

INSTITUTEOFAERONAUTICALENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	REFRIGERATION AND AIR CONDITIONING						
Course Code	AME017	AME017					
Programme	B.Tech	B.Tech					
Semester	VII M	VII ME					
Course Type	Core						
Regulation	IARE - R	16					
	Theory Practical						
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits		
	3	1	4	-	-		
Chief Coordinator	Mr. A Son	naiah, Assistant Pr	ofessor				
Course Faculty	Mr. M Prashanth Reddy, Assistant Professor						

COURSE OBJECTIVES:

The cou	The course should enable the students to:						
Ι	Understand vapor compression, vapor absorption and air refrigeration systems.						
II	Analyze the refrigeration cycles and methods for improving the performance using standard data hand book with p-h charts.						
III	Familiarize the components of refrigeration system.						
IV	Identify various psychometric properties and processes.						

COURSE OUTCOMES (COs):

CO 1	Describe the concept of vapor compression refrigeration, effect of sub cooling, super heating,
01	construction of P-H charts.
CO 2	Understand the functions of various refrigeration components like, compressor, condenser, expansion
02	valve and evaporator.
CO 3	Understand the working of vapour absorption refrigeration, it's components and air refrigeration
005	systems.
CO 4	Explore the concept Psychometry, it's properties, RSHF, ESHF, GSHF and concept of human comfort
CO 4	and temperature.
CO 5	Classification of air conditioning equipment and description of heat pumps.

COURSE LEARNING OUTCOMES (CLOs):

AME017.01	Derive COP of HP, R & HE
AME017.02	Describe the working of Carnot refrigerator and its applications.
AME017.03	Describe the working of vapor compression refrigeration cycle.
AME017.04	Use the concept of random variables in real-world problem like graph theory; machine learning, Natural language processing.
AME017.05	Determine the binomial distribution to find mean and variance.
AME017.06	Demonstration of working of condensers.
AME017.07	Demonstration of working of evaporators.
AME017.08	Classifying and Demonstration of expansion devices.
AME017.09	Demonstration of Aqua-Ammonia VARS.
AME017.10	Illustration of Li-Br VARS.
AME017.11	Explanation of principle & Demonstration of Electrolux.
AME017.12	Discuss the air refrigeration cycles and its applications.
AME017.13	Discuss the various properties of air.
AME017.14	Draw and Calculate Various sensible heat factors.
AME017.15	Draw & Describe comfort and industrial air conditioning.
AME017.16	Calculate the air conditioning loads.
AME017.17	Classify the equipment of air conditioning.
AME017.18	Describe the importance of filters, grills, registers & Explain the working of fans and blowers.
AME017.19	Discuss the various heat pump sources.
AME017.20	Draw heat pump circuits and Discuss their applications.

TUTORIAL QUESTION BANK

	UNIT - I							
	INTRODUCTION TO REFRIGERATION	1						
	Part - A (Short Answer Questions)							
S.	QUESTIONS	Blooms	Course	Course				
No.		Taxonomy	Outcomes	Learning				
		Level		Outcomes				
			~~ t	(CLOs)				
1	Define Unit of refrigeration.	Remember	CO 1	AME017.01				
2	Define Coefficient of performance.	Understand	CO 1	AME017.01				
3	What is the effect of sub cooling of liquid on the COP?	Remember	CO 1	AME017.01				
4	What is the effect of super heating of vapor on the COP?	Remember	CO 1	AME017.01				
5	Define Wet compression	Understand	CO 1	AME017.01				
6	What is the effect of increase of suction pressure on COP?	Remember	CO 1	AME017.01				
7	Define Dry compression	Understand	CO 1	AME017.02				
8	What is the effect of decrease of delivery pressure on COP?	Remember	CO 1	AME017.02				
9	What is a heat pump?	Understand	CO 1	AME017.02				
10	A refrigerator operates between the temperatures of -23°C and 27 °C.	Remember	CO 1	AME017.02				
	Determine the minimum power required per ToR to operate the refrigerator.							
11	Draw the p-h diagram for sub cooling with dry compression.	Understand	CO 1	AME017.02				
12	Discuss the governing law of refrigeration.	Remember	CO 1	AME017.03				
13	Draw the T-S diagram for sub cooling with dry compression.	Understand	CO 1	AME017.03				
14	Define sub cooling.	Understand	CO 1	AME017.03				
15	What is superheat horn?	Remember	CO 1	AME017.03				
16	Give some applications of refrigerator.	Understand	CO 1	AME017.03				
17	Define refrigeration.	Understand	CO 1	AME017.04				
18	What are the disadvantages of wet compression?	Remember	CO 1	AME017.04				
19	Draw the p-h diagram for sub cooling with wet compression.	Understand	CO 1	AME017.04				
20	Define refrigerant.	Remember	CO 1	AME017.04				

				Part - B (Long	Answer Question	ns)			
1	Describe the r	nechanism of a	a simple vap		refrigeration system		Understand	CO 1	AME017.02
2		important typ			cles? Explain wit		Remember	CO 1	AME017.02
3	The capacity determine the power require	of a refrigerate mass of ice p	produced per e unit. Assu	r day from water me that the cycl	etween -6° C and 2 at 25°C. Also fin the operates on rev	nd the	Understand	CO 1	AME017.02
4	An ammonia The temperate saturated at the used. Assume Calculate the	refrigerator pro- ure range of the ne end of comp a coefficient	oduces 30 to he compress pression and of performa d to drive th a are; Enthalpy Liquid V 298.9	nnes of ice from for is 25°C to -1 an expression an ance to be 60% of the compressor. L kJ/kg Entropy /apour Liquid 465.84 1.1242	and at 0°C in 24 h 5°C. The vapour i d an expansion va of the theoretical v atent heat of ice = kJ/kg Vapour 5.0391 5.5490	is dry llue is value.	Understand	CO 1	AME017.02
5	Explain how charged.	you would de	tect whether	r a refrigerant is	under charged or	over	Remember	CO 1	AME017.02
6	A R12 refrig temperature o when it enter condenser ter condition as 1 to the condense	of refrigerant ir rs the compre- mperature is 884 KJ/Kg K	the evaporation of the evaporati	ator is -20 ⁰ C. Th ives it in a supe ming Cp for R i) Condition	ompression cycle. e vapor is dry satur theated condition 12 in the superh of vapor at the ent o the evaporator ar	urated . The neated trance	Understand	CO 1	AME017.03
		h _f , KJ/Kg	h _g , KJ/Kg	S _f , KJ/Kg K	S _g , KJ/Kg K	1 I			
	-20		178.73	0.0731	0.7087				
7	30	64.59	178.73 199.62	0.0731 0.2400		-	The desired of d	<u> </u>	AME017.02
7 8	30 What is the ef A refrigeratio 15.54 bar. If t	64.59 fect of sub-coo n system work the refrigerant	178.73 199.62 bling on COI as on ammor is sub cooled	0.0731 0.2400 P? Explain. nia between press d by 10k before t	0.7087 0.6843 sure limits, 2.36 ba hrottling, determin		Understand Remember	CO 1 CO 1	AME017.03 AME017.03
	30 What is the ef A refrigeratio 15.54 bar. If t improvement An ammonia 35°C and an ice per day f dry saturated Determine: a) The capad b) Mass flow c) Discharge compresso mechanica latent hea	64.59 fect of sub-coor n system work the refrigerant in COP over si a ice plant oper evaporator ter from water at 2 d vapor and lea city of the refri w of the refri e temperature or motor if the al efficiency or	178.73 199.62 bling on COI as on ammor is sub cooled imple vapor rates between nperature of 5°C to ice at ves the cond gerating plan rant of ammonia isentropic ef f the compre	0.0731 0.2400 P? Explain. nia between press d by 10k before t compression cycl n condenser temp -15° C. It produce t -5° C. The ammo lenser as saturate nt a from the comp efficiency of the essor is 90% e) 1	0.7087 0.6843 cure limits, 2.36 bachrottling, determine le. berature of es 5 tonnes of onia enters as	of the % and 7. The			
8	30 What is the ef A refrigeration 15.54 bar. If t improvement An ammonia 35°C and an ice per day f dry saturated Determine: a) The capace b) Mass flow c) Discharge compresse mechanica latent hea kj/kg-k.	64.59 fect of sub-coo n system work the refrigerant in COP over si a ice plant oper evaporator ter from water at 2 d vapor and lea city of the refri v of the refrige e temperature or motor if the al efficiency of t of formation between dry an	178.73 199.62 bling on COI as on ammor is sub coolea imple vapor rates between nperature of 5°C to ice at ves the conce gerating plan rant of ammonia isentropic e f the compre- of ice is 3	0.0731 0.2400 P? Explain. nia between press d by 10k before t compression cycl n condenser temp -15°C. It produce to condenser as saturate lenser as saturate nt a from the comp efficiency of the essor is 90% e) I 35 kj/kg and spe	0.7087 0.6843 aure limits, 2.36 ba hrottling, determine berature of es 5 tonnes of onia enters as d liquid. ressor d) Power of compressor is 859 Relative efficiency	of the % and 7. The is 2.1	Remember	CO 1	AME017.03
8 9 10 11	30 What is the ef A refrigeratio 15.54 bar. If t improvement An ammonia 35°C and an ice per day f dry saturated Determine: a) The capac b) Mass flow c) Discharge compresso mechanica latent hea kj/kg-k. Distinguish b over the other A refrigerato and -17.5°C. condensed but	64.59 fect of sub-coo n system work the refrigerant in COP over size a ice plant oper evaporator ter from water at 2 d vapor and lead city of the refrige e temperature or motor if the al efficiency of t of formation petween dry an r? r using CO ₂ as The CO ₂ leav t there is no un	178.73 199.62 oling on COI is on ammor is sub cooled imple vapor rates between nperature of 5°C to ice at ves the conce gerating plan rant of ammonia isentropic e f the compre- of ice is 3 d wet compre- s refrigerant ves the compre- der cooling.	0.0731 0.2400 P? Explain. nia between press d by 10k before t compression cycl n condenser temp -15°C. It produce t -5°C. The ammo lenser as saturate nt a from the comp efficiency of the essor is 90% e) I 35 kj/kg and spe ression. What are works between t pressor at 30°C. Calculate theorem	0.7087 0.6843 oure limits, 2.36 bachrottling, determined berature of es 5 tonnes of onia enters as d liquid. ressor d) Power of compressor is 859 Relative efficiency ecific heat of ice is e the advantages of the temperatures 1 The gas is comp tical COP.	of the % and 7. The is 2.1 of one 7.5°C letely	Remember Understand Understand Remember	CO 1 CO 1 CO 1 CO 1	AME017.03 AME017.03 AME017.03 AME017.03
8 9 10	30 What is the ef A refrigeratio 15.54 bar. If t improvement An ammonia 35°C and an ice per day f dry saturated Determine: a) The capac b) Mass flow c) Discharge compresso mechanica latent hea kj/kg-k. Distinguish b over the other A refrigerato and -17.5°C. condensed but Explain how charged.	64.59 fect of sub-coor n system work the refrigerant in COP over size a ice plant oper- evaporator ter from water at 2 d vapor and lead city of the refrige termperature or motor if the al efficiency of t of formation between dry and r? r using CO ₂ as The CO ₂ leave t there is no univer you would det	178.73 199.62 oling on COI is on ammor is sub cooled imple vapor rates between operature of 5°C to ice at ves the cond gerating plan rant of ammonia isentropic e f the compre- of ice is 3 d wet compre- s refrigerant res the com- der cooling.	0.0731 0.2400 P? Explain. nia between press d by 10k before to compression cycl n condenser temp -15°C. It produce to -5°C. The ammodiant lenser as saturated that from the completion efficiency of the essor is 90% e) 1 35 kj/kg and spectression. What are works between to pressor at 30°C. Calculate theored a refrigerant is un	0.7087 0.6843 aure limits, 2.36 ba hrottling, determine berature of es 5 tonnes of onia enters as d liquid. ressor d) Power of compressor is 859 Relative efficiency ecific heat of ice is e the advantages of he temperatures 1 The gas is comp tical COP. ider charged or over	of the % and % The is 2.1 of one 7.5°C letely er	Remember Understand Understand Remember Understand	CO 1 CO 1 CO 1 CO 1 CO 1	AME017.03 AME017.03 AME017.03 AME017.03 AME017.03
8 9 10 11	30 What is the ef A refrigeratio 15.54 bar. If t improvement An ammonia 35°C and an ice per day f dry saturated Determine: a) The capac b) Mass flow c) Discharge compresso mechanica latent hea kj/kg-k. Distinguish b over the other A refrigerato and -17.5°C. condensed but Explain how charged. An ammonian compressor in calculate the t	64.59 fect of sub-coorn system work the refrigerant in COP over size a ice plant opernet evaporator terrefrom water at 2 d vapor and lead city of the refrige temperature or motor if the al efficiency of t of formation petween dry and r? r using CO2 as The CO2 leave t there is no un you would det refrigerator worn n dry and satur heoretical COI	178.73 199.62 oling on COI as on ammor is sub cooled imple vapor rates between nperature of 5°C to ice at ves the cond gerating plan rant of ammonia isentropic e f the compre- of ice is 3. d wet comp s refrigerant res the comp der cooling. ect whether a orks between rated condition P of the system	0.0731 0.2400 P? Explain. hia between press d by 10k before to compression cycl n condenser temp -15°C. It produce to -5°C. The ammodiates a saturate a from the comp efficiency of the essor is 90% e) I 35 kj/kg and spectression. What are works between to pressor at 30°C. <u>Calculate theore</u> a refrigerant is un - 6.7°C and 26°C on. Assuming the em.	0.7087 0.6843 oure limits, 2.36 bachrottling, determined berature of the solution of the solut	of the % and % The is 2.1 of one 7.5°C letely er es the oling;	Remember Understand Understand Remember	CO 1 CO 1 CO 1 CO 1	AME017.03 AME017.03 AME017.03 AME017.03

	at the end of	f isentropic co	ompression. T	here is no un	der cooling o	of liquid			
	ammonia and	the liquid is e	expanded through	ugh a throttle	valve after lea	ving the			
				and P-h diag					
				the theoretica	I COP of the u	init with			
	the help of pro	pernes given t	below.						
	Temp ⁰ C	h _f , KJ/Kg	h _g , KJ/Kg	S _f , KJ/Kg	S _g , KJ/Kg				
	remp c	11, 110/115	ing, 113/115	K	K				
	-6.7	152.18	1437.03	0.6016	5.4308				
	26.7	307.18	1467.03	1.1515	5.0203				
1.7								GO 1	
15	system perform		cooling of liq	uid and ii) sup	erneat of vapo	or on the	Understand	CO 1	AME017.03
16			machine fitte	ed with an ex	xpansion valve	e works	Remember	CO 1	AME017.03
	between the te	emperature lin	nits of -10°C a	nd 30°C. The v	apor is 95% d	ry at the			
				id leaving the					
				heoretical, cale er at 10°C. Lat					
			lowing propert		tent heat of it	C 18 555			
	6		81 11						
	Temp ⁰ C	h _f , KJ/Kg	h _{fg} , KJ/Kg	S _f ,KJ/Kg K	S _g , KJ/Kg H	ζ			
	30	323.08	1145.80	1.2037	4.9842				
	-10	135.37	1297.68	0.5443	5.4770				
17	A refrigeration	svstem works	s on ammonia	between pressu	re limits, 2.36	bar and	Understand	CO 1	AME017.03
				y 10k before th					
				npression cycle					
18				to a cold stora			Understand	CO 1	AME017.03
				get cooled to t 105 kj/kg and					
			-	ty of the plant.	specific field o	i iiuit is			
19	A machine w	vorking on a 0	Carnot cycle o	perates betwee			Remember	CO 1	AME017.03
			is operated as	i) a refrigera	tor ii) a heat p	ump and			
20	a iii) a heat en		D of Compoting	micconstant and m	lot T. S. and D.	7	Lin donaton d	CO 1	AME017.03
20	diagrams of th		P of Carnot ref	rigerator and p	lot 1-S and P-	v	Understand	01	AME017.03
	diagrams of th		Part - C (Prob	lem Solving a	nd Critical Th	inking O	uestions)		
1		geration cycle	absorbs heat at	270K and reje		×	Understand	CO 1	AME017.02
			s refrigeration						
			1130 KJ/min.	At 270 K, how	many KJ of w	ork is			
		per second?	operates betwe	en the same ter	mperatures as f	he			
		e, what is the C							
				leliver at 300K	if it absorbs 11	30			
-	KJ/min at								
2				to maintain the cycle works on		of -	Remember	CO 1	AME017.02
	determine the		erenigeration	cycle works on	carnot cycle,				
	i. COP of the c								
	ii. temperature	e of the sink							
	iii. heat rejecte								
3				ed as a heat pun between the pr		of 60 hor	Understand	CO 1	AME017.02
3				the end of co			Understand	CUT	AMEUT7.02
				xpansion valve.					
	the the cycle a			rator if the flu					
	5 Kg/min.								

	Pressure,	Sat.Temp.,K	Enthalp	y, Kj/Kg	Entrop	y, Kj/Kg			
	bar	-	T · · 1						
	(0)	205	Liquid 151.96	vapor	Liquid	vapor			
	60	295	151.90	293.29	0.554	1.0332			
	25	261	56.32	322.58	0.226	1.2464			
4		n neat p-h and T-S our compression cy		ow an actua	l cycle diffe	ers from a	Understand	CO 1	AME017.03
5		and p-h diagrams f		ir comprose	ion avalas	when the	Remember	CO 1	AME017.03
5	vapour after con		or the vapor	ui compress	ion cycles	when the	Kennennoer	001	AMEOT7.03
	i. Dry saturat								
	ii. Wet								
	iii. Super heate								
	iv. Wet before								
6		Kgs of fruits are s					Understand	CO 1	AME017.03
		tained at -5° C and							
		e latent heat of free Find the refrigerat				eat of fruit is			
7		of refrigeration is				ure of 40° C	Understand	CO 1	AME017.03
/		or. If the refrigerat					Understand	001	AMEOT7.03
		OP of the cycle; 2							
		t supplied and EPF							
8		a refrigerator is 20					Remember	CO 1	AME017.03
		nass of ice produce							
		to drive the unit. A			erates on re	eversed			
		d latent heat of ice							
9		n actual cycle diffe					Understand	CO 1	AME017.03
10		a throttle valve is					Remember	CO 1	AME017.03
	evaporator?	on cylinder to redu	ce the press	ure betweer	i the conde	nser and			
	evaporator			TIN	NIT - II				
	V	APOUR ABSOR	PTION, ST			RATION A	ND REFRIGEI	RANTS	
				– A (Short				<i></i>	
1		g point difference of					Understand	CO 2	AME017.05
2		fect of latent heat	of absorben	t on perform	nance of th	e absorption	Remember	CO 2	AME017.07
3	systems? What is the refe	rigerant in Li-Br ar	d water abo	orntion evet	om?		Understand	CO 2	AME017.05
4		rigerant in Ammon		· ·			Understand	CO 2 CO 2	AME017.03
5		ction of rectifier in					Remember	CO 2	AME017.07
6		esirable requirement				air?	Understand	CO 2	AME017.05
7	Name air refri	geration cycle and		0			Remember	CO 2	AME017.07
0	cycle?	• • • • • •		c ·		1.1 • .1	TT 1 / 1	00.0	AME017.05
8		rigeration plant, th					Understand	CO 2	AME017.05
		300K and 200K r ropic compression			the COP	or the plant			
9	-	place the function o			tion system	?	Remember	CO 2	AME017.09
10		ree fluids used in H				•	Understand	CO 2	AME017.07
11		nt and adsorbent.					Understand	CO 2	AME017.09
12		ean by the product	of COP of 1	efrigerator	and heat en	gine?	Remember	CO 2	AME017.05
13		er name of an Elect		*			Understand	CO 2	AME017.05
14		he Electrolux refrig					Understand	CO 2	AME017.05
15		e of hydrogen in Ele		*			Remember	CO 2	AME017.05
	What is the abs	onhant in lithium h	omida abec	rption syste	m?		Understand	CO 2	AME017.09
16				· ·					
17		igerant in lithium b	romide abs	orption syst	em?		Remember	CO 2	AME017.07
17 18	What are the dia	igerant in lithium b sadvantages of abso	romide abs orption refri	orption syst geration ov	em? er compress		Understand	CO 2	AME017.05
17 18 19	What are the diff	igerant in lithium b sadvantages of abso erence between 2-s	promide abs prption refri	orption syst geration ov shell Li-Br a	em? er compress absorption s		Understand Remember	CO 2 CO 2	AME017.05 AME017.05
17 18	What are the diff	igerant in lithium b sadvantages of abso	promide abs prption refri- shell and 4-s the vapor a	orption syst geration ov shell Li-Br a absorption s	em? er compress absorption s ystem?	system?	Understand	CO 2	AME017.05
17 18 19	What are the diff What is the diff What is the fund	igerant in lithium b sadvantages of abso erence between 2-s	promide abs prption refri- hell and 4-s the vapor a Par	orption syst geration over shell Li-Br a absorption s t - B (Long	em? er compress absorption s ystem? Answer Q	system? uestions)	Understand Remember	CO 2 CO 2	AME017.05 AME017.05

	neat sketch.			
2	What are the different refrigerant - absorbent working pairs and what is the effect	Remember	CO 2	AME017.07
2	of evaporator temperature on performance of absorption systems.	Kennember	02	AMILUI7.07
3	Discuss the advantages of vapor absorption refrigeration system over vapor	Understand	CO 2	AME017.07
5	compression refrigeration system.	Onderstand	002	AWIL017.07
4	Describe with a neat sketch the working of lithium Bromide (two shell) water	Understand	CO 2	AME017.07
4		Understand	02	AMEU17.07
-	absorption system.	D 1	<u> </u>	
5	Describe with a neat sketch the working of lithium Bromide (Four shell) water	Remember	CO 2	AME017.09
	absorption system.			
6	Explain the working of a practical Ammonia-water vapour absorption	Understand	CO 2	AME017.09
	refrigeration system with neat sketch.			
7	Explain with neat sketch Domestic Electrolux Refrigerator, with the functions of	Understand	CO 2	AME017.05
	hydrogen, ammonia and water in the three fluid refrigeration system.			
8	Explain the function of liquid-vapour heat exchanger between the generator and	Remember	CO 2	AME017.09
	absorber and how it can improve the performance of the vapour absorption			
	system.			
9	Derive an expression for the COP of vapor absorption refrigeration system.	Understand	CO 2	AME017.09
10	Calculate the COP of vapour absorption refrigeration system has the generator	Remember	CO 2	AME017.09
	temperature of 80° C, condenser temperature of 25° C and an evaporator			
	temperature of -10 ^o C.			
11	In an absorption refrigeration system heating, cooling and refrigeration takes	Understand	CO 2	AME017.03
	place at the temperature of 150°C, 30°C and -20°C. Find the theoretical COP of			
	the system; if the heating temperature is increased to 200°C and refrigeration			
	temperature is decreased to -40° C. Calculate the percentage of change in			
	theoretical COP.			
12	Derive an expression for the C.O.P of a Bell-Coleman cycle refrigeration system.	Remember	CO 2	AME017.0
13	A refrigerator is working between the temperatures -30° C and 35° C. What is the	Understand	CO 2	AME017.0
15	maximum possible COP of the refrigerator? If the actual COP is 75% of	Onderstand	002	/ 1012017.0
	maximum, determine the refrigerating effect per KW of power input.			
1.4		The desired and a	<u> </u>	
14	Show that the coefficient of performance of an air cycle system is only a	Understand	CO 2	AME017.09
	function of pressure ratio.			
15	An air refrigeration system operates with a cooler pressure 10 bar and	Remember	CO 2	AME017.0'
	refrigerator pressure 2 bar. The temperature of the air leaving the cooler is 25°C			
	and the air leaving the room is 3°C. The compressor displacement is 30 cubic			
	meter/min. Find			
	i. Tons of refrigeration.			
	ii. Power per ton.			
	iii. Expander displacement in cum/min.			
16	A Bell - Coleman cycle works between 1 and 6 bar pressure limits. The	Understand	CO 2	AME017.09
10	compression and expansion indices are 1.25 and 1.3 respectively. Obtain COP	Chigoristand	002	1101201710
	and tonnage of the unit for an airflow rate of 0.5 kg/s. Neglect clearance volume			
	and take temperature at the beginning of compression and expansion to be 7^{0} C			
	and take temperature at the beginning of compression and expansion to be 7 C and 37^{0} C, respectively.			
17		I Indenstand	CO 2	
17	Refrigerator working on Bell-Coleman cycle operates between pressure limits of	Understand	CO 2	AME017.03
	1.05 bar and 8.5 bar. Air is drawn from the cold chamber at 10° C, compressed			
	and then is cooled to 30° C, before entering the expansion cylinder. The			
	expansion and compression follow the law, $PV^{1.3}$ = constant. Determine the			
	theoretical cop of the system.			
18	In a Steam jet refrigeration system dry saturated steam at 7 bar abs. pressure is	Remember	CO 2	AME017.0
	supplied. The flash chamber temperature is 5°C, the condenser temperature is			
	40° C, make up water is supplied at 20° C. Assuming that quality of motive steam			
	and flash vapour at the beginning of compression as 93% dry and efficiency of			
	the nozzle, efficiency of entertainment and the efficiency of the thermo-			
	compressor as			
	90%, 65% and 91% respectively. Determine:			
	(a) Weight of steam required per hour per ton of refrigeration.			
	(b) The volume of vapor removed from the flash chamber per hour per ton of			
4.5	(b) The volume of vapor removed from the flash chamber per hour per ton of refrigeration.			
19	(b) The volume of vapor removed from the flash chamber per hour per ton of	Understand	CO 2	AME017.09

20	Draw the temperature-entropy and enthalpy-entropy diagram of a steam jet	Remember	CO 2	AME017.05
	refrigeration system and write the expressions for the following efficiencies;			
	i. Nozzle ii. Entrainment and iii. Compression			
	Part - C (Problem Solving and Critical Thinking Q			
1	Explain the function of ammonia, water and hydrogen in Electrolux refrigerator?	Understand	CO 2	AME017.07
2	Describe the working of steam jet refrigeration system with a neat sketch.	Remember	CO 2	AME017.07
3	Derive the expression for COP of aqua ammonia vapour absorption system with a next shortsh of simple VAS	Understand	CO 2	AME017.09
4	a neat sketch of simple VAS.	Un donaton d	CO 2	AME017.00
4	A vapor compression cycle with ammonia as the refrigerant works between the limits of saturated suction temperature of -20° C and saturated condensing temperature 30° C. It is a simple saturated cycle and compression is isentropic; determine the work of compression per kg of ammonia. Compare the same, if ammonia vapor leaving the evaporator at -20° C is absorbed by water so that the mass concentration in the solution reaches about 40%, and its solution is pumped to the condenser pressure. The specific volume of the solution may be assumed as 0.001161 m ³ /kg	Understand	02	AME017.09
5	Sketch the steam jet refrigeration on T-s diagram and analyze the nozzle	Remember	CO 2	AME017.09
	efficiency, entrainment efficiency, compression efficiency and mass of motive			
	steam required.			
6	Differentiate between physical and thermodynamic properties of a refrigerant.	Understand	CO 2	AME017.05
7	Explain which are more important giving specific examples.	I In denoten d	CO 2	AME017.05
7	 Give azeotropic mixing refrigerants for the following refrigerants. Mention the chemical formula also. a. R-500 b. R-502 c. R-503 and d. R-504. 	Understand	CO 2	AME017.05
8	Compare the refrigerants R-11, R-12, R22 and ammonia in regard of normal boiling point, compressors used, range of temperatures and type of application.	Remember	CO 2	AME017.09
9	Discuss from the economical point of view whether sulphur dioxide or carbon dioxide is preferred as refrigerant.	Understand	CO 2	AME017.09
10	How will you assign number to the refrigerants methyl chloride (CH_3Cl) and tetra-chloroethane ($C_2H_4Cl_4$).	Remember	CO 2	AME017.05
	UNIT – III			
	REFRIGERATOR COMPONENTS			
1	Part - A (Short Answer Questions)	Domomhor	CO 3	AME017.00
$\frac{1}{2}$	What do you mean by hermetically sealed compressor? What is the name of bank of tubes at the back of domestic refrigerator?	Remember Remember	CO 3	AME017.09 AME017.10
3	What type of the compressor is used in domestic refrigerator?	Understand	CO 3	AME017.10
4	What do you mean by open type compressor?	Remember	CO 3	AME017.09
5	Give the classification of condensers.	Remember	CO 3	AME017.10
6	For small installations of refrigeration systems (up to 35kW) which type of condenser is used?	Understand	CO 3	AME017.10
7	What do you mean by overcharged?	Understand	CO 3	AME017.09
8	What do you mean by semi-hermetically sealed compressor?	Remember	CO 3	AME017.09
9	What do you mean by undercharging?	Understand	CO 3	AME017.09
10	Write the correct sequential order of the different components in VCR system	Understand	CO 3	AME017.09
	starting from the Compressor.			
11	What is the function of accumulator in a flooded type evaporator refrigerator?	Understand	CO 3	AME017.12
12	Give the classification of expansion devices.	Remember	CO 3	AME017.11
13	What type of expansion devise is used in domestic refrigerator?	Remember	CO 3	AME017.11
14	Give the classification of condensers.	Understand	CO 3	AME017.12
15	What do you mean by bare tube coil evaporator?	Remember	CO 3	AME017.12
16	A capillary tube is used in a small refrigerator to serve the purpose of which component of the refrigerating system?	Remember	CO 3	AME017.11
17	Give the classification of evaporators.	Understand	CO 3	AME017.12
18	What do you mean by semi-hermetically sealed compressor?	Remember	CO 3	AME017.15

	refrigeration effect?			
20	During which component of the VCR system, the enthalpy of the refrigerant remains constant?	Understand	CO 3	AME017.11
	Part – B (Long Answer Questions)			
1	Classify the compressors and explain the working, advantages and disadvantages of reciprocating compressors with neat sketch.	Understand	CO 3	AME017.09
2	Classify the compressors and explain the working, advantages and disadvantages of centrifugal compressors with neat sketch.	Understand	CO 3	AME017.09
3	Classify the compressors and explain the working, advantages and disadvantages of rotary compressors with neat sketch.	Remember	CO 3	AME017.09
4	Classify the compressors and explain the working, advantages and disadvantages of screw compressors with neat sketch.	Understand	CO 3	AME017.09
5	Describe the hermetically and semi hermetically sealed compressors, also give their merits and demerits.	Understand	CO 3	AME017.09
6	With the help of a schematic diagram, explain the Working of air cooled condensers.	Remember	CO 3	AME017.10
7	With the help of a schematic diagram, explain the Working of water cooled condensers.	Understand	CO 3	AME017.10
8	With the help of a schematic diagram, explain the Working of evaporative condenser.	Remember	CO 3	AME017.10
9	Discuss the advantages and disadvantages of centrifugal compressors over reciprocating compressors.	Understand	CO 3	AME017.10
10	Discuss the advantages and disadvantages of air cooled compressors over water cooled compressors.	Remember	CO 3	AME017.10
11	Describe the modeling minipals of dott and total to the state of the	The dense 1	CO 2	AME017.10
11	Describe the working principle of shell and tube type evaporator with neat sketch.	Understand	CO 3	AME017.12
12	Describe the working principle of shell and coil type evaporator with neat sketch.	Remember	CO 3	AME017.12
13	a) What problems do lubricating oil causes in the evaporator?b) With a neat diagram, explain the function of flooded type evaporator.	Understand	CO 3	AME017.12
14	Explain the working of a dry expansion type evaporator with a neat sketch.	Understand	CO 3	AME017.12
15	Describe the working principle of bare tube coil, finned tube coil and plate type evaporators with neat sketches.	Remember	CO 3	AME017.12
16	Explain the working of natural convection and forced convection type evaporator, also discuss their merits and demerits.	Understand	CO 3	AME017.12
17	How do you identify the frosting, non-frosting and defrosting evaporators, explain.	Understand	CO 3	AME017.12
18	Explain the working of an automatic expansion valve with the help of a neat sketch.	Remember	CO 3	AME017.11
19	With the help of a schematic diagram, explain the functioning of thermostatic expansion valve.	Understand	CO 3	AME017.11
20	Describe the working principle of low side float valve, with a neat sketch.	Remember	CO 3	AME017.11
	Part – C (Problem Solving and Critical Think	U /		
1	How do you select the compressor for particular application and give some refrigerants and compressor pairs.	Understand	CO 3	AME017.09
2	How do you select the condenser for particular application and the differences between air cooled, water cooled and evaporative condensers?	Remember	CO 3	AME017.10
3	Compare the performance of reciprocating and centrifugal refrigerant compressors.	Understand	CO 3	AME017.09
4	Describe the effect of suction temperature on the refrigerating capacity and brake power of a reciprocating compressor.	Understand	CO 3	AME017.09
5	Give the advantages and disadvantages of hermetically sealed, semi hermetically sealed and open type compressors.	Remember	CO 3	AME017.09
06	What are the differences between fixed opening type and varying opening type of expansion devices, also give some refrigerants and suitable materials pairs.	Understand	CO 3	AME017.11
07	How the length and diameter of the evaporator coils will affect the system performance, discuss?	Remember	CO 3	AME017.12

08	Differentiate between low side and bish side fleet value	Understand	CO 2	AME017 11
09	Differentiate between low side and high side float valve.	Understand Understand	CO 3 CO 3	AME017.11 AME017.11
09	Make a comparative study of flooded and non-flooded shell and tube type	Understand	05	AMEU17.11
	evaporators based on the capacity, condition of vapor leaving the evaporator, heat transfer effectiveness, construction and control.			
10		I In denotes d	CO 3	AME017.10
10	What are the factors that affect the heat transfer capacity of an evaporator	Understand	003	AME017.12
	also describe pool and flow boiling.			
	UNIT - IV			
	INTRODUCTION TO AIR CONDITIONIN Part – A (Short Answer Questions)	G		
1	Define Air-conditioning.	Remember	CO 4	AME017.13
2	What is wet bulb temperature?	Remember	CO 4	AME017.14
3	Define degree of saturation	Remember	CO 4	AME017.15
4	Sketch the process of heating and humidification on psychometric chart.	Remember	CO 4	AME017.16
5	Define Relative humidity	Understand	CO 4	AME017.13
6	What is Apparatus Dew Point?	Remember	CO 4	AME017.14
7	Give the expression for Sensible Hea Factor.	Understand	CO 4	AME017.15
8	Define Dew Point Temperature.	Understand	CO 4	AME017.16
9	Sketch the process of cooling and humidification on psychometric chart.	Understand	CO 4	AME017.13
10	Define Dalton's Law.	Understand	CO 4	AME017.14
11	Sketch the process of sensible heating on psychometric chart.	Remember	CO 4	AME017.15
12	Define and plot cooling and dehumidification process on psychometric chart	Understand	CO 4	AME017.16
13	Draw the process of humidification on psychometric chart.	Understand	CO 4	AME017.13
14	Define and write the formula for BPF.	Understand	CO 4	AME017.14
15	Sketch the process of sensible cooling on psychometric chart.	Remember	CO 4	AME017.15
16	Draw the process of cooling and dehumidification on psychometric chart.	Understand	CO 4	AME017.16
17	Write any two major requirements of human comfort	Understand	CO 4	AME017.13
18	Sketch the process of heating and dehumidification on psychometric chart.	Remember	CO 4	AME017.14
19	List any two requirements of industrial air conditioning	Remember	CO 4	AME017.15
20	Sketch the process of dehumidification on psychometric chart.	Understand	CO 4	AME017.15
	Part – B (Long Answer Questions)			
1	Ten grams of moisture per kg of dry air is removed from atmospheric air when it	Understand	CO 4	AME017.13
	is passed through an air conditioning system and its temperature becomes 20° C.			
	The atmospheric conditions are 40°C DBT and 60% RH. Calculate the following			
	for the conditioned air. i. Relative humidity, ii. Wet-bulb temperature, iii. Dew point temperature, iv. Enthalpy change for the air.			
	Assume standard atmospheric pressure.			
2	(a) When is dehumidification of air necessary and how it is achieved?	Remember	CO 4	AME017.14
2	(b) Represent the following process in a skeleton psychometric chart.	remember	001	71012017.11
	i. Sensible cooling ii. Cooling and humidification			
	iii. Adiabatic mixing of air streams.			
3	Define and explain with neat sketch	Understand	CO 4	AME017.15
	i. Partial pressure of water vapour			
	ii. DPT			
	iii. RH and			
	iv. Degree of saturation.			
4	a) Write a short note on the bypass factor of the cooling coils.	Understand	CO 4	AME017.16
	b) The sensible heat factor of an air-conditioned room is 0.67. The condition of			
	the air leaving the air-conditioned room is 27°C DBT and 52% RH. The			
	maximum permissible temperature difference between the inlet air and outlet air			
	is 11°C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then			
5	is 11 ^o C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room.	Domomber		AME017 12
5	is 11 ^o C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22 ^o C DBT	Remember	CO 4	AME017.13
5	is 11°C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22°C DBT and 52% RH. When outdoor air conditions are 45°C DBT and 26°C	Remember	CO 4	AME017.13
5	is 11°C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22°C DBT and 52% RH. When outdoor air conditions are 45°C DBT and 26°C WBT, the hall sensible heat load is 23kw. The fresh air is 22% of the	Remember	CO 4	AME017.13
5	is 11 ^o C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22 ^o C DBT and 52% RH. When outdoor air conditions are 45 ^o C DBT and 26 ^o C WBT, the hall sensible heat load is 23kw. The fresh air is 22% of the total air supplied. The ADP of the cooling coil is 10 ^o C and its bypass	Remember	CO 4	AME017.13
5	is 11 ^o C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22 ^o C DBT and 52% RH. When outdoor air conditions are 45 ^o C DBT and 26 ^o C WBT, the hall sensible heat load is 23kw. The fresh air is 22% of the total air supplied. The ADP of the cooling coil is 10 ^o C and its bypass factor is 0.12. Calculate	Remember	CO 4	AME017.13
5	is 11 ^o C. If the quantity of air flow at the inlet of the room is 180m ³ /min, then determine the sensible and latent heat load of air conditioned room. An air conditioned hall of 1100 m ³ volume is maintained at 22 ^o C DBT and 52% RH. When outdoor air conditions are 45 ^o C DBT and 26 ^o C WBT, the hall sensible heat load is 23kw. The fresh air is 22% of the total air supplied. The ADP of the cooling coil is 10 ^o C and its bypass	Remember	CO 4	AME017.13

6	The following data refer to an air conditioning system for industrial process for	Understand	CO 4	AME017.16
0	hot and wet summer conditions: outdoor conditions = 33° C DBT and 78% RH,	Chaerstand	00 4	/
	required conditions = 20° C DBT and 73% RH, amount of out-door air supplied			
	= 220 m ³ /min, coil dew point temperature = 12° C. If the required condition is			
	achieved by first cooling and dehumidifying and then by heating, determine;			
	(a) The capacity of the cooling coil and its by-pass factor.			
	(b) The capacity of the heating coil and surface temperature of the heating coil if			
	the by-pass factor is 0.18.			
7	Derive the expression for the following terms:	Remember	CO 4	AME017.16
	i. Specific humidity ii. Relative humidity iii. Vapor density			
	iv. Enthalpy of moist air.			
8	List out different sources that contribute to the sensible heat load of	Understand	CO 4	AME017.16
	the room to be air conditioned and Explain the procedure to construct the RSHF			
	line on a psychrometric chart.		~~ (
9	An air conditioned auditorium is to be maintained at 27 ^o C DBT and 60% RH.	Understand	CO 4	AME017.16
	The ambient condition is 40°C DBT and 30°C WBT. The total sensible heat load			
	is 100000 KJ/h and total latent heat load is 40000 KJ/h. 60% of the return air is			
	recirculated and mixed with 40% of make-up air after the cooling coil. The			
	condition of air leaving the cooling coil is at 18° C.			
	Determine: i. Room Sensible Heat Factor, ii. The condition of air entering the auditorium; iii. The amount of make-up air; Show the process on psychrometric			
10	chart. Define the "human comfort", and explain the factors which affect the human	Remember	CO 4	AME017.16
10	comfort.	Kemennee	04	AWIL017.10
11	The air in a room is to be maintained at 19 ^o C and 54 % R.H. by air supplied at a	Understand	CO 4	AME017.13
11	temperature of 14°C. The design out-door conditions are as follows:	Onderstand	0.04	AWILO17.15
	Sensible heat gain: 20000 kJ/hr, Latent heat gain: 4000 kJ/hr, Out-door			
	conditions: 30°C DBT and 42% R.H. The ratio of recirculated air to fresh air is			
	fixed at 2.8: 1 by weight .The plant consists of direct expansion cooling coil and			
	after-heater and a constant speed fan. Calculate:			
	(a) The quantity of air supplied per minute in cubic meters			
	(b) The load on refrigerating plant in tons of refrigeration assuming the bypass			
	factor of the cooling coil 0.15			
	(c) The load on after - heater in kW.			
12	Why ventilation is required? Explain why different ventilation standards for	Understand	CO 4	AME017.13
	different purposes are recommended.			
13	An air conditioned plant is to be designed for a small office for winter	Remember	CO 4	AME017.14
	conditions:			
	Outdoor conditions are 10°C DBT and 8°C WBT, required indoor conditions are			
	20°C DBT and 60% RH, amount of air circulation is 0.3 m ³ /min./person, seating			
	capacity of the office is 50 persons. The required condition is achieved first by			
	heating and then by adiabatic humidifying, determine; i. Heating capacity of the soil in KW and the surface temperatures if the hy ness factor of the soil is 0.22.			
	coil in KW and the surface temperature; if the by-pass factor of the coil is 0.32;			
1 /	and ii. Capacity of the humidifier.	I In damater d	CO 4	AME017.15
14	The atmospheric air at 180C DBT and 70% RH is supplied to the heating chamber at the rate of $120m^3/min$. The leaving air has a temperature of 24^{0} C	Understand	CO 4	AME017.15
	chamber at the rate of $120m^3/min$. The leaving air has a temperature of 24^0C without change in its moisture contents. Determine the heat added to the air per			
	without change in its moisture contents. Determine the heat added to the air per minute and final RH of the air.			
15	What are the important considerations in the design of an air conditioning	Understand	CO 4	AME017.16
15	system?	Understand	004	AMEUT/.10
16	Give the classification of the effects of heat on human body? Explain briefly.	Remember	CO 4	AME017.13
10	Briefly explain the thermodynamics of human body.	Understand	CO 4	AME017.13 AME017.14
17	$800 \text{ m}^3/\text{min. of recirculated air at 22°C DBT and 10°C DPT is to be mixed with}$	Understand	CO 4	AME017.14 AME017.15
10	$300 \text{ m}^3/\text{min.}$ of fresh air at 30°C DBT and 50% RH. Determine the enthalpy,	Understand	0.04	AWIL017.13
	specific volume, humidity ratio and DPT of the mixture.			
19	The amount of air supplied to air conditioned hall is 300 m ³ /min. The	Remember	CO 4	AME017.13
1)	atmospheric conditions are 35° C DBT and 55% RH. The required conditions are	Remember	004	1111101/.13
	20° C DBT and 60% RH, determine, the sensible heat and latent heat removed			
	from the air per minute. Also, find SHF for the system.			
20	120 m^3 of air per minute at 35° C DBT and 50% R.H is cooled to 20° C DBT by	Understand	CO 4	AME017.13

	passing through a cooling coil Determine the following			
	i. R.H of out coming air and its WBT			
	ii. Capacity of the cooling coil in tons of refrigeration			
	iii. Amount of water vapor removed per hr.			
	iv. ADP.			
	Part – C (Problem Solving and Critical Think	ing)		
1	The outdoor summer design condition for a bank for 100 persons at a place is T_{db} = 310K and T_{wb} =300K. The required inside conditions are T_{db} = 295K and φ = 60%. The room sensible heat 400,000kJ/h. The room latent heat 2,00,000kJ/h. Ventilation requirement per person 0.0047m ³ /h. The by-pass factor is 0.15. Evaluate (a) grand total heat (b) ESHF (c) apparatus dew-point (d) volume flow	Understand	CO 4	AME017.13
2	rate of dehumidified air. Define SHF and with neat sketch on psychometric chart explain the process of	Remember	CO 4	AME017.14
3	determination of SHF for a process. Define GSHF and RSHF and with neat sketch on psychometric chart explain the	Understand	CO 4	AME017.15
4	process of determination of GSHF and RSHF for a process. Define ESHF and with neat sketch on psychometric chart explain the process of	Understand	CO 4	AME017.16
4	determination of ESHF for a process.			
5	Explain in detail with neat sketch on psychometric chart the difference between DPT and ADP.	Remember	CO 4	AME017.13
6	The moist air at 30° C DBT and 50% relative humidity enters a cooling coil at a rate of 300 m ³ /min and leaves the coil at 10° C in just saturated state. Find the amount of moisture addition or deletion and tons of refrigeration required.	Understand	CO 4	AME017.14
7	The make-up air at rate of 100 m ³ /min from the environment having $t_{db} = 40^{\circ}$ C and $t_{wb} = 27^{\circ}$ C is mixed with 600 m ³ /min of return air from the conditioned space having state $t_{db} = 23^{\circ}$ C and relative humidity 50%. Compare dry and wet bulb temperatures and specific humidity of the mixture.	Understand	CO 4	AME017.15
8	What is fog? Show on the chart when two air streams yield fogged state of air and list two ways of removing moisture from air.	Remember	CO 4	AME017.16
9	Derive an expression for the by-pass factor in terms of relevant terms. What is its utility?	Understand	CO 4	AME017.13
10	Air with $T_{db} = 30^{\circ}C$ contains 15 grams of moisture per kg of dry air. Calculate a) dew point, b) relative humidity, c) degree of saturation, d) specific humidity.	Understand	CO 4	AME017.13
	Also determine as to what would be the enthalpy of this air.			
ĺ	UNIT - V			1
	AIR CONDITIONING SYSTEMS			
	Part - A (Short Answer Questions)			
1	State the function of grills in Air conditioning system	Understand	CO 5	AME017.17
2	Differentiate between grill and register used in air conditioning system	Remember	CO 5	AME017.18
3	What is the difference between fan and blower in air conditioning system	Understand	CO 5	AME017.19
4	* *			
	State the function of a humidifier	Remember	CO 5	AME017.20
5	State the function of a humidifierWhat is the function of a dehumidifier	Remember Remember	CO 5 CO 5	AME017.20 AME017.17
5 6	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?	Remember Remember Remember	CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18
5	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for	Remember Remember	CO 5 CO 5	AME017.20 AME017.17
5 6 7 8	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?	Remember Remember Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20
5 6 7 8 9	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?	Remember Remember Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17
5 6 7 8 9 10	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?	Remember Remember Understand Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18
5 6 7 8 8 9 10 11	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?	Remember Remember Understand Understand Understand Understand Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19
5 6 7 8 9 10	State the function of a humidifier What is the function of a dehumidifier State the disadvantages of axial flow fans? How dehumidification process is achieved by reducing the air temperature? What is the name of the process of drawing water in the form of fine mist for humidification process? What are the sources of heat for heat pumps? Define the term 'Throw'? Why do we use deodorants in Air conditioning? What are the common units used for the pressure developed by fans? Write the	Remember Remember Understand Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18
5 6 7 8 9 10 11 12	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.	Remember Remember Understand Understand Understand Understand Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.20
5 6 7 8 9 10 11 12 13	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.State principle of working of centrifugal fans?	Remember Remember Understand Understand Understand Understand Remember Understand Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17
5 6 7 8 9 10 11 12 13 14	State the function of a humidifier What is the function of a dehumidifier State the disadvantages of axial flow fans? How dehumidification process is achieved by reducing the air temperature? What is the name of the process of drawing water in the form of fine mist for humidification process? What are the sources of heat for heat pumps? Define the term 'Throw'? Why do we use deodorants in Air conditioning? What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units. State principle of working of centrifugal fans? What is the significance of classifying the fans into Class I, II and III?	Remember Remember Understand Understand Understand Understand Remember Understand Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.17 AME017.17
5 6 7 8 9 10 11 12 13 14 15	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.State principle of working of centrifugal fans?What is the significance of classifying the fans into Class I, II and III?State the principle of working of axial fans?	Remember Remember Understand Understand Understand Understand Remember Understand Remember Understand Remember	$\begin{array}{c} \text{CO 5} \\ \text{CO 5} \end{array}$	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.17
5 6 7 8 9 10 11 12 13 14 15 16	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.State principle of working of centrifugal fans?What is the significance of classifying the fans into Class I, II and III?State the principle of working of axial fans?What is the disadvantage of humidification process by injecting steam?	Remember Remember Understand Understand Understand Remember Understand Remember Understand Remember Understand	$\begin{array}{c} \text{CO 5} \\ \text{CO 5} \end{array}$	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.19 AME017.20
5 6 7 8 9 10 11 12 13 14 15 16 17	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.State principle of working of centrifugal fans?What is the significance of classifying the fans into Class I, II and III?State the principle of working of axial fans?What is the disadvantage of humidification process by injecting steam?How can the life of HEPA filters be improved?	Remember Remember Understand Understand Understand Understand Remember Understand Remember Understand Remember Understand Remember	$\begin{array}{c} \text{CO 5} \\ \hline \text{CO 5} \\ \text{CO 5} \\ \hline \ \ \text{CO 5} \\ \hline \ \ \text{CO 5} \\ \hline \ \ \ \text{CO 5} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.19 AME017.17 AME017.18 AME017.19 AME017.19 AME017.20 AME017.17
5 6 7 8 9 10 11 12 13 14 15 16	State the function of a humidifierWhat is the function of a dehumidifierState the disadvantages of axial flow fans?How dehumidification process is achieved by reducing the air temperature?What is the name of the process of drawing water in the form of fine mist for humidification process?What are the sources of heat for heat pumps?Define the term 'Throw'?Why do we use deodorants in Air conditioning?What are the common units used for the pressure developed by fans? Write the reason for expressing the pressure in those units.State principle of working of centrifugal fans?What is the significance of classifying the fans into Class I, II and III?State the principle of working of axial fans?What is the disadvantage of humidification process by injecting steam?	Remember Remember Understand Understand Understand Remember Understand Remember Understand Remember Understand	$\begin{array}{c} \text{CO 5} \\ \text{CO 5} \end{array}$	AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.20 AME017.17 AME017.18 AME017.19 AME017.19 AME017.20

	Part - B (Long Answer Questions)			
1	What are the sources of heat in nature which can be used for heat pumps?	Understand	CO 5	AME017.17
	Discuss about the performance of Heat pump when used with the different			
	sources of heat. State the advantages and disadvantages in each case.			
2	Describe the working of the heat pump by drawing the circuit for Water to air	Remember	CO 5	AME017.18
-	design.		000	11012017010
3	Describe any two methods of humidification of air by atomizing the water into	Understand	CO 5	AME017.19
	air, with simple line sketches.			
4	Briefly explain different methods used to remove the odours from the air?	Understand	CO 5	AME017.20
5	Which type of air cleaner would be selected for removing very small dirt	Remember	CO 5	AME017.17
e	particles and smoke from the air? Explain its working principle.	1.0	000	11012017017
6	Explain the principle of various dehumidification methods.	Understand	CO 5	AME017.18
7	Explain the process of desalination of sea water by using a heat pump with neat	Understand	CO 5	AME017.19
,	diagram.	Chacistana	000	
8	Explain the following heat pump circuits with a neat sketch Fixed refrigerant	Remember	CO 5	AME017.20
0	circuit design.	Remember	005	71012017.20
9	Explain the following heat pump circuits with a neat sketch Water –to- water	Understand	CO 5	AME017.17
,	design.	Chaerstand	005	
10	Explain the working principle of forward curved and back ward curved fans with	Remember	CO 5	AME017.18
10	neat sketches.	Kenteniber	005	
11	Describe the working of the heat pump by drawing the circuit for Air to water	Understand	CO 5	AME017.19
11	design.	Understand	005	AWIL017.19
12	Describe the use of heat pump for heating and cooling cycle with a neat sketch.	Understand	CO 5	AME017.20
13	What are the advantages and disadvantages of spray type dehumidifier over coil	Remember	CO 5	AME017.20
15	type dehumidifier?	Keinennoei	005	AWILUT7.17
14	Explain the advantages and disadvantages of viscous filters over dry filters.	Understand	CO 5	AME017.18
14		Understand		
15	With the help of a neat diagram, explain the functioning of dry and wet filters.		CO 5	AME017.19
16	With the help of a diagram, explain the Air washer humidifier and state the	Remember	CO 5	AME017.20
17	advantages of this type.	TTo do not on d	CO 5	
17	Explain the working principle of radial blade and propeller fans with neat	Understand	CO 5	AME017.17
10	sketches.	The demotern of	CO 5	AME017 10
18	Explain the working principle of Tube-axial and vane axial fans with neat	Understand	CO 5	AME017.18
10	sketches.	D 1	00.5	
19	Explain briefly pre filters and fine filters with neat sketches.	Remember	CO 5	AME017.19
20	Explain briefly Absolute filters and Electronic filters with neat sketches.	Understand	CO 5	AME017.20
	Part – C (Problem Solving and Critical Think			1
1	The power required for heating a room with reverse cycle refrigeration is less	Understand	CO 5	AME017.17
	than what is required for heating with electrical strip heaters. Explain how.			
2	The first row of a cooling coil in the air entry side may not sweat. Why?	Remember	CO 5	AME017.18
3	Explain the important role of air filters in air conditioning.	Understand	CO 5	AME017.19
4	Three way diverting valves are generally used, instead of two-way solenoid	Understand	CO 5	AME017.20
	valves, in chilled water coils. Why?			
5	Why is balancing valve used in chilled water systems?	Remember	CO 5	AME017.17
6	What is the grille in air conditioning? How does it help in getting	Understand	CO 5	AME017.18
	uniform air distribution?			
7	Explain with a neat sketch the working of a mechanical filter for the purification	Understand	CO 5	AME017.19
	of air in air conditioning systems.			
8	Explain with a neat sketch the working of a electrostatic filter for the purification	Remember	CO 5	AME017.20
	of air in air conditioning systems.			
9	What is the purpose of a dehumidifier in air conditioning system? Also explain	Understand	CO 5	AME017.17
	the working of a dehumidifier with a neat sketch.			
10	List various types of heat pump circuits. Also explain anyone of the heat pump	Remember	CO 5	AME017.18
10				