

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

CIVIL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	REINFOR DRAWING		TE STRUCTU	RES DESIGN ANI	D
Course Code	ACE009				
Programme	B.Tech				
Semester	V CE				
Course Type	Core				
Regulation	IARE - R1	6			
		Theory		Practic	al
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	-	3	-	-
Chief Coordinator	Mr. G. Ram	akrishna, Associa	ate Professor		
Course Faculty		akrishna, Associa y Kumar, Assista			

COURSE OBJECTIVES:

The cou	rse should enable the students to:
Ι	Identify, formulate and solve engineering problems of RC elements.
Π	Differentiate between working stress design and limit state design.
III	Understand the importance of limit state design in reinforced concrete structures.
IV	Design of different structural members like beam, slab, column, footing and stair case.

COURSE OUTCOMES (COs):

CO 1	Describe the Concepts of RC design, material Stress-Strain curves, Safety factors, characteristic
	values, Stress block parameters, Working Stress Method, Limit state analysis and design of singly
	reinforced, doubly reinforced T, and L beam sections.
CO 2	Understand Limit state analysis and design of section for shear and torsion, concept of bond,
	anchorage and development length, I.S. code provisions.
CO 3	Explore the design concept of two-way Slabs, one-way slabs, continuous slabs using I.S. coefficients,
	Cantilever slab/ Canopy slab.
CO 4	Design of short and long column, Axial loads, uni-axial and bi-axial bending I.S. Code provisions.
CO 5	Design footings-Isolated (square, rectangle) and Combined Footings. Design of Stair Case.

Describe the basic concepts of RC design.
Understand the concept material Stress–Strain curves, Safety factors.
Understand the concept Stress block parameters.
Use the design concept of Working Stress Method.
Design of singly reinforced, doubly reinforced sections.
Design of, T, and L beam sections.
Understand Limit state analysis and design of section for shear.
Understand Limit state analysis and design of section for torsion.
Concept of bond, anchorage.
Concept of development length.
Illustrate the deflection limits as per IS: 456–2000
Understand the design concept of one-way slabs.
Understand the design concept of two-way Slabs.
Understand the design concept of continuous slabs.
Calculate the I.S. coefficients for Cantilever slab.
Calculate the I.S. coefficients for Canopy slab.
Discuss the concept of short and long column
Understand the concept of Axial loading.
Understand the concept of uni-axial and bi-axial bending.
Apply I.S. Code provisions.
Design concept for isolated footing.
Design concept for Combined footing.
Understand the Design procedure for Stair Case.
Types of stair Case.

COURSE LEARNING OUTCOMES (CLOs):

TUTORIAL QUESTION BANK

	UNIT-I			
	DESIGN OF BEAMS			
	Part - A (Short Answer Questions)			
S No	QUESTIONS	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	List different methods of design for reinforced concrete structural elements.	Remember	CO 1	ACE009.01
2	State four objectives of the design of reinforced concrete structure.	Understand	CO 1	ACE009.01
3	Explain the working stress method.	Remember	CO 1	ACE009.04
4	What do you mean by characteristic strength and characteristic load?	Remember	CO 1	ACE009.01
5	What are the different kinds of loads?	Remember	CO 1	ACE009.02
6	What are the Limiting strength of concrete and steel in Reinforced Concrete Beams?	Remember	CO 1	ACE009.03
7	Explain the limit state method of design.	Remember	CO 1	ACE009.01
8	Differentiate between WSM and LSM.	Remember	CO 1	ACE009.04
9	List the different categories of limit state design.	Remember	CO 1	ACE009.04
10	Define the factored load.	Remember	CO 1	ACE009.03
11	Write a note on partial safety factors for material.	Remember	CO 1	ACE009.03
12	Explain the limiting moment of resistance.	Remember	CO 1	ACE009.02
13	What is a doubly reinforced beam?	Understand	CO 1	ACE009.05
14	What do you mean by neutral axis?	Understand	CO 1	ACE009.05
15	What are the merits and demerits of Working stress method?	Remember	CO 1	ACE009.04
16	State assumptions made in limit state of design in shear?	Understand	CO 1	ACE009.05
17	Give the idealized stress-strain curve for concrete and steel.	Understand	CO 1	ACE009.02
18	State the assumption for limit state design in flexure.	Remember	CO 1	ACE009.02
19	Explain the stress block parameters with necessary diagrams.	Understand	CO 1	ACE009.03
20	What is the difference the singly and doubly reinforced beam?	Remember	CO 1	ACE009.05
	Part - B (Long Answer Questions)			
1	Enumerate the five limit states commonly used in limit state design and state briefly how they are provided in the design.	Understand	CO 1	ACE009.05
2	Draw the cross-section of singly reinforced rectangular beam and show the strain and stress diagrams.	Understand	CO 1	ACE009.05
3	Explain the limiting moment of resistance and give the expression for the Fe 250 and Fe415 grade steel?	Understand	CO 1	ACE009.05
4	Explain the terms balanced, over-reinforced and under-reinforced section in bending. Explain which of these should be recommended in design.	Understand	CO 1	ACE009.05
5	Explain with figure balanced, under reinforced, over reinforced sections	Understand	CO 1	ACE009.04
6	What do you mean by neutral axis and leaver arm? Explain briefly with neat sketches.	Understand	CO 1	ACE009.03
7	Find the moment resistance of a singly reinforced concrete beam of 200 mm width and 400 mm effective depth, reinforced with 4 bars of 16 mm dia. of Fe 415 steel. Take M20 concrete	Understand	CO 1	ACE009.05
8	A singly reinforced concrete beam having a width of 250 mm is reinforced with steel bars of area 3600 mm^2 at an effective depth of 400 mm. if M 20 grade of concrete and Fe-415 HYSD bars are used, compute the ultimate flexural strength of the section.	Understand	CO 1	ACE009.05

		** 1 1	GO 1	1 07000 0 0
9	A reinforced concrete beam of a rectangular section 300 mm wide by 600 mm	Understand	CO 1	ACE009.05
	deep is reinforced with 4 bars of 25 mm diameter at an effective depth of 550			
	mm. the effective span of the beam is 7m, $f_y = 415$ N/mm2 and $f_{ck} = 20$			
10	N/mm ² , find the uniformly distributed ultimate load on the beam.	Understand	CO 1	ACE009.04
10	Find the moment resistance of a singly reinforced concrete beam of 200 mm	Understand	01	ACE009.04
	width and 400 mm effective depth, reinforced with 3 bars of 16 mm dia. of Fe			
11	415 steel. Take M20 concrete	TT 1 / 1	00.1	A CE000.05
11	Determine the depth of neutral axis of abeam 250 mmx 400 mm, reinforced	Understand	CO 1	ACE009.05
	with 3 bars of 20 mm diameter. Also check for the type of section. Use M20			
10	concrete and Fe 415 steel.	TT 1 / 1	00.1	A CE000.05
12	Design a balanced singly reinforced concrete beam section for an applied	Understand	CO 1	ACE009.05
	moment of 60kN-m. The width of the beam is limited to 175 mm. use M20			
10	concrete and Fe 415 steel bars.	TT 1 . 1	00.1	A GE000.05
13	A Singly Reinforced R.C.C. beam is subjected to a moment of 80kN-m. The	Understand	CO 1	ACE009.05
	width of the beam is 200 mm. calculate the depth of beam and area of steel			
	reinforcement required for balance design. Use M20 concrete and Fe 415 steel.			
14	A reinforced concrete beam is 300 mm x 700 mm is subjected to a bending	Understand	CO 1	ACE009.05
	moment of 150 Kn-m. Determine the area of reinforcement if M20 concrete			
	and Fe 415 steel is used. Take effective cover as 40 mm.			
15	A beam simply supported over an effective span of 7m carries alive load of 20	Understand	CO 1	ACE009.06
	kN/m. Design the beam, using M20 concrete and HYSD bars of grade			
	Fe415.keep the width equal to half the effective depth. Assume unit weight of			
	concrete as 25Kn/m ³ .			
16	Enumerate the steps of design of doubly reinforced beam.	Understand	CO 1	ACE009.05
17	Determine the factored moment of resistance of a beam 230 mm x 460 mm	Understand	CO 1	ACE009.04
	(effective). The beam is reinforced with 2-16 mm diameter bars on			
	compression side and 4-20 mm diameter bars on tension side. The compression			
	bars are placed at a distance of 40 mm from top. Use M 20 concrete and Fe			
	415 steel.			
18	Find the factored moment of resistance of an R.C.C beam 300 mm x 450 mm	Understand	CO 1	ACE009.05
	(effective).the beam is reinforced with 43-25 mm diameter bars in the tension			
	zone 2-20 mm diameter bars are p[laced at a distance of 50 mm from top in the			
	compression zone. Use M20 concrete and Fe 415 steel.			
19	A rectangular beam has a width of 250 mm and effective depth of 500 mm.	Understand	CO 1	ACE009.05
	The beam is provided with tension steel of 5 bars of 28 mm diameter and			
	compression steel of 2 bars of 25 mm diameter. The effective cover to the			
	compression steel of 2 bars of 25 mm diameter. The effective cover to the compression steel being 50 mm. Calculate the ultimate moment capacity of the			
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the	Understand	CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_y = 250 N/mm^2$	Understand	CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_y = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data.	Understand	CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars	Understand	CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars.	Understand	CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars		CO 1	ACE009.03
20	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel.		CO 1 CO 1	ACE009.03 ACE009.05
	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_y = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q	uestions)		
	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q Find out the ultimate moment of resistance of a rectangular beam 300 mmx 550 mm. the area of tension and compression reinforcement are 250mm ² and	uestions)		
	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; $d = 900 mm$, $d' = 50 mmTension reinforcement = 5- 20 mm dia barsCompression reinforcement = 2-20 mm dia bars.Use M 15 concrete and Fe 415 steel.Part - C (Problem Solving and Critical Thinking QFind out the ultimate moment of resistance of a rectangular beam 300 mmx550 mm. the area of tension and compression reinforcement are 250mm2 and400 mm2 respectively. Take effective cover as 50 mm. Assume M 25 grade of$	uestions)		
	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q Find out the ultimate moment of resistance of a rectangular beam 300 mmx 550 mm. the area of tension and compression reinforcement are 250mm ² and 400 mm ² respectively. Take effective cover as 50 mm. Assume M 25 grade of concrete and Fe 415 steel.	<mark>uestions)</mark> Understand	CO 1	ACE009.05
1	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_y = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q Find out the ultimate moment of resistance of a rectangular beam 300 mmx 550 mm. the area of tension and compression reinforcement are 250mm ² and 400 mm ² respectively. Take effective cover as 50 mm. Assume M 25 grade of concrete and Fe 415 steel.	uestions)		
1	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_v = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q Find out the ultimate moment of resistance of a rectangular beam 300 mmx 550 mm. the area of tension and compression reinforcement are 250mm ² and 400 mm ² respectively. Take effective cover as 50 mm. Assume M 25 grade of concrete and Fe 415 steel. Determine the ultimate moment of resistance of a doubly reinforced beam of rectangular section having a width of 300 mm and reinforced with 5 bars of 25	<mark>uestions)</mark> Understand	CO 1	ACE009.05
1	compression steel being 50 mm. Calculate the ultimate moment capacity of the section, if $f_{ck} = 20N/mm^2$ and $f_y = 250 N/mm^2$ Determine the moment of resistance of the beam having the following data. b = 350 mm; d = 900 mm, d' = 50 mm Tension reinforcement = 5- 20 mm dia bars Compression reinforcement = 2-20 mm dia bars. Use M 15 concrete and Fe 415 steel. Part - C (Problem Solving and Critical Thinking Q Find out the ultimate moment of resistance of a rectangular beam 300 mmx 550 mm. the area of tension and compression reinforcement are 250mm ² and 400 mm ² respectively. Take effective cover as 50 mm. Assume M 25 grade of concrete and Fe 415 steel.	<mark>uestions)</mark> Understand	CO 1	ACE009.05

3	A rectangular reinforced concrete beam of width 400 mm and effective depth	Understand	CO 1	ACE009.05
	M-20 grade concrete and Fe-415 HYSD bars design suitable reinforcements in			
4	A Concrete beam has 350 mm breadth and 700 mm effective depth. Design the	Understand	CO 1	ACE009.04
	beam if it is subjected to a super imposed bending moment of 400kN-m. Use			
	HYSD bars of Fe 415 grade and concrete of M20 grade. Take d'=50 mm.			
5	Design reinforcement of a reinforced concrete beam a of 300 mm wide and	Understand	CO 1	ACE009.06
	400 mm deep of grade M 20 to resist an ultimate moment of 150 kN-m. using			
	mild steel bars of grade Fe 250.			
6	A reinforced concrete beam of M 20 grade concrete, 300 mm wide and 500	Understand	CO 1	ACE009.05
	mm deep is required to resist a super imposed moment of 152kN-m at an			
	intermediate support of a continuous beam. Using mild steel bars, calculate A _{sc}			
	at top, if 4 No. 16 mm dia bars are required to be continued at bottom from one			
 600 mm is to be designed to support an ultimate moment of 600 M-20 grade concrete and Fe-415 HYSD bars design suitable reint the beam at effective cover of 60 mm. 4 A Concrete beam has 350 mm breadth and 700 mm effective dept beam if it is subjected to a super imposed bending moment of 44 HYSD bars of Fe 415 grade and concrete of M20 grade. Take d'= 5 Design reinforcement of a reinforced concrete beam a of 300 r 400 mm deep of grade M 20 to resist an ultimate moment of 150 mild steel bars of grade Fe 250. 6 A reinforced concrete beam of M 20 grade concrete, 300 mm v mm deep is required to resist a super imposed moment of 15 intermediate support of a continuous beam. Using mild steel bars, 				
7	Find the moment of resistance of a T- beam having a web width of 240 mm,	Understand	CO 1	ACE009.06
	effective depth of 400 m, flange width of 740 mmand flange thickness equal			
	to 100 mm. The beam is reinforced with 5-16 mm diameter, Fe 415 bars. Use			
	M 20 concrete.			
8	Calculate the moment of resistance of a existing T- beam $b_f = 740$ mm and	Understand	CO 1	ACE009.06
	effective depth d= 400 mm, width of web $b_w=240$ mm, $D_f=100$ mm. 5 No of			
	20 mm dia bars is inserted in beam. Use M15 grade concrete and Fe 415 bars.			
9	A T- beam Floor system has 120 mm thick slab supported on beams is 300 mm	Understand	CO 1	ACE009.06
-	and effective depth is 580 mm. the beam is reinforced with 8 bars of 20 mm	enderstand	001	1102009.00
	diameter. Use M 20 grade of concrete and Fe 415 steel. The beams are spaced			
	3m centre to centre.			
10	Design a T-beam whose dimensions are $b_f = 700$ mm and effective depth = 300	Understand	CO 1	ACE009.06
10	mm, width of web $b_w=200$ mm, $D_f=100$ mm. Applied moment of 350 kNm.	Charistana	001	1102003100
	Use M20 grade concrete and Fe415 grade steel.			
	UNIT-II			
	SHEAR, TORSION AND BOND			
	Part – A (Short Answer Questions)			
1	For design of continuous beam what is the span to depth ratio adopted?	Understand	CO 2	ACE009.07
2	What is the expression for spacing of vertical stirrups in R.C. beams for shear?	Understand	CO 2	ACE009.07
3	What are the limits for spacing of shear reinforcement?	Understand	CO 2	ACE009.07
4	What are the types of reinforcements used to resist shear? Explain the action of	Understand	CO 2	ACE009.07
-	different types of shear steel.			
5	What is the purpose of splicing of reinforcement? What are the different ways	Remember	CO 2	ACE009.08
5	by which this can be achieved?	remember	002	1102009.00
6	Define 'development length'. What is its significance?	Understand	CO 2	ACE009.10
7	Explain the loading conditions for checking Serviceability.	Remember	CO 2	ACE009.11
8	Under what situations do the following modes of cracking occur in reinforced	Understand	CO 2	ACE009.11 ACE009.11
0	concrete beams: (a) flexural cracks, (b) diagonal tension cracks, (c) flexural-	Understallu	002	ACL007.11
	shear cracks and (d) splitting cracks?			
9	List out the factors influencing the short term deflection, long term deflection	Understand	CO 2	ACE009.11
7		Understalld	002	ACE009.11
10	of RC beams.	Undorstowal	CO 2	ACE000.11
10	What are the various remedial measures for control of cracking?	Understand	CO 2	ACE009.11
11	What are the different regions of cracks in the beam?	Remember	CO 2	ACE009.11
12	What do you understand by nominal shear stress? Write the formula for uniform formulae for regtongular section?	Remember	CO 2	ACE009.07
12	uniform formulae for rectangular section?	Understand	CO 2	
13	What are the stresses produced by torsion?State the spacing of shear reinforcement as per IS 456:2000.	Understand Understand	CO 2 CO 2	ACE009.08 ACE009.07
14				

15	When do we require calicing in steel minforcement?	Understand	CO 2	ACE009.07
15	When do we require splicing in steel reinforcement?	Remember	CO 2 CO 2	ACE009.07 ACE009.09
10	Explain the terms bond and anchorage?		CO 2 CO 2	
	Explain the terms average bond stress and local bond stress?	Remember		ACE009.09
18	Sketch the pattern of cracking in a beam under torsional moment. Explain the term torsional stiffness.	Remember	CO 2	ACE009.08
19	What is short term deflection and what are the factors affecting it.	Remember	CO 2	ACE009.11
20	What is short term deneetion and what are the factors affecting it.	Remember	CO 2	ACE009.11
20	Part - B (Long Answer Questions)	Remember	02	ACL007.11
1	Explain modes of failures in R.C beams?	Understand	CO 2	ACE009.07
2	Explain the Step by step design procedure for shear reinforcement.	Understand	CO 2	ACE009.07
3	A simply supported reinforced concrete beam is 250 mm wide and 500mm	Understand	CO 2	ACE009.07
5	effective depth and is reinforced with 4-20 mm diameter as tensile steel. If the	Chadrotana	002	педоблог
	beam is subjected to a factored shear of 65 KN at the support. Find the nominal			
	shear stress at the support. Use M20 concrete and Fe 250 steel.			
4	What are the various remedial measures for control of cracking?	Understand	CO 2	ACE009.11
5	Explain the different types of shear reinforcement with neat sketches.	Understand	CO 2	ACE009.07
6	What is the IS 456:2000 code requirements for bond?	Understand	CO 2	ACE009.09
7	Design the torsional reinforcement in a rectangular beam section, 350 mm	Understand	CO 2	ACE009.08
	wide and 750 mm deep, subjected to an ultimate twisting moment of 140			
	kNm, combined with an ultimate (hogging) bending moment of 200 kNm and			
	an ultimate shear force of 110kN. Assume M 25 concrete, Fe 415 steel and			
	mild exposure conditions.			
8	A simply supported beam 300 mm x 600 mm (effective) is reinforced with 5	Understand	CO 2	ACE009.07
	bars of 25 mm diameter. It carries a uniformly distributed load of 80			
	kN/m(including its own weight) over an effective span is 6 m. out of 5 main			
	bars can be bent up safely near the supports. Design the shear reinforcement			
	for the beam. Use M20 grade of concrete and Fe415 steel.			
9	A simply supported rectangular beam 300 x 500 mm of effective span 7.0 m, is	Understand	CO 2	ACE009.11
	reinforced with 5 bars of 20 mm diameter on tension side no. 4 bars of 16 mm			
	diameter on compression side. Check the deflection criteria. use Fe415 steel.			
10	Explain the critical sections for design shear as per IS 456 with requisite	Understand	CO 2	ACE009.07
11	sketches.	TT 1 / 1	00.0	A CE000.11
11	Explain the approaches for control of deflection in bending members as per IS	Understand	CO 2	ACE009.11
12	456. What are the measures for reducing deflection? An R.C.C beam 300 mm x 600 mm in section reinforce with 5-25 mm dia. bars	Understand	CO 2	ACE009.07
12	(effective) it is subjected to a design shear force of 200 kN. Comment on its	Understand	02	ACE009.07
	shear design. Use M 20 concrete Fe415 steel.			
13	An R.C.C. Beam 250 x400 mm effective depth is carried a uniformly	Understand	CO 2	ACE009.07
15	distributed load of 15kN/m. The beam is reinforced with 4 bars of 22 mm dia.	Onderstand	02	ACL009.07
	The clear span of the beam is 4m. Design the shear reinforcement; use M 20			
	concrete and plain mild steel bars.			
14	Explain IS456 method of design of reinforced concrete members subjected to	Understand	CO 2	ACE009.08
11	torsional moment.	onderstand	002	neL009.00
15		Undanstand	CO 2	ACE000.07
15	What is nominal shear reinforcement? Give the reasons for providing	Understand	CO 2	ACE009.07
	minimum shear reinforcement.			
16	A R.C.C beam 200 mm x 400 mm effective carries a uniformly distributed	Understand	CO 2	ACE009.07
	load of 70 kN/m clear span of 6 m. the beam is reinforced with 1%steel on			
	tension side comment on the shear design of the beam. Use M 20 concrete and			
	load factor $= 1.5$.			

1.5		TTTT		
17	A simply supported beam, 300 mm wide and 500 mm effective depth carries a uniformly distributed load of 50 kN/m, including its own weight over an effective span of 6 m. Design shear reinforcement in the form of vertical stirrups. Assume that the beam contains 0.75% reinforcement throughout the length. The concrete is of M 20 grade and steel for stirrups is of Fe 250 grade. Take width of supports as 40 mm.	Understand	CO 2	ACE009.10
18	A R.C.C. beam 250 mm x 500 mm has a clear span of 5.5 m. The beam has 2-20 dia. Bars are going into the support. Factored shear force is 140 kN. Check for development length if Fe415 and M20 grade of concrete is used.	Understand	CO 2	ACE009.10
19	A rectangular beam, 300mm wide and 400mm deep is reinforced with 2 nos. 12mm dia bars at top and 2 nos. 16mm dia bars at the bottom, each provided at an effective cover of 40mm. Assuming concrete of M20 grade and steel of Fe 415 grade, determine the resistance of the beam in pure torsion.	Understand	CO 2	ACE009.08
20	Determine the reinforcement required for a rectangular beam section with the following data: Width of section= 250mm Depth of section=450mm Factored BM=75KNm Factored torsional moment= 50KNm Factored shear force=90KN, use M15 grade concrete and Fe415 grade steel.	Understand	CO 2	ACE009.08
	Part - C (Problem Solving and Critical Thinking Q	uestions)		
1	Design the shear reinforcement for a RC cantilever beam carrying a UDL of 80 KN/m inclusive of its own weight. Consider M20 grade of concrete and Fe415 steel. Assume a cover 50mm to the center of reinforcement.	Understand	CO 2	ACE009.07
2	Design shear reinforcement for a tapered cantilever beam of span 3 m, having a section of 250 mm effective depth and 300 mm width at the free end, and 550 mm effective depth and 300 mm width at the support (see Fig.). The beam has to support a factored uniform load of 80 kN/m, including its self-weight. Assume an effective cover of 50 mm, Fe 415 steel, and M25 concrete.	Understand	CO 2	ACE009.07
3	A cantilever canopy is made up of monolithically constructed beam of 8 m span with a cantilever slab of 4m. The beam section is 400mm wide by 1200 mm deep. The live load on slab is 1.5 kN/m . Determine the torsion and shear due to live load for which the beam should be designed.	Understand	CO 2	ACE009.08
4	An R.C.C. Section 200 x400 mm is subjected to a characteristic torsional moment of 2.5 kN.m and a transverse shear of 60 kN. Assuming the use of M-25 grade concrete and Fe-415 HYSD bars determine the reinforcements required according to the IS: 456 code provisions, using the following data.	Understand	CO 2	ACE009.08

5	A reinforced concrete beam of rectangular section with a width of 350 mm and overall depth of 800 mm is subjected to a factored bending moment of 215 kNm, ultimate torsional moment of 105 kNm an ultimate shear forcec of 150 kN. Using M-20 grade concrete and Fe 415 HYSD bars and side, top and bottom covers of 50 mm, design suitable reinforcement in the section.	Understand	CO 2	ACE009.07
6	A rectangular beam section 200 mm wide and 450 mm overall depth is reinforced with 3 bars of 16 mm diameter at an effective depth of 420 mm. Two hanger bars of 12 mm diameter are provided at the compression face. The effective span of the beam is 5 m. The beam supports a service load of 10 kN/m. If f ck = 20 N/mm ² and f y = 415 N/mm ² . Compute short term deflection.	Understand	CO 2	ACE009.11
7	Design for Torsion. Determine the reinforcement required for a rectangular beam section with the following data: Width of section: 300 mm Depth of section: 500 mm Factored B.M: 65 kN-m Factored torsional moment: 40 kN-m Factored shear force: 70 kN. Use M 15 grade concrete and Fe 415 grade steel.	Understand	CO 2	ACE009.08
8	 A cantilever beam having a width of 200mm and effective depth 300mm supports a uniformly distributed load and is reinforced with four bars of 16mm diameter. If the factored total load is 80 kN, calculate a) The maximum local bond stress. b) The anchorage length required. c) If the anchorage length provided is 900 mm, the average bond stress. Assume M-20 Grade Concrete and Fe-415 HYSD bars. 	Understand	CO 2	ACE009.09
9	A simply supported rectangular beam of 12m span has a effective depth of 800mm. The area of tension reinforcement required to support the loads is designed as 1.6%. Check the deflection control of the beam by empirical method if a) Fe 415 grade steel is used and b) Fe 500 grade steel is used	Understand	CO 2	ACE009.11
10	A doubly reinforced beam of rectangular section 250 mm wide by 5 mm overall depth is reinforced with 4 bars of 22 mm diameter on tension face and 2 bars of 16 mm diameter at the compression face. The effective cover is 50 mm. The beam spans over 8 m. If Fe-415 HYSD bars are used, check for the deflection control using the empirical method.	Understand	CO 2	ACE009.11
	UNIT -III			
	DESIGN OF SLABS			
	Part - A (Short Answer Questions)			-
1	What is difference between one-way and two-way slabs?	Remember	CO 3	ACE009.12
2	Why do we need to provide cover in the design of reinforced concrete	Remember	CO 3	ACE009.12
<u> </u>	structures?			
3	Give the unit weight of PCC and RCC.	Understand	CO 3	ACE009.13
4	Give the unit weight of PCC and RCC. What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabs	Remember	CO 3	ACE009.12
	Give the unit weight of PCC and RCC. What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabs What are the considerations that govern thickness of one way and two way slabs?	Remember Remember	CO 3 CO 3	ACE009.12 ACE009.13
4	Give the unit weight of PCC and RCC. What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabs What are the considerations that govern thickness of one way and two way slabs? Which is the critical section to be considered for checking of shear in a slab support on beams?	Remember Remember Understand	CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12
4 5 6 7	Give the unit weight of PCC and RCC. What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabs What are the considerations that govern thickness of one way and two way slabs? Which is the critical section to be considered for checking of shear in a slab support on beams? What are the Reinforcement requirement for One-way slabs as per IS:456 ?	Remember Remember Understand Understand	CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12
4 5 6 7 8	Give the unit weight of PCC and RCC.What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabsWhat are the considerations that govern thickness of one way and two way slabs?Which is the critical section to be considered for checking of shear in a slab support on beams?What are the Reinforcement requirement for One-way slabs as per IS:456 ?What are the Reinforcement requirement for Two-way slabs as per IS:456?	Remember Remember Understand	CO 3 CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12
4 5 6 7	Give the unit weight of PCC and RCC.What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabsWhat are the considerations that govern thickness of one way and two way slabs?Which is the critical section to be considered for checking of shear in a slab support on beams?What are the Reinforcement requirement for One-way slabs as per IS:456 ?What are the Reinforcement requirement for Two-way slabs as per IS:456?What are the Torsional reinforcement is required in which type of slabs and why?	Remember Remember Understand Understand	CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12
4 5 6 7 8	Give the unit weight of PCC and RCC.What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabsWhat are the considerations that govern thickness of one way and two way slabs?Which is the critical section to be considered for checking of shear in a slab support on beams?What are the Reinforcement requirement for One-way slabs as per IS:456 ?What are the Reinforcement requirement for Two-way slabs as per IS:456?What are the Torsional reinforcement is required in which type of slabs and why?	Remember Remember Understand Understand Remember	CO 3 CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12 ACE009.13
4 5 6 7 8 9	Give the unit weight of PCC and RCC.What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabsWhat are the considerations that govern thickness of one way and two way slabs?Which is the critical section to be considered for checking of shear in a slab support on beams?What are the Reinforcement requirement for One-way slabs as per IS:456 ?What are the Reinforcement requirement for Two-way slabs as per IS:456?What are the Torsional reinforcement is required in which type of slabs and	Remember Remember Understand Understand Remember Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12 ACE009.13 ACE009.14
4 5 6 7 8 9	Give the unit weight of PCC and RCC.What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabsWhat are the considerations that govern thickness of one way and two way slabs?Which is the critical section to be considered for checking of shear in a slab support on beams?What are the Reinforcement requirement for One-way slabs as per IS:456 ?What are the Reinforcement requirement for Two-way slabs as per IS:456?What are the Torsional reinforcement is required in which type of slabs and why?	Remember Remember Understand Understand Remember Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12 ACE009.13 ACE009.14
4 5 6 7 8 9 10	Give the unit weight of PCC and RCC. What are the specifications as per IS code for Minimum and maximum reinforcement requirement for slabs What are the considerations that govern thickness of one way and two way slabs? Which is the critical section to be considered for checking of shear in a slab support on beams? What are the Reinforcement requirement for One-way slabs as per IS:456 ? What are the Reinforcement requirement for Two-way slabs as per IS:456? What are the Reinforcement requirement for Two-way slabs as per IS:456? What are the maximum size of coarse aggregate in slab?	Remember Remember Understand Understand Understand Understand	CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	ACE009.12 ACE009.13 ACE009.12 ACE009.12 ACE009.13 ACE009.14 ACE009.14

14	Sketch the reinforcement detailing of one way slab.	Understand	CO 3	ACE009.12
15	Sketch the reinforcement detailing of two-way slab.	Remember	CO 3	ACE009.13
16	Explain about canopy slabs?	Remember	CO 3	ACE009.16
17	What are the specifications for the design of slabs for shear as per IS 456?	Understand	CO 3	ACE009.15
18	Explain the need for corner reinforcement in two-way rectangular slabs whose	Remember	CO 3	ACE009.15
-	corners are prevented from lifting up.			
19	What type of slabs is usually used in practice, under-reinforced or over-	Remember	CO 3	ACE009.15
	reinforced?			
20	Write any two general features of two way slab?	Understand	CO 3	ACE009.13
	Part – B (Long Answer Questions)			•
1	Write the procedure for design two way simply supported slabs.	Understand	CO 3	ACE009.13
2	Explain the check for deflection control in the design of slabs?	Understand	CO 3	ACE009.13
3	Design a simply supported roof slab for a room 7.5 m x 3.5 m clear in size.	Understand	CO 3	ACE009.13
	The slab is carrying an imposed load of 5 kN/m ² . Use M20 mix and Fe 415 Steel.			
4	Design a simply supported R.C.C. slab for an office floor having clear	Understand	CO 3	ACE009.12
	dimensions of 4m by 10 m with 230 walls all-round. Adopt M - 20 grade		200	
	concrete & Fe-415 grade HYSD bars.			
5	Design a one way slab with clear span 6m simply supported on 230mm thick	Understand	CO 3	ACE009.12
	wall subjected to a live load of 10 kN/m ² and floor finish is 1.5 kN/m ² . Use M		-	
	20 grade concrete and Fe 415 steel. Assume slab is subjected to moderate			
	exposer.			
6	Design a one way slab with clear span 4.8m simply supported on 230mm thick	Understand	CO 3	ACE009.13
	wall subjected to a live load of 5 kN/m^2 and floor finish is 1.5 kN/m^2 . Use M			
	20 grade concrete and Fe 415 steel. Assume slab is subjected to moderate			
	exposer.			
7	Discuss the Design procedure for one way slab?	Understand	CO 3	ACE009.12
8	Design a one way slab with a clear span of 5m, simply supported on 230mm	Understand	CO 3	ACE009.12
	thick masonry walls and subjected to a live load of 4kN/m ² and a surface finish			
	of 1kN/mm ² .Assume Fe 415 steel. Assume that the slab is subjected to			
	moderate exposure conditions.			
9	Design a slab over a room 5m x 7m as per I.S code. The slab is supported on	Understand	CO 3	ACE009.13
	masonry walls all round with adequate restraint and the corners are held down.			
	The live load on the corners is held down. The live load on the slab is			
10	330N/m2. The slab has a bearing of 150 mm on the supporting walls.	TT 1 . 1	00.0	4 CE000 12
10	A T-beam slab floor of an office comprises of a slab 150 mm thickness	Understand	CO 3	ACE009.13
	spanning between ribs spaced at 3 m centres. The effective span of the beam is			
	8 m. Live load on floor is 4 kN/m2. Using M20 grade and Fe 415 HYSD bars.			
	Design one of the intermediate tee beams. Use limit state method			
11	Explain the difference in the behavior of one-way and two-way slabs.	Understand	CO 3	ACE000 12
11	Write any two general features of two way slab.	Understand	CO 3	ACE009.13 ACE009.13
12	Discuss the Design procedure for two way slab?	Understand	CO 3	ACE009.13 ACE009.13
13	Explain IS: 456 code method for design of slab?	Understand	CO 3	ACE009.13 ACE009.14
14	Give neat sketches for the reinforcement details for one way simply support	Understand	CO 3	ACE009.14 ACE009.13
15	and two way continuous slabs.	Understallu	005	ACL007.13
16	Design a simply supported slab to cover a hall with internal dimensions 4.0 m×	Understand	CO 3	ACE009.13
10	6.0 m. The slab is supported on masonry walls 230 mm thick. Assume a live	Chaerbuild	000	1102007.15
	in the second se			
	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415			
17	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up.	Understand	CO 3	ACE009.14
17	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab	Understand	CO 3	ACE009.14
17	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is	Understand	CO 3	ACE009.14
17	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is 230mm. Design the slab for LL of 3KN/m ² Assume weight of roof finishing as	Understand	CO 3	ACE009.14
17	load of 3 kN/m2 and a finish load of 1 kN/m ² . Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is 230mm. Design the slab for LL of 3KN/m ² Assume weight of roof finishing as 1 KN/m ² use M20 grade concrete and Fe 415 grade steel.	Understand	CO 3	ACE009.14 ACE009.14
	 load of 3 kN/m2 and a finish load of 1 kN/m². Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is 230mm. Design the slab for LL of 3KN/m² Assume weight of roof finishing as 1 KN/m² use M20 grade concrete and Fe 415 grade steel. Design a reinforced concete slab for a room having internal dimension 3m x 			
	 load of 3 kN/m2 and a finish load of 1 kN/m². Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is 230mm. Design the slab for LL of 3KN/m² Assume weight of roof finishing as 1 KN/m² use M20 grade concrete and Fe 415 grade steel. Design a reinforced concete slab for a room having internal dimension 3m x 7m supported on walls of 300 mm thickness. The slab carries 75mm thick lime 			
	 load of 3 kN/m2 and a finish load of 1 kN/m². Use M 20 concrete and Fe 415 steel. Assume that the slab corners are free to lift up. Design continuous RC slab for a class room 7 m wide and 14 m long. The slab is supported on rcc beams spaced at 3.5 m intervals. The width of each beam is 230mm. Design the slab for LL of 3KN/m² Assume weight of roof finishing as 1 KN/m² use M20 grade concrete and Fe 415 grade steel. Design a reinforced concete slab for a room having internal dimension 3m x 			

19 Design a floor slab of T-beam floor of room 8.5mX14.5 m (clear) resting on 230 mm thick walls all around. 3 intermediate beams are provided with equal spacing in shorter span. The floor loading consists of live load of 4 kN/m ² & dead load (floor finish) 1.5 kN/m ² apart from self weight. Assume M 20 grade concrete and Fe 415 steel. CO 3 20 Design a two way slab for an office floor size 35 mx4.5 m discontinuous and simply supported edges on all the sides with the corners prevented from lifting and supporting a service live load of 4.4 kN/m2. Adopt M 20 grade and Fe 415 HYSD bars. Understand CO 3 1 Design a one-way slab, with a clear span of 4.0 m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 4 kN/m ² and a surface finish of 1 kN/m ² . Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions. CO 3 2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results. CO 3 3 Design A cantilever slab having an overhang of 1	ACE009.16 ACE009.13 ACE009.12 ACE009.12
20 Design a two way slab for an office floor size 35 mx4.5 m discontinuous and simply supported edges on all the sides with the corners prevented from lifting and supporting a service live load of 4.4 kN/m2. Adopt M 20 grade and Fe 415 Understand CO 3 Part – C (Problem Solving and Critical Thinking) 1 Design a one–way slab, with a clear span of 4.0 m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 4 kN/m ² and a surface finish of 1 kN/m ² . Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions. CO 3 2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results. CO 3	ACE009.12
Part – C (Problem Solving and Critical Thinking) 1 Design a one–way slab, with a clear span of 4.0 m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 4 kN/m ² and a surface finish of 1 kN/m ² . Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions. CO 3 2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results. CO 3	
1 Design a one-way slab, with a clear span of 4.0 m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 4 kN/m ² and a surface finish of 1 kN/m ² . Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions. CO 3 2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results. Understand CO 3	
mm thick masonry walls, and subjected to a live load of 4 kN/m ² and a surface finish of 1 kN/m ² . Assume Fe 415 steel. Assume the beam is subjected to moderate exposure conditions. Moderate exposure conditions. 2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results. Understand CO 3	
2 Design a one-way slab, with a clear span of 5.0m, simply supported on 230 Understand CO 3 mm thick masonry walls, and subjected to a live load of 3 kN/m ² and a surface finish load of 1 kN/m ² , using Fe 415 steel. Assume that the beam is subjected to (a) mild exposure and (b) very severe exposure, and compare the results.	ACE009.12
3 Design A cantilever slab having an overhang of 1.25m take load of intensity of Understand CO 3 1000 N/m ² on the cantilever and the weight of the finishing as 800 N/m ² use M20 and Fe415 steel.	ACE009.15
4 Design continuous RC slab for a hall 6.5 m wide and 13.5 m long. The slab is supported on rcc beams, each 240 mm wide which are monolithic. The ends of the slab are supported on walls 300 mm wide. Design the slab for LL of 2 KN/m ² Assume weight of roof finishing equal to 1.5 KN/m ² use M20 grade concrete and Fe 415 grade steel.	ACE009.14
5The floor of a hall measures 16m X 6m from inside and has walls 400mm thick. Design a suitable R.C. T- beam roof to carry a super imposed load of 2000 N/m². Use M20 grade concrete and Fe 415 grade steel.UnderstandCO 3	ACE009.14
06 Design a simply supported RCC slab for a roof of a hall 5m x 10 m with 230 Understand CO 3 mm walls all around assume a LL of 4 KN/m ² and finish 1 KN/m ² . Use M 25 and Fe 415 steel.	ACE009.12
07 Design a slab of room of clear size 5.5 m X 4 m. The superimposed load is 5 Understand CO 3 kN/m ² use M-20 and Fe 415 grade of steel. The four edges of the slab are simply supported and there is no provision of torsion reinforcement (corners	ACE009.13
not held down). The width of the support is 300 mm.	
not held down). The width of the support is 300 mm. Image: Constraint of the support of the sup	ACE009.12
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply Understand CO 3 supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix,	ACE009.12 ACE009.13
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix, Fe415 steel and IS code method. CO 3 09 Design a reinforced concrete slab for a room of clear dimensions 4 m x 5 m. The slab is supported on walls of width 300 mm. The slab is carrying a live load of 4 kN/m ² and floor finish 1 kN/m ² . Use M20 concrete and Fe 415 steel. The corners of slab are held down. Understand CO 3 10 Design a two way slab for a room of size 4 m X 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4kN/m ² . Use M20 grade concrete & Fe415 steel bars. Understand CO 3	
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix, Fe415 steel and IS code method. CO 3 09 Design a reinforced concrete slab for a room of clear dimensions 4 m x 5 m. The slab is supported on walls of width 300 mm. The slab is carrying a live load of 4 kN/m ² and floor finish 1 kN/m ² . Use M20 concrete and Fe 415 steel. The corners of slab are held down. CO 3 10 Design a two way slab for a room of size 4 m X 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4kN/m ² . Use M20 grade concrete & Fe415 steel bars. Understand CO 3	ACE009.13
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix, Fe415 steel and IS code method. CO 3 09 Design a reinforced concrete slab for a room of clear dimensions 4 m x 5 m. The slab is supported on walls of width 300 mm. The slab is carrying a live load of 4 kN/m ² and floor finish 1 kN/m ² . Use M20 concrete and Fe 415 steel. The corners of slab are held down. CO 3 10 Design a two way slab for a room of size 4 m X 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4kN/m ² . Use M20 grade concrete & Fe415 steel bars. Understand CO 3 UNIT – IV DESIGN OF COLUMNS	ACE009.13
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply understand supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix, Fe415 steel and IS code method. CO 3 09 Design a reinforced concrete slab for a room of clear dimensions 4 m x 5 m. The slab is supported on walls of width 300 mm. The slab is carrying a live load of 4 kN/m ² and floor finish 1 kN/m ² . Use M20 concrete and Fe 415 steel. The corners of slab are held down. CO 3 10 Design a two way slab for a room of size 4 m X 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4kN/m ² . Use M20 grade concrete & Fe415 steel bars. Understand CO 3 UNIT – IV DESIGN OF COLUMNS Part – A (Short Answer Questions) 1 What are the design strengths of steel in tension or bending compression and axial compression? Remember CO 4	ACE009.13
08 Design a RC slab for a room measuring 5m x 6m size. The slab is simply supported on all four edges, with corners held down and carries a superimposed load of 3000N/m ² , inclusive of floor finishes, etc, use M20 mix, Fe415 steel and IS code method. CO 3 09 Design a reinforced concrete slab for a room of clear dimensions 4 m x 5 m. The slab is supported on walls of width 300 mm. The slab is carrying a live load of 4 kN/m ² and floor finish 1 kN/m ² . Use M20 concrete and Fe 415 steel. The corners of slab are held down. CO 3 10 Design a two way slab for a room of size 4 m X 5 m with discontinuous and simply supported edges on all the sides with corners prevented from lifting to support a live load of 4kN/m ² . Use M20 grade concrete & Fe415 steel bars. Understand CO 3 UNIT – IV DESIGN OF COLUMNS Part – A (Short Answer Questions) 1 What are the design strengths of steel in tension or bending compression and Remember CO 4	ACE009.13 ACE009.12

4	What is the difference between behavior of a short and long column?	Remember	CO 4	ACE009.17
5	Explain unsupported length of column?	Understand	CO 4	ACE009.17 ACE009.18
6	Define crushing and buckling.	Remember	CO 4	ACE009.20
7	What is the role of transverse steel ties in reinforced concrete columns?	Understand	CO 4	ACE009.17
8	What is slenderness ratio? Explain.	Understand	CO 4	ACE009.20
9	Differentiate between short and long column.	Understand	CO 4	ACE009.17
10	Define equivalent length of a column.	Understand	CO 4	ACE009.17
10	What is the maximum slenderness ratio of reinforced columns allowed by	Remember	CO 4	ACE009.17
11	IS:456-2000	Remember	004	ACLOUD.17
12	Explain braced and un braced column.	Understand	CO 4	ACE009.18
13	What is minimum diameter of bars used in longitudinal steel for columns?	Understand	CO 4	ACE009.17
14	What is the minimum eccentricity specified for design of column?	Understand	CO 4	ACE009.17
15	What are the methods available in IS: 456-2000 to determine the effective	Remember	CO 4	ACE009.20
	length of column?			
16	What are the assumptions for limit state design of columns failing in pure	Understand	CO 4	ACE009.20
	compression as given in IS456?			
17	Explain the modes of failure of columns.	Understand	CO 4	ACE009.17
18	Show the reinforcement detailing of spirally reinforced column.	Remember	CO 4	ACE009.18
19	What are the three methods available for design of columns subjected to P and	Remember	CO 4	ACE009.18
	M?			
20	What are the factors that affect the behaviour of slender columns?	Understand	CO 4	ACE009.18
	Part – B (Long Answer Questions)			
1	Write the design procedure for slender columns for both braced and unbraced	Understand	CO 4	ACE009.17
	column.			
2	Outline the procedure for design of axially loaded reinforced concrete column?	Understand	CO 4	ACE009.18
3	Design the reinforcement in a column of size 450 mm \times 600 mm, subject to an	Understand	CO 4	ACE009.18
	axial load of 2000 kN under service dead and live loads. The column has an			
	unsupported length of 3.0 m and is braced against sideway in both directions.			
	Use M 20 concrete and Fe 415 steel.			
4	A reinforced concrete short column is 400 mm x 400 mm and has 4 bars of 20	Understand	CO 4	ACE009.18
	diameter. Determine the ultimate load carrying capacity of column if M20			
5	concrete and Fe 415 steel is used. Assume $e_{min} < 0.05$ D.	TTo 1. action 1	<u> </u>	A CE000-10
5	Find the ultimate load carrying capacity and allowable load for a short colum	Understand	CO 4	ACE009.19
	size 500 mm x 500 mm. The column is reinforced with 4-25 mm diameter bars Use M20 separate and HXSD grade Fe 415 steel. Assume $c = 0.05$ D			
6	bars. Use M20 concrete and HYSD grade Fe 415 steel. Assume $e_{min} < 0.05$ D. Design a short R.C.C. column to carry an axial load of 1600 kN. It is 4 m long,	Understand	CO 4	ACE009.20
0	effectively held in position and restrained against rotation at both ends. Use	Onderstand	004	ACE009.20
	M20 concrete and Fe 415 steel.			
7	Design a column of size 450 mm x 600 mm and having 3 m unsupported	Understand	CO 4	ACE009.20
,	length.	Chaelbuild		1102007.20
	The column is subjected to a load of 2000 kN and is effectively held in			
	position but not restrained against rotation. Use M20 concrete and Fe 415 steel.			
8	Design a circular column of diameter 400 mm subjected to a load of 1200 kN.	Understand	CO 4	ACE009.17
	The column is having spiral ties. The column is 3 m long and is effectively			
	held in position at both ends but not restrained against rotation. Use M25			
	concrete and Fe 415 steel.			
9	Design the reinforcement to be provided for a short column 400 mm x 500 mm	Understand	CO 4	ACE009.17
	subjected to following forces:			
	$P_u = 1600 \text{ kN}$			
	$M_{ux} = 200 \text{ kNm}.$			
	$M_{uy} = 150 \text{ kNm}.$			
	Use M25 concrete and Fe 415 steel.			

10		TT. 1	00.4	A CE000 10
10	Design a square footing of uniform an axially loaded column thickness of 450 mm x_{1} 450 mm size. The sefe hearing comparity of soil is 100 kN/m ² . Load on	Understand	CO 4	ACE009.18
	mm x 450 mm size. The safe bearing capacity of soil is 190 kN/m2. Load on column is 850 kN.Use M20 concrete and Fe 415 steel.			
11	Design a symmetrically reinforced short column 450 x 450mm under bi axial	Understand	CO 4	ACE009.19
11	besign a symmetricarly removed short column 450 x 450mm under or axial bending with a load of 1000 KN and $Mx = 75$ KN-m and $My = 60$ KN-m use	Understand	CO 4	ACE009.19
	Scheming with a load of 1000 KTV and $MX = 75$ KTV-m and $MY = 00$ KTV-m use M20 grade concrete and fe 415 grade steel.			
12	Design a column of unsupported length 3m to carry an axial load of 2000 kN	Understand	CO 4	ACE009.19
12	and a BM of 150kNm at service conditions. Design the column as a short	Understand	CO 4	ACE009.19
	column. The column is subjected to severe exposure condition and grade of			
	steel is Fe500. Provide equal reinforcement on all the faces. Use M30 concrete.			
	Sketch reinforcement details.			
13	Derive the expression for the ultimate load for axially loaded short column.	Understand	CO 4	ACE009.19
13	Explain the step-by-step procedure for design of centrally loaded short	Understand	CO 4	ACE009.19
14	columns.	Onderstand	04	ACE009.19
15	Determine the longitudinal steel required for column for 400 x 600 mm	Understand	CO 4	ACE009.20
	carrying Pu=166 KN, factored moment M(major axis)=120 KN-m and factored			
	M(minor axis)= 90KN-m, assume $f_{ck}=15$ N/mm ² and $f_y = 415$ N/mm ² assume			
	d'=60mm.			
16	Design a column having an effective length of 4.75 m to support factored load	Understand	CO 4	ACE009.19
	of 1600kN. Consider the reinforcement ratio ρ to be in the range 1.5 to 2.0			
	percent and the effective cover to longitudinal steel of 55mm. The materials to			
	be used are M25 grade of concrete and HYSD steel bars of grade Fe415.			
17	A braced reinforced concrete column of circular cross-section of 500mm	Understand	CO 4	ACE009.17
	diameter is to support a factored axial load of 2250 kN along with a factored			
	moment of 160 kNm. The unsupported length of the column is 6.3m effective			
	length of 5.5m. Design the column when it is to be provided with: Lateral ties			
	and Spiral reinforcement. The M25 grade of concrete and HYSD steel bars of			
10	grade Fe415.			4 65000 10
18	Design the reinforcements in a circular column of diameter 300 mm to support	Understand	CO 4	ACE009.18
	a service axial load of 800 kN. The column has unsupported length of 3 m and			
	is braced against side sway. The column is reinforced with helical ties. The			
	material to be used is M 25 grade of concrete and HYSD steel bars of grade Fe 415.			
19	Design the reinforcements in as column 530mmx450mm at the corner of a	Understand	CO 4	ACE009.18
19	multistoreyed building to support an axial factored load of 1500 kN, together	Understand	04	ACL009.10
	with biaxial moments of 50 kNm acting in perpendicular planes. Adopt M20			
	grade of concrete and steel grade Fe415 HYSD bars			
20	A braced reinforced concrete column of circular cross-section of 500mm	Understand	CO 4	ACE009.19
20	diameter is to support a factored axial load of 2300 kN along with a factored	Understand	0.04	ACL003.13
	moment of 165 kNm. The unsupported length of the column is 6.3m effective			
	length of 5.5m. Design the column when it is to be provided with:			
	i. Lateral ties and			
	ii. Spiral reinforcement. The M25 grade of concrete and HYSD steel			
	bars of grade Fe415.			
1	Part – C (Problem Solving and Critical Think			A OE000 17
1	A column 300mm X 400 mm has a unsupported length of 3m & effective length of 2 6 m. It is subjected to a suich lead of 1100 kN & moment of 220	Understand	CO 4	ACE009.17
	length of 3.6 m. It is subjected to a axial load of 1100 kN & moment of 230			
	kNm about major axis. Determine the longitudinal steel using M25 grade score $d_{15}^{2} = 60$ mm			
2	concrete & Fe 415 grade steel. Assume $d^2 = 60$ mm.	Understand	CO 4	ACE000.19
2	A column 300mm X 400 mm has a length of 3.6 m. It is subjected to a axial load of 1100 kW & moment of 150 kWm about main outs. Design a column	Understand	CO 4	ACE009.18
	load of 1100 kN & moment of 150 kNm about major axis. Design a column			
	using M25 grade concrete & Fe 415 grade steel. a) Reinforcement on two sides			
2	b) Reinforcement on four sides. Assume cover as 60 mm.	Understand	CO 4	A CE000.10
3	Determine the longitudinal steel required for a column 400 X 600 mm carrying	Understand	CO 4	ACE009.19
	a axial load of 1600 kN and moment of 120 kNm along major axis and 60			
	kNm along minor axis. Use M15 grade concrete & Fe 415 grade steel. Assume $d^2 = 60$ mm			
	d' = 60 mm.			

4	A concrete column of 400mm diameter, reinforced with 8 bars of 20 mm	Understand	CO 4	ACE009.18
	diameter bars is braced & hinged at both ends, 8 m apart. Check the safety of the column if it corride a factored original load of 1100 kN. Use M20 grade			
	the column if it carries a factored axial load of 1100 kN. Use M20 grade concrete & Fe 415 grade steel. Assume $d' = 60$ mm.			
5	Design the reinforcements in a column of size 400 mm X 600 mm subjected to	Understand	CO 4	ACE009.17
5	axial working load of 2000 kN. The column has a unsupported length of 3m	Onderstand	0.0	ACL009.17
	and is braced against side sway in both directions. Adopt M 20 grade concrete			
	& Fe 415 steel bars.			
6	Design the reinforcement in a circular column of diameter 300 mm with helical	Understand	CO 4	ACE009.18
	reinforcement to support a factored load of 1500 kN. The column has an			
	unsupported length of 3m and is braced against sideway. Adopt M20 grade			
7	concrete & Fe415 grade steel	I Indanata d	CO 4	ACE000.10
/	Design the longitudinal and lateral reinforcement in a rectangular reinforced concrete column of size 400 mm X 300 mm subjected to a design ultimate load	Understand	CO 4	ACE009.19
	of 1200 kN and ultimate moment of 200 kNm with respect to major axis.			
	Adopt M 20 grade concrete & Fe 415 steel bars.			
8	Design a short reinforced concrete rectangular column of size 300 X 500 mm	Understand	CO 4	ACE009.19
	is subjected to an axial compressive factored load of 200 kN and a factored			
	moment of 250 kNm about major axis. Adopt M 25 grade concrete & Fe 415			
	steel bars. Determine the reinforcement in the column section.			
9	Design a short circular column of diameter 400 mm to support a factored axial	Understand	CO 4	ACE009.19
	load of 900 kN together with a factored moment of 100 kNm. Adopt M 20			
	grade concrete & Fe 415 steel bars. Determine the reinforcement in the column section.			
10	Design the reinforcements in a short column 400mm X 600mm subjected to an	Understand	CO 4	ACE009.20
	ultimate axial load of 1600 kN together with ultimate moments of 120 kNm			
	and 90 kNm about the major and minor axis respectively. Adopt M 20 grade			
				1
	concrete & Fe 415 steel bars.			
	concrete & Fe 415 steel bars. UNIT -V			
	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CAS	E		
1	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions)		CO 5	ACE009 22
1	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CAS	E Understand	CO 5	ACE009.22
1	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined	Understand Remember	CO 5 CO 5	ACE009.22 ACE009.21
2 3	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CASE Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing?	Understand Remember Understand	CO 5 CO 5	ACE009.21 ACE009.22
2	UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated	Understand Remember	CO 5	ACE009.21
2 3 4	UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings?	Understand Remember Understand Remember	CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21
2 3	UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular	Understand Remember Understand	CO 5 CO 5	ACE009.21 ACE009.22
2 3 4 5	UNIT -V DESIGN OF FOOTING AND STAIR CASS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing?	Understand Remember Understand Remember Remember	CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22
2 3 4	UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined	Understand Remember Understand Remember	CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21
2 3 4 5 6	UNIT -V DESIGN OF FOOTING AND STAIR CAS Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing.	Understand Remember Understand Remember Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22
2 3 4 5	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations.	Understand Remember Understand Remember Remember	CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22
2 3 4 5 6	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show:	Understand Remember Understand Remember Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22
2 3 4 5 6	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going.	Understand Remember Understand Remember Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22
2 3 4 5 6 7	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22
2 3 4 5 6 7	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22
2 3 4 5 6 7 8	UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about one-way and two-way shear in footings? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair	Understand Remember Understand Remember Remember Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.23
2 3 4 5 6 7	UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about one-way and two-way shear in footings? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22
2 3 4 5 6 7 8	UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems.	Understand Remember Understand Remember Remember Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.23
2 3 4 5 6 7 7 8 8	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CASI Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase.	Understand Remember Understand Remember Remember Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.24 ACE009.23 ACE009.23
2 3 4 5 6 7 8 8 9	UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase. Explain the method of determining the effective spans of stairs.	Understand Remember Understand Remember Remember Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.23 ACE009.23
2 3 4 5 6 7 8 8 9 9	UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footing? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase. Explain the method of determining the effective spans of stairs. Classify the foundation.	Understand Remember Understand Remember Remember Understand Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.23 ACE009.23 ACE009.23 ACE009.23
2 3 4 5 6 7 8 8 9 9	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CASP Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase. Explain the method of determining the effective spans of stairs. Classify the foundation. Explain about combined footing.	Understand Remember Understand Remember Remember Understand Understand Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.22 ACE009.24 ACE009.23 ACE009.23 ACE009.23 ACE009.23 ACE009.21 ACE009.22
2 3 4 5 6 7 8 8 9 9	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CAST Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase. Explain the method of determining the effective spans of stairs. Classify the foundation. Explain about combined footing.	Understand Remember Understand Remember Remember Understand Understand Understand Understand Remember Understand Remember	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.22 ACE009.24 ACE009.23 ACE009.23 ACE009.23 ACE009.23 ACE009.21
2 3 4 5 6 7 7 8 8 9 9 10 11 12 13	concrete & Fe 415 steel bars. UNIT -V DESIGN OF FOOTING AND STAIR CASP Part - A (Short Answer Questions) What are the conditions to be satisfied during the design of a combined footing? Explain about one-way and two-way shear in footings? Explain about the Minimum cover required in a footing? What are the situations in which combined footings are preferred to isolated footings? Under what circumstances is a trapezoidal shape preferred to a rectangular shape for a two-column combined footing? Describe briefly the load transfer mechanism in a two-column combined footing. Name five types of staircases based on geometrical configurations. Draw a typical flight and show: (a) trade, (b) nosing, (c) riser, (d) waist and (e) going. Explain about the following stair cases (A) A stair case (B) A dog legged stair Draw schematic diagrams of different types of staircases based on different structural systems. Mention four general considerations for the design of a staircase. Explain the method of determining the effective spans of stairs. Classify the foundation. Explain about combined footing.	Understand Remember Understand Remember Remember Understand Understand Understand Understand Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	ACE009.21 ACE009.22 ACE009.22 ACE009.22 ACE009.22 ACE009.24 ACE009.23 ACE009.23 ACE009.23 ACE009.23 ACE009.21 ACE009.22

17	What are the causes for failure of footing?	Remember	CO 5	ACE009.21
18	What are the specifications for diameter of transverse links?	Understand	CO 5	ACE009.22
19	List out the IS recommendations regarding longitudinal reinforcements.	Remember	CO 5	ACE009.22 ACE009.21
20	What are the advantages of providing a pedestal?	Understand	CO 5	ACE009.21
20	Part - B (Long Answer Questions)	Understand	05	ACE009.21
1	Design a footing for a 500 x 350 mm column using 20 mm bars as dowels to	Understand	CO 5	ACE000.21
1	transmit characteristic loads of 600 KN as dead load and 400 KN as live load	Understand	05	ACE009.21
	to a foundation with $BBC = 120 \text{ KN/m2}$, assume M20 and Fe415.			
2		Understand	CO 5	ACE000.21
23	Give the procedure for one way and punching shear with necessary diagrams.		CO 5	ACE009.21
4	Explain the design procedure for isolated footing of uniform depth.	Understand	CO 5	ACE009.21
4	Design a combined footing with strap beam for two reinforced concrete	Understand	CO 5	ACE009.22
	columns of size 300 mm X 300 mm spaced 4m c/c and each supporting a			
5	service load of 500 kN. The safe bearing capacity of soil is 150 kN/m ² .	TT. 1	CO 5	A CE000 21
5	A reinforced concrete column 400 mm X 400 mm supports a axial service load	Understand	CO 5	ACE009.21
	of 1000 kN. Use M20 grade concrete & Fe 415 steel. The safe bearing capacity			
	of soil is 200 kN/m ² . Sketch the details of reinforcement. Use M20 grade			
	concrete & Fe 415 steel,	TT. 1. · ·		A CE000.21
6	A solid footing has to transfer a dead load 1000 KN and imposed load of 400	Understand	CO 5	ACE009.21
	KN from a square column 400 x 400 mm with 16 mm bars. Assuming $f_y = 415$			
	N/mm ² , $f_{ck}20$ N/mm ² safe bearing capacity = 200 kN/m ² . Design the footing	XX 1 . 1	00 F	4 0000 01
7	Design a rectangular isolated sloped footing for a column of size 250 mm x	Understand	CO 5	ACE009.21
	750 mm carrying an axial load of 2600 kN. The S.B.C. of the soil is 300 $\frac{1}{100}$			
-	kN/m ² . Use M 25 grade concrete and Fe 415 grade steel		~~~~	
8	Design an isolated footing for a square column, $450 \text{ mm} \times 450 \text{ mm}$, reinforced	Understand	CO 5	ACE009.21
	with 8–25 φ bars, and carrying a service load of 2300 kN. Assume soil with a			
	safe bearing capacity of 300 kN/m ² at a depth of 1.5 m below ground. Assume			
	M 20 grade concrete and Fe 415 grade steel for the footing, and M 25 concrete			
	and Fe 415 steel for the column.			
9	A straight staircase is made of structurally independent tread slabs,	Understand	CO 5	ACE009.23
	cantilevered from a reinforced concrete wall. Given that the riser is 150 mm,			
	tread is 300 mm, and width of flight is 1.75 m, design a cantilevered slab using			
	M 20 concrete and Fe 250 steel. Assume mild exposure conditions. Apply the			
1.0	live loads specified in the IS Loading Code for stairs liable to be overcrowded.		~~~~	
10	(a)Explain the distribution of loading on stairs with fig.	Understand	CO 5	ACE009.24
11	(b) Explain the procedure for estimation of dead weight of stairs.	TT 1 / 1	<u> </u>	A CE000 21
11	What are the different types of foundations? Explain with fig.	Understand	CO 5	ACE009.21
12	What are the Indian standard code recommendations for design of footings as	Understand	CO 5	ACE009.21
10	per IS: 456-2000?	TT 1 · ·		A GE000 21
13	Explain design procedure for footing as per IS: 456.	Understand	CO 5	ACE009.21
14	Explain the design of sloped square footing with reinforcement detailing.	Understand	CO 5	ACE009.21
15	A Staircase has following dimension: Weist W- 75 mm, Nasing N-25 mm, Pice P -175 mm, Coing C-225mm	Understand	CO 5	ACE009.23
	Waist W= 75 mm; Nosing N=25 mm; Rise R =175 mm; Going G=225mm. the LL is $2KN/m^2$. calculate the factored load and effective depth if			
	(a) Stair slab spanning longitudinal			
	(b) Stair slab spanning horizontally			
16	Design a square footing for a short axially loaded column of size 300 mm X	Understand	CO 5	ACE009.21
10	300 mm carrying a 600 kN load. Use M20 grade concrete & Fe 415 steel. Safe	Chaerstand	005	101007.21
	bearing capacity of soil is 180 kN/m^2 . Sketch the details of reinforcement.			
17	A rectangular column 400 mm X 600 mm carries a live load of 2000 kN. The	Understand	CO 5	ACE009.21
1/	safe bearing capacity of the soil is 150 kN/m^2 . Use M20 grade concrete & Fe	Understallu	05	ACE009.21
	415 steel; design a rectangular footing to support the column. Sketch the			
	details of reinforcement.			
L	downs of remotectment.			

18	A reinforced concrete wall 250 mm thick carries a load of 500 kN/m inclusive of its own weight. Design a reinforced concrete footing on soil having safe begins are accessing of 160 kN/m^2 . Use M20 and a superstance for 415 steel	Understand	CO 5	ACE009.21
1.0	bearing capacity of 160 kN/m ² . Use M20 grade concrete & Fe 415 steel,		~~ ~	
19	A Rectangular column 600x400 mm carries a load of 800kN. Design a	Understand	CO 5	ACE009.21
	rectangular footing to support the column. The safe bearing capacity of the soil			
	is 200 kN/m2. Use M20 grade concrete.			
20	A 230mm thick masonry wall is to provided with a reinforced concrete footing	Understand	CO 5	ACE009.22
	on a site having soil with SBC, unit weight and angle of repose of 125 kN/m2,			
	17.5 kN/m3 and 300 respectively. The M20 grade of concrete and HYSD steel			
	bars of grade Fe 415. Design the footing when the wall supports at service			
	state: a load of 150 kN/m length			
	Part – C (Problem Solving and Critical Think	ing)		
1	Design an isolated footing of uniform thickness of a R.C. column bearing a	Understand	CO 5	ACE009.21
	vertical load of 600 kN and having a base of size 500 X 500 mm. The safe			
	bearing capacity of soil may be taken as 120 kN/m^2 . Use M20 grade concrete			
	& Fe 415 steel			
2	Design a rectangular isolated footing of uniform thickness of reinforced	Understand	CO 5	ACE009.21
-	concrete column bearing a vertical load of 600 kN, and having a base size of	Chaoistana	000	1102009.21
	$400 \times 600 \text{ mm}$. The safe bearing capacity of soil may be taken as 120 kN/m^2 .			
	Use M20 grade concrete & Fe 415 steel			
3	Design a isolated square sloped footing for a column 500 mm X 500 mm,	Understand	CO 5	ACE009.21
5	transmitting an axial load of 1200 kN. The column is reinforced with 8 bars of	Understand	005	ACE009.21
	20 mm diameter. The safe bearing capacity of soil is 120 tonnes/m ² . Use M20			
	grade concrete & Fe 415 steel	XX 1 . 1	<u> </u>	A GE000.01
4	Design an isolated unsymmetrical square footing for a column 500 mm X 500	Understand	CO 5	ACE009.21
	mm, transmitting a load of 600 kN and a moment of 30 kNm. The safe bearing			
	capacity of soil is 120 kN/m ² . Use M20 grade concrete & Fe 415 steel.			
5	Design a combined rectangular footing for a two columns A and B, carrying	Understand	CO 5	ACE009.22
	loads of 500 and 700 kN respectively. Column A is 300 mm X 300 mm in size			
	and column B is 400 mm X 400 mm in size. The c/c spacing of the columns is			
	3.4 m. The safe bearing capacity of soil may be taken as 150 kN/m^2 . Use M20			
	grade concrete & Fe 415 steel.			
6	Design a combined rectangular footing with central joining beam two columns	Understand	CO 5	ACE009.22
	400 mm X 400 mm in section carry a load of 1000 kN each inclusive of the			
	self weight. Design a combined footing having central beam joining the			
	columns. The c/c spacing of the columns is 4 m. The safe bearing capacity of			
	soil is 150 kN/m^2 . Use M20 grade concrete & Fe 415 steel.			
7	Design a combined trapezoid footing for a two columns A and B, spaced 5m	Understand	CO 5	ACE009.22
	c/c. Column A is 300 X 300 mm in size and transmits a load of 600 kN.			
	Column B is 400 X 400 mm in size and carries a load of 900 kN. The			
	maximum length of footing is restricted to 7m only. The safe bearing capacity			
	of soil may be taken as 120 kN/m^2 . Use M20 grade concrete & Fe 415 steel.			
8	Deign a dog- legged stair for a building in which the vertical distance between	Understand	CO 5	ACE009.24
5	floors is 3.6 m. The stair hall measures 2.5 m X 5m. The live load may be	Charlound	200	1102007.21
	taken as 2500 N/m^2 .use M 20 concrete and Fe415 steel bars.			
9	A straight stair in a residential building supported on wall on one side and	Understand	CO 5	ACE009.23
7	stringer beam on the other side. The risers are 150 mm and treads are 250 mm	Understalld	005	ACE009.23
	and the horizontal span of the stairs may be taken as 1.2 m . design the steps.			
10	Use M 20 concrete and Fe 415 steel bars.	XX 1	<u> </u>	
10	A longitudinal type of staircase spans a distance of 3.75 m c/c beams, R=175	Understand	CO 5	ACE009.23
	mm, G=250mm, T=270 mm. The treads have 15 mm granolithic finish and			
	consists of 50 steps. Assume M25 and Fe 415. Design a staircase for a LL of			
	5KN/m2. Assume breadth of staircase of 1.5 m.			1