h (t). Suppose  is a WSS process 

input to the system. The output of the system is given by  

 

Where we have assumed that the integrals exist in the mean square sense.  
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Mean and autocorrelation of the output process  

 

        Where is the frequency response at 0 frequency (  ) and given by  

 

T The Cross correlation of the input {X(t)} and the out put {Y ( t )} is given by  

 

                  

Therefore, the mean of the output process is a constant  

The Cross correlation of the input {X (t)} and the out put {Y ( t )} is given by  
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Thus we see that is a function of lag only. Therefore, and are jointly 

wide-sense stationary.  

       The autocorrelation function of the output process {Y(t)} is given by,  

 

                                              

Thus the autocorrelation of the output process  depends on the time-lag , i.e.,  

 

Thus  

 

       The above analysis indicates that for an LTI system with WSS input  
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 the output is WSS and  

 The input and output are jointly WSS.  

       The average power of the output process is given by  

 

Power spectrum of the output process  

       Using the property of Fourier transform, we get the power spectral density of the output 

process given by  

 

       Also note that  

 

        Taking the Fourier transform of we get the cross power spectral density 

given by  
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Figure 4  

Example 3  

       A random voltage modeled by a white noise process with power spectral density 

is input to an RC network shown in the Figure 7. 

        Find   (a) output PSD  

                  (b) output auto correlation function  

                  (c) average output power  

 

Figure 7  

 The frequency response of the system is given by  
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        Therefore,  

(a)         

 (b) Taking the inverse Fourier transform  

 

       (c) Average output power  

 

Rice's representation or quadrature representation of a WSS process 

       An arbitrary zero-mean WSS process can be represented in terms of the slowly 

varying components and as follows:  

           (1)  

where is a center frequency arbitrary chosen in the band .  and 

are respectively called the in-phase and the quadrature-phase components of  

        Let us choose a dual process such that  



 153 

 

then , 

            (2) 

and 

 

             (3)  

 For such a representation, we require the processes and to be WSS.  

 

        Note that 

 

        As is zero mean, we require that 

                                                            

       And 

                                                           

Again  
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and 

 

 

       How to find satisfying the above two conditions?  

       For this, consider to be the Hilbert transform of , i.e. 

                                     

Where and the integral is defined in the mean-square sense. See the illustration in 

Figure 2.  

 

Figure 2  

The frequency response of the Hilbert transform is given by  
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       and  

 

The Hilbert transform of Y(t) satisfies the following spectral relations 

 

       From the above two relations, we get  

 

       The Hilbert transform of is generally denoted as Therefore, from (2) and (3) we 

establish  

 

  and 
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 The realization for the in phase and the quadrature phase components is shown in Figure 3 

below.  

 

Figure 3  

 From the above analysis, we can summarize the following expressions for the autocorrelation 

functions  

 

       Where 

                              

See the illustration in Figure 4  
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        The variances and are given by 

 

                         

Taking the Fourier transform of we get  

 

  

       Similarly,  

 

Notice that the cross power spectral density  is purely imaginary. Particularly, if 

is locally symmetric about  

 

Implying that  

 

       Consequently, the zero-mean processes and are also uncorrelated  

 


