LECTURE NOTES
ON

THEORY OF COMPUTATION

P Anjaiah
Assistant Professor

Ms. B Ramyasree
Assistant Professor

Ms. E Umashankari
Assistant Professor

Ms. A Jayanthi
Assistant Professor

2 0 0 0

] s
< T
o
f’.’o o
¥ ror W

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500 043

Page | 1



Syllabus:

UNIT I
Fundamentals: Alphabet, strings, language, operations; Introduction to finite automata: The
central concepts of automata theory, deterministic finite automata, nondeterministic finite
automata, an application of finite automata, finite automata with epsilon transitions.
UNIT 1l
Regular sets, regular expressions, identity rules, constructing finite automata for a given
regular expressions, conversion of finite automata to regular expressions, pumping lemma
of regular sets, closure properties of regular sets (proofs not required), regular grammars-
right linear and left linear grammars, equivalence between regular linear grammar and
finite automata, inter conversion.
UNIT Il
Context free grammars and languages: Context free grammar, derivation trees, sentential
forms, right most and leftmost derivation of strings, applications.
Ambiguity in context free grammars, minimization of context free grammars, Chomsky
normal form, Greibach normal form, pumping lemma for context free languages,
enumeration of properties of context free language (proofs omitted).

UNIT IV

Pushdown automata, definition, model, acceptance of context free language, acceptance by
final state and acceptance by empty stack and its equivalence, equivalence of context free
language and pushdown automata, inter conversion;(Proofs not required);Introduction to
deterministic context free languages and deterministic pushdown automata

UNIT V

Turing machine: Turing machine, definition, model, design of Turing machine, computable
functions, recursively enumerable languages, Church's hypothesis, counter machine, types
of Turing machines (proofs not required), linear bounded automata and context sensitive
language, Chomsky hierarchy of languages.

Text Book:

1. Introduction to Automata Theory Languages, and Computation, by J.E.Hopcroft,
R.Motwani & J.D.Ullman (3" Edition) — Pearson Education

2. Theory of Computer Science (Automata Language & Computations), by K.L.Mishra &
N. Chandrashekhar, PHI

Page | 2



UNIT-I
Fundamental

In theoretical computer science, the theory of computation is the branch that deals with
whether and how efficiently problems can be solved on a model of computation, using an
algorithm. The field is divided into three major branches: automata theory, computability theory
and computational complexity theory.
In order to perform a rigorous study of computation, computer scientists work with a
mathematical abstraction of computers called a model of computation. There are several models
in use, but the most commonly examined is the Turing machine.
Automata theory
In theoretical computer science, automata theory is the study of abstract machines (or more
appropriately, abstract 'mathematical’ machines or systems) and the computational problems that
can be solved using these machines. These abstract machines are called automata.
This automaton consists of

e states (represented in the figure by circles),

e and transitions (represented by arrows).
As the automaton sees a symbol of input, it makes a transition (or jump) to another state,
according to its transition function (which takes the current state and the recent symbol as its
inputs).
Uses of Automata: compiler design and parsing.

Start

Figure 1.2: A finite automaton modeling recognition of then

Introduction to formal proof:
Basic Symbols used :

U — Union

N- Conjunction

€ -Empty String

®—-NULL set

7- negation

¢ — compliment

= > implies

Page | 3



Additive inverse: a+(-a)=0

Multiplicative inverse: a*1/a=1

Universal set U={1,2,3,4,5}

Subset A={1,3}

A’ ={2,4,5}

Absorption law: AU(A NB)=A, AN(AUB)=A

De Morgan’s Law:
(AUB)Y’ =A’ N B’
(ANBY’=A’UB’
Double compliment
(A’) =A

ANA =0

Logic relations:
a€b=>7aUb
7(aNb)=7aU7b

Relations:

Let a and b be two sets a relation R contains aXb.

Relations used in TOC:

Reflexive: a=a

Symmetric: aRb = > bRa

Transition: aRb, bRc = > aRc

If a given relation is reflexive, symmentric and transitive then the relation is called equivalence
relation.

Deductive proof: Consists of sequence of statements whose truth lead us from some initial
statement called the hypothesis or the give statement to a conclusion statement.

The theorem that is proved when we go from a hypothesis H to a conclusion
C' is the statement “if H then C.” We say that C is deduced from H. 3

Additional forms of proof:
Proof of sets

Proof by contradiction
Proof by counter example

Direct proof (AKA) Constructive proof:
If p is true then q is true
Eg: if a and b are odd numbers then product is also an odd number.
Odd number can be represented as 2n+1
a=2x+1, b=2y+1
product of a X b = (2x+1) X (2y+1)
= 2(2xy+x+y)+1 = 2z+1 (odd number)

Page | 4



Proof by contrapositive:

) The contrapositive of the statement “if H then C” is “if not C
then not H.” A statement and its contrapositive are either both true or both
false, so we can prove either to prove the other.

Theorem 1.10: RU(SNT)=(RUS)N(RUT).

Statement Justification
1. | zism BuU(SAT) Given
2. | zisin Rorxzisin SNT | (1) and definition of union
3. | zisin Ror zis in (2) and definition of intersection
both § and T
4. | xisin RUS (3) and definition of union
5. | zisin RUT (3) and definition of union
6. | zisin (RUS)N(RUT) | (4), (5), and definition
of intersection
Figure 1.5: Steps in the “if” part of Theorem 1.10
Statement - Justification
l.|zisin (RUS)N(RUT) | Given
2. |zisin RUS (1) and definition of intersection
3. | zisin RUT (1) and definition of intersection
4. | zisin Ror z is in (2), (3), and reasoning
both S and T about unions
5. | zisin Rorz isin SNT | (4) and definition of intersection
6. | zisin RU(SNT) (5) and definition of union

Figure 1.6: Steps in the “only-if” part of Theorem 1.10

To see why “if H then C” and “if not C then not H™ are logically equivalent,
first observe that there are four cases to consider:

Page | 5



1. H and C both true.
2. H true and C false.
3. C true and H false.

4. H and C both false.

Proof by Contradiction:

H and not C implies falsehood.

That is, start by assuming both the hypothesis H and the negation of the
conclusion C. Complete the proof by showing that something known to be
false follows logically from H and not C. This form of proof is called proof by
contradiction.

It often is easier to prove that a statement is not a theorem than to prove
it is a theorem. As we mentioned, if S is any statement, then the statement
“S is not a theorem” is itself a statement without parameters, and thus can

Be regarded as an observation than a theorem.

Alleged Theorem 1.13: All primes are odd. (More formally, we might say:
if integer x is a prime, then z is odd.)

DISPROOF: The integer 2 is a prime, but 2 is even. O

For any sets a,b,c if afNb = ® and c is a subset of b the prove that aNc =® Given :
aNb=® and c subset b
Assume:afc =@

Then Wx, mee ong xsc == xsh
=>aNb =® =>aNc=d(i.e., the assumption is wrong)

Page | 6



Proof by mathematical Induction:

Suppose we are given a statement S(n), about an integer n, to prove. One
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer i. Usually, 7 =0
or i = 1, but there are examples where we want to start at some higher
i, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > i, where 7 is the basis integer,
and we show that “if S(n) then S(n +1).”

e The Induction Principle: If we prove S(¢) and we prove that for all n > 1,
S(n) implies S(n + 1), then we may conclude S(n) for all n > 1.

Languages :

The languages we consider for our discussion is an abstraction of natural languages. That is,
our focus here is on formal languages that need precise and formal definitions. Programming
languages belong to this category.

Symbols :

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the atoms
of the world of languages. A symbol is any single objectsuch as 4 a0, 1,4#
begin, or do.

Alphabets :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally denoted

by Z.When more than one alphabets are considered for discussion, then

subscripts may be used (e.g. 2.2y etc) or sometimes other symbol like G may also be
introduced.

z={0,1)

== {c;t, b, r:}

E={cz, oo, &, z}
Example : Z={£ V. A, 5

Strings or Words over Alphabet :

A string or word over an alphabet Z is a finite sequence of concatenated symbols of Z .

Page | 7



Example : 0110, 11, 001 are three strings over the binary alphabet { 0,1 } .
aab, abcb, b, cc are four strings over the alphabet { a, b, ¢ }.

It is not the case that a string over some alphabet should contain all the symbols from the alpha-
bet. For example, the string cc over the alphabet { a, b, ¢ } does not contain the symbols a and b.
Hence, it is true that a string over an alphabet is also a string over any superset of that alphabet.

Length of a string :
The number of symbols in a string w is called its length, denoted by |w|.

Example : |011 =4, |11|=2,|b|=1

Convention : We will use small case letters towards the beginning of the English alphabet
to denote symbols of an alphabet and small case letters towards the end to

denote strings over an alphabet. That is,
@, 5.¢ €3 (symbols)and ¥ V- W TV Z
are strings.

Some String Operations :

Let * T @ € @gng Y = &8Bs € By pe two strings. The concatenation of x and y
denoted by xy, isthe string ~ %i%a%s " &Pifafs < By That s the concatenation of x and y
denoted by xy is the string that has a copy of x followed by a copy of y without any intervening
space between them.

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and
substrings of this string are listed below.

Prefixes: ¢, 0, 01, 011.
Suffixes: ¢, 1, 11, 011.
Substrings: ¢, 0, 1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and ¢ is a prefix (suffix or
substring) to any string.

A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x #y.

In the above example, all prefixes except 011 are proper prefixes.

Powers of Strings : For any string xand integer 720 weuse * todenotethe string
formed by sequentially concatenating n copies of x. We can also give an inductive

definition of *"asfollows:

. . _ -1
=g, ifn=0:otherwise * =zxx"

Page | 8



Example : If x =011, then *°=011011011, *'=01land x" =¢

Powers of Alphabets :

We write =* (for some integer K) to denote the set of strings of length k with symbols
from Z. In other words,

Z'={w|wisastringover Z and |w|=k}. Hence, forany alphabet, Z' denotes the set

of all strings of length zero. That is, == { e }. For the binary alphabet { 0, 1 } we have
the following.

== (e},

=l =10, 1}.

=4 ={00,01,10, 11}.

=¥ = {000, 001, 010, 011, 100, 101, 110, 111}

The set of all strings over an alphabet Z is denoted by =" Thatis,
== o u o Z U

=5k

Theset = contains all the strings that can be generated by iteratively concatenating sym-
bols from Z any number of times.

Example : If Z={a, b} then Z = {¢ a b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...}.

Please note thatif E=F then Z thatis ¢ = (&} 1t may look odd that one can proceed
from the empty set to a non-empty set by iterated concatenation. But there is a reason for this
and we accept this convention

The set of all nonempty strings overan alphabet Z s denoted by % That i,

= uF OO T e

=k
Note that ' is infinite. It contains no infinite strings but strings of arbitrary lengths.

Reversal :

W = ity

R = -
For any string “xthe reversal of the string is ¥ = %%=17"%&H%

An inductive definition of reversal can be given as follows:

Page | 9



Languages :
A language over an alphabet is a set of strings over that alphabet. Therefore, a

language L is any subset of =’ Thatis, any L < ¥ is a language.

Example :

1. Fisthe empty language.
2. Z'isalanguage forany Z.

3. {e}isalanguage forany Z. Note that, ¢z} . Because the language F does not
contain any string but {e} contains one string of length zero.

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's.

5. The set of all strings over {a, b, c} that starts with a.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to
denote languages.

Set operations on languages : Since languages are set of strings we can apply set operations to
languages. Here are some simple examples (though there is nothing new in it).

Union : A string
xELl'._JLE i.':f.'-'fEl.lor.J'EEJ‘_.2

Example: {0, 11,011,011} “{1,01,110}={0, 11,01, 011, 111}
Intersection : A string, x€ L1 NLo iff x € Liand x € Lo.

Example : {0, 11, 01,011} {1, 01, 110} ={01}

Complement : Usually, Z'js the universe that a complement is tgken with respect to.

Thus for a language L, the complement is L(bar) = { *EZ | k&l
Example :Let L = { x| |x| is even }. Then its complement is the language { xeZ | x| is
odd }.

Similarly we can define other usual set operations on languages like relative com-
plement, symmetric difference, etc.

Reversal of a language :

B _ R
The reversal of a language L, denoted as Z°, is defined as: & = 0 | we il

Example :

1. LetL={0,11,01,011} Then Z* ={0,11, 10,110}

Page | 10



2. LetL={ I"0"|nisaninteger}. Then Z*= { "0*|nis an integer }.

Language concatenation : The concatenation of languages Liand L2is defined as

I‘liﬂz{xyl XELland yELB}

Example : { a, ab { b, ba} = { ab, aba, abb, abba }.

Note that ,
1 hl= L4y, general.
2. LI =+

3. Ligy =L = {g

Iterated concatenation of languages : Since we can concatenate two languages, we also repeat
this to concatenate any number of languages. Or we can concatenate a language with itself any

number of times. The I genotes the concatenation of
L with itself n times. This is defined formally as follows:

Ly ={e}
=Lt

Example : Let L = { a, ab }. Then according to the definition, we have

Iy = {el
L =1{e} = L = {a, ab}
Ly = LI ={a, abj{a, ab} = {aa, aab, aba, abab)

L =L L ={a abl{aa, aad, aba, abab}

= {aaa, aach, aaba, aabab, abaa, abaab, ababa, ababak)

and so on.

Kleene's Star operation : The Kleene star operation on a language L, denoted as 7" isdefined
as follows :

L:(UnionninN) L

U U WP

= { x| x is the concatenation of zero or more strings from L }

Page | 11



Thus Z is the set of all strings derivable by any number of concatenations of stringsin
L. Itis also useful to define

& - L4 , 1.e., all strings derivable by one or more concatenations of strings in L. Thatis

& (UnionninNandn>0) I
oo -

Example: Let L ={a, ab }. Then we have,
=0 o B u--

= {e} “w{a, ab} ‘+{aa, aab, aba, abab} ‘...
F_poupoup u-
= {a, ab} ' {aa, aab, aba, abab} ‘...

Note: ¢isin L, for every language L, including .

The previously introduced definition of Z'is an instance of Kleene star.

(Generates) (Recognizes)
Grammar » Language < Automata

Automata: A algorithm or program that automatically recognizes if a particular string belongs to

the language or not, by checking the grammar of the string.

An automata is an abstract computing device (or machine). There are different varities of such
abstract machines (also called models of computation) which can be defined mathematically.

Every Automaton fulfills the three basic requirements.

Every automaton consists of some essential features as in real computers. It has a mech-
anism for reading input. The input is assumed to be a sequence of symbols over a given
alphabet and is placed on an input tape(or written on an input file). The simpler automata
can only read the input one symbol at a time from left to right but not change. Powerful
versions can both read (from left to right or right to left)and change the input.

Page | 12



e The automaton can produce output of some form. If the output in response to an input
string is binary (say, accept or reject), then it is called an accepter. If it produces an out-
put sequence in response to an input sequence, then it is called a transducer(or automaton
with output).

- The automaton may have a temporary storage, consisting of an unlimited number of
cells, each capable of holding a symbol from an alphabet ( whcih may be different from
the input alphabet). The automaton can both read and change the contents of the storage
cells in the temporary storage. The accusing capability of this storage varies depending
on the type of the storage.

«  The most important feature of the automaton is its control unit, which can be in any
one of a finite number of interval states at any point. It can change state in some de-
fined manner determined by a transition function.

Input tape
|
|
F 9
|
Finite T
Contral — Ermparary
Storage
l Output e

Figure 1: The figure above shows a diagrammatic representation of a generic automa-
tion.

Operation of the automation is defined as follows.
At any point of time the automaton is in some integral state and is reading a particular symbol

from the input tape by using the mechanism for reading input. In the next time step the automa-
ton then moves to some other integral (or remain in the same state) as defined by the transition
function. The transition function is based on the current state, input symbol read, and the content
of the temporary storage. At the same time the content of the storage may be changed and the
input read may be modifed. The automation may also produce some output during this transition.
The internal state, input and the content of storage at any point defines the configuration of the
automaton at that point. The transition from one configuration to the next ( as defined by the
transition function) is called a move. Finite state machine or Finite Automation is the simplest
type of abstract machine we consider. Any system that is at any point of time in one of a finite
number of interval state and moves among these states in a defined manner in response to some
input, can be modeled by a finite automaton. It doesnot have any temporary storage and hence a
restricted model of computation.

Page | 13



Finite Automata

Automata (singular : automation) are a particularly simple, but useful, model of compu-
tation. They were initially proposed as a simple model for the behavior of neurons.

States, Transitions and Finite-State Transition System :

Let us first give some intuitive idea about a state of a system and state transitions before
describing finite automata.

Informally, a state of a system is an instantaneous description of that system which gives all
relevant information necessary to determine how the system can evolve from that point on.

Transitions are changes of states that can occur spontaneously or in response to inputs to the
states. Though transitions usually take time, we assume that state transitions are instantaneous
(which is an abstraction).

Some examples of state transition systems are: digital systems, vending machines, etc. A system

containing only a finite number of states and transitions among them is called
a finite-state transition system.

Finite-state transition systems can be modeled abstractly by a mathematical model called
finite automation

Deterministic Finite (-state) Automata

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an in-
put string -- one symbol at a time -- and then, after the input has been completely read, decides
whether to accept or reject the input. As the symbols are read from the tape, the automaton can
change its state, to reflect how it reacts to what it has seen so far. A machine for which a deter-
ministic code can be formulated, and if there is only one unique way to formulate the code, then
the machine is called deterministic finite automata.

Thus, a DFA conceptually consists of 3 parts:

1. A tape to hold the input string. The tape is divided into a finite number of cells. Each
cell holds a symbol from
2. A tape head for reading symbols from the tape
3. A control , which itself consists of 3 things:
> finite number of states that the machine is allowed to be in (zero or more states
are designated as accept or final states),
> acurrent state, initially set to a start state,

Page | 14



> a state transition function for changing the current state.

An automaton processes a string on the tape by repeating the following actions until the tape
head has traversed the entire string:

1. The tape head reads the current tape cell and sends the symbol s found there tothe
control. Then the tape head moves to the nextcell.

2. he control takes s and the current state and consults the state transition functionto get
the next state, which becomes the new current state.

Once the entire string has been processed, the state in which the automation enters is examined.
If it is an accept state , the input string is accepted ; otherwise, the string is rejected . Summariz-

ing all the above we can formulate the following formal definition:

Deterministic Finite State Automaton : A Deterministic Finite State Automaton (DFA)is
a5-tuple: ¥ =(2. 2.3, g, 7]

o Qs afinite set of states.
. Zis a finite set of input symbols or alphabet

5:sz_égismeﬁmmsmm”ﬁmmﬁmnﬁmakm(whmhmtmd)IMUMde, & a
function that tells which state to move to in response to an input, i.e., if M isin

state g and sees input a, it moves to state I(a.a)

«  90E s the start state.
# < Bijs the set of accept or final states.

Acceptance of Strings :

A DFA accepts astring ¥~ %27 % f there is a sequence of states 90- 91 - 9xinQ
such that

1. “9ojs the start state.
2. 5{gi’gi+l) = I:I'i+1'|:or all 0 <i <« e
3. E?x = F

Language Accepted or Recognized by a DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and

is denoted by L(M) .e. L(M)= {WE 2 | M accepts W]'The notion of

acceptance can also be made more precise by extending the transition function &

Page | 15



Extended transition function :
Extend Jrgxz—=( (which is function on symbols) to a function on strings, i.e. .
J . 0xE =0

Thatis, © (2"} is the state the automation reaches when it starts from the state q andfinish
processing the string w. Formally, we can give an inductive definition as follows:

The language of the DFA M is the set of strings that can take the start state to one of the
accepting states i.e.

L(M)={ wEZ' | M accepts w}

- WEE'| g [90=W)EF}

Example 1 :

M={0.%,5 ¢, F)

G ={gu.4)

90 is the start state

F={a}

5(g0.0)=qy  d(an0)=a

5[@'0=1)=G'1 5[@'1,1)=ﬁ?1

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the
DFA is any string over { 0, 1} having at least one 1

We can describe the same DFA by transition table or state transition diagram as follow- ing:

Transition Table :

Page | 16



He oy

It is easy to comprehend the transition diagram.

Page | 17



Explanation : We cannot reach find state 1w/0 or in the i/p string. There can be any no.

of O's at the beginning. ( The self-loop at %o on label 0 indicates it ). Similarlythere
can be any no. of 0's & 1's in any order at the end of thestring.

Transition table :

It is basically a tabular representation of the transition function that takes two arguments (a state
and a symbol) and returns a value (the “next state™).

Rows correspond to states,

Columns correspond to input symbols,
Entries correspond to next states

The start state is marked with an arrow

The accept states are marked with a star (*).

—dy | gy &
# g

(State) Transition diagram :

A state transition diagram or simply a transition diagram is a directed graph which can be
constructed as follows:

1.
2.

w

For each state in Q there is a node.

There is a directed edge from node q to node p labeleda iff (g a)=p . (If there
are several input symbols that cause a transition, the edge is labeled by the list of these
symbols.)

There is an arrow with no source into the start state.

Accepting states are indicated by double circle.

Page | 18



5.
6. Here is an informal description how a DFA operates. An input to a DFA can be any

s.tring weZ  Puta pointer to the start state q. Read the input string w from left
to right, one symbol at a time, moving the pointer according to the transition

function, & . If the next symbol of w is a and the pointer is on state p, move the

pointer to I, ‘3:'. When the end of the input string w is encountered, the pointeris on
some state, r. The string is said to be accepted by the DFA if re & and
rejected if # 2 F . Note that there is no formal mechanism for moving the pointer.

7. Alanguage ZLZ s said to be regular if L = L(M) for some DFA M.

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain
recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :
i) isaRE
¢
i) isaRE
=
iii) ,aisRE.
Yaes

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If
"1and "2are REs over, then so are

|) .?"1+.?"2

i) 7y

Page | 19



Closure : r is RE over only if it can be obtained from the basis elements (Primitive RES)
by a finite no of applications of the recursive step (given in 2).

Example : Let = ={0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this
expression by applying the above rules as given in the followingstep.

Steps RE Constructed
1 1
2 ¢
3 1+ &
4 1+9)
5 2
6 1
7 21
8 0
9 0+21
10 (0+21)
11 (0+21)*
12 (0+21)*

Rule Used

Rule 1(iii)

Rule 1(i)

Rule 2(i) & Results of Step 1, 2
Rule 2(iv) & Step 3
1(iii)

1(iii)

2(ii), 5, 6

(i)

2(1),7,8

2(iv), 9

2(iii), 10

2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated
with every RE). We will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can

define the language L(r) associated with (or described by) a REs as follows.

1. ?is the RE describing the empty language i.e. '?3') =&

2. €is a RE describing the language =}i.e. €)= <}.

3. ¥ @ €45 ais aRE denoting the language {a} i.e . L(a) = {a}.

4. If "1tand "2 are REs denoting language “'!) and “2) respectively, then

. + . . . +
i) 17 "2is a regular expression denoting the language 1" "2) = 1) U "2)

Page | 20



ii) 1"2is a regular expression denoting the language "1"2)=L("1) 2)

iii) 1 is a regular expression denoting the language L(rl ) B (L[ﬂ))

iv) ("1) is a regular expression denoting the language “1)) ="1)

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is
L(0*(0+1)) = L(0*) L(O+1) wevvvveeeeeniiieenn. by 4(ii)

= L(0)*L(0) u L(1)

=€ ,0,00,000,. } {0} {1

= £, 0,00,000,........ }{0,1}

= {0, 00, 000, 0000.,.......... ,1, 01, 001, 0001,............... }

Precedence Rule

Consider the RE ab + c. The language described by the RE can be thought of either
L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by RES) given
already. But these two represents two different languages lending to ambiguity. To remove
this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other
algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:
i) The star operator precedes concatenation and concatenation precedes union (+) operator.

i) It is also important to note that concatenation & union (+) operators are associative and
union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) L(c) i.e.it
should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the

language represented by the RE a(b+c) is L(a)L(b+c).

Page | 21



Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language
L(a)(L(b))**+L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* -/ L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings
over {0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even
_ 2nqdm+l
number of 0's followed by an odd number of 1'si.e, £} = {071 | 720, m20)

Note : The notation #" is used to represent the RE rr*. Similarly, r’ represents theRE
rr, 7* denotes #°r, and so on.

An arbitrary string over z = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. ¥= Z | @ nas at least one pair of consecutive
1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what
goes before is completely arbitrary. Considering these observations we can write the RES as
(0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE

(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the
substring 11 or 00.

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of
strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any no of
0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between,
and after is completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But
following two REs also represent the same language, each ensuring presence of least two 1's
somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

Page | 22



L(n={“" (01} 1@ has no pair of consecutive 1's}

Solution : Though it looks similar to ex ....... , it is harder to construct to construct. We
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This substring
may be preceded & followed by any no of 0's. So the final RE must be a repetition of strings of
the form: 00...0100....00 i.e. 0*100*. So it looks like the RE is (0*100*)*. But in this case the
strings ending in 1 or consisting of all 0's are not accounted for. Taking these observations into
consideration, the final RE is r = (0*100*)(1+ =)+0*(1+<).

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as
r = £).This is a shorter expression but represents the same language.

Regular Expression and Regular Language

Equivalence(of REs) with FA :

Recall that, language that is accepted by some FAs are known as Regular language. The two
concepts : REs and Regular language are essentially same i.e. (for) every regular language
can be developed by (there is) a RE, and for every RE there is a Regular Langauge. This fact
is rather suprising, because RE approach to describing language is fundamentally differnet
from the FA approach. But REs and FA are equivalent in their descriptive power. We can put
this fact in the focus of the following Theorem.

Theorem : A language is regular iff some RE describes it.

This Theorem has two directions, and are stated & proved below as a separate lemma

RE to FA:
REs denote regular languages :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA such
that = L(r).

Proof : To prove the lemma, we apply structured index on the expression r. First, we show how

to construct FA for the basis elements: 5’, cand for any #€Z . Then we show
how to combine these Finite Automata into Complex Automata that accept the Union,

Concatenation, Kleen Closure of the languages accepted by the original smaller automata.

Page | 23



Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are
represented by transition diagram only.

Basis :

Case (i): "~ ? Then Lir)= ? Then Lir)= ? and the following NFA N

recognizes L(r). Formally %/ = (@ 191 2. 8.4, F. ) \yhere Q={q} and
Alg,a)l=@vacs, F =u;i_§'

—HCP @ —m

g

o Case(il): »=g, L(r)={¢) , and the following NFA N accepts L(r). Formally
N=|[{g}r Er 5? g, {'g})Where 5(g,ﬂ)=$’ ‘?‘ﬂ:EE.

Since the start state is also the accept step, and there is no any transition defined, it will accept
the only string =and nothing else.

Case (iii) : r = a for some @€ Z  Then L(r) = {a}, and the following NFAN
accepts L(r).

Formally, V=({r.q}, % 9, 2.(a}) yhere 3(P-9)={a}. 3. 8)={B gy s=por bea

Page | 24



Induction :
Assume that the start of the theorem is true for REs “1and "z.Hence we can assume
that we have automata Mland M,

respectively i.e. L(dM,)=L(5)
schematically as shown below.

that accepts languages denoted by REs “1and "z,

L(My)=L(r]

and . The FAs are represented

Each has an initial state and a final state. There are four cases to consider.

Case (i) : Considerthe RE ~ "* =71 *denoting the language =11} “ L(72) we

M,

construct FA 3, from My and to Q’é@ept the language denoted by RE as follows

M; “a

AN a

Create a new (initial) start state 4" and give £-transition to the initial state of M\ and
3, This is the initial state of 3,

Create a final state 7 and give  =-transition from the two final state of My and

Mﬂ. J M3and final state of Mland M,

is the only final state of
states in .

All the state of **1and *2 are also state of 2

will be ordinary

Page | 25



All the moves of #1and #zare also moves of ~ #. [ Formal Construction]

It is easy to prove that L(M) = L(x)

LiM;) = Lln

Proof: To show that ) we must show that

— Lin) w Liny)

LM )= L{M,)

by following transition of M,

Starts at initial state ¢ and enters the start state of either M, or M,

without consuming any input. WLOG, assume that, it enters the start state of 1. From this

follwoing the transition i.e.

point onward it has to follow only the transition of M1 10 enter the final state of M) | because
this is the only way to enter the final state of M by following the e- transition.(Which is the last
transition & no input is taken at hte transition). Hence the whole input w is considered while

M,

traversing from the start state of M\ 10 the final state of #1. Therefore #1must accept V.

w e LM WEL[ME)_

Say, or

WLOG, say ¥ €% (M)

Therefore when 1 process the string w, it starts at the initial state and enters the final state
when w consumed totally, by following its transition. Then M also accepts w, by

starting at state 9" and taking = -transition enters the start state of M -follows the moves

of M, to enter the final state of ~ #1 consuming input w thus takes  =-transition to 7
Hence proved

Case(ii) : Consider the RE ™3 ~ ¥ denoting the language V2023 We construct FA

Mitrom Mg M. Lin

2to accept Jas follows :

Page | 26



Create a new start state ¢ and a new final state

1. Add £- transition from
o 4'to the start state of #1
o 9'to S
o final state of #1to the start state of ~ #1
2. Allthe states of Hiare also the states of M3 M3 1as 2 more states than that of

M, namely ¢ and J .
3. All the moves of *1are also included in %,
" M.
By the transition of type (b), ¥can accept <.
By the transition of type (a), M5 can enters the initial state of #1wlo any input and then

follow all kinds moves of ~ #1to enter the final state of #1and then following < -transition
can enter 7 . Hence if any we = s accepted the by M then w is also accepted by My By
transition of type (b), strings accepted by M, can be repeated by any no of times &

thus accepted by M Hence M: accepts =and any string accepted by M,

concatenated) any no of times. Hence L(My)=(L(M)) = (L ':’":'1) =r

repeated (i.e.

Case(iv) : Let 5=("1). Then the FA H1is also the FA for /1), since the use of parentheses
does not change the language denoted by the expression

Non-Deterministic Finite Automata

Nondeterminism is an important abstraction in computer science. Importance of nondeterminism
is found in the design of algorithms. For examples, there are many problems with efficient
nondeterministic solutions but no known efficient deterministic solutions. ( Travelling salesman,
Hamiltonean cycle, clique, etc). Behaviour of a process is in a distributed system is also a good
example of nondeterministic situation. Because

Page | 27



the behaviour of a process might depend on some messages from other processes that might
arrive at arbitrary times with arbitrary contents.
It is easy to construct and comprehend an NFA than DFA for a given regular language. The
concept of NFA can also be used in proving many theorems and results. Hence, it plays an
important role in this subject.
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is
defined in the same way as the DFA but with the following two exceptions:

[0 multiple next state.

£- transitions.

Multiple Next State :

In contrast to a DFA, the next state is not necessarily uniquely determined by the current
state and input symbol in case of an NFA. (Recall that, in a DFA there is exactly one
start state and exactly one transition out of every state for each symbol in £).

This means that - in a state q and with input symbol a - there could be one, more than

one or zero next state to go, i.e. the value of 34,2 is a subset of Q. Thus

8(g,a) = {91 %2--9x} \yhich means that any one of 91+ #2:"""+%xcould be the next
state.

The zero next state case is a special one giving Slg,a)=¢ , Which means that there is
no next state on input symbol when the automata is in state g. In such a case, we may
think that the automata "hangs" and the input will be rejected.

£- transitions :

In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot move.
However, the state of the automata can be changed - that is can go to zero, one or more states.

This is written formally as 9(a.€)~{a a4 implying that the next state could by any

one of 91- 922" "»9x\w/o consuming the next input symbol.

Acceptance :

Informally, an NFA is said to accept its input @ if it is possible to start in some start state and
process &, moving according to the transition rules and making choices along the way
whenever the next state is not uniquely defined, such that when & is completely processed (i.e.
end of @ is reached), the automata is in an accept state. There may be several possible paths
through the automation in response to an input & since the start state is not determined and there
are choices along the way because of multiple next states. Some of these paths may lead to
accpet states while others may not. The

Page | 28



automation is said to accept « if at least one computation path on input & starting from at least
one start state leads to an accept state- otherwise, the automation rejects input

@ Alternatively, we can say that, @ is accepted iff there exists a path with label & from some
start state to some accept state. Since there is no mechanism for determining which state to start
in or which of the possible next moves to take (including the @ - transitions) in response to an
input symbol we can think that the automation is having some "guessing” power to chose the
correct one in case the input is accepted

Example 1 : Consider the language L={ @ € {0, 1}* | The 3rd symbol from the right is
1}. The following four-state automation accepts L.

The m/c is not deterministic since there are two transitions from state 1on input 1 and no
transition (zero transition) from 9+on both 0 & 1.

For any string % whose 3rd symbol from the right is a 1, there exists a sequence of legal

transitions leading from the start state g, to the accept state 4+, But for anystring
& where 3rd symbol from the right is O, there is no possible sequence of legal tranisitons

leading from %1and 9+. Hence m/c accepts L. How does it accept any string
@ eL?

Formal definition of NFA :

M=102,4q, F
Formally, an NFA is a quituple [Q’ > & G- j where Q, &, 90, and F bear
the same meaning as for a DFA, but & the transition function is redefined as follows:

5. Ox(Zue})— P(E)
where P(Q) is the power set of Q i.e. 2f

The Langauge of an NFA :

From the discussion of the acceptance by an NFA, we can give the formal definition of a
language accepted by an NFA as follows :

it ¥ =(2:2.9.90.7)is an NFA. then t langauge accepted by N is writtten as L(N) is

given by L) ={@| 8(a.0)nF = 9]

That is, L(N) is the set of all strings w in £"such that 012, @) contains at least one
accepting state.

Page | 29



Removing e-transition:

£ - transitions do not increase the power of an NFA . That is, any - NFA (NFAwith

= transition), we can always construct an equivalent NFA without £ -transitions. The
equivalent NFA must keep track where the £ NFA goes at every step during computation.
This can be done by adding extra transitions for removal of every £ - transitions from the
€- NFA as follows.

If we removed the - transition © Z*S) ~Zfrom the - NFA , then we need to moves from

state p to all the state ¥ on input symbol g € 2. which are reachable from state q (in the
=- NFA ) on same input symbol g. This will allow the modified NFA to move from state p to all
states on some input symbols which were possible in case of =-NFA on the same input symbol.
This process is stated formally in the following theories.

Theorem if L is accepted by an =- NFA N, then there is some equivalent

NFA NV \yithout €transitions accepting the same language L
Proof:

N=(0.%8.4,F)

Let be the given €~ /F4 with

We constructM=(Q’E’E’gﬂ’F)

Where, th’ﬂ)=[p|p55[g’a)] forall ¥ and ¢ €Zand
= [?U{‘?u} if SI:L?.;,,E)HF = g otherwise.

Other elements of N' and N

We can show that L(N)=L(N) i.e. N"and N are equivalent.

We need to prove that Vwe =

we L(N) iff we L(N)

Ywe X &g w)e F A b (g, w)eF
We will show something more, that is,

Twe z E*[qu,w:l = S[gu,wjl

Page | 30



We will show something more, that is, |W|

Basis : |W|=1,then x=aex
But 9 (@.@) = 8(20.@) by definition of .

: . . £
Induction hypothesis Let the statement hold for all W= Z" with ] < :

940, w) = Elz?”’m) By definition of extension of &"
=8 (5 (4.%) ‘I) By inductions hypothesis.
= 5(8(q,.%).a

( (20.7) ) Assuming that
= E[R,aj
=& (p.a) 5y, %) = R, where R C 0
paR
= U &(p.a) By definition of &* Since
peR
=$‘[gn,m) R=§[qu,xj
= S[g ’W% _
To complete the proof we consider the case

B Di.e. w ==then

Page | 31



8'(20-5) ~{@) ang by the construction of ¥ » 90 € # \wherever 3(0:€) constrains a state in F.

o~

If F*=F (and thus 3(0-5) is not in F ), then %W with =1 ¥ |eads to an accepting state in N' iff it lead t

an accepting state in N ( by the construction of N' and N).

Also, if w=< | thus w is accepted by N"iff w is accepted by N (iff

i &= Fl{g,} (and, thus in M we load 5(q.€) inF),thus  =is accepted by both N and N .

Let 121 1f w cannot lead to %in N , then < £(#)
state). So there is no harm in making 40an accept state in N'.

Ex: Consider the following NFA with = -transition.

01

- Lv
4’{i{%1biﬁr®
\J

Transition Diagram &

0 1 £

—dqg {40} (0. 41) (4.
&1 () ()
F g {@) \42)

Transition diagram for &' for the equivalent NFA without

. (Since can add

- Moves

QDEF)

£ transitions to get an accept

Page | 32



0 1

Fal {20.9:) {G.90.9,)
1 12) {a,)
Foa {4.) {a;)

Since & (90:€) =% & ~NF4 the start state 0 must be final state in the equivalent NFA .

since 9 (40-€) =91 3ng 8(42:0) =¢aang ¥(92:1) =2y add moves 2 90-0) = 2and in
5 (g,.1) = g, the equivalent NFA . Other moves are also constructed accordingly.

£ -closures:

The concept used in the above construction can be made more formal by defining the

=-closure for a state (or a set of states). The idea of =-closure is that, when moving from a state
p to a state q (or from a set of states Sj to a set of states Sj) an input < Z | we need to take
account of all =-moves that could be made after the transition.

Formally, for a given state g,

& closures: (gj = {p |p can be reached from gby Zero or tore € -moves}

Similarly, for a given set & €&

€ -closures:
(R) = {p = Q|p can be reached from any ¢ € Eby following zero or more £ -moves}

So, in the construction of equivalent NFA N' without = -transition from any NFA with

€moves. the first rule can now be writtenas ~ 8'(g.a) = -closure(8(g.2))

Page | 33



Equivalence of NFA and DFA

It is worth noting that a DFA is a special type of NFA and hence the class of languages
accepted by DFA s is a subset of the class of languages accepted by NFA s.

Surprisingly, these two classes are in fact equal. NFA s appeared to have more power than
DFA s because of generality enjoyed in terms of =-transition and multiple next states. But
they are no more powerful than DFA s in terms of the languages they accept.

Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions isdefined

from 2 to { \whereas in case of an NFA it is defined from O*Z to 2% yng
b A DEAZ Ridedhatruct an equivalent NFA H-(C.2.8q.F)
follows.
(el Va0

5((p}.a)={8(z.a)}. ¢

i F(2a)=q. 4 FlP)a)={q}

All other elements of N are as in D.

if ¥ =4 € L(D) then there is a sequence of states Fo-71-92"""-@usych that

(g aj=q g, X

Then it is‘clear from tﬁe above construction of N that there is a sequence of states (in N) such that

CHRCARTANERES Ea[{ i—l}’ai)={gi}and {q"}EFand hence we L{N).

Similarly we can show the converse.

Hence , L(N)=L(D)

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate the
behaviour of the NFA . For this, the DFA have to keep track of all the states where the NFA
could be in at every step during processing a given input string.

Page | 34



There are 2" possible subsets of states for any NFA with n states. Every subset corresponds to
one of the possibilities that the equivalent DFA must keep track of. Thus, the equivalent DFA

will have 2" states.

The formal constructions of an equivalent DFA for any NFA is given below. We first consider an
NFA without =transitions and then we incorporate the affects of
€ transitions later.

Formal construction of an equivalent DFA for a given NFA without = transitions.

Given an N=(Q.2.8.a.F) without - moves, we construct an equivalent DFA

— (D D D b
o (Q 2,874y, F )asfollowsi.e.

gF =pP(Q) @7 ={s|5cg).

'?1:?={ﬁi'u}=
F?={¢" e 0"ld"NF = |
inDFAD)

(i.e. every subset of Q which as an element in F is considered as a final stat

EDIZ{‘5'1=‘32=”'=‘3£} =‘I) = 3(ga)Ud(g.a)lU - US(g.a)

D_ [N
forall #=Zand ¢ _{‘i'hfi'z: ,fé';-,}

where g e, 1218k

520g%a)= U & e
That is, [ ) 424" (2.2)

To show that this construction works we need to show that L(D)=L(N) i.e.
Twe 2 Sﬂ[qfwje FPifr S[qu,w:]ﬂﬁ' = g

or TWET 57 ({g,}. w)NF = iff (g, W) F = ¢

We will prove the following which is a stranger statement thus required.

Page | 35



Twe T, A% [{‘?u} ,w) =§‘[qu,w:|

Proof : We will show by inductions on ]

Basis If |W|:0, thenw= €

I = =
So, 5°({40)-€) = {20} EEQU’E)’bydefinition.

Inductions hypothesis : Assume inductively that the statement holds € Z of length less
than or equal to n.

Inductive step
Let P17 41 then w = xawith |1l =7 andasZ

Now,
52 [{Q’D},W) =47 [{gn} ,m)
=57 ( 5T [{gu} ,x) ,a), by inductive extension of &°
I:q,:,, x) ,cz) by induction hypothestis

- U E[qi,azj, by definition of &7

= 8(g,,7a) by definition of 5 (extension of &)
= 5@, w)

Now, given any NFA with € -transition, we can first construct an equivalent NFA without
£-transition and then use the above construction process to construct an equivalent
DFA , thus, proving the equivalence of NFA s and DFA s..

It is also possible to construct an equivalent DFA directly from any given NFA with -
transition by integrating the concept of -closure in the above construction.

Recall that, for any * < €

€- closure :
[Sj = {q = Q|q canbe reached from any pe Sby following zero of mote € —transit ons}

Page | 36



In the equivalent DFA , at every step, we need to modify thetransition functions 5% 1o
keep track of all the states where the NFA can go on €-transitions. This is done by replacing

yil n
Etg’“)by £ -closure (Eig’a)), i.e. we now compute (g ’a)at every step as
follows:

57 (qﬂ,cxj = [q = Q‘qe e —closure (E(qﬂ,a):l] .

Besides this the initial state of the DFA D has to be modified to keep track of all the states
that can be reached from the initial state of NFA on zero or more -transitions. This can be

done by changing the initial state %'to -closure % ). €

It is clear that, at every step in the processing of an input string by the DFA D , it enters a state
that corresponds to the subset of states that the NFA N could be in at that particular point. This
has been proved in the constructions of an equivalent NFA for any

£-NFA

If the number of states in the NFA is n, then there are <" states in the DFA . That is, each
state in the DFA is a subset of state of the NFA..

But, it is important to note that most of these 2" states are inaccessible from the start state and
hence can be removed from the DFA without changing the accepted language. Thus, in fact, the

number of states in the equivalent DFA would be much less than 2°.

Example : Consider the NFA given below.

0 1

—dq g0 q1) ¢
F g (n ¢ | {4}
T ¢ ¢ | {a)

Since there are 3 states in the NFA

Page | 37



There will be  2° =8 states (representing all possible subset of states) in the equivalent DFA .
The transition table of the DFA constructed by using the subset constructions process is
produced here.

0 L The start state of the DFAis - closures (%0) ={4u)
¢ ¢ ¢
— g, {@.q.92)| ¢ Thefinal states are all those subsets that contains 7 (since Fla
heEF

{Q’l,gg} {ﬂu}in the NFA)

{ .:;3} g 4,1 Letus compute oneentry,

57 [{ &g U}) == —closure ['5[% U:I)

== —clasure [{ IE QI})

={9y.01. @2}

Btgrasllie-9-4) 4)
St Similarly, all other transitions can be computed

0 1
_}{"?n} {gn:fi&:fi'z} $

{Q’u,ﬁﬁ,q;} {qu,ql,qg} {gﬂ}

Corresponding Transition fig. for DFA.Note that states

(o) {a) :{ngg} {40.9,) and {g.4,} are not accessible and hence can be removed. This gives
us the following simplified DFA with only 3 states.

Page | 38



It is interesting to note that we can avoid encountering all those inaccessible or
unnecessary states in the equivalent DFA by performing the following two steps
inductively.

1. If 9ois the start state of the NFA, then make - closure ( 7o) the start state of the
equivalent DFA . This is definitely the only accessible state.

2. If we have already computed a set & of states which are accessible. Then

575 : :
W € L. compute ( ( ’aj:' because these set of states will also be accessible.

Following these steps in the above example, we get the transition table given below

Page | 39



UNIT-H

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain
recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :
i) ?isaRE
i) €isaRE
iii)¥ @€5 aisRE.
These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If "1and "2 are REs over, then so
arei) 77
i) A7

iii) n
iv

) ()

Closure : r is RE over only if it can be obtained from the basis elements (Primitive RES) by
a finite no of applications of the recursive step (given in 2).

Example : Let Z={0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this
expression by applying the above rules as given in the following step.

Steps RE Constructed Rule Used
1 1 Rule 1(iii)
2 ¢ Rule 1(i)
. _
3 Rule 2(i) & Results of Step 1, 2

Page | 40



4 (1+ ';?5') Rule 2(iv) & Step 3
5 2 1(iii)

6 1 1(iii)

7 21 2(ii), 5,

8 0 1(ii)

9 0+21 2(3i), 7, 8

10 (0+21) 2(iv), 9

11 (0+21) 2(iii), 10

12 (0+21) 2(3ii), 4,

Language described by REs : Each describes a language (or a language is associated with
every RE). We will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can
define the language L(r) associated with (or described by) a REs as follows.

1. ?is the RE describing the empty language i.e. '35') =9

2. €is a RE describing the language €} i.e. €) = £}.

3. ¥ @ €5 aisaRE denoting the language {a} i.e . L(a) = {a}.

4.1f "1and "2 are REs denoting language "'1) and “2) respectively, then

i) "1 "2 is a regular expression denoting the language " " 72) = 1) [172)

i) 71"2is a regular expression denoting the language "1"2)=L("1) "2)

iii) n is a regular expression denoting the language L (rf) B (‘E[ﬂ)y

iv)  "1)is a regular expression denoting the language “'1)) ="1)

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is
L(0*(0+1)) = L(0*) L(0+1) .cevvrrrererernne, by 4(ii)

= L(0)*L(0) [J L(2)

= € ,0,00,000,.......} {0} w {1}

=<,0,00,000.,........ }{0,1}

= {0, 00, 000, 0000,........... ,1, 01, 001, 0001,............... }

Page | 41



Precedence Rule

Page | 42



Consider the RE ab + c¢. The language described by the RE can be thought of either
L(a)L(b+c) or L(c) as provided by the rules (of languages described by REs)
given already. But these two represents two different languages lending to ambiguity.
To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other
algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:

iy The star operator precedes concatenation and concatenation precedes union (+) operator.

i) It is also important to note that concatenation & union (+) operators are associative and
union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) *~L(c) i.e.

it should be grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example,
the language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language ‘- L(b)
Example : The RE (ab)*+b represents the language (L(a)L(b))* '~ L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over
{0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even

number of O's followed by an odd number of 1'si.e. L(r) = (0™1™ | 220, m 20}

Note : The notation " is used to represent the RE rr*. Similarly, rzrepresents the RE rr, #°
denotes 7 r, and so on.

An arbitrary string over == {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. ®€Z | @ has at least one pair of
consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what
goes before is completely arbitrary. Considering these observations we can write the REs as

Page | 43



(0+1)*11(0+1)*,

Example : Considering the above example it becomes clean that the RE

Page | 44



(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the
substring 11 or 00.

Page | 45



Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of
strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE and any no of
0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between,
and after is completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But
following two REs also represent the same language, each ensuring presence of least two 1's
somewhere in the string

i) 0%¥10*1(0+1)*
ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L(r)= @c{0} |@ has no pair of consecutive 1's}

Solution : Though it looks similar to ex ....... , it is harder to construct to construct. We observer
that, whenever a 1 occurs, it must be immediately followed by a 0. This substring may be
preceded & followed by any no of 0's. So the final RE must be a repetition of strings of the
form: 00...0100....00 i.e. 0*100*. So it looks like the RE is (0*100*)*. But in this case the
strings ending in 1 or consisting of all O's are not accounted for. Taking these observations into
consideration, the final RE is r = (0*100*)(1+ £)+0*(1+€).

Alternative Solution :
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as

r = <).This is a shorter expression but represents the same language.

Regular Expression:
FA to regular expressions:
FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA
M, then there is a RE r such that L = L(r).

Proof : We need to construct a RE r such that 27 =1# | we LD} gineo misa DFA, it
has a finite no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [ Note :
if the n states of M were denoted by some other symbols, we can always rename those to indicate
asl, 2, 3,..,n]. The required RE is constructed inductively.

Page | 46



e

Notations : ' is a RE denoting the language which is the set of all strings w such that w isthe

(1£4, j<n)

label of a path from state i to state j in M, and that path has no intermediate state

Page | 47



whose number is greater then k. (1 & j (begining and end pts) are not considered to be
"intermediate” so i and /or j can be

Page | 48



greater than k)

Ly

p
We now construct inductively, for all i, j £Q starting at k = 0 and finally reaching k =
n.

(o
Basis :k= 0, "7 i.e. the paths must not have any intermediate state ( since all states are
numbered 1 or above). There are only two possible paths meeting the above condition:

1. Adirect transition from state i to statej.
’; :'_:'m} : . . . . :
o .=a if then is a transition from state i to state j on symbol the single
symhol ag, +a, +-- +a,

e, ty, o,y

0 =
symt;@ls

if there are multiple transitions from state i to state j on

0 =f if there is no transition at all from state i to state j.
2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0
=(i.e. the RE denoting the string =) and all self loops. By simply adding 1 to
various cases above we get the

corresponding RES i.e.

0

o  =e+aifthereisaself loop on symbol a in state i.

ri!:u;. e & tayt--ta,
0 =+ if there are self loops in state i as multiple
symBoléz: - @

o
0 = if there is no self loop on state .

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate state whose
)
number is greater than k. The corresponding Re for the label of the path is ‘¥

There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states are
lessthan

k. So, the label of the path from state i to state j is tha language described by the

(-1

RET

2. The path goes through the state k at least once. The path may go from i to j and k may
appear more than once. We can break the into pieces as shown in the figure7.

Page | 49



'k1]

OO0

A path from i to j that goes through k exactly once

(rk»"‘" ’).

0 oo X 00

A path from i to j that goes through k more than once

Figure 7

1. The first part from the state i to the state k which is thefirst recurence. In this path, all
(k1)
intermediate states are less than k and it starts at iand ends at k. So the RE ik
denotes the language of the label of path.

2. The last part from the last occurence of the state k in the path to state j. In this path also,
(-1}
no intermediate state is numbered greater than k. Hence the RE &  denoting the
language of the label of the path.

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop
which may be taken zero times, once or any no of times. And all states between two
consecutive k's are numbered less thank.

3’
Hence the label of the path of the part is denoted by the RE (r’-‘ ) .The label of the path from

state i tostate
J is the concatenation of these 3 parts which is

1 I =1
A (50)

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the
following RE

-1 -1 -1 1
""j_;m :’"g!:k }+”"i% }(’"ﬂ }) "ic?c }
Ly

i

We can construct for all i, j{1,2,..., n} in increasing order of k starting with the basis k = 0 upto k
3] S

= n since ‘i depends only on expressions with a small superscript (and hence will be

Page | 50



available). WLOG, assume that state 1 is the start state and J1> J2: "+ Jn gre the m final states
where ji {1,2,..,n}, and Il =i =m
. According to the convention used, the language of the automatacan be denoted by the

Page | 51



RE

I Il I
r1§13'+ n 23'+-- : +;~1§;

(1) .
Since V1 is the set of all strings that starts at start state 1 and finishes at final state “ifollowing
the transition of the FA with any value of the intermediate state (1, 2, ... , n) and hence

accepted by theautomata.

Regular Grammar:

A grammar G=(NZPS)

forms:

is right-linear if each production has one of the following three

e A—CB,

e A7,
AT E

Where A, BE ¥ (with A = B allowed) and ¢ €2 . A grammar G is left-linear if each production
has once of the following three forms.

A—*Bc, —Cc,A =

A right or left-linear grammar is called a regular grammar.
Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two
lemmas to prove the above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

M=(0.% 8 ¢ F)

Proof : Let be a DFA that

accepts L. Let Q={%0- @1+ %) gq
S ey s an)

G = (N Z P S)

We construct the right-linear grammar by letting

N=Q, S =% ang P=lA—ecB | (A c)=Blu{d—c | (4 c)e B}

[ Note: If Be F then B —« P]

Let ¥~ %% S LMD £or M to accept w, there must be a sequence of states 9o 91» - s

Page | 52



such that

Page | 53



5[qu=ﬂl) T
5[9’1:‘12:‘ =gy

5[Q'x_1=ﬂs;) =y
and 4 € F

By construction, the grammar G will have one production for each of the above transitions.
Therefore, we have the corresponding derivation.

S =g Sag S ad, g S Sy A, Sy oy, = W
Yo 7 thth 7 a7 dydy T Ty Ty

Hence w £L(g).

Conversely, if ¥ = %92 € L(T) then the derivation of w in G must have the form as given

above. But, then the construction of G from M impliesthat

I may o) = 9% where 7« ¥ | completing the proof.

G = (NP S

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular

language. Proof: To prove it, we construct a FA M from G to accept the same language.

M=(C.Z. 8, @. F)is constructed as follows:
0= Vulg) ( 97 is a special sumbol not in N)

Forany 4 € ¥and e €Zand 4 is defined as

Sla.a)={r|q Spay Sidde P
g 2(@:a)={pla —ape Pyuiq,) g—aeP
We now show that this construction works.

Let ¥ =42 € LIT) Then there is a derivation of w in G of the form

Page | 54



S:G;"ﬂl'?l :G;’ﬂlﬂz'?z:@} " ':Gbﬂlﬂz Ty gy ':= W)

By contradiction of M, there must be a sequence of transitions

5[4’0:‘11) =dh
5[‘5’1=‘3’2) = iy

5[‘5".&.—1=‘15;) =dy
implying that ¥ = %%2--& € LU0 o \y is accepted by M.

Conversely, if ¥ =% %js accepted by M, then because %7 is the only accepting state of M,
the transitions causing w to be accepted by M will be of the form given above. These transitions

W L[Gj

corresponds to a derivationof w in the grammar G. Hence , completing the proof of

the lemma.

Given any left-linear grammar G with production of the form A—cB|e|e , We can construct

from it a right- linear grammar G by replacing every production of G of the form 4 — c5 with
4 — Be

= = & 4
It is easy to prove that L(G) = (L(GJ) .Sifge s right-linear, L(G)

Te(e)

i.e. 209 pecause regular languages are closed under reversal.

is regular. But then so

Putting the two lemmas and the discussions in the above paragraph together we get the proof of

the theorem- A language L is regular iff it has a regular grammar
Example : Consider the grammar
G S—=04|0

A= 15

It is easy to see that G generates the language denoted by the regular
expression (01)*0. The construction of lemma 2 for this grammar produces
the follwoing FA.

This FA accepts exactly

(01)*1. Decisions
Algorithms for CFL

In this section, we examine some questions about CFLs we can answer. A CFL may be

Page | 55



represented using a CFG or PDA. But an algorithm that uses one representation can be made to
work for the others, since we can construct one from the other.

Page | 56



Testing Emptiness :

Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the

construction described in the context of elimination of useless symbols, whether the start symbol
is useless. If so, then £(5) = ¢ otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether x < £ ?

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the
PDA can grow its stack indefinitely on =input, and the process may never terminate, even if
the PDA isdeterministic.

G =(NZPS)

So, we assume that a CFG is given such that L =

L(G). Let us first present a simple but inefficient algorithm.

Convert G toG - (WLELP ’S)in CNF generating L&) e . If the input s&m§ , then we need
t L]
0 RESTS

7

determine whether angggf@ejasily be done using the technique given in the context of
elimination of

€ -production. If%,™< then iff *= L[G). Consider a derivation under a grammar in
CNF. At every step, a production in CNF in used, and hence it adds exactly one terminal
symbol to the sentential form. Hence, if the length of the input string x is n, then it takes exactly

n steps to derive x ( provided x is in L(&) ).

Let the maximum number of productions for any nonterminal in &'is K. So at every step in
derivation, there are atmost k choices. We may try out all these choices, systematically., to

derive the string x in &, Since there are atmost &"lj.e. X" choices. This algorithms is of
exponential time complexity. We now present an efficient (polynomial time) membership
algorithm.

Page | 57



Pumping Lemma:

Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain
languages which are non regular i.e. cannot be recognized by any FA

Consider the language L =[ﬂ 2 D]

In order to accept is language, we find that, an automaton seems to need to remember when
passing the center point between a's and b's how many a's it has seen so far. Because it would
have to compare that with the number of b's to either accept (when the two numbers are same)
or reject (when they are not same) the input string.

But the number of a's is not limited and may be much larger than the number of states since the
string may be arbitrarily long. So, the amount of information the automaton need to remember is
unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states).
The fact that FA s have finite memory imposes some limitations on the structure of the
languages recognized. Inductively, we can say that a language is regular only if in processing
any string in this language, the information that has to

be remembered at any point is strictly limited. The argument given above toshow that is non
regular is informal. We now present a formal method for showing that certain languages suchas
a"&" are non regular

a bt

Properties of CFL’s Closure
properties of CFL:

We consider some important closure properties of CFLs.

Theorem : If Lland ch!are CFLs then so is LUZ,

= [E‘JE,EE,@,SE)

Proof : Let

O =1 M2, B, 5 ; i
1= (M2 4 1)and be CFGs generating. Without loss of
A B

NN, = A o . .
we can assume that 21182 =& | o 5 generality, is a nonterminal not in ““1or ¥z, We construct
& =( M. 5. 8.5) F_ G, thegrammar

from “land ~2

, Where

N = M UN, U{Sz}

Page | 58

I =E{U1E§U{33 Jf’*g'f1|‘5f:4}



Z =EIUE2

Page | 59



We now show that = () = L(GIUL{G,) = LU L,

Thus proving the theorem.

we [ Sl:\“wI . . . . . . . .
Let 1, Then "~ & . All productions applied in their derivation aréilso in . Hence i.e.

wellG) g5 —w
£ F

Similarly, if W€ L2, WEL(G)

then Thus
LUL cLiG),
R ‘ 5 1 oy
=W =
Conversely, lef' = L(G) .Then " &  and the first step in this derivation must be eitir or

I ! I o S=r S =w
3?3‘" 2. Considering the former case, wehave ~ % &

L]

o=
Nland ik

Since are disjoint, the derivatiot  must use the productions of A only ( which are

alsoin
=W
&

%) Since 1€ M wel(G)

is the start symbol of G, Hence, giving

we L(G,)

Using similar reasoning, in the latter case, we get . Thus

L[G3) - IqUﬁz_ So, 5[“33) - LILJL;’ as claimed

Theorem : If Lland ch!are CFLs, then so is L LE.

G = [M,El,ﬁ,ﬁ.’l)and G = (3,5, 5,5,) be the CFGs generatin®  and 2

Again, we assume that M ong M ore FESPECtivelysidisjoint, and A, is a nonterminal not

G =(M.5.8.8) G

from ~land

Proof : Let

G, in Nlor . We construct the CFG

, where

Page | 60



M =*hGLJ3%[J{EE}
¥, =%, Uz,
B =RUBUS =55}

We claim that £(55) = L{G) £(Gy] = L,

RIECE R
To prove it, we first assume fifatiand”S %2 Then & and ~ % . We can derive the string

&

1 * *
By e, = N, = xy
e It I

Xy in as shown below.

since S and B S ¥ Hence Dnfa S L(G3)

For the converse, Ie?E L {63) . Then the derivation of V\%W will be of the form

1 -
S = S, =W
a4 E e the first step in the derivation must see théramé 51z, Again, sincd’and &

are disjoint*%rﬁjj”‘rl and %2 € M some string x will be generated from using producti&s in
E ( whigh e
also it Y & sachtime > "

Thus Sl:q} 5 :cafy

Hence and
This means that w can be divided into two parts X, y such that xs Lland re ’I?. Thus

we Lly This completes the proof
Theorem : If L is a CFL, thenso is Z .

Proof : Let? = (N2 F.5) be the CFG generating L. Let us construct the CFG
G = (B E A )

where L{T) = [L(G)) =L

Page | 61



We now prove that , Which prove the theorem.

' can generate=in one step by using the producrﬁ)n_}E sinceP cF , 5" can generate any string
we i WOT WM W weL 1gixn

at

Page | 62



inL.
Let for any n >1 we can write where
for . W can be generated by using following
steps.

* L)

x-1 *
S?SS"'S?WISS"'S? WIMLES = S22 WAWl « Wy =W

First (n-1)-steps uses the production —* SS producing the sentential form of n numbers

of S's. The nonterminal S in the i-th position then generates % using production P¥{in
which are also in )

It is also easy to see that G can generate the empty string, any string in L and any string
we I'for n>1 and none other.

-
L]

HameL[Gj=[L[GD =/
Theorem : CFLs are not closed under intersection

R FE I AT
Proof : Weprove it by giving a counter example. Consider the language I ={a¥e |i, j 2.0}
.The following CFG generates L1 and hence a CFL

5— XC
X —akb|e
C—cCle

The nonterminal X generates strings of the form @8, 12004 C generates strings of th fofin

CM

These are the only types of strings generated by X and C. Hence, S generates 4,

ﬁayaquqa

Using similar reasoning, it can be shown that the following grammar L nd

hence it is also a CFL.

S— AX
A—ad|e
X —biz|e

- LR e
But, Lind, ['ﬂ beiln2 ﬂ] and is already shown to be not context-
free. Hence proof.

Page | 63



Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. Since, CFL's

Page | 64



are also closed under union, the language LUL , Where L and L2are CFL's must be CFL. But
by DeMorgan's law

LUL - LN,

This contradicts the already proved fact that CFL's are not closed under
intersection. But it can be shown that the CFL's are closed under

intersection with a regular set.

Theorem : If Lis a CFL and R is a regular language, then LM RjsaCFL.

P= (QF’E’F’EF’QF’ZU’FF)

Proof : Let be a PDA for L and let £ = (©0.Z. 30,90, 7p) be a DFA

forR.

We construct a PDA M from P and D as follows
M =(0, %00 2. . 3. (0,90 20. Fy X )

Y,

where is defined as

5M((p’g)’a’c}gr1tains ((r.5). ) iff

5y(a.a)=s ., 8, (p.a.X)

contains [r, &)

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both
Pand D
accepts. That means, we want to show that

L(M)=L{P)L(D)=LNR

We apply induction on n, the number of moves, to show that

((9.20) )2 ((7.9).6.7)
iff

(qF’W’ZU)?[;"E’}))and ﬁ[qﬂ’w) g

Basic Case is n=0. Hence ¥ ~ 9# & = 90: ¥ = Zo an =<, For this case it is trivially true

Page | 65



Inductive hypothesis : Assume that the statement is true for n -1.

Page | 66



Inductive Step : Let w = xa and

11

Lot ((19) 7 20) 3 (.00 @i () 2)

»-1

By inductive hypothesis, (gf’x’zu)'?[p €4) and SD (g0, %) =g

From the definition of I and considering the n-th move of the PDA M above, we

d,(p"e.@)=(».€.¥)haveand % (4°a) =4

(9. 70.2)> (P ) (2ey)

Hence anddp (gp.w) = ¢

If P€Frand 257 then 795%™ Foand we got that if M accepts w, then both P and D
accepts it. We can show that converse, in a similar way. Hence LnRis a CFL ( since it is
accepted by a PDA M) This property is useful in showing that certain languages are not context-
free.

Example : Consider the language

L =[WE{£I,E?,C‘}' | w contains equal number of a's &'s and c's]

Intersecting L with the regular set R=abec e get

L I

ImE=Lrmabr
={a"s"c" | n 2 0}
Which is already known to be not context-free. Hence L is not context-free
Theorem : CFL's are closed under reversal. Thatisif L is a CFL,istﬁEn SO
G =(N.Z,P5) G'=(NZ FP.5)
E’JQC{f F ggrﬁg%‘g e P] generates L. We constructa CFG where
Lig) =1

. We now show that , thus proving the theorem.

We need to prove that
Jﬂzicr 14:$cx

The proof is by induction on n, the number of steps taken by the derivation. We assume, for
simplicity (and of course without loss of generality), that G and hence &' are in CNF.
The basis is n=1 in which case it is trivial. Becausemust be either @< Z or BC with

1 1
A= A=
B.CEN Hence “F %iff “F

X

A=
Assume that it is true for (n-1)-steps. Let ¢ . Then the first step must apply a
A— BC rule of the form and it gives

L]

Ajﬁﬂ*:»ﬁy o B:>ﬁ* = pF

where © and %
Ad—=C8e F

Page | 67



By constructing of
G', Hence

Page | 68



1 n-1
ﬁ?w?fﬁ=f
The converse case is exactly similar
Substitution :
Yac X letfebe a language (over any alphabet). This defines a function S, called substitution,on
= Wit
denoted as -forall a€Z
This definition of substitution can be extended further to apply strings and langauge as well.

W=y, i EE I~
If "2 "2 where ™ ,is a string in &

s(w) = s{@a, - a,) = s(@) s(a;)~s(a,) then

Similarly, for any language L,
S[L) ={s|[w) | we L}
The following theorem shows that CFLs are closed under substitution.

Thereom : Let ZSZ isa CFL, and s is asubstitutign on g eX such
that 5@} = Lais 4 CFL for all , thus
s(L) isa CFL

- (N.Z,P.5)

Proof : Let L = L(G) for a CFG © and for everg, 2 = * (%) for some

Ga=|[Na=Ea’Pa’Saj Na

Page | 69



. Without loss of generality, assume that the sets of nonterminalsN and ‘s are

Now, we construct a gramriar , generating s(L), from G and e 's as follows:
G =(N.Z,P.5)
U W=NulJ Ny,
FEE
0O 2= 1JZ
a!LéJE %
o £
. consisty @,
angdE
1. and
2. The production of P but with each terminal a in the right hand side of a production
replaced by
everywhere.
We now want to prove that this construction works i.e. "= L&) g wes(L),
£zl L . . . =
If Part : LeT s{ )then according to the definition there is some Jsrtrlr‘ftg‘,fx2 % €L and
neS(a) =12, ,n W AE A, [=5[ﬂ1)3[‘32)"'5[%j)
for : such that
A=
7
We will show that
§= 80,5, -+ S,
From the construction of G, we find that, there is a derivation g corresponding to the
string a
7% % 6inceT contains all productions of G but every ai replaced with  in the RHS of
any

production).

S = Oy . ‘
Every ® is the start symbol of? and all productions of? are also included fri .
Hence

Ed

5= 5,5, Sy,

W

? J'flgr.zg )
*®

=Xy Rk TW

LR

o]

Therefore:WlE L)
we L{G)
(Only-if Part) Let . Then there must be a derivative as follows :
S?Sﬂlgﬂg S
(using the production of G incléde in as modified by (step 2) of the
Sa!- i=lL2F m x!-ELa]_
N

%.

Page | 70



construction of .) Each ( ) can only generate a string , since

each 'sand N are disjoin. Therefore, we get

Page | 71



*

o=y kg e
&

) ey Uy

*

=

™a "'Sa . SEI:MTI
i 2 ®since

ﬂz o
= xlxjﬂ% - i, !
F since

? My X,
=W
The string ™~ *1%2 """ % s formed by substituting strings % for each % < and MA@

Theorem : CFL's are closed under homomorphism
Proof : Let £ <=2 be a CFL, and h is ahomomorphi&n oni.e #:Z— A for some alphabets®.

consider the following substitution S:Replace each symbol « € Z by the language consisting of
h(a),i.e.

sla)= {;ﬂ (a )} the only string for all %= Z  Then, it is clear that, h(L) = s(L). Hence, CFL's being
closed under substitution must also be closed under homomorphism.

Grammar

A grammar is a mechanism used for describing languages. This is one of the most simple but
yet powerful mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words
constructed from these symbols, and a set of rules using which we can group the words to
construct meaningful sentences. The grammar for English tells us what are the words in it and
the rules to construct sentences. It also tells us whether a particular sentence is well-formed (as
per the grammar) or not. But even if one follows the rules of the english grammar it may lead to
some sentences which are not meaningful at all, because of impreciseness and ambiguities
involved in the language. In english grammar we use many other higher level constructs like
noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can be defined as

< sentence —* < noun-phrase > < predicate >

meaning that "a sentence can be constructed using a 'noun-phrase’ followed by a
predicate”. Some more rules are as follows:
< noun-phrase —* < article >< noun>

< predicate > <

Page | 72



verb > with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>;

Page | 73



and eats, runs, swims, walks, are associated with <verb>, then we can construct the sentence- a
cow runs, the boy eats, an pen walks- using the above rules. Even though all sentences are
well-formed, the last one is not meaningful. We observe that we start with the higher level

construct <sentence> and then reduce it to <noun-phrase>,

<article>, <noun>, <verb> successively, eventually leading to a group of words
associated with these constructs.

These concepts are generalized in formal language leading to formal grammars. The word
‘formal’ here refers to the fact that the specified rules for the language are explicitly stated in
terms of what strings or symbols can occur. There can be no ambiguity in it.

Formal definitions of a Grammar
A grammar G is defined as a quadruple.

G=(NZP5)
N is a non-empty finite set of non-terminals or variables,

Z is a non-empty finite set of terminal symbols such that NrzZ=¢

s , is a special non-terminal (or variable) called the start symbol, and
PC(NUE) X (WUZ) is a finite set of production rules.
The binary relation defined by the set of production rules isdengted by , ie. &~ Biff

(a. £)e P. In other words, P is a finite set of producti&rgu/lgs of the form ,  Where

ge(NUZ) 4

Production rules:

The production rules specify how the grammar transforms one string to another. Gi\%ﬂ/ astring ,
we say that the production rule &~ Bis applicable to this string, since it is poss%l?tguse the

rulé® to rewrite the(in %% ) to £ obtaining a new string 2°¥ . We say that 2% derives %6 and
is denoted as

Aoy = Agy

Successive strin%s are dervied by applying the productions rules of the grammar in any
arbitrary order. A particular rule can be used if it is applicable, and it can be applied as
many times as described.

We write *
o= g

o o= 4

if the strin% can be derived from the string in

! il

Page | 74



zero or more steps; if can be derived from in one
or more steps.

Page | 75



By applying the production rules in arbitrary order, any given grammar can generate many
strings of terminal symbols starting with the special start symbol, S, of the grammar. The set of
all such terminal strings is called the language generated (or defined) by the grammar.

G=(NZ P5)

Formaly, for a given grammar the language generated by Gis

L(3) ={wez' | Sz“;w}

*

Thatis € L3 i 5=

we L) S=g=2ag=a=-=a=w

, we must have for sonffe® 1 | , denoted as a
NS00, 8, & S W
derivation sequence of w, The strings are denoted as sentential forms

of the derivation.

If

G=(NZ P35

Example : Consider the grammar , where N={S}, ={a, b} and P is the set

of the following productionrules
{ —ab, —+aSb}
Some terminal strings generated by this grammar together with their derivation is given below.
S =ab
S = aSh=aabb
S = aSh= aaShb=" aaabbb

It is easy to prove that the language generated by this grammar is
L) ={a' |i 21]
By using the first production, it generates the string ab ( for i =1).

To generate any other string, it needs to start with the production —*aSb and then the non-
terminal S in the RHS can be replaced either by ab (in which we get the string aabb) or the same
production — aSh can be used one or more times. Every time it adds an 'a' to the left and a 'b' to

the right of S, thus giving the sentential form @'8%, 121 \when the non-terminal is replaced by
ab (which is then only possibility for generating a terminal string) we get a terminal string of

the form €% 121

There is no general rule for finding a grammar for a given language. For many languages

Page | 76



we can devise grammars and there are many languages for which we cannot find any
grammar.

Page | 77



— H 1 n+l 5
Example: Find a grammar for the language L [a B _1] .

It is possible to find a grammar for L by modifying the previous grammar since we need to

o2l . : i :
generate an e_xtrabaff fﬁe’eﬁd’ of the string . We can do this by adding a production —* Bb
ab iz]1 L :
where the non-terminal B generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

G=[N’E’P’Sjwhere, N={S,B},P={ —*Bb, —+ab, +aBb}

Parse Trees:

There is a tree representation for derivations that has proved extremely usetul.
This tree shows us clearly how the symbols of a terminal string are grouped
into substrings, each of which belongs to the language of one of the variables of
the grammar. But perhaps more importantly, the tree, known as a “parse tree”

Construction of a Parse tree:

Let us fix on a grammar G = (V, T, P, S). The parse trees for GG are trees with
the following conditions:

1. Each interior node is labeled by a variable in V.

2. Each leaf is labeled by either a variable, a terminal, or e. However, if the
leaf is labeled ¢, then it must be the only child of its parent.

3. If an interior node is labeled A, and its children are labeled
X1, X9y, Xk

respectively. from the left, then A - X, X, --- X is a production in P.
Note that the only time one of the X’s can be ¢ is if that is the label of
the only child, and A — € is a production of G.

Example 5.10: Figure 5.5 shows a parse tree for the palindrome grammar of
Fig. 5.1. The production used at the root is P — 00, and at the middle child
of the root it is P — 1P1. Note that at the bottom is a use of the production
P — ¢. That use, where the node labeled by the head has one child, labeled e,
is the only time that a node labeled € can appear in a parse tree. 0O

Page | 78



Figure 5.5: A parse tree showing the derivation I = 0110

Yield of a Parse tree:

If we look at the leaves of any parse tree and concatenate them from the left, we
get a string, called the yield of the tree, which is always a string that is derived
from the root variable. The fact that the yield is derived from the root will be
proved shortly. Of special importance are those parse trees such that:

1. The yield is a terminal string. That is, all leaves are labeled either with
a terminal or with €.

2. The root is labeled by the start symbol.

Page | 79



Ambiguity in languages and grammars: o i )

When a grammar fails to provide unique structures, it is sometimes possible
to redesign the grammar to make the structure unique for each string in the
language. Unfortunately, sometimes we cannot do so. That is, there are some
CFL’s that are “inherently ambiguous”; every grammar for the language puts

more than one structure on some strings in the language.
grammar lets us generate expressions with any sequence ot * and + operators,

and the productions E -+ FE + E | E * E allow us to generate these expressions
in any order we choose.

Example 5.25: For instance, consider the sentential form F + E x E. It has
two derivations from E:

lL.L. EsFEF+E=>FE+ExE
2. Es>ExE=FE+ExFE

Notice that in derivation (1), the second E is replaced by E x E, while in

derivation (2), the first E is replaced by E + E. Figure 5.17 shows the two
parse trees, which we should note are distinct trees.

E/’T\E SN
AN N

E * E

(a) (b)

Figure 5.17: Two parse trees with the same yield
we say a CFG G = (V,T,P,S) is ambiguous if there is at least one string w
in T* for which we can find two different parse trees, each with root labeled S
and yield w. If each string has at most one parse tree in the grammar, then the
grammar is unambiguous.

"o

Page | 80



UNIT-IV

Push down automata:

Regular language can be charaterized as the language accepted by finite automata. Similarly,
we can characterize the context-free language as the langauge accepted by a class of
machines called "Pushdown Automata” (PDA). A pushdown automation is an extension of
the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages accepted
or characterized by them is small). This is due to the "finite memory" (number of states) and "no
external memory" involved with them. A PDA is simply an NFA augmented with an "external
stack memory". The addition of a stack provides the PDA with a last-in, first-out memory
management cpapability. This "Stack" or "pushdown store” can be used to record a potentially
unbounded information. It is due to this memory management capability with the help of the
stack that a PDA can overcome the memory limitations that prevents a FA to accept many

1N
interesting languages like {ﬂ & n ED]. Although, a PDA can store an unbounded amount of
information on the stack, its access to the information on the stack is limited. It can push an
element onto the top of the stack and pop off an element from the top of the stack. To read down
into the stack the top elements must be popped off and are lost. Due to this limited access to the
information on the stack, a PDA still has some limitations and cannot accept some other
interesting languages.

input tape

dl a‘l e || ooooooooococoooooooooooooooooonos dn

Read-only head

finite
- 0
control ; X,
LS00
P pop X_n
Xz
X
Z

As shown in figure, a PDA has three components: an input tape with read only head, a finite
control and a pushdown store.

Page | 81



The input head is read-only and may only move from left to right, one symbol (or cell) at a
time. In each step, the PDA pops the top symbol off the stack; based on this symbol, the input
symbol it is currently reading, and

Page | 82



its present state, it can push a sequence of symbols onto the stack, move its read-only head
one cell (or symbol) to the right, and enter a new state, as defined by the transition rules of
the PDA.

PDA are nondeterministic, by default. That is, - transitions are also allowed in which the PDA
can pop and push, and change state without reading the next input symbol or moving its read-
only head. Besides this, there may be multiple options for possible next moves.

Formal Definitions : Formally, a PDA M isa 7- [Q’E’ L3, 40 Zo, F)

tuple M = where,

. “is afinite set of states,
. Zisafinite set of input symbols (input alphabets),

. Tisafinite set of stack symbols (stack alphabets),
o &is atransition function from 2% [E - {E}) < to subsetof €T

. %S5 the start state

. s
. DF , Is the initial stack symbol, and

Fcg

. , Is the final or accept states.

Explanation of the transition function, 3

If, forang € Z | (g.a.z)= {'[pb 8).(pa. B e f‘?f‘@)} . This means intitutively that
whenever the PDA is in state g reading input symbol a and z on top of the stack, it can
nondeterministically for any i,

1=i =k

Qo to state ¥
e pop z off the stack

e push A onto the stack (where Ael ) (The usual convention is that if

A 8= X4, Xa then will be at the top and = at the bottom.)
o move read head right one cell past the current symbol a.

If a ==, then 3g.e.2)={(n. B).(p2. &) (2. B)) means intitutively that whenver the
PDA is in state g with z on the top of the stack regardless of the current input symbol, it can

nondeterministically for any i, 1 2 =&

e Qo tostate ¥
e pop z off thestack

e push A onto the stack, and
« leave its read-only head where itis.

Page | 83



State transition diagram : A PDA can also be depicted by a state transition diagram. The
labels on the arcs indicate both the input and the stack operation. The transition

5(p.a.2)={(g.9)} for ¢€=WHE) P.e€Q.2€T o1y we s depicted by

a, z'a
/_\‘
(P ) L q )

Final states are indicated by double circles and the start state is indicated by an arrow to it from
nowhere.

Configuration or Instantaneous Description (ID) :

A configuration or an instantaneous description (ID) of PDA at any moment during its

computation is an element of @xz =l describing the current state, the portion of the input
remaining to be read (i.e. under and to the right of the read head), and the current stack
contents. Only these three elements can affect the computation from that point on and, hence,
are parts of the ID.

The start or inital configuartion (or ID) on igput is (90-@.20) Tha is, the PDA always
starts in its start state, Zowith its read head pointing to the leftmost input symbol and the stack

containing onlythe start/initial stack symbol, “o.

The "next move relation™ one figure describes how the PDA can move from one configuration
to another in one step.

Formally,

(g.a@.2a) |, (7@ 6a)
« (2.8)€d(q.a.2)

'a' may be = or an input symbol.
Let I, J, Kbe IDs of a PDA. We define we vxﬁriti!dl K, if ID | can become Kafter exactly i

J".Ii" [ ]
moves. Thédelations?and define as follows

= ar
| K

H4l . HK 3 1
| =& Jif such that - #K and K— # J

| = wJif 3% 2%uchthat I &J.

Page | 84



That is,"™ *is the reflexive, transitive closureéf . We saythat I~ #J if the ID J follows from the
ID | in zero or moremoves.

( Note : subscript M can be dropped when the particular PDA M is understood. )

Language accepted by a PDA M

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state :

0.%.T, 8,4y 2y, F)

Consider the PDA M= . Informally, the PDA M is said to accept4tsinput

by
final state if it enters any final state in zero or more moves after reading its entire input, starting
in the start configuration on input @ .

Formally, we define L(M), the language accepted by final state to be

{@ < E*|[qﬂ=m=zﬂ) I—;-.i'(p=e’ ﬁ)forsome F’EFand He 1_"}

2. Acceptance by empty stack (or Null stack) : The PDA M accepts its input < by empty stack if
starting in the start configuration on input &, it ever empties the stack w/o pushing anything
back on after reading the entire input. Formally, we define N(M), the language accepted by
empty stack, tobe

{@e E*| (¢, @2y I—;r'ip’eﬁ)forsome pEQ}
Note that the set of final states, F is irrelevant in this case and we usually let the F to be the
empty seti.e. F=
Q.
. e 20
Example 1 : Here is a PDA that accepts the language [a | ] .

M=(Q,%.T,8,4.2.F)

~{a. a4 .and @ consists of the following transitions

Page | 85



1.8(g.a.2) ={ (g.a2))
2. 8lgy,a.a) = (g, 2a))
3. &gy, b.a) ={(g5.€))

4 Blgy.b.a) ={(g:.€)
5. 8g,.5.2) = (g,.2))

The PDA can also be described by the adjacent transition diagram.

a, z/az

a, a‘aa b ale

Informally, whenever the PDA M sees an input a in the start state 91 with the start symbol zon

the top of the stack it pushes a onto thestack and changes state to 7z . (to remember that it has
¢, seen the first 'a’). On state if it sees anymore a, it simply pushes it onto the stack. Note that

when M is on state %2, the symbol onthe

top of the stack can only be a. On state 9zif it sees the first b with a on the top of the stack, then
it needs to start comparison of numbers of a's and b's, since all the a's at the begining of the

input have already been pushed onto the stack. It start this process by popping off the a from the
top of the stack and enters in state g3 (to remember that the comparison process has begun). On

state 93, it expects only b's in the input (if it sees any more a in the input thus the input will not
be in the proper form of anbn). Hence there is no more on input a when it is in state 5. On state

93it pops off an a from the top of the stack for every b in the input. When it sees the last b on
state g3 (i.e. when the input is exaushted), then the last a from the stack will be popped off and
the start symbol z is exposed. This is the only possible case when the input (i.e. on =-input) the

PDA M will move to state +which is an accept state.
we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

b b
(q.aabb,z) | (g0 ’“Z)(usingtransitionl)

(. 2b,aaz]

Page | 86



(using transition 2)

Page | 87



.E:' . -y
- (g5.8,a2) (using transition 3)

- (#:.5.2) (using transition 4h; (94.€.2) (using transition 5 §4is final state. Hence , accept.
So the string aabb is rightly accepted by M

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

iy Let the input be aabab.

(gy.aabab,z) | (g, abab,az)
 (a,.bab, aaz)

— (g5, ab,az]
No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of
parentheses [] by empty stack.
The PDA M is given below.

M=({a}{L].(z0.0.0.2.9) where @ is defined as

5(g.L.2) ={({a.[2)}
5(a.L1)={(«10)
3(¢.1.0) ={(2.9)}
5(g.82)={(2.€)}

Informally, whenever it sees a [, it will push the ] onto the stack. (first two transitions), and
whenever it sees a ] and the top of the stack symbol is [, it will pop the symbol [ off the stack.
(The third transition). The fourth transition is used when the input is exhausted in order to pop z
off the stack ( to empty the stack) and accept. Note that there is only one state and no final state.

The following is a sequence of configurations leading to the acceptance of the string [[1[1]1[ ]

(a.l0101100.2) = (g.L10 1100 [2) = (g M1 LIL2) = (e [ 110 102) (g 10 1L L2)

|—[f3=]][ ]:[[Z) |—|[Q'=][]=[Z) |—|[fi'=[ ]:Z) |—|[t?=]=[2) |—|[Q’=E= Z) |—[Q'=E:E)

Equivalence of acceptance by final state and empty stack.

Page | 88



It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by final state by some other PDA and vice versa.

Page | 89



Hence it doesn't matter which one we use, since

each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the
language L by final state or empty stack, we can always construct an equivalent PDA M with a
single final state that accpets exactly the same language L. The construction process of M’ from
M and the proof of equivalence of M & M" are given below.

There are two cases to be considered.

CASE | : PDA M accepts by final state,ﬂv{gt[g’ 2T 8.y, 2. F) Let gf be a new state not
o aeoufe) ERasady) |
in Q. Consider the PD where™ as well as the following

transition.

GHCASRY contains (qf’X) vael
AMeéquivalenti.e.
LM)=L( )

and{ €1 Itis easy to show that M and M" are

Let@ €L(M). Therk® @20 1 2 (@€ ¥) or some 7 € F ang €T’

Then(g”’m’zﬂ) I—;a" [c},E, ?’) |_1,« (ci'f,E, ;V)

Thus M accepts &

* 1
Conversely, let 3" accepts @ i®.€ M), then (d0.®.20) 1 3¢ (0.6.7) - (925 y)for

9 €F M inherits all other moves except the last one from M. I[-f%hé?éf Z) 12 (@5 7) for

=
g some

Thus M accepts @ . Informally, on any input &~ simulate all the moves of M and enters in its

9¢ own final state whenever M enters in any one of its final status in F. Thus 3" accepts a string
@ iff M accepts it.

CASE Il : PDA M accepts by empty stack.

We will construct &~ from M in such a way that 3" simulates M and detects when M

M’ empties its stack. enters its final state 47 when and only when #f empties its stack. THus
will accept a string iff

M
accepts.

Page | 90



Let M= (Qu[qa’gf}’z’ru{x}’ﬁ’q';"X’{gf])where 40> 4y % and e T and &' containsall

transition of 5, as well as the following two transitions. the

1.8'(gy.6,%) ={(90.2,X)) and

2 8 (g.6.X) =[[gf,ej] . Wge(

Transitions 1 causes # " to enter the initial configuration of M except that will have its own
bottom-of-stack marker X which is below the symbols of M's stack. From thispoint onward

will simulate every move
of M since all the transitions of M are alsoin "

If M ever empties its stack, then & when simulating M will empty its stack except the symbol X

at the bottom¥ ‘At this point, will enter its final state 47 by using transition rule 2, thereby
(correctly) accepting the input. M
We will prove that M and 3" areequivalent. ¢

Let M accepts <. Then

(4 ®.20) 1 3 (4.5.€) tor some 7€ € But
(g, @ X)L (g, @z2,X) then (by

transition rule 1)

e (25, X:'( Since 3" includes all the moves of M)

1 JEE .
ke L7 )(by transition rule 2)

Hence, M also accepts & . Conversely, let 4 accepts @ .

Then(gé’m’ X) |—;|d" [q,:,,m,z,:,X) I—;xz" {Q’,E, X) |—;|d" (qI,E,E] for some g = Q

L) e lee )

Every move in the sequenc,(eq,” @ 2 were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the
input i.e.

(9. @.2)) |- 3¢ (4.6 €)

Page | 91



Equivalence of PDA’s and
CFG’s:

Page | 92



We will now show that pushdown automata and context-free grammars are equivalent in

expressive power, that is, the language accepted by PDAs are exactlythe context-free languages.

To show this, we have to prove each of the following:
iy Given any arbitrary CFG G there exists some PDA M that accepts exactly the
same language generated by G.
iy~ Given any arbitrary PDA M there exists a CFG G that generates exactly the
same language accpeted by M.

(i) CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an
equivalent PDA.

Let the given CFG '% =Wz P’S). Without loss of generality we can assume that G isin
Greibach Normal Form i.e. all productions of G are of the form.

A= BBy By yhere C€ T gngfe 2 0

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack.
Note that there is only one state in M. Let

M= ({g},E,N, 5=Q=S’¢)1 where

q is the only state

Zis the input alphabet,
N is the stack alphabet ,
q is the start state.

« Sis the start/initial stack symbol, and &, the transition relation is defined as follows

A—>cB B, B c Rq.B\B,. B e d(g.c.4)

For each production . We now want to

show that M and G are equivalent i.e. L(G)=N(M). i.e. for aﬁﬂye‘*‘r’@ . iff
WweE N[M)

If 7= L(3) , then by definition of L(G), there must be a leftmost derivation starting with S and

deriving w.

L A=W

ie. ¢

Again if we N(M) , then one sysmbol. Therefore we need to show that for any W< z

o ipfleoms) - (asE)
S=w '

7

Page | 93



But we will prove a more general result as given in the following lemma. Replacing A by S
(the startsymbol) and ¥ by gives the required proof.

Page | 94



. A
Lemma For any X, YEZ , ?”Ef"fandﬂeN,

(g.0,4) 5 (2.0, 7)

Proof : The proof is by induction on n.
Basis:n=0

0
A=x _ _
i A= %V o x=2gng¥ =4

e (g, 4] = (g.0.7)

el @A) e (.. 7)

Induction Step :

#+l

ﬂ?x}f

First, assume that. = = U\{i@}a leftmost derivation. Let the last production applied in their
and SEN

E—r e
’Sderlvatlon is for some

Then, for some @€ X’ ae N’
» 1

*"1:; mﬁ&? e B = xy

wherex = @cand ¥=A¢

Now by the indirection hypothesis, we get,

(g, @y, 4) |5 (g.0v. B

Again by the construction of M, we get

(¢.8)ed(g.c.B)

so, from (1), we get

(g, @y, A) G (gov.Ba) 5, (g, Ba

bl

=X
GJV

via a leftmost derivative iff

Page | 95



el

since X = @Cand =% e ge@’:?@’:ﬂ) — ar lg.0¥)

Page | 96



#+l el

That is, if ﬂ?xy,then ':“-3“5‘5"":-*‘1) — ae (G‘:Jﬁ?’)

l

. Conversely, assume that

19.904) o lgr)

§(g.c.5)=1(g.8)

ae I

and let

.. ) C cEZILE
be the transition used in the last move. Then for?b‘ﬁ% , © { }and

(g @y, 4) 15 (9.:0,80) |3 (@0, 8%) yhere x = @cang?=5¢
Now, by the induction hypothesis, we get

ﬂ;‘» Frifaton
7

via a leftmost derivation.

Again, by the construction of M, 8= ¢ Bmust be a production of G. [ Since
(qr .-5) £ 4 (qr Cy B)]
Applying the production to the sentential form @5 we get

H 1
"ﬂ:c; mﬂa:t; a o= xy

a+l

A=x
ie. ¢ i’

via a leftmost
derivation. Hence the
proof.

Example : Consider the CFG G in GNF
S™7aAB

A:a/aA

B a/bB

The one state PDA M equivalent to G is shown below. For convenience, a production of
G and the corresponding transition in M are marked by the same encircled number.

(1) S—aAB
A "a
_}

- Page | 97
%



B)A aA
4B a

Page | 98



G)B  bB

M= ({g} ’{a’b} ’{S’A’ B} 92,5, E) . We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the
string. Steps

1)
H

1. (g, aaaba, s)* ( q, aaba, AB)
]

H
2. J[; (q, aba, AB)

s
Fi

3 o (a.baB)
|_}
Fi-

4, 5 (9,a,B)

=
I

5. (g, €, =) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.
Now consider the derivation of the same string under grammar G. Once again, the production
used at every step is shown with encircled number.

] (3 2] i3] (4]

= = = = =
S 7 aAB 7 aaAB 7 aaaB 7 aaabB ¥ aaaba
Steps 717 2 7 3 74 75

Observations:

o There is an one-to-one correspondence of the sequence of moves of the PDA M and
the derivation sequence under the CFG G for the same input string in the sense that -
number of steps in both the cases are same and transition rule corresponding to the
same production is used at every step (as shown by encircled number).

« considering the moves of the PDA and derivation under G together, it is also observed
that at every step the input read so far and the stack content together is exactly

identical to the corresponding sentential form i.e.
<what is Read><stack> = <sentential form>
Say, at step 2, Read so far = a
stack = AB

* o=
Sentential form = aAB From this property we (7.7 5) - s (2.5.@) " If the claim
claim that .
N iff S?‘l’or xe N{M) iff xEL[G:]
true, then apply with &=<and (7.7 5) - 4 (2.€.€) IS1
we get definition) (by

Page | 99



Thus N(M) = L(G) as desired. Note that we have already proved a more general version

of the claim PDA and CFG:

We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such
that L(G) =
N(M)

we first see whether the "reverse of the construction™ that was used in part (i) can be used here
to construct an equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDASs.
e That is, for every one-state PDA M there is CFG G such that L(G) = N(M). For every

move of e BER 154/ € 219 & 4)\ e introduce a production 4 <8152 Brin the

gramma G= [N’ z S)Where N=T and S=zy .

r

Page | 100



we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).

But the reverse construction does not work for PDAs with more than one state. For example,
consider the PDA

] ] >
M produced here to accept the langauge {‘3 ba' |n 2 1}

M =((p. 4).{a. B}.{7, 4.0.7.7 )

Now let us construct cFG & ~ (& Z. 2. 5)

N={zu,ﬂ}, S=zu)

using the "reverse"

construction. ( Note

Transitions inM Corresponding Production in G
a,z, A z, = ad
a, AfAA A-—=pdd
B, AfA A bd
a, Afs Aoy

We can drive strings like aabaa which is in the language.

§=2p= ﬂﬂ;; aa&ﬂ:ﬁ‘r .:mf:uﬂ_ﬂ:ﬁ‘r aabaﬂ:ﬁ; aabaa

But under this grammar we can also derive some strings which are not in the language. e.g

s =z, = ald = abd = abadd = abaad = abaaa
and £ =Z0 = ad = aq gt e, abaa @ L[M)

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

Claim: For every PDA M there is some one-state® DA such that V(M) =N (M) .

It is quite possible to prove the above claim. But here we will adopt a different approach. We
start with any arbitrary PDA M that accepts by empty stack and directly construct an
equivalent CFG G.

PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states.
Without loss of generality we can assume that the PDA M accepts by empty stack.

The idea is to use nonterminal of the form <PAg> whenever PDA M in state P with A on top of

Page | 101

(pdalm @

ra



the stack goes to state 9. That is, for example, for a given transition of the PDA corresponding
production in the grammar as shown below,

Page | 102



And, we would like to show, in general, that iff the PDA M, when started from state P
with A on the top of the stack will finish processing , arrive at state q and remove A from the

stack.

we are now ready to give the construction of an equivalent CFG G from a given PDA M. we
need to introduce

two kinds of producitons in the grammar as given below. The reason for introduction of the first
kind of production will be justified at a later point. Introduction of the second type of production

has been justified in the above discussion.

Let # =(@.Z.T, 8. au. 20, #)je 3 PDA. We construct from M aequivalent CFG

G=(N.Z. 2. 5] \Where

« N is the set of nonterminals of the form <PAg> for #- 9% & and 4T and P contains
the follwoing two kind of production

&%@ﬂﬂ}quQ
il BBy~ B,)e dlg, o 4) g
*asl

: S5
g, € Q’ Y <ignil , then for every choice of the seque?f’ce :

Include the follwoing production

<|:L1 q:u+1> —a {glglgﬁ }{gﬂ 2‘5’3 } <q?¢B:ug:u+l>

If n =0, then the production is @aq}—a .For the whole exercise to be meaningful we want

'-{‘E'A Gl >:* at . - L .

¢ means there is a sequence of transitions ( for PDA M), starting in state g, &neing
in :
during which the PDA M consumes the input string % and removes A from the stack (and, of
course, all other symbols pushed onto stack in A's place, and soon.)

That is we want to claim that

*

gz @
iff[}?‘, @ 4) (g.€.)

-

(40 Zo q}?mif%qﬂ @2y ) | g, EE)

If this claim is true, thenlet 90+ 4 = Zo g get for some

7€C Butforall 4€&we ha\‘;'fe {020 as productlon in G. Therefore,

*

S:’@'uznfi’} (dg. @, 2) L (g.E.€) S?W

Page | 103



iff .e. iff PDA M accepts w by empty stack or L(G) =
N(M)

Page | 104



Now, to show that the above construction of CFG G from any PDA M works, we need to prove
the proposed claim.

Note: At this point, the justification for introduction of the first type of production (of the form

S {QUZU‘I}) in the CFG G, is quite clear. This helps use deriving a string from the start symbol

of the grammar.

(Paq

=W
Proof : Of the claim } 7 'iiﬁiw: ﬂ) I—'[‘LE:E) forsomewex', AeTand?, ¢ =

The proof is by induction on the number of steps in a derivation of G (which of course is equal to
the number of moves taken by M). Let the number of steps taken is n.

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the '
if ' part

(B A) - (g.8.8) g P2

Basis isn =1
Then [P’W’ ‘q) [g’E’E). In this case, it is clear that
{£Ag}—> wis a production of G.

weZule] . Hence, by construction

Then

Inductive Hypothesis :
vid<nl(Pow A (g5 = {Pﬂq}:;w

Inductive Step I_[P’W’ A) - lg.2.8)

For n >1, let w = axfor sorﬁeE 2 U{E} and *€Z consider the first move of the PDA M which
(g1 B8y --B,)€ 5(p.a,4)(p,w A

uses the general transition =

[p, ax, ﬂ) o [ql, x, 55, ---Bx) — [q,E,E) 2 ..R

. Now M must remO\‘/qé 2 “= from stack while

consuming x in the remaining n-1 moves.

Let ¥ =M% "% \where 1% %xjs the prefix of x that M has consumed %#en first
appears at top of the stack. Then there must exist a sequence of states iHIMZfas pés-canstruction)
Gart = F (with
), such that
(p.ax.d) (g x BB, B,)=(q mxy %, BBy B, Page | 105

%, BB, B R
(4. %%y %, Boby By [ This stepimpli(ggl’ A ) |_[%’E’E)]

(@5 %%y 3y, BiBy-o By) (92. %20 By) (43,68



[ This step implies ]
= [g?e 2 Ay Bﬁ)

— [qx+1 =E’E) = [q=E=E)

[ Note: Each step takes less than or equal to n -1 moves because the total number of moves
required assumed to be n-1.]

That is, in general

'[é’z‘: & Bi:l - '[G’i+1=E=E) l=izn+l

So, applying inductive hypothesis we get

<QiBifL?i+l>:l; & 12i<m+l

(p.w,A) = (pax, 4) _ (g ButBkgresponding to the original move

in M we have added the following production in G.
We can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent
IDs using the transition function defined

(g.aabb.z) | (g,.abbaz) (g,.bb,aaz)

(using transition 1 ¥ (using transition

(58,02 2) (using transition 3), (43.5.2) (using transition 4)
 (g,.€.2)(using transition 5) , 94 s final state. Hence, accept.
So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move
relations. For example, following are the computation on two input strings.

i) Let the input be aabab.

(gy.aabab,z) | (g,,abab, az)
 (a, bab, aaz)

Page | 106



(5, ab,az)

No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[1[]11[

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final
state and empty stack- are equivalent in the sense that if a language can be accepted by empty
stack by some PDA, it can also be accepted by final state by some other PDA and vice versa.
Hence it doesn't matter which one we use, since each kind of machine can simulate the
other.Given any arbitrary PDA M that accpets the language L by final state or empty stack, we
can always construct an equivalent PDA M with a single final state that accpets exactly the same
language L. The construction process of M' from M and the proof of equivalence of M & M' are
given below

There are two cases to be considered.

CASE 1 : PDA M accepts by final state,ﬂ{e=t (Q.2.T.0.q0. 2. F) . Let 97 be a new state not

in Q. Consider théi’ﬁb,éé? ufg, ] ET, 5“:%:%,{%}) where s+ as well as the following

transition.

5'(g.6. %) g, %) ¥ qeF

contains (
ie.

and<% €1 | Itis easy to show that M afd are equivalent

Lot PELIM) Trod®-220) 20 (9 ¥) sorsome 9EF and e ="

Page | 107



Then[qm mkzu)k—zf[q=5,y)F_Ef[qf,E,y)

Page | 108



Thus " accepts @ .

; . 1
Conversely, le#d" accepts @ i.e.* = L(M) thenld-@%0) 130 (9.67) 14y (2.2 y)for

some (% ®2) - (2.57)
4 €5 M inherits all other moves except the last one from M. Hence for some
geEF

Thus M accepts @ . Informally, on any input 3" simulate all the moves of M and enters in its

47 own final state whenever M enters in any one of its final status in F. Thus 4" accepts a
string < iff M accepts it.

CASE 2 : PDA M accepts by empty stack.

we will construct 4 from M in such a way that 3~ simulates M and detects when M

M' empties its stack. enters its final state 47 when and only when & empties its stack. T#us

will accept a string iff
M
accepts.

Let M= (Qu[g,;,gf} = Tut) ’E’q';"X’[gf])where d0: 9r € and X €T and &' contains

the transition of 5, as well as the following two transitions. all

1.8'(gy.6,%) ={(90.2,X)) and

2.8 (¢q.6.%) ={[gf,e)] . WgeQ

Transitions 1 causes & to enter the initial configuration of M except that 34" will have its own
bottom-of-stack marker X which is below the symbols of M's stack. From this point onward M'
will simulate every move of M since all the transitions of M are also in &,

If M ever empties its stack, then 3" when simulating M will empty its stack except the symbol X

at the bottok! At this point , will enter its final state ¢ by using transition rule 2, thereby
(correctly) accepting the input. we will prove thatM and " are equivalent.

Let M accepts & .

Then

Page | 109



9. @7 ) —(g.6.€) for some ¢ €& . But then,

X)) 4
(2@ X) 3 (2025 )(by transition rule 1)

Page | 110



*

- (9.6 X (since M include all the moves of M)
1
'y (QI’E’E] ( by transition rule 2)
Hence, M also accepts & .Conversely, let M accepts & .
: 1 * 1
Then(g”’m’}{) i @ @5 X) e (9.6.5) e (qf’e’e) for some Q.

Every move in the sequence

(g0, @ 2.5 ) M 2. ijere taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the
input i.e.

(0. @.2) |- 3¢ (2., €) .

Deterministic PDA:

we define a PDA P = (Q,%,T,4, g0, Zo, F) to
be deterministic (a deterministic PDA or DPDA), if and only if the following
conditions are met:

1. §(q,a,X) has at most one member for any ¢ in @, a in ¥ or a = ¢, and
X an T-

2. If 6(g,a, X) is nonempty, for some a in I, then §(q, €, X) must be empty.

Regular Languages and DPDA’s The DPDA’s accepts a class of languages that is in
between the regular languages and CFL’s.

Page | 111



Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

PROOF: Essentially, a DPDA can simulate a deterministic finite automaton.
The PDA keeps some stack symbol Zy on its stack, because a PDA has to have
a stack, but really the PDA ignores its stack and just uses its state. Formally,
let A=(Q,%,04,q0,F) be a DFA. Construct DPDA

P = (Q,E,{ZO}a(SP’quZO:F)

by defining dp(q,a, Zy) = {(p,Zo)} for all states p and ¢ in @, such that
da(g,a) =p

We claim that (go,w, Zp) g (p, €, Zo) if and only if d4(go, w) = p. That is,
P simulates A using its state. The proofs in both directions are easy inductions
on |w|, and we leave them for the reader to complete. Since both A and P
accept by entering one of the states of F', we conclude that their languages are
the same. O

Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages (DCFLS)

Pushdown automata that we have already defined and discussed are nondeterministic by default, that is , there
may be two or more moves involving the same combinations of state, input symbol, and top of the stock,
and again, for some state and top of the stock the machine may either read and input symbol or make an
€ - transition (without consuming anyinput).

In deterministic PDA , there is never a choice of move in any situation. This is handled by preventing the
above mentioned two cases as described in the definition below.

Defnition : Let 4 ~(€- 2890 Z0.F ) o s pDA . Then M is deterministic if and only if both the
following conditions are satisfied.

) & = ezl e . .. .
1. (2. )has at most one element for aﬂy Qaezllis), and £ €T (this condition prevents multiple
choice f
any combination of ¥+% and.¥ )
Flg.eX)= & A)=
5 gSlaeX)=d, , 8la.ak) E{'forever)f‘ez

(This condition prevents the possibility of a choice between a move with or without an input symbol).

Page | 112



Empty Production Removal
The productions of context-free grammars can be coerced into a variety of forms without

affecting the expressive power of the grammars. If the empty string does not belong to a
language, then there is a way to eliminate the productions of the form A from the grammar.

If the empty string belongs to a language, then we can eliminate from all productions

save for the single production S . In this case we can also eliminate any occurrences of S from

the right-hand side of productions.
Procedure to find CFG with out empty Productions

Step (i): For all productions 4 — A. put 4 into V.
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions|

B 445 ...... A

Step (i): For all productions 4 — A, put 4 into V..
Step (ii): Repeat the following steps until no further variables are added to 7.
For all productions|

Bo A4, ...... 4,.

where 4,,4,,4;, ......,. 4, are in V,, put B mto V.
To find P, let us consider all productions in P of the form

V. G 3570 o R 50, |

foreachx, eV UT.

Page | 113



Unit production removal
Any production of a CFG of the form

A— B

where 4. B €V is called a “Unit-production”. Having variable one on either
side of a production is sometimes undesirable.

“Substitution Rule” is made use of in removing the unit-productions.

Gl\ en G= (V. T. 5. P),a CFG with no A-productions, there exists a CFG
G= (V T P) that does not have any unit-productions and that is equivalent
to G.

Let us illustrate the procedure to remove unit-production through example
24.6.

Procedure to remove the unit productions:
Find all variables B, for each A such that
A>B

This is done by sketching a “depending graph™ with an edge (C. D)

whenever the grammar has unit-production C — D. then 4 =B holds

whenever there 1s a walk bem een A and B.

The new grammar 4 equivalent to G is obtained by letting into P all

non-unit productions of P.
Then for all 4 and B satisfying 4 = B. we add to P

A= yyl......| ¥y

<
where B — 3|7 |...... | v, 1s the set of all rules in P with B on the left.
Left Recursion Removal
A variable A 1s left-recursive if it occurs in a production of the form
A— Ax

foranyxe (V UT) .

A grammar is left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recursive.

Page | 114



NORMAL FORMS
Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal Form
(GNF) are considered here.

Page | 115



Chomsky Normal Form (CNF)

Any context-free language L without any -production is generated by a grammar is
which productions are of the form A [0 BC or A[] a, where A, B VN ,anda ] V
.

Procedure to find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and [1-productions ifany,

(i) Eliminate the terminals on the right hand side of length two or more.

(iii) Restrict the number of variables on the right hand side of productions to two.

Proof:

For Step (i): Apply the following theorem: “Every context free language can be generated by
a grammar with no useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or two or more
symbols. Let us assume the equivalent resulting grammar as G [1 (VN ,VT .P .S).

For Step (ii): Consider any production of the form

A3 J Vo cumuss mz2.

If v, 1s a terminal, say ‘a’, then introduce a new variable B, and a
production

B, —a
Repeat this for every terminal on RHS.

Let P’ be the set of productions in P together with the new productions

B, — a.LetVy, be the set of variables in¥,, together with B/, s introduced for

every terminal on RHS.
The resulting grammar G, = (V;, .V;.P’.S) is equivalent to G and every
production in P’ has either a single terminal or two or more variables.

For step (iii): Consider 4 — BB, ...... B

where B,’s are variables and m = 3.
If m =2, then 4 — B,. B, 1s in proper form.
The production 4 — BB, ...... B,, 1s replaced by new productions
A— B,D,,
D, — B,D,,

Dm—2 — Bm—le
where DS are new variables. Page | 116
The grammar thus obtained is G,. which is in CNF.



Example

Page | 117



Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with
productions P given

S — aAbB
A— adla
B — DB|b.

Solution
(1) There are no unit productions in the given set of P.
(ii) Amongst the given productions, we have

A—a,
B—=b
which are in proper form.
For § — aA4bB. we have
S — B,AB,B,.
B,—a
B, —=D.
For 4 — a4, we have
A— B, A
For B — bB, we have

B — B,B.

(iii) In P’ above. we have only
S— B,AB,B
not in proper form.
Hence we assume new variables D; and D, and the productions
S— B,D

D, — AD,
D, — B,B

Therefore the grammar in Chomsky Normal Form (CNF) is G, with the
productions given by

S— B,D,,
D, — AD,.
D, = B,B.
A— B, A,
B — B;B.
B, — a,
B, — b,
A— a,
and B—b.

Page | 118



Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a

language, then certain other strings must also belong to the language. Let us discuss a
Pumping Lemma for CFL. We will show that , if L is a context-free language, then strings of
L that are at least ‘m’ symbols long can be “pumped” to produce additional strings in L. The
value of ‘m’ depends on the particular language. Let L be an infinite context-free language.
Then there is some positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’,
then

(i) S = uvwxy (for some u, v, w, X, y)

(i) | vwx| TT'm

(iii) | vx| 01

(iv) uv iwx iyLIL.

for all non-negative values of i.

It should be understood that

(i) If S is sufficiently long string, then there are two substrings, v and x, somewhere

in S. There is stuff (u) before v, stuff (w) between v and x, and stuff (y), afterx.

(ii) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m.

(iii) Substrings v and x won’t both be empty, though either one could be.

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same

number of times, the resultant string will also be inL.

Definitions

A variable is useful if it occurs in the derivation of some string. This requires that

(a) the variable occurs in some sentential form (you can get to the variable if you start from S),
and

(b) a string of terminals can be derived from the sentential form (the variable is not a“dead
end”). A variable is “recursive” if it can generate a string containing itself. For example,
variable A is recursive if

S=> uAdy
for some values of » and \|
A recursive variable 4 can be either
(1) “Directly Recursive™, 1.e., there is a production
A— x, 4x,
for some strings x;.x, € (I U V), or

(1) “Indirectly Recursive™, i.e., there are variables x; and productions

¥ E 2 R

P, B ), S
D, R T, S
. . S .

Proof of Pumping Lemma

(@) Suppose we have a CFL given by L. Then there is some context-free Grammar G that
generates

L. Suppose

(i) L is infinite, hence there is no proper upper bound on the length of strings belonging toL.

Page | 119



(if) L does not contain I.
(iii) G has no productions or I-productions.

Page | 120



There are only a finite number of variables in a grammar and the productions for each

variable have finite lengths. The only way that a grammar can generate arbitrarily long strings
is if one or more variables is both useful and recursive. Suppose no variable is recursive. Since
the start symbol is non recursive, it must be defined only in terms of terminals and other
variables. Then since those variables are non recursive, they have to be defined in terms of
terminals and still other variables and so on.

After a while we run out of “other variables” while the generated string is still finite.
Therefore there is an upper bond on the length of the string which can be generated from
the start symbol. This contradicts our statement that the language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X
must have involved recursive use of some variable A. Since A was used in the derivation, the
derivation should have started as

S = udy

for some values of # and y. Since A was used recursively the derivation must
have continued as

* *
S = udy = uvAxy
Finally the derivation must have eliminated all variables to reach a string
X 1n the language.
* * *
S D udy= uvAxy =S uvwxy =x
This shows that derivation steps

®
A= vAx
*

and A=w
are possible. Hence the derivation

A= vwx

must also be possible.

Page | 121



It should be noted here that the above does not imply that a was used

recursively only once. The * of = could cover many uses of 4. as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v, w and x without the use of recursion. Then there 1s a
number ‘7’ such that | vivx | < m.

Since the grammar does not contain any A-productions or unit
productions, every derivation step either introduces a terminal or increases the

length of the sentential form. Since 4 = v4x. it follows that | vx|> 0.

* *
Finally, since #vAxy occurs in the derivation, and 4 = v4x and 4 = ware
both possible. it follows that v wx" v also belongs to L.

This completes the proof of all parts of Lemma.

Usage of Pumping Lemma
The Pumping Lemma can be used to show that certain languages are not
context free.

Let us show that the language
L={a'b'c"|i>0}

1s not context-free.

Page | 122



Proof: Suppose L is a context-free language.
If string X € L. where| X'| > m. it follows that X' =wxy. where | vivx| < m.

Choose a value 7 that 1s greater than . Then. wherever vivx occurs in the
string a'b'¢’. it cannot contain more than two distinct letters it can be all a’s,
all b’s. all ¢’s, or it can be @’s and b’s. or it can be 4’s and ¢’s.

Therefore the string vx cannot contain more than two distinct letters: but
by the “Pumping Lemma” it cannot be empty, either, so it must contain at least
one letter.

Now we are ready to “pump”.

Since v wayisinZ, v 2wx? ymust also be in L. Since v and x can’t both be

empty,

) )
uv wx© ) > [ wvwxy,

so we have added letters.

Both since vx does not contain all three distinct letters, we cannot have
added the same number of each letter.

Therefore. Il1'211‘.\'2_1’ cannot be in L.

Thus we have arrived at a “contradiction™.

Hence our original assumption, that L is context free should be false. Hence the language L is
not context-free.

Example
Check whether the language given by L [ {a mbmen : m [ n [ 2m} is a CFL
or not. Solution

2 . . .
Let s =d"b"¢c™, n being obtained from Pumping Lemma.

Then s = wvwxy, wherel £|vwx|<n.

Therefore, vx cannot have all the three symbols a. b. c.

If you assume that vx has only a’s and b’s then we can shoose 7 such that
uv'wx'y has more than 2» occurrence of @ or b and exactly 27 occurences of ¢.

Hence uv'wx' v L. which is a contradiction. Hence L is not a CFL.

Page | 123



Closure properties of CFL — Substitution

Let ¥ be an alphabet, and suppose that for every symbol ¢ in ¥, we choose a
language L,. These chosen languages can be over any alphabets, not necessarily
¥ and not necessarily the same. This choice of languages defines a function s
(a substitution) on X, and we shall refer to L, as s{a) for each symbol a.

If w=ayay--a, is a string in £*, then s(w) is the language of all strings
1Ty - - T, such that string x; is in the language s(a;), for i = 1,2,...,n. Put
another way, s(w) is the concatenation of the languages s(ay)s{az) - - s(an).
We can further extend the definition of s to apply to languages: s(L) is the
union of s(w) for all strings w in L.

Theorem 7.23: If L is a context-free language over alphabet £, and s is a
substitution on X such that s(a) is a CFL for each a in X, then s(Z) is a CFL.

PROOF: The essential idea is that we may take a CFG for L and replace each
terminal a by the start symbol of a CFG for language s(a). The result is a
single CFG that generates s(L). However, there are a few details that must be
gotten right to make this idea work.

More formally, start with grammars for each of the relevant languages, say
G = (V,Z,P,8) for L and G, = (V,,T,,P,,S,) for each @ in X. Since we
can choose any names we wish for variables, let us make sure that the sets of
variables are disjoint; that is, there is no symbol A that is in two or more of
V and any of the V,’s. The purpose of this choice of names is to make sure
that when we combine the productions of the various grammars into one set
of productions, we cannot get accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of the given grammars.

We construct a new grammar G' = (V', T, P', §) for s(L), as follows:

e V' is the union of V and all the V,’s for a in X.
e 7’ is the union of all the T},’s for a in X.

e P’ consists of:

1. All productions in any P,, for a in X.

2. The productions of P, but with each terminal a in their bodies re-
placed by S, everywhere a occurs.

Thus, all parse trees in grammar G’ start out like parse trees in G, but instead
of generating a yield in *, there is a frontier in the tree where all nodes have
labels that are S, for some @ in ¥. Then, dangling from each such node is a
parse tree of G,, whose yield is a terminal string that is in the language s(a).

Page | 124



Applications of substitution theorem

Theorem 7.24: The context-free languages are closed under the following
operations:

1. Union.
2. Concatenation.
3. Closure (*), and positive closure ().

4. Homomorphism.

PROOF: Each requires only that we set up the proper substitution. The proofs
below each involve substitution of context-free languages into other context-free
languages, and therefore produce CFL’s by Theorem 7.23.

1. Union: Let L, and Ly be CFL’s. Then L; U L, is the language s(L),
where L is the language {1,2}, and s is the substitution defined by s(1) =
L, and s(2) = Lo.

2. Concatenation: Againlet L; and Ly be CFL’s. Then L, L, is the language

s(L), where L is the language {12}, and s is the same substitution as in
case (1).

3. Closure and positive closure: If L, is a CFL, L is the language {1}*, and
s is the substitution s(1) = Ly, then L} = s(L). Similarly, if L is instead
the language {1}*, then LT = s(L).

4. Suppose L is a CFL over alphabet X, and h is a homomorphism on 2. Let
s be the substitution that replaces each symbol a in ¥ by the language
consisting of the one string that is h(a). That is, s(a) = {h(a)}, for all a
in ¥. Then h(L) = s(L).

Reversal

Theorem 7.25: If L is a CFL, then so is L.

PROOF: Let L = L(G) for some CFL G = (V,T,P,5). Construct G_R =
(V,T, PE S), where PR is the “reverse” of each production in P. That is, if
A - a is a production of G, then A — ot is a production of G*. It is an easy
induction on the lengths of derivations in G and GR to show that L(G®) = LR.
Essentially, all the sentential forms of GR are reverses of sentential forms of G,
and vice-versa. We leave the formal proof as an exercise. [

Page | 125



Inverse Homomorphism:

Theorem 7.30: Let L be a CFL and h a homomorphism. Then A~1(L) is a
CFL.

PROOF: Suppose h applies to symbols of alphabet ¥ and produces strings in
T*. We also assume that L is a language over alphabet T'. As suggested above,
we start with a PDA P = (Q,T,T,4,qo, Zo, F') that accepts L by final state.
We construct a new PDA

s (Q” 2,6',((]0,6),Z0,F X {6}) (71)

where:

1. @' is the set of pairs (g, ) such that:

(a) ¢ is a state in Q, and

(b) z is a suffix (not necessarily proper) of some string h(a) for some
input symbol a in X.

That is, the first component of the state of P’ is the state of P, and the
second component is the buffer. We assume that the buffer will period-
ically be loaded with a string h(a), and then allowed to shrink from the
front, as we use its symbols to feed the simulated PDA P. Note that since
¥ is finite, and h(a) is finite for all a, there are only a finite number of
states for P’'.

2. ¢' is defined by the following rules:

(a) &'((g,€),a,X) = {((q, h(a)),X)} for all symbols @ in I, all states
g in @, and stack symbols X in I". Note that e cannot be € here.
When the buffer is empty, P' can consume its next input symbol a
and place h(a) in the buffer.

(b) If §(q, b, X) contains (p,7), where b is in T or b = ¢, then
&'((q,bz), €, X)

contains ((p,z),v). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in T, then
the buffer must not be empty, but if b = ¢, then the buffer can be
empty.

Page | 126



3. Note that, as defined in (7.1), the start state of P’ is (qo, €); i.e., P' starts
in the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1), are those states (g,€)
such that ¢ is an accepting state of P.

The following statement characterizes the relationship between P’ and P:

4 (quh(w)’ZO) }}i (p,c, 7) if and on]y if ((Qo,f)auf,zo) I;t, ((pv 6),6,’)’).

Page | 127



UNIT-V
Turing machine:

Informal Definition:

We consider here a basic model of TM which is deterministic and have one-tape. There are many
variations, all are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but
is infinite to the right and a tape head that can move left and right over the tape, reading and
writing symbols.

For a}n¥ input w with |w|=n, initia_ll?; it is written on the n leftmost (continguous) tape cells.
The infinitely many cells to the right of the input all contain a blank symbol, B whcih is a
special tape symbol that is not an input symbol. The machine starts in its start state with its
head scanning the leftmost symbol of the input w. De- pending upon the symbol scanned by
the tape head and the current state the machine makes a move which consists of the following:

e writes a new symbol on that tape cell, [
moves its head one cell either to the left or to the right and
o (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues
computing (i.e. making moves) until

« itdecides to "accept" its input by entering a special state called accept or final state or
« halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the
input, in which case it is said to "loop™ on that input

Formal Definition :

M={0.5T.84,B F)

Formally, a deterministic turing machine (DTM) is a 7-tuple ,Where

o Qs a finite nonempty set of states.

« Disafinite non-empty set of tape symbols, callled the tape alphabet of M.

. =<l is a finite non-empty set of input symbols, called the input alphabet of M.

G:0xT — OxIx{LxR]
o is the transition function of M,

Page | 128



. NS < is the initial or start state.

. 5T Ejsthe blank symbol

Fc ;
o ce is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next
state, symbol to be written on the tape, and the direction in which to move the tape head ( L and
R denote left and right, respectively ).

Transition function :5

o The heart of the TM is the transition function, & because it tells us how the machine

gets one step to the next.
« when the machine is in a certain state =Q and the head is currently scanning the tape
symbol

el andif dig, ) = (p.1, 1) , then the machine

1. replaces the symbol X by Y on thetape
. goes to state p, and
3. the tape head moves one cell (i.e. one tape symbol ) to the left (or right) if DisL (orR).

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it
contains all the information to exactly capture the "current state of the computations”.

It contains the following:

e The current state, g
o The position of the tape head,

« The constants of the tape up to the rightmost nonblank symbol or the symbol to the
left of the head, whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank
symbols on the tape, at any finite

time, the TM has visited only a finite prefix of the infinite tape.

An 1D (or configuration) of a TM M is denoted by %48 where & £ € I and

& is the tape contents to the left of the head
q is the current state.

Bis the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of 8. ( Note that if B=c :
then thetape head is scanning a blank symbol)

If 9ojs the start state and w is the input to a TM M then the starting or initial configuration of

Page | 129



M is onviously denoted by Zo*

Page | 130



Moves of Turing Machines

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be
represented by —. A move of aTM

M is defined as follows.

Let 244X Zpe an ID of Mwhere 4.2 €0 @ 8l gpq

e . Let there exists a transition

(0. %)= (1. Dog,

Then we write24% 8 e @2ZY 8 meaning that ID %244 Hyjelds %24t 8

o Alternatively ’qﬁq, X)=(r.1.8) is a transition of M, then we wiifg# & @228
>4 7
¥Z34 B hich Frehts that the 1D
yields

« In other words, when two IDs are related by the relation , we say that the first one
yields the second ( or the second is the result of the first) by one move.

o If IDj results from IDi by zero, one or more (finite) moves then we write F—( If the TM
Mis understand, then the subscript M can be dropped from tor )

Special Boundary Cases

. Let?@he an 1D and 9@ ® = (77 L) b an transition of M. Then . That is, the
head is not allowed to fall off the left end of the tape.
dig,x)=(p, ¥, K ) i .
o Let#*%pean ID and @0 =(2 jthen figure (Note that %7 is equivalent to
dlg.x1=[(p.B R
o Let%*%pean ID and St )

4] = H.L
o Let %Z4%he an ID and l.2)=(7.% )then figure

&'FQ'B)

then figure

M=(Q,5T,5.45.B.7)

The language accepted by a TM , denoted as L(M)is

L(M) ={w| wEZ and figure forsorfe p Fand & &€ 1"'}

In other words the TM M accepts a string W= =’ that cause M to enter a final oraccepting state

when started
in its initial 1D (i.e. 0%

IDy, 1Dy, - dD ). Thatisa TM M accepts;l:gstring weZ ifa sequence
of IDs,

Page | 131



ts such that

Page | 132



o 1D ihe initial OF Starting ID of M
ID, 1 g Dy 157 <k

Page | 133



« The representation of IDk contains an accepting state.
The set of strings that M accepts is the language of M, denoted L(M), as defined

above More about configuration and acceptance

« AnID %80f M is called an accepting (or finaf) F3if

« AnID %8s called a blocking (or haltingﬂ@‘ #is undefined i.e. the TM has no move
at this point.

) e v, 1D
. is called reactable from “Z¥e - # *

. Effe initial (or starting) ID if wEZ' is the input to the TM and 92 € s the initial (or
start) state of M.

On any input string

weEZ either

L)

. . ] ] . T
« M halts on w if there exists a blocking (configuration) ID, {*such that

¢

There are two cases to be considered

o Macceptsw iflis an accepting ID. The set of all W= Dy accepted by M is denoted
as L(M) as already defined

« Mrejectsw if {'is a blocking configuration. Denote by reject (M), the set of all W& b
rejected by M.

or
o M loops on w if it does not halt on w.

Let loop(M) be the set of all W= Z' on which M

loops for. It is quite clear that

*

LI{M:I L rejec.ﬁl[M:l L faap[M)=E

That is, we assume that a TM M halts

e When it enters an acceptir%’j]or

. Nin .
« When it enters a blocking'i.e. when there is no nextmove.

Page | 134



However, on some input string, , we L(M) , It is possible that the TM Mloops for ever i.e. it
never halts

Page | 135



The Halting Problem

The input to a Turing machine is a string. Turing machines themselves can be written as
strings. Since these strings can be used as input to other Turing machines. A “Universal
Turing machine” is one whose input consists of a description M of some arbitrary Turing
machine, and

some input w to which machine M is to be applied, we write this combined input as M + w.
This produces the same output that would be produced by M. This is written as

Universal Turing Machine (M +w) =M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing
machine as input to itself, for example M (M). This is not even a particularly bizarre thing to
do for example, suppose you have written a C pretty printer in C, then used the Pretty printer
on itself.

Another common usage is Bootstrapping—where some convenient languages used to write a
minimal compiler for some new language L, then used this minimal compiler for L to write a
new, improved compiler for language L. Each time a new feature is added to language L, you
can recompile and use this new feature in the next version of the compiler. Turing machines

sometimes halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given
some other string. The halting problem asks: “It is possible to tell, in general, whether a
given

machine will halt for some given input?” If it is possible, then there is an effective procedure to
look at a Turing machine and its input and determine whether the machine will halt with that
input. If there is an effective procedure, then we can build a Turing machine to implement it.
Suppose we have a Turing machine “WillHalt” which, given an input string M + w, will halt and
accept the string if Turing machine M halts on input w and will halt and reject the string if
Turing machine M does not halt on input w. When viewed as a Boolean function, “WillHalt (M,

w)” halts and returns “TRUE” in the first case, and (halts and) returns “FALSE” in the second.
Theorem

Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction. Suppose we could build a machine
“WillHalt”. Then we can certainly build a second machine, “LoopIfHalts”, that will go into
an infinite loop if and only if “WillHalt” accepts its input:

Function LooplfHalts (M, w): if

WillHalt (M, w) then while true do { }

else

return false;

We will also define a machine “LoopIfHaltOnltSelf” that, for any given input M,
representing a

Turing machine, will determine what will happen if M is applied to itself, and loops if M will
halt in this case.

Function LooplfHaltsOnltself (M): return

LooplfHalts (M, M):

Finally, we ask what happens if we try:

Func tion Impos sible:

return LooplfHaltsOnltself (LooplfHaltsOnltself):

This machine, when applied to itself, goes into an infinite loop if and only if it halts

when applied to itself. This is impossible. Hence the theorem is proved.

Page | 136



Will this
program
halt?

Implications of Halting Problem

Programming

The Theorem of “Halting Problem” does not say that we can never determine whether or not

a given program halts on a given input. Most of the times, for practical reasons, we could
eliminate infinite loops from programs. Sometimes a “meta-program” is used to check another
program for potential infinite loops, and get this meta-program to work most of the time.

The theorem says that we cannot ever write such a meta-program and have it work all of

the time. This result is also used to demonstrate that certain other programs are also
impossible. The basic outline is as follows:

(i) If we could solve a problem X, we could solve the Halting problem

(ii) We cannot solve the Halting Problem

(iii) Therefore, we cannot solve problem X

A Turing machine can be "programmed,” in much the same manner as a computer is
programmed. When one specifies the function which we usually call [ for a Tm, he is really
writing a program for the Tm.

1. Storage in finite Control

The finite control can be used to hold a finite amount of information. To do so, the state is
written as a pair of elements, one exercising control and the other storing a symbol. It should
be

emphasized that this arrangement is for conceptual purposes only. No modification in the
definition of the Turing machine has been made.

Example

Page | 137



T= {Ka {0: I}s {0= l: B}: 8: [qﬂa B}: F)?

where K can be written as {gy,¢;} x {0, 1, B}. That is, K consists of the
pairs [go, 0], [go0, 11, [40, B], [¢1, 0], [¢1, 1], and [g;, B]. The set F is {[g,, B]}.
T looks at the first input symbol, records it in its finite control, and checks
that the symbol does not appear elsewhere on its input. The second com-
ponent of the state records the first input symbol. Note that T accepts a
regular set, but 7 will serve for demonstration purposes. We define 8 as
follows.

Page | 138



1' a) S([qﬂs B]: 0) = ([QJa 0]3 0:— R)
b) 8([ge, B), 1) = ([g1, 11, 1, R)
(T stores the symbol scanned in second component of the state and moves
right. The first component of 77’s state becomes g,.)

2' a) 6([?1’ 0]& 1) = ([91,[]], 13 -R)

b) (g1, 11, 0) = ([g:, 11,0, R)
(If 7" has a 0 stored and sees a 1, or vice versa, then 7 continues to move

to the right.)

3' 3) 8([‘?19 0]:! B) = ([QL B}: 0! L}
b} 8({’-?1! 1]& B) = ([qj.r B]: 0: L)
(T enters the final state [g,, B] if T reaches a blank symbol without
having first encountered a second copy of the leftmost symbol.)

If T reaches a blank in state [¢q,, 0] or [g,, 1], it accepts. For state [g¢,, 0]
and symbol O or for state [gq,, 1] and symbol 1, & is not defined, so if T ever
sees the symbol stored, it halts without accepting.

In general, we can allow the finite control to have & components, all but
one of which store information.

2. Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k.
This arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the
tape are considered as k-tuples. One component for each track.

Example

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input
greater than 2, written on the first track, and determines if it is a prime. The input is surrounded
by ¢ and $ on the first track.

Thus, the allowable input symbols are [¢, B, B], [0, B, B], [1, B, B], and [$, B, B]. These
symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The
blank symbol can be represented by [B, B, B ]

To test if its input is a prime, the Tm first writes the number two in binary on the second track
and copies the first track onto the third track. Then, the second track is subtracted, as many
times as possible, from the third track, effectively dividing the third track by the second and
leaving the remainder. If the remainder is zero, the number on the first track is not a prime. If
the remainder is nonzero, increase the number on the second track by one.

If now the second track equals the first, the number on the first track is a prime, because it
cannot be divided by any number between one and itself. If the second is less than the first, the
whole operation is repeated for the new number on the second track. In Fig., the Tm is testing
to determine if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so
37 appears on the third track.

Page | 139



3. Subroutines

VII. SUBROUTINES. It is possible for one Turing machine to be a ‘“‘sub-
routine” of another Tm under rather general conditions. If 73 is to be a
subroutine of T, we require that the states of 7} be disjoint from the states
of T, (excluding the states of Ty’s subroutine). To “call” T, T, enters the
start state of 7;. The rules of 73 are part of the rules of T,. In addition,
from a halting state of T;, T, enters a state of its own and proceeds.

UNDECIDABILITY

Design a Turing machine to add two given
integers. Solution:

Assume that m and n are positive integers. Let us represent the input as 0" B0".
If the separating B 1s removed and 0’s come together we have the required
output, /2 + # is unary.

(1) The separating B 1s replaced by a 0.
(11) The rightmost 0 is erased i.e.. replaced by B.

Let us define M =({g,.9,-9>-93-94}-{0}.{0.B}.0.q,.{q,})- O is
defined by Table shown below.

Tape Symbol

State 0 B
o (¢0.0.R) (¢:.0.R)
a1 (¢;.0.R) (¢,.B.L)
4> (¢5.B.L) ==
s (¢3.0.L) (¢4.B.R)

M starts from ID ¢,0™ B0". moves right until seeking the blank B. M

changes state to ¢,. On reaching the right end, it reverts, replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state g,.

Some unsolvable Problems are as follows:

Page | 140



(i) Does a given Turing machine M halts on all input?

(ii) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?

(iv) Does L(M) contain a string of length k, for some given k?

Page | 141



(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing
machine M and input string w, whether or not M accepts w. These problems for which no
algorithms exist are called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:

Our next goal is to devise a binary code for Turing machines so that each TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, M;.” To represent a TM M = (Q,{0,1},T',4,q1, B, F) as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are q;,q2,---,¢r for some r. The start state
will always be g, and g will be the only accepting state. Note that, since
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

e We shall assume the tape symbols are X;,X>,..., X, for some s. X;
always will be the symbol 0, X, will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

e We shall refer to direction L as D; and direction R as Ds.

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that L(M) = L.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function 8. Suppose one transition rule
is 6(gi, X;) = (gx, X1, D), for some integers i, j, ¥, I, and m. We shall code
this rule by the string 0¢110910¥10'10™. Notice that, since all of ¢, j, k, I, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

975 b 0% W O ¢ I (1

where each of the C’s is the code for one transition of M.

Page | 142



Diagonalization language:

e The language Lg, the diagonalization language, is the set of strings w;
such that w; is not in L{M;).

That is, Lq consists of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason Ly is called a “diagonalization” language can be seen if we
consider Fig. 9.1. This table tells for all z and j, whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”! We may
think of the ith row as the characteristic vector for the language L(M;); that
is, the 1’s in this row indicate the strings that are members of this language.

j —»
1 2 3 4 *
1 RONL 1 0
2 [1NIN0 0
"3 o oNIN\l
¢40101

Diagonal

This table represents language acceptable by Turing machine

The diagonal values tell whether M; accepts w;. To construct Lq, we com-
plement the diagonal. For instance, if Fig. 9.1 were the correct table, then
the complemented diagonal would begin 1,0,0,0,... . Thus, L4 would contain
w;, = €, not contain w, through wy, which are 0, 1, and 00, and so on.

The trick of complementing the diagonal to construct the characteristic
vector of a language that cannot be the language that appears in any row,
is called diagonalization. It works because the complement of the diagonal is

Page | 143



Proof that Lqis not recursively enumerable:

Theorem 9.2: Ly is not a recursively enumerable language. That is, there is
no Turing machine that accepts L.

PROOF: Suppose Lq were L(M) for some TM M. Since L, is a language over
alphabet {0,1}, M would be in the list of Turing machines we have constructed,
since it includes all TM’s with input alphabet {0,1}. Thus, there is at least
one code for M, say i; that is, M = M,;.

Now, ask if w; is in L.

o Ifw; isin Lg, then M; accepts w;. But then, by definition of L4, w; is not
in Lg, because Lq contains only those w; such that M; does not accept
wy.

e Similarly, if w; is not in L4, then M; does not accept w;, Thus, by defini-
tion of Ly, w; isin Ly.

Since w; can neither be in Ly nor fail to be in L4, we conclude that there is a
contradiction of our assumption that M exists. That is, L, is not a recursively
enumerable language. O

Recursive Languages:

We call a language L recursive if L = L(M) for some Turing machine M such
that:

1. If wis in L, then M accepts (and therefore halts).

2. If w is not in L, then M eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language L as a “problem,” as will be the case frequently,
then problem L is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.

Page | 144



Theorem 9.3: If L is a recursive language, so

is L.

PROOF: Let L = L(M) for some TM M that always halts. We construct a ™
M such that L = L(M) by the construction suggested in Fig. 9.3. That is, M

behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no

transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from r.

3. For each combination of a nonaccepting state of M and a tape symbol of
M such that M has no transition (i.e., M halts without accepting), add

a transition to the accepting state r.

—* Accept

—> Reject

=

<

Since M is guaranteed to halt, we know that M is also guaranteed to halt.
Moreover, M accepts exactly those strings that M does not accept. Thus M

accepts L. O

Accept
Reject

Page | 145



Theorem 9.4: If both a language L and (its complement are RE, then L is
recursive. Note that then by Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let L = L(M;) and T = L(M,).
Both M; and M, are simulated in parallel by a TM M. We can make M a
two-tape TM, and then convert it to a one-tape TM, to make the simulation
easy and obvious. One tape of M simulates the tape of M;, while the other tape
of M simulates the tape of M>. The states of M; and M, are each components
of the state of M.

— Accept —™  Accept

—™ Accept —  Reject

Figure 9.4: Simulation of two TM’s accepting a language and its complement

If input w to M is in L, then M; will eventually accept. If so, M accepts
and halts. If w is not in L, then it is in L, so M> will eventually accept. When
M accepts, M halts without accepting. Thus, on all inputs, M halts, and

L(M) is exactly L. Since M always halts, and L(M) = L, we conclude that L
is recursive. O

Universal language

We define L, the universal language, to be the set of binary strings that
encode, in the notation of Section 9.1.2, a pair (M, w), where M is a fI‘M with
the binary input alphabet, and w is a string in (0+1)*, such that w is in L(M).
That is, L, is the set of strings representing a TM and an input accepted ‘by
that TM. We shall show that there is a TM U, often called the universal Tur:wf_q
machine, such that L, = L(U). Since the input to U is a binary string, U is
in fact some M; in the list of binary-input Turing machines we developed in

Page | 146



Undecidability of Universal Language:

Theorem 9.6: L, is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 9.3, L, the complement of L,, would also be
recursive. However, if we have a TM M to accept L, then we can construct a
TM to accept Lg (by a method explained below). Since we already know that
Lq is not RE, we have a contradiction of our assumption that L, is recursive.

w

Hypothetical Accept — ™ Accept

| Copy ™ w1llw -= algorithm

Mfor L, | Reject —— Reject

M’ for Ld

Figure 9.6: Reduction of Ly to L,
Suppose L(M) = L,. As suggested by Fig. 9.6, we can modify TM M into

a TM M’ that accepts Ly as follows.

1. Given string w on its input, M’ changes the input to wlllw. You may,
as an exercise, write a TM program to do this step on a single tape.
However, an easy argument that it can be done is to use a second tape to
copy w, and then convert the two-tape TM to a one-tape TM.

2. M’ simulates M on the new input. If w is w; in our erllﬂne-:rati.on, then
M’ determines whether M; accepts w;. Since M accepts Ly, it will accept

if and only if M; does not accept wy; i.e., w; is in Lq.

- . - - ' -
Thus, M’ accepts w if and only if w is in Lg. Since we know M’ cannot exist

by Theorem 9.2, we conclude that L, is not recursive.

O

Problem -Reduction

. If P1 reduced toP2,

Then P2 is at least as hard as P1.
Theorem: If P1 reduces to P2 then,

If P1 is undecidable the so is P2.
If P1 is Non-RE then so is P2.

Page | 147



Post's Correspondence Problem (PCP)

A post correspondence system consists of a finite set of ordered pairs

zy et (Ben) 12020 oo gor some alphabet Z.
i, st

Any sequence of numbers “1-*z-’

is called a solution to a Post Correspondence System.

Mo % T e X" The Post's Correspondence Problem is the problem of determining
whether a Post Correspondence system has a solutions.

Example 1 : Consider the post correspondence system

{[M’ME}) ’[bb’ba) ’[abb’b)} The list 1,2,1,3 is a solution to it.

Because

M A T ANV 5

i Xi Yi
gabbgaghh =gabbagabf L o aab
[T I TR LT . 2 Bk Ber

aabbaaabh = aabbacabb 3 bk b

(A post correspondence system is also denoted as an instance of

the PCP) Example 2 : The following PCP instance has no solution

This can be proved as follows. (%2:7) cannot be chosen at the start, since than the LHS and
RHS would differ ia the first symabol ( in LHS and in

':XER’HE). So, we must start with (%.1) . The next pair must be so that the 3 rd symbol in the
RHS becomes identical to that of the LHS, whichis a . After this

step, LHS and RHS are not matching. If (71.1) is selected next, then would be mismatched in the
Page | 148



7 thsymbol

Page | 149



(&#inLHS and @in RHS).[‘ﬁ’y?) is selected, instead, there will not be any choice to match the
both side in the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

i Xi Yi
1 1 101
2 10 00
3 011 11

The following properties can easily be proved.

Proposition The Post Correspondence System
[(aiu,a.ﬁ),(ﬂiﬁ,ah),.. .,(ai,.,a..r'..)]

d&such that iy = j, or
Ak andisuchthati, » i, andi, < j,

has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

Proposition Any PCP instance over an alpiabet  with =22

[ =2

is equivalent to a PCP

instance bver an alphabet with
Proof : Let z= {ﬂlﬂzf'wﬂx}:k ’ e

r={0.1 4 €2,181 Lk o 1|:‘Il-anyPCP instahce over

will
now have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instanceover [’

Consider We can now encode every

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an
arbitrary Post Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability
of PCP. Since halting problem of TM is undecidable (already proved), This reduction shows that
PCP is also undecidable. The proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free

languages are undecidable. To prove this we reduce the PCP to each of these problem. The
following discussion makes it clear how PCP can be used to serve this purpose.

Page | 150



Let{[xl’yl) (%0 72) 7 (T be a Post Correspondence System over the alphabet Z. We
construct two CFG's Gx and Gy from the ordered pairs x,y respectively as follows.

G?f = I:jl‘F;f’E?f’iEi"f’Sﬁ')

and

G, - (4,7, 5.5,

where

P={8, =8, S, > xif =124

g B =15 2 S 8, o yil=12 1)

it is clear that the grammar Gy generates the strings that can appear in the LHS of a sequence
while solving the PCP followed by a sequence of numbers. The sequence of number at the end
records the sequence of strings from the PCP instance (in reverse order) that generates the

string. Similarly, % generates the strings that can be obtained from the RHS of a sequence and
the corresponding sequence of numbers (in reverse order).

Now, if the Post Correspondence System has a solution, then there must be a sequence
3.1'3-2,"',3-5; Suﬁ
R R R

According to the construction of S and G,

-
Sx—?:» X% KR gy and

-

In this case

Page | 151



XXy T Xy Rl T VY, T bk = wisay)

L3 LT
Hence ,WE (&) and ( J’) implying
L{G)NL(G,) = ¢
Conversely, let wel [ij M L(Gy)
Hence, w must be in the form wiw?2 \/thre? and w2 in a sequence - iah (since,
only that kind of strings can be generate%’by eachof Y and ).

Now, the string ™1 ~ %% "% T YY" M s 3 solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose
intersection is nonempty. The following result is a direct conclusion of the above.

Theorem : Given any two CFG's G1 and G2 the question "Is LIGINL(G) = ¢7. is
undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This
would imply that PCP is decidable as shown below.

For any Post Correspondence System, P construct grammars G and % by using the

constructions elaborated already. We can now use the algorithm A to decide whetherand

L{GINL(G, = ¢

If Cx and G are CFG's constructed from any arbitrary Post Correspondence System, than it is

not difficult to show that L(G,) and L(G-”)are also context-free, even though the class of
context-free languages are not closed under complementation.

IALERAIALE; . . .
( "_)’ ( J’) and their complements can be used in various ways to show that many other
questions related to CFL's are undecidable. We prove here some of those.

Theorem : Foe any two arbitrary CFG's G &G

L(G)=x7
L(G)=L(&)7

*the following questions are undecidable

i Is

ii. Is

Thus, PCP is decidable, a contradiction. So, such an algorithm does not exist.

Page | 152



LI )=¢7
Hence, it suffice to show that the question “Is [ 1) 7. is undecidable.

L[G”)and L(Gy) L=L[iju"£(gy

are CFl's and CFL's are closed under union,

L=L(G,)NL(G,)

Since, ) is also context-

free. By DeMorgan's theorem,

LG =
If there is an algorithm to decide whether [ 1) ¢ we can use it to decide whether

L=L(G)NL(G,)=¢

or not. But this problem has already been proved to be undecidable.

L(G)=¢

Hence there is no such algorithm to decide or not.
ii.

iF .
Let P be any arbitrary Post correspondence system and G’f and ~*are CFg's constructed from the pairs of
strings.

L=1(GIUL(G,

) must be a CFL and let Gigenerates L;. That is,

L=2(G) = L(GIUL(G,) = L(G)NL(G,)

we L(GINL(G,)

by De Morgan's theorem, as shown already, any string, represents a solution to the

L _ . ,
PCP. Hence, I: 1) contains all but those strings representing the solution to the PCP.

LIG) =(ZU{L 2, 1))

Let for same CFG G..

LI =L
It is now obvious that [ 1) [ 3) if and only if the PCP has no solutions, which is already provedto be

) =L
undecidable. Hence, the question “Is L(G) (G) ?" is undecidable.

iii. (Eu{l,z,mn})_

Let Zibe a CFG generating the language
Lg)UL(a

b

and G, be a CFGgenerating

F
) where Gy and ~*are CFG.s constructed from same arbitrary instance of PCP.

Page | 153



L(G) L(G)  L(G)UL(G) = (ZU(L2 - »))

iff

iff the PCP instance has no solutions as discussed in part (ii).

Page | 154



Hence the proof.

Theorem : It is undecidable whether an arbitrary CFG is ambiguous.

Proof : Consider an arbitrary instance of PCP and construct the CFG's S and

ordered pairs of strings.

Gy from the

We construct a new grammar G from s and G, as follows.

8

[ME’ P’S) where

N

(5.5.5).

= is same as that of G and Gf.

P={RUBU[s->5,]s,]

This constructions gives a reduction of PCP to the -------- of whether a CFG is ambiguous, thus
leading to the undecidability of the given problem. That is, we will now show that the PCP has a
solution if and only if G is ambiguous. (where G is constructed from an arbitrary instance of
PCP).

Only if Assume that 142" Y a solution sequence to this instance

of PCP. Consider the following two derivation in CRER S

1 1 1
Ry :I; R :I; %, R :I; %5, 7, R AN

? R TR Sdpa i

1
=R R MR
1 1 1
S:G‘» 5, =% o =V Vi, ok
=W DS
1

=Y, Yy Vit i

But,

qu!? "'}’[;,-i =_}?!|y12 --."}?l‘:-, SIfIcE "'31,32,"'3&

Page | 155



. . : : xE X o
is a solution to the PCP. Hence the same string of terminals ( RA ) has two derivations.

Page | 156



Both these derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation in

G and

& . . . . .

*Because, every terminal string which are derivable under these grammars ends with a
Ll i
sequence of integers This sequence uniquely determines which productions must be

used at every step of the derivation.

Hence, if a terminal string, we L(G) , has two leftmost derivations, then one of them must

begin with the step.
then continues with derivations under Gy

In both derivations the resulting string must end with a sequence -1 S for same 2 2 1 The
reverse of this sequence must be a solution to the PCP, because the string that precede in one

caseis

i & P ¥a ¥

X
»- " and *"* in the other case. Since the string derived in both cases are

sequence ‘1 rlry identical

Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complezity T'(n) [or to have “running
time 7'(n)"] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T(n), such as T(n) = 50n® or T(n) = 3" + 5nt; we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L(M) for some deterministic TM M of time complexity T'(n).
Non deterministic polynomial time:
A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for
some polynomial p is said to be non polynomial time NTM.
e NP is the set of languags that are accepted by polynomial time NTM’s
e Many problems are in NP but appear not to be in p.
e One of the great mathematical questions of our age: is there anything in NP that is not inp?

NP-complete problems:
If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in
NP are the hardest , in the sense that if any one of them were in P, then P=NP.

e These are called NP-complete.

Page | 157



o Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the

belief that they are all hard.
Methods for proving NP-Complete problems:

e Polynomial time reduction (PTR): Take time that is some polynomial in the input
size to convert instances of one problem to instances of another.

e IfP1PTRtoP2andP2isin Pl thesoisP1.

e Start by showing every problem in NP has a PTR to Satisfiability of Booleanformula.

e Then, more problems can be proven NP complete by showing that SAT PTRs to
them directly or indirectly.

Page | 158



