

LECTURE NOTES

ON

COMPUTER GRAPHICS

IV B. Tech I semester (JNTUH-R09)

Ms. S J SOWJANYA

Associate Professor

Ms. V DIVYAVANI

Assistant Professor

COMPUTER SCIENCE AND ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

DUNDIGAL, HYDERABAD - 500 043

UNIT- 1

Overview of Computer Graphics

1.1 Application of Computer Graphics

Computer-Aided Design for engineering and architectural systems etc.

Objects maybe displayed in a wireframe outline form. Multi-window environment

is also favored for producing various zooming scales and views.

Animations are useful for testing performance.
Presentation Graphics

To produce illustrations which summarize various kinds of data. Except 2D, 3D

graphics are good tools for reporting more complex data.
Computer Art

Painting packages are available. With cordless, pressure-sensitive stylus, artists can
produce electronic paintings which simulate different brush strokes, brush widths, and
colors. Photorealistic techniques, morphing and animations are very useful in
commercial art. For films, 24 frames per second are required. For video monitor,
30 frames per second are required.

Entertainment
Motion pictures, Music videos, and TV shows, Computer games

Education and Training

Training with computer-generated models of specialized systems such as the

training of ship captains and aircraft pilots.

Visualization

For analyzing scientific, engineering, medical and business data or behavior.

Converting data to visual form can help to understand mass volume of data very

efficiently.
Image Processing

Image processing is to apply techniques to modify or interpret existing

pictures. It is widely used in medical applications.
Graphical User Interface

Multiple window, icons, menus allow a computer setup to be utilized more efficiently.

1.2 Video Display devices

1.2.1Cathode-Ray Tubes (CRT) - still the most common video display device presently

Electrostatic deflection of the electron beam in a CRT

An electron gun emits a beam of electrons, which passes through focusing and deflection

systems and hits on the phosphor-coated screen. The number of points displayed on a CRT is

referred to as resolutions (eg. 1024x768). Different phosphors emit small light spots of

different colors, which can combine to form a range of colors. A common methodology for

color CRT display is the Shadow-mask meth

1.2.2 Raster-Scan

The electron beam is swept across the screen one row at a time from top to bottom. As it

moves across each row, the beam intensity is turned on and off to create a pattern of

illuminated spots. This scanning process is called refreshing.

The refreshing rate, called the frame rate, is normally 60 to 80 frames per second, or

described as 60 Hz to 80 Hz.

Picture definition is stored in a memory area called the frame buffer. This frame buffer

stores the intensity values for all the screen points. Each screen point is called a pixel (picture

element).

On black and white systems, the frame buffer storing the values of the pixels is called a

bitmap. Each entry in the bitmap is a 1-bit data which determine the on (1) and off (0) of the

intensity of the pixel.

On color systems, the frame buffer storing the values of the pixels is called a pixmap

1.2.3 Random-Scan (Vector Display)

The CRT's electron beam is directed only to the parts of the screen where a picture is to be

drawn. The picture definition is stored as a set of line-drawing commands in a refresh display

file or a refresh buffer in memory.

Random-scan generally have higher resolution than raster systems and can produce smooth

line drawings, however it cannot display realistic shaded scenes.

1.2.4 COLOR CRT MONITORS

CRT monitor displays color pictures by using a combination of phosphors that emit different

colored light. By combining the emitted light from the different phosphors , a range of colors can

be generated. Color CRTs have 3 phosphor color dots at each pixel position for red , green and

blue color Three electron guns one for each color dot A metal shadow mask to differentiate the

beams

 The 2 basic techniques for producing color CRT displays are

1. Beam penetration method 2. Shadow mask method

 Commonly used in raster scan systems because they produce wide range of colours than beam

penetration method.

Beam Penetration method

Commonly used in raster scan systems

Two layers of phosphor, usually red and green, are coated onto the inside of CRT screen, and the

displayed color depends on how far the electron beam penetrates into the phosphor layers.

A beam of slow electrons excites only the outer red layer.

A beam of very fast electrons penetrates through the red layer and excites the inner green

layer.At intermediate beam speeds, combinations of other colors are produced.

SHADOW MASK

The shadow mask is one of two major technologies used to manufacture cathode ray tube (CRT)

televisions and computer displays that produce color images (the other is aperture grille and its

improved variant Cromaclear). Tiny holes in a metal plate separate the colored phosphors in the

layer behind the front glass of the screen. The holes are placed in a manner ensuring that

electrons from each of the tube's three cathode guns reach only the appropriately-colored

phosphors on the display. All three beams pass through the same holes in the mask, but the angle

of approach is different for each gun. The spacing of the holes, the spacing of the phosphors, and

the placement of the guns is arranged so that for example the blue gun only has an unobstructed

path to blue phosphors. The red, green, and blue phosphors for each pixel are generally arranged

in a triangular shape (sometimes called a "triad")

1.2.5 Flat Panel Displays

 A flat CRT is obtained by initially projecting the electron beam parallel to the screen and then

reflecting it throught 90. Reflecting the electron beam significantly reduces the depth of the

CRT bottle and, consequently, of the display.

Types of Flat panel displays:

I. Plasma Panels.

II. Thin-film electro luminescent display

III. Light-emitted diode

Plasma Panels

Constructed by filling the region between two glass plates with a mixture of gases that usually

includes neon. A series of vertical conducting ribbons is placed on one glass panel, and a set of

horizontal conducting ribbons is built into the other glass panel. Firing voltages applied to an

intersecting pair of horizontal and vertical conductors cause the gas at the intersection of the two

conductors to break down into a glowing plasma of electrons and ions. Picture definition is

stored in a refresh buffer, and the firing voltages are applied to refresh the pixel positions (at the

intersection of the conductors) 60 times per second.

Thin-film electroluminescent display

The xenon, neon, and helium gas in a plasma television is contained in hundreds of thousands of

tiny cells positioned between two plates of glass. Long electrodes are also put together between

the glass plates, in front of and behind the cells. The address electrodes sit behind the cells, along

the rear glass plate. The transparent display electrodes, which are surrounded by an insulating

dielectric material and covered by a magnesium oxide protective layer, are mounted in front of

the cell, along the front glass plate. Control circuitry charges the electrodes that cross paths at a

cell, creating a voltage difference between front and back and causing the gas to ionize and form

a plasma. As the gas ions rush to the electrodes and collide, photons are emitted.

Thin-Film Electroluminescent

These are similar in construction to a plasma panel. The only difference is that the enfilement of

the region between the glass plates is with a phosphor, such as zinc sulphide doped with

manganese, instead of a gas.

Light Emitting Diode (LED)

 A matrix of diodes is arranged to form the pixel positions in the display, and picture definition is

stored in a refresh buffer. • Information is read from the refresh buffer and converted to voltage

levels that are applied to the diodes to produce the light patterns in the display.

Active-matrix LCD

This type of LCD is constructing by placing a transistor at each pixel location, using thin-film

transistor technology. • The transistors are used to control the voltage at pixel locations and to

prevent charge from gradually leaking out of the liquid-crystal cells.

Passive-matrix LCD

Two glass plates, each containing a light polarizer that is aligned at a right angle to the other plate,

sandwich the liquid-crystal material. • Rows of horizontal, transparent conductors are built into one

glass plate, and columns of vertical conductors are put into the other plate. • The intersection of the

two defines a pixel position. Polarized light passing through the material is twisted so that it will pass

through the opposite polarizer. The light is then reflected back to the viewer. • To turn off the pixel, we

apply a voltage to the two intersecting conductors to align the molecules so that the light is not twisted.

Input Devices:

1. Keyboard

The computer keyboard is used to enter text information into the computer, as when you type the

contents of a report. The keyboard can also be used to type commands directing the computer to

perform certain actions. Commands are typically chosen from an on-screen menu using a mouse, but

there are often keyboard shortcuts for giving these same commands. In addition to the keys of the

main keyboard (used for typing text), keyboards usually also have a numeric keypad (for entering

numerical data efficiently), a bank of editing keys (used in text editing operations), and a row of

function keys along the top (to easily invoke certain program functions). Laptop computers, which

don’t have room for large keyboards, often include a ―fn‖ key so that other keys can perform double

duty (such as having a numeric keypad function embedded within the main keyboard keys). Improper

use or positioning of a keyboard can lead to repetitive-stress injuries. Some ergonomic keyboards are

designed with angled arrangements of keys and with built-in wrist rests that can minimize your risk

of RSIs. Most keyboards attach to the PC via a PS/2 connector or USB port (newer). Older Macintosh

computers used an ABD connector, but for several years now all Mac keyboards have connected

using USB.

Pointing Devices The graphical user interfaces (GUIs) in use today require some kind of device for

positioning the on-screen cursor. Typical pointing devices are: mouse, trackball, touch pad,

trackpoint, graphics tablet, joystick, and touch screen.

Pointing devices, such as a mouse, connected to the PC via aserial ports (old), PS/2 mouse port

(newer), or USB port (newest). Older Macs used ADB to connect their mice, but all recent Macs use

USB (usually to a USB port right on the USB keyboard).

2. Mouse

The mouse pointing device sits on your work surface and is moved with your hand. In older mice, a

ball in the bottom of the mouse rolls on the surface as you move the mouse, and internal rollers

sense the ball movement and transmit the information to the computer via the cord of the mouse.

The newer optical mouse does not use a rolling ball, but instead uses a light and a small optical

sensor to detect the motion of the mouse by tracking a tiny image of the desk surface. Optical mice

avoid the problem of a dirty mouse ball, which causes regular mice to roll unsmoothly if the mouse

ball and internal rollers are not cleaned frequently. A cordless or wireless mouse communicates with

the computer via radio waves (often using BlueTooth hardware and protocol) so that a cord is not

needed (but such mice need internal batteries). A mouse also includes one or more buttons (and

possibly a scroll wheel) to allow users to interact.

3. Light Pen

It is a pen-like device, which is connected to the machine by a cable. A light pen is a hand-held

electro-optical pointing device which when touched to or aimed closely at a connected computer

monitor, will allow the computer to determine where on that screen he pen is aimed. It actually does

not emit light; its light sensitive –diode would sense the light coming from the screen. They are

sensitive to the short burst of light emitted from the phosphor coating at the instant the electron

beam strikes a particular point. Other light sources, such as the background light in the room, are

usually not detected by a light pen. An activated light pen, pointed at a spot on the screen as the

electron beam lights up that spot, causes the photocell to respond by generating an electrical pulse.

This electric pulse response is transmitted to the processor that identifies the position to which the

light pen is pointing. As with cursor-positioning devices, recorded light-pen coordinates can be used

to position an object or to select a processing option. It facilitates drawing images and selects objects

on the display screen by directly pointing the objects with the pen. Although light pens are still with

us, they are not as popular as they once were since they have severage disadvantages compared to

other input devices that have been developed.

4.Touch screen

It is an easisest way to enter data with the tough of a finger. Touch screens enable the user to select

an option by pressing a specific part of the screen. Touch input can be recorded using optical,

electrical or acoustical methods.

Infrared (optical Touch sensitive Screen)

An infrared touch screen uses an array of X-Y infrared LED and photo detector pairs around the edges

of the screen to detect a disruption in the pattern of LED beams. A major benefit of such a system is

that is can detect essentially any input including a finger, gloved finger, stylus or pen. It is generally

used in outdoor applications and point-of-sale systems which can't rely on a conductor (such as a

bare finger) to activate the touch screen. Unlike capacitive touch screens, infrared touch screens do

not require any patterning on the glass which increases durability and optical clarity of the overall

system.

Resistive (Electrical Touch Sensitive Screen) A resistive touch screen panel is composed of several

layers, the most important of which are two thin, metallic, electrically conductive layers separated by

a narrow gap. When an object, such as a finger, presses down on a point on the panel's outer surface

the two metallic layers become connected at that point: the panel then behaves as a pair of voltage

dividers with connected outputs. This causes a change in the electrical current, which is registered as

a touch event and sent to the controller for processing.

5.Graphics tablet

A graphics tablet consists of an electronic writing area and a special ―pen that works with it.

graphics tablets allows artists to create graphical images with motions and actions similar to using

more traditional drawing tools. The pen of the graphics tablet is pressure sensitive, so pressing

harder or softer can result in brush strokes of different width (in an appropriate graphics program).

A graphics tablet is an input device used by artists which allows one to draw a picture onto a

computer screen without having to utilize a mouse or keyboard. A graphics tablet consists of a flat

tablet and some sort of drawing device, usually either a pen or stylus. A graphics tablet may also be

referred to as a drawing tablet or drawing pad. While the graphics tablet is most suited for artists

and those who want the natural feel of a pen-like object to manipulate the cursor on their screen,

non-artists may find them useful as well. The smooth flow of a graphics tablet can be refreshing for

those who find the mouse to be a jerky input device, and repetitive stress injuries such as carpal

tunnel syndrome are less likely when using a graphics tablet. These devices are more accurate than

light pens. Based on the mechanism used to find two-dimensional coordianes on a flat surface,

there are two types of tablets: Electromagnetic Field and Acoustic tablet.

6.Scanners

 A scanner is a device that images a printed page or graphic by digitizing it, producing an image made

of tiny pixels of different brightness and color values which are represented numerically and sent to

the computer. Scanners scan graphics, but they can also scan pages of text which are then run

through OCR (Optical Character Recognition) software that identifies the individual letter shapes and

creates a text file of the page's contents.

7.Microphone

A microphone can be attached to a computer to record sound (usually through a sound card input or

circuitry built into the motherboard). The sound is digitized—turned into numbers that represent the

original analog sound waves—and stored in the computer to later processing and playback.

UNIT_-2

1.Line drawing algorithms

1.1 DDA Algorithm

Procedure DDA(X1,Y1,X2,Y2 :Integer);

Var Length, I :Integer;

 X,Y,Xinc,Yinc :Real;

Begin

 Length := ABS(X2 - X1);

If ABS(Y2 - Y1) > Length Then

 Length := ABS(Y2-Y1);

 Xinc := (X2 - X1)/Length;

 Yinc := (Y2 - Y1)/Length;

 X := X1;

 Y := Y1;

For I := 0 To Length Do

 Begin

 Plot(Round(X), Round(Y));

 X := X + Xinc;

 Y := Y + Yinc

 End {For}

End; {DDA}

1.2. Bresenham's Line Algorithm

1. Input the two line end-points, storing the left end-point in (x0, y0)
2. Plot the point (x0, y0)
3. Calculate the constants Δx, Δy, 2Δy, and (2Δy - 2Δx) and get the first value for the

decision parameter as:
 P0=2Δy- Δ x

4. At each xk along the line, starting at k = 0, perform the following test. If pk < 0, the next
point to plot is (xk+1, yk) and:

 pk+1=pk+2 Δy

 Otherwise, the next point to plot is (xk+1, yk+1) and:
 pk+1=pk+2 Δy-2 Δ x

1.3.Mid-point Circle Algorithm

f circle
=<0 if (x, y)is outside thecircleboundary

 =0if (x, y)is on thecircleboundary

 >0 if(x,y)is inside thecircleboundary

1.Input radius r and circle center (xc,yc) and obtain the first point on the circumference of the

 circle centered on the origin as(x0,y0) = (0,r)

2. Calculate the initial value of the decision parameter as P=(5/4)-r

3. At each xk position, starting at k=0, perform the following test.

 If Pk<0 the next point along the circle centered on (0,0) is (xk+1,yk) and Pk+1=Pk+2xk+1+1

 Otherwise the next point along the circle is (xk+1,yk-1) and Pk+1=Pk+2xk+1+1-2 yk+1

 Where 2xk+1=2xk+2 and 2yk+1=2yk-2

4. Determine symmetry points in the other seven octants.

5. Move each calculated pixel position (x,y) onto the circular path centered at (xc,yc)

 and plot the coordinate values.

 x=x+xc

 y=y+yc

6. Repeat step 3 through 5 until x>=y

1.4.Midpoint Ellipse Algorithm

1.Input rx,ryand ellipse center (xc,yc) and obtain the first point on an ellipse centered on the origin

 as(x0,y0) = (0,r)

2.Calculate the initial value of the decision parameter in region 1 as

 P10=ry2-rx2ry+(1/4)rx2

3.At each xkposition in region1 starting at k=0 perform the following test.

 If P1k<0, the next point along the ellipse centered on (0,0) is (xk+1, yk) and

 p1k+1 = p1k+2ry2xk +1+ ry2

 Otherwise the next point along the ellipse is (xk+1, yk-1) and

 p1k+1 = p1k+2ry2xk +1-2rx2yk+1 + ry2

 with 2ry2xk +1 = 2ry2xk + 2ry2

 2rx2yk +1 = 2rx2yk + 2rx2And continue until 2ry2x>=2rx2y

4.Calculate the initial value of the decision parameter in region 2

 using the last point (x0,y0) is the last position calculated in region 1.

 P20 = ry2(x0+1/2)2+rx2(yo-1)2–rx2ry2

5.At each position yk in region 2, starting at k=0 perform the following test, If p2k>0 the next point along

 the ellipse centered on (0,0) is (xk,yk-1) and p2k+1 = p2k–2rx2yk+1+rx2

 Otherwise the next point along the ellipse is (xk+1,yk-1) andp2k+1= p2k+ 2ry2xk+1–2rxx2yk+1+ rx2

 Using the same incremental calculations for x any y as in region 1.

6.Determine symmetry points in the other three quadrants

c

2. Filled area primitives

 Two methods

 1. Inside-Outside test

 2. Winding number method

2.1. Inside-Outside Tests:

 The above algorithm only works for standard polygon shapes. However, for the cases

which the edge of the polygon intersects, we need to identify whether a point is an

interior or exterior point. Students may find interesting descriptions of 2 methods to

solve this problem in many text books: odd-even rule and nonzero winding number rule.

 2.2 Winding number method

 Like even-odd method, in winding number method we have to picturise a line segment

 running from outside the polygon to the point in question and consider the polygon sides

 which it crosses

 3.Polygon Filling

 Filling the polygon means highlighting all the pixels which lie inside the polygon with any

 colour other than background colour. Polygons are easier to fill since they have linear

 boundaries.

 There are two basic approaches used to fill the polygon.

 1. Seed-fill

 2.Scan line algorithm

Seed Fill

The seed fill algorithm is further classified as flood fill algorithm and boundary fill

algorithm.Algorithms that fiIl interior-defined regions are called flood-fill algorithms.Those

that fill boundary-defined regions are called boundary-fill algorithms or edge-fill algorithms.

Boundary Fill Algorithm or Edge Fill Algorithm

In this method, edges of the polygons are drawn.Then starting with some any point inside the

polygon we examine the neighbouring pixels to check whether the toundary pixel is reached

Boundary defined regions may be either 4-cormected or 8-connected.

void BoundaryFill(int x, int y, COLOR fill, COLOR boundary)

 {

 COLOR current;current=GetPixel(x,y);

if (current<>boundary) and (current<>fill) then {
SetPixel(x,y,fill);

BoundaryFill(x+1,y,fill,boundary);

BoundaryFill(x-1,y,fill,boundary);

BoundaryFill(x,y+1,fill,boundary);

BoundaryFill(x,y-1,fill,boundary);

}
}

Flood Fill Algorithm

Sometimes it is required to fill in an area that is not defined within a single colour boundary.

In such cases we can fill areas by replacing a specified interior colour instead of searching for

a boundary colour

flood_fill (x, y, old-colour, new-colour).

{

 if (getpixel (x, y) = old-colour)

 {

 putpixel (x, y, new-colour);

 flood-fitl (x + 1, y, old-colour, new-colour);

 flood-fill (x - 1, y, old-colour, new-colour);

 flood-fill (x, y + 1, old-colour, new-colour);

 flood-fill (x, y - 1, old-colour, new-colour);

 flood-fill (x + 1, y + \, old-colour, new-colour);

 flood-fill (x - 1, y - 1, old-colour, new-colour);

 flood-fill (x + 1, y - 7, old-colour, new-colour);

 flood-fill (x - 1, y + 1, old-colour, new-colour);

 }

}

Scan-Line Polygon Fill Algorithm
 Basic idea: For each scan line crossing a polygon, this algorithm locates the intersection

 points of the scan line with the polygon edges. These intersection points are shorted from left

 to right. Then, we fill the pixels between each intersection pair.

-

Some scan-line intersection at polygon vertices require special handling. A scan line

passing through a vertex as intersecting the polygon twice. In this case we may or may not

add 2 points to the list of intersections, instead of adding 1 points. This decision depends

on whether the 2 edges at both sides of the vertex are both above, both below, or one is above

and one is below the scan line. Only for the case if both are above or both are below the scan

line, then we will add 2 points.

UNIT 3

Two Dimensional Transformations

In many applications, changes in orientations, size, and shape are accomplished with geometric

transformations that alter the coordinate descriptions of objects.

Basic geometric transformations are:

Translation

Rotation

Scaling

Other transformations:

 Reflection

Shear

3.1 Basic Transformations

Translation

We translate a 2D point by adding translation distances, tx and ty, to the original coordinate

position (x,y):
x' = x + tx, y' = y + ty

3.2 Rotation About the Origin

To rotate an object about the origin (0,0), we specify the rotation angle ?. Positive and

negative values for the rotation angle define counterclockwise and clockwise rotations

respectively. The followings is the computation of this rotation for a point:

x' = x cos θ - y sin θ
y' = x sin θ + y cos θ

3 Scaling With Respect to the Origin

We scale a 2D object with respect to the origin by setting the scaling

factors sx and sy, which are multiplied to the original vertex coordinate

positions (x,y):

x' = x * sx, y' = y * sy

Homogeneous co-ordinates
The previous section showed how we could mathematically represent the transformations of

translation, scaling and rotation. Both scaling and rotation can be represented very conveniently

using matrices, but unfortunately translation cannot. It would be nice to be able to perform all

transformations using the same operation, i.e. by multiplying a position vector by a transformation

matrix. This is where homogeneous co-ordinates come in useful. Homogeneous co-ordinates add an

extra scaling co-ordinate (typically w) to a normal 2D or 3D vector. In order to convert between

homogeneous co-ordinates and normal co-ordinates we must take this scaling factor into

consideration.

Translation

 Rotation

 x’=x cosθ-y sinθ

 y’=x sinθ+ y cosθ

 [x’ y’ 1]=|cosθ sinθ 0 | [x y 1]

 |-sinθ cosθ 0|

 |0 0 1|

 P’ = R(θ) •P

 Scaling

 x’=Sx•x

 y’=Sy• y

 [x’ y’ 1]=|Sx 0 0| [x y 1]

 |0 Sy 0|

 |0 0 1

 P’ = S(sx ,sy) •P

 Reflection

UNIT -4

2-Dimensional viewing

4.1Images on the Screen

All objects in the real world have size. We use a unit of measure to describe both the

size of an object as well as the location of the object in the real world. For example,

meters can be used to specify both size and distance. When showing an image of an

object on the screen, we use a screen coordinate system that defines the location of the

object in the same relative position as in the real world. After we select the screen

coordinate system, we change the picture to display interior screen that means change

it into screen coordinate system.

4.1.1 Windows and Clipping

The world coordinate system is used to define the position of objects in the natural

world. This
system does not depend on the screen coordinate system , so the interval of number

can be
anything(positive, negative or decimal). Sometimes the complete picture of object in

the world

coordinate system is too large and complicate to clearly show on the screen, and we

need to
show only some part of the object. The capability that show some part of object

internal a specify
window is called windowing and a rectangular region in a world coordinate system is

called
window. Before going into clipping, you should understand the differences between

window and
a viewport.

A Window is a rectangular region in the world coordinate system. This is the

coordinate
system used to locate an object in the natural world. The world coordinate

system does not
depend on a display device, so the units of measure can be positive, negative or
decimal
numbers.

A Viewport is the section of the screen where the images encompassed by the

window on the

world coordinate system will be drawn. A coordinate transformation is required to

display the

image, encompassed by the window, in the viewport. The viewport uses the screen

coordiante

system so this transformation is from the world coordinate system to the screen

coordinate

system.

When a window is "placed" on the world, only certain objects and
parts of objects can be seen.
Points and lines which are outside the window are "cut off" from view.

This process of "cutting
off" parts of the image of the world is called Clipping. In clipping, we
examine each line to
determine whether or not it is completely inside the window,

completely outside the window, or
crosses a window boundary. If inside the window, the line is displayed.

If outside the
window,the lines and points are not displayed. If a line crosses the

boundary, we must determine
the point of intersection and display only the part which lies inside the
window.

CLIPPING
Clipping may be described as the procedure that identifies the portions of a picture lie inside the region, and therefore,

should be drawn or, outside the specified region, and hence, not to be drawn. The algorithms that perform the job of
clipping are called clipping algorithms there are various types, such as:

• Point Clipping

• Line Clipping

• Polygon Clipping

• Text Clipping

• Curve Clipping

Further, there are a wide variety of algorithms that are designed to perform certain types of clipping

operations, some of them which will be discussed in unit. Line Clipping Algorithms: • Cohen

Sutherland Line Clippings • Cyrus-Beck Line Clipping Algorithm Polygon or Area Clipping Algorithm •

Sutherland-Hodgman Algorithm

4.2 Cohen-Sutherland Line Clipping

The Cohen-Sutherland line clipping algorithm quickly detects and

dispenses with two common

and trivial cases. To clip a line, we need to consider only its endpoints.

If both endpoints of a line

lie inside the window, the entire line lies inside the window. It is

trivially accepted and needs no

clipping. On the other hand, if both endpoints of a line lie entirely to

one side of the window, the

line must lie entirely outside of the window. It is trivially and needs to

be neither clipped nor

displayed.

Inside-Outside Window Codes

To determine whether endpoints are inside or outside a window, the

algorithm sets up a half-
space code for each endpoint. Each edge of the window defines an

infinite line that divides the
whole space into two half-spaces, the inside half-space and the

outside half-space, as shown
below.

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/trivial.html

As you proceed around the window, extending each edge and defining an inside half-space and
an outside half-space, nine regions are created - the eight "outside" regions and the one "inside"
region. Each of the nine regions associated with the window is assigned a 4-bit code to identify

the region. Each bit in the code is set to either a 1(true) or a 0(false). If the region is to the left of
the window, the first bit of the code is set to 1. If the region is to the top of the window,

the second bit of the code is set to 1. If to the right, the third bit is set, and if to the bottom,
the fourth bit is set. The 4 bits in the code then identify each of the nine regions as shown below.

For any endpoint (x , y) of a line, the code can be determined that identifies which region the

endpoint lies. The code's bits are set according to the following conditions:

The sequence for reading the codes' bits is LRBT (Left, Right, Bottom, Top).

Once the codes for each endpoint of a line are determined, the logical AND operation of the
codes determines if the line is completely outside of the window. If the logical AND of the
endpoint codes is not zero, the line can be trivially rejected. For example, if an endpoint had a

code of 1001 while the other endpoint had a code of 1010, the logical AND would be 1000
which indicates the line segment lies outside of the window. On the other hand, if the endpoints

had codes of 1001 and 0110, the logical AND would be 0000, and the line could not be trivially
rejected.

The logical OR of the endpoint codes determines if the line is completely inside the window. If
the logical OR is zero, the line can be trivially accepted. For example, if the endpoint codes are

0000 and 0000, the logical OR is 0000 - the line can be trivially accepted. If the endpoint codes

are 0000 and 0110, the logical OR is 0110 and the line cannot be trivially accepted.

Algorithm

The Cohen-Sutherland algorithm uses a divide-and-conquer strategy. The line segment's

endpoints are tested to see if the line can be trivially accepted or rejected. If the line cannot be

trivally accepted or rejected, an intersection of the line with a window edge is determined and the

trivial reject/accept test is repeated. This process is continued until the line is accepted.

To perform the trivial acceptance and rejection tests, we extend the edges of the window to

divide the plane of the window into the nine regions. Each end point of the line segment is then

assigned the code of the region in which it lies.

1. Given a line segment with endpoint and
2. Compute the 4-bit codes for each endpoint.

If both codes are 0000,(bitwise OR of the codes yields 0000) line lies

completely inside the window: pass the endpoints to the draw routine.

If both codes have a 1 in the same bit position (bitwise AND of the codes is not 0000),
the line lies outside the window. It can be trivially rejected.

3. If a line cannot be trivially accepted or rejected, at least one of the two endpoints must lie

 outside the window and the line segment crosses a window edge. This line must

 be clipped at the window edge before being passed to the drawing routine.

4. Examine one of the endpoints, say . Read 's 4-bit code in order: Left-
to-Right, Bottom-to-Top.

5. When a set bit (1) is found, compute the intersection I of the corresponding window edge

with the line from to . Replace with I and repeat the algorithm.

4.3 Liang-Barsky Line Clipping

The ideas for clipping line of Liang-Barsky and Cyrus-Beck are the same. The only difference is

Liang-Barsky algorithm has been optimized for an upright rectangular clip window. So we will

study only the idea of Liang-Barsky.

Liang and Barsky have created an algorithm that uses floating-point arithmetic but finds the

appropriate end points with at most four computations. This algorithm uses the parametric

equations for a line and solves four inequalities to find the range of the parameter for which the

line is in the viewport.

Let P(x1,y1) , Q(x2,y2)be the line which we want to study. The parametric equation of the

line segment from gives x-values and y-values for every point in terms of a parameter that
ranges from 0 to 1. The equations are

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/interse.html

and

We can see that when t = 0, the point computed is P(x1,y1); and when t = 1, the point computed

is Q(x2,y2).

Algorithm

1. Set and

2. Calculate the values of tL, tR, tT, and tB (tvalues).

o if or ignore it and go to the next edge

o otherwise classify the tvalue as entering or exiting value (using inner product to
classify)

o if t is entering value set ; if t is exiting value set

3. If then draw a line from (x1 + dx*tmin, y1 + dy*tmin) to (x1 + dx*tmax, y1
+ dy*tmax)

4. If the line crosses over the window, you will see (x1 + dx*tmin, y1 + dy*tmin) and (x1 +

 dx*tmax, y1 + dy*tmax) are intersection between line and edge.

4.4 Sutherland - Hodgman Polygon Clipping

The Sutherland - Hodgman algorithm performs a clipping of a polygon against each window

edge in turn. It accepts an ordered sequence of verices v1, v2, v3, ..., vn and puts out a set of

vertices defining the clipped polygon.

This figure represents a polygon (the large, solid, upward pointing

arrow) before clipping has occurred.

The following figures show how this algorithm works at each edge, clipping the polygon.

http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/tvalue.html
http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/enter.html
http://www.cs.helsinki.fi/group/goa/viewing/leikkaus/intersec.html

a. Clipping against the left side of the clip window.

b. Clipping against the top side of the clip window.

c. Clipping against the right side of the clip window.
d. Clipping against the bottom side of the clip window.

Four Types of Edges

As the algorithm goes around the edges of the window, clipping the polygon, it encounters four
types of edges. All four edge types are illustrated by the polygon in the following figure. For
each edge type, zero, one, or two vertices are added to the output list of vertices that define the
clipped polygon.

The four types of edges are:

1. Edges that are totally inside the clip window. - add the second inside vertex point

2. Edges that are leaving the clip window. - add the intersection point as a vertex
3. Edges that are entirely outside the clip window. - add nothing to the vertex output list

4. Edges that are entering the clip window. - save the intersection and inside points as

 vertices

UNIT-5

3D Object Representations

Methods:

 Polygon and Quadric surfaces: For simple Euclidean objects

 Spline surfaces and construction: For curved surfaces

 Procedural methods: Eg. Fractals, Particle systems

 Physically based modeling methods

 Octree Encoding

 Isosurface displays, Volume rendering, etc.

Classification:

Boundary Representations (B-reps) eg. Polygon facets and spline patches

Space-partitioning representations eg. Octree Representation

Objects may also associate with other properties such as mass, volume, so as to determine

their response to stress and temperature etc.

5.1 Polygon Surfaces

This method simplifies and speeds up the surface rendering and display of objects.

For other 3D objection representations, they are often converted into polygon

surfaces before rendering.

Polygon Mesh

- Using a set of connected polygonally bounded planar surfaces to represent an object,

which may have curved surfaces or curved edges.

- The wireframe display of such object can be displayed quickly to give general
indication of the surface structure.

- Realistic renderings can be produced by interpolating shading patterns across the

polygon surfaces to eliminate or reduce the presence of polygon edge boundaries.

5.2 Polygon Tables

This is the specification of polygon

surfaces using vertex coordinates and

other attributes:

1. Geometric data table: vertices, edges,

 and polygon surfaces.

2. Attribute table: eg. Degree of

transparency and surface reflectivity

etc.

Some consistency checks of the

geometric data table:

 Every vertex is listed as an endpoint

for at least 2 edges
 Every edge is part of at least one polygon

 Every polygon is closed

5.3 Plane equation and visible points

Consider a cube, each of the 6 planes has 2 sides: inside

face and outside face.

For each plane (in a right-handed coordinate system), if we
look at its surface and take 3 points in counter-clockwise
direction: (x1,y1), (x2,y2), and (x3,y3), we can compute 4
values: A,B,C,D as

1 y1 z1 x1 1 z1 x1 y1 1 x1 y1 z1

D =
A = 1 y2 z2 B = x2 1 z2 C = x2 y2 1 - x2 y2 z2

1 y3 z3 x3 1 z3 x3 y3 1 x3 y3 z3

Then, the plane equation at the form: Ax+By+Cz+D=0 has the property that:

If we substitute any arbitrary point (x,y) into this equation, then,

Ax + By + Cz + D < 0 implies that the point (x,y) is inside the surface, and

Ax + By + Cz + D < 1 implies that the point (x,y) is outside the surface.

Polygon Meshes
Common types of polygon meshes are triangle strip and quadrilateral mesh.

Fast hardware-implemented polygon renderers are capable of displaying up to 1,000,000 or

more shaded triangles per second, including the application of surface texture and special

lighting effects.

Curved Surfaces

1. Regular curved surfaces can be generated as

- Quadric Surfaces, eg. Sphere, Ellipsoid, or

- Superquadrics, eg. Superellipsoids

Where s1, rx, ry, and rx are constants. By varying the values of and , points on the
surface can be computed.

2. Irregular surfaces can also be

generated using some special

formulating approach, to form a kind of

blobby objects -- The shapes showing a

certain degree of fluidity.

5.4 Spline Representations

Spline means a flexible strip used to produce a smooth curve through a designated set of

points. Several small weights are distributed along the length of the strip to hold it in position

on the drafting table as the curve is drawn.

We can mathematically describe such a curve with a piecewise cubic polynomial function =>

spline curves. Then a spline surface can be described with 2 sets of orthogonal spline curves.

Sweep Representations

Sweep representations mean sweeping a 2D surface in 3D space to create an object.

However, the objects created by this method are usually converted into polygon meshes

and/or parametric surfaces before storing.

A Translational Sweep: A Rotational Sweep:

Other variations:

- We can specify special path for the sweep as some curve function.
- We can vary the shape or size of the cross section along the sweep path.

- We can also vary the orientation of the cross section relative to the sweep path.

Unit-6

Three Dimensional Transformations:

Methods for geometric transforamtions and object modelling in 3D are extended from 2D

methods by including

the considerations for the z coordinate.

Basic geometric transformations are: Translation, Rotation, Scaling

6.1 Basic Transformations

Translation

We translate a 3D point by adding translation distances, tx, ty, and tz, to the original coordinate

position (x,y,z):

x' = x + tx, y' = y + ty, z' = z + tz

Alternatively, translation can also be specified by the transformation matrix in the following

formula:

x' 1 0 0 t x x

y' 0 1 0 t y

z' 0 0 1 tz z

1 0 0 0 1 1

Scaling With Respect to the Origin

We scale a 3D object with respect to the origin by setting the scaling factors sx, sy and sz, which

are

multiplied to the original vertex coordinate positions (x,y,z):

x' = x * sx, y' = y * sy, z' = z * sz

Alternatively, this scaling can also be specified by the transformation matrix in the following

formula:

x' s x 0 0 0 x

y' 0 sy 0 0 y

z' 0 0 sz 0 z

1 0 0 0 1 1

6.2 Scaling with respect to a Selected Fixed Position

Exercise: What are the steps to perform scaling with respect to a selected fixed

 position? Check your answer with the text book.

Exercise: Scale a triangle with vertices at original coordinates (10,25,5), (5,10,5),

(20,10,10) by sx=1.5, sy=2, and sz=0.5 with respect to the centre of the triangle.

For verification, roughly plot the x and y values of the original and resultant

triangles, and imagine the locations of z values.

Coordinate-Axes Rotations

A 3D rotation can be specified around any line in space. The easiest rotation axes to handle are

the

coordinate axes.

Z-axis rotation: x' = x cos θ - y sin θ

 y' = x sin θ + y cos θ, and

z' = z

write matrix for z- axis rotation

X-axis rotation:

y' = y cos θ - z sin θ,

z' = y sin θ + z cos θ, and

x' = x

write matrix for x- axis rotation

Y-axis rotation:

z' = z cos θ - x sin θ

x' = z sin θ + x cos θ, and

y' = y

write matrix for y- axis rotation

3D Rotations About an Axis Which is Parallel to an Axis

Step 1. Translate the object so that the rotation axis coincides with the parallel coordinate axis.

Step 2. Perform the specified rotation about that axis.

Step 3. Translate the object so that the rotation axis is moved back to its original position.

General 3D Rotations

Step 1. Translate the object so that the rotation axis passes through the coordinate origin.

Step 2. Rotate the object so that the axis of rotation coincides with one of the coordinate axes.

Step 3. Perform the specified rotation about that coordinate axis.

Step 4. Rotate the object so that the rotation axis is brought back to its original orientation.

Step 5. Translate the object so that the rotation axis is brought back to its original position.

6.3 Three-Dimensional Viewing

Viewing in 3D involves the following considerations:

- We can view an object from any spatial position, eg. In front of an object, Behind the object, In

the middle of a group of objects, Inside an object, etc.

- 3D descriptions of objects must be projected onto the flat viewing surface of the output device.

- The clipping boundaries enclose a volume of space

6.4 Viewing Pipeline

Modelling Coordinates

 Modelling Transformations

World Coordinates

Viewing Transformation

 Viewing Coordinates

Projection Transformation

Projection Coordinates

Workstation Transformation

Device Coordinates

Modelling Transformation and Viewing Transformation can be done by 3D

transformations. The viewing-coordinate system is used in graphics packages as a reference

for specifying the observer viewing position and the position of the projection plane.

Projection operations convert the viewing-coordinate description (3D) to coordinate

positions on the projection plane (2D). (Usually combined with clipping, visual-surface

identification, and surface-

rendering)Workstation transformation maps the coordinate positions on the projection plane

to the output device.

6.5 Viewing Transformation

Conversion of objection descriptions from world to viewing coordinates is equivalent to a

transformation that superimposes the viewing reference frame onto the world frame using the

basic

geometric translate-rotate operations:

1. Translate the view reference point to the origin of the world-coordinate system.

2. Apply rotations to align the xv, yv, and zv axes (viewing coordinate system) with the world

xw, yw,zw axes, respectively.

6.6 Projections

Projection operations convert the viewing-coordinate description (3D) to coordinate positions on

the projection plane (2D). There are 2 basic projection methods:

1. Parallel Projection transforms object positions to the view plane along parallel lines.

A parallel projection preserves relative proportions of objects. Accurate views of the various

sides ofan object are obtained with a parallel projection. But not a realistic representation

2. Perspective Projection transforms object positions to the view plane while converging to a

center

point of projection. Perspective projection produces realistic views but does not preserve relative

proportions. Projections of distant objects are smaller than the projections of objects of the same

size that are closer to the

projection plane.

6.6.1 Parallel Projection

Classification:

Orthographic Parallel Projection and Oblique Projection:

Orthographic parallel projections are done by projecting points along parallel lines

that are perpendicular to the projection plane.

Oblique projections are obtained by projecting along parallel lines that are NOT

perpendicular

 to

the projection plane.Some special Orthographic Parallel Projections involve Plan View

(Top projection), Side Elevations, and Isometric Projection:

The following results can be obtained from oblique projections of a cube:

6.6.2 Perspective Projection

In Perspective projection all lines converge to a point called projection reference point or center of

projection

6.7 View Volumes

View window - A rectangular area in the view plane which controls how much of the

scene is viewed.The edges of the view window are parallel to the xv and yv viewing

axes. View volume - formed by the view window and the type of projection to be

used. Only those objects within the view volume will appear in the generated display.

Hence a view volume is bounded by 6 planes => rectangular parallelepiped or a

frustum, for parallel projection and perspective projection respectively.

6.8 Clipping

The purpose of 3D clipping is to identify and save all surface segments within the view volume

for display on the output device. All parts of objects that are outside the view volume are

discarded. Thus the computing time is saved. 3D clipping is based on 2D clipping.

Unit-7

Visible-Surface Detection Methods

More information about Modelling and Perspective Viewing:

Before going to visible surface detection, we first review and discuss the followings:

Problem definition of Visible-Surface Detection Methods:

To identify those parts of a scene that are visible from a chosen viewing position.

Surfaces which are obscured by other opaque surfaces along the line of sight (projection) are

invisible to the viewer.

Characteristics of approaches:

- Require large memory size?

- Require long processing time?

- Applicable to which types of objects?

Considerations:

- Complexity of the scene

- Type of objects in the scene

- Available equipment

- Static or animated?

Classification of Visible-Surface Detection Algorithms:

Object-space Methods

Compare objects and parts of objects to each other within the scene definition to determine

which surfaces, as a whole, we should label as visible: For each object in the scene do

Begin

1. Determine those part of the object whose view is unobstructed by other parts of it or

any other object with respect to the viewing specification.

2. Draw those parts in the object color.

End

- Compare each object with all other objects to determine the visibility of the object parts.

- If there are n objects in the scene, complexity = O(n2)

- Calculations are performed at the resolution in which the objects are defined (only limited by

the computation hardware).

- Process is unrelated to display resolution or the individual pixel in the image and the result of

the process is applicable to different display resolutions.

- Display is more accurate but computationally more expensive as compared to image space

methods because step 1 is typically more complex, eg. Due to the possibility of intersection

between surfaces.

- Suitable for scene with small number of objects and objects with simple relationship with each

other.

Image-space Methods (Mostly used)

Visibility is determined point by point at each pixel position on the projection plane.

For each pixel in the image do

Begin

1. Determine the object closest to the viewer that is pierced by the projector through the

pixel

2. Draw the pixel in the object colour.

End

- For each pixel, examine all n objects to determine the one closest to the viewer.

- If there are p pixels in the image, complexity depends on n and p (O(np)).

- Accuarcy of the calculation is bounded by the display resolution.

- A change of display resolution requires re-calculation

Application of Coherence in Visible Surface Detection Methods:

- Making use of the results calculated for one part of the scene or image for other nearby parts.

- Coherence is the result of local similarity

- As objects have continuous spatial extent, object properties vary smoothly within a small local

region in the scene. Calculations can then be made incremental.

Types of coherence:

1. Object Coherence:

Visibility of an object can often be decided by examining a circumscribing solid (which may be

of simple form, eg. A sphere or a polyhedron.)

2. Face Coherence:

Surface properties computed for one part of a face can be applied to adjacent parts after small

incremental modification. (eg. If the face is small, we sometimes can assume if one part of the

face is invisible to the viewer, the entire face is also invisible).

3. Edge Coherence:

The Visibility of an edge changes only when it crosses another edge, so if one segment of an

nonintersecting edge is visible, the entire edge is also visible.

4. Scan line Coherence:

Line or surface segments visible in one scan line are also likely to be visible in adjacent scan

lines.

Consequently, the image of a scan line is similar to the image of adjacent scan lines.

5. Area and Span Coherence:

A group of adjacent pixels in an image is often covered by the same visible object. This

coherence is based on the assumption that a small enough region of pixels will most

likely lie within a single polygon. This reduces computation effort in searching for those

polygons which contain a given screen area.

6. Depth Coherence:

The depths of adjacent parts of the same surface are similar.

7. Frame Coherence:

Pictures of the same scene at successive points in time are likely to be similar, despite small

changes

in objects and viewpoint, except near the edges of moving objects. Most visible surface detection

methods make use of one or more of these coherence properties of a scene. To take advantage of

regularities in a scene, eg. Constant relationships often can be established between objects and

surfaces in a scene.

7.1 Back-Face Detection

In a solid object, there are surfaces which are facing the viewer (front faces) and there are

surfaces

which are opposite to the viewer (back faces). These back faces contribute to approximately half

of the total number of surfaces. Since we cannot see these surfaces anyway, to save processing

time, we can remove them before the clipping process with a simple test. Each surface has a

normal vector. If this vector is pointing in the direction of the center of projection, it is a front face

and can be seen by the viewer. If it is pointing away from the center of projection, it is a

back face and cannot be seen by the viewer. The test is very simple, if the z component of the

normal vector is positive, then, it is a back face. If the z component of the vector is negative, it is a

front face. Note that this technique only caters well for non overlapping convex polyhedral.

For other cases where there are concave polyhedra or

overlapping objects, we still need to apply other methods to further determine where the

obscured faces are partially or completely hidden by other objects (eg.Using Depth-Buffer

Method or Depth-sort Method).

7.7 Depth-Buffer Method (Z-Buffer Method)

This approach compare surface depths at each pixel

position on the projection plane.

Object depth is usually measured from the view plane

along the z axis of a viewing system. This method requires 2 buffers: one is the image buffer and

the other is called the z-buffer (or the depth buffer). Each of these buffers has the same resolution

as the image to be

captured. As surfaces are processed, the image buffer is used to store the color values of each

pixel position and the z-buffer is used to store the depth values for each (x,y) position.

Algorithm:

1. Initially each pixel of the z-buffer is set to the maximum depth value (the depth of the back

clipping plane).

2. The image buffer is set to the background color.

3. Surfaces are rendered one at a time.

4. For the first surface, the depth value of each pixel is calculated.

5. If this depth value is smaller than the corresponding depth value in the z-buffer (ie. it is closer

to the view point), both the depth value in the z-buffer and the color value in the image buffer are

replaced by the depth value and the color value of this surface calculated at the pixel position.

6. Repeat step 4 and 5 for the remaining surfaces.

7. After all the surfaces have been processed, each pixel of the image buffer represents the color

of a visible surface at that pixel. This method requires an additional buffer (if compared with the

Depth-Sort Method) and the overheads involved in updating the buffer. So this method is less

attractive in the cases where only a few objects in the scene are to be rendered.

- Simple and does not require additional data structures.

- The z-value of a polygon can be calculated incrementally.

- No pre-sorting of polygons is needed.

- No object-object comparison is required.

- Can be applied to non-polygonal objects.

- Hardware implementations of the algorithm are available in some graphics workstation.

- For large images, the algorithm could be applied to, eg., the 4 quadrants of the image

separately, so as to reduce the requirement of a large additional buffer

7.2Scan-Line Method

In this method, as each scan line is processed, all polygon surfaces intersecting that line are

examined to determine which are visible. Across each scan line, depth calculations are made for

each overlapping surface to determine which is nearest to the view plane. When the visible

surface has been determined, the intensity value for that position is entered into the image buffer.

For each scan line do

Begin

For each pixel (x,y) along the scan line do ------------ Step 1

Begin

z_buffer(x,y) = 0

Image_buffer(x,y) = background_color

End

For each polygon in the scene do ----------- Step 2

Begin

For each pixel (x,y) along the scan line that is covered by the polygon do

Begin

2a. Compute the depth or z of the polygon at pixel location (x,y).

2b. If z < z_buffer(x,y) then

Set z_buffer(x,y) = z

Set Image_buffer(x,y) = polygon's colour

End

End

End

- Step 2 is not efficient because not all polygons necessarily intersect with the scan line.

- Depth calculation in 2a is not needed if only 1 polygon in the scene is mapped onto a segment

of

the scan line.

- To speed up the process:

Recall the basic idea of polygon filling: For each scan line crossing a polygon, this algorithm

locates the intersection points of the scan line with the polygon edges. These intersection points

are sorted from left to right. Then, we fill the pixels between each intersection pair.

With similar idea, we fill every scan line span by span. When polygon overlaps on a scan line,

we perform depth calculations at their edges to determine which polygon should be visible at

which span. Any number of overlapping polygon surfaces can be processed with this method.

Depth calculations are performed only when there are polygons overlapping. We can take

advantage of coherence along the scan lines as we pass from one scan line to the next. If no

changes in the pattern of the intersection of polygon edges with the successive scan lines, it is not

necessary to do depth calculations. This works only if surfaces do not cut through or otherwise

cyclically overlap each other. If cyclic overlap happens, we can divide the surfaces to eliminate

the overlaps.

- The algorithm is applicable to non-polygonal surfaces (use of surface and active surface table,

zvalue

is computed from surface representation).

- Memory requirement is less than that for depth-buffer method.

- Lot of sortings are done on x-y coordinates and on depths.

7.3Depth-Sort Method

1. Sort all surfaces according to their distances from the view point.

2. Render the surfaces to the image buffer one at a time starting from the farthest surface.

3. Surfaces close to the view point will replace those which are far away.

4. After all surfaces have been processed, the image buffer stores the final image.

The basic idea of this method is simple. When there are only a few objects in the scene, this

method can be very fast. However, as the number of objects increases, the sorting process can

become very complex and time consuming.

Example: Assuming we are viewing along the z axis. Surface S with the greatest depth is then

compared to other surfaces in the list to determine whether there are any overlaps in depth. If no

depth

overlaps occur, S can be scan converted. This process is repeated for the next surface in the list.

However, if depth overlap is detected, we need to make some additional comparisons to

determine whether any of the surfaces should be reordered.

7.4Binary Space Partitioning

- suitable for a static group of 3D polygon to be viewed from a number of view points

- based on the observation that hidden surface elimination of a polygon is guaranteed if all

polygons on the other side of it as the viewer is painted first, then itself, then all polygons on the

same side of it as the viewer

1.The algorithm first build the BSP tree:

- a root polygon is chosen (arbitrarily) which divides the region into 2 half-spaces (2 nodes =>

front and back)

- a polygon in the front half-space is chosen which divides the half-space into another 2

halfspaces

- the subdivision is repeated until the half-space contains a single polygon (leaf node of

the tree)

- the same is done for the back space of the polygon.

2.To display a BSP tree:

- see whether the viewer is in the

ront or the back half-space of the

root polygon.

- if front half-space then first display back child (subtree) then itself, followed

by its front child /

subtree

- the algorithm is applied recursively to the BSP tree.

BSP Algorithm

Procedure

DisplayBSP(tree:

BSP_tree)

Begin

If tree is not empty then

If viewer is in

front of the root

then

Begin

DisplayBSP

(tree.back_c

hild)

displayPoly

gon(tree.roo

t)

DisplayBSP

(tree.front_c

hild)

End

Else

Begin

DisplayBSP

(tree.front_c

hild)

displayPoly

gon(tree.roo

t)

DisplayBSP

(tree.back_c

hild)

End

End

7.4Area Subdivision Algorithms

The area-subdivision method takes advantage of area coherence in a scene by locating

those

view areas that represent part of a single surface. The total viewing area is

successively divided into smaller and smaller rectangles until each small area

is simple, ie. it is a single pixel, or is covered wholly by a part of a single

visible surface or no surface at all.

The procedure to determine whether we should subdivide an area into smaller rectangle

is:

1. We first classify each of the surfaces, according to their relations with the area:

Surrounding surface - a single surface completely encloses the area Overlapping surface -

a

single surface that is partly inside and partly outside the area Inside surface - a

single surface that

is completely inside the area Outside surface - a single surface that is

completely outside the

area. To improve the speed of classification, we can make use of the bounding

rectangles of

surfaces for early confirmation or rejection that the surfaces should be belong to

that type.

2. Check the result from 1., that, if any of the following condition is true, then,

no subdivision of this area is needed.

a. All surfaces are outside the area.

b. Only one surface is inside, overlapping or surrounding surface is in the area.

c. A surrounding surface obscures all other surfaces within the area boundaries.

For cases b and c, the color of the area can be determined from that single surface.

7. 5 Octree Methods

In these methods, octree nodes are projected onto the viewing surface in a

front-to-back order. Any surfaces toward the rear of the front octants (0,1,2,3)

or in the back octants (4,5,6,7) may be hidden by the front surfaces.With the

numbering method (0,1,2,3,4,5,6,7), nodes

representing octants 0,1,2,3 for the entire region are visited before the nodes

representing octants

4,5,6,7. Similarly the nodes for the front four suboctants of octant 0 are visited

before the nodes

Unit-8

Computer Animation

8.1 Overview

Motion can bring the simplest of characters to life. Even simple polygonal shapes can convey a

number of human qualities when animated: identity, character, gender, mood, intention,

emotion, and so on. Very simple

Very simple characters (image by Ken Perlin)

A movie is a sequence of frames of still images. For video, the frame rate is typically 24 frames

per second. For film, this is 30 frames per second.

In general, animation may be achieved by specifying a model with n parameters that identify

degrees of freedom that an animator may be interested in such as

• polygon vertices,

• spline control,

• joint angles,

• muscle contraction,

• camera parameters, or

• color.

With n parameters, this results in a vector ~q in n-dimensional state space. Parameters may be

varied to generate animation. A model’s motion is a trajectory through its state space or a set of

motion curves for each parameter over time, i.e. ~q(t), where t is the time of the current frame.

Every animation technique reduces to specifying the state space trajectory.

The basic animation algorithm is then: for t=t1 to tend: render(~q(t)).

Modeling and animation are loosely coupled. Modeling describes control values and their

actions.

Animation describes how to vary the control values. There are a number of animation

techniques,

including the following:

• User driven animation

- Keyframing

- Motion capture

• Procedural animation

- Physical simulation

- Particle systems

- Crowd behaviors

• Data-driven animation

8.2 Keyframing

Keyframing is an animation technique where motion curves are interpolated through states at

times, (~q1, ..., ~qT), called keyframes, specified by a user

Catmull-Rom splines are well suited for keyframe animation because they pass through their

control points.

• Pros:

- Very expressive

- Animator has complete control over all motion parameters

• Cons:

Very labor intensive

- Difficult to create convincing physical realism

• Uses:

- Potentially everything except complex physical phenomena such as smoke, water, or

fire

8.3 Kinematics

Kinematics describe the properties of shape and motion independent of physical forces that

cause motion. Kinematic techniques are used often in keyframing, with an animator either setting

joint parameters explicitly with forward kinematics or specifying a few key joint orientations and

having the rest computed automatically with inverse kinematics.

16.3.1 Forward Kinematics

With forward kinematics, a point ¯p is positioned by ¯p = (_) where_is a state vector (θ1,

θ2, ...θn)

specifying the position, orientation, and rotation of all joints.

For the above example, ¯p = (l1 cos(θ1) + l2 cos(θ1 + θ2), l1 sin(θ1) + l2 sin(θ1 +

θ2)).

Inverse Kinematics

With inverse kinematics, a user specifies the position of the end effector, ¯p, and the algorithm

has to evaluate the required _ give ¯p. That is, _ = f−1(¯p).

Usually, numerical methods are used to solve this problem, as it is often nonlinear and either

underdetermined or overdetermined. A system is underdetermined when there is not a unique

solution, such as when there are more equations than unknowns. A system is overdetermined

when it is inconsistent and has no solutions.

Extra constraints are necessary to obtain unique and stable solutions. For example, constraints

may be placed on the range of joint motion and the solution may be required to minimize the

kinetic energy of the system.

8.3.1 Motion Capture

In motion capture, an actor has a number of small, round markers attached to his or her body

that reflect light in frequency ranges that motion capture cameras are specifically designed to

pick up

image from movement.nyu.edu)

With enough cameras, it is possible to reconstruct the position of the markers accurately in 3D.

In practice, this is a laborious process. Markers tend to be hidden from cameras and 3D

reconstructions fail, requiring a user to manually fix such drop outs. The resulting motion curves

are often noisy, requiring yet more effort to clean up the motion data to more accurately match

what an animator wants. Despite the labor involved, motion capture has become a popular

technique in the movie and game industries, as it allows fairly accurate animations to be created

from the motion of actors. However, this is limited by the density of markers that can be placed

on a single actor. Faces, for example, are still very difficult to convincingly reconstruct.

Pros:

- Captures specific style of real actors

• Cons:

- Often not expressive enough

- Time consuming and expensive

- Difficult to edit

• Uses:

- Character animation

- Medicine, such as kinesiology and biomechanics

