INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)
Dundigal, Hyderabad - 500043
MECHANICAL ENGINEERING
TUTORIALQUESTION BANK

| Course Title | OPERATIONS RESEARCH |
| :--- | :--- |
| Course Code | AME021 |
| Class | B.Tech |
| Semester | VIII |
| Year | $2019-2020$ |
| Team of Instructors | Mr. C. Labesh Kumar, Assistant Professor, ME <br> Mrs. T. Vanaja Assistant Professor, ME |

## COURSE OBJECTIVES

| S.NO | Description |
| :---: | :--- |
| I | Formulate the mathematical model of real time problem for optimization. |
| II | Establish the problem formulation by using linear, dynamic programming, game theory and <br> queuing models. |
| III | Apply stochastic models for discrete and continuous variables to control inventory. |
| IV | Visualize the computer based manufacturing simulation models. |

## COURSE OUTCOMES: (COs)

| S.NO | Description |
| :---: | :--- |
| I | Formulate the mathematical model of real time problem for optimization, using Linear <br> programming |
| II | Establish the problem formulation by using transportation, assignment models |
| III | Apply sequencing for flow and replacement for maintenance of machinesprogramming, game <br> theory and queuing models. |
| IV | Formulate game theory model and apply stochastic models for discrete and continuous variables to <br> control inventory. |
| V | Formulate queuing models and visualize dynamic programming and simulation models |

## COURSE LEARNING OUTCOMES: (CLOs)

Students, who complete the course, will have demonstrated the ability to do the following:

| S. No. | Outcomes |
| :---: | :--- |
| AME021.01 | Understand the characteristics, phases, types of operation research models and its applications. |
| AME021.02 | Visualize modeling principles scope, decision making, general methods for solving OR models. |
| AME021.03 | Understand linear programming concept problem formulation and graphical models. |
| AME021.04 | Understand simplex method and artificial variable techniques. |
| AME021.05 | Comprehend two-phase method and Big-M method of linear programming. |
| AME021.06 | Apply to build and solve transportation models of balanced. |
| AME021.07 | Understand the degeneracy model problem of transportation, unbalanced type-aximization. |
| AME021.08 | Apply to build assignment models for optimal solution. |
| AME021.09 | Understand variants of assignment model and travelling salesman model. |
| AME021.10 | Understand the flow shop sequencing model of ' $n$ ' jobs through two machines and three machines. |
| AME021.11 | Comprehend job shop sequencing of two jobs through 'm' machines. |
| AME021.12 | Understand the concept of replacement of items that deteriorate with time when money value is not <br> counted |
| AME013.13 | Understand the concept ofreplacement of items that deteriorate with time when money value is n <br> counted . |
| AME021.14 | Visualize the replacement of items that fail completely and group replacement. |
| AME021.15 | Understand minmax (maximini) criterion, optimal strategy, solution od games with saddle point |
| AME021.16 | Visualize dominance principle while solving game theory problem. |
| AME021.17 | Apply to solve $m$ * 2 , ${ }^{n}$ model of games and graphical method. |
| AME021.18 | Understand the concepts of deterministic inventory model and purchase inventory model with one <br> price break and multiple price breaks. |


| AME021.19 | Visualize stochastic inventory models - demand may be discrete variable or continuous variable. |
| :--- | :--- |
| AME021.20 | Understand the concepts of waiting line model of single channel and multi server model. |
| AME021.21 | Visualize dynamic programming concepts and models |
| AME021.22 | Comprehend the simulation models, phases of simulation, application of simulation |
| AME021.23 | Visualize the application of simulation for inventory and queuing problems. |


| S. No. | Question | Blooms Taxonomy Level | Course Outcomes | Course Learning Outcomes (CLOs) |
| :---: | :---: | :---: | :---: | :---: |
| UNIT-IPart A(Very Short Answer Questions) |  |  |  |  |
| 1 | Explain scope of operations Research? | Understand | CO 1 | AME021.01 |
| 2 | State the applications of operations Research? | Remember | CO 1 | AME021.02 |
| 3 | List different characteristics of operations Research? | Remember | CO 1 | AME021.02 |
| 4 | Write about physical model of operations Research? | Understand | CO 1 | AME021.02 |
| 5 | Describe about simulation models of operations Research? | Understand | CO 1 | AME021.03 |
| 6 | Discuss the importance of operations Research in the decision making process? | Remember | CO 1 | AME021.03 |
| 7 | List out the principles of modeling. | Remember | CO 1 | AME021.03 |
| 8 | State the methods of solving OR models. | Understand | CO 1 | AME021.03 |
| 9 | Define model and explain its importance. | Remember | CO 1 | AME021.03 |
| 10 | Define feasible region? | Understand | CO 1 | AME021.03 |
| 11 | Explain general representation of LPP? | Remember | CO 1 | AME021.03 |
| 12 | Discuss objective function in brief? | Understand | CO 1 | AME021.03 |
| 13 | Describe optimal solution? | Remember | CO 1 | AME021.03 |
| 14 | Explain about decision variables? | Understand | CO 1 | AME021.03 |
| 15 | Describe about non- negativity constraints? | Remember | CO 1 | AME021.03 |
| 16 | Explain about constraints of a LPP? | Understand | CO 1 | AME021.03 |
| 17 | Define slack variables with examples? | Remember | CO 1 | AME021.03 |
| 18 | State surplus variables with examples? | Understand | CO 1 | AME021.03 |
| 19 | Explain about artificial variables? | Remember | CO 1 | AME021.03 |
| 20 | Explain computational steps of Big-M method | Remember | CO 1 | AME021.03 |
| Part B (Long Answer Questions) |  |  |  |  |
| 1 | What are the phases of Operations Research and briefly explain them? | understand | CO 1 | AME021.03 |
| 2 | Explain the main characteristics of Operations Research. |  | CO 1 | AME021.03 |
| 3 | What is a model? List the various classification schemes of Operations Research models. | Remember | CO 1 | AME021.03 |
| 4 | Describe the scope of Operations Research. | Understand | CO 1 | AME021.03 |
| 5 | Explain general methods for solving OR models | Understand | CO 1 | AME021.03 |
| 6 | Describe the terminology involved in formulating a linear programming problem? | Understand | CO 1 | AME021.03 |
| 7 | Explain applications of LPP in production management? | Remember | CO 1 | AME021.03 |
| 8 | Explain step by step procedure of graphical method of solving Linear Programming Problem. | Understand | CO 1 | AME021.03 |
| 9 | What are the limitations of graphical method? | Understand | CO 1 | AME021.03 |
| 10 | A firm manufactures two types of products A and B and sells them at a profit of Rs 2 on type A and Rs 3 on type B. Each product is processed on two machines $G$ and H . Type A requires one minute of processing time on $G$ and two minutes on $H$; type $B$ requires one minute on $G$ and one minute on $H$. The machine $G$ is available for not more than 6 hour 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem and find the optimum solution graphically. | Understand | CO 1 | AME021.03 |


| 11 | Explain the structure of an LPP with example? | Remember | CO 1 | AME021.03 |
| :---: | :---: | :---: | :---: | :---: |
| 12 | Discuss the algorithm of simplex method to solve an LPP? | Remember | CO 1 | AME021.03 |
| 13 | Explain assumptions to solve LPP using simplex? | Understand | CO 1 | AME021.03 |
| 14 | Solve the following problem by Simplex method Maximize $Z=5 \times 1+3 \times 2$ subject to constraints $\begin{array}{r} 3 \times 1+5 \times 2 \leq \quad 15 \\ 5 \times 1+2 \times 2 \leq \quad 10 \\ \text { and } \quad \times 1, \times 2 \geq 0 \end{array}$ | Understand | CO 1 | AME021.03 |
| 15 | Solve the following problem by Simplex method <br> Maximize $Z=x 1+3 \times 2+2 \times 3$ subject to constraints $3 x_{1}+x_{2}+3 x_{3} \leq 7$ $-2 x_{1}+4 x^{2} \leq 12$ $-4 x^{1}+3 x_{2}+8 x_{3} \leq 10$ <br> and $\mathrm{x} 1, \mathrm{x} 2 \geq 0$ | Remember | CO 1 | AME021.03 |
| 16 | Describe step-by-step procedure to solve LPP by BIG-M method? | Remember | CO 1 | AME021.03 |
| 17 | Explain the term artificial variables? Why do we need them? | Remember | CO 1 | AME021.03 |
| 18 | Describe Two-phase Simplex method | Remember | CO 1 | AME021.03 |
| 19 | Use big -M method to solve the following Maximize $Z=8 \times 1+5 \times 2 \quad$ Subjective to constraints $2 x_{1}+4 x_{2} \leq 45$ $3 x_{1}+2 x_{2} \leq 40$ $x_{1}+x_{2} \geq 30$ $\mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 .$ | Remember | CO 1 | AME021.03 |
| 20 | Solve the following LP Problem by two phase method Maximize $Z=5 \times 1-2 \times 2+3 \times 3$ Subject to constraints $\begin{array}{r} 2 \times 1+2 \times 2-x 3 \geq 2, \\ 3 \times 1-4 \times 2 \leq 3, \\ x 2+3 \times 3 \leq 5 \\ x 1, x 2, x 3 \geq 0 \end{array}$ | Understand | CO 1 | AME021.03 |
| Part C( Critical Analytical Questions) |  |  |  |  |
| 1 | Solve the following LP problem graphically. $\begin{aligned} & \text { Maximize } \mathrm{Z}=2 \mathrm{x}_{1}+\mathrm{x}_{2} \quad \text { Subjective to constraints } \\ & \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \\ & \mathrm{x}_{1}+\mathrm{x}_{2} \leq 6 \\ & \mathrm{x}_{1}-\mathrm{x}_{2} \leq 2 \\ & \mathrm{x}_{1}-2 \mathrm{x}_{2} \leq 1 \\ & \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$ | Understand | CO 1 | AME021.03 |
| 2 | SolvethefollowingLPproblemusing Simplexmethod. <br> Maximize $Z=6 x_{1}+8 x_{2}$ subject to constraints $\begin{array}{r} \mathrm{x}_{1}+\mathrm{x}_{2} \leq 10 \\ 2 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq \quad 25 \\ 2 \mathrm{x}_{1}+5 \mathrm{x}_{2} \leq \\ \text { and } \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \\ \hline \end{array}$ | Understand | CO 1 | AME021.03 |
| 3 | $\begin{aligned} & \text { SolvethefollowingLPP bytwo-phase method } \\ & \text { Minimize } Z=3 x_{1}+4 x_{2} \text { subject to constraints } \\ & 2 x_{1}+3 x_{2} \geq 8 \\ & 5 x_{1}+2 x_{2} \geq 12 \\ & \text { and } \quad x_{1}, x_{2} \geq 0 \end{aligned}$ |  | CO 1 | AME021.03 |
| 4 | $\begin{aligned} & \text { SolvethefollowingLPPbyBig-M ( penalty) method } \\ & \text { Minimize } Z=5 \mathrm{x}_{1}+3 \mathrm{x}_{2} \text { subject to constraints } \\ & \qquad \begin{array}{l} 2 \mathrm{x}_{1}+4 \mathrm{x}_{2} \leq 12 \\ 2 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \\ 5 \mathrm{x}_{1}+2 \mathrm{x}_{2} \leq 10 \end{array} \\ & \text { and } \quad \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0 \end{aligned}$ | Remember | CO 1 | AME021.03 |
| 5 | $\begin{aligned} & \text { SolvethefollowingLPPbyBig-Mmethod } \\ & \text { Maximize } Z=4 x_{1}+5 \mathrm{x}_{2}+\mathrm{x} 3 \text { subject to constraints } \\ & \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}=10 \\ & \quad 2 \mathrm{x}_{1}-\mathrm{x}_{2} \geq 1 \\ & \quad 2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x} 3 \leq 40 \\ & \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0 \\ & \hline \end{aligned}$ | Understand | CO 1 | AME021.03 |






|  |  |  | I |  | II | III | IV |  | V |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | A | 6 |  | 5 | 8 | 11 |  | 16 |  |  |  |
|  | B | B | 1 |  | 1 3 | 16 | 1 |  | 10 |  |  |  |
|  | C | C | 16 |  | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | 8 | 8 |  | 8 |  |  |  |
|  | D | D | 9 |  | 1 | 12 | 10 |  | 16 |  |  |  |
|  | E | E | 10 |  | $\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$ | 11 | 8 |  | 16 |  |  |  |
| 4 | A marketing manager wants to assign four regions to four different salesmen. Sales differ in their efficiency and territories also differ in their potentiality. An estimated sales (in lakhs) by different salesmen in the four territories are given below in the table. |  |  |  |  |  |  |  |  | Understand | $\mathrm{CO} 2$ | AME021.09 |
|  | Salesmen |  |  | Territories |  |  |  |  |  |  |  |  |
|  |  |  |  | 45 |  | 60 | 70 |  |  |  |  |  |
|  |  | A |  | 6 |  | 5 | 8 |  |  |  |  |  |
|  |  | B |  | 20 |  | 32 | 42 |  |  |  |  |  |
|  |  | C |  | 25 |  | 37 | 47 |  |  |  |  |  |
|  |  | D |  | 40 |  | 35 | 30 |  |  |  |  |  |
| 5 | A salesman estimates that the following would be the cost on his route, visiting the six cities as shown in the table below: |  |  |  |  |  |  |  |  | Remember | CO 2 | AME021.08 |
|  | From city |  |  |  |  | city |  |  |  |  |  |  |
|  |  |  |  |  | A1 | A2 | A3 | A4 | A5 |  |  |  |
|  |  |  |  | A1 | $\infty$ | 20 | 23 | 27 | 29 |  |  |  |
|  |  |  |  | A2 | 21 | $\infty$ | 19 | 26 | 31 |  |  |  |
|  |  |  |  | A3 | 26 | 28 | $\infty$ | 15 | 36 |  |  |  |
|  |  |  |  | A4 | 25 | 16 | 25 | $\infty$ | 23 |  |  |  |
|  |  |  |  | A5 | 23 | 40 | 23 | 31 | $\infty$ |  |  |  |
| Part A(Very Short Answer Questions); MID - I |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Defin | ine se | enc |  |  |  |  |  |  | Remember | CO 3 | AME021.11 |
| 2 | Disc | cuss th | imp | rtance | f seq | ncing |  |  |  | Understand | CO 3 | AME021.12 |
| 3 | State general representation of sequencing? |  |  |  |  |  |  |  |  | Remember | CO 3 | AME021.11 |
| 4 | Explain the terminology of sequencing techniques in operations research? |  |  |  |  |  |  |  |  | Remember | CO 3 | AME021.11 |
| 5 | Explain various sequencing models. |  |  |  |  |  |  |  |  | Understand | CO 3 | AME021.12 |
| 6 | Desc | cribe | plic | tions of | seque | cing? |  |  |  | Understand | CO 3 | AME021.13 |
| 7 | What are the conditions to be satisfied to convert a ' $n$ ' jobs 3 machine problem into ' $n$ ' jobs 2 machine problem? Explain the method clearly? |  |  |  |  |  |  |  |  | Understand | CO 3 | AME021.13 |
| 8 | What are the assumptions made in sequencing problem? |  |  |  |  |  |  |  |  | Understand | CO 3 | AME021.12 |
| 9 | Give the justification of Johnson's rule for sequencing n jobs x 2 machines |  |  |  |  |  |  |  |  | Remember | CO 3 | AME021.12 |
| 10 | What are the advantages of sequencing? |  |  |  |  |  |  |  |  | Remember | CO 3 | AME021.14 |
| Part B (Long Answer Questions) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Disc sequ | cuss a uencing | $\begin{aligned} & \text { ut } \\ & \text { sol } \end{aligned}$ | termi ion. | $\overline{\text { ology }}$ |  | ions fol | lowed |  | Remember | CO 3 | AME021.12 |
| 2 | Disc | cuss v | ious | types of | seque | cing m | dels. |  |  | Remember | CO 3 | AME021.12 |
| 3 | Expl mach | lain J hines | $\begin{aligned} & \text { inso } \\ & \text { or a } \end{aligned}$ | 's algo iven $m$ | $\begin{aligned} & \text { thm f } \\ & \text { chine } \end{aligned}$ | $\begin{aligned} & \text { r proc } \\ & \text { order. } \end{aligned}$ | $\text { sing ' } \mathrm{n} \text { ' }$ | jobs | rough two | Remember | CO 3 | AME021.12 |
| 4 | Expl three | lain e mac | $\begin{aligned} & \mathrm{p} \text { by } \\ & \text { ines } \end{aligned}$ | step pro mention | $\begin{aligned} & \text { edure } \\ & \text { ng co } \end{aligned}$ | for pros ditions. | essing | n' job | through | Remember | CO 3 | AME021.13 |



|  | (painting) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Automobile of two steps estimates ar <br> Determine elapsed time prepare Gan | repair c <br> procedu as follo <br> a sequen <br> e. Also co <br> tt chart | center ure viz ows: ace for compu | has six <br> . dent r <br> the six te idle | cars for removin <br> cars th times for | repair g and <br> at will each | . The paint <br> min of th | e repa ting. <br> imize he mac | consists The time <br> he total hine and |  |  |  |
| 3 | Find the se | 促 | hat mi | miz | he t | tim | e req | 倍 | forming | Understan | CO 3 | AME021.13 |
|  |  |  |  |  | Job |  |  |  |  |  |  |  |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |  |
|  |  | achine A | 8 | 3 | 7 | 2 | 5 | 1 |  |  |  |  |
|  | Mac | chine $\mathbf{B}$ | 3 | 4 | 5 | 2 | 1 | 6 |  |  |  |  |
|  | $\mathrm{Macl}$ | $\text { chine } \mathbf{C}$ | 8 | 7 | 6 | 9 | $10$ |  |  |  |  |  |
|  | the followin find idle tim | ng jobs ne of eac | on th ch mac | ree ma hine and | achine in nd idle | the me of | order each | $\begin{aligned} & \text { r ACB } \\ & \text { h mach } \end{aligned}$ | and also ine. |  |  |  |
| 4 | Explain step minimize th | by step <br> he time | Proce | dure to ed to pro | o solve by rocess th | $\begin{aligned} & \text { oy grap } \\ & \text { ee two } \end{aligned}$ | jhica | $\begin{aligned} & \text { al meth } \\ & \text { son ' } \end{aligned}$ | od to machines | Remember | CO 3 | AME021.13 |
| 5 | Using graph process jobeach machin calculate the | hical met -1 and job ne find e total ti | thod, job-2 on the job me nee | calculat <br> five $m$ which eded to | te the m machine should comple | inimu <br> A, B, be don te both | $m$ tim C, D ne fir he | me nee $\mathrm{D}, \mathrm{E}$, i . als jobs. | ded to for o | Understand | CO 3 | AME021.13 |
|  | JOB-1 | Sequen | ce |  | $\mathrm{A}$ |  |  | $\mathrm{D}$ |  |  |  |  |
|  |  | Time (h |  |  | $6{ }^{6}$ |  | 4 | 12 | 4 |  |  |  |
|  | JOB-2 | Sequen | nce |  | B |  | A | D | E |  |  |  |
|  |  | Time (h | hours) |  | 5 |  |  | 2 | 6 |  |  |  |
|  | Very Short | Answer | Ques | tions) |  |  |  |  |  |  |  |  |
| 1 | What is the | need for | a repl | lacement |  |  |  |  |  | Remember | CO 3 | AME021.12 |
| 2 | Define indiv | vidual re | placen | ment po | licy? |  |  |  |  | Remember | CO 3 | AME021.13 |
| 3 | Write about time'. | 'replace | ement | policy | of item | which |  | eriora | with | Understand | CO 3 | AME021.14 |
| 4 | What is repl | lacement | t probl | lem? |  |  |  |  |  | Understand | CO 3 | AME021.11 |
| 5 | Give some e | example | s for rep | eplacem | ment situ | uations |  |  |  | Understand | CO 3 | AME021.13 |
| 6 | Give the exa | amples of | of group | up repla | acement | concep |  |  |  | Understand | CO 3 | AME021.11 |
| 7 | Explain diff | ferent typ | pes of | replace | ement prob | oblem |  |  |  | Understand | CO 3 | AME021.12 |
| 8 | State the exa | amples of | of group | up repla | acement | conce |  |  |  | Remember | CO 3 | AME021.12 |
| 9 | Describe ind | dividual | replac | cement | policy. |  |  |  |  | Remember | CO 3 | AME021.12 |
| 10 | What is group | up repla | acement | t policy? |  |  |  |  |  | Understand | CO 3 | AME021.11 |
|  | B (Long Answ | wer Que | estions |  |  |  |  |  |  |  |  |  |
| 1 | Explain the | importa | ance of | replace | ement | nalysis |  |  |  | Understand | CO 3 | AME021.12 |
| 2 | Describe wit | ith exam | ples th | he failur | re mech | anism | of it | ems. |  | Remember | CO 3 | AME021.14 |
| 3 | Write about time'. | t 'replace | ement | policy | of items | which | $\mathrm{h} \text { dete }$ | eriora | with | Understand | CO 3 | AME021.14 |
| 4 | Discuss the r increases with | eplacem h time | ent po and mo | licy of ney value | items w lue is co | hose nstant |  | tenanc | $e \operatorname{cost}$ | Remember | CO 3 | AME021.14 |
| 5 | A machine ow of maintainin given below. | wner fin gn a ma | ads fro achine | $m$ his $p$ whose | past reco purchas | ds th price | $\begin{aligned} & \text { at the } \\ & \text { e is } R \end{aligned}$ | costs <br> s. 600 | per year 0 are | Understand | CO 3 | AME021.13 |
|  | Year | 1 | 2 | 3 | 4 | 5 |  | 6 | 7 8 |  |  |  |
|  | Maintenanc <br> e ( Rs) | 1000 | 1200 | 1400 | 1800 | 2300 |  | 2800 | $\begin{array}{\|l\|l\|} \hline 3400 & 400 \\ \hline \end{array}$ |  |  |  |



|  | which can be purchased for Rs 3000 will last for 4 years and can be operated at an annual cost of Rs 3000 . If money carries the rate of interest $10 \%$ per year, determine which stamper should be purchased. |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | A factory has working cond of the bulbs i $\square$ <br> Proportion of during the we If a bulb fail are replaced replacement | arge <br> n. Th <br> ven <br> fa <br> serv <br> time <br> y. ( | $\begin{aligned} & \text { numbe } \\ & \text { ne mor } \\ & \text { n the f } \\ & \hline \\ & \text { iiling } \\ & \\ & \text { ice, it } \\ & \text { it cost } \\ & \text { Assum } \end{aligned}$ | of bu <br> lity <br> litow <br> 1 <br> 0.1 <br> osts <br> Rs 1 <br> 1000 | sall of <br> table. $\mathbf{\| c \| c \|}^{2}$ <br> 0.15 | of whic <br> 3 <br> 0.25 | ch m <br>  <br> 0.35 | ast be <br> 5 <br> 0.12 <br> but if <br> ptimu <br> initia |  | Remember | CO 3 | AME021.13 |
| 5 | There are 1000 bulbs in use, and it costs Rs 10 to replace an individual bulb which has burn out. If all the bulbs were replaced simultaneously it would cost Rs 4 per bulb. It is proposed to replace all bulbs at fixed intervals of time, whether or not they have burn out, and to continue replacing burnt out bulbs as and when they fail. At what intervals all the bulbs should be replaced. At what group replacement price per bulb would a policy of strictly individua replacement becime preferable to the adopted policy. |  |  |  |  |  |  |  |  | Understand | CO 3 | AME021.13 |
| UNIT - IVPart A (Very Short Answer Questions) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Define a player. |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.15 |
| 2 | Explain a strategy. |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.16 |
| 3 | Define a pure strategy |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.15 |
| 4 | Define a two-person zero-sum game. |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.16 |
| 5 | Describe n-person zero-sum game. |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.17 |
| 6 | What are the characteristics of a two-person zero-sum game? |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.18 |
| 7 | Discuss a mixed strategy. |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.16 |
| 8 | What is the advantage of a mixed strategy over a pure strategy? |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.16 |
| 9 | state the principle of dominance. |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.15 |
| 10 | Describe a mixed strategy. |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.17 |
| 11 | Explain $2 \times \mathrm{n}$ game mode;? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.16 |
| 12 | Define inventory |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.16 |
| 13 | What is the necessity of maintaining inventory? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.17 |
| 14 | Explain different types of variables used in inventory? |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.18 |
| 15 | What are the different types of inventory models? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.19 |
| 16 | Why many organizations hold safety stocks as part of their inventory. |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.16 |
| 17 | What is a reorder point? |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.16 |
| 18 | What is the EOQ.? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.18 |
| 19 | Explain discrete probabilistic demand model |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.18 |
| 20 | Describe safety stock and Reorder point |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.18 |
| Part B (Long Answer Questions) |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Explain two person zero sum game and n person game? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.19 |
| 2 | Define pay of matrix and types of strategies in game theory? |  |  |  |  |  |  |  |  | Remember | CO 4 | AME021.18 |
| 3 | For the given payoff matrix, Find the solution of the game to the player A and B. what is the saddle point? What is the value of game. what strategies should A and B play in order to get the optimum benefit of the play? |  |  |  |  |  |  |  |  | Understand | CO 4 | AME021.18 |
|  | Player A |  | Player B |  |  |  |  |  |  |  |  |  |
|  |  |  | 1 | 2 | 3 | 4 | 5 | 6 |  |  |  |  |
|  |  | 1 | 8 | 3 | 7 | 2 | 5 | 1 |  |  |  |  |
|  |  | 2 | 3 | 4 | 5 | 2 | 1 | 6 |  |  |  |  |
|  |  | 3 | 8 | 7 | 6 | 9 | 10 | 9 |  |  |  |  |



|  | examples and how they are inter-related. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | What is EOQ? Discuss step by step the development of EOQ formula. |  |  |  |  | Remember | CO 4 | AME021.18 |
| 13 | A dealer supplies you the following information with regards to an product that he deals in annual demand $=10,000$ units, ordering cost Rs.10/order, Price Rs.20/unit. Inventory carrying cost is $20 \%$ of the value of inventory per year. The dealer is considering the possibility of allowing some back orders to occurs. He has estimated that the annual cost of back orderingwill be $25 \%$ of the value of inventory. <br> a. What should be the optimum no of units he should buy in 1lot? <br> b. What qty of the product should be allowed to be backordered <br> c. What would be the max qty of inventory at any time of year Would you recommend to allow backordering? If so what would be the annual cost saving by adopting the policy of backordering. |  |  |  |  | Understand | CO 4 | AME021.18 |
| 14 | Find the most economic batch quantity of a product on a machine if the production rate of the item on the machine is 300 pieces per day and the demand is uniform at the rate of 150 pieces/day. The set up cost is Rs. 300 per batch and the cost of holding one item in inventory is Rs. 0.81 /per day. How will the batch quantity vary if the machine production rate was infinite? |  |  |  |  | Understand | CO 4 | AME021.17 |
| 15 | The annual demand of a product is 10,000 units. Each unit costs Rs 100 if the orders are placed in quantities below 200 units. For orders above 200 or above, however the price is Rs 95 . The annual inventory holding cost is $10 \%$ of the value of the item and the ordering cost is Rs 5/order. Find the economic lot size. |  |  |  |  | Remember | CO 4 | AME021.17 |
| 16 | The production department of a company required $3,600 \mathrm{~kg}$ of raw materialformanufacturing a particular item per year. It has been estimated that the cost of placing an order is Rs. 36 and the cost of carrying inventory is $25 \%$ of the investment in the inventories, the price is <br> Rs. $10 / \mathrm{kg}$. help the purchase manager to determine and ordering policy for raw material, determine optimal lot size. |  |  |  |  | Understand | CO 4 | AME021.18 |
| 17 | Monthly demand for an item is 200 units. Ordering cost is Rs 3350, inventory carrying charge is $24 \%$ of the purchase price per year. <br> The purchase prices are <br> $\mathrm{P}_{1}=$ Rs 10 for purchasing $\quad \mathrm{Q}_{1}<500$ <br> $\mathrm{P}_{2}=$ Rs 9.25 for purchasing $500 \leq \mathrm{Q}_{2}<750$ <br> $\mathrm{P}_{3}=$ Rs 8.75 for purchasing $750 \leq \mathrm{Q}_{3}$ <br> Determine optimum purchase quantity. If the order cost is reduced to Rs 100 per order, compute the optimum purchase quantity. |  |  |  |  | Remember | CO 4 | AME021.18 |
| 18 | Discuss the significance of stochastic models in inventory control of production system? |  |  |  |  | Remember | CO 4 | AME021.18 |
| 19 | What are inventory models? Enumerate various types of inventory models and describe them briefly. |  |  |  |  | Remember | CO 4 | AME021.18 |
| 20 | A shop is about to order weather. The shop pays cold spell they sell for declines after the cold sp at Rs. 500 previous exp heater is asfollows. <br> How many heaters shoul | some <br> Rs. 1000 <br> Rs2000 <br> ell is <br> 20 <br> 0.30 | heaters <br> each. <br> nes an <br> sugge <br> 30 <br> 0.30 | a foreca heater demand y unsold the likely <br> uy? | spell of cold d during the for the heater units are sold demand for | Understand | CO 4 | AME021.18 |
| Part C (Critical Analytical Questions) |  |  |  |  |  |  |  |  |
| 1 | Solve the following $3 * 3$ game. find the value of the game and strategies of player A andB. |  |  |  |  | Remember | CO 4 | AME021.19 |



| 16 | What are the types of simulation? | Remember | CO 5 | AME021.21 |
| :---: | :---: | :---: | :---: | :---: |
| 17 | Explain the phases of simulation? | Understand | CO 5 | AME021.21 |
| 18 | What are the major limitations of simulation? | Remember | CO 5 | AME021.21 |
| 19 | Explain the advantages of simulation? | Understand | CO 5 | AME021.21 |
| 20 | What are the disadvantages of simulation? | Remember | CO 5 | AME021.21 |
| Part B (Long Answer Questions) |  |  |  |  |
| 1 | Define the terms Balking, Reneging, Jockeying. | Remember | CO 5 | AME021.22 |
| 2 | Explain the terms single server and multiple server queue length and finite and infinite queue length. | Remember | CO 5 | AME021.22 |
| 3 | Define simulation why simulation uses. Give one application area when <br> this technique is used in practice. | Understand | CO 5 | AME021.21 |
| 4 | Explain what factors must be considered when designing simulation experiment. | Remember | CO 5 | AME021.22 |
| 5 | Discuss briefly the types of simulations? | Remember | CO 5 | AME021.22 |
| 6 | A road transport company has one reservation clerk on duty at a time. He handles information of bus schedules and makes reservations customers arrive at a rate of 8 per hour and the clerk can, on an average, service 12 customers per hour. After starting your assumptions determine. <br> a. What is the average number of customer waiting for the service of the clerk <br> b. What is the average time a customer has to wait before being used? | Remember | CO 5 | AME021.22 |
| 7 | Consider a single semen queuing system with poisons input and exponential service times. Suppose that mean arrival rate is 3 calling units per hour, the expected service time is 0.25 hours and the maximum permissible calling units is the system is two. Derive the steady state probability distribution of the number of calling units in the system. And then calculate the expected number in the system. | Understand | CO 5 | AME021.22 |
| 8 | A super market has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean 4 minutes, and if people arrive 3 in a poison fashion at the $10 /$ hour. <br> a. What is the probability of having to wait for the service. <br> b. What is the expected percentage of idle time for each girl? <br> c. C. find the average length and average number of units in the system. | Remember | CO 5 | AME021.22 |
| 9 | Explain the application of Queuing systems? | Remember | CO 5 | AME021.22 |
| 10 | In a departmental store one cashier is there to serve the customers. And the customers pick up their needs by themselves the arrival rate is 9 customers for every 5 minutes and the cashier can serve 10 customers in 5 minutes. Assuming poisons arrival rate and exponential distribution for service rate. Find following: <br> a. Average number of customers in the system <br> b. Average number of customers in the queue of average queue length? <br> c. Average time a customer spends in the systems <br> d. Average time a customer waits before being served. | Understand | CO 5 | AME021.22 |
| 11 | Explain the advantages and disadvantages of simulation? | Understand | CO 5 | AME021.23 |
| 12 | A television repairman finds that the time spent on his jobs has an exponential distribution with a mean of 30 minutes. If he repairs the sets in the order in which they came in, and if the arrival of sets follows a Poisson distribution with an approximate average rate of 10 per 8hour day, what is the repairman's expected idle time each day? How many jobs are ahead of the average, set just brought in? |  | CO 5 | AME021.23 |
| 13 | What is simulation? Discuss application of simulation? | Understand | CO 5 | AME021.20 |
| 14 | Discuss the advantages and disadvantages of simulation. | Understand | CO 5 | AME021.22 |
| 15 | Explain briefly steps of simulation process. | Understand | CO 5 | AME021.23 |
| 16 | Explain types of simulation. | Understand | CO 5 | AME021.23 |
| 17 | Explain Monte Carlo simulation. | Remember | CO 5 | AME021.23 |


| 18 | what is simulation and discuss the What types of simulation? |  |  |  |  |  |  |  | Understand | CO 5 | AME021.03 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19 | Explain computer simulation? |  |  |  |  |  |  |  | Understand | CO 5 | AME021.23 |
| 20 | write the applications of simulation. |  |  |  |  |  |  |  | Understand | CO23 | AME021.23 |
| Part C (Critical Analytical Questions) |  |  |  |  |  |  |  |  |  |  |  |
| 1 | Customers arrive at box office windows being manned by a single individual, according to a Poisson input process with a mean rate of $20 / \mathrm{hr}$. the time required to serve a customer has an exponential distribution with a mean of 90 sec . Find the average waiting time of customers. Also determine the average number of customers in the system and average queue length. |  |  |  |  |  |  |  | Understand | CO 5 | AME021.23 |
| 2 | At a certain petrol pump, customers arrive according to a poisson process with an average time of 5 minutes between arrivals. The service time is exponentially distributed with mean time of minutes. On the basis of information find out <br> a. What would be the average queue length? <br> b. What would be the average number of customers in the queueing system? <br> c. What is the average time spent by a car in the petrol pump? <br> d. What is the average waiting time of a car before receiving petrol? |  |  |  |  |  |  |  | Remember | CO 5 | AME021.22 |
| 3 | A company manufa the availability of r production has been Whose probability d <br> Finished mopeds are only 200 mopeds. R 82,89,78,24,53,61,18, and 10 . Simulate the | tures <br> varyi <br> 197 <br> 0.09 <br> transp <br> ndom <br> ,45,04 <br> mope | aroun <br> anderials <br> ing fro <br> 198 <br> 0.12$\begin{array}{\|l\|} \hline 198 \\ \hline 0.12 \\ \hline \end{array}$ <br> ported <br> numb <br> 4,23,50 <br> ds wai | nd 200 <br> and <br> om 196 <br> give <br> 199 <br> 0.14$\|$to a lobers areo,77,5iting. | 0 mop <br> other <br> 96 mo <br> en belo <br> 200 <br> 0.20 | eds. Depe conditions peds to 20 w: <br> at can acco | nding <br> 203 <br> 0.04 mo <br> 0.08 <br> ommo | upon <br> daily <br> opeds. <br> 204 <br> 0.06 <br> date | Remember | CO 5 | AME021.23 |
| 4 | A bakery keeps st experience show the associated probabilit <br> use the following s demand for next 10d Random numbers: 2 Also estimate the dall of the simulated data | ck o e dail es as <br> quenc ys. <br> 5,39,65, <br> ly ave | f a p ly dem givenb <br> 10 <br> 20 <br> of <br> 5,76,12 <br> rage d | popular <br> mand <br> below: <br> 20 <br> random |  | nd of cak <br> 30 <br> 0.50 <br> mbers to s <br> 19,49 <br> he cakes o | $\begin{array}{r}\text { e. Pr } \\ \text { item } \\ 40 \\ \hline 0.1 \\ \hline\end{array}$ <br> simula <br> n the | revious with $\qquad$ <br> 0 <br> 12 <br> ate the <br> basis | Understand | CO 5 | AME021.22 |
| 5 | Explain in detail app | licatio | n of si | imulat | tion f | r inventory | y mode | dels. | Under stand | CO 5 | AME021.22 |

## Prepared by:

Mr.C. Labesh Kumar, Assistant Professor

