

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	THERM	IODYNAMICS			
Course Code	AMEB0	4			
Programme	B. Tech				
Semester	III N	ИE			
Course Type	Core				
Regulation	IARE -	R18			
		Theory		Prac	ctical
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits
	3	1	4	-	-
Chief Coordinator	Mr. A V	enuprasad, Assi	stant Profess	or	
Course Faculty		rinvasa Rao, Pro Venuprasad, Assi		or	

COURSE OBJECTIVES:

The cou	rse should enable the students to:
I	Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II	Knowledge of properties during various phases of pure substances, mixtures, usage of steam tables and Mollier chart, psychometric charts.
III	Understand the direction law and concept of increase in entropy of universe.
IV	Understand the working of ideal air standard, vapor cycles and evaluate their performance in open systems like steam power plants systems.
V	Evaluate performance in internal combustion engines, gas turbines and refrigeration systems.

COURSE OUTCOMES (COs):

CO 1	Describe the basic concepts and first law of thermodynamics.
CO 2	Describe the second law of thermodynamics and understand the concept of entropy and third law of thermodynamics.
CO 3	Understand the Pure Substances various thermodynamic processes.
CO 4	Understand the concept of mixtures of perfect gases and psychometric properties.
CO 5	Develop the concept power cycle with description and representation on P-V and T-S diagram.

COURSE LEARNING OUTCOMES (CLOS):

S. No.	Description
AMEB04.01	Understand the concepts of conservation of mass, conservation of energy.
AMEB04.02	Demonstrate knowledge of ability to identify & apply fundamentals to solve problems
	like system properties, amount of work transfer and heat during various processes.
AMEB04.03	Explore knowledge & ability to design the thermal related components in various fields
	of energy transfer equipment.
AMEB04.04	Derive the first law of Thermodynamics from the concept of conservation of energy
AMEB04.05	Discuss the nature of steady and unsteady processes under the influence of time.
AMEB04.06	Determine entropy changes in a wide range of processes and determine the reversibility
	or irreversibility of a process from such calculations based on Carnot Cycle.
AMEB04.07	Develop the second law of thermodynamics from the limitations of first law.
AMEB04.08	Knowledge of the Gibbs and Helmholtz free energies as equilibrium criteria, and the statement of the equilibrium condition for closed and open systems.
AMEB04.09	Discuss pressure-temperature, volume-temperature, pressure-volume phase diagrams and the steam tables in the analysis of engineering devices and systems.
AMEB04.10	Understand the inter relationship between thermodynamic functions and an ability to use such relationships to solve practical problems.
AMEB04.11	Understand the equation of state, specific and universal gas constants, throttling and free expansion processes.
AMEB04.12	Discuss deviations from perfect gas model, Vander Waals equation of state.
AMEB04.13	Understand mole fraction, mass friction, gravimetric and volumetric analysis, volume fraction.
AMEB04.14	Discuss dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure, equivalent gas constant.
AMEB04.15	Understand enthalpy, specific heats and entropy of mixture of perfect gases.
AMEB04.16	Understand the process of psychrometry that are used in the analysis of engineering evices like air conditioning systems
AMEB04.17	Develop Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram.
AMEB04.18	Discuss thermal efficiency; mean effective pressures on air standard basis.
AMEB04.19	Understand the comparison of various cycles.
AMEB04.20	Understand introduction to Brayton cycle and Bell Coleman cycle.

TUTORIAL QUESTION BANK

	MODULE- I			
	BASIC CONCEPTS AND FIRST LAW OF THI	ERMODYN	AMICS	
	Part - A (Short Answer Question			
S No	QUESTIONS	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	Explain Zeroth law of Thermodynamics.	Remember	CO 1	AMEB04.01
2	Define System, Surroundings and Boundary?	Understand	CO 1	AMEB04.01
3	Distinguish between macroscopic and microscopic point of view?	Remember	CO 1	AMEB04.01
4	Discuss Quasi Static process, what are its characteristics?	Remember	CO 1	AMEB04.01
5	Distinguish between different types of systems with examples.	Remember	CO 1	AMEB04.01
6	Explain the features of constant volume gas thermometer.	Remember	CO 1	AMEB04.01
7	Discuss First law of thermodynamics, explain Joule's experiment.	Remember	CO 1	AMEB04.02
8	Define PMM 1.	Remember	CO 1	AMEB04.02
9	State the causes of irreversibility?	Remember	CO 1	AMEB04.02
10	Derive Steady Flow Energy Equation, when the device is an aircompressor.	Remember	CO 1	AMEB04.02
11	State thermodynamic system? How do you classify it?	Remember	CO 1	AMEB04.02
12	State the closed system? Give an example	Remember	CO 1	AMEB04.03
13	Define Intensive and Extensive properties.	Understand	CO 1	AMEB04.03
14	Define equilibrium of a system?	Understand	CO 1	AMEB04.03
15	Define Intensive and Extensive properties.	Remember	CO 1	AMEB04.03
16	Differentiate closed and open system.	Understand	CO 1	AMEB04.03
17	Define Specific heat capacity at constant volume	Understand	CO 1	AMEB04.04
18	Define Specific heat capacity at constant pressure.	Remember	CO 1	AMEB04.04
19	Differentiate closed and open system.	Understand	CO 1	AMEB04.04
20	Classify the properties of system?	Remember	CO 1	AMEB04.04
1	Part - B (Long Answer Questions		GO 1	A MED 04 01
1	Differentiate the system, surroundings and boundary Explain in detail.	Remember	CO 1	AMEB04.01
2	Classify the types of systems; explain with examples.	Understand	CO 1	AMEB04.01
3	Distinguish between the macroscopic and microscopic study ofthermo dynamics?	Understand	CO 1	AMEB04.01
4	Explain the importance of concept of continuum in thermodynamicapproach?	Remember	CO 1	AMEB04.01
5	Explain thermodynamic equilibrium in detail?	Understand	CO 1	AMEB04.01
6	Differentiate thermal equilibrium and thermodynamic equilibrium, explain.	Understand	CO 1	AMEB04.01
7	Define property? What are different types of properties? Explain.	Understand	CO 1	AMEB04.03
8	Enumerate the Isobaric process from thermodynamic point of view? and derive its work done under p-Vcoordinates.	Remember	CO 1	AMEB04.03
9	Represent the Isochoric process from thermodynamic point ofview? and derive its work done under p-V coordinates.	Understand	CO 1	AMEB04.03
10	Enumerate the Isothermal process from thermodynamic point of view? and derive its work done under p-V coordinates.	Remember	CO 1	AMEB04.03
11	Represent the adiabatic process from thermodynamic point ofview? And derive its work done under p-V coordinates.	Understand	CO 1	AMEB04.03
12	Enumerate the polytrophic process from thermodynamic point ofview? And derive its work done under p-V coordinates.	Remember	CO 1	AMEB04.03
13	Derive the expression for piston displacement work with neatdiagram?	Understand	CO 1	AMEB04.03
14	State Zeroth law and explain with a example?	Understand	CO 1	AMEB04.03
15	Explain the Joule's experiment with a neat sketch?	Understand	CO 1	AMEB04.03

				T
16	Sketch the constant volume gas thermometer and explain?	Remember	CO 1	AMEB04.03
17	Derive exit velocity for nozzle by considering steady flow	Understand	CO 1	AMEB04.03
	energyequation.		~~.	
18	Define path function and Show that work and heat are	Remember	CO 1	AMEB04.03
10	pathfunctions?	** 1		13 (550) 4 0 2
19	Explain the first law of thermodynamics applied to closed	Understand	CO 1	AMEB04.03
• •	systemwhen system undergoing a change of state?		~~.	
20	Derive the Steady flow energy equation?	Understand	CO 1	AMEB04.03
4 1	Part - C (Problem Solving and Critical Think			1,1,555,000
1	When a stationary mass of gas was compressed without friction at constant pressure, its initial state of 0.4m ³ and 0.105MPa was	Remember	CO 1	AMEB04.02
	found to change to final state of 0.20m ³ and 0.105MPa. There was			
	a transfer of 42.5kJ of heat from the gas during theprocess.			
	Determine the change in internal energy of the gas?			
2	0.44kg of air at 180°C, expands adiabatically to 3times its original	Understand	CO 1	AMEB04.02
	volume and during the process there is a fall in temperature to	Chacistana	CO 1	711111111111111111111111111111111111111
	15°C. The work done during the process is 52.5kJ. Calculate Cp			
	and Cv?			
3	Two thermometers one centigrade and other Fahrenheit are	Remember	CO 1	AMEB04.02
)	immersed in a fluid, after the thermometers reached equilibrium	Kemember	COI	AMED04.02
	with the fluid, it is noted that both the thermometers indicate the			
	same numerical values. Find that the identical numerical values			
	shown by the thermometers? Determine the corresponding			
	temperature of the fluid, express in degrees Kelvin and degrees			
	Rankine?			
4	If a gas of volume 6000 cm ³ and at pressure of 100 kPa is	Remember	CO 1	AMEB04.03
	compressed quasi statically according to pV^2 = constant until the			
	volume becomes 2000 cm ³ , determine the final pressure and the			
5	work transfer.	Understand	CO 1	AMEB04.03
3	A gas of mass 1.5 kg undergoes a quasi-static expansion which follows a relationship $p = a + bV$, where a and b are constants.	Understand	COT	AMEDU4.03
	The initial and final pressures are 1000 kPa and 200 kPa			
	respectively and the corresponding volumes are 0.20 m ³ and 1.20			
	m ³ .Thespecificinternalenergyofthegasisgivenbytherelationu=1.5p			
	V–85kJ/kg.WherepisthekPaandvisinm3/kg. Calculatethe net heat			
	transfer and the maximum internal energy ofthe gas attained			
	during expansion.			
6	A piston cylinder device operates 1kg of fluid at 20atm pressure	Remember	CO 1	AMEB04.03
	with initial volume is 0.04 m ³ . Fluid is allowed to expand			
	reversibly following pV ^{1.45} =C. So that the volume becomes			
	double. The fluid is cooled at constant pressure until the piston comesback.Determine the work done in each process?			
7	A fluid contain in a horizontal cylinder with a frictionless leak	Understand	CO 1	AMEB04.03
'	proof piston is continuously agitated by a stirrer passing through	Chacistana	201	711111111111111111111111111111111111111
	the cylinder cover. The diameter of the cylinder is 50cm and the			
	piston is held against the fluid due to atmospheric pressure equal			
	to 100kPa. The stirrer turns 8000 revolutions with anaverage			
	torqueof 1.5Nm. If the piston slowly moves outwards by 60cm.			
	Determine the network transfer to the system?			1
8	A Piston and cylinder machine contains a fluid system which	Understand	CO 1	AMEB04.03
	passes through a complete cycle of four processes. During a cycle			
	the sum of all heat transfers is -170kJ. The system completes 100cycles/minute. Complete the following table			
	showing themethod for each item and compute net rate of work			
	output in kW.			
9	A fluid is confined in a cylinder by a spring loaded friction less	Remember	CO 1	AMEB04.03
	piston, so the pressure in the fluid is a linear function of volume	Remember	231	11.12501.03
1				
	(p=a+bV). The internal energy of the fluid is given by the	1		
	(p=a+bV). The internal energy of the fluid is given by the following equation U=34+3.15pV. Where U is in kJ, p in kPa			

	0.03m ³ to a final state of 400kPa, 0.06m ³ with no work other than			
	that done on the piston. Define the direction and magnitude of			
	work and heattransfer.			
10	Air flows steadily at the rate of 0.5kg/sec through an air	Remember	CO 1	AMEB04.03
	compressor, entering at 7m/sec velocity, 100kPa pressure and			
	0.95m ³ /kg volume and leaving at 5m/sec, 700kpa and 0.19m ³ /kg.			
	The internal energy of air leaving is 90kJ/kg greater than that of air entering. Cooling water in the compressor jacket absorbs heat			
	from the air at the rate of 58kW.Compute the rate of shaft work			
	input to the air in KW.			
	MODULE- II			
	LIMITATIONS OF FIRST LAV			
	PART - A (SHORT ANSWER QUEST	·		
1	State the limitations of first law of thermodynamics?	Understand	CO 2	AMEB04.05
2	Define second law of thermodynamics?	Understand	CO 2	AMEB04.07
3	State PMM 2?	Understand	CO 2	AMEB04.05
4	State the processes of Carnot Cycle?	Understand	CO 2	AMEB04.07
5	State the Clausius inequality?	Remember	CO 2	AMEB04.05
6	Define the absolute temperature scale?	Understand	CO 2	AMEB04.05
7	Define the property of entropy?	Remember	CO 2	AMEB04.07
8	Define an inversion curve?	Understand	CO 2	AMEB04.05
9	Write 1 and 2 Maxwell's relations?	Understand	CO 2	AMEB04.09
10	State the Third law of Thermodynamics?	Understand	CO 2	AMEB04.07
11	Define available energy of a system?	Remember	CO 2	AMEB04.09
12	Write 3 and 4 Maxwell's relations?	Remember	CO 2	AMEB04.05
13	Explain dead state of a system?	Understand	CO 2	AMEB04.05
14	Define the unavailable energy in a system?	Understand	CO 2	AMEB04.05
15	Explain the principle of entropy increase?	Understand	CO 2	AMEB04.05
16	Explain the exergy of a system?	Remember	CO 2	AMEB04.09
17	Explain the Claussius statement?	Remember	CO 2	AMEB04.07
18	State the Kelvin-Plank statement?	Remember	CO 2	AMEB04.05
19	Sketch the PV and TS diagrams of Carnot cycle.	Remember	CO 2	AMEB04.05
20	Classify the processes which constitute the cycle. PART - B (LONG ANSWER QUEST)	Remember	CO 2	AMEB04.05
1	Explain the limitations of First law of thermodynamics in detail?	Understand	CO 2	AMEB04.05
2	Define the terms thermal reservoir, source, and sink with a neat	Understand	CO 2	AMEB04.07
2	sketch?	Onderstand	CO 2	AWILDO4.07
3	Explain the heat engine with a neat sketch?	Understand	CO 2	AMEB04.07
4	Explain the heat ought with a neat sketch?	Understand	CO 2	AMEB04.07
5	List the performance parameters of a system and explain in detail.	Understand	CO 2	AMEB04.09
6	Compare the first law and second law of thermodynamics with	Understand	CO 2	AMEB04.09
	suitable examples?			
7	Explain the second law of thermodynamics with suitable ketches?	Understand	CO 2	AMEB04.05
8	Write the Kelvin-Plank statement and explain with an example?	Understand	CO 2	AMEB04.09
9	Write the Clausius statement and explain with an example?	Understand	CO 2	AMEB04.09
10	Write the Kelvin-Planck and Clausius statements and explain with	Understand	CO 2	AMEB04.09
	sketches?			
13	State PMM1 and PMM2, in which manner both are different?	Understand	CO 2	AMEB04.05
14	Compare the relation with process and cycle? Explain.	Understand	CO 2	AMEB04.07
15	State the Carnot's principle? What is the importance of	Understand	CO 2	AMEB04.07
	theprinciple, explain?			
16	State the Claussius inequality? Explain.	Understand	CO 2	AMEB04.09
17	Explain the influence of entropy on various parameters?	Understand	CO 2	AMEB04.07
18	Define Gibb's and Helmholtz's functions? Comparethe	Understand	CO 2	AMEB04.09
	importance of them	** .	~~ -	
19	State the irreversibility and explain.	Understand	CO 2	AMEB04.05
20	Explain the Availability in a thermodynamic system with	Understand	CO 2	AMEB04.07
	example.			

	Part - C (Problem Solving and Critical Think	ing Questions)		
1	A heat engine working on Carnot cycle converts 1/5th of the heat input into work. When the temperature of the sink is reduced by 80°C, the efficiency gets doubled. Determine the temperature of sink?	Understand	CO 2	AMEB04.07
2	A reversible heat engine is supplied with heat from two constant temperature sources at 900K and 600 K and rejects heat to a constant temperature at 300K to sink. The engine develops work equivalent to 91kJ/s and rejects heat at the rate of 56kJ/sec. Estimate (i) heat supplied by each source(ii) Thermal efficiency ofengine.	Understand	CO 2	AMEB04.07
3	A block of iron weighing 100 kg and having a temperature of 100°C is immersed in 50 kg of water at a temperature of 20°C. What will be the change of entropy of the combined system of iron and water? Specific heats of iron and water are 0.45 and 4.18 kJ/kgK respectively.	Understand	CO 2	AMEB04.09
4	A domestic food freezer maintains a temperature of -15°C, the ambient air temperature is 30°C, if heat leaks into the freezer at the continuous rate of 1.75kJ/sec. State the least power necessary to pump this heat out continuous?	Understand	CO 2	AMEB04.09
5	A heat engine is operating between two reservoirs 1000K and 300K is used to drive a heat pump which extracts heat from the reservoir at 300K at a rate twice that at which the engine rejects the heat to it. If the efficiency of the engine is 40% of the maximum possible and COP of heat pump is 50% of the maximum possible, then determine the temperature of the reservoir to which the heat pump rejects heat. Also determine the rate of heat rejectionfromthe heat pump, if the rate of heat supply to the heat engine is 50kW?	Understand	CO 2	AMEB04.09
6	Three Carnot engine are arranged in series. The first engine takes 4000kJ of heat from a source at 2000K and delivers 1800kJ of work. The second and third engines deliver 1200kJ and 500kJ of work respectively. Compare the exhaust temperature of second and third Carnot engines?	Understand	CO 2	AMEB04.05
7	Two bodies of equal capacities C and T1 and T2 from an adiabatically closed system. Determine the final temperature, if the system is brought to an equilibrium state. i) Freely, ii) reversibly, Proceed to calculate the maximum work which can be obtained from the system?	Understand	CO 2	AMEB04.05
8	A heat engine is supplied with 2512kJ/min of heat at 650°C. Heat rejection takes place at 100°C. Distinguish which of the following heat rejection represent a reversible, irreversible or impossibleresult. i) 867 kJ/min ii) 1015 kJ/min iii) 1494 kJ/min	Understand	CO 2	AMEB04.09
9	Heat flows from a hot reservoir at 800K to another reservoir at 250K.If the entropy change of overall process is 4.25kJ/K, Compare calculation for the heat flowing out of thehightemperature reservoir?	Understand	CO 2	AMEB04.09
10	5 kg of air heated from a temperature of 100° C at constant volume till its pressure becomes three times its original pressure. For this processcalculate :(i)heat transfer(ii)change in internal energy (iii) Change in enthalpy(iv)changeinentropyfor air take Cp=1.005kJ/kg k	Understand	CO 2	AMEB04.05
	MODULE -III			
	PURE SUBSTANCES Post A (Short Answer Question	a)		
1	Part - A (Short Answer Question Define Pure Substance and what do you understand by a saturationstage?	Remember	CO 3	AMEB04.13
2	Draw the phase diagram on p-v diagrams with water as puresubstance?	Remember	CO 3	AMEB04.13

3	Emploin the compant of my T confece? Democrat on m	Understand	CO 3	AMEB04.13
3	Explain the concept of p-v-T surface? Represent on p-Tcoordinates?	Understand	CO 3	AMEBU4.13
4	Explain the critical state of water?	Remember	CO 3	AMEB04.13
5	Draw the phase equilibrium diagram for a pure substance on T-s	Remember	CO 3	AMEB04.13
	plot with relevant constant property line?	Remember	003	7 HVILLOO 1.13
6	Draw the phase equilibrium diagram for a pure substance on H-s	Understand	CO 3	AMEB04.13
	plot with relevant constant property line?	Chacistana	003	11112201113
7	Compare isobar on Mollier diagram diverse from one another?	Understand	CO 3	AMEB04.13
8	Explain Mollier chart by representing all the properties on it?	Remember	CO 3	AMEB04.13
9	State the degree of superheat and degree of sub cooling?	Understand	CO 3	AMEB04.13
10	Define dryness fraction? What are the different methods of	Understand	CO 3	AMEB04.13
	measurement of dryness fraction?			
11	Explain the equation of state?	Understand	CO 3	AMEB04.15
12	Derive the changes in internal energy during a process	Remember	CO 3	AMEB04.15
	withvariable specificheats.			
13	Derive the changes in enthalpy during a process with	Remember	CO 3	AMEB04.11
	variablespecific heats.			
14	Explain the process of free expansion?	Understand	CO 3	AMEB04.11
15	Explain the process of Throttling?	Remember	CO 3	AMEB04.11
16	State the expression for Vander Wall's equation and determine the	Remember	CO 3	AMEB04.11
	constants?			
17	Explain On what coordinates compressibility charts can be drawn?	Understand	CO 3	AMEB04.11
18	List the molar specific heats, explain?	Remember	CO 3	AMEB04.15
19	Derive the expression for work done in a non-flow process, if the	Remember	CO 3	AMEB04.15
	process is adiabatic?			
20	Discuss briefly the reduced properties?	Understand	CO 3	AMEB04.11
	Part – B (Long Answer Question			
1	Explain the procedure adopted in Steam calorimetry?	Understand	CO 3	AMEB04.13
2	Why can not a throttling calorimeter measure the quality, if the	Understand	CO 3	AMEB04.13
	steam is wet? Explain how is the quality been measured?			
3	Explain the saturation temperature, the changes in specific	Understand	CO 3	AMEB04.13
	volume, enthalpy and entropy during evaporation at 1MPa.			
4	Compare the enthalpy, entropy and volume of steam at 1.4MPa,	Understand	CO 3	AMEB04.13
	380°C.			
5	A vessel of volume 0.04m ³ contains a mixture of saturated water	Understand	CO 3	AMEB04.13
	and saturated steam at a temperature of 250°C. The mass of			
	theliquid present is 9kg.Find the pressure, mass, specific volume,			
	enthalpy, entropy and internal energy?	TT1	CO 2	AMED04.12
6	Steam initially at 1.5MPa, 300°C expands reversibly and	Understand	CO 3	AMEB04.13
	adiabatically in a steam turbine to 40°C. Determine the ideal			
7	workoutput of the Turbine per kg of steam? Steam flows in a pipe line at 1.5MPa. After expanding to 0.1MPain	Understand	CO 3	AMEB04.13
,	a throttling calorimeter, the temperature is found to be 120°C.	Understand	CO 3	AMEDU4.13
	Determine the quality of the steam in pipe line?			
8	The following data were obtained with a separating and throttling	Understand	CO 3	AMEB04.13
0	calorimeter. Pressure in pipe line is 1.5MPa. Condition after	Onderstand	CO 3	AMEDU4.13
	throttling is at 0.1 MPa, 110°C, During 5 minutes moisture			
	collected in the separator is 0.15 lt at 70° C .steam condenses after			
	throttling during 5 minis3.24kg, and Determine the quality of			
	steam in the pipe line?			
9	Determine the enthalpy and entropy of steam and the pressure	Understand	CO 3	AMEB04.13
	is2MPa and the specific volume is $0.09\text{m}^3/\text{kg}$.		200	
10	Saturated steam has entropy of 3.56kJ/kg K. Determine the	Understand	CO 3	AMEB04.14
	saturated pressure, temperature, specific volume, enthalpy.			
11	Enumerate the Perfect Gas Laws and analyze	Understand	CO 3	AMEB04.15
12	Explain the equation of State with variations?	Understand	CO 3	AMEB04.15
13	Explain, how the heat and work transfer observed in perfect gas?	Understand	CO 3	AMEB04.15
		· ·		

1.4	Evaluin the change in internal anguary in marfact case?	Undonstand	CO 2	AMED04.15
14	Explain the change in internal energy in perfect gas? State Vander Waals equation, what is the importance of it?	Understand Understand	CO 3	AMEB04.15 AMEB04.11
16	What is compressibility chart, explain the procedure of usage?	Understand	CO 3	AMEB04.11
17	explain about law of corresponding states.	Understand	CO 3	AMEB04.15
18	what are the assumptions for deriving ideal gas equation.	Understand	CO 3	AMEB04.15
19	Derive the Clausius Claperon equation?	Understand	CO 3	AMEB04.13
20	Determine constants of vanderwaall's equation.	Understand	CO 3	AMEB04.11
20	Part – C (Problem Solving and Critical T		CO 3	AMED04.11
1	1 kg of water fills a 150 L rigid container at an initial pressure of	Understand	CO 3	AMEB04.13
1	2MPa. The container is then cooled to 40°C. Determine the initial	Officerstatio	CO 3	AWIED04.13
	temperature and final pressure of the water.			
2	Saturated steam has entropy of 6.76kJ/kg K. Determine the	Understand	CO 3	AMEB04.13
_	pressure, temperature, specific volume, enthalpy.	Chacistana	005	THAILED O THE
3	A vessel of volume 0.04 m ³ contains a mixture of saturated water	Understand	CO 3	AMEB04.13
	and steam at a temperature of 250°C. The mass of the liquid	Charlana	000	121,122,0 1110
	present is 9 kg. Find the pressure, mass, specific			
	volume,enthalpy, entropy.			
4	A steam power plant uses steam at boiler pressure of 150 bars	Understand	CO 3	AMEB04.13
	and temperature of 550°C with reheat at 40 bars and 550°Cat			
	condenser pressure of 0.1 bar. Find the quality of steam at			
	turbineexhaust, cycle efficiency and the steam rate.			
5	A large insulated vessel is divided in to two chambers. One is	Understand	CO 3	AMEB04.13
	containing 5kg of dry saturated steam at 0.2MPa and other 10kg			
	of steam, 0.8quality at 0.5MPa. If the partition between the			
	chambers is removed and the steam is mixed thoroughly			
	and allow to settle. Determine the final pressure steam quality and			
	entropy change in the process?			
0.1			~ .	
06	The volume of a high altitude chamber is 40m ³ . It is put into	Understand	CO 3	AMEB04.15
	operation by reducing pressure from 1bar to 0.4bar and			
	temperature from 25°C to 5°C. How many kg of air must be removed from the chamber during the process? Express this			
	massas a volume measured at 1bar and 25°C.			
07	A fluid at 200kPa and 300°C has a volume of 0.8m³ in a	Understand	CO 3	AMEB04.15
07	frictionless process at constant volume, the pressure changes	Chacistana	CO 3	7 HVIEDO4.13
	to 100kPa. Calculate the final temperature and heat transfer, if the			
	fluid is air?			
08	A fluid at 250°C and 300kPa is compressed reversibly and	Understand	CO 3	AMEB04.15
	isothermally to 1/16th of its original volume. Calculate the final			
	pressure, work done and change of internal energy per kg of			
	fluid, if the fluid is air?			
09	Solve that for an ideal gas the slope of the constant volume line on	Understand	CO 3	AMEB04.11
	the T-S diagram is more than that of the constant pressure line.			
10	At a temperature of 423K,1 kg of nitrogen occupies volume	Understand	CO 3	AMEB04.15
	of 200 liters. The gas undergoes constant expansion with fully			
	resisted to a volume of 360 liters. Then the			
	gasexpandedisothermally to a volume of 500 liters. Sketch the			
	process on p-V and T-S diagram. Find out overall change in			
	entropy.			
	MODULE -IV	ONING		
	INTRODUCTION TO AIR CONDITION Part – A (Short Answer Question			
1	State Dalton's law of partial pressures?	Remember	CO 4	AMEB04.16
2	Compute the characteristic gas constant and the molecular	Remember	CO 4	AMEB04.16
	weight of the gas mixture?	Kemember	CO 4	AMILDU4.10
3	Derive the expression for internal energy?	Remember	CO 4	AMEB04.16
)		TCHICHIUCI	\sim \sim \sim	17111111111111111111111111111111111111
_				AMER04 16
4	Define mole fraction?	Remember	CO 4	AMEB04.16
				AMEB04.16 AMEB04.16 AMEB04.16

				1
7	pointtemperature and degree of saturation?	II. 1	CO 4	AMED04.16
7	Explain adiabatic saturation temperature?	Understand	CO 4	AMEB04.16
8	Explain psychometric charts while representing all the properties?	Understand	CO 4	AMEB04.16
9	Locate i) sensible heating ii)sensible cooling iii) heating andiv)Heating and Dehumidification on psychometric chart?	Understand	CO 4	AMEB04.16
10	Define bypass factors represent adiabatic mixing of two air	Understand	CO 4	AMEB04.16
	streamson psychrometric chart?			
11	State dry bulb temperature?	Remember	CO 4	AMEB04.16
12	State wet bulb temperature?	Understand	CO 4	AMEB04.18
13	Define specific humidity?	Understand	CO 4	AMEB04.19
14	Define relative humidity?	Understand	CO 4	AMEB04.17
15	Explain Psychrometric chart?	Remember	CO 4	AMEB04.18
16	State adiabatic saturation?	Understand	CO 4	AMEB04.17
17	Define degree of saturation?	Understand	CO 4	AMEB04.18
18	Obtain the expression for enthalpy of gas mixture?	Remember	CO 4	AMEB04.19
19	Define mass fraction?	Remember	CO 4	AMEB04.18
20	State the law of additive volumes?	Understand	CO 4	AMEB04.19
	Part – B (Long Answer Questions	s)		•
1	Explain the Mole fraction and Massfraction in the Mixture of Perfect gas?	Understand	CO 4	AMEB04.16
2	Explain Gravimetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
3	Explain the Volumetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
4	Explain the Dalton's law of partial pressure with an example?	Understand	CO 4	AMEB04.16
5	Explain the Avogadro's laws of additive volumes?	Understand	CO 4	AMEB04.16
6	Compare the Volumetric and Gravimetric Analysis of mixtures?	Understand	CO 4	AMEB04.16
7	Using definitions of mass and mole friction, derivea	Understand	CO 4	AMEB04.16
	relationbetween them.			
8	Somebody claims that the mass and mole fraction for mixture of COo2 and N2O are identical. Is it true? Why? Explain.	Understand	CO 4	AMEB04.16
9	Explain Equivalent gas constant of a gas mixture?	Understand	CO 4	AMEB04.16
10	Explain Molecular internal energy of a gas mixture?	Understand	CO 4	AMEB04.16
11	Derive the expressions for enthalpy and entropy of a gas mixture?	Understand	CO 4	AMEB04.17
12	Are the dry bulb temperature and dew point temperature are	Understand	CO 4	AMEB04.18
	same?Explain when they are same.			
13	Explain the various properties of psychrometry?	Understand	CO 4	AMEB04.18
14	Compare dry bulb temperature and wet bulb temperature with asketch?	Understand	CO 4	AMEB04.17
15	Explain the concept of dew point temperature?	Understand	CO 4	AMEB04.19
16	Differentiate the Relation between specific humidity and	Understand	CO 4	AMEB04.18
	relativehumidity and derive the relation between them?			
17	Explain the degree of saturation with an example?	Understand	CO 4	AMEB04.18
18	Explain the adiabatic saturation. And compare with degree	Understand	CO 4	AMEB04.19
	ofsaturation.			<u> </u>
19	Enumerate different psychrometric processes that are taking place.	Understand	CO 4	AMEB04.19
20	How will you construct psychrometric chart?	Understand	CO 4	AMEB04.19
	Part – C (Problem Solving and Critical T			
1	The analysis by weight of a perfect gas mixture at 200C and 1.3bar is 10%O2, 70% N2, 15%CO2 and 5%CO. For a reference	Understand	CO 4	AMEB04.16
	state of 00C and 1bar, determine partial pressure of the			
	constituent and gasconstant of mixture.			
2	In an engine cylinder a gas has a volumetric analysis of	Understand	CO 4	AMEB04.16
	13%CO2, 12.5%O2 and 74.5% N2. The temperature at the			
	beginning of expansion is 9500C and gas mixture expands			
	reversibly through a volume ratio of 8:1. According to the law			
	pV1.2=constant. Calculate per kg of gas, the work done and the			
	heat flow. Take Cp for CO2=1.235kJ/kg K and O2=1.088kJ/kg			
	K and N2 is 1.172kJ/kg K.			
3	The following is the volumetric analysis of a producer gas:	Understand	CO 4	AMEB04.16

	CO 200/ H2 120/ CH4 40/ CO2 40/ N2 510/	1		
	CO=28%, H2=13%, CH4=4%, CO2=4%, N2=51%.			
	The values Of Cp for the constituent CO,			
	H2,H4,CO2,N2are29.27kJ/mol.K,28.89kJ/mol.K,35.8kJ			
	/mol.K,37.2kJ/mol.K,29.14kJ/ mol.K respectively. Calculate			
	the values of Cp, Cv for the mixture.	XX 1 . 1	GO 4	43 (ED 0 4 17
4	Find the relative humidity and specific humidity for air at 30 ° C	Understand	CO 4	AMEB04.17
	and having dew point temperature of 150C.Represent on			
	psychrometric Chart.			
5	A mixture of hydrogen and oxygen is to be made, so that the ratio		CO 4	AMEB04.17
	of H2 to O2 is 2:1 by volume. If the pressure and temperature are			
	1bar and 250C, respectively. Calculate mass of oxygen			
	requiredand volume of the container?			
6	Air at 10bar and a DBT of 400C and WBT of 360C.	Understand	CO 4	AMEB04.19
	Computedegree of saturation, dew point temperature and enthalpy			
	of the mixture?			
7	Atmospheric air at 1.0132bar has DBT of 320C and a WBT	Understand	CO 4	AMEB04.18
	of 260°C. Compute partial pressure of the water vapor, specific			
	humidity, dew point temperature and relative humidity?			
8	Air at 200C, 40% RH is mixed adiabatically with air at	Understand	CO 4	AMEB04.19
	400C,40%RH in the ratio of 1kg of the former with 2kg of later			
	(on dry basis). Find the final condition of air?			
9	Saturated air at 210C is passed through a dryer, so that its	Understand	CO 4	AMEB04.19
	finalrelative humidity is 20%. The dryer uses silica gel absorbent.			
	The air is then pass through a cooler until its final temperature is			
	210C without a change in specific humidity. Find out i)the			
	temperature of air at the end of the drying process, ii) the relative			
	humidity atthe end of the cooling process, iii)The dew point			
	temperature at the end of the drying process?			
10	An air water vapor mixture enters an adiabatic saturator at 30°C	Understand	CO 4	AMEB04.19
	and leaves at 20 °C, which is the adiabatic saturation temperature?			
	and leaves at 20 °C, which is the adiabatic saturation temperature? The pressure remains constant at 100kPa. Determine the			
	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture.			
	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V			
	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM	IS		
	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question	IS s)		
1	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of	IS	CO 5	AMEB04.17
1	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles?	IS IS Understand		AMEB04.17
1 2	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question) Classify the assumptions to be made for the analysis of allairstandard cycles? State the Processes in Otto cycle and represent on P-V	IS s)	CO 5	AMEB04.17 AMEB04.17
2	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State the Processes in Otto cycle and represent on P-V and T-S diagrams?	Understand Remember	CO 5	AMEB04.17
	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State the Processes in Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on	IS IS Understand		
3	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State the Processes in Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams?	Understand Remember Understand	CO 5	AMEB04.17 AMEB04.18
3 4	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State the Processes in Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles?	Understand Remember Understand Remember	CO 5	AMEB04.17 AMEB04.18 AMEB04.18
2 3 4 5	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle?	Understand Remember Understand Remember Remember Remember	CO 5 CO 5 CO 5	AMEB04.17 AMEB04.18 AMEB04.18 AMEB04.18
2 3 4 5 6	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle?	Understand Remember Understand Remember Remember Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18
2 3 4 5 6 7	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure?	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19
2 3 4 5 6	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle?	Understand Remember Understand Remember Remember Remember Remember	CO 5 CO 5 CO 5 CO 5 CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18
2 3 4 5 6 7	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure?	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19
2 3 4 5 6 7	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent	Understand Remember Understand Remember Remember Remember Understand	CO 5 CO 5 CO 5 CO 5 CO 5 CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19
2 3 4 5 6 7 8	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram?	Understand Remember Understand Remember Remember Remember Understand Understand Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19
2 3 4 5 6 7 8	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle	Understand Remember Understand Remember Remember Remember Understand Understand Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19
2 3 4 5 6 7 8	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP?	Understand Remember Understand Remember Remember Remember Understand Understand Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20
2 3 4 5 6 7 8	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram?	Understand Remember Understand Remember Remember Remember Understand Understand Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20
2 3 4 5 6 7 8 9	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle?	Understand Remember Understand Remember Remember Remember Understand Understand Understand Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20
2 3 4 5 6 7 8 9	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration?	Understand Remember Understand Remember Remember Remember Understand Understand Understand Understand Understand Understand	CO 5	AMEB04.17 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20
2 3 4 5 6 7 8 9 10 11 12 13	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration? Define COP of refrigeration?	Understand Remember Understand Remember Remember Remember Understand Understand Understand Understand Understand Remember Understand Remember	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.20
2 3 4 5 6 7 8 9 10 11 12 13 14	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration? Define COP of refrigeration? Draw the PV diagram of Otto Cycle?	Understand Remember Understand Remember Remember Remember Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.19
2 3 4 5 6 7 8 9 10 11 12 13 14 15	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration? Define COP of refrigeration? Draw the PV diagram of Otto Cycle? Represent Otto cycle on TS diagram.	Understand Remember Understand Remember Remember Remember Understand Understand Understand Understand Understand Understand Remember Understand Remember Understand Remember Understand Remember	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.19 AMEB04.19 AMEB04.19 AMEB04.19
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Derive the air standard efficiency of Diesel cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration? Define COP of refrigeration? Draw the PV diagram of Otto Cycle? Represent Otto cycle on TS diagram. Draw the PV diagram of diesel Cycle?	Understand Understand Understand Remember Remember Remember Remember Understand Understand Understand Understand Understand Remember Understand Remember Understand Remember Understand	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.19 AMEB04.19 AMEB04.19 AMEB04.19 AMEB04.19
2 3 4 5 6 7 8 9 10 11 12 13 14 15	The pressure remains constant at 100kPa. Determine the relativehumidity and humidity ratio of the inlet mixture. MODULE -V AIR CONDITIONING SYSTEM Part - A (Short Answer Question Classify the assumptions to be made for the analysis of allairstandard cycles? State theProcessesin Otto cycle and represent on P-V and T-S diagrams? State the Processes in Constant pressure cycle and represent on P-V and T-S diagrams? What are the variable factors used for comparison of cycles? Draw the modified Otto cycle? How it differs from Otto cycle? Define mean effective pressure? Listfunctional parts of simple vapor compressionsystemrepresent the processes on T-S diagram? Sketch P-V and T-S diagrams of Bell-Coleman cycle whilerepresenting process and hence deduce its COP? Discuss limited pressure cycle, represent the processes of it on P-Vdiagram? Compare Otto cycle with Diesel cycle? Define the unit of refrigeration? Define COP of refrigeration? Draw the PV diagram of Otto Cycle? Represent Otto cycle on TS diagram.	Understand Remember Understand Remember Remember Remember Understand Understand Understand Understand Understand Understand Remember Understand Remember Understand Remember Understand Remember	CO 5	AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.18 AMEB04.19 AMEB04.19 AMEB04.20 AMEB04.20 AMEB04.20 AMEB04.19 AMEB04.19 AMEB04.19 AMEB04.19

				1		
19	Evaluate the performance of refrigeration cycle?	Remember	CO 5	AMEB04.20		
20	Draw the PV and TS diagrams of dual combustion cycle?	Understand	CO 5	AMEB04.20		
Part - B (Long Answer Questions)						
1	Define compression ratio. What is the range for (a) SI engines	Understand	CO 5	AMEB04.20		
	(b)the CI engine? What factors limit the compression ratio in					
	each type of engine?					
2	What is an air standard cycle? What are the limitations of	Understand	CO 5	AMEB04.20		
	airstandard cycle? State the assumptions to be taken for its					
	analysis					
3	Obtain an expression for the air standard efficiency on a volume	Understand	CO 5	AMEB04.20		
	basis of an engine working on the Otto cycle. And represent the					
	processes on p-V and T-S diagrams.					
4	State the characteristic of air cycles? And what is the use of	Understand	CO 5	AMEB04.19		
	airstandard cycle analysis	0				
5	Define air standard efficiency of an Otto cycle and show that the	Understand	CO 5	AMEB04.19		
	efficiency of Otto cycle is lower than that of Carnot cycle.	Chacistana		11112201119		
6	Derive an expression for mean effective pressure of the Otto	Understand	CO 5	AMEB04.20		
	cycle?	Gilderstand	003	7 HVIEDO 1.20		
7	Derive an expression for air standard efficiency of diesel cycle	Understand	CO 5	AMEB04.20		
8	Derive an expression for air standard efficiency of dual cycle	Understand	CO 5	AMEB04.19		
9	What is the difference between Otto and Diesel cycle? Show	Understand	CO 5	AMEB04.19		
9	that the efficiency of Diesel cycle is always lower than the	Understand	CO 3	AMEDU4.19		
	efficiency of the Otto cycle for the same compression ratio.					
10		Understand	CO 5	AMEB04.20		
10	Show by graphs how the efficiency of Diesel cycle varies with	Understand	003	AMEBU4.20		
11	compression ratio and cutoff ratio.	II. 1	CO 5	AMED04 20		
11	Explain the dual combustion cycle? Why the cycle is also	Understand	CO 5	AMEB04.20		
	calledlimited pressure cycle? Represent on p-V and T-S					
10	diagrams.	XX 1 . 1	GO 5	43 (ED 0 4 20		
12	What are the processes involved in Otto cycle. Explain	Understand	CO 5	AMEB04.20		
- 10	theirstandard efficiency of Otto cycle.	** 1		13 (550 0 4 20		
13	Compare the Otto and Diesel cycles for same constant	Understand	CO 5	AMEB04.20		
	maximumpressure and same heat input.		~~~			
14	Compare the thermal efficiency of Otto and dual and diesel	Understand	CO 5	AMEB04.20		
	cycleson the basis of same compression ratio and same heat					
	input?					
15	In an Otto cycle, the pressure at the beginning of the	Understand	CO 5	AMEB04.19		
	compressionis 1 bar and pressure at the end of compression is 15					
	bar. Calculate the pressure ratio and the air standard efficiency of					
	engine.					
16	Determine the air standard efficiency of the diesel engine having	Understand	CO 5	AMEB04.20		
	a cylinder with a bore of 250 mm and a stroke of 375mm and					
	aclearance volume of 1500 cc. with fuel cutoff occurring at 5%					
	of the stroke.					
17	Describe the components of vapour compression system with	Understand	CO 5	AMEB04.20		
	thehelp of P-V and T-S diagram.					
18	Explain the following (i)Wet Compression (ii)Dry compression	Understand	CO 5	AMEB04.20		
	(iii)sub cooling (iv)superheating					
19	Derive cop of Bell-Coleman cycle with the help of	Understand	CO 5	AMEB04.20		
	processesrepresenting on p-V and T-S diagram?					
20	Derive the expression for air standard efficiency of Brayton	Understand	CO 5	AMEB04.20		
<u> </u>	cycle.			<u> </u>		
	Part – C (Problem Solving and Critical	Thinking)				
	An air refrigeration open system operating between 1 M Pa and	Understand	CO 5	AMEB04.19		
1	100 k Pa is required to produce a cooling effect of 2000 kJ/min.					
	Temperature of the air leaving the cold chamber is -5° C and at					
	leaving the cooler is 30°C. Neglect losses and clearance in the					
	compressor and expander.					
	Determine :					
	i. Mass of air circulated per min.					
<u> </u>	<u> </u>			L		

	" 0 1 1 1 1 1			
	ii. Compressor work, expander work, and cyclework			
	iii. COP and power in kW required	** 1	GO #	13.55504.40
2	An engine working on Otto cycle has a volume of 0.45m ³	Understand	CO 5	AMEB04.18
	pressure 1bar and temperature 30°C at the beginning of the			
	compression stroke. At the end of the compression stroke the			
	pressure is 11bar. 210kJ of heat is added at constant volume.			
	Determine efficiencyand mean effective pressure.			
3	An engine with 200mm cylinder diameter and 300mm stroke	Understand	CO 5	AMEB04.19
	working on theoretical diesel cycle. The initial pressure and			
	temperatureofairusedare1barand27°C.Thecutofis8%ofthestroke.			
	Determine air standard efficiency, mean effective pressure and			
	power of the engine if the working cycles per minute are 300?			
	Assume the compression ratio is 15 and the working fluid is air.			
4	DeterminetheCompressionratio,ifefficiencyofanOttocycleis	Understand	CO 5	AMEB04.18
	$\int 60\%$ and $\qquad \qquad \qquad =$			
	1.5? Aninventor claims that a new heat cycle will develop 0.4 kw for			
	aheatadditionof32.5kJ/min.Thetemperatureofheatsourceis1990			
	K and that of sink is 850K. Is his claim possible?			
5	A perfect gas undergoes a cycle which consists of following	Understand	CO 5	AMEB04.19
	processes.			
	i) Heat rejection at constant pressure			
	ii) Adiabatic compression from 1bar and 270C to 4 bar			
	iii) heat addition at constant volume to a final pressure of 16bar			
	iv)adiabaticexpansion to 1bar.			
	Calculate work done per kg of gas and efficiency of the cycle.			
	Take $Cp = 0.92$ and $Cv = 0.7$.			
6	The stroke and cylinder diameter of Compression Ignition	Understand	CO 5	AMEB04.20
	engine are 250mm and 150mm respectively. If the clearance			
	volume is 0.0004m3 and fuel injection takes place at constant			
	pressure for 5% of the stroke. Determine the efficiency of the			
	engine. Assumethe engine working on Diesel cycle?			
7	An engine of 250mm bore and 375mm stroke works on Otto	Understand	CO 5	AMEB04.20
	cycle. The clearance volume is 0.00263 m ³ . The initial pressure			
	and temperature are 1bar and 50° C. The maximum pressure is			
	limited to 25 bars. Find the air standard efficiency and the			
	meaneffectivepressure of the cycle? Assume ideal conditions?			
8	28tonnes of ice from and at 0°C is produced per day in an	Understand	CO 5	AMEB04.19
	Ammonia refrigerator. The temperature range in the compressor			
	is from 25°C to - 15°C. The vapor is dry and saturated at the			
	end of the compression and expansion valve is used. Assuming			
	the C.O. Pof 62% of the theoretical. Calculate power required to			
	drive the compressor?			
9	A Bell-Coleman refrigerator operates between pressure limits of	Understand	CO 5	AMEB04.20
	1bar and 8bar. Air is drawn from the cold chamber at 9°C,			
	compressed and then it is cooled to 29°C before entering the			
	expansion cylinder. Expansion and compression follow the law			
	pV ^{1.35} =C. Calculate theoretical C.O.P of the system. Take y of			
	airis 1.4.			
10	The swept volume of a Diesel engine working on Dual cycle is	Understand	CO 5	AMEB04.20
	0.0053m ³ and clearance volume is 0.00035m ³ . The maximum			
	pressure is 65bar. Fuel injection ends at 5% of stroke. The			
	temperature and pressure of the start of the compression are			
	80°Cand 0.9bar. Determine air standard efficiency of cycle?			
	Take y of air is 1.4.			
	. •			