

INSTITUTE OF AERONAUTICALENGINEERING

(Autonomous) Dundigal, Hyderabad-500043

CIVIL ENGINEERING

TUTORIAL QUESTION BANK

Course Title	WAVES AND OPTICS					
Course Code	AHSB04	AHSB04				
Programme	B.Tech	B.Tech				
Semester	I	AE	ECE ME			
Semester	П	CE	EEE			
Regulation	IARE - R	IARE - R18				
Common Strangeture	Lectures		Tutorials	Practical	Credits	
Course Structure	3		1	-	4	
Course Coordinator	Dr. Rizwana, Professor					
Course Faculty	Dr. B Manikya Pratima, Associate Professor Ms. Singavarapu Sujani, Assistant Professor					

COURSE OBJECTIVES (COs):

The course should enable the students to:

I	Enrich knowledge in principles of quantum mechanics and semiconductors.
II	Correlate principles and applications of lasers and fiber optics.
III	Meliorate the knowledge of light and optics and also their applications.
IV	Develop strong fundamentals of transverse, longitudinal waves and harmonic waves.

COURSE OUTCOMES (COs):

CO 1	Interpret the concept of Quantum mechanics with dual nature of matter.
CO 2	Identify different types of semiconductors and dependence of their Fermi level on various factors.
CO 3	Understand the working principle of different types of lasers and optical fibre communication.
CO 4	Explore the different phenomena's of light like interference, diffraction etc.
CO 5	Analyze different harmonic oscillators and gain knowledge of different waves and their wave equation.

COURSE LEARNING OUTCOMES(CLOs):

AHSB04.01	Recall the basic principles of physics and apply these concepts of physics in solving the real-time problems.
AHSB04.02	Acquire knowledge about fundamental in quantum mechanics.
AHSB04.03	Interpretation of dual nature of matter wave concept using Davisson & Germer's experiment.
AHSB04.04	Estimate the energy of the particles using Schrödinger's wave equation and apply it to particle in potential box.
AHSB04.05	Recollect the conductivity mechanism involved in semiconductors and calculate carrier concentrations.
AHSB04.06	Understand the band structure of a solid and classify materials as metals, insulators or semiconductors, and sketch a schematic band diagram for each one.
AHSB04.07	Understand the basic principles involved in the production of Laser light and also real-time applications of lasers.
AHSB04.08	Recollect basic principle, construction, types and attenuation of optical fibers.
AHSB04.09	Understand the importance of optical fibers in real-time communication system.
AHSB04.10	Apply different laws of radiation to understand the phenomenon behind production of light.
AHSB04.11	Apply the phenomenon of interference in thin films using Newton's rings experiment.
AHSB04.12	Identify diffraction phenomenon due to slits.
AHSB04.13	Acquire knowledge of basic harmonic oscillators and discuss in detail different types of harmonic oscillators.
AHSB04.14	Describe the steady state motion of forced damped harmonic oscillator.
AHSB04.15	Acquire knowledge of reflection and transmission of waves at a boundary of media.

UNIT - I QUANTUM MECHANICS Part - A(Short Answer Questions)

S No	QUESTION	Blooms Taxonomy Level	Course Outcomes	Course Learning Outcomes (CLOs)
1	Discuss the de-Broglie's hypothesis of duality of material particles and arrive at the concept of matter waves.	Understand	CO 1	AHSB04.02
2	Write an expression for de-Broglie wave length in terms of momentum and kinetic energy.	Understand	CO 1	AHSB04.02
3	Light radiation exhibits both particle and wave nature. Explain this conception of light.	Understand	CO 1	AHSB04.02
4	Explain the concept of Black body radiation.	Remember	CO 1	AHSB04.02
5	Explain the concept of Photoelectric effect.	Remember	CO 1	AHSB04.02
6	Explain the concept of Compton effect.	Understand	CO 1	AHSB04.02
7	Explain the physical significance of wave function which connects the particle nature and wave nature of matter wave.	Understand	CO 1	AHSB04.03
8	Describe behavior of matter waves by giving any two of its properties.	Understand	CO 1	AHSB04.03
9	Write expressions for wave function and energy of a particle in three dimensional square well box of infinite potential.	Understand	CO 1	AHSB04.04
10	Write expressions for eigen function and eigen values for a particle in one dimensional square well box of infinite potential.	Understand	CO 1	AHSB04.04
	Part - B (Long Answer Questions)			
1	Explain the concept of Black body radiation	Understan		AHSB04.02
2	Describe the phenomena of Photoelectric effect with experimental arrangement	Understan		AHSB04.02
3	What is Compton effect? Explain with neat diagram.	Understan		AHSB04.02
4	Compare a particle with a wave and discuss about dual nature of radiation	Understan		AHSB04.02
5	Explain Max – Born interpretation (Physical significance) of wave function	Understan		AHSB04.04
6	Derive an expression for the wavelength associated with electron, accelerated by a potential	Understan	d CO 1	AHSB04.04
7	Explain Plank's radiation law associated with block body radiation	Understan	d CO 1	AHSB04.02
8	Discuss de-Broglie's concept of matter waves	Understan		AHSB04.03
9	Matter waves are not electromagnetic waves but a new kind of waves. Justify this concept by discussing different properties of matter waves.			AHSB04.03
10	Using Planck's and Einstein's theory of radiation, Show that the wavelengt associated with an electron of mass 'm' and kinetic energy 'E' is given be $h/\sqrt{2} \ m \ E$.		d CO 1	AHSB04.03
11	Describe Davisson Germer experiment with a neat diagram and explain how established the proof for wave nature of electrons.	it Understan	d CO 1	AHSB04.03
12	Considering dual nature of electron, Derive Schrodinger's time independer wave equation for the motion of an electron.	nt Understan	d CO 1	AHSB04.04
13	Assuming that a particle of mass m is confined in a field free region betwee impenetrable walls in infinite height at $x = 0$ and $x = a$, show that the permitted energy levels of a particle are given by $n^2 h^2 / 8 m a^2$.		d CO 1	AHSB04.05
14	Discuss the results from the eigen values, eigen functions and probabilit density for a particle in a one dimensional potential box of infinite heigh Also sketch the figures.		d CO 1	AHSB04.05
	Part - C (Analytical Questions)			
1	Calculate the velocity and kinetic energy of an electron having wavelength of 0.21nm.	of Understar	nd CO 1	AHSB04.01 AHSB04.03
2	Calculate the de Broglie wavelength associated with a proton moving with velocity of $1/10$ of velocity of light. (Mass of proton = 1.674×10^{-27} kg).	a Understar	nd CO 1	AHSB04.01 AHSB04.03
3	Calculate the wavelength of an electron raised to a potential 15kV.	Understan	d CO 1	AHSB04.01 AHSB04.03
4	Calculate de-Broglie wavelength of neutron. (Given kinetic energy of the neutron is 0.025eV, mass of neutron =1.674 x 10 ⁻²⁷ kg).	e Understar	nd CO 1	AHSB04.01 AHSB04.03
5	Calculate the velocity and kinetic energy of an electron of wavelength 1.66 10^{-10} m.	x Understar	nd CO 1	AHSB04.01 AHSB04.03
6	Find the wavelength associated with an electron rose to a potential 1600V.	Understar	nd CO 1	AHSB04.03
-	6 mark 1000 to 100 mark 100 mark 1000 to 100 mark 100 ma			5 65

			1	
7	Calculate the energies that can be possessed by a particle of mass 8.50 x10 ⁻³	Understand	CO 1	AHSB04.01
	³¹ kg which is placed in an infinite potential box of width 10 ⁻⁹ m.		~~.	AHSB04.05
8	Find the lowest energy of an electron confined in a square box of side 0.1nm.	Understand	CO 1	AHSB04.01
	UNIT – II			AHSB04.05
	INTRODUCTION TO SOLIDS AND SEMICONDUC	TODS		
	Part – A (Short Answer Questions)	LIUKS		
1	Define Bloch theorem.	Understand	CO 2	AHSB04.05
2	Define a metallic solid and draw its band diagram to explain its electronic	Understand	CO 2	AHSB04.05
2	behavior.			
3	On the basis of band theory how the crystalline solids are classified into conductors, semiconductors and insulators.	Understand	CO 2	AHSB04.05
4	Define a semiconductor and draw its band diagram to explain its electronic behavior.	Understand	CO 2	AHSB04.06
5	Define an insulator and draw its band diagram to explain its electronic behavior.	Remember	CO 2	AHSB04.06
6	Write the classification of semiconductors based on variation of conductivity	Understand	CO 2	AHSB04.06
7	in terms of temperature and doping. What do you understand by an intrinsic semiconductor? Give an example.	Remember	CO 2	AHSB04.06
8	Write the expressions for carrier concentration of electrons and holes in	Remember	CO 2	AHSB04.06
	intrinsic semiconductors in n-type and p-type semiconductors.			
9	Write an expression for carrier concentration of electrons in p-type semiconductor.	Understand	CO 2	AHSB04.06
10	What is an expression for carrier concentration of holes in n-type semiconductor?	Understand	CO 2	AHSB04.06
11	Give the statement of Hall effect using a proper diagram representing current, magnetic field and Hall voltage.	Understand	CO 2	AHSB04.06
	Part - B (Long Answer Questions)			
1	What is Bloch's theorem? Explain in detail the motion of electron in a periodic potential.	Understand	CO 2	AHSB04.05
2	Using Kronig-Penny model show that the energy spectrum of an electron contains a number of allowed energy bands separated by forbidden bands.	Understand	CO 2	AHSB04.05
3	Explain the origin of energy band formation in solids.	Understand	CO 2	AHSB04.06
4	Distinguish between intrinsic and extrinsic semiconductors. Indicate on an energy level diagram, the conduction and valence bands, donor and acceptor levels for intrinsic and extrinsic semiconductors.	Understand	CO 2	AHSB04.06
5	Deduce the mathematical expression for intrinsic carrier concentration and hence show that the Fermi level lies at the middle for an intrinsic semiconductor.	Remember	CO 2	AHSB04.05
6	Obtain an expression for carrier concentration of n- type semiconductor.	Understand	CO 2	AHSB04.05
7	Obtain an expression for carrier concentration of p- type semiconductor.	Understand	CO 2	AHSB04.05
8	Explain the dependence of Fermi level on carrier-concentration and temperature	Understand	CO 2	AHSB04.06
9	Discuss in detail Hall effect and obtain an expression for Hall coefficient. Mention the uses of Hall effect.	Understand	CO 2	AHSB04.06
10	Give the graphical representation of Kronig-Penny model. Explain the conclusions drawn from the graph.	Understand	CO 2	AHSB04.06
11	With neat energy band diagrams, explain the classification of materials.	Understand	CO 2	AHSB04.06
12	Derive an expression for the electron concentration in the conduction band of	Understand	CO 2	AHSB04.06
	an intrinsic semiconductor.			
13	Derive an expression for the hole concentration in the valence band of an intrinsic semiconductor.	Understand	CO 2	AHSB04.06
14	What is an intrinsic semiconductor? Explain why an intrinsic semiconductor behaves as an insulator at 0K. Give 2D representations of the crystal of Silicon at $T = 0K$ and $T > 0K$.	Understand	CO 2	AHSB04.06
15	What is an extrinsic semiconductor? Distinguish between n-type and p-type	Remember	CO 2	AHSB04.06

	Part - C (Analytical Questions)			
1	Find carrier concentration of an intrinsic semiconductor of band gap 0.7eV at 300K. [Given that the effective mass of electron = effective mass of hole = rest mass of electron].	Understand	CO 2	AHSB04.01 AHSB04.06
2	What temperature would the E_F is shifted by 15% from middle of forbidden gap (E_g)? Given $E_g = 1.2$ ev, effective mass of holes is 5 times that of electrons.	Understand	CO 2	AHSB04.01 AHSB04.06
3	For silicon semiconductor with bandgap 1.12 eV, determine the position of the Fermi level at 300 K if m_e * = 0.12 m_o and m_h * = 0.28 m_o .	Understand	CO 2	AHSB04.01 AHSB04.06
4	Calculate Hall voltage developed across the width of the slab of a metallic slab carrying a current of 30A is subjected to a magnetic field of 1.75T. The magnetic field is perpendicular to the plane of the slab and to the current. The thickness of the slab is 0.35 cm. The concentration of free electrons in the metal is 6.55×10^{28} electrons/m ³ .	Understand	CO 2	AHSB04.01 AHSB04.06
5	Find carrier concentration, if the R _H of a specimen is 3.66 x 10 ⁻⁴ m ³ C ⁻¹ .	Understand	CO 2	AHSB04.01 AHSB04.06
6	Calculate the density of charge carriers of semiconductor, given the Hall efficient is -6.85×10^{-5} m ³ /Coulomb.	Understand	CO 2	AHSB04.01 AHSB04.06
	UNIT-III			
	LASERS AND FIBER OPTICS			
	Part - A (Short Answer Questions)			
1	Define spontaneous and stimulated emission processes involved during de- excitation of atoms.	Understand	CO 3	AHSB04.07
2	Explain the phenomenon of lasing action required for the production of laser light.	Understand	CO 3	AHSB04.07
3	Explain the different characteristics of laser?	Remember	CO 3	AHSB04.07
4	What are the different types of lasers?	Understand	CO 3	AHSB04.07
5	Mention any three applications of laser beams in different fields.	Understand	CO 3	AHSB04.07
6	Write the expression for Acceptance angle and Numerical aperture of an optical fiber.	Understand	CO 3	AHSB04.08
7	Draw a neat sketch of refractive index profile of step index optical fiber.	Remember	CO 3	AHSB04.08
8	What is the principle behind propagation of light signal through an optical fiber?	Remember	CO 3	AHSB04.08
9	Write the expressions for Snell's law and critical angle associated with an optical fiber.	Understand	CO 3	AHSB04.08
10	Discuss different types of attenuation in optical fibers that occur during propagation of light signals.	Understand	CO 3	AHSB04.08
	Part – B (Long Answer Questions)			
1	What are the characteristics of lasers, and explain the phenomenon of lasing action required for the production of laser light.	Understand	CO 3	AHSB04.07
2	What do you understand by absorption and pumping mechanism related to excitation of atoms from lower to higher energy states?	Understand	CO 3	AHSB04.07
3	Explain the construction of a Ruby laser in detail, with the help of a neat suitable diagram.	Understand	CO 3	AHSB04.07
4	Describe the construction of He-Ne gaseous laser in detail, with the help of a neat diagram.	Understand	CO 3	AHSB04.07
5	Discuss the importance of lasers in various fields like industry, medicine, science, etc., by giving their applications.	Understand	CO 3	AHSB04.07
6	Explain the following terms: i. Spontaneous emission ii. Stimulated emission iii. Pumping mechanism iv. Population inversion	Understand	CO 3	AHSB04.07

7	What is an optical fiber? Explain its construction and principle with a neat diagram.	Understand	CO 3	AHSB04.08
8	Derive an expression for angle of acceptance of an optical fiber in terms of refractive indices of core and cladding	Understand	CO 3	AHSB04.08
9	Define Numerical aperture. Derive an expression for numerical aperture of an optical fiber.	Understand	CO 3	AHSB04.08
10	Explain in detail, different types of optical fibers based on refractive index profile of core medium.	Understand	CO 3	AHSB04.08
11	Draw the block diagram of fiber optic communication system and explain the functions of each block in the system.	Understand	CO 3	AHSB04.09
12	Explain the advantages of optical fibers in communication.	Understand	CO 3	AHSB04.09
13	Explain in detail, different types of optical fibers based on mode propagation	Understand	CO 3	AHSB04.08
14	Explain about different types attenuations in optical fibers	Understand	CO 3	AHSB04.08
	Part - C (Analytical Questions)			
1	Calculate the wavelength of emitted radiation from a semiconductor diode laser, which has a band gap of 1.44eV.	Understand	CO 3	AHSB04.01 AHSB04.07
2	A semiconductor diode laser has a wavelength of 1.55 µm. Find its band gap in eV.	Understand	CO 3	AHSB04.01 AHSB04.07
3	Calculate the wavelength of emitted radiation from a semiconductor diode	Understand	CO 3	AHSB04.0
	laser, which has a band gap of 1.68eV.			AHSB04.0
4	A semiconductor diode laser has a wavelength of 1.42 µm. Find its band gap in	Understand	CO 3	AHSB04.0
	eV.			AHSB04.0
	Calculate the refractive indices of core &cladding of an optical fiber with a	Understand	CO 3	AHSB04.0
5	numerical aperture of 0.33 and their fractional differences of refractive indices being 0.02.			AHSB04.0
	A step index fiber has a numerical aperture of 0.16 and core refractive index	Understand	CO 3	AHSB04.0
6	of 1.45. Calculate the acceptance angle of the fiber and refractive index of the cladding.			AHSB04.0
	The refractive indices of core and cladding materials of a step index fiber are	Understand	CO 3	AHSB04.01
7	1.48 and 1.45 respectively. Calculate i) Numerical aperture ii) Acceptance angle.			AHSB04.08
8	An optical fiber has a numerical aperture of 0.02 and a cladding refractive index of 1.59. Find the acceptance angle for the fiber in water which has a refractive index of 1.33.	Understand	CO 3	AHSB04.01 AHSB04.08
9	Calculate the fractional index change for a given optical fiber if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively.	Understand	CO 3	AHSB04.01 AHSB04.08
	UNIT-IV LIGHT AND OPTICS			
	Part – A (Short Answer Questions)			
1	State principle of superposition of waves in case of two or more waves	Understand	CO 4	AHSB04.1
2	travelling simultaneously in a medium. What is meant by interference of light? Also define constructive and	Remember	CO 4	AHSB04.1
	destructive interference			
3	Monochromatic light from a narrow slit falls on two parallel slits and the interference fringes are obtained on a screen. Sketch this experiment.	Understand	CO 4	AHSB04.1
4	What are coherent sources that are used for the phenomenon of interference?	Remember	CO 4	AHSB04.1
5	Write the condition for constructive and destructive interference in terms of path difference and phase difference	Understand	CO 4	AHSB04.1
6	Define fringe width. Write the expression of fringe width.	Understand	CO 4	AHSB04.1
7	What do you understand by diffraction of light? Draw a neat diagram showing diffraction phenomenon.	Understand	CO 4	AHSB04.1
	diffaction phenomenon.			
8	Distinguish between Fraunhofer and Fresnel's classes of diffraction	Remember	CO 4	AHSB04.1

10	What is plane transmission grating? Discuss its construction	Remember	CO 4	AHSB04.12
	Part – B (Long Answer Questions)			
1	Give the analytical treatment of interference of light and hence obtain the condition for maximum and minimum intensity by using Young's double slit experiment.	Understand	CO 4	AHSB04.11
2	Derive an expression for fringe width in interference pattern and show that fringe width of both bright and dark fringes is equal.	Understand	CO 4	AHSB04.11
3	Describe and explain the formation of Newton's rings in reflected light and derive the condition for dark and bright fringes.	Understand	CO 4	CAHS008.11
4	Give the theory of Fraunhofer diffraction due to a single slit and hence obtain the condition for maxima and minima. Using this obtain intensity distribution curve.	Understand	CO 4	CAHSB04.12
5	Discuss the theory of Fraunhofer diffraction due to N slits and derive the conditions for principal maxima and minima.	Understand	CO 4	CAHSB04.12
6	Explain the theory of Fraunhofer diffraction due to circular aperture and determine the radius of Airy's disc.	Understand	CO 4	CAHSB04.12
7	Explain the construction and working of Michelson interferometer with a neat diagram	Understand	CO 4	CAHSB04.11
8	State principle of superposition of waves in case of two or more waves travelling simultaneously in a medium.	Understand	CO 4	CAHSB04.11
9	Monochromatic light from a narrow slit falls on two parallel slits and the interference fringes are obtained on a screen. Sketch this Young's double slit experiment.	Understand	CO 4	CAHSB04.11
10	Compare the important phenomena's of interference and diffraction exhibited by light. What is plane transmission grating? Discuss its construction	Understand	CO 4	CAHSB04.11
11	Explain the theory of Fraunhofer diffraction due to diffraction grating? Discuss its construction.	Understand	CO 4	CAHSB04.12
	Part - C (Analytical Questions)		1	
1	Two slits separated by a distance of 0.2 mm are illuminated by a	Understand	CO 4	AHSB04.01
	monochromatic light of wavelength 550 nm. Calculate the fringe width on a screen at distance of 1 m from the slits.	Chacistana		AHSB04.11
2	Two coherent sources of monochromatic light of wavelength 6000 A° produce an interference pattern on a screen kept at distance of 1 m from them. The	Understand	CO 4	AHSB04.01 AHSB04.11
	distance between two consecutive bright fringes on the screen is 0.5 mm. Find the distance between the two coherent sources			
3	In a Newton's rings experiment, the diameter of 15 th ring was found to be 0.59	Understand	CO 4	AHSB04.01
	cm and that of 5 th ring is 0.336 cm. If the radius of curvature of lens is 100 cm, find the wavelength of the light.			AHSB04.11
4	Newton's rings are observed in the reflected light of wavelength 5900A°. The diameter of tenth dark ring is 0.5 cm. Find the radius of curvature of the lens used.	Understand	CO 4	AHSB04.01 AHSB04.11
5	Find the highest order that can be seen with a grating having 15000 lines per inch. The wavelength of light used is 600 nm.	Understand	CO 4	AHSB04.01 AHSB04.12
6	How many orders will be visible if the wavelength of light is 5000 A° and the number of lines per inch on the grating is 2620?	Understand	CO 4	AHSB04.01 AHSB04.12
7	A grating has 6000 lines per cm. Find the angular separation between two wavelengths 500 nm and 510 nm in the 3 rd order.	Understand	CO 4	AHSB04.01 AHSB04.12
	UNIT-V			
	HARMONIC OSCILLATIONS AND WAVES IN ONE D	IMENSION		
	Part - A (Short Answer Questions)			
1	Define amplitude of a body executing simple harmonic motion.	Remember	CO 5	AHSB04.13
2	Define time period of a body executing simple harmonic motion	Understand	CO 5	AHSB04.13
3	Define phase of a body executing simple harmonic motion	Understand	CO 5	AHSB04.13
4	Distinguish between free and forced oscillation.	Understand	CO 5	AHSB04.14
5	Explain the phenomena involved in stationary wave	Remember	CO 5	AHSB04.15
7	Explain the phenomena involved in a progressive wave Compare a longitudinal wave with a transverse wave.	Remember Understand	CO 5	AHSB04.15 AHSB04.15
8	What are the laws of a stretched string?	Remember	CO 5	AHSB04.15 AHSB04.15
	and the fact of a successful string.	110111001		111500 1.15

9	What is a longitudinal wave? Write the wave equation of longitudinal wave.	Remember	CO 5	AHSB04.15
10	What is a transverse wave? Write the wave equation of transverse wave.	Remember	CO 5	AHSB04.15
	Part - B (Long Answer Questions)			
1	Derive the equation of a motion of a Simple mechanical harmonic oscillator.	Understand	CO 5	AHSB04.13
2	What is an electrical harmonic oscillator? Obtain the expression for the	Understand	CO 5	AHSB04.13
	frequency of oscillation.			
3	Solve the differential equation of a damped harmonic oscillator. Investigate	Understand	CO 5	AHSB04.14
4	the conditions of light, heavy and critical damping.	TT 1 . 1	00.5	AHGDOATA
4	Discuss the oscillations and amplitude variation with respect to forcing	Understand	CO 5	AHSB04.14
	frequency in case of forced damped oscillator.	I I adametan d	CO 5	ALICDO4 14
5	What is a transverse wave? Derive the wave equation of transverse wave.	Understand	CO 5	AHSB04.14
6	Derive an expression for the reflection and transmission amplitudes, when a transverse wave is travelling X-Direction in a string.	Understand	CO 3	AHSB04.15
7	What is a longitudinal wave? Derive the wave equation of longitudinal wave.	Understand	CO 5	AHSB04.15
8	Derive the plane acoustic wave equation and show that velocity of sound wave	Understand	CO 5	AHSB04.15
0		Understand	CO 3	АПЗВ04.13
	is $v = \sqrt{\frac{\gamma P}{\rho_o}}$			
	$\int_{\Omega} ds v - \sqrt{\frac{c}{\rho}}$			
		D 1	00.5	AHIODOAAG
9	What is simple harmonic motion? What the Characteristics of simple	Remember	CO 5	AHSB04.13
10	harmonic motion? Find the velocity of transverse wave propagation along a stretched string and	Understand	COS	ALICDO4 15
10	, , , , , , , , , , , , , , , , , , , ,	Understand	CO 5	AHSB04.15
11	obtain the frequencies of vibration for a string length Explain the terms: (i) Periodic motion (ii) Oscillatory motion (iii) Damped and	Understand	CO 5	AHSB04.13
11	undamped oscillations (iv) Forced oscillations	Understand	CO 3	АПЗВ04.13
12	Discuss the various types of waves. Describe the propagation mechanism of	Understand	CO 5	AHSB04.15
12	transverse and longitudinal waves	Understand	CO 3	A113D04.13
13	Derive the relation between displacement and frequency of a particle	Remember	CO 5	AHSB04.13
13	executing simple harmonic motion	Remember	003	71115150 1.13
	Part - C (Analytical Questions)		1	
1	A particle executes a S.H.M of period 10 seconds and amplitude of 1.5 meter.	Understand	CO 5	AHSB04.01
-	Calculate its maximum acceleration and velocity.	Chathana	000	AHSB04.13
	A body executing S.H.M has its velocity 16cm/s when passing through its	Understand	CO 5	AHSB04.01
2	centre mean position. If it goes 1 cm either side of mean position, calculate its			AHSB04.13
	time period.			
3	A body of mass 5 gm is subjected to an elastic force of 40 dyne/cm, and a	Understand	CO 5	AHSB04.01
	frictional force of 5 dyne-sec/cm. If it is displaced through 2 cm and then			AHSB04.14
	released. Find whether the resulting motion is oscillatory or not? Also find the			
	time period if it is oscillatory.			
4	A 0.5 kg mass suspended from a linear spring of force constant 1000 N/m has	Understand	CO 5	AHSB04.01
	a damping coefficient 0.05 Ns/m. An external force $F = F_0 Sin(pt)$ is applied,			AHSB04.14
	where $F_0 = 25N$ and p is twice the natural frequency of the system, then			
	calculate (i) Amplitude of resulting motion (ii) Phase shift of displacement			
-	with request to driving force.	TT 1 . 1	00.5	ATTOROLOG
5	Calculate the speed of transverse waves in a wire of 1 mm ² cross section under	Understand	CO 5	AHSB04.01
	the tension produced by 0.1 kg wt (specific gravity of material of wire = 9.81			AHSB04.15
-	gm/cm ³ and g = 9.81 m/sec ²).	I Indoneta - d	COS	ALICDO4 01
6	A copper wire of radius 10^{-3} m has a wavelength of 1m. It is fixed at both ends	Understand	CO 5	AHSB04.01
	and is subjected to a tension of 10^4 N. Calculate the fundamental frequency and the frequencies of the first two overtones. (Density of copper = 8.92×10^{-3}			AHSB04.15
	and the frequencies of the first two overtones. (Density of copper = $8.92 \times 10^{-6} \text{ kg/m}^3$).			
7	A wire 50cm long and of mass 6.5 x 10 ⁻¹ kg is stretched so that it makes 80	Understand	CO 5	AHSB04.01
1	vibrations per second. Find the stretched force in kg wt.	Understand	003	AHSB04.01 AHSB04.15
8	A metal rod 150cm long is fixed at the centre. When it vibrates longitudinally,	Understand	CO 5	AHSB04.13
O	the frequency is found to be 1200. Calculate the Young's modulus of the	Onderstand		AHSB04.01
	material of the rod. Its density is 8 g/cm ³ .			A115D04.13
	material of the roa, to denote to gent .			