INSTITUTE OF AERONAUTICALENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

ELECTRICAL AND ELECTRONICS ENGINEERING

TUTORIAL QUESTION BANK

Course Title	WAVES	S ANE	O OPTICS				
Course Code	AHSB04	4					
Programme	B.Tech						
Semester	Ι	AE	ECE ME				
Semester	II	II CE EEE					
Regulation	IARE - I	R18					
Course Structure	Lectur	es	Tutorials	Practical	Credits		
Course Structure	3 1 - 4						
Course Coordinator	Dr. Rizwana, Professor						
Course Faculty		-	Pratima, Associate P 1 Sujani, Assistant Pr				

COURSE OBJECTIVES (COs):

The course should enable the students to:

Ι	Enrich knowledge in principles of quantum mechanics and semiconductors.
II	Correlate principles and applications of lasers and fiber optics.
III	Meliorate the knowledge of light and optics and also their applications.
IV	Develop strong fundamentals of transverse, longitudinal waves and harmonic waves.

COURSE OUTCOMES (COs):

CO 1	Interpret the concept of Quantum mechanics with dual nature of matter.
CO 2	Identify different types of semiconductors and dependence of their Fermi level on various factors.
CO 3	Understand the working principle of different types of lasers and optical fibre communication.
CO 4	Explore the different phenomena's of light like interference, diffraction etc.
CO 5	Analyze different harmonic oscillators and gain knowledge of different waves and their wave equation.

	ZARNING OUTCOMES(CLOS):
AHSB04.01	Recall the basic principles of physics and apply these concepts of physics in solving the real-time problems.
AHSB04.02	Acquire knowledge about fundamental in quantum mechanics.
AHSB04.03	Interpretation of dual nature of matter wave concept using Davisson & Germer's experiment.
AHSB04.04	Estimate the energy of the particles using Schrödinger's wave equation and apply it to particle in potential box.
AHSB04.05	Recollect the conductivity mechanism involved in semiconductors and calculate carrier concentrations.
AHSB04.06	Understand the band structure of a solid and classify materials as metals, insulators or semiconductors, and sketch a schematic band diagram for each one.
AHSB04.07	Understand the basic principles involved in the production of Laser light and also real-time applications of lasers.
AHSB04.08	Recollect basic principle, construction, types and attenuation of optical fibers.
AHSB04.09	Understand the importance of optical fibers in real-time communication system.
AHSB04.10	Apply different laws of radiation to understand the phenomenon behind production of light.
AHSB04.11	Apply the phenomenon of interference in thin films using Newton's rings experiment.
AHSB04.12	Identify diffraction phenomenon due to slits.
AHSB04.13	Acquire knowledge of basic harmonic oscillators and discuss in detail different types of harmonic oscillators.
AHSB04.14	Describe the steady state motion of forced damped harmonic oscillator.
AHSB04.15	Acquire knowledge of reflection and transmission of waves at a boundary of media.

COURSE LEARNING OUTCOMES(CLOs):

Part - A(Short Answer Questions) S No Course Outcomes I Learning Learning Outcomes I Learning Uctowers I Learning Uctowers I Learning Uctowers I Learning I Learnin		UNIT – I			
S No QUESTION Blooms Taxonomy Level Course Outcomes (CLOs) 1 Discuss the de-Brogle's hypothesis of duality of material particles and arrive at the concept of matter waves. Understand CO 1 AHSB04.02 2 and kinetic energy. AHSB04.02 AHSB04.02 AHSB04.02 3 Light radiation exhibits both puricle and wave nature. Explain this understand the concept of Black body radiation. Remember CO 1 AHSB04.02 2 Explain the concept of Black body radiation. Remember CO 1 AHSB04.02 2 Explain the concept of Dhoteloctic effect. Romember CO 1 AHSB04.02 3 Light radiation exploits of matter waves. Understand CO 1 AHSB04.02 4 Explain the concept of Dhoteloctic effect. Romember CO 1 AHSB04.02 5 Explain the concept of Moteloctic effect. Understand CO 1 AHSB04.02 6 Explain the concept of Black body radiation Understand CO 1 AHSB04.02 10 Write expressions for wave function and eigen values for a particle in one dimensional square well box of infinite potential. Understand		QUANTUM MECHANICS			
S No QUESTION Taxonomy Level Outcomes Pueron Learning Outcomes (CLOs) 1 Discuss the de-Brogle's hypothesis of duality of material particles and arrive at the concept of mater waves. Understand CO 1 AHSB04.02 2 and Kineic energy. Understand CO 1 AHSB04.02 3 Light radiation exhibits both particle and wave nature. Explain this the concept of Black body radiation. Remember Remember CO 1 AHSB04.02 2 Explain the concept of Compton effect. Understand CO 1 AHSB04.02 6 Explain the concept of Compton effect. Understand CO 1 AHSB04.03 8 Describe behavior of matter wave. Particle intree Understand CO 1 AHSB04.04 9 Write corpersions for wave function and cregy of a particle in three Understand CO 1 AHSB04.04 10 Write spressions for eigen function and eigen values for a particle in three Understand CO 1 AHSB04.02 2 Describe the phenomena of Photoelectric effect with experimental arrangement Understand CO 1 AHSB04.02 3 What is Compton effect? Explain with neat diagram. Understand <th></th> <th>Part - A(Short Answer Questions)</th> <th></th> <th></th> <th></th>		Part - A(Short Answer Questions)			
1Discuss the de-Broglic's hypothesis of duality of material particles and arrive at the concept of matter waves.UnderstandCO 1AHSB04.022and kinetic energy.1Sight relation exhibits both particle and wave nature. Explain this conception of light.UnderstandCO 1AHSB04.023Light relation exhibits both particle and wave nature. Explain this conception of plat.UnderstandCO 1AHSB04.025Explain the concept of Black body radiation.RememberCO 1AHSB04.026Explain the concept of Compton effect.UnderstandCO 1AHSB04.027Explain the concept of matter waves.UnderstandCO 1AHSB04.028Describe behavior of matter waves giving any two of its properties.UnderstandCO 1AHSB04.039Write expressions for wave function and eigen values for a particle in three dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0210Write expressions for cigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.022Describe the phenomea of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.021Explain Max – Born interpretation (Physical significance) of wave function the socnept of matter waves.UnderstandCO 1AHSB04.022Describe the phenomean aspociated with block body radiationUnderstandCO 1AHSB04.023What is compton effect?Explain the concept of ma	S No	QUESTION	Taxonomy		Learning Outcomes
Write an expression for de-Broglic wave length in terms of momentumUnderstandCO 1AHSB04.022and kinetic energy.CO 1AHSB04.02CO 1AHSB04.023conception of light.RememberCO 1AHSB04.024Explain the concept of Black body radiation.RememberCO 1AHSB04.025Explain the concept of Photoelectric effect.RememberCO 1AHSB04.026Explain the concept of Compton effect.UnderstandCO 1AHSB04.037Explain the physical significance of wave function which connects theUnderstandCO 1AHSB04.039Write expressions for aware nature of matter waves.UnderstandCO 1AHSB04.0410Write expressions for eigen function and eigen values for a particle in oneUnderstandCO 1AHSB04.04110Write expressions for eigen function and eigen values for a particle in oneUnderstandCO 1AHSB04.022Describe behavior of Black body radiationUnderstandCO 1AHSB04.022Describe the phenomen of Photoelectric effect with experimentalUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of wave functionUnderstandCO 1AHSB04.035Explain Max - Born interpretation (Physical	1		Understand	CO 1	AHSB04.02
3Light radiation exhibits both particle and wave nature. Explain this concept of flack body radiation.CO 1AHSB04.024Explain the concept of Black body radiation.RememberCO 1AHSB04.025Explain the concept of Photoelectric effect.RememberCO 1AHSB04.027Explain the concept of Compton effect.UnderstandCO 1AHSB04.027Particle nature and wave nature of matter wave.UnderstandCO 1AHSB04.038Describe behavior of matter waves by giving any two of its properties.UnderstandCO 1AHSB04.049Write expressions for wave function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0210Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.022Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.034Conpare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.035Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.036Derive an expression for the wavelength associated with diverse.UnderstandCO 1AHSB04.037Explain Plank's radiation law associated with block body radiationUnderstand </td <td>2</td> <td>Write an expression for de-Broglie wave length in terms of momentum</td> <td>Understand</td> <td>CO 1</td> <td>AHSB04.02</td>	2	Write an expression for de-Broglie wave length in terms of momentum	Understand	CO 1	AHSB04.02
4Explain the concept of Black body radiation.RememberCO 1AHSB04.025Explain the concept of Compton effect.RememberCO 1AHSB04.026Explain the concept of Compton effect.UnderstandCO 1AHSB04.037Explain the concept of Compton effect.UnderstandCO 1AHSB04.038Describe behavior of matter waves.UnderstandCO 1AHSB04.039Write expressions for wave function and energy of a particle in threeUnderstandCO 1AHSB04.039Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0410Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.022Describe the phenomena of Photoelectric effect with experimental arrangement.UnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave function by a potentialCO 1AHSB04.036Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.037Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.03 <t< td=""><td></td><td>Light radiation exhibits both particle and wave nature. Explain this</td><td>Understand</td><td>CO 1</td><td>AHSB04.02</td></t<>		Light radiation exhibits both particle and wave nature. Explain this	Understand	CO 1	AHSB04.02
5 Explain the concept of Photoelectric effect. Remember C0 1 AHSB04.02 6 Explain the concept of Compton effect. Understand C0 1 AHSB04.02 7 Explain the physical significance of wave function which connects the particle nature and wave nature of matter waves. Understand C0 1 AHSB04.03 9 Mirte expressions for matter waves by giving any two of its properties. Understand C0 1 AHSB04.03 9 Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential. Understand C0 1 AHSB04.04 10 Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential. Understand C0 1 AHSB04.02 2 Describe the phenomena of Photoelectric effect with experimental arrangement Understand C0 1 AHSB04.02 3 Mhat is Compton effect? Explain with neat diagram. Understand C0 1 AHSB04.02 4 Compare a particle with awave and discuss about dual nature of radiation Understand C0 1 AHSB04.03 5 Explain Max - Born interpretation (Physical significance) of wave function Understand C0 1 AHSB04.04	4		Remember	CO 1	AHSB04.02
TExplain the physical significance of wave function which connects the particle nature and wave nature of matter wave.UnderstandCO 1AHSB04.038Describe behavior of matter waves by giving any two of its properties.UnderstandCO 1AHSB04.039Write expressions for wave function and energy of a particle in three dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0410Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0410Explain the concept of Black body radiationUnderstandCO 1AHSB04.022Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave functionUnderstandCO 1AHSB04.036Derive an expression for the wavelength associated with block body radiationUnderstandCO 1AHSB04.037Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.037Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves.UnderstandCO 1AHSB04.03<	5		Remember	CO 1	AHSB04.02
1 particle nature and wave nature of matter wave. Understand CO 1 AHSB04.03 9 Write expressions for wave function and energy of a particle in three dimensional square well box of infinite potential. Understand CO 1 AHSB04.04 10 Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential. Understand CO 1 AHSB04.04 20 Describe the phenomena of Photoelectric effect with experimental arrangement Understand CO 1 AHSB04.02 3 What is Compton effect? Explain with neat diagram. Understand CO 1 AHSB04.02 4 Coprae a particle with a wave and discuss about dual nature of radiation Understand CO 1 AHSB04.04 6 Derive an expression for the wavelength associated with electron, accelerated by a potential CO 1 AHSB04.04 7 Explain Max – Born interpretation (Physical significance) of waves function Understand CO 1 AHSB04.03 8 Discuss de-Broglie's concept of matter waves Understand CO 1 AHSB04.04 9 Matter waves are not electromagnetic waves but a new kind of waves. Justify Understand CO 1 AHSB04.03 9 Matter waves	6	Explain the concept of Compton effect.	Understand	CO 1	AHSB04.02
9Write expressions for wave function and energy of a particle in three dimensional square well box of infinite potential.UnderstandCO 1AHSB04.0410Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.042Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave function by a potentialCO 1AHSB04.04CO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.04CO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with a next diagram and explain how it wave equation for the motion of an electrom.UnderstandCO 1AHSB04.0311	7			CO 1	AHSB04.03
10Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.UnderstandCO 1AHSB04.04Part - B (Long Answer Questions)1Explain the concept of Black body radiation arrangementUnderstandCO 1AHSB04.022Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave function by a potentialCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass m' and kinetic energy 'E' is given by $h' ^{2} m E$.CO 1AHSB04.0411Describe Davisson Germer experiment with a neat diagram and explain how it wave equation for the motion of a electron.UnderstandCO 1AHSB04.0312Considering dual nature of electron, Derive Schrodinger's time inde	_	Write expressions for wave function and energy of a particle in three			AHSB04.03 AHSB04.04
1Explain the concept of Black body radiationUnderstandCO 1AHSB04.022Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave functionUnderstandCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic wavesUnderstandCO 1AHSB04.039Matter waves are not electron of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by 	10	Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.	Understand	CO 1	AHSB04.04
2Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave function by a potentialUnderstandCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/2 m E$.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electron.UnderstandCO 1AHSB04.0412Considering dual nature of electron.Derive Schrodinger's time independent impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0513Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite h		Part - B (Long Answer Questions)			
2Describe the phenomena of Photoelectric effect with experimental arrangementUnderstandCO 1AHSB04.023What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave function by a potentialUnderstandCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/2 m E$.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electron.UnderstandCO 1AHSB04.0412Considering dual nature of electron.Derive Schrodinger's time independent impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0513Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite h	1	Explain the concept of Black body radiation	Understan	d CO 1	AHSB04.02
3What is Compton effect? Explain with neat diagram.UnderstandCO 1AHSB04.024Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave functionUnderstandCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialUnderstandCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.038Discuss de-Broglie's concept of matter wavesUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E_{.}$ UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0512Considering dual nature of electron, Derive Schrodinger's time independent impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0513Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that	2	Describe the phenomena of Photoelectric effect with experimental			AHSB04.02
4Compare a particle with a wave and discuss about dual nature of radiationUnderstandCO 1AHSB04.025Explain Max – Born interpretation (Physical significance) of wave functionCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.048Discuss de-Broglie's concept of matter wavesUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310associated with an electron of mass 'm' and kinetic energy 'E' is given by h/√2 m E.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electron.UnderstandCO 1AHSB04.0412Considering dual nature of electron.Derive Schrödinger's time independent impenetrable walls in infinite height at x = 0 and x = a, show that the permitted energy levels of a particle are given by n $^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.CO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle are given by n $^2 h^2 / 8 m a^2$.Understand<	3		Understan	d CO 1	AHSB04.02
5Explain Max – Born interpretation (Physical significance) of wave function UnderstandCO 1AHSB04.046Derive an expression for the wavelength associated with electron, accelerated by a potentialUnderstandCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.047Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E$.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0412Considering dual nature of electron. Derive Schrodinger's time independent impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.CO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch	4		Understan		AHSB04.02
by a potentialUnderstandUnderstand7Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.028Discuss de-Broglie's concept of matter wavesUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E$ UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0312Considering dual nature of electron, Derive Schrodinger's time independent wave equation for the motion of an electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.CO 1AHSB04.052Calculate the velocity and kinetic energy of an electron having wavelength of 0.21 nm.CO 1AHSB04.052Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/1	5		Understan		AHSB04.04
7Explain Plank's radiation law associated with block body radiationUnderstandCO 1AHSB04.028Discuss de-Broglie's concept of matter wavesUnderstandCO 1AHSB04.039Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E_{-}$ UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0312Considering dual nature of electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.CO 1AHSB04.05AHSB04.052Calculate the velocity and kinetic energy of an electron having wavelength of 0.21 m.UnderstandCO 1AHSB04.052Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.053Calculate the wavelength of an electron raised to a potential 15kV	6				AHSB04.04
9Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.UnderstandCO 1AHSB04.0310Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E$.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0312Considering dual nature of electron, Derive Schrodinger's time independent impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.0411Calculate the velocity and kinetic energy of an electron having wavelength of velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10 ⁻²⁷ kg).UnderstandCO 1AHSB04.052Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.00	7	Explain Plank's radiation law associated with block body radiation	Understan	d CO 1	AHSB04.02
this concept by discussing different properties of matter waves.10Using Planck's and Einstein's theory of radiation, Show that the wavelength associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E$.UnderstandCO 1AHSB04.0311Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0312Considering dual nature of electron, Derive Schrodinger's time independent wave equation for the motion of an electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.051Calculate the velocity and kinetic energy of an electron having wavelength of $0.21 nm.$ UnderstandCO 1AHSB04.062Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674×10^{-27} kg).UnderstandCO 1AHSB04.033Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.03	8	Discuss de-Broglie's concept of matter waves	Understan	d CO 1	AHSB04.03
10associated with an electron of mass 'm' and kinetic energy 'E' is given by $h/\sqrt{2} m E$ 11Describe Davisson Germer experiment with a neat diagram and explain how it established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0312Considering dual nature of electron, Derive Schrodinger's time independent wave equation for the motion of an electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.CO 1AHSB04.051Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.UnderstandCO 1AHSB04.062Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674×10^{-27} kg).UnderstandCO 1AHSB04.00 AHSB04.003Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.00 AHSB04.00	9		Understan	d CO 1	AHSB04.03
established the proof for wave nature of electrons.UnderstandCO 1AHSB04.0412Considering dual nature of electron, Derive Schrodinger's time independent wave equation for the motion of an electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.051Calculate the velocity and kinetic energy of an electron having wavelength of velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10^{-27} kg).UnderstandCO 1AHSB04.043Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.05	10	associated with an electron of mass 'm' and kinetic energy 'E' is given b		d CO 1	AHSB04.03
12Considering dual nature of electron, Derive Schrodinger's time independent wave equation for the motion of an electron.UnderstandCO 1AHSB04.0413Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.051Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.UnderstandCO 1AHSB04.062Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674×10^{-27} kg).UnderstandCO 1AHSB04.063Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.05	11		it Understand	d CO 1	AHSB04.03
13Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.UnderstandCO 1AHSB04.0514Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.05Part - C (Analytical Questions)1Calculate the velocity and kinetic energy of an electron having wavelength of velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10^{-27} kg).UnderstandCO 1AHSB04.00 AHSB04.00 AHSB04.003Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.00 AHSB04.00 AHSB04.00	12	Considering dual nature of electron, Derive Schrodinger's time independent	nt Understan	d CO 1	AHSB04.04
14Discuss the results from the eigen values, eigen functions and probability density for a particle in a one dimensional potential box of infinite height. Also sketch the figures.UnderstandCO 1AHSB04.05Part - C (Analytical Questions)1Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.UnderstandCO 1AHSB04.052Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10 ⁻²⁷ kg).UnderstandCO 1AHSB04.053Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.05	13	Assuming that a particle of mass m is confined in a field free region between impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the		d CO 1	AHSB04.05
1 Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm. Understand CO 1 AHSB04.00 A	14	Discuss the results from the eigen values, eigen functions and probabilit density for a particle in a one dimensional potential box of infinite heigh Also sketch the figures.	e y	d CO 1	AHSB04.05
0.21nm. AHSB04.03 2 Calculate the de Broglie wavelength associated with a proton moving with a velocity of 1/10 of velocity of light. (Mass of proton = 1.674 x 10 ⁻²⁷ kg). Understand CO 1 AHSB04.03 3 Calculate the wavelength of an electron raised to a potential 15kV. Understand CO 1 AHSB04.03			- 1	- 1	
velocity of 1/10 of velocity of light. (Mass of proton = $1.674 \times 10^{-27} \text{ kg}$).AHSB04.033Calculate the wavelength of an electron raised to a potential 15kV.UnderstandCO 1AHSB04.03AHSB04.03AHSB04.03AHSB04.03		0.21nm.			AHSB04.03
Calculate the wavelength of an electron raised to a potential 15kV. AHSB04.03					AHSB04.01 AHSB04.03
4 Calculate de-Broglie wavelength of neutron. (Given kinetic energy of the Understand CO 1 AHSB04.0)	3				AHSB04.01 AHSB04.03
neutron is 0.025eV, mass of neutron = 1.674×10^{-27} kg). AHSB04.03	4	neutron is 0.025eV, mass of neutron = 1.674×10^{-27} kg).			AHSB04.01 AHSB04.03
10 ⁻¹⁰ m. AHSB04.03	5	10^{-10} m.			AHSB04.01 AHSB04.03
6 Find the wavelength associated with an electron rose to a potential 1600V. Understand CO 1 AHSB04.03	6	Find the wavelength associated with an electron rose to a potential 1600V.	Understar	d CO 1	AHSB04.03

7	Calculate the energies that can be possessed by a particle of mass 8.50×10^{-31} kg which is placed in an infinite potential box of width 10^{-9} m.	Understand	CO 1	AHSB04.01 AHSB04.05
8	Find the lowest energy of an electron confined in a square box of side 0.1nm.	Understand	CO 1	AHSB04.01
	UNIT – II			AHSB04.05
	INTRODUCTION TO SOLIDS AND SEMICONDUC	TOPS		
	Part – A (Short Answer Questions)			
1	Define Bloch theorem.	Understand	CO 2	AHSB04.05
2	Define a metallic solid and draw its band diagram to explain its electronic behavior.	Understand	CO 2	AHSB04.05
3	On the basis of band theory how the crystalline solids are classified into conductors, semiconductors and insulators.	Understand	CO 2	AHSB04.05
4	Define a semiconductor and draw its band diagram to explain its electronic behavior.	Understand	CO 2	AHSB04.06
5	Define an insulator and draw its band diagram to explain its electronic behavior.	Remember	CO 2	AHSB04.06
6	Write the classification of semiconductors based on variation of conductivity in terms of temperature and doping.	Understand	CO 2	AHSB04.06
7	What do you understand by an intrinsic semiconductor? Give an example.	Remember	CO 2	AHSB04.06
8	Write the expressions for carrier concentration of electrons and holes in intrinsic semiconductors in n-type and p-type semiconductors.	Remember	CO 2	AHSB04.06
9	Write an expression for carrier concentration of electrons in p-type semiconductor.	Understand	CO 2	AHSB04.06
10	What is an expression for carrier concentration of holes in n-type semiconductor?	Understand	CO 2	AHSB04.06
11	Give the statement of Hall effect using a proper diagram representing current, magnetic field and Hall voltage.	Understand	CO 2	AHSB04.06
1	Part - B (Long Answer Questions)	TT 1 / 1	00.0	
1	What is Bloch's theorem? Explain in detail the motion of electron in a periodic potential.	Understand	CO 2	AHSB04.05
2	Using Kronig-Penny model show that the energy spectrum of an electron contains a number of allowed energy bands separated by forbidden bands.	Understand	CO 2	AHSB04.05
3	Explain the origin of energy band formation in solids.	Understand	CO 2	AHSB04.06
4	Distinguish between intrinsic and extrinsic semiconductors. Indicate on an energy level diagram, the conduction and valence bands, donor and acceptor levels for intrinsic and extrinsic semiconductors.	Understand	CO 2	AHSB04.06
5	Deduce the mathematical expression for intrinsic carrier concentration and hence show that the Fermi level lies at the middle for an intrinsic semiconductor.	Remember	CO 2	AHSB04.05
6	Obtain an expression for carrier concentration of n- type semiconductor.	Understand	CO 2	AHSB04.05
7	Obtain an expression for carrier concentration of p- type semiconductor.	Understand	CO 2	AHSB04.05
8	Explain the dependence of Fermi level on carrier-concentration and temperature	Understand	CO 2	AHSB04.06
9	Discuss in detail Hall effect and obtain an expression for Hall coefficient. Mention the uses of Hall effect.	Understand	CO 2	AHSB04.06
10	Give the graphical representation of Kronig-Penny model. Explain the conclusions drawn from the graph.	Understand	CO 2	AHSB04.06
11	With neat energy band diagrams, explain the classification of materials.	Understand	CO 2	AHSB04.06
12	Derive an expression for the electron concentration in the conduction band of an intrinsic semiconductor.	Understand	CO 2	AHSB04.06
13	Derive an expression for the hole concentration in the valence band of an intrinsic semiconductor.	Understand	CO 2	AHSB04.06
14	What is an intrinsic semiconductor? Explain why an intrinsic semiconductor behaves as an insulator at 0K. Give 2D representations of the crystal of Silicon at $T = 0K$ and $T > 0K$.	Understand	CO 2	AHSB04.06
15	What is an extrinsic semiconductor? Distinguish between n-type and p-type semiconductors.	Remember	CO 2	AHSB04.06

	Part - C (Analytical Questions)			
1	Find carrier concentration of an intrinsic semiconductor of band gap 0.7eV at 300K. [Given that the effective mass of electron = effective mass of hole = rest mass of electron].	Understand	CO 2	AHSB04.01 AHSB04.06
2	What temperature would the E_F is shifted by 15% from middle of forbidden gap (E_g)? Given $E_g = 1.2ev$, effective mass of holes is 5 times that of electrons.	Understand	CO 2	AHSB04.01 AHSB04.06
3	For silicon semiconductor with bandgap 1.12 eV, determine the position of the Fermi level at 300 K if $m_e^* = 0.12 m_o$ and $m_h^* = 0.28 m_o$.	Understand	CO 2	AHSB04.01 AHSB04.06
4	Calculate Hall voltage developed across the width of the slab of a metallic slab carrying a current of 30A is subjected to a magnetic field of 1.75T. The magnetic field is perpendicular to the plane of the slab and to the current. The thickness of the slab is 0.35cm. The concentration of free electrons in the metal is 6.55×10^{28} electrons/m ³ .	Understand	CO 2	AHSB04.01 AHSB04.06
5	Find carrier concentration, if the R_H of a specimen is 3.66 x 10^{-4} m ³ C ⁻¹ .	Understand	CO 2	AHSB04.01 AHSB04.06
6	Calculate the density of charge carriers of semiconductor, given the Hall efficient is $-6.85 \times 10^{-5} \text{ m}^3/\text{Coulomb}$.	Understand	CO 2	AHSB04.01 AHSB04.06
	UNIT-III			
	LASERS AND FIBER OPTICS			
	Part - A (Short Answer Questions)			
1	Define spontaneous and stimulated emission processes involved during de- excitation of atoms.	Understand	CO 3	AHSB04.0
2	Explain the phenomenon of lasing action required for the production of laser light.	Understand	CO 3	AHSB04.0
3	Explain the different characteristics of laser?	Remember	CO 3	AHSB04.0
4	What are the different types of lasers?	Understand	CO 3	AHSB04.0
5	Mention any three applications of laser beams in different fields.	Understand	CO 3	AHSB04.0
6	Write the expression for Acceptance angle and Numerical aperture of an optical fiber.	Understand	CO 3	AHSB04.0
7	Draw a neat sketch of refractive index profile of step index optical fiber.	Remember	CO 3	AHSB04.0
8	What is the principle behind propagation of light signal through an optical fiber?	Remember	CO 3	AHSB04.0
9	Write the expressions for Snell's law and critical angle associated with an optical fiber.	Understand	CO 3	AHSB04.0
10	Discuss different types of attenuation in optical fibers that occur during propagation of light signals.	Understand	CO 3	AHSB04.0
	Part – B (Long Answer Questions)			
1	What are the characteristics of lasers, and explain the phenomenon of lasing action required for the production of laser light.	Understand	CO 3	AHSB04.0
2	What do you understand by absorption and pumping mechanism related to excitation of atoms from lower to higher energy states?	Understand	CO 3	AHSB04.0
3	Explain the construction of a Ruby laser in detail, with the help of a neat suitable diagram.	Understand	CO 3	AHSB04.0
4	Describe the construction of He-Ne gaseous laser in detail, with the help of a neat diagram.	Understand	CO 3	AHSB04.0
5	Discuss the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications.	Understand	CO 3	AHSB04.0
6	Explain the following terms: i. Spontaneous emission ii. Stimulated emission iii. Pumping mechanism iv. Population inversion	Understand	CO 3	AHSB04.0

7	What is an optical fiber? Explain its construction and principle with a neat diagram.	Understand	CO 3	AHSB04.08
8	Derive an expression for angle of acceptance of an optical fiber in terms of refractive indices of core and cladding	Understand	CO 3	AHSB04.08
9	Define Numerical aperture. Derive an expression for numerical aperture of an optical fiber.	Understand	CO 3	AHSB04.08
10	Explain in detail, different types of optical fibers based on refractive index profile of core medium.	Understand	CO 3	AHSB04.08
11	Draw the block diagram of fiber optic communication system and explain the functions of each block in the system.	Understand	CO 3	AHSB04.09
12	Explain the advantages of optical fibers in communication.	Understand	CO 3	AHSB04.09
13	Explain in detail, different types of optical fibers based on mode propagation	Understand	CO 3	AHSB04.08
14	Explain about different types attenuations in optical fibers	Understand	CO 3	AHSB04.08
	Part - C (Analytical Questions)			
1	Calculate the wavelength of emitted radiation from a semiconductor diode laser, which has a band gap of 1.44eV.	Understand	CO 3	AHSB04.01 AHSB04.07
2	A semiconductor diode laser has a wavelength of 1.55μ m. Find its band gap in eV.	Understand	CO 3	AHSB04.01 AHSB04.07
3	Calculate the wavelength of emitted radiation from a semiconductor diode laser, which has a band gap of 1.68eV.	Understand	CO 3	AHSB04.01 AHSB04.07
4	A semiconductor diode laser has a wavelength of 1.42μ m. Find its band gap in eV.	Understand	CO 3	AHSB04.01 AHSB04.07
			<u> </u>	THIBBOTHOT
	Calculate the refractive indices of core & cladding of an optical fiber with a	Understand	CO 3	AHSB04.01
5	numerical aperture of 0.33 and their fractional differences of refractive indices being 0.02.			AHSB04.08
6	A step index fiber has a numerical aperture of 0.16 and core refractive index of 1.45. Calculate the acceptance angle of the fiber and refractive index of the cladding.	Understand	CO 3	AHSB04.01 AHSB04.08
7	The refractive indices of core and cladding materials of a step index fiber are 1.48 and 1.45 respectively. Calculate i) Numerical aperture ii) Acceptance angle.	Understand	CO 3	AHSB04.01 AHSB04.08
8	An optical fiber has a numerical aperture of 0.02 and a cladding refractive index of 1.59. Find the acceptance angle for the fiber in water which has a refractive index of 1.33.	Understand	CO 3	AHSB04.01 AHSB04.08
9	Calculate the fractional index change for a given optical fiber if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively.	Understand	CO 3	AHSB04.01 AHSB04.08
	UNIT-IV		<u> </u>	
	LIGHT AND OPTICS			
	Part – A (Short Answer Questions)			
1	State principle of superposition of waves in case of two or more waves travelling simultaneously in a medium.	Understand	CO 4	AHSB04.11
2	What is meant by interference of light? Also define constructive and destructive interference	Remember	CO 4	AHSB04.11
3	Monochromatic light from a narrow slit falls on two parallel slits and the interference fringes are obtained on a screen. Sketch this experiment.	Understand	CO 4	AHSB04.11
4	What are coherent sources that are used for the phenomenon of interference?	Remember	CO 4	AHSB04.11
5	Write the condition for constructive and destructive interference in terms of path difference and phase difference	Understand	CO 4	AHSB04.11
6	Define fringe width. Write the expression of fringe width.	Understand	CO 4	AHSB04.11
7	What do you understand by diffraction of light? Draw a neat diagram showing diffraction phenomenon.	Understand	CO 4	AHSB04.12
8	Distinguish between Fraunhofer and Fresnel's classes of diffraction	Remember	CO 4	AHSB04.12
9	Compare the important phenomena's of interference and diffraction exhibited	Understand	CO 4	AHSB04.12

10		D	<u> </u>	·
10	What is plane transmission grating? Discuss its construction	Remember	CO 4	AHSB04.12
	Part – B (Long Answer Questions)			
1	Give the analytical treatment of interference of light and hence obtain the condition for maximum and minimum intensity by using Young's double slit experiment.	Understand	CO 4	AHSB04.11
2	Derive an expression for fringe width in interference pattern and show that fringe width of both bright and dark fringes is equal.	Understand	CO 4	AHSB04.11
3	Describe and explain the formation of Newton's rings in reflected light and derive the condition for dark and bright fringes.	Understand	CO 4	CAHS008.11
4	Give the theory of Fraunhofer diffraction due to a single slit and hence obtain the condition for maxima and minima. Using this obtain intensity distribution curve.	Understand	CO 4	CAHSB04.12
5	Discuss the theory of Fraunhofer diffraction due to N slits and derive the conditions for principal maxima and minima.	Understand	CO 4	CAHSB04.12
6	Explain the theory of Fraunhofer diffraction due to circular aperture and determine the radius of Airy's disc.	Understand	CO 4	CAHSB04.12
7	Explain the construction and working of Michelson interferometer with a neat diagram	Understand	CO 4	CAHSB04.11
8	State principle of superposition of waves in case of two or more waves travelling simultaneously in a medium.	Understand	CO 4	CAHSB04.11
9	Monochromatic light from a narrow slit falls on two parallel slits and the interference fringes are obtained on a screen. Sketch this Young's double slit experiment.	Understand	CO 4	CAHSB04.11
10	Compare the important phenomena's of interference and diffraction exhibited by light. What is plane transmission grating? Discuss its construction	Understand	CO 4	CAHSB04.11
11	Explain the theory of Fraunhofer diffraction due to diffraction grating? Discuss its construction.	Understand	CO 4	CAHSB04.12
	Part - C (Analytical Questions)			
1	Two slits separated by a distance of 0.2 mm are illuminated by a monochromatic light of wavelength 550 nm. Calculate the fringe width on a screen at distance of 1 m from the slits.	Understand	CO 4	AHSB04.01 AHSB04.11
2	Two coherent sources of monochromatic light of wavelength 6000 A° produce an interference pattern on a screen kept at distance of 1 m from them. The distance between two consecutive bright fringes on the screen is 0.5 mm. Find the distance between the two coherent sources	Understand	CO 4	AHSB04.01 AHSB04.11
3	In a Newton's rings experiment, the diameter of 15^{th} ring was found to be 0.59 cm and that of 5^{th} ring is 0.336 cm. If the radius of curvature of lens is 100 cm, find the wavelength of the light.	Understand	CO 4	AHSB04.01 AHSB04.11
4	Newton's rings are observed in the reflected light of wavelength 5900A°. The diameter of tenth dark ring is 0.5 cm. Find the radius of curvature of the lens used.	Understand	CO 4	AHSB04.01 AHSB04.11
5	Find the highest order that can be seen with a grating having 15000 lines per inch. The wavelength of light used is 600 nm.	Understand	CO 4	AHSB04.01 AHSB04.12
6	How many orders will be visible if the wavelength of light is 5000 A° and the number of lines per inch on the grating is 2620?	Understand	CO 4	AHSB04.01 AHSB04.12
7	A grating has 6000 lines per cm. Find the angular separation between two wavelengths 500 nm and 510 nm in the 3^{rd} order.	Understand	CO 4	AHSB04.01 AHSB04.12
	UNIT-V			
	HARMONIC OSCILLATIONS AND WAVES IN ONE D	DIMENSION		
	Part - A (Short Answer Questions)			
1	Define amplitude of a body executing simple harmonic motion.	Remember	CO 5	AHSB04.13
2	Define time period of a body executing simple harmonic motion	Understand	CO 5	AHSB04.13
3	Define phase of a body executing simple harmonic motion	Understand	CO 5	AHSB04.13
4	Distinguish between free and forced oscillation.	Understand	CO 5	AHSB04.14
5	Explain the phenomena involved in stationary wave	Remember	CO 5	AHSB04.15
6	Explain the phenomena involved in a progressive wave	Remember	CO 5	AHSB04.15
7	Compare a longitudinal wave with a transverse wave.	Understand	CO 5	AHSB04.15
8	What are the laws of a stretched string?	Remember	CO 5	AHSB04.15

perCO 5perCO 5andCO 5andCO 5andCO 5andCO 5andCO 5andCO 5andCO 5andCO 5andCO 5	AHSB04.15 AHSB04.13 AHSB04.13 AHSB04.13 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.15
and CO 5 and CO 5	AHSB04.13 AHSB04.13 AHSB04.13 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5	AHSB04.13 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5	AHSB04.13 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5 and CO 5	AHSB04.14 AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5	AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5 and CO 5	AHSB04.15 AHSB04.15 AHSB04.15
and CO 5 and CO 5	AHSB04.15 AHSB04.15
and CO 5	AHSB04.15
and CO 5	AHSB04.15
per CO 5	AUSD04 12
per CO 5	AUCD04.12
per CO 5	AUSD04 12
per CO 5	AUCD04 12
	AU2014
and CO 5	AHSB04.15
and CO 5	AHSB04.13
	1115201115
and CO 5	AHSB04.15
	AIISD04.13
CO 5	AHSB04.13
CO S	Апзр04.15
nd CO 5	
	AHSB04.0
. 1	AHSB04.13
ind COS	AHSB04.0
	AHSB04.13
and CO 5	AHSB04.0
	AHSB04.14
and CO 5	AHSB04.0
	AHSB04.14
and CO 5	AHSB04.0
	AHSB04.15
	AHSB04.0
ind CO 5	AHSB04.1
and CO 5	
and CO 5	
and CO 5	
ind CO 5 ind CO 5	AHSB04.0
ind CO 5	AHSB04.0 AHSB04.1
	AHSB04.0 AHSB04.1
aaaaa	berCO 5andCO 5andCO 5andCO 5andCO 5andCO 5