INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad -500 043
MECHANICAL ENGINEERING
TUTORIAL QUESTION BANK

Course Title	THERMODYNAMICS				
Course Code	AMEB04				
Programme	B. Tech				
Semester	III ME				
Course Type	Core				
Regulation	IARE - R18				
Course Structure	Theory			Practical	
	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Chief Coordinator	Mr. A Venuprasad, Assistant Professor				
Course Faculty	Dr. P Srinvasa Rao, Professor Mr. A Venuprasad, Assistant Professor				

COURSE OBJECTIVES:

The course should enable the students to:	
I	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II	Knowledge of properties during various phases of pure substances, mixtures, usage of steam tables and Mollier chart, psychometric charts.
III	Understand the direction law and concept of increase in entropy of universe.
IV	Understand the working of ideal air standard, vapor cycles and evaluate their performance in open systems like steam power plants systems.
V	Evaluate performance in internal combustion engines, gas turbines and refrigeration systems.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts and first law of thermodynamics.
CO 2	Describe the second law of thermodynamics and understand the concept of entropy and third law of thermodynamics.
CO 3	Understand the Pure Substances various thermodynamic processes.
CO 4	Understand the concept of mixtures of perfect gases and psychometric properties.
CO 5	Develop the concept power cycle with description and representation on P-V and T-S diagram.

COURSE LEARNING OUTCOMES (CLOS):

S. No.	Description
AMEB04.01	Understand the concepts of conservation of mass, conservation of energy.
AMEB04.02	Demonstrate knowledge of ability to identify \& apply fundamentals to solve problems like system properties, amount of work transfer and heat during various processes.
AMEB04.03	Explore knowledge \& ability to design the thermal related components in various fields of energy transfer equipment.
AMEB04.04	Derive the first law of Thermodynamics from the concept of conservation of energy
AMEB04.05	Discuss the nature of steady and unsteady processes under the influence of time.
AMEB04.06	Determine entropy changes in a wide range of processes and determine the reversibility or irreversibility of a process from such calculations based on Carnot Cycle.
AMEB04.07	Develop the second law of thermodynamics from the limitations of first law.
AMEB04.08	Knowledge of the Gibbs and Helmholtz free energies as equilibrium criteria, and the statement of the equilibrium condition for closed and open system.
AMEB04.09	Discuss pressure-temperature, volume-temperature, pressure-volume phase diagrams and the steam tables in the analysis of engineering devices and systems. Anchrsand the inter relationship between thermodynamic functions and an ability to use suchreationships to solve practical problems.
AMEB04.10	Understand the equation of state, specific and universal gas constants, throttling and free expansion processes.
AMEB04.12	Discuss deviations from perfect gas model, Vander Waals equation of state.
AMEB04.13	Understand mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction.
AMEB04.14	Discusss daltons law of partial pressure, Avogadro's laws of additive volumes, and partial pressuree equivalent gas constant.
AMEB04.15	Understand enthalpy, specific heats and entropy of mixture of perfect gases.
AMEB04.16	Understand the process of psychrometry that are used in the analysis of engineering evices like air conditioning systems
AMEB04.17	Develop Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram.
AMEB04.18	Discuss thermal efficiency; mean effective pressures on air standard basis.
AMEB04.19	Understand the comparison of various cycles.
AMEB04.20	Understand introduction to Brayton cycle and Bell Coleman cycle.

MODULE- I

BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS				
Part - A (Short Answer Questions)				
S No	QUESTIONS	$\begin{gathered} \text { Blooms } \\ \text { Taxonomy } \\ \text { Level } \end{gathered}$	Course Outcomes	Course Learning Outcomes (CLOs)
1	Explain Zeroth law of Thermodynamics.	Remember	CO 1	AMEB04.01
2	Define System, Surroundings and Boundary?	Understand	CO 1	AMEB04.01
3	Distinguish between macroscopic and microscopic point of view?	Remember	CO 1	AMEB04.01
4	Discuss Quasi Static process, what are its characteristics?	Remember	CO 1	AMEB04.01
5	Distinguish between different types of systems with examples.	Remember	CO 1	AMEB04.01
6	Explain the features of constant volume gas thermometer.	Remember	CO 1	AMEB04.01
7	Discuss First law of thermodynamics, explain Joule's experiment.	Remember	CO 1	AMEB04.02
8	Define PMM 1.	Remember	CO 1	AMEB04.02
9	State the causes of irreversibility?	Remember	CO 1	AMEB04.02
10	Derive Steady Flow Energy Equation, when the device is an aircompressor.	Remember	CO 1	AMEB04.02
11	State thermodynamic system? How do you classify it?	Remember	CO 1	AMEB04.02
12	State the closed system? Give an example	Remember	CO 1	AMEB04.03
13	Define Intensive and Extensive properties.	Understand	CO 1	AMEB04.03
14	Define equilibrium of a system?	Understand	CO 1	AMEB04.03
15	Define Intensive and Extensive properties.	Remember	CO 1	AMEB04.03
16	Differentiate closed and open system.	Understand	CO 1	AMEB04.03
17	Define Specific heat capacity at constant volume	Understand	CO 1	AMEB04.04
18	Define Specific heat capacity at constant pressure.	Remember	CO 1	AMEB04.04
19	Differentiate closed and open system.	Understand	CO 1	AMEB04.04
20	Classify the properties of system?	Remember	CO 1	AMEB04.04
Part - B (Long Answer Questions)				
1	Differentiate the system, surroundings and boundary Explain in detail.	Remember	CO 1	AMEB04.01
2	Classify the types of systems; explain with examples.	Understand	CO 1	AMEB04.01
3	Distinguish between the macroscopic and microscopic study ofthermo dynamics?	Understand	CO 1	AMEB04.01
4	Explain the importance of concept of continuum in thermodynamicapproach?	Remember	CO 1	AMEB04.01
5	Explain thermodynamic equilibrium in detail?	Understand	CO 1	AMEB04.01
6	Differentiate thermal equilibrium and thermodynamic equilibrium, explain.	Understand	CO 1	AMEB04.01
7	Define property? What are different types of properties? Explain.	Understand	CO 1	AMEB04.03
8	Enumerate the Isobaric process from thermodynamic point of view? and derive its work done under p -Vcoordinates.	Remember	CO 1	AMEB04.03
9	Represent the Isochoric process from thermodynamic point ofview? and derive its work done under $\mathrm{p}-\mathrm{V}$ coordinates.	Understand	CO 1	AMEB04.03
10	Enumerate the Isothermal process from thermodynamic point of view? and derive its work done under p-V coordinates.	Remember	CO 1	AMEB04.03
11	Represent the adiabatic process from thermodynamic point ofview? And derive its work done under p-V coordinates.	Understand	CO 1	AMEB04.03
12	Enumerate the polytrophic process from thermodynamic point ofview? And derive its work done under p-V coordinates.	Remember	CO 1	AMEB04.03
13	Derive the expression for piston displacement work with neatdiagram?	Understand	CO 1	AMEB04.03
14	State Zeroth law and explain with a example?	Understand	CO 1	AMEB04.03
15	Explain the Joule's experiment with a neat sketch?	Understand	CO 1	AMEB04.03

16	Sketch the constant volume gas thermometer and explain?	Remember	CO 1	AMEB04.03
17	Derive exit velocity for nozzle by considering steady flow energyequation.	Understand	CO 1	AMEB04.03
18	Define path function and Show that work and heat are pathfunctions?	Remember	CO 1	AMEB04.03
19	Explain the first law of thermodynamics applied to closed systemwhen system undergoing a change of state?	Understand	CO 1	AMEB04.03
20	Derive the Steady flow energy equation?	Understand	CO 1	AMEB04.03
Part - C (Problem Solving and Critical Thinking Questions)				
1	When a stationary mass of gas was compressed without friction at constant pressure, its initial state of $0.4 \mathrm{~m}^{3}$ and 0.105 MPa was found to change to final state of $0.20 \mathrm{~m}^{3}$ and 0.105 MPa . There was a transfer of 42.5 kJ of heat from the gas during theprocess. Determine the change in internal energy of the gas?	Remember	CO 1	AMEB04.02
2	0.44 kg of air at $180^{\circ} \mathrm{C}$, expands adiabatically to 3times its original volume and during the process there is a fall in temperature to $15^{\circ} \mathrm{C}$. The work done during the process is 52.5 kJ . Calculate Cp and Cv ?	Understand	CO 1	AMEB04.02
3	Two thermometers one centigrade and other Fahrenheit are immersed in a fluid, after the thermometers reached equilibrium with the fluid, it is noted that both the thermometers indicate the same numerical values. Find that the identical numerical values shown by the thermometers? Determine the corresponding temperature of the fluid, express in degrees Kelvin and degrees Rankine?	Remember	CO 1	AMEB04.02
4	If a gas of volume $6000 \mathrm{~cm}^{3}$ and at pressure of 100 kPa is compressed quasi statically according to $\mathrm{pV}^{2}=$ constant until the volume becomes $2000 \mathrm{~cm}^{3}$, determine the final pressure and the work transfer.	Remember	CO 1	AMEB04.03
5	A gas of mass 1.5 kg undergoes a quasi-static expansion which follows a relationship $\mathrm{p}=\mathrm{a}+\mathrm{bV}$, where a and b are constants. The initial and final pressures are 1000 kPa and 200 kPa respectively and the corresponding volumes are $0.20 \mathrm{~m}^{3}$ and 1.20 m^{3}.Thespecificinternalenergyofthegasisgivenbytherelationu $=1.5 \mathrm{p}$ $\mathrm{V}-85 \mathrm{~kJ} / \mathrm{kg}$.WherepisthekPaandvisinm3/kg. Calculatethe net heat transfer and the maximum internal energy ofthe gas attained during expansion.	Understand	CO 1	AMEB04.03
6	A piston cylinder device operates 1 kg of fluid at 20atm pressure with initial volume is $0.04 \mathrm{~m}^{3}$. Fluid is allowed to expand reversibly following $\mathrm{pV}^{1.45}=\mathrm{C}$. So that the volume becomes double. The fluid is cooled at constant pressure until the piston comesback.Determine the work done in each process?	Remember	CO 1	AMEB04.03
7	A fluid contain in a horizontal cylinder with a frictionless leak proof piston is continuously agitated by a stirrer passing through the cylinder cover. The diameter of the cylinder is 50 cm and the piston is held against the fluid due to atmospheric pressure equal to 100 kPa . The stirrer turns 8000 revolutions with anaverage torqueof 1.5 Nm . If the piston slowly moves outwards by 60 cm . Determine the network transfer to the system?	Understand	CO 1	AMEB04.03
8	A Piston and cylinder machine contains a fluid system which passes through a complete cycle of four processes. During a cycle the sum of all heat transfers is -170 kJ . The system completes 100cycles/minute. Complete the following table showingthemethod for each item and compute net rate of work output in kW .	Understand	CO 1	AMEB04.03
9	A fluid is confined in a cylinder by a spring loaded friction less piston, so the pressure in the fluid is a linear function of volume $(\mathrm{p}=\mathrm{a}+\mathrm{bV})$.The internal energy of the fluid is given by the following equation $\mathrm{U}=34+3.15 \mathrm{pV}$. Where U is in kJ , p in kPa and V is in m 3 . If the fluid changes from initial state of 170 kPa ,	Remember	CO 1	AMEB04.03

MODULE- II
LIMITATIONS OF FIRST LAW

PART - A (SHORT ANSWER QUESTIONS)

1	State the limitations of first law of thermodynamics?	Understand	CO 2	AMEB04.05
2	Define second law of thermodynamics?	Understand	CO 2	AMEB04.07
3	State PMM 2?	Understand	CO 2	AMEB04.05
4	State the processes of Carnot Cycle?	Understand	CO 2	AMEB04.07
5	State the Clausius inequality?	Remember	CO 2	AMEB04.05
6	Define the absolute temperature scale?	Understand	CO 2	AMEB04.05
7	Define the property of entropy?	Remember	CO 2	AMEB04.07
8	Define an inversion curve?	Understand	CO 2	AMEB04.05
9	Write 1 and 2 Maxwell's relations?	Understand	CO 2	AMEB04.09
10	State the Third law of Thermodynamics?	Understand	CO 2	AMEB04.07
11	Define available energy of a system?	Remember	CO 2	AMEB04.09
12	Write 3 and 4 Maxwell's relations?	Remember	CO 2	AMEB04.05
13	Explain dead state of a system?	Understand	CO 2	AMEB04.05
14	Define the unavailable energy in a system?	Understand	CO 2	AMEB04.05
15	Explain the principle of entropy increase?	Understand	CO 2	AMEB04.05
16	Explain the exergy of a system?	Remember	CO 2	AMEB04.09
17	Explain the Claussius statement?	Remember	CO 2	AMEB04.07
18	State the Kelvin-Plank statement?	Remember	CO 2	AMEB04.05
19	Sketch the PV and TS diagrams of Carnot cycle.	Remember	CO 2	AMEB04.05
20	Classify the processes which constitute the cycle.	Remember	CO 2	AMEB04.05
PART - B (LONG ANSWER QUESTIONS)				
1	Explain the limitations of First law of thermodynamics in detail?	Understand	CO 2	AMEB04.05
2	Define the terms thermal reservoir, source, and sink with a neat sketch?	Understand	CO 2	AMEB04.07
3	Explain the heat engine with a neat sketch?	Understand	CO 2	AMEB04.07
4	Explain the heat pump with a neat sketch?	Understand	CO 2	AMEB04.07
5	List the performance parameters of a system and explain in detail.	Understand	CO 2	AMEB04.09
6	Compare the first law and second law of thermodynamics with suitable examples?	Understand	CO 2	AMEB04.09
7	Explain the second law of thermodynamics with suitable ketches?	Understand	CO 2	AMEB04.05
8	Write the Kelvin-Plank statement and explain with an example?	Understand	CO 2	AMEB04.09
9	Write the Clausius statement and explain with an example?	Understand	CO 2	AMEB04.09
10	Write the Kelvin-Planck and Clausius statements and explain with sketches?	Understand	CO 2	AMEB04.09
13	State PMM1 and PMM2, in which manner both are different?	Understand	CO 2	AMEB04.05
14	Compare the relation with process and cycle? Explain.	Understand	CO 2	AMEB04.07
15	State the Carnot's principle? What is the importance of theprinciple, explain?	Understand	CO 2	AMEB04.07
16	State the Claussius inequality? Explain.	Understand	CO 2	AMEB04.09
17	Explain the influence of entropy on various parameters?	Understand	CO 2	AMEB04.07
18	Define Gibb's and Helmholtz's functions? Comparethe importance of them	Understand	CO 2	AMEB04.09
19	State the irreversibility and explain.	Understand	CO 2	AMEB04.05
20	Explain the Availability in a thermodynamic system with example.	Understand	CO 2	AMEB04.07

Part - C (Problem Solving and Critical Thinking Questions)				
1	A heat engine working on Carnot cycle converts $1 / 5$ th of the heat input into work. When the temperature of the sink is reduced by $80^{\circ} \mathrm{C}$, the efficiency gets doubled. Determine the temperature of sink?	Understand	CO 2	AMEB04.07
2	A reversible heat engine is supplied with heat from two constant temperature sources at 900 K and 600 K and rejects heat to a constant temperature at 300 K to sink. The engine develops work equivalent to $91 \mathrm{~kJ} / \mathrm{s}$ and rejects heat at the rate of $56 \mathrm{~kJ} / \mathrm{sec}$. Estimate (i) heat supplied by each source(ii) Thermal efficiency ofengine.	Understand	CO 2	AMEB04.07
3	A block of iron weighing 100 kg and having a temperature of $100^{\circ} \mathrm{C}$ is immersed in 50 kg of water at a temperature of $20^{\circ} \mathrm{C}$. What will be the change of entropy of the combined system of iron and water? Specific heats of iron and water are 0.45 and $4.18 \mathrm{~kJ} / \mathrm{kgK}$ respectively.	Understand	CO 2	AMEB04.09
4	A domestic food freezer maintains a temperature of $-15^{\circ} \mathrm{C}$, the ambient air temperature is $30^{\circ} \mathrm{C}$, if heat leaks into the freezer at thecontinuous rate of $1.75 \mathrm{~kJ} / \mathrm{sec}$. State the least power necessary to pump this heat out continuous?	Understand	CO 2	AMEB04.09
5	A heat engine is operating between two reservoirs 1000 K and 300 K is used to drive a heat pump which extracts heat from the reservoir at 300 K at a rate twice that at which the engine rejects the heat to it. If the efficiency of the engine is 40% of the maximum possible and COP of heat pump is 50% of the maximum possible, then determine the temperature of the reservoir to which the heat pump rejects heat. Also determine the rate of heat rejectionfromthe heat pump, if the rate of heat supply to the heat engine is 50 kW ?	Understand	CO 2	AMEB04.09
6	Three Carnot engine are arranged in series. The first engine takes 4000 kJ of heat from a source at 2000 K and delivers 1800 kJ of work. The second and third engines deliver 1200 kJ and 500 kJ of work respectively. Compare the exhaust temperature of second and third Carnot engines?	Understand	CO 2	AMEB04.05
7	Two bodies of equal capacities C and T 1 and T 2 from an adiabatically closed system. Determine the final temperature, if the system is brought to an equilibrium state. i) Freely, ii) reversibly, Proceed to calculate the maximum work which can be obtainedfrom the system?	Understand	CO 2	AMEB04.05
8	A heat engine is supplied with $2512 \mathrm{~kJ} / \mathrm{min}$ of heat at $650^{\circ} \mathrm{C}$. Heat rejection takes place at $100^{\circ} \mathrm{C}$. Distinguish which of the following heat rejection represent a reversible, irreversible or impossibleresult. i) $867 \mathrm{~kJ} / \mathrm{min}$ ii) $1015 \mathrm{~kJ} / \mathrm{min}$ iii) $1494 \mathrm{~kJ} / \mathrm{min}$	Understand	CO 2	AMEB04.09
9	Heat flows from a hot reservoir at 800 K to another reservoir at 250 K . If the entropy change of overall process is $4.25 \mathrm{~kJ} / \mathrm{K}$, Compare calculation for the heat flowing out of thehightemperature reservoir?	Understand	CO 2	AMEB04.09
10	5 kg of air heated from a temperature of $100^{\circ} \mathrm{C}$ at constantvolume till its pressure becomes three times its original pressure.For this processcalculate :(i)heat transfer(ii)change in internal energy (iii)Change in enthalpy(iv)changeinentropyfor air take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}$	Understand	CO 2	AMEB04.05
MODULE -III				
PURE SUBSTANCES				
Part - A (Short Answer Questions)				
1	Define Pure Substance and what do you understand by a saturationstage?	Remember	CO 3	AMEB04.13
2	Draw the phase diagram on p-v diagrams with water as puresubstance?	Remember	CO 3	AMEB04.13

3	Explain the concept of p -v-T surface? Represent on pTcoordinates?	Understand	CO 3	AMEB04.13
4	Explain the critical state of water?	Remember	CO 3	AMEB04.13
5	Draw the phase equilibrium diagram for a pure substance on T-s plot with relevant constant property line?	Remember	CO 3	AMEB04.13
6	Draw the phase equilibrium diagram for a pure substance on H -s plot with relevant constant property line?	Understand	CO 3	AMEB04.13
7	Compare isobar on Mollier diagram diverse from one another?	Understand	CO 3	AMEB04.13
8	Explain Mollier chart by representing all the properties on it?	Remember	CO 3	AMEB04.13
9	State the degree of superheat and degree of sub cooling?	Understand	CO 3	AMEB04.13
10	Define dryness fraction? What are the different methods of measurement of dryness fraction?	Understand	CO 3	AMEB04.13
11	Explain the equation of state?	Understand	CO 3	AMEB04.15
12	Derive the changes in internal energy during a process withvariable specificheats.	Remember	CO 3	AMEB04.15
13	Derive the changes in enthalpy during a process with variablespecific heats.	Remember	CO 3	AMEB04.11
14	Explain the process of free expansion?	Understand	CO 3	AMEB04.11
15	Explain the process of Throttling?	Remember	CO 3	AMEB04.11
16	State the expression for Vander Wall's equation and determine the constants?	Remember	CO 3	AMEB04.11
17	Explain On what coordinates compressibility charts can be drawn?	Understand	CO 3	AMEB04.11
18	List the molar specific heats, explain?	Remember	CO 3	AMEB04.15
19	Derive the expression for work done in a non-flow process, if the process is adiabatic?	Remember	CO 3	AMEB04.15
20	Discuss briefly the reduced properties?	Understand	CO 3	AMEB04.11
Part - B (Long Answer Questions)				
1	Explain the procedure adopted in Steam calorimetry?	Understand	CO 3	AMEB04.13
2	Why can not a throttling calorimeter measure the quality, if the steam is wet? Explain how is the quality been measured?	Understand	CO 3	AMEB04.13
3	Explain the saturation temperature, the changes in specific volume, enthalpy and entropy during evaporation at 1 MPa .	Understand	CO 3	AMEB04.13
4	Compare the enthalpy, entropy and volume of steam at 1.4 MPa , $380^{\circ} \mathrm{C}$.	Understand	CO 3	AMEB04.13
5	A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water and saturated steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of theliquid present is 9 kg .Find the pressure, mass, specific volume, enthalpy, entropy and internal energy?	Understand	CO 3	AMEB04.13
6	Steam initially at $1.5 \mathrm{MPa}, 300^{\circ} \mathrm{C}$ expands reversibly and adiabatically in a steam turbine to $40^{\circ} \mathrm{C}$. Determine the ideal workoutput of the Turbine per kg of steam?	Understand	CO 3	AMEB04.13
7	Steam flows in a pipe line at 1.5 MPa . After expanding to 0.1 MPain a throttling calorimeter, the temperature is found to be $120^{\circ} \mathrm{C}$. Determine the quality of the steam in pipe line?	Understand	CO 3	AMEB04.13
8	The following data were obtained with a separating and throttling calorimeter. Pressure in pipe line is 1.5 MPa . Condition after throttling is at $0.1 \mathrm{MPa}, 110^{\circ} \mathrm{C}$, During 5 minutes moisture collected in the separator is 0.15 lt at $70^{\circ} \mathrm{C}$.steam condenses after throttling during 5 minis 3.24 kg , and Determine the quality of steam in the pipe line?	Understand	CO 3	AMEB04.13
9	Determine the enthalpy and entropy of steam and the pressure is 2 MPa and the specific volume is $0.09 \mathrm{~m}^{3} / \mathrm{kg}$.	Understand	CO 3	AMEB04.13
10	Saturated steam has entropy of $3.56 \mathrm{~kJ} / \mathrm{kg}$ K. Determine the saturated pressure, temperature, specific volume, enthalpy.	Understand	CO 3	AMEB04.14
11	Enumerate the Perfect Gas Laws and analyze	Understand	CO 3	AMEB04.15
12	Explain the equation of State with variations?	Understand	CO 3	AMEB04.15
13	Explain, how the heat and work transfer observed in perfect gas?	Understand	CO 3	AMEB04.15

14	Explain the change in internal energy in perfect gas?	Understand	CO 3	AMEB04.15
15	State Vander Waals equation, what is the importance of it?	Understand	CO 3	AMEB04.11
16	What is compressibility chart, explain the procedure of usage?	Understand	CO 3	AMEB04.15
17	explain about law of corresponding states.	Understand	CO 3	AMEB04.15
18	what are the assumptions for deriving ideal gas equation.	Understand	CO 3	AMEB04.15
19	Derive the Clausius Claperon equation?	Understand	CO 3	AMEB04.11
20	Determine constants of vanderwaall's equation.	Understand	CO 3	AMEB04.11
Part - C (Problem Solving and Critical Thinking)				
1	1 kg of water fills a 150 L rigid container at an initial pressure of 2 MPa . The container is then cooled to $40^{\circ} \mathrm{C}$. Determine the initial temperature and final pressure of the water.	Understand	CO 3	AMEB04.13
2	Saturated steam has entropy of $6.76 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. Determine the pressure, temperature, specific volume, enthalpy.	Understand	CO 3	AMEB04.13
3	A vessel of volume $0.04 \mathrm{~m}^{3}$ contains a mixture of saturated water and steam at a temperature of $250^{\circ} \mathrm{C}$. The mass of the liquid present is 9 kg . Find the pressure, mass, specific volume, enthalpy, entropy.	Understand	CO 3	AMEB04.13
4	A steam power plant uses steam at boiler pressure of 150 bars and temperature of $550^{\circ} \mathrm{C}$ with reheat at 40 bars and $550^{\circ} \mathrm{Cat}$ condenser pressure of 0.1 bar. Find the quality of steam at turbineexhaust, cycle efficiency and the steam rate.	Understand	CO 3	AMEB04.13
5	A large insulated vessel is divided in to two chambers. One is containing 5 kg of dry saturated steam at 0.2 MPa and other 10 kg of steam, 0.8 quality at 0.5 MPa . If the partition between the chambers is removed and the steam is mixed thoroughly andallowto settle. Determine the final pressure steam quality and entropy change in the process?	Understand	CO 3	AMEB04.13
06	The volume of a high altitude chamber is $40 \mathrm{~m}^{3}$.It is put into operation by reducing pressure from 1bar to 0.4bar and temperature from $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$. How many kg of air must be removed from the chamber during the process? Express this massas a volume measured at 1 bar and $25^{\circ} \mathrm{C}$.	Understand	CO 3	AMEB04.15
07	A fluid at 200 kPa and $300^{\circ} \mathrm{C}$ has a volume of $0.8 \mathrm{~m}^{3}$ in a frictionless process at constant volume, the pressure changes to 100 kPa . Calculate the final temperature and heat transfer, if the fluid is air?	Understand	CO 3	AMEB04.15
08	A fluid at $250^{\circ} \mathrm{C}$ and 300 kPa is compressed reversibly and isothermally to $1 / 16$ th of its original volume. Calculate the final pressure, work done and change of internal energy per kg of fluid, if the fluid is air?	Understand	CO 3	AMEB04.15
09	Solve that for an ideal gas the slope of the constant volume line on the T-S diagram is more than that of the constant pressure line.	Understand	CO 3	AMEB04.11
10	At a temperature of $423 \mathrm{~K}, 1 \mathrm{~kg}$ of nitrogen occupies volume of200 liters. The gas undergoes constant expansion with fully resisted to a volume of 360 liters. Then the gasexpandedisothermally to a volume of 500 liters. Sketch the process on $\mathrm{p}-\mathrm{V}$ and T-S diagram. Find out overall change in entropy.	Understand	CO 3	AMEB04.15
MODULE -IV				
INTRODUCTION TO AIR CONDITIONING				
Part - A (Short Answer Questions)				
1	State Dalton's law of partial pressures?	Remember	CO 4	AMEB04.16
2	Compute the characteristic gas constant and the molecular weightof the gas mixture?	Remember	CO 4	AMEB04.16
3	Derive the expression for internal energy?	Remember	CO 4	AMEB04.16
4	Define mole fraction?	Remember	CO 4	AMEB04.16
5	Explain about volumetric and gravimetric analysis?	Understand	CO 4	AMEB04.16
6	Define dry bulb temperature, wet bulb temperature, dew	Remember	CO 4	AMEB04.16

	pointtemperature and degree of saturation?			
7	Explain adiabatic saturation temperature?	Understand	CO 4	AMEB04.16
8	Explain psychometric charts while representing all the properties?	Understand	CO 4	AMEB04.16
9	Locate i) sensible heating ii)sensiblecooling iii) heating andiv)Heating and Dehumidification on psychometric chart?	Understand	CO 4	AMEB04.16
10	Define bypass factors represent adiabatic mixing of two air streamson psychrometric chart?	Understand	CO 4	AMEB04.16
11	State dry bulb temperature?	Remember	CO 4	AMEB04.16
12	State wet bulb temperature?	Understand	CO 4	AMEB04.18
13	Define specific humidity?	Understand	CO 4	AMEB04.19
14	Define relative humidity?	Understand	CO 4	AMEB04.17
15	Explain Psychrometric chart?	Remember	CO 4	AMEB04.18
16	State adiabatic saturation?	Understand	CO 4	AMEB04.17
17	Define degree of saturation?	Understand	CO 4	AMEB04.18
18	Obtain the expression for enthalpy of gas mixture?	Remember	CO 4	AMEB04.19
19	Define mass fraction?	Remember	CO 4	AMEB04.18
20	State the law of additive volumes?	Understand	CO 4	AMEB04.19
Part - B (Long Answer Questions)				
1	Explain the Mole fraction and Massfraction in the Mixture ofPerfect gas?	Understand	CO 4	AMEB04.16
2	Explain Gravimetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
3	Explain the Volumetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
4	Explain the Dalton's law of partial pressure with an example?	Understand	CO 4	AMEB04.16
5	Explain the Avogadro's laws of additive volumes?	Understand	CO 4	AMEB04.16
6	Compare the Volumetric and Gravimetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
7	Using definitions of mass and mole friction, derivea relationbetween them.	Understand	CO 4	AMEB04.16
8	Somebody claims that the mass and mole fraction for mixture of COo 2 and N 2 O are identical. Is it true? Why? Explain.	Understand	CO 4	AMEB04.16
9	Explain Equivalent gas constant of a gas mixture?	Understand	CO 4	AMEB04.16
10	Explain Molecular internal energy of a gas mixture?	Understand	CO 4	AMEB04.16
11	Derive the expressions for enthalpy and entropy of a gas mixture?	Understand	CO 4	AMEB04.17
12	Are the dry bulb temperature and dew point temperature are same?Explain when they are same.	Understand	CO 4	AMEB04.18
13	Explain the various properties of psychrometry?	Understand	CO 4	AMEB04.18
14	Compare dry bulb temperature and wet bulb temperature with asketch?	Understand	CO 4	AMEB04.17
15	Explain the concept of dew point temperature?	Understand	CO 4	AMEB04.19
16	Differentiate the Relation between specific humidity and relativehumidity and derive the relation between them?	Understand	CO 4	AMEB04.18
17	Explain the degree of saturation with an example?	Understand	CO 4	AMEB04.18
18	Explain the adiabatic saturation. And compare with degree ofsaturation.	Understand	CO 4	AMEB04.19
19	Enumerate different psychrometric processes that are taking place.	Understand	CO 4	AMEB04.19
20	How will you construct psychrometric chart?	Understand	CO 4	AMEB04.19
Part - C (Problem Solving and Critical Thinking)				
1	The analysis by weight of a perfect gas mixture at 200 C and 1.3 bar is $10 \% \mathrm{O} 2,70 \% \mathrm{~N} 2,15 \% \mathrm{CO} 2$ and $5 \% \mathrm{CO}$. For a reference state of 00 C and 1 bar , determine partial pressure of the constituent and gasconstant of mixture.	Understand	CO 4	AMEB04.16
2	In an engine cylinder a gas has a volumetric analysis of $13 \% \mathrm{CO} 2,12.5 \% \mathrm{O} 2$ and $74.5 \% \mathrm{~N} 2$. The temperature at the beginning of expansion is 9500 C and gas mixture expands reversibly through a volume ratio of $8: 1$. According to the law $\mathrm{pV} 1.2=$ constant. Calculate per kg of gas, the work done and the heat flow. Take Cp for $\mathrm{CO} 2=1.235 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\mathrm{O} 2=1.088 \mathrm{~kJ} / \mathrm{kg}$ K and N 2 is $1.172 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.	Understand	CO 4	AMEB04.16
3	The following is the volumetric analysis of a producer gas:	Understand	CO 4	AMEB04.16

	$\mathrm{CO}=28 \%, \quad \mathrm{H} 2=13 \%, \quad \mathrm{CH} 4=4 \%, \quad \mathrm{CO} 2=4 \%, \quad \mathrm{~N} 2=51 \%$ Thevalues Of Cp for \quad the constituent CO, $\mathrm{H} 2, \mathrm{H} 4, \mathrm{CO} 2, \mathrm{~N} 2$ are $29.27 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}, 28.89 \mathrm{~kJ} / \mathrm{mol} . \mathrm{K}, 35.8 \mathrm{~kJ}$ /mol.K,37.2kJ/mol.K,29.14kJ/ mol.K the values ofCpectively. Cv for the mixture.			
4	Find the relative humidity and specific humidity for air at $30{ }^{\circ} \mathrm{C}$ and having dew point temperature of 150C.Represent on psychrometric Chart.	Understand	CO 4	AMEB04.17
5	A mixture of hydrogen and oxygen is to be made, so that the ratio of H 2 to O 2 is $2: 1$ by volume. If the pressure and temperature are 1 bar and 250 C , respectively. Calculate mass of oxygen requiredand volume of the container?	Understand	CO 4	AMEB04.17
6	Air at 10bar and a DBT of 400C and WBT of 360C. Computedegree of saturation, dew point temperature and enthalpy of the mixture?	Understand	CO 4	AMEB04.19
7	Atmospheric air at 1.0132bar has DBT of 320C and a WBT of 260 C . Compute partial pressure of the water vapor, specific humidity, dew point temperature and relative humidity?	Understand	CO 4	AMEB04.18
8	Air at 200C, $40 \% \mathrm{RH}$ is mixed adiabatically with air at $400 \mathrm{C}, 40 \% \mathrm{RH}$ in the ratio of 1 kg of the former with 2 kg of later (on dry basis).Find the final condition of air?	Understand	CO 4	AMEB04.19
9	Saturated air at 210 C is passed through a dryer, so that its finalrelative humidity is 20%. The dryer uses silica gel absorbent. The air is then pass through a cooler until its final temperature is 210C without a change in specific humidity. Find out i)the temperature of air at the end of the drying process, ii) the relative humidity atthe end of the cooling process, iii)The dew point temperature at the end of the drying process?	Understand	CO 4	AMEB04.19
10	An air water vapor mixture enters an adiabatic saturator at $30^{\circ} \mathrm{C}$ and leaves at $20^{\circ} \mathrm{C}$, which is the adiabatic saturation temperature? The pressure remains constant at 100 kPa . Determine the relativehumidity and humidity ratio of the inlet mixture.	Understand	CO 4	AMEB04.19
	MODULE -V			
	AIR CONDITIONING SYSTEM			
	Part - A (Short Answer Questions)			
1	Classify the assumptions to be made for the analysis of allairstandard cycles?	Understand	CO 5	AMEB04.17
2	State theProcessesin \quad Otto cycle and represent on P-V and T-S diagrams?	Remember	CO 5	AMEB04.17
3	State the Processes in Constant pressure cycle and represent on $\mathrm{P}-\mathrm{V}$ and T-S diagrams?	Understand	CO 5	AMEB04.18
4	What are the variable factors used for comparison of cycles?	Remember	CO 5	AMEB04.18
5	Draw the modified Otto cycle? How it differs from Otto cycle?	Remember	CO 5	AMEB04.18
6	Derive the air standard efficiency of Diesel cycle?	Remember	CO 5	AMEB04.18
7	Define mean effective pressure?	Understand	CO 5	AMEB04.19
8	Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram?	Understand	CO 5	AMEB04.19
9	Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP?	Understand	CO 5	AMEB04.20
10	Discuss limited pressure cycle, represent the processes of it on PVdiagram?	Understand	CO 5	AMEB04.20
11	Compare Otto cycle with Diesel cycle?	Remember	CO 5	AMEB04.20
12	Define the unit of refrigeration?	Understand	CO 5	AMEB04.20
13	Define COP of refrigeration?	Remember	CO 5	AMEB04.19
14	Draw the PV diagram of Otto Cycle?	Understand	CO 5	AMEB04.19
15	Represent Otto cycle on TS diagram.	Remember	CO 5	AMEB04.19
16	Draw the PV diagram of diesel Cycle?	Understand	CO 5	AMEB04.18
17	Draw the TS diagram of diesel Cycle?	Remember	CO 5	AMEB04.18
18	Write the processes involved in Brayton cycle.	Understand	CO 5	AMEB04.19

19	Evaluate the performance of refrigeration cycle?	Remember	CO 5	AMEB04.20
20	Draw the PV and TS diagrams of dual combustion cycle?	Understand	CO 5	AMEB04.20
Part - B (Long Answer Questions)				
1	Define compression ratio. What is the range for (a) SI engines (b)the CI engine? What factors limit the compression ratio in each type of engine?	Understand	CO 5	AMEB04.20
2	What is an air standard cycle? What are the limitations of airstandard cycle? State the assumptions to be taken for its analysis	Understand	CO 5	AMEB04.20
3	Obtain an expression for the air standard efficiency on a volume basis of an engine working on the Otto cycle. And represent the processes on $\mathrm{p}-\mathrm{V}$ and T-S diagrams.	Understand	CO 5	AMEB04.20
4	State the characteristic of air cycles? And what is the use of airstandard cycle analysis	Understand	CO 5	AMEB04.19
5	Define air standard efficiency of an Otto cycle and show that the efficiency of Otto cycle is lower than that of Carnot cycle.	Understand	CO 5	AMEB04.19
6	Derive an expression for mean effective pressure of the Otto cycle?	Understand	CO 5	AMEB04.20
7	Derive an expression for air standard efficiency of diesel cycle	Understand	CO 5	AMEB04.20
8	Derive an expression for air standard efficiency of dual cycle	Understand	CO 5	AMEB04.19
9	What is the difference between Otto and Diesel cycle? Show that the efficiency of Diesel cycle is always lower than the efficiency ofthe Otto cycle for the same compression ratio.	Understand	CO 5	AMEB04.19
10	Show by graphs how the efficiency of Diesel cycle varies with compression ratio and cutoff ratio.	Understand	CO 5	AMEB04.20
11	Explain the dual combustion cycle? Why the cycle is also calledlimited pressure cycle? Represent on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{S}$ diagrams.	Understand	CO 5	AMEB04.20
12	What are the processes involved in Otto cycle. Explain theirstandard efficiency of Otto cycle.	Understand	CO 5	AMEB04.20
13	Compare the Otto and Diesel cycles for same constant maximumpressure and same heat input.	Understand	CO 5	AMEB04.20
14	Compare the thermal efficiency of Otto and dual and diesel cycleson the basis of same compression ratio and same heat input?	Understand	CO 5	AMEB04.20
15	In an Otto cycle, the pressure at the beginning of the compressionis 1 bar and pressure at the end of compression is 15 bar. Calculate the pressure ratio and the air standard efficiency of engine.	Understand	CO 5	AMEB04.19
16	Determine the air standard efficiency of the diesel engine having a cylinder with a bore of 250 mm and a stroke of 375 mm and aclearance volume of 1500 cc . with fuel cutoff occurring at 5% of the stroke.	Understand	CO 5	AMEB04.20
17	Describe the components of vapour compression system with thehelp of P-V and T-S diagram.	Understand	CO 5	AMEB04.20
18	Explain the following (i)Wet Compression (ii)Dry compression (iii)sub cooling (iv)superheating	Understand	CO 5	AMEB04.20
19	Derive cop of Bell-Coleman cycle with the help of processesrepresenting on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{S}$ diagram?	Understand	CO 5	AMEB04.20
20	Derive the expression for air standard efficiency of Brayton cycle.	Understand	CO 5	AMEB04.20
Part - C (Problem Solving and Critical Thinking)				
1	An air refrigeration open system operating between 1 M Pa and 100 k Pa is required to produce a cooling effect of $2000 \mathrm{~kJ} / \mathrm{min}$. Temperature of the air leaving the cold chamber is $-5^{\circ} \mathrm{C}$ and at leaving the cooler is $30^{\circ} \mathrm{C}$. Neglect losses and clearance in the compressor and expander. Determine : i. Mass of air circulated per min.	Understand	CO 5	AMEB04.19

	ii. Compressor work, expander work, and cyclework iii. COP and power in kW required			
2	An engine working on Otto cycle has a volume of $0.45 \mathrm{~m}^{3}$ pressure 1 bar and temperature $30^{\circ} \mathrm{C}$ at the beginning of the compression stroke. At the end of the compression stroke the pressure is 11 bar . 210 kJ of heat is added at constant volume. Determine efficiencyand mean effective pressure.	Understand	CO 5	AMEB04.18
3	An engine with 200 mm cylinder diameter and 300 mm stroke working on theoretical diesel cycle. The initial pressure and temperatureofairusedare 1 barand $27^{\circ} \mathrm{C}$. Thecutofis 8% ofthestroke. Determine air standard efficiency, mean effective pressure and power of the engine if the working cycles per minute are 300 ? Assume the compression ratio is 15 and the working fluid is air.	Understand	CO 5	AMEB04.19
4	DeterminetheCompressionratio,ifefficiencyofanOttocycleis 60% and $\mathrm{y}=$ 1.5?Aninventorclaimsthatanewheatcyclewilldevelop0.4kwfor aheatadditionof $32.5 \mathrm{~kJ} / \mathrm{min}$. Thetemperatureofheatsourceis 1990 K and that of sink is 850 K . Is his claim possible?	Understand	CO 5	AMEB04.18
5	A perfect gas undergoes a cycle which consists of following processes. i) Heat rejection at constant pressure ii) Adiabatic compression from 1bar and 270C to 4 bar iii) heat addition at constant volume to a final pressure of 16bar iv)adiabaticexpansion to 1bar. Calculate work done per kg of gas and efficiency of the cycle. Take $\mathrm{Cp}=0.92$ andCv=0.7.	Understand	CO 5	AMEB04.19
6	The stroke and cylinder diameter of Compression Ignition engine are 250 mm and 150 mm respectively. If the clearance volume is 0.0004 m 3 and fuel injection takes place at constant pressure for 5% of the stroke. Determine the efficiency of the engine.Assumethe engine working on Diesel cycle?	Understand	CO 5	AMEB04.20
7	An engine of 250 mm bore and 375 mm stroke works on Otto cycle. The clearance volume is $0.00263 \mathrm{~m}^{3}$. The initial pressure and temperature are 1 bar and $50^{\circ} \mathrm{C}$. The maximum pressure is limited to 25 bars. Find the air standard efficiency and the meaneffectivepressure of the cycle? Assume ideal conditions?	Understand	CO 5	AMEB04.20
8	28 tonnes of ice from and at $0^{\circ} \mathrm{C}$ is produced per day in an Ammonia refrigerator. The temperature range in the compressor is from $25^{\circ} \mathrm{C}$ to $-15^{\circ} \mathrm{C}$. The vapor is dry and saturated at the end of the compression and expansion valve is used. Assuming theC.O.Pof 62% of the theoretical. Calculate power required to drive the compressor?	Understand	CO 5	AMEB04.19
9	A Bell-Coleman refrigerator operates between pressure limits of 1 bar and 8 bar. Air is drawn from the cold chamber at $9^{\circ} \mathrm{C}$, compressed and then it is cooled to $29^{\circ} \mathrm{C}$ before entering the expansion cylinder. Expansion and compression follow the law $\mathrm{pV}^{1.35}=$ C. Calculate theoretical C.O.P of the system. Take γ of airis 1.4.	Understand	CO 5	AMEB04.20
10	The swept volume of a Diesel engine working on Dual cycle is $0.0053 \mathrm{~m}^{3}$ and clearance volume is $0.00035 \mathrm{~m}^{3}$. The maximum pressure is 65 bar. Fuel injection ends at 5% of stroke. The temperature and pressure of the start of the compression are 80° Cand 0.9bar. Determine air standard efficiency of cycle? Take y of air is 1.4.	Understand	CO 5	AMEB04.20

Prepared by

